M. Couchoud, S. Girodet, and V. Vernoud, Christophe Salon, Marion Prudent -How does pea (Pisum sativum) recover from water deficit?, ILS3 highlighted nice results and challenging opportunities for innovative research on grain legume. Legume Perspective, vol.18, 2019.

M. Couchoud, C. Salon, S. Girodet, and C. Jeudy, Vanessa Vernoud, Marion Prudent -Fine-tuning of nodulation is required for an efficient post-drought recovery in pea, 2019.

M. Couchoud, M. Prudent, and V. Vernoud, Christophe Salon -Analyse écophysiologique de la récupération après un stress hydrique chez la légumineuse à graine Pisum sativum -Forum Jeunes Chercheurs

M. Couchoud, M. Prudent, and V. Vernoud, Christophe Salon -How does pea (Pisum sativum) recover from drought, Journée des doctorants du département BAP de l'INRA

M. Couchoud, M. Prudent, and V. Vernoud, Christophe Salon -Analyse écophysiologique de la récupération après un stress hydrique chez la légumineuse à graine Pisum sativum -RFL #2 (2ème Rencontres Francophone des Légumineuses)

M. Couchoud, S. Girodet, and V. Vernoud, Christophe Salon, Marion Prudent -How does pea (Pisum sativum) recover from water deficit, Journée des doctorants de l'UMR Agroécologie

M. Couchoud, S. Girodet, and V. Vernoud, Christophe Salon, Marion Prudent -How does pea (Pisum sativum) recover from water deficit, Third international legume society (ILS #3)

M. Prudent, M. Couchoud, C. Jacques, C. Jeudy, S. Girodet et al., Le système racinaire nodulé du pois : un rôle pivot pour sa stabilité sous contraintes hydriques fluctuantes. Presented at Root Days, système racinaire, Interactions Rhizosphériques, Immunité végétale, 2019.

M. Couchoud, M. Prudent, and V. Vernoud, Christophe Salon -Comment la plante récupère-t-elle après un stress hydrique? Une étude écophysiologique et moléculaire chez la légumineuse à graines Pisum sativum -Journée des doctorants de l'UMR Agroécologie

M. Couchoud, M. Prudent, M. Térézol, J. Kreplak, S. Valière et al., Christophe Salon, Vanessa Vernoud -Transcriptomic and metabolomic responses of the nodulated pea root system during water deficit recovery -Third International conference on legume genetics and genomics (ICLGG), p.13

S. I. Seneviratne, D. Luthi, M. Litschi, and C. Schar, Land-atmosphere coupling and climate change in Europe, Nature, vol.443, issue.7108, pp.205-214, 2006.

S. S. Araujo, S. Beebe, M. Crespi, B. Delbreil, E. M. Gonzalez et al., Abiotic stress responses in legumes: strategies used toCope with environmental challenges, Crit Rev Plant Sci, vol.34, issue.1-3, pp.237-80, 2015.

P. M. Neumann, Coping mechanisms for crop plants in drought-prone environments, Ann Bot, vol.101, issue.7, pp.901-908, 2008.

T. T. Xiao, S. Schilderink, S. Moling, E. E. Deinum, E. Kondorosi et al., Fate map of Medicago truncatula root nodules, Development, vol.141, issue.18, pp.3517-3545, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636064

S. Bensmihen, Hormonal control of lateral root and nodule development in legumes, Plants, vol.4, issue.3, pp.523-570, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02629771

A. S. Iyer-pascuzzi, T. Jackson, H. C. Cui, J. J. Petricka, W. Busch et al., Cell identity regulators link development and stress responses in the Arabidopsis root, Dev Cell, vol.21, issue.4, pp.770-82, 2011.

L. H. Comas, S. R. Becker, V. V. Cruz, P. F. Byrne, and D. A. Dierig, Root traits contributing to plant productivity under drought, Front Plant Sci, vol.4, p.442, 2013.

B. J. Barkla and O. Pantoja, Plasma membrane and abiotic stress, Plant Cell Monogr, vol.19, pp.457-70, 2011.

M. Uemura and P. L. Steponkus, Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane, J Plant Res, vol.112, pp.245-54, 1106.

D. J. Osborne, I. Boubriak, and O. Leprince, Rehydration of dried systems: membranes and the nuclear genome, pp.343-64, 2002.

Y. Osakabe, K. Yamaguchi-shinozaki, K. Shinozaki, and L. Tran, Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress, J Exp Bot, vol.64, issue.2, pp.445-58, 2013.

J. E. Cronan and P. G. Roughan, Fatty acid specificity and selectivity of the chloroplast sn-glycerol 3-phosphate acyltransferase of the chilling sensitive plant, Amaranthus lividus, Plant Physiol, vol.83, issue.3, pp.676-80, 1987.

N. Leborgne, L. Dupou-cezanne, C. Teulieres, H. Canut, J. F. Tocanne et al., Lateral and rotational Mobilities of lipids in specific cellular membranes Couchoud et al, BMC Plant Biology, vol.19, p.221, 2019.

, Eucalyptus gunnii cultivars exhibiting different freezing tolerance, Plant Physiol, vol.100, issue.1, pp.246-54, 1992.

K. Mikami and N. Murata, Membrane fluidity and the perception of environmental signals in cyanobacteria and plants, Prog Lipid Res, vol.42, issue.6, pp.527-570, 2003.

S. L. Urbanus and T. Ott, Plasticity of plasma membrane compartmentalization during plant immune responses, Front Plant Sci, vol.3, p.181, 2012.

J. Cacas, F. Furt, L. Guedard, M. Schmitter, J. Bure et al., Lipids of plant membrane rafts, Prog Lipid Res, vol.51, issue.3, pp.272-99, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647225

K. Grosjean, C. Der, F. Robert, D. Thomas, S. Mongrand et al., Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells, J Exp Bot, vol.69, issue.15, pp.3545-57, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629167

C. Liu, W. Shen, C. Yang, L. Zeng, and C. Gao, Knowns and unknowns of plasma membrane protein degradation in plants, Plant Sci, vol.272, pp.55-61, 2018.

C. H. Foyer, H. Lam, H. T. Nguyen, K. Siddique, R. K. Varshney et al., Neglecting legumes has compromised human health and sustainable food production, Nat Plants, vol.2, p.16112, 2016.

Q. Ma, J. Kang, R. Long, T. Zhang, J. Xiong et al., Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination, Mol Biol Rep, vol.44, issue.3, pp.261-72, 2017.

R. Yacoubi, C. Job, M. Belghazi, W. Chaibi, and D. Job, Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress, Seed Sci Res, vol.23, issue.2, pp.99-110, 2013.

C. Zhang and S. Shi, Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress, Front Plant Sci, vol.9, p.242, 2018.

A. A. Steuter, Water potential of aqueous polyethylene glycol, Plant Physiol, vol.67, issue.1, pp.64-71, 1981.

Y. Bao, P. Aggarwal, . Robbins-ne-2nd, C. J. Sturrock, M. C. Thompson et al., Plant roots use a patterning mechanism to position lateral root branches toward available water, Proc Natl Acad Sci, vol.111, issue.25, pp.9319-9343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636761

H. T. Ji, L. Liu, K. X. Li, Q. G. Xie, Z. J. Wang et al., PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat, J Exp Bot, vol.65, issue.17, pp.4863-72, 2014.

J. Ronfort, T. Bataillon, S. Santoni, M. Delalande, J. L. David et al., Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula, BMC Plant Biol, vol.6, p.28, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02659572

Y. Kang, M. Sakiroglu, N. Krom, J. Stanton-geddes, M. Y. Wang et al.,

, Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula, Plant Cell Environ, vol.38, issue.10, pp.1997-2011, 2015.

M. Somssich, G. A. Khan, and S. Persson, Cell Wall heterogeneity in root development of Arabidopsis, Front Plant Sci, vol.7, p.1242, 2016.

T. Adam, K. Bouhidel, C. Der, F. Robert, A. Najid et al., Constitutive expression of clathrin hub hinders elicitor-induced clathrinmediated endocytosis and defense gene expression in plant cells, FEBS Lett, vol.586, issue.19, pp.3293-3301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02646052

M. Frescatada-rosa, T. Stanislas, S. K. Backues, I. Reichardt, S. Men et al., High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function, Plant J, vol.80, issue.5, pp.745-57, 2014.

P. Gerbeau-pissot, C. Der, D. Thomas, I. Anca, K. Grosjean et al., Modification of plasma membrane organization in tobacco cells elicited by cryptogein, Plant Physiol, vol.164, issue.1, pp.273-86, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638760

X. Y. Zhao, R. L. Li, C. F. Lu, F. Baluska, and Y. L. Wan, Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells, Plant Physiol Bioch, vol.87, pp.53-60, 2015.

X. Y. Zhao, X. R. Zhang, Y. L. Qu, R. L. Li, F. Baluska et al., Mapping of membrane lipid order in root apex zones of Arabidopsis thaliana, Front Plant Sci, vol.6, p.1151, 2015.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu et al., Characterization and application of a new optical probe for membrane lipid domains, Biophys J, vol.90, issue.7, pp.2563-75, 2006.

D. M. Owen, C. Rentero, A. Magenau, A. Abu-siniyeh, and K. Gaus, Quantitative imaging of membrane lipid order in cells and organisms, Nat Protoc, vol.7, issue.1, pp.24-35, 2012.

H. Tian, D. Smet, I. Ding, and Z. , Shaping a root system: regulating lateral versus primary root growth, Trends Plant Sci, vol.19, issue.7, pp.426-457, 2014.

A. Baral, K. S. Shruthi, and M. K. Mathew, Vesicular trafficking and salinity responses in plants, IUBMB Life, vol.67, issue.9, pp.677-86, 2015.

N. Leborgne-castel and D. T. Luu, Regulation of endocytosis by external stimuli in plant cells, Plant Biosyst, vol.143, issue.3, pp.630-635, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00508287

V. Cavalli, M. Corti, and J. Gruenberg, Endocytosis and signaling cascades: a close encounter, FEBS Lett, vol.498, issue.2-3, pp.190-196, 2001.

L. Claus, D. V. Savatin, and E. Russinova, The crossroads of receptor-mediated signaling and endocytosis in plants, J Integr Plant Biol, vol.60, issue.9, pp.827-867, 2018.

S. Bolte, C. Talbot, Y. Boutte, C. O. Read, N. D. Satiat-jeunemaitre et al., FMdyes as experimental probes for dissecting vesicle trafficking in living plant cells, J Microsc-Oxford, vol.214, pp.159-73, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122335

N. Leborgne-castel, J. Lherminier, C. Der, J. Fromentin, V. Houot et al., The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells, Plant Physiol, vol.146, issue.3, pp.1255-66, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02665878

A. Rigal, S. M. Doyle, and S. Robert, Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells, Methods Mol Biol, vol.1242, pp.93-103, 2015.

U. Kubitscheck, U. Homann, and G. Thiel, Osmotically evoked shrinking of guardcell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm, Planta, vol.210, issue.3, pp.423-454, 2000.

P. L. Steponkus and D. V. Lynch, Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation, J Bioenerg Biomembr, vol.21, issue.1, pp.21-41, 1989.

A. Bahaji, F. Aniento, and M. Cornejo, Uptake of an endocytic marker by rice cells: variations related to osmotic and saline stress, Plant Cell Physiol, vol.44, issue.10, pp.1100-1111, 2003.

Y. Boursiac, J. Boudet, O. Postaire, D. T. Luu, C. Tournaire-roux et al., Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization, Plant J, vol.56, issue.2, pp.207-225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00330107

M. Zwiewka, T. Nodzynski, S. Robert, S. Vanneste, and J. Friml, Osmotic stress modulates the balance between exocytosis and Clathrin-mediated endocytosis in Arabidopsis thaliana, Mol Plant, vol.8, issue.8, pp.1175-87, 2015.

C. S. Galvan-ampudia, M. M. Julkowska, E. Darwish, J. Gandullo, R. A. Korver et al., Halotropism is a response of plant roots to avoid a saline environment, Curr Biol, vol.23, issue.20, pp.2044-50, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649039

X. Chen, N. G. Irani, and J. Friml, Clathrin-mediated endocytosis: the gateway into plant cells, Curr Opin Plant Biol, vol.14, issue.6, pp.674-82, 2011.

J. L. Luo, S. H. Tang, X. J. Peng, X. H. Yan, X. H. Zeng et al., Elucidation of crosstalk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in Brassica napus using comparative proteomic analysis, PLoS One, vol.10, issue.10, p.138974, 2015.

M. Ueda, N. Tsutsumi, and M. Fujimoto, Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana, Biochem Bioph Res Co, vol.474, issue.4, pp.742-748, 2016.

X. J. Li, X. H. Wang, Y. Yang, R. L. Li, Q. H. He et al., Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation, Plant Cell, vol.23, issue.10, pp.3780-97, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662232

A. Baral, N. G. Irani, M. Fujimoto, A. Nakano, S. Mayor et al., Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root, Plant Cell, vol.27, issue.4, pp.1297-315, 2015.

C. E. Whitman and R. L. Travis, Phospholipid composition of a plasma membraneenriched fraction from developing soybean roots, Plant Physiol, vol.79, issue.2, pp.494-502, 1985.

L. D. Sarabia, B. A. Boughton, T. Rupasinghe, A. Van-de-meene, D. L. Callahan et al., High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress, Metabolomics, vol.14, issue.5, p.63, 2018.

T. Van-der-heide and B. Poolman, Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane, Proc Natl Acad Sci, vol.97, issue.13, pp.7102-7108, 2000.

J. M. Wood, Osmosensing by bacteria: signals and membrane-based sensors, Microbiol Mol Biol Rev, vol.63, issue.1, pp.230-62, 1999.

H. C. Zhao, B. C. Wang, Y. Y. Liu, C. R. Duan, S. X. Cai et al., Influence of water stress on the lipid physical state of plasma membranes from P. betuloefolia Bqe leaves, Colloid Surface B, vol.19, issue.2, pp.181-186, 2000.

A. B. Cesari, N. S. Paulucci, M. A. Biasutti, Y. B. Reguera, L. A. Gallarato et al., Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit, J Appl Microbiol, vol.120, issue.1, pp.185-94, 2016.

L. Fan, H. Hao, Y. Xue, L. Zhang, K. Song et al., Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development, Development, vol.140, issue.18, pp.3826-3863, 2013.

A. Moscatelli, F. Ciampolini, S. Rodighiero, E. Onelli, M. Cresti et al., Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold, J Cell Sci, vol.120, pp.3804-3823, 2007.

D. T. Luu and C. Maurel, Aquaporin trafficking in plant cells: an emerging membrane-protein model, Traffic, vol.14, issue.6, pp.629-664, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00874122

H. Ye, M. Roorkiwal, B. Valliyodan, L. Zhou, P. Chen et al., Genetic diversity of root system architecture in response to drought stress in grain legumes, J Exp Bot, vol.69, issue.13, pp.3267-77, 2018.

D. Barker, T. Pfaff, D. Moreau, E. Groves, S. Ruffel et al., Medicago truncatula handbook Ardmore. USA: The samuel Roberts Noble Fondation, pp.1-26, 2006.

B. E. Michel, Evaluation of the water potentials of solutions of polyethylene Glycol-8000 both in the absence and presence of other solutes, Plant Physiol, vol.72, issue.1, pp.66-70, 1983.

G. Lobet, L. Pages, and X. Draye, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol, vol.157, issue.1, pp.29-39, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02646938