B. Cheng, B. W. Tobalske, D. R. Powers, T. L. Hedrick, S. M. Wethington et al., Flight mechanics and control of escape manoeuvres in hummingbirds. i. flight kinematics, Journal of Experimental Biology, vol.219, issue.22, p.20, 2016.

N. G. Chetaev, Sur les Équations de poincaré. Comptes rendus de l'Académie des Sciences de Paris, p.36, 1927.

C. Chevallereau and Y. Et-aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, vol.19, issue.5, p.28, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00794833

C. Chevallereau, G. Bessonnet, G. Abba, and Y. Et-aoustin, Bipedal Robots : Modeling, Design and Walking Synthesis, p.45, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01702864

C. Chevallereau, F. Boyer, M. Porez, J. Mauny, and Y. Et-aoustin, Morphological self stabilization of locomotion gaits : illustration on a few examples from bio-inspired locomotion, Bioinspiration & Biomimetics, vol.12, issue.4, p.48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558509

D. P. Chevallier and J. Et-lerbet, Multi-Body Kinematics and Dynamics with Lie Groups, p.25, 2018.

R. Coquereaux, Espace fibrés et connexions, vol.3, p.31, 2002.

M. H. Dickinson, C. T. Farley, R. J. Full, M. A. Koehl, R. Kram et al., How animals move : An integrative view, Science, vol.288, issue.5463, p.20, 2000.

M. H. Dickinson, F. O. Lehmann, and S. P. Et-sane, Wing rotation and the aerodynamic basis of insect flight, Science, vol.284, p.41, 1954.

K. J. Dowling, Limbless locomotion : learning to crawl with a snake robot, p.20, 1997.

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Séminaire Bourbaki, vol.1, p.29, 1950.

T. Frankel, The Geometry of Physics : An Introduction, 2 nd ed, p.27, 1998.

H. Goldstein, C. P. Poole, and J. L. Et-safko, Classical Mechanics, vol.3, p.41, 2001.

J. Gray, The mechanism of locomotion in snakes, Journal of Experimental Biology, vol.23, issue.2, p.20, 1946.

J. W. Grizzle, C. Chevallereau, and A. D. Ames, et Sinnet R.W. 3d bipedal robotic walking : Models, feedback control, and open problems. IFAC Proceedings Volumes, vol.43, p.44, 2010.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, tome 42, p.57, 1983.

R. L. Hatton, L. J. Burton, A. E. Hosoi, and H. Et-choset, Geometric maneuverability with applications to low reynolds number swimming, International Conference on Intelligent Robots and Systems, p.39, 2011.

R. L. Hatton and H. Et-choset, Geometric motion planning : The local connection, stokes' theorem, and the importance of coordinate choice, The International Journal of Robotics Research, vol.30, issue.8, p.32, 2011.

S. Hirose, Biologically inspired robots : Snake-like locomotors and manipulators, 1920.

S. Hirose and H. Et-yamada, Snake-like robots

, IEEE Robotics Automation Magazine, vol.16, issue.1, p.21, 2009.

J. T. Horstmann, P. Henningsson, A. L. Thomas, and R. J. Et-bomphrey, Wake development behind paired wings with tip and root trailing vortices : Consequences for animal flight force estimates, PLOS ONE, vol.9, issue.3, p.28, 2014.

B. C. Jayne, Kinematics of terrestrial snake locomotion, Copeia, issue.4, p.20, 1986.

S. Jensen-segal, S. Virost, W. R. Et-provancher, and . Rocr, Dynamic vertical wall climbing with a pendular two-link mass-shifting robot, ICRA 2008. IEEE International Conference on, vol.47, p.57, 2008.

E. Kanso, Swimming due to transverse shape deformations, Journal of Fluid Mechanics, vol.631, p.40, 2009.

E. Kanso, J. E. Marsden, C. W. Rowley, and J. Et-melli-huber, Locomotion of articulated bodies in a perfect fluid, Journal of Nonlinear Science, vol.15, issue.4, p.39, 2005.

M. Karásek, Y. Nan, I. Romanescu, and A. Et-preumont, Pitch moment generation and measurement in a robotic hummingbird, International Journal of Micro Air Vehicles, vol.5, issue.4, p.20, 2013.

M. Keennon, K. Klingebiel, and H. Et-won, Development of the nano hummingbird : A tailless flapping wing micro air vehicle. Aerospace Sciences Meetings, p.20, 2012.

S. D. Kelly and R. M. Murray, Geometric phases and robotic locomotion, Journal of Robotic Systems, vol.12, issue.6, p.34, 1995.

P. Barkan, Impact design. Mechanical Design and Systems Handbook, vol.31, p.125, 1974.

O. A. Bauchau, Flexible Multibody Dynamics, p.150, 2011.

G. Boulanger, Sur le choc avec frottement des corps non parfaitement élastiques, Revue Scientifique, vol.77, p.128, 1939.

R. M. Brach, Rigid body collisions, Journal of Applied Mechanics, vol.56, issue.1, p.128, 1989.

R. M. Brach, Mechanical impact dynamics : rigid body collisions, vol.124, p.128, 1991.

R. M. Brach, Formulation of rigid body impact problems using generalized coefficients, International Journal of Engineering Science, vol.36, issue.1, p.128, 1998.

A. Chatterjee, Rigid body collisions : some general considerations, new collision laws, and some experimental data, p.125, 1997.

A. Chemori, Quelques contributions à la commande non linéaire des robots marcheurs bipèdes sous-actionnés. Theses, p.142, 2005.

A. Chemori and M. Et-alamir, Multi-step limit cycle generation for rabbit's walking based on a nonlinear low dimensional predictive control scheme, Mechatronics, vol.16, issue.5, p.142, 2006.

S. Dubowsky and F. Et-freudenstein, Dynamic analysis of mechanical systems with clearances-part 1 : Formation of dynamic model, Journal of Engineering for Industry, vol.93, issue.1, p.126, 1971.

P. Flores, M. Machado, M. T. Silva, and J. Et-martins, On the continuous contact force models for soft materials in multibody dynamics, Multibody System Dynamics, vol.25, issue.3, p.126, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01333699

G. Gilardi and I. Et-sharf, Literature survey of contact dynamics modelling. Mechanism and Machine Theory, vol.37, p.125, 2002.

C. Glocker, An introduction to impacts, Nonsmooth Mechanics of Solids, vol.137, p.142, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01716872

W. Goldsmith, Impact The Theory And Physical Behaviour Of Colliding Solids, vol.126, p.144, 1960.

H. Bibliographie-hertz, Miscellaneous Papers, chapitre On the contact of elastic solids, pp.146-162

H. Hertz, Miscellaneous Papers, chapitre On the Contact of Rigid Elastic Solids and on Hardness, pp.163-183

K. H. Hunt and F. R. Et-crossley, Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied Mechanics, vol.42, issue.2, p.126, 1975.
URL : https://hal.archives-ouvertes.fr/hal-01333795

Y. Hurmuzlu and D. B. Et-marghitu, Rigid body collisions of planar kinematic chains with multiple contact points. The international journal of robotics research, vol.13, p.142, 1994.

K. L. Johnson, One hundred years of hertz contact, Proceedings of the Institution of Mechanical Engineers, vol.196, issue.1, p.126, 1982.

C. Kane, E. A. Repetto, M. Ortiz, and J. E. Et-marsden, Finite element analysis of nonsmooth contact, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1, p.125, 1999.

T. R. Kane and D. A. Et-levinson, Dynamics : Theory and Applications (Series in Mechanical Engineering, p.128, 1985.

J. Kövecses, Dynamics of mechanical systems and the generalized free-body diagrampart i : General formulation, Journal of Applied Mechanics, vol.75, issue.6, p.150, 2008.

J. Kövecses, Dynamics of mechanical systems and the generalized free-body diagrampart ii : Imposition of constraints, Journal of Applied Mechanics, vol.75, issue.6, p.150, 2008.

J. B. Keller, Impact with friction, Journal of Applied Mechanics, vol.53, issue.1, p.128, 1986.

J. Kovecses, J. Piedboeuf, and C. Et-lange, Dynamics modeling and simulation of constrained robotic systems, IEEE/ASME Transactions on Mechatronics, vol.8, issue.2, p.150, 2003.

H. M. Lankarani and P. E. Et-nikravesh, A contact force model with hysteresis damping for impact analysis of multibody systems, Journal of Mechanical Design, vol.112, issue.3, p.125, 1990.

H. M. Lankarani and P. E. Et-nikravesh, Continuous contact force models for impact analysis in multibody systems, Nonlinear Dynamics, vol.5, issue.2, p.127, 1994.

D. W. Marhefka and D. E. Et-orin, A compliant contact model with nonlinear damping for simulation of robotic systems, IEEE Transactions on Systems, Man, and Cybernetics -Part A : Systems and Humans, vol.29, issue.6, p.126, 1999.

S. Miossec, A contribution to the study of biped walk
URL : https://hal.archives-ouvertes.fr/tel-00684507

R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, p.142, 1994.

A. Pandolfi and M. Ortiz, Finite element analysis of nonsmooth frictional contact, vol.3, p.125, 2007.

N. Rosa, A. Barber, R. D. Gregg, and K. Et-lynch, IEEE International Conference on Robotics and Automation, p.142, 2012.

E. J. Routh, Dynamics of a System of Rigid Bodies

W. J. Stronge, Rigid body collisions with friction, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.431, p.128, 1881.

W. J. Stronge, Unraveling paradoxical theories for rigid body collisions, Journal of Applied Mechanics, vol.58, issue.4, p.128, 1991.

W. J. Stronge, Swerve during three-dimensional impact of rough rigid bodies, Journal of Applied Mechanics, vol.61, issue.3, p.128, 1994.

W. Stronge, J. Impact Mechanics, vol.125, p.128, 2000.

Y. Wang and M. Et-mason, Two-dimensional rigid-body collisions with friction, Journal of Applied Mechanics, vol.59, issue.3, p.124, 1992.

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particules and Rigid Bodies, vol.125, p.144, 1904.

, Dynamique réduite de la Bicyclette soumise à des contacts intermittents

. .. Tests-numériques, 170 4.3.1 Test 1 : Rebonds élastiques 3D d'une bicyclette tombant sur un sol incliné

, 3 Test 3 : Bicyclette sujette aux décollements de chacune de ses roues

, Test 4 : Décollement d'une roue aux suites d'une collision 181 4.3.5 Test 5 : Wheeling commandé de la bicyclette, p.182

.. .. Conclusion,

. Boyer, Ce modèle des contacts Conclusion des acrobaties telles que celles exposées dans ce chapitre. Toutefois, on notera qu'il n'existe qu'un facteur trois entre le couple nominal de ce moteur et le couple requis pour faire se cabrer la bicyclette dans l'essai présenté en section 4.3.5. Dans le cas de la réorientation durant la phase de vol (section 4.3.2), le facteur est par contre beaucoup plus important. Cette différence est imputable au fait que l'on cherche à réaliser le mouvement rapidement (en 0.7 s) sans l'aide du pilote. En effet, le modèle considère le pilote comme une masse ponctuelle liée au cadre, il ne peut ainsi pas agir sur la bicyclette en déplaçant sa masse, Ce chapitre s'inscrit dans la continuité du chapitre 2 qui traitait de la dynamique de la bicyclette soumise aux contacts persistants de ses deux roues avec le sol, 2017.

A. Q. Gouranton, V. Et-arnaldi, and B. R. , A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures
URL : https://hal.archives-ouvertes.fr/hal-00474171

A. Shirai, . Rédacteur, and . Vric, , p.163, 2010.

S. Bandi and D. Et-thalmann, An adaptive spatial subdivision of the object space for fast collision detection of animated rigid bodies, Computer Graphics Forum, vol.14, issue.3, p.163, 1995.

F. Boyer, M. Porez, and J. Et-mauny, Reduced dynamics of the non-holonomic whipple bicycle, Journal of Nonlinear Science, vol.159, p.178, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717298

J. Cohen, M. Lin, D. Manocha, M. Et-ponamgi, and . I-collide, An interactive and exact collision detection system for large-scale environments, p.163, 1995.

C. Fares and A. Et-hamam, Collision detection for rigid bodies : A state of the art review, GraphiCon, p.164, 2005.

E. G. Gilbert, D. W. Johnson, and S. S. Et-keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space, IEEE Journal on Robotics and Automation, vol.4, issue.2, p.163, 1988.

S. Gottschalk, M. Lin, D. Et-manocha, and . Obbtree, A hierarchical structure for rapid interference detection, p.163, 1996.

S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Et-rowe, Collision detection : A survey, IEEE International Conference on Systems, Man and Cybernetics, p.163, 2007.

F. Lehericey, Ray-traced collision detection : Quest for performance. Theses, INSA de Rennes, vol.163, p.164, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01427732

M. C. Lin and S. Gottschalk, Collision detection between geometric models : A survey, Proc. of IMA Conference on Mathematics of Surfaces, p.163, 1998.

K. Mamou and F. Et-ghorbel, A simple and efficient approach for 3d mesh approximate convex decomposition, 16th IEEE International Conference on Image Processing (ICIP), p.164, 2009.

J. Mauny, M. Porez, and F. Boyer, Symbolic dynamic modelling of locomotion systems with persistent contacts -application to the 3d bicycle, vol.50, p.159, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717312

J. Meijaard, J. M. Papadopoulos, A. Ruina, and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle : a benchmark and review. Proceedings of the, Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.463, p.178, 2007.

B. Mirtich, Efficient algorithms for two-phase collision detection. Rapport technique, p.163, 1997.

J. Shade, S. Gortler, L. W. He, and R. Et-szeliski, Layered depth images, Proceedings of the 25th annual conference on Computer graphics and interactive techniques, p.163, 1998.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi et al., Collision Detection for Deformable Objects, Computer Graphics Forum, p.163, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00539916

A. S. Bibliographie and . Newton, Euler approach for bio-robotics locomotion dynamics : from discrete to continuous systems, p.195, 2011.

A. Belkhiri, Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte, p.195, 2013.

A. Belkhiri, M. Porez, and F. Boyer, A hybrid dynamic model of an insect-like MAV with soft wings, IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.108-115, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00761287

A. M. Bloch, J. Baillieul, P. E. Crouch, J. E. Marsden, and D. Et-zenkov, tome 24 de Interdisciplinary Applied Mathematics, p.196, 2015.

C. Chevallereau, F. Boyer, M. Porez, J. Mauny, and Y. Et-aoustin, Morphological self stabilization of locomotion gaits : illustration on a few examples from bio-inspired locomotion, Bioinspiration & Biomimetics, vol.12, issue.4, p.196, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558509

J. D. Kooijman, J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab, A bicycle can be self-stable without gyroscopic or caster effects, Science, vol.332, issue.6027, pp.339-342, 0198.

J. Meijaard, J. M. Papadopoulos, A. Ruina, and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle : a benchmark and review. Proceedings of the, Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.463, p.196, 2007.

M. Porez, Modèle dynamique analytique de la nage tridimensionnelle anguilliforme pour la robotique, p.195, 2007.

N. Rosa, A. Barber, R. D. Gregg, and K. Et-lynch, IEEE International Conference on Robotics and Automation, p.196, 2012.

, En résumé, tout vecteur généré par le noyau des contraintes peut s'écrire sous la forme suivante, vol.35