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Résumé

Vulgarisé

L’hétérogénéité biologique est à l’origine d’importants problèmes de santé publique

tels que la résistance des agents pathogènes et des cellules cancereuses à l’immunité

et aux traitements. Au travers de méthodes mathématiques adaptées à l’étude

de l’hétérogénéité biologique des cellules cancéreuses, nous avons constaté que les

tumeurs à évolution génétique étaient capables de développer une résistance aux

thérapies ciblées autant que celles présentant une plasticité métabolique, mais

que seules ces dernières pouvaient être ré-sensibilisées au traitement. De plus, en

se demandant pourquoi l’immunité évolue avec des analogues de forte et faible

affinité de la même protéine, nous montrons que l’addition d’analogues de faible

affinité peut réduire l’infection virale de 23%. Dans la théorie de l’évolution dar-

winienne, nous avons constaté que les femelles pouvaient sélectionner des car-

actéristiques sexuellement désirables chez les mâles, allant même à l’encontre de

la sélection naturelle. Enfin, nos modèles mathématiques permettant d’étudier

des problèmes encore plus complexes tels que la dynamique d’invasion des cel-

lulaires cancéreuses.

Prolongé

Les processus biologiques sont des phénomènes complexes, multi-échelles, présentant

une hétérogénéité importante à travers l’espace, la structure et la fonction.



De plus, ils impliquent des événements fortement corrélés et présentent des

boucles de rétroaction à travers les échelles. Dans cette thèse, nous utilisons des

représentations spatio-structuro-temporelles en grande dimension pour étudier

l’hétérogénéité biologique à travers l’espace, la fonction biologique et le temps,

et appliquons cette méthode à divers problèmes importants en biologie et en

clinique.

Nous commençons par introduire un nouveau cadre spatio-structuro-temporel,

basé sur équations aux dérivées partielles, pour le cas d’un système biologique

dont la fonction dépend de la dynamique dans le temps et l’espace des récepteurs

membranaires, des ligands et du métabolisme. Afin d’étudier les solutions de

ces équations, nous utilisons un schéma numérique de différences finies ainsi que

divers résultats analytiques. Pour tester la validité de nos approches numériques

nous prouvons un théorème sur la stabilité de notre schéma.

Le cancer est un problème croissant pour la population mondiale, car ses

taux d’incidence et sa résistance aux médicaments augmentent. D’abord nous

modélisons l’invasion du cancer du sein agressif via sa capacité à produire des

enzymes dégradant la matrice extracellulaire, et nous montrons la génération de

structures spatiales anatomo-pathologiques difficiles à enlever par la chirurgie.

Ensuite, nous développons des modèles mathématiques de tumeurs résistantes

au traitement et appliquons ces modèles à la résistance aux thérapies ciblées

(inhibiteurs de BRAF et de MEK) du mélanome cutané. Nous constatons

que les tumeurs développent une résistance à la fois à travers des processus

d’adaptations génétiques ou par le remodelage de leur métabolisme, mais mon-

trons que seules les tumeurs métaboliquement plastiques manifestent une re-

sensibilisation à ces thérapies. Enfin, via une approche basée sur des données

d’expression en cellule unique (RNA-seq), nous montrons que la dynamique spa-

tiale contribue à l’hétérogénéité tumorale et à la résistante aux traitements de

façon liée au statut prolifératif des cellules cancéreuses.

Nous appliquons nos méthodes à deux autres systèmes. Dans le contexte

de la réponse immunitaire à l’infection virale, nous étudions la production et la

dynamique spatiale de l’interféron (IFN) et l’apparent paradoxe de la conserva-



tion de molécules d’IFN avec affinités faibles et fortes. Nous constatons que les

molécules IFN de faible affinité sont plus capables de se propager dans l’espace,

alors que les molécules de haute affinité sont capables de maintenir le signal

localement. L’addition de ligands de faible affinité à un système ne comprenant

que des ligands de moyenne ou grande affinité peut entrâıner une diminution

de la charge virale d’environ 23%. Ensuite, nous explorons le contexte de la

sélection sexuelle de l’apparence masculine dans l’évolution darwinienne. Nous

constatons que les systèmes biologiques conservent les traits sélectionnés sex-

uellement, même si cela entrâıne une diminution générale de la population.

Enfin, nous introduisons deux autres techniques de modélisation: pour aug-

menter la dimensionnalité de notre approche, nous développons une approche

pseudo-spectrale basée sur les polynômes de Chebyshev et l’appliquons au même

scénario de résistance aux médicaments phénotypiques que ci-dessus. Ensuite,

pour étudier un scénario coopératif dans lequel des cellules cancéreuses pro-

lifératives et invasives sont co-injectées, induisant des comportements invasifs

dans les cellules prolifératives, nous développons une nouvelle méthode de simu-

lation combinant des automates cellulaires et systèmes d’agents. Nous trouvons

que cette méthode est capable de reproduire les résultats de l’expérience de

coinjection et d’autres expériences dans lesquelles des cellules ont été placées

dans des micropistes de collagène.





Summary

Simplified

Biological heterogeneity is responsible for important public health problems

ranging from resistance of pathogens and cancer cells to human immunity. We

develop mathematical methods, coping with the complexity of biological hetero-

geneity, and numerical techniques for solving biological problems. By modelling

cancer resistance, we found that simulated genetically and metabolically evolv-

ing tumours were capable of developing resistance but that only metabolically

evolving tumours could be re-sensitised to treatment. Moreover, asking why

immune systems concomitantly evolve strong and weak binding analogues of

the same protein, we found that the addition of weak binding analogues to a

system could decrease viral infection by up to 23%. In Darwinian evolutionary

theory, we found that sexually desirable traits in males were selected for by

females, even contradicting selection by predation. We finally introduce further

techniques for yet more complex problems and single-cell invasion dynamics.

Extended

Biological processes are complex, multi-scale phenomena displaying extensive

heterogeneity across space, structure, and function. Moreover, these events

are highly correlated and involve feedback loops across scales, with nuclear

transcription being effected by protein concentrations and vice versa, presenting



a difficulty in representing these through existing mathematical approaches. In

this thesis we use higher-dimensional spatio-structuro-temporal representations

to study biological heterogeneity through space, biological function, and time

and apply this method to various scenarios of significance to the biological and

clinical communities.

We begin by deriving a novel spatio-structuro-temporal, partial differential

equation framework for the general case of a biological system whose function

depends upon dynamics in time, space, surface receptors, binding ligands, and

metabolism. In order to simulate solutions for this system, we present a numeri-

cal finite difference scheme capable of this and various analytic results connected

with this system, in order to clarify the validity of our predictions. In addition

to this, we introduce a new theorem establishing the stability of the central

differences scheme.

Despite major recent clinical advances, cancer incidence continues to rise

and resistance to newly synthesised drugs represents a major health issue. To

tackle this problem, we begin by investigating the invasion of aggressive breast

cancer on the basis of its ability to produce extracellular matrix degrading en-

zymes, finding that the cancer produced a surgically challenging morphology.

Next, we produce a novel structure in which models of cancer resistance can

be established and apply this computational model to study genetic and phe-

notypic modes of resistance and re-sensitisation to targeted therapies (BRAF

and MEK inhibitors). We find that both genetic and phenotypic heterogeneity

drives resistance but that only the metabolically plastic, phenotypically resis-

tant, tumour cells are capable of manifesting re-sensitisation to these therapies.

We finally use a data-driven approach for single-cell RNA-seq analysis and show

that spatial dynamics fuel tumour heterogeneity, contributing to resistance to

treatment accordingly with the proliferative status of cancer cells.

In order to expound this method, we look at two further systems: To in-

vestigate a case where cell-ligand interaction is particularly important, we take

the scenario in which interferon (IFN) is produced upon infection of the cell

by a virus and ask why biological systems evolve and retain multiple different



affinities of IFN. We find that low affinity IFN molecules are more capable of

propagating through space; high affinity molecules are capable of sustaining the

signal locally; and that the addition of low affinity ligands to a system with

only medium or high affinity ligands can lead to a ∼ 23% decrease in viral load.

Next, we explore the non-spatial, structuro-temporal context of male elabora-

tion sexual and natural selection in Darwinian evolution. We find that biological

systems will conserve sexually selected traits even in the event where this leads

to an overall population decrease, contrary to natural selection.

Finally, we introduce two further modelling techniques: To increase the di-

mensionality of our approach, we develop a pseudo-spectral Chebyshev polynomial-

based approach and apply this to the same scenario of phenotypic drug resis-

tance as above. Next, to deal with one scenario in which proliferative and

invasive cancer cells are co-injected, inducing invasive behaviours in the prolif-

erative cells, we develop a novel agent-based, cellular automaton method and

associated analytic theorems for generating numerical solutions. We find that

this method is capable of reproducing the results of the co-injection experiment

and further experiments, wherein cells migrate through artificially produced

collagen microtracks.
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Chapter 0

Introduction

The genesis, sustenance, behaviour, and eradication of cancers are complex,

multi-scale processes, involving a coalescent mixture of biological, chemical, and

physical mechanisms. Over the past three decades or so, the processes involved

in cancer growth and spread received significant mathematical attention through

novel and increasingly sophisticated modelling approaches [277, 235, 243, 15, 9,

113], leading to a deeper understanding of key aspects in cancer development

with potential therapeutical importance [99, 32].

While being sometimes regarded as a paradigm of local tissue remodelling,

cancer invasion is a crucially important process in the overall cancer development

where complex, heterotypic, cell population-scale processes, combined with a

cascade of molecular signalling mechanisms, lead to the degradation of healthy

tissue and its concomitant repopulation by migratory cancer cells [74, 144]. This

phenomenon attracted a wide range of spatio-temporal modelling at either one

spatial scale [15, 117, 14, 54, 55, 57] or in a multi-scale approach [9, 47, 319, 264].

It became increasingly apparent, however, that the context of macro-scale

spatio-temporal modelling was not sufficient to take into account the intricate

behaviour of cancer cell processes. To that end, with insights from important

concepts in structural modelling of biological systems (considering age, size, etc.)

[91, 194, 239, 63, 92, 27, 212], the various spatio-temporal modelling approaches

xv
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for cancer invasion have been recently complemented by structural models [60,

96], which enable a more detailed description of the involved biological processes,

to a certain extent, by implicitly accounting for single cell-dynamics.

The need for considering both the spatial and structural heterogeneity of cell

populations in tissues has been proven by recent advances in single cell mRNA

and DNA sequencing and in spatially resolved proteomics [278]. These new

experimental techniques unravelled a complex picture where cancer heterogene-

ity occurs at multiple scales: inter-individual, inter-tumoural, intra-tumoural,

spatial, inter-cellular, et cetera. The understanding of this complex landscape

becomes particularly important for predicting the tumour’s response to targeted

treatment. As a matter of fact, in order to resist treatment cancer develops

strategies exploiting underlying heterogeneity at all scales.

The proposal for this work was to explore the ways in which we may in-

crease our understanding of the biological phenomena involved in cancer in-

vasion, through appreciating this process across a variety of scales considered

important by the biological and clinical communities. Our primary and most

fundamental goal, therefore, is to shed light on these processes by utilising and

developing novel mathematical approaches, capable of enhancing the level of res-

olution at which we may appreciate the underlying and superordinate dynamics

of tumour-, cell-, and protein-scale events.

We begin, in Chapter 1, by introducing the most formal and fundamental

aspects of this modelling technique through a mathematical derivation of the

higher-dimensional modelling framework, used throughout this thesis, from the

first principles of the continuity equation [161]. Alongside this work, we present

a derivation of complex source terms necessary for biologically relevant math-

ematical representations of population-scale proliferation – avoiding temporal

discontinuities introduced in earlier works on modelling cancer heterogeneity

[96] – and the phenotypic alterations resulting from disparate parent lineages

producing offspring, as well as temporally local mutation events in a model of

evolution of traits with a negative influence on fitness [157].
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It was also important to us that the numerical methods that we were intend-

ing to use did not interfere with the efficacy of our solutions to align themselves

with the descriptive mathematical systems. In order to do so, we begin by pre-

senting a theorem establishing the stability of the central differences operator,

frequently used in finite difference-driven numerical simulators. Likewise, the

introduction of nonlocal adhesion terms for amending the spatial flux of cell

populations by Domschke et al. [96] required a novel method for implementing

ball integrals on the spatial domain, for which no error-bound theorems yet

exist. This is given as our final, global numerical result.

The first application of these numerical methods, covered in Chapter 2, was

then to an existing system of equations [96], which focussed on a novel modelling

framework which aimed to take account of the urokinase plasminogen recep-

tor’s binding dynamics, at the cell surface, during the invasion of heterogeneous

breast cancer species. To do this, we used PDEs over a multi-dimensional struc-

ture space, upon which cell populations were defined and permitted to evolve

under certain assumption about their biological dynamics. This allowed for a

coupling of dynamics between spatial and binding characteristics belonging to

the population. The project largely involved the development of a numerical

scheme for the computation of approximate solutions in 3- and 4-dimensions, as

well as several error-bound theorems for these approximations [158].

The multi-dimensional nature of this framework was considered significant

for its ability to postulate that certain features and dynamics of the cell occurred

through hypothetical biologically structured dimensions which could describe

the changes taking place within the cell, and on the level of the population.

In other words, it gave rise to the possibility to consider cellular dynamics on

multiple scales, simultaneously, such that the fullest resolution of the biological

context could be appreciated and accounted for mathematically. The purpose of

this doctoral study, then, was to build on this work and extend the utility of the

multi-dimensional methods that were beginning to be introduced to oncological

modelling.
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Chapter 3 involves the explication of a yet more biologically involved mod-

elling project, aiming to clarify many of the ambiguities around the mechanism

for the development of resistance to targeted drug treatments in melanoma.

The first example of this is no more apparent than in the experimental work

of Perna et al. [267], who showed the clear manifestation of a 4-stage growth

and resistance process in melanoma responding to BRAF inhibitor (BRAFi)

treatment. These stages of initial growth, sensitivity, tolerance, and resistance

occur throughout the literature, while the mechanisms and dynamics of this

process remained mysterious. We attempt to provide a paradigm in which to

explain this data by postulating a population of cells whose spatio-temporal

dynamics are coupled to a cell-scale metabolic dynamic, in which cells may take

on a metabolic status between glycolytic or oxidative phosphorylative pheno-

types – two modes of metabolising glucose to produce adenosine triphosphate

(ATP) and acidic molecules. We find that cells which take on a genetically dis-

favourable phenotype, by means of random fluctuation, may be preferentially

selected for by targeted therapies and may return to their original states upon

the alleviation of therapy [160].

The second research section in drug resistance covers the results of a more

laborious data-driven project to discover the clinical and biological implications

of an intriguing set of in vivo single-cell RNA-seq data produced by Rambow et

al. [278]. This temporally resolved RNA-seq data displayed the dynamics of the

cell population during the course of BRAFi + MEKi therapy and resulted in a

far more cumbersome system of PDEs than the theoretically derived system, but

which was able to recapitulate the RNA expression dynamics, to some extent.

Coupling this to a spatially dynamic system, we then generated solutions for

this 5-dimensional problem and found that tumours may express highly resistant

phenotypes on the perimeter of the tumour, where drug concentrations are high,

and protect the inner core of the tumour which remains highly proliferative and

sensitive to treatment throughout. The current intention is to test this biological

hypothesis and, hopefully, provide validation for this approach.
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As a further attempt to validate the approach of higher dimensional spatio-

structuro-temporal modelling, in Chapter 4 we present several of the result that

we have generated within the field of immunology, including an important hy-

pothesis around the evolution of cytokines. We begin, within this work, by

presenting a comparison between a more simple, spatio-temporal PDE model,

capable of exploring the difference in the ability of high- and low-affinity lig-

ands to propagate a signal across space, and a more complex spatio-structuro-

temporal model, which accounts for the proportionate binding of each ligand

and its subsequent affect on the underlying IFN production dynamics within the

cell. We found that low affinity IFN ligands were capable of propagating a sig-

nal, whereas only high affinity IFN ligands were capable of reliably maintaining

the activity of the cell [161].

In an extension to this work, we increased the relevance of our model by

coupling viral dynamics with the IFN dynamics to explore their affect on one

another. Biologically, viruses will activate the IFN signalling cascade whereas

IFN signalling aims to stall the activity of infected cells. Given this hypothesis,

therefore, we found that systems that contained both low- and high-affinity IFN

would destroy and contain an infection more rapidly than would those systems

which contained only one or the other ligand, suggesting that evolution would

conserve such multiplicitous systems over uniform ones. Moreover, in a hu-

manoid system, containing 13 IFN ligands of differing affinities for its receptors,

we found that systems containing low affinity ligands resulted in a 23% lower

viral yield during local infection period than those without. This shows not

only the importance of low affinity IFN ligands but also the opportunity for us-

ing higher-dimensional techniques for the exploration of fundamental scientific

questions [159].

On top of these motivations, immuno-oncology is an exceptionally important

subdomain within oncology and new developments, taking advantage of our

knowledge of the IFN pathway and its dynamics, are increasingly looking to

exploit this system for the treatment of resistant tumours [142, 352, 313]. This

is perhaps most true in the case of oncolytic viral therapies, which aim to
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degrade the tumour by inducing a local viral infection, but which often fail

due to the interruption of the IFN signalling cascade which seeks to shut-down

viral proliferation and isolate infections [308, 223, 226].

This then bring us to a statement made by Theodosius Dobzhansky of which

every biologist is aware: “Nothing in biology makes sense expect in the light of

evolution.” The process by which our in silico cancer populations eventually

survive is through an evolutionary and natural selective process and, likewise,

to ask why our IFN systems contained low affinity ligands necessarily invoked

the discussion of evolution, itself. Then, in light of this, it only makes sense

to ask if survival is the only trait which evolution conserves or whether there

are traits which the natural universe is willing to conserve despite their survival

disadvantages.

Chapter 5 of this thesis seeks to ask this question by addressing one of

the few existing problems of evolutionary biology; that of why elaboration is

conserved even when it appears only to decrease the hosts survival opportunities.

Herein, we postulate a system wherein the biological organism may acquire

survival traits, either beneficial to survival or otherwise, or sexually desirable

traits, such as æsthetic qualities, from the parents and ask whether or not these

traits will be acquired or conserved, in spite of the assumption that the sexually

selected traits negatively influence survival. We find that, in accordance with

expectation, when the negative influence of a beauty trait is small, the trait is

acquired and conserved by a population and that there is a critical threshold

under which this trend is conserved. Moreover, when the negative influence of

a beauty trait is sufficiently high, the beauty trait itself will actually contribute

to selection for more highly adaptive survival traits, since the selective pressure

on the population will increase. Therefore, beauty, despite being a negative

influence on survival, will aid the selection of traits which will aid survival and

may be an evolutionary end in itself [157].

Finally, and in order to fully explore alternative description of reality in a

multi-scale paradigm, we use Chapter 6 to explore a pseudo-spectral method
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of solving systems of PDEs in higher-dimensional spaces and adopt a cellu-

lar automata model to explore a previously intractable problem for continuous

methods. Orthogonal polynomial methods are commonly used in the solution

of continuous PDEs due to their low memory requirements; near-analytic solu-

tions; and infinite resolution on the calculated domain. We employ, in particular,

Chebyshev polynomials in pursuit of a methodology to expand the number of

dimensions across which we may simulate our system and apply this to our

drug resistance problem, for the sake of comparison. We find that the results

are somewhat disparate, although reconcilable, and that the continuity of the

Chebyshev polynomials, themselves, may hinder the ability of the numerical so-

lutions to reflect the semi-discrete quality of biological metabolic systems. Our

pseudo-spectral method, in contradiction to our earlier results, fail to predict

the pre-resistance disappearance of the tumour population and may, therefore,

only be appropriate for use in very particular problems.

Our cellular automata method, on the other hand, is employed to model

a significantly different problem, wherein separately non-invasive proliferating

cells become invasive when co-injected with highly invasive, but non-proliferative,

cells. We develop, from scratch, a continuous agent-based cellular automaton

capable of accounting for micro-environmental changes at the cell-membrane

and use this to simulate the co-injection experiment. We found that the adap-

tive nature of the cells in our model were able to recapitulate the results of this

experiment and other, individual cell-based, experiments where cells were placed

within microtracks and their speed measured on the basis of extra-cellular ma-

trix (ECM) density and microtrack width [156]. This, partially discrete model

is yet another paradigm in which the fully continuous system was not quite able

to replicate the behavioural mechanics of biological experiment and points to a

quasi-continuous reality.

In essence, the continuous representation of reality makes a fundamental

claim about the nature of reality, as a continuous and indivisible entity, which

we wished to more fully explore and test the limitations thereof. Firstly, it
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is clear that reality has discrete features at the microscopic level of molecular

and cellular interactions and modifications. At a low resolution, macroscopic,

level all these discrete features are approximated by continuous distributions.

Although most aspects of the biological function are insensitive to individual

discrete details and are well rendered in coarse-grained representations of reality,

it is possible that some microscopic events have inter-scale effects. Reality may

exist somewhere between these two interpretations – a meso-resolution with

continuous and discrete elements.



Chapter 1

Derivation of an

Higher-Dimensional

Modelling Framework and

Associated Numerical

Methods

1.1 Introduction to Higher-Dimensional Mod-

elling

There exists an increasing difficulty in the field of bio-mathematics, in that the

ability of models to account for the vast and sophisticated data sets emanating

from the fields of biological enquiry require ever-more sophisticated approaches.

For example, the realisation that the dynamics of cancer could not merely be

considered at a population level and required spatial consideration, in order to

1
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appreciate the complexity and precise mechanics of this process, yielded several

impressive spatio-temporal PDE-based modelling approaches [117, 15, 54, 55].

Modern results in cancer and beyond, however, mean that spatial resolution,

alone, may not be sufficient to increasingly account for the micro-scale chemical

events which give rise to macro-scale tumour behaviours or events.

One recently developed method showed particular promise for application

to and the analysis of intricately detailed biological systems [96]. This method

showed an additional advantage in that it is able to cope with cell population

heterogeneity, i.e. with the existence, in the same spatial location, of cells of

the same type but having a distribution of states and behaviours. This was

made possible by characterising the cell populations by distributions in spatial

and structural dimensions. The structural dimensions represent biochemical

variables characterising the intracellular dynamics. These high dimensional dis-

tributions of cells follow Liouville equations including source terms and various

spatial and structural fluxes. Moreover, and given that chemical events rely on

physical components (such as proteins or enzymes) that are partitioned dur-

ing cell division, the source terms, that describe proliferation, require special

attention.

We deal with these source terms in two entirely differing scenarios: The first

of these scenarios was covered in Domschke et al. [96] but led to critical insta-

bilities for the numerical apparatus which calculated solutions to this system

[158]. In this systems, bound ligands on the cell’s surface must be distributed

between resultant daughter cells during proliferation and we propose an amend-

ment to the original form of this term to rectify the instabilities and respect the

continuity of the proliferative process, on the population scale. The second case

is that wherein mutation occurs during proliferation and gives rise to daughters

which differ significantly to their parents. We consider the cases both wherein

this mutation is random and wherein the resultant phenotype falls mid-way

between the parents’ phenotypes, as a combined phenotype.

As we have mentioned, the employment of novel mathematical modelling

methods often requires the development of novel numerical strategies for the
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calculation, and approximation, of their solutions. We begin by producing a

theorem which establishes the stability of the oft-used central difference oper-

ator in finite difference schemes, to maintain our confidence in the ability of

our system to generate reliable solutions. Given that the errors for gradients

calculated using central differences are of the order O(δ2
x), the addition of this

stability theorem justifies our particular numerical scheme. Finally, we present

a numerical approach to the calculation of nonlocal ball integral, across short

radii, and approximate this solution for easy application to problems involving

these operations.

It is important to note that the frameworks and theorems established within

the following sections will be employed extensively, throughout this thesis. The

establishment of a higher-dimensional framework for modelling will be used in

each of the following chapters and establishes a general approach which may be

applied to a wide range of biological problems beyond, where the source terms

will be utilised as appropriate within this framework. Since I will rely heavily

on finite difference methods for the approximation of spatio-structuro-temporal

solutions to models generates, the numerical calculations will also be used in

every following chapter (with additional theorems being given in Section 6.3 for

the sake of approximations to the agent-based cellular automata solutions).

1.2 Multi-Dimensional & Multi-Scale Modelling

In order to introduce this technique, mathematically, we now indulge the pre-

sentation of its derivation as set out in [161]:

For mathematical formality, let D ⊂ Rd with d ∈ {1, 2, 3} be a bounded

spatial domain, I = [0, T ] ⊂ R, with T > 0 be an arbitrary time interval. Thus,

the variables x ∈ D represent space and t ∈ I represents time. Further, let

P ⊂ Rp be a domain containing variables characterising the available binding

sites of transmembrane receptors and their occupation state. The variables

(ξ, y) ∈ P represent the total concentrations of various receptors and the parts

of the receptor binding sites occupied by ligands. For instance, if there are p
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different transmembrane receptors and each one has only one binding site that

can bind only one ligand, ξ = (ξ1, . . . , ξp), y = (y1, . . . , yp), where ξi is the

total concentration of the receptor of i and 0 ≤ yi ≤ ξi is the concentration of

bound rceptors, for 1 ≤ i ≤ p. In this case the domain P is a cone. Finally,

let Γ ⊂ Rγ with γ ∈ N be a domain containing the metabolic states. More

precisely, (α1, . . . , αγ) ∈ Γ represent the internal biochemical state of a cell

: αi can be species concentrations, convex coordinates of metabolic fluxes in

the convex basis of extreme currents, data driven PCA (principal component

analysis) reduced variables, etc.. Rather, generally, the domains P and Γ can

be considered convex.

In the model given by Hodgkinson et al. [161, 159] the structural variable y is

used as described above; in order to describe the binding of ligands to available

receptors on the cell surface. This was also the way in which the structural

variable was conceived in its original derivation and exposition in [96], where

the derivation to follow constitutes a significant extension of this modelling

framework’s scope and functionality. In later uses of this modelling framework,

however, we chose to interpret this y variable as a genetic or phenotypic variable,

in order to interpret either the evolution of cancer cells [160] or even species

of bird [157], whilst we had also used this to represent the temporally variable

single-cell RNA-seq profiles of PDX tumours in vivo. I will explain these various

utilities of the structural variable in their relevant contexts, as appropriate.

Following the same form as the derivation given in Domschke et al. [97], we

derive of a spatio-structural-temporal model that was utilised throughout the

exploration and explication of the hypotheses set out herein.

Further, let U , V , W be rectangles in D, P, and Γ respectively (i.e. U×V ×

W ⊆ D×P×Γ). Then the total amount of cells at a given time t is given by

ĉ(t) =
∫
W

∫
V

∫
U

c(t, x, (ξ, y), α) dx d(ξ, y) dα (1.1)

the change in c̄ := ĉ(t, x, (ξ, y), α) per unit time in the spatio-metabolo-receptoro-



1.2. HIGHER-DIMENSIONAL DERIVATION 5

binding region U×V ×W is given by

dc̄(t)
dt =

∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
∂U

F̂ (t, x, (ξ, y), α) · n(x) dσd−1(x) d(ξ, y) dα

−
∫
W

∫
U

∫
∂V

[Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T · n(ξ, y) dσυ+p−1(ξ, y) dx dα

−
∫
V

∫
U

∫
∂W

K̂(t, x, (ξ, y), α) · n(α) dσγ−1(y) dx d(ξ, y) dα

(1.2)

where σd−1, σ2r−1, and σγ−1 are surface measures on ∂D, ∂P, and ∂Γ, respec-

tively. Supposing, now, that F , G, H, and J , are in the class of continuously

differentiable vector fields, C1, one can use Stokes’ Theorem to write

dc̄(t)
dt =

∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
U

∇x · F̂ (t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
U

∫
V

∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T d(ξ, y) dx dα

−
∫
U

∫
V

∫
W

∇α · K̂(t, x, (ξ, y), α) dα d(ξ, y) dx

(1.3)

and using Lebesgue’s Dominated Convergence Theorem, one can move the time

derivative within the integral for ĉ

∫
W

∫
V

∫
U

∂ĉ
∂t dx d(ξ, y) dα =

∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
U

∇x · F̂ (t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
V

∫
U

∫
W

∇(ξ,y) ·

 Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

 d(ξ, y) dx dα

−
∫
U

∫
V

∫
W

∇α · K̂(t, x, (ξ, y), α) dα d(ξ, y) dx ,

(1.4)
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which can be written

∫
Rd+υ+p+γ

[∂ĉ∂t ]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂ (t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

∇(ξ,y) ·

 Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

1U×V×W (x, (ξ, y), α) dx d(ξ, y)α

−
∫

Rd+υ+p+γ

[∇α · K̂(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα .

(1.5)

Then, since we have that

{U×V ×W | U, V,W - compact with piecewise smooth boundaries}

is a family of generators for the Borelian σ-algebra on U×V ×W we can denote

1A as the indicator function for any arbitrary A ⊆ D×P×Γ and write

∫
Rd+υ+p+γ

[∂ĉ∂t ]1A(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂ (t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

∇(ξ,y) ·

 Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇α · K̂(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

(1.6)

for any arbitrary Borelian set A in the σ-algebra on D×P×Γ. Then we can
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replace 1A with any simple function, as so

∫
Rd+2r+γ

[∂ĉ∂t ]ν(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂ (t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

∇(ξ,y) ·

 Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

 ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇α · K̂(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

∀ν ∈ C∞0 (D×P×Γ) .

(1.7)

Then, since this relation holds for any C∞ test function, ν(x, (ξ, y), α), we

obtain the equation

∂ĉ

∂t
= Ŝ(t, x, (ξ, y), α)−∇x · F̂ (t, x, (ξ, y), α)

−∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T −∇α · K̂(t, x, (ξ, y), α) ,

(1.8)

where the functions on the right-hand side describe fluxes in the cellular popu-

lation density.

It is also worth noting that such a technique is better conceived as dealing

with joint probability distributions across the product of several correlated sets,

rather than attempting to simulate true or absolute physical dynamics of pop-

ulations across this space. Conceived in this way, this framework introduces a

significant opportunity for nuance in the discussion of current spatio-temporaly

dependent biomathematical paradigms. Where once we were forced to consider

the spatial dynamics of structurally discretised subpopulations (such as those

cancer populations who are either ‘sensitive’ or ‘resistant’ in an absolute sense),

we now have a framework capable of handling the discussion of the probabilities

of being within these states or, indeed, some intermediate state. In saying this,

we also acknowledge that these systems provide significant obstacles to analysis
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and the drawing of firm conclusions; perhaps making them more reflective of

the non-propositional nature of reality.

This note is added not solely for the purpose of advertising this model but,

rather, for the purposes of clarifying its results and conclusions. The results

of simulations produced using this framework should be interpreted through

this probabilistic lens such that, although we may produce and interpret spatial

results as real concentrations, structural results (in the absence of overwhelm-

ing evidence) should be read as probability density functions over the relevant

structural space. That is, the full continuum of the structural space may not,

indeed, be represented as shown but rather some discrete sample across the con-

tinuum of points in this space would be a more true representation of reality. All

points on the continuum are, therefore, relevant but the cells that we attempt

to simulate are, of course, discrete and should be interpreted as inhabiting some

discreet set of points on that space, relatively with the given probability density

function.

1.2.1 Structural Fluxes

We consider here the dynamics of a cell population in structure space. Each

cell of the population is characterised by its structure state vector s = (ξ, y, α)

and by its location x ∈ D. We consider that cells in the same location follow a

dynamics defined by the vector field Ψ on s ∈ P×Γ, with c(t, x), m(t, x), v(t, x)

as parameters defining the local environment

ds

dt
= Ψ(s; c(t, x),m(t, x), v(t, x)). (1.9)

Different cells have different initial conditions at t = t0, whose distribution is

given by ĉ(t0, x, s). Let s(t) = Φt,t0(s0) be the unique solution of (1.9) starting

from s0 at t0.

Let us consider the cell sub-population located in the bounded spatial V ⊂ D

and structural U ⊂ P×Γ boxes. A population in which each cell follows (1.9)
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fulfils the continuity equation, namely

∫
V

∫
Φt,t0 (U)

ĉ(t, x, s) ds dx =

∫
V

∫
U

ĉ(t0, x, s) ds dx−
t∫

t0

∫
∂V

∫
Φt′,t0 (U)

F̂ (t′, x, s) · n(x) ds dσ(x) dt′

+

t∫
t0

∫
V

∫
Φt′,t0 (U)

Ŝ(t′, x, s) ds dx dt′ ,

(1.10)

where Φt,t0(U) is the image of U by Φt,t0 , ∂V is the boundary of V , n(x) is the

normal vector, and dσ(x) is the surface measure on this boundary. Performing

a change of variables in the left hand side of (1.10) we get

∫
Φt,t0 (U)

ĉ(t, x, s) ds =

∫
U

ĉ(t, x,Φt,t0(s))Jt,t0 ds , (1.11)

where Jt,t0 = |det
dΦt,t0
ds | is the Jacobian determinant.

Using Stokes theorem and the first fundamental theorem of calculus in (1.10)

and further using (1.11) it follows that∫
V

∫
U

d

dt
[ĉ(t, x,Φt,t0(s))Jt,t0 ] ds dx = −

∫
V

∫
Φt,t0 (U)

∇x · F̂ (t, x, s) ds dx

+

∫
V

∫
Φt,t0 (U)

Ŝ(t, x, s) ds dx.

(1.12)

After changing the structure variables in the two integrals in the right hand side

of (1.12) we get

d

dt
[ĉ(t, x,Φt,t0(s))Jt,t0 ] = −∇x · F̂ (t, x, s)Jt,t0 + Ŝ(t, x, s)Jt,t0 . (1.13)

Using 1
J
dJ
dt = ∇s · Ψ(s, c(t, x),m(t, x), v(t, x)), from (1.13) we obtain the
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Liouville equation

∂ĉ(t, x, s)

∂t
=−∇s·(ĉ(t, x, s)Ψ(s, c(t, x),m(t, x), v(t, x)))−∇x·F̂ (t, x, s)+Ŝ(t, x, s).

(1.14)

Comparing this result to (4.3) it follows that the structural fluxes Ĝ, Ĥ, K̂ are

advection fluxes

Ĝ = ĉΨξ(ξ, y, α; c(t, x),m(t, x), v(t, x)), (1.15)

Ĥ = ĉΨy(ξ, y, α; c(t, x),m(t, x), v(t, x))), (1.16)

K̂ = ĉΨα(ξ, y, α; c(t, x),m(t, x), v(t, x)), (1.17)

where Ψξ, Ψy, Ψα are the components of the vector Ψ on the directions ξ, y, α,

respectively.

1.3 Deriving Relevant Source Terms for Intri-

cate Replicative Dynamics

1.3.1 Derivation of a Structural Source Term for Systems

with Receptors

We proceed similarly to derive the source term in the case when the dynamics

of the receptors is also accounted for. Consider again that mitosis is a time

dependent process that occurs on a normalised micro-temporal scale, τ ∈ [0, 1)

and that we have uniform splitting of the receptors on the cell surface during

cell differentiation, at a given spatio-temporal node (t, x). Then the amount

of cells whose receptoral-binding structure reside within an arbitrary rectangle

V ×W ∈ P is given by the difference between the cells that arrived within

V×W due to mitosis and those that leave V×W through mitosis, which can be
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expressed as

∫
V×W

Ŝ(t, x, ξ, y, α) d(ξ, y) = 2
∫

[0,1)

∫
(2−τ)V×W

φ((ξ̃, ỹ), c, v)ĉ(t, x, ξ, ỹ, α) d(ξ̃, ỹ) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y).

(1.18)

This equation can be understood as follows: We are considering extensive

structure variables that, during the cell cycle, follow the cell volume homothet-

ically; after symmetric mitosis they split, in half, their values. The decision to

commit to mitosis, however, is not taken at maximum volume but before. Let

us denote by φ((ξ, y), c, v) the growth rate, representing the birth probability

or equivalently the probability to commit to mitosis. The growth rate is not

necessarily constant, as the decision to commit to mitosis generally depends

on the cell increasing its structure variables. After the decision to commit to

mitosis the cell continues to grow and at the termination of mitosis it splits

into two equal daughter cells. Then, letting τ ∈ [0, 1] be a normalised variable

describing the cell cycle progression at the microscale. At macroscopic time t

two cells having structure variables in V ×W originate from a mother cell with

structure variables in (2− τ)V ×W at the microscale moment when the mother

cell took the decision to commit to mitosis (this justifies the factor 2 in the pos-

itive source terms). This domain is V ×W when the mitotic decision was taken

at the beginning of the cell cycles, or 2V ×W when the decision was taken at

the end. Our choice to cover the entire [0, 1] interval was dictated by regularity

requirements, in reality the mitotic decision is taken within a smaller interval.

Let us note that more complex source terms can be considered. For instance,

instead of symmetric mitosis one may consider asymmetric mitosis. In this case,

a second micro-scale variable can be used to describe the fragmentation process;

a second integration with respect to a probability measure describing the dis-

tribution of this variable is then needed. Furthermore, structure variables can

be extensive and not proportional to the cell volume. We should in this case

consider a different micro-scale dynamics for them instead of simple homothetic
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expansion.

Using the change of variable

(ξ̃, ỹ)(ξ, y) = (2− τ)(ξ, y)

d(ξ̃, ỹ) = (2− τ) d(ξ, y)
(1.19)

we obtain

∫
V×W

Ŝ(t, x, ξ, y, α) d(ξ, y)

= 2
∫

[0,1)

(2−τ)(p+γ)
∫

V×W
φ((2−τ)(ξ, y), c, v)ĉ(t, x, (2−τ)(ξ, y), α) d(ξ, y) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y)

=
∫

V×W
2
∫

[0,1)

(2−τ)(p+γ)φ((2−τ)(ξ, y), c, v)ĉ(t, x, (2−τ)(ξ, y), α) dτ d(ξ, y)

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y) .

(1.20)

Since this relation holds for any rectangle V ×W , then using the standard mea-

sure theory density argument as in the 2 preceding appendix sections, we arrive

at our final expression of source flux for the total population as

S(t, x, ξ, y, α)

= 2
∫

[0,1)

(2− τ)(p+γ)φ((2− τ)(ξ, y), c, v)ĉ(t, x, (2− τ)(ξ, y), α) dτ

−φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) .

(1.21)

1.3.2 A Reproductive Source Term for Evolutionary Dy-

namics

To derive the reproductive source term, R : I ×Υ2×Z, from our modelling

assumptions, we follow the procedure set out in a previous study of cellular
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Figure 1.1: Diagram showing the creation of offspring in the set Q from the parental sets 2ζQ and
(2− 2ζ)Q, where ζ ∈ [0, 1].

mitotic reproduction [96]. Since we have that the resultant genetic position, z,

for two parents of genetic positions, z† and z‡, is definitionally given by the

average position between these two genetic states, such that z = 1
2 (z† + z‡).

Therefore, given the state z ∈ Q, where Q ⊂ Z is an arbitrary compact subset,

we may say that the set Q is contributed to by the reproduction of pairs in

subsets 2ζQ and (2− 2ζ)Q, for some ζ ∈ [0, 1] (Fig. 1.1).

Therefore, we begin by writing that the total integral of the reproductive

source term is given by the product of the unembellished female population with

its choice kernel, κ(y), and the indecisive male population integrated over the

contributory subsets and over all values of ζ, such that

x

Q×Q

R(t,y, z) d(z, z)

=
α

2

∫
[0,1]

∫
(2−2ζ)Q

∫
2ζQ

κ(y)

∫
Υ

f(t,y, z†) dy2

∫
Υ

m(t,y, z‡) dy1 dz
† dz‡ dζ .

(1.22)

Then, using the change of variables z†(z) = 2ζz, we may rewrite the above

proposition as

x

Q×Q

R(t,y, z) d(z, z)

=
α

2

∫
[0,1]

∫
(2−2ζ)Q

∫
Q

κ(y)

∫
Υ

2ζf(t,y, 2ζz) dy2

∫
Υ

m(t,y, z‡) dy1 dz dz
‡ dζ

(1.23)
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Use the change of variables z‡(z) = (2− 2ζ)z

x

Q×Q

R(t,y, z) d(z, z)

= α

∫
[0,1]

∫
Q

∫
Q

2ζ(1− ζ)κ(y)

∫
Υ

f(t,y, 2ζz) dy2

∫
Υ

m(t,y, (2− 2ζ)z) dy1 dz dz dζ .

(1.24)

Using Fubini’s theorem, with the observation that f(t,y, z) and m(t,y, z) are

finite, bounded functions on the closed domain I×Υ×Υ×Z, we have that the

source term may be expressed as

R(t,y, z) = α

∫
[0,1]

2ζ(1− ζ)κ(y)

∫
Υ

f(t,y, 2ζz) dy2

∫
Υ

m(t,y, (2− 2ζ)z) dy1 dζ .

(1.25)

The derivation of the latter form for this term – including mutational dy-

namics which cause a spreading of the reproductive solution across the domain

– is much simpler. Firstly, recall that the mutational kernel, which indicates the

proportion of of a given population at (y′, z′) who will be displaced to location

(y, z) in the state space, is given by µ(y, z,y′, z′). Postulate a further test space,

where in y may reside, such that y ∈ W ⊂ Υ. Therefore, we must integrate over

the entire test domain W2×Q, since the final population may originate at any

point in this space proportionally with µ(y, z,y′, z′), and multiply this with our

kernel evaluated at each such point (y′, z′) ∈ W2×Q:

R(t,y, z) = α
y

W2×Q

µ(y, z,y′, z′)

∫
[0,1]

[
2ζ(1− ζ)κ(y)∫

Υ

f(t,y, 2ζz) dy2

∫
Υ

m(t,y, (2− 2ζ)z) dy1

]
dζ d(y′, z′)

(1.26)

and then, simply recognise that the relationship for this arbitrary subspace

W2×Q ⊂ Υ2×Z may be extended to the entire space to achieve (5.7).
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1.4 Approaches and Stability for Numerical Sim-

ulations

With the exception of the results generated through the application of pseudo-

spectral, Chebyshev orthogonal polynomial-based methods in section 6.2, all of

the numerical results within this manuscript generated for the higher-dimensional

approaches outlined by Hodgkinson et al. [158, 161, 160] and in section 1.2 were

obtained by the use of the following finite difference scheme:

On an atemporal basis, or for each evaluation of the right-hand side (RHS)

of a given differential equation, the domain, D over which the solutions were

to be generated was evenly divided into point-like masses with a distance of

δx = 1
100 |max(D)−min(D)| between each adjacent point. Each of these points

was treated as an individual entity throughout and for the entire duration of the

solution generation. If, for example, the domain, D = [0, 1], were 1-dimensional

then the solution was generated at the points in the domain given by ξ̄ =

[0, 1
100 ,

2
100 , . . . , 1]′. Likewise, if the solution domain were 2-dimensional then

the solutions would be generated across a matrix of points and were generated

across a discrete tensor of points for 3- or higher-dimensional domains.

Therefore, local and non-local terms were handled very differently from one

another. Local terms could be evaluated by treating the entire system of PDEs

as a system of ODEs, where the RHS for any given PDE was identical to the RHS

of each of the ODEs within the analogous system. Nonlocal terms, however,

required operations across a distribution of discrete points within the domain.

For one dimensional systems, these operations could be achieved by taking the

product of the vector of discrete points and the appropriate matrix product

(such as that discussed in the following subsection 1.4.1). In particular, nonlocal

derivative terms were calculated using the standard central differences formula,

which is known to have an error of the order O(δ2
x), with Neumann boundary

conditions to guarantee no flux.

The temporal dynamics of this system were handled uniformly across all
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cases and with an acute attention to detail, in terms of how the choice of scheme

would affect the numerical solutions to the system. Newton stepping is know

to introduce rather significant errors into any given numerical scheme and, as

such, we chose to use the far more complicated but sophisticated Runge-Kutta

4 (RK4) method to move between time points of the solution. The RK4 method

is so called because it is a fourth order approximation to any given initial value

problem and, thusly, introduces an error on the order O(δt), where δt is the

length of the time step [196].

In order to further augment the accuracy of the scheme, and further guar-

antee the stability of the numerical scheme we choose to implement a higher

level predictor-corrector method [276]. Since McCormack predictor-corrector

schemes, described by the general iteration of the equations if the governing

PDE is given generically by

∂

∂t
c = F (c, . . . ) (1.27)

then given that we wish to know the value of c at a time point τ + 1 (named

cτ+1) given cτ we use

cτ+1
∗ = δt · F (cτ , . . . ) , cτ+1 =

1

2
(cτ + cτ+1

∗ ) +
1

2
δt · F (cτ+1, . . . ), (1.28)

were deemed to give the greatest stability to biased advective systems of equa-

tions, these were used across the consecutive RK4 iterations to increase accuracy

and stability [221].
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1.4.1 Stability of the Central Difference Operator, Jr

In numerical analysis, the central difference operator, given by

Jr =



−2 2 0 . . . 0 0 0

−1 0 1 . . . 0 0 0

0 −1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . −1 0 1

0 0 0 . . . 0 −2 2



(1.29)

for particular boundary conditions, and is well known to have an error of O(δ2
x).

This means that it is often utilised for generating numerical solutions to PDEs,

despite the fact that its stability has not yet been established in the literature.

In order to assess the stability of the central difference operator Jr utilised

throughout the generation of solution by means of finite difference numerical

schemes, we will prove a series of technical results that will ultimately completely

characterise the eigenvalues of Jr [158].

Lemma 1.4.1. Let Q be the following set of polynomials with real coefficients

Q :=

Pk(x) = akx
k + · · ·+ a1x+ a0

∣∣∣∣∣∣∣
k ≥ 4,

ak−1−2i = 0, ∀i ∈ 0, . . . ,

[
k−1

2

]
(1.30)

where by [·] we understand the usual integer part. Further, let PN−2, PN−1 ∈ Q

be polynomials of degree N −2 and N −1 respectively, then the iterative relation

PN = PN−2 − xPN−1 gives rise to a polynomial of degree N with PN ∈ Q.
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Proof. If one writes the considered polynomials as

PN−2 : aN−2x
N−2 + aN−4x

N−4 + ...+ max
i∈{0,...,[ k−1

2 ]}
aN−i−3x

N−i−3 = 0

PN−1 : aN−1x
N−1 + aN−3x

N−3 + ...+ max
i∈{0,...,[ k−1

2 ]}
aN−i−2x

N−i−2 = 0,

(1.31)

then the proof is trivial.

Theorem 1.4.2. Considering the set of polynomials Q defined in (1.30), for any

natural N ≥ 6, let PN ∈ Q be a polynomial of degree N such that the polynomials

PN−2, PN−1 ∈ Q that give PN via the recurrence relation PN = PN−2 − xPN−1

satisfy the following properties:

1) denote {u1, u2, ..., uN−2} and {v1, v2, ..., vN−1} the ordered set of roots of

the polynomials PN−2 and PN−1, respectively

2) the roots of these two polynomials are only imaginary, namely:

Re(ui) = 0 ∀i ∈ {1, . . . , N − 2}

Re(vj) = 0 ∀j ∈ {1, . . . , N − 1}

3) finally, the roots of these two polynomials satisfy the additional relations:

v2
N−1 ≥ u2

N−2

and

u2
i ≥ v2

i ≥ u2
i−2 ≥ v2

i−2, ∀i ∈ {i = 2j | j ∈ {1, . . . ,
[
N−2

2

]
}} ,

where for any i ∈ {i = 2j | j ∈ {1, . . . ,
[
N−2

2

]
}} we have that uj−1 := ūj

and vj−1 := v̄j.

Then, if we let {w1, w2, ..., wN} denote the ordered set of roots for PN , we have

that

i) all the roots of PN are imaginary, i.e.,

Re(wi) = 0, ∀i ∈ {1..N},
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ii) the roots of PN and PN−1 satisfy the relations:

w2
N−1 ≥ v2

N−2

and

v2
i ≥ w2

i ≥ v2
i−2 ≥ w2

i−2, ∀i ∈ {i = 2j | j ∈ {1, . . . ,
[
N−1

2

]
}} ,

where for any i ∈ {i = 2j | j ∈ {1, . . . ,
[
N−1

2

]
}} we have that wj−1 := w̄j.

Proof. First, we notice that there are 2 different cases:

(1) N is even or

(2) N is odd.

Take case (1) and let N = 2n, n ∈ N. We can use the conjugate root theorem

to write the polynomials as

PN−2(x) = (x2 − u2
2)(x2 − u2

4)...(x2 − u2
N−2)

PN−1(x) = −x(x2 − v2
2)(x2 − v2

4)...(x2 − v2
N−2) ,

(1.32)

where u2i−1 = u2i, u
2
2i = u2i−1 · u2i and v2i−1 = v2i, v

2
2i = −|Im(v2i)

2|. We

then have that PN can be written as

PN (x) = (x2− u2
2)(x2− u2

4)...(x2− u2
N−2) + x2(x2− v2

2)(x2− v2
4)...(x2− v2

N−2) .

(1.33)

Now, by Descartes’ rule of signs and Lemma 1.4.1, we can say that none of the

roots of PN are positive and that at most N of these roots are negative.

Use the substitution z = x2, the initial polynomial PN induces

P̄N (z) = (z − u2
2)(z − u2

4)...(z − u2
N−2) + z(z − v2

2)(z − v2
4)...(z − v2

N−2) .

(1.34)

Evaluating P̄N (z) at ±∞ and at a selection roots of PN−1(x) given by

Sa := {v2
2j | j = 1, n− 1},
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we have two different cases:

(1a) n− 1 is odd or

(1b) n− 1 is even.

In case (1a), we have that

lim
z→±∞

P̄N (z) = +∞.

Further, as the elements of Sa are solutions of PN−1, using their properties that

u2
2j ≥ v2

2j , j = 1, n, we obtain

P̄N (v2
2j) = (−1)j |v2

i − u2
2||v2

i − u2
4|...|v2

i − uN−2|, j = 1, n− 1,

(1.35)

and so

sign(P̄N (v2
2j)) = (−1)j , j = 1, n− 1

Therefore, denoting S′a := {−∞} ∪ Sa ∪ {+∞}, we have

sign(P̄N (S′a)) = {+,−,+,−, ...,−,+}, (1.36)

which yields n intervals where the values of polynomial changes, and so by

Intermediate Value Theorem we must have n real non-positive roots for P̄N (z).

Thus, reversing now the change of variable z = x2, we obtain that the initial

polynomial PN (x) has only imaginary roots with

Re(wi) = 0 with wi ≥ vi, i = 1, N

For case (1b), we have that

lim
z→±∞

P̄N (z) = ±∞

Further, denoting by with Sb the following set of squares of the roots of PN−2(x),
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namely

Sb := {u2
2j | j = 1, n− 1},

sign(P̄N (u2
2j)) = (−1)n−j , j = 1, n− 1

Therefore, denoting S′b := {−∞} ∪ Sb ∪ {+∞}, we have

sign(P̄N (S′b)) = {−,+,−,+, ...,−,+}, (1.37)

and by the Intermediate Value Theorem, we again get Re(wi) = 0 with wi ≥ vi.

For case (2), we consider odd values of N and let N = 2n + 1, n ∈ N such

that we again use the conjugate root theorem to write

PN−2(x) = −x(x2 − v2
2)(x2 − v2

4)...(x2 − v2
N−2)

PN−1(x) = (x2 − u2
2)(x2 − u2

4)...(x2 − u2
N )

PN (x) = −x(x2−u2
2)(x2−u2

4)...(x2−u2
n−2)− x(x2−v2

2)(x2−v2
4)...(x2−v2

N ).

(1.38)

Further, factoring out the common multiple −x and using the substitution z =

x2 to augment the remainder of the polynomial, we can now test the polynomial

with the set, S′, in the same way as in case (1).

Theorem 1.4.3. Assuming that N is the number of discretisation points and

N ≥ 6, the characteristic polynomials PN (λ) of the central differences matrices

JN satisfy the following recurrence relation

PN (λ) = PN−2(λ)− λPN−1(λ).

Proof. Let’s denote PN is the characteristic polynomial of the N × N dimen-

sional central differences matrix, JN , we observe first that desired the recurrence

relation PN = PN−2 − λPN−1 is trivially satisfied by the characteristic polyno-
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mials of J4, J5, and J6, which are given by

P4 = λ4 + λ2

P5 = −λ5 − 2λ3

P6 = λ6 + 3λ4 + λ2 .

(1.39)

To prove that this relation is satisfied in general for any natural number N ≥ 6,

we proceed as follows. First, ∀l ∈ N \ {0, 1, 2, 3}, for the matrix Ĵl := Jl − λIl,

and let us denote by Aol and A′l the following determinants of the (l−1)×(l−1)

submatrices of Ĵl, namely

Aol−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĵ2,2 Ĵ2,3 Ĵ2,4 . . . Ĵ2,l

Ĵ3,2 Ĵ3,3 Ĵ3,4 . . . Ĵ3,l

Ĵ4,2 Ĵ4,3 Ĵ4,4 . . . Ĵ4,l

...
...

... . . .
...

Ĵl,2 Ĵl,3 Ĵl,4 . . . Ĵl,l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

A′l−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĵ2,1 Ĵ2,3 Ĵ2,4 . . . Ĵ2,l

Ĵ3,1 Ĵ3,3 Ĵ3,4 . . . Ĵ3,l

Ĵ4,1 Ĵ4,3 Ĵ4,4 . . . Ĵ4,l

...
...

... . . .
...

Ĵl,1 Ĵl,3 Ĵl,4 . . . Ĵl,l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(1.40)

and let’s observe that these have the properties that

Aol−1 = −λAol−2 −A′l−2

A′i−1 = −Aol−2

(1.41)
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Then, using (1.41) we have that

|ĴN−2| = (−2− λ)AoN−3 − 2A′N−3
(1.42a)

|ĴN−1| = (−2− λ)AoN−2 − 2A′N−2

= (−2− λ)(−λAoN−3 −A′N−3)− 2(−AoN−3)

= (−2− λ)(−λ)AoN−3 + (2 + λ)A′N−3 + 2AoN−3

= ((−2− λ)(−λ) + 2)AoN−3 + (2 + λ)A′N−3

(1.42b)

|ĴN | = (−2− λ)AoN−1 − 2A′N−1

= (−2− λ)(−λAoN−2 −A′N−2)− 2(−AoN−2)

= (−2− λ)(−λ(−λAoN−3 −A′N−3)− (−AoN−3)) + 2AoN−2

= (−2− λ)(−λ(−λAoN−3 −A′N−3)− (−AoN−3)) + 2(−λAoN−3 −A′N−3)

= (−2− λ)(−λ)2AoN−3 + (−2− λ)(−λ)A′N−3 + (−2− λ)AoN−3

− 2λAoN−3 − 2A′N−3

= ((−2− λ)(−λ)2 + (−2− λ)− 2λ)AoN−3 + ((−2− λ)(−λ)− 2)A′N−3

(1.42c)

From (1.42a)-(1.42c) we obtain immediately by direct calculation that

|ĴN | = |ĴN−2| − λ|ĴN−1| (1.43)

which can finally be equivalently expressed as

PN (λ) = PN−2(λ)− λPN−1(λ). (1.44)

Therefore, we finally obtain the following central result for our analysis.

Theorem 1.4.4. The eigenvalues of the central differences matrix Jr are either
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0 or imaginary.

Proof. Using Theorem 1.4.3 we have that the characteristic polynomial of Jr

is given by Pr(λ) and that u2
i ≥ v2

i ≥ u2
i−2 ≥ v2

i−2 for all i ∈ {i = 2j | j ∈

{1, . . . ,
[
r−2

2

]
}}. Then, by invoking Theorem 1.4.2, we immediately obtain by

induction that the roots, denoted wi, of characteristic polynomial of Jr are

imaginary with Re(wk) = 0, ∀k ∈ {1, ..., r}.

1.4.2 Calculation of Numerical Ball Integrals and Associ-

ated Errors

The primary mathematical operator for which we require a novel numerical

instrument is that of the ball integral around a given discrete grid point fi,j .

Assume, firstly, that d = 2 such that we are calculating the ball integral on

a 2-dimensional plane. Given a sensing radius r : [0, 2π) → R+ and a spatial

discretisation step of δ, we assume that this radius fall within the interval r ∈

[ 1√
2
δ, 3

2δ] such that it captures at least the totality of the grid region [fi,j −
1
2δ, fi,j+ 1

2δ]
2 and does not extend beyond the regions described by the adjacent

points fi−1,j , fi+1,j , fi,j−1, fi,j+1 (Fig. 1.2). Then we divide this ball into three

separate groups of subregions given by 4 ‘axial’ regions who are situated along

one of the major axes, whose body is defined by the adjacent grid points to

fi,j , and whose area is denoted Aa (Fig. 1.2, blue); 4 ‘bowed’ regions who

are situated in the corners of the ball with only three vertices, whose body is

defined by the diagonal grid points to fi,j , and whose area is denoted Ab (Fig.

1.2, red); and 1 ‘central’ region who is situated in the centre of the ball, whose

body is defined by the central point fi,j , and whose area is denoted Ac (Fig.

1.2, green). The numerical integral for any given one of these subregions is then

approximated by taking the value of the function f at the centre of mass for

the given region (where a linear interpolation to this point would analogise to

the trapezoidal method), multiplied by the area of the region.

The area of the axial regions, then, may be calculated as the sum of two in-

tegrals; that of the rectangular segment and that of the arched segment. Firstly,
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Figure 1.2: Components involved in the calculation of the ball integral, centred at the point fi,j
for sensing radii of r ∈ [

√
2δ, 3

2 δ], where balls at the upper (- - -) and lower (· · ·) bounds of this
interval are shown. The region can be split into three separate groups of subregions; axial (blue),
bowed (red), and central (green).

the rectangular interval over the region between the point 1
2δ and that where

the circle intersects with the perpendicular line at a distance of 1
2δ (Fig. 1.2).

The arched segment’s integral is then calculated by integrating between this

same point of intersection and the distance of the arc from the centre of the

ball,
√
r2 − x2. Thusly, we have

Aa =

1
2 δ∫

− 1
2 δ

√
r2−x2∫

√
r2− 1

4 δ
2

1 dy dx+

1
2 δ∫

− 1
2 δ

√
r2− 1

4 δ
2∫

1
2 δ

1 dy dx

=

[
1

2
r2(z +

1

2
sin 2z)

]z=sin−1( δ
2r )

z=sin−1(− δ
2r )
− 1

2
δ2 .

(1.45)

The bowed region, however, has only one arched integral to be computed be-

tween 1
2δ and the arc distance in each dimension, x and y, so that it is given by

Ab =

√
r2− 1

4 δ
2∫

1
2 δ

√
r2−x2∫
1
2 δ

1 dy dx

=

[
1

2
r2(z +

1

2
sin 2z)

]sin−1
(

1− δ2

4r2

) 1
2

sin−1( δ
2r )

− 1

2
δ

√
r2 − 1

4
δ2 +

δ2

4
.

(1.46)
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It is entirely trivial to give the area of the central region but we present it here

for completeness:

Ac = δ2 . (1.47)

In the case of the axial and bowed regions, also, we have an additional as-

sumption that must be accounted for; we assume that the value of the function,

f , across any given region is uniform, constant. This assumption may surely

only be substantiated so long as we at least reframe the assumption to say that

the considered value at f is considered an average across the region. Then, we

must at least endeavour to calculate the value of the function at the centre of

mass (assuming uniform density) for the region. The centre of mass for the axial

region is given by

CMa =
1

Aa

r∫
1
2 δ

√
r2−x2∫
1
2 δ

y dy dx

=
1

Aa

r∫
1
2 δ

1

2
(r2 − x2)− 1

8
δ2 dx

=
1

Aa

(
1

2
r2 − 1

8
δ2

)(
r − 1

2
δ

)
− 1

24Aa

(
r − 1

2
δ

)3

.

(1.48)

Similarly, the centre of mass for the bowed region is given by

CMb =
1

Ab

√
r2− 1

4 δ
2∫

1
2 δ

√
r2−x2∫
1
2 δ

y dy dx

=
1

Ab

√
r2− 1

4 δ
2∫

1
2 δ

1

2
(r2 − x2)− 1

8
δ2 dx

=
1

Ab

(
1

2
r2 − 1

8
δ2

)(√
r2 − 1

4
δ2 − 1

2
δ

)
− 1

24Ab

(√
r2 − 1

4
δ2 − 1

2
δ

)3

.

(1.49)

Now, if we assume that we are given the biologically determined parameter,

r, which defines the sensing radius of a given cell, for example, then we should
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choose to implement the numerical scheme such that δ := 2
3r. Assuming that

we do so, we can substitute this value into Aa and achieve an approximation

for the area of the axial regions:

Ãa =

(
3

2
δ

)2(
sin−1 1

3
+

1

2
sin

(
2 sin−1 1

3

))
− 1

2
δ2

≈ 0.9717δ2 .

(1.50)

Likewise, substituting our value for δ into the relation for the bowed regions,

we arrive at

Ãb =
1

2

(
3

2
δ

)2
(

sin−1 2
√

2

3
+

1

2
sin

(
2 sin−1 2

√
2

3

))

− 1

2

(
3

2
δ

)2(
sin−1 1

3
+

1

2
sin

(
2 sin−1 1

3

))
−
√

2δ2

4
+
δ2

4

≈ 0.5454δ2 .

(1.51)

Moreover, it is worth noting that the substitution of δ := 2
3r into the re-

lation for the centre of mass for the axial regions yields CMa = 23
24δ, which is

sufficiently close to δ so that the function value may be approximated thereon.

Given all of these constraints and relationships, we may then write the total

ball intergal as being given by

IB = Ãcfi,j + Ãa (fi−1,j + fi+1,j + fi,j−1 + fi,j+1)

+ Ãb (fi−1,j−1 + fi−1,j+1 + fi+1,j−1 + fi+1,j+1) .
(1.52)
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Chapter 2

Modelling Urokinase

Plasminogen Activator

(uPA) Dynamics in Breast

Cancer

2.1 Introduction to Spatio-Structuro-Temporal

Modelling for the uPA System

Cancer is primarily a multi-facetted mistake in the cell’s ability to regulate

its own proliferation but is perhaps most devastating due to its ability to in-

vade the local stroma and become increasingly difficult to excise from the pa-

tient. In order to invade the surrounding tissue, the cancer cell will employ

several strategies, stemming from their dysregulation, including the produc-

tion of matrix-metalloproteinases (MMPs); the alteration of cell morphology, to

squeeze through unusually small passages between cells; and the direct degrada-

tion of the extra-cellular matrix (ECM) through any means available to it. We

29
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begin [158] by employing our spatio-structuro-temporal framework to explore a

system set out in several previous studies [57, 96].

This particular biological system, important to cancer invasion, has received

an increase attention in recent years and has been termed the urokinase plas-

minogen activator (uPA) system [264, 301, 268]. The uPA protein has long

been noted as a marker of various cancer types, such as colorectal, gastric,

œsophageal, lung, cervical, ovarian, renal, pancreatic, and hepatocellular, with

its greatest prognostic evidence being derived from strains of breast cancer [100].

The reduction in uPA expression in peritumoural tissue also causes this protein

to be of great clinical significance, such that expression remains localised to the

cancerous tissue [34, 206].

Urokinase plasminogen activator receptor (uPAR) is a protein anchored to

the cell surface and, bound with high affinity to uPA [309], aids the degradation

of the extra cellular matrix (ECM) [192, 207]. X-ray analysis of the uPA-uPAR

complex has revealed that uPA binds its receptor on a subsurface encapsulated

by all three of its major interactive domains [168, 24]. Neither uPAR nor un-

bound uPA are intrinsically active within the human tissue due to their folding

being unfavourable to binding plasminogen, until formation of the uPA-uPAR

complex [104]. However, regardless the biological paradigm, uPA retains its

high specificity for plasminogen [283].

Further to this, the binding structure of these proteins allows the binding

regions of the uPAR protein to become available for plasminogen protein in-

teractions. Moreover, bound uPA is susceptible to being further bound by the

class of inhibitory proteins referred to as uPA inhibitor-1 (uPAI-1). The ability

of the cell to advantageously manipulate its environment and achieve local dom-

inance, is further altered by this chemical adaptation. This process is mediated

through changes to cellular capabilities when bound to activated uPA-uPAR

complexes, enabling greater survival, adhesion, and migration [36]. It has been

shown that even modest increases in the presence of this surface-bound complex

are sufficient to greatly increase the prolific and proteolytic activities of invasive

tumour cells [307].
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The cancer invasive process is further augmented through integrin-mediated

signalling pathways utilised by the uPA-uPAR complex [185]. Perhaps most

significant is the activation of the protein class known as α5β1 integrin, which

actively recruits the epidermal growth factor receptor (EGFR), an upstream

signalling protein whose presence has been an indicator for high levels of extra-

cellular signal-regulated kinases (ERKs) [210]. As an essential upregulator of

mitotic activity in cancerous cells, ERKs enhance the proteolytic dynamics of

the cancer cell population [61].

Furthermore, the complex formed between uPA and uPAR also increases the

avidity of uPAR for vitronectin, an important protein for cell-ECM adhesion

[336]. Vitronectin is a protein found primarily within plasma or deposited within

the ECM, where it weakly binds the intra-matrix vitronectin receptor [339]. The

unbound receptor, uPAR, will further selectively bind vitronectin and increase

cellular adhesion to the ECM [335] whereas bound uPAR is an exceptionally

high affinity receptor for vitronectin [339, 335].

Cancer cells migration is enhanced through the downstream synthesis of

matrix metalloproteinases (MMPs), after the activation of conformal pro-MMP

proteins by locally activated plasminogen, which degrade the ECM and enable

local tumour invasion [74]. The growth of the tumour, however, then activates a

negative feedback loop through the downstream upregulation of PAI-1 synthesis

[125, 204].

There is significant evidence that proteolytic enzymes (which degrade the

collagen of the ECM) can be activated by an increased presence of activated

plasminogen [224, 73]. Primarily, the function of uPA is the conversion of plas-

minogen to plasmin; known to be a key regulator of these proteolytic proteins

[73]. In this context, matrix metalloproteinase 2 (MMP2) is a major target for

plasmin, causing increased degradation of the ECM and incorporation of the

degraded collagen into localised plaques [265, 224].

Finally, a specifically prolific feature of the the uPA-uPAR complex (in re-

lation to with its environment) is that in its active conversion of plasminogen

to plasmin it encourages the production of the proenzyme single-chain uroki-
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nase plasminogen activator (scuPA). This scuPA protein is the precursor of uPA

and therefore closes a positive feedback loop which is integral to the success of

cancer cells in their invasive pursuit [36]. Plasmin is also capable of activating

scuPA by cleaving a bond named Lys158 [283], contributing to the feedback

mechanism. There is mounting evidence that the majority of these feedback

mechanisms are localised to the cancer’s invading edge [336, 74].

2.2 Computational Approaches and Analysis for

a Spatio-Structural-Temporal Invasive Car-

cinoma Model

2.2.1 Description and Brief Justification of the Mathe-

matical System

Based upon the biological evidence discussed so far, it is therefore crucially

important to account for the molecular binding of the uPA components in mod-

elling cancer dynamics. To that end, the general modelling approach intro-

duced in Domschke et al. [97], where a novel spatio-temporal-structural model

was derived for a general tissue dynamics involving of cells, ECM, and several

accompanying populations of potentially membrane binding molecules, offers

therefore an appropriate framework.

The model proposed by Domschke et al. [97] is a recent advancement within

the well established area of a structured population modelling, uniquely utilising

the structural dynamics to describe spatio-chemical-temporal processes in the

tumour cell population. With a history stretching over almost six decades, how-

ever, structured-population models address a whole range of research challenges

arising across many bio-medical and ecological areas, including epidemiology,

collective movement either within cell population (such as those in cancer in-

vasion or embryogenesis) or within social crowd dynamics. Varying in scope

and purpose, these range from temporal-structural approaches (where space
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is ignored, and time is coupled for instance with “age” or “size” structure)

[316, 317, 298, 139, 91, 194, 140, 141, 320, 90, 92, 175, 49, 285, 70, 27, 60], to

spatio-structural models were (where time is ignored) [137, 220, 93, 115, 169,

282, 198, 199, 21, 83, 11], and finally to more complex approaches that couple

time, space, and structure [89, 45, 198, 109, 302, 8, 71, 87, 97, 318]. Specifi-

cally, important examples of structured approaches in cancer modelling include

size-structured models [138] (which account for cell size in order to understand

cell cycle dynamics), age-structured models [33, 101, 102] (which account for

the age distribution of the population), as well as more specific models taking

into account various other aspects such as RNA content [187], mutational state

[85, 214, 86], popular altruism [166] and more. For a more extensive introduc-

tion to and analysis of these structured cancer development models, one may

refer to the review papers by Bellomo et al. [31, 30] as well as to a number of

relevant books on this topic [4, 70, 269, 225].

Thus, adopting here the notations from Domschke et al.[97], in this paper we

propose appropriate computational approaches and resulting simulation along-

side associated analysis to explore the spatio-temporal-structural modelling of

a cancerous tissue consisting of:

• a structured cancer cell density c(t, x, y), with (t, x, y) ∈ I ×D×P, where

I := [0, T ] is a time interval, D ∈ Rd, d = 1, 2, is the spatial tumour

domain, and P ⊂ Rp is a cone of appropriate dimension p ≤ 2 representing

the set of all admissible membrane-binding structures for the uPA System;

• ECM density v(t, x), with (t, x) ∈ I × D;

• q≤3 components of the uPA system (uPA, PAI-1, and plasmin), which

are appropriately grouped in binding and unbinding classes of molecular

species represented here by mb := [mb,1(t, x), . . . ,mb,p(t, x)]T ∈ Rp and

mf := [mf,1(t, x), . . . ,mf,q−p(t, x)]T ∈ Rq−p, respectively.

Using on the theoretical framework derived in Domschke et al. [97], we

explore the dynamics of a cancerous tissue of the resulting spatio-temporal-
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structural uPA modelling system, which we briefly describe here as follows.

Per unit time, under the presence of a cell proliferation law, we generally as-

sume that the spatial dynamics of the cancer cell population is dictated by

diffusion, chemotaxis, haptotaxis, and cell-adhesion. The molecular binding

and unbinding of the uPA components (uPA or PAI-1) is accounted for in this

framework[97] in terms of an appropriately derived structural cone P (detailed

on specific cases in the following sections), and the resulting dynamics leads

not only to a spatio-temporal migration but also to a structural movement of

the cancer population c(t, x, y). The influence of cell-adhesion over the spatial

dynamics at x is considered here in non-structured fashion and, similar to other

previous approaches[95, 120], this is captured via a non-local term that repre-

sents the cell-cell and cell matrix adhesion interactions within a sensing region

of radius R. This non-local term is of the form

A(t, x, y,u(t, ·)) = 1
R

∫
B(0,R)

n(x̃)K(‖ x̃ ‖2)g(t, y,u(t, x+ x̃))χD(x+ x̃) dx̃

(2.1)

where, for any x̃ ∈ B(0, R), n(x̃) represents the unit vector pointing from x to

x+ x̃, K(·) is a smooth spatial kernel, and the adhesion function g(t, y,u(t, x+

x̃)) accounts for the cell-cell and cell-matrix adhesion strengths Scc and Scv,

respectively, this being given by

g(t, y,u) = [Scc(t)
∫
P
c dy + Scv(t)v] · (1− ρ(u))+ . (2.2)

with the convenience vector notation

u(t, x) :=

[ ∫
P
c(t, x, y)dy , v(t, x)

]T
and (·)+ := max{0, ·}. Furthermore, as the ECM density v(t, x) is only degraded

and remodelled by the cancer cells and that the unbound (free) part of the

considered components of the uPA System that are produced by the cancer

cells are only diffusing in the tumour domain, the structured system that is
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obtained via the general modelling framework from Domschke et al.[97] is as

follows:



∂c
∂t = ∇x ·

[
Dc∇xc− c(1− ρ(u))

(
q∑

k=1

ξk∇xmk + ξv∇xv
)

+ cA
]

−∇y · [(b(y,m)− d(y))c]

+2p+1φ(2y, c, v)c(t, x, 2y)− φ(y, c, v)c(t, x, y)

∂v
∂t = −γTv rv + ψv(t,u)

∂m
∂t = ∇x · [Dm∇xm]−

∫
P

(
b̂(y,m)− d̂(y)

)
εc(t, x, y) dy

+ψm(u, r)− diag (γm) m .

(2.3)

where the vector notations are used here to represent

• the molecular population of unbound (free) part of the considered compo-

nents of uPA system via m := [mT
b ,m

T
f ]T ;

• the total molecular population (both bound and unbound part) of the con-

sidered components of uPA system via r :=

[ ∫
P
yεc(t, x, y) dy, m(t, x)

]T
,

whereas ε stands for the ratio between cell-surface density and cancer cell den-

sity. Furthermore, to simplify the context, the cell cancer proliferation law

φ(y, c, v) is chosen here to be of a non-structured logistic form, namely

φ(y,u) = µc(1− ρ(u)) (2.4)

where ρ(u) quantifies the space occupied by the ECM and total cancer cell

density

C(t, x) :=

∫
P

c(t, x, y) dy, (2.5)

and is defined by

ρ(u(t, x)) := vcC(t, x) + vvv(t, x) (2.6)



36 CHAPTER 2. MODELLING UPA DYNAMICS

with vc and vv denoting the volume fraction for c and v at the same spatio-

temporal point (t, x), respectively. Moreover, the ECM remodelling term ψv(t,u)

assumes here the volume filling form

ψv(t,u) := µv(1− ρ(u))+. (2.7)

Finally, for the uPA binding components given by mb := [mb,1, . . . ,mb,p]
T , the

cell surface binding and unbinding rates are represented here by b(y,m) and

d(y), respectively. Therefore, since for the free components mf we do not have

any binding or unbinding, to unify the notation, we use here the extended

binding and unbinding rates vectors b̂(y,m) and d̂(y) in Rq given by

b̂(y,m) := [(b(y,m))T , 0, . . . , 0]T and d̂(y) := [(d(y))T , 0, . . . , 0]T .

The molecular source ψm is assumed to depend here only on u and the total

molecular population r while the constant vector γm ∈ Rq represents the natural

degradation rate of m.

The dynamics of uPA System with and without PAI-1

Assuming that a total amount M of uPAR receptors is uniformly distributed on

the surface of each cancer cell, in the following we explore the form and dynamics

of the spatio-temporal-structural system (2.3) when considering uPA binding

and unbinding to uPAR both in the presence and in the absence of binding PAI-

1 inhibitor molecules. These will result in different structural dimensionalities

that will be addressed below as appropriate.

uPA System in the absence of PAI-1

The first case that we consider here accounts only for the uPA bounding and

unbinding molecules while ignoring the presence of PAI-1. In this context, the

total number of considered uPA System components is q = 2, and consists of

• a binding molecular species (i.e., uPA) represented bymb(t, x):= mb,1(t, x);
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• a free molecular species (i.e., plasmin) represented bymf (t, x):= mf,1(t, x).

The amount of those uPA molecules among mb,1(t, x) that are exercising binding

to the available uPAR receptors is denoted here with y, and represents the bind-

ing structure of the cancer cell population distributed at the spatio-temporal

node (x, t). Thus, under the assumption of a certain level of membrane-binding

saturation, after eventual normalisation, the collection of all the binding struc-

tures P is given here by the interval [0, 1], so the dimension of P is in this case

p = 1. Furthermore, after a brief calculation[97], the uPA binding rate b(y,m)

is given by

b(y,m) = (1− y)mb,1, (2.8)

while the uPA unbinding rate d(y) has a form

d(y) = dmb,1 . (2.9)

Furthermore, assuming that the unbound uPA is produced by the cancer cells

C(t, x) at the rate αmb,1 and that plasmin is produced only by those cells which

are bound by uPA at a rate αmf,1 , the molecular source term ψm(C, r) is given

here by

ψm(C, r) =

 αmb,1C

αmf,1
∫
P
yεc(t, x, y) dy

 (2.10)

uPA System in the presence of PAI-1

Building on the first modelling case assumed in subsection 2.2.1, we consider

now a second situation in which, besides the binding uPA, also the inhibitor

PAI-1 is brought into the picture, this being able to bind to cell surface-bound

uPA molecules, this way inhibiting their action. In this new context, the total

number of the uPA System considered is q = 3, this consisting of

• two binding molecular species (i.e., uPA and PAI-1) represented bymb(t, x) :=

[mb,1(t, x),mb,2(t, x)]T , with mb,1(t, x) standing for the uPA density and

mb,2(t, x) denoting the PAI-1 inhibitor density;
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• a free molecular species (i.e., plasmin) represented bymf (t, x):= mf,1(t, x).

While proceeding as in subsection 2.2.1 and denoting amount of those uPA

molecules among mb,1(t, x) that are exercising binding to the available uPAR

receptors is denoted here with y1, we denote with y2 the amount of PAI-1 recep-

tors that binds to bound uPA, causing the inhibition of these uPA molecules.

Thus, given the binging possibilities for PAI-1 onto receptor-bound uPA versus

the binding possibilities of the free uPA on the uPAR receptors, it is always

the case that y2 ≤ y1, and so after an eventual normalisation due to reach-

ing saturation levels of cell-surface uPA binding, we obtain that that maximal

set of binding structures P is two-dimensional in this case and is given by

P := {(y1, y2) ∈ R2 | y1 ∈ [0, 1] and y2 ∈ [0, y1]}. Thus, using a measure the-

oretical argument[97] for the binding components for the uPA and PAI-1, the

vector of binding rates b(y,m) is given by

b(y,m) =

 (1− y1)β1mb,1

(y1 − y2)β2mb,2

 (2.11)

and similarly, we obtain that the vector of unbinding rates d(y) is

d(y) =

 (y1 − y2)dy1

y2dy2

 (2.12)

Assuming that the uPA density mb,1 is produced in the presence of cells express-

ing uPAR (namely the total cell density C) at a rate αmb,1 , mb,2 is produced in

the presence of activated plasminogen (namely the plasmin density mf,1) at a

rate αmb,2 , and plasmin density mf,1 is activated by cells expressing uPA den-

sity mb,1 but not also inhibitor PAI-1 density mb,2 at a rate αmf,1 , we obtain
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that the molecular source term ψm is given by

ψm(C, r) =


αmb,1C

αmb,2mf,1

αmf,1
∫
P

(y1 − y2)εc(t, x, y) dy

 . (2.13)

2.2.2 Computational Approach and Analysis for the Dis-

cretisation of the Spatio-Structural-Temporal Tu-

mour Model

Throughout this section, we consider only the case of one dimension both in

space and structure for system (2.3). Thus, assuming equal spatial and struc-

tural step size δx = δy and an equal number r ∈ N \ {0, 1, 2, 3} of collocation

points in both x and y dimensions, in the following we will proceed to discre-

tise c, v, and m at any given time node nδt, with n ∈ N. At each discretised

spatial location in x, let cnx denote the vector of the discretisation of the distri-

bution of the cancer cell population over the structural dimension y, explicitly

given by cnx := [cnx,y1
, ..., cnx,yr ]

T . Likewise, at each discretised structural lo-

cation in y, let cny denote the vector of the discretisation of the distribution

of the cancer cell population over the spatial dimension x, explicitly given by

cny := [cnx1,y, ..., c
n
xr,y]T . In a similar way, the spatial discretisation of the ECM

concentration is denoted by vn := [vnx1
, . . . , vnxr ]

T . Further, to simplify the no-

tation for the components of m, in this section we will drop the indices b and

f and orderly relabel the involved molecular species simply upon their position

in the vector m, namely as m = [m1, . . . ,mq]
T . In this context, the discreti-

sation of m is simply denoted by mn := [(mn
1 )T , . . . , (mn

q )T ]T ∈ Rqr, with

mn
i := [mn

i,x1
, . . . ,mn

i,xr
]T , ∀ i ∈ {1, . . . , q}.

Finally, for appropriately designed r×r diagonal matrices Γ (aimed to serve

for approximating expectations of the various structurally distributed variables

that are involved in system (2.3)), let us denote Cn(Γ) := [Cnx1
(Γ), ..., Crxr (Γ)]T ∈
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Rr, with each component defined by

Cnxi(Γ) :=
δy
2 [cnxi ]

TΓ[1, 2, 2, ..., 2, 2, 1]T , (2.14)

and note that for instance the total cell density is given by C(Ir), where Ir is

the r × r identity matrix.

Discretisation of the 1D-Spatial 1D-Structural uPA Model

The iterative time step for the cancer population equation in (2.3) is then given

by

cn+1 = cn + δnc with δnc = (Axc
n
x + (Ay +Aφ) cny ) · δt (2.15)

where

Ax = 1
4δ2
x
J2 + 1

2δx
Jf̃

f̃ := diag([f1, ..., fr]),

(2.16)

with Jr being the r × r central difference derivative matrix given by

Jr =



−2 2 0 . . . 0 0 0

−1 0 1 . . . 0 0 0

0 −1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . −1 0 1

0 0 0 . . . 0 −2 2



, (2.17)

and the components of f̃ being given by

fi := fi(c
n
xi , v

n
xi ,m

n
xi) =

(
1− ρ(cnxi , v

n
xi

)(∑
k

ξkrowi(J
2
r )mn

k,xi
+ ξvrowi(J

2
r )vnxi

)
,

(2.18)
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where rowi(J
2
r ) indicates the ith row of the matrix given by J2

r , for all i ∈

{1, ..., r}. Furthermore, we have that

Ay = − 1
2δy

Jr g̃

g̃ := diag([(b1 − d1), ..., (br − dr)]),
(2.19)

where bi := b(mn, yi) and di := d(yi), ∀i ∈ {1, ..., r} stands for the discretised

binding and unbinding rates, and

Aφ = Aφy +Aφ2y
(2.20)

with

Aφy = −φ̃y Aφ2y
= 2P+1ÎT φ̃2y Î

φ̃y = diag([φ1, ..., φr]) φ̃2y =
r∑
i=1

φ2iEi,2i Î =

 Ir

∅r

 ,
(2.21)

where ∅r is the r × r zero matrix, Ei,2i is the standard elementary matrix;

φi := φ(yi, c
n
yi , v

n) and φ2i := φ(2yi, c
n
2yi , v

n),∀i ∈{1, ..., r}.

Similarly iterative time step for the ECM equation in (2.3) is given by

vn+1 = vn + δnv with δnv = (Bxv
n + ψ̃v) · δt , (2.22)

where

Bx = −γv,cεdiag(Cn(ỹ))−
q∑
i=1

γv,midiag(mn
i ) , (2.23)

with ỹ := diag([y1, . . . , yr]), the ECM degradation rates vector γv organised as

γv := [γv,c, γv,m1 , . . . , γv,mq ]
T . Furthermore, ψ̃v denotes here the remodelling

vector given by

ψ̃v := [ψv,1, ..., ψv,r]
T , (2.24)

where we use the reduced notation ψv,i := ψv(c
n
i , v

n
i ), ∀i ∈ {1, ..., r}.
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Finally, the iterative time step for uPA components equation in (2.3) is given

by

mn+1 = mn + δnm with δnm = (Dx(mn) +Dφ) · δt , (2.25)

where we used the operator notationDx(mn) :=[(Dm1
J2
rm

n
1 )T, . . . , (DmqJ

2
rm

n
q )T ]T ,

and

Dφi := ψmi − εCn(g̃)− γmimn
i (2.26)

where ψmi := [ψmi(C
n
x1

(Ir), C
n
x1

(ỹ)), . . . , ψmi(C
n
xr (Ir), C

n
xr (ỹ))]T ,∀i ∈ {1, . . . , q},

where we used the operator notation Dφ(mn) :=[DT
φ1
, . . . , DT

φq
]T .

Therefore, the first iteration of the resulting discrete global operator for an

arbitrary discrete spatio-structural points (x, y), and time node n = 0, which

appears when computing given by (c1, v1,m1)T , leads to the following relations:

δ0
c =

(
1

4δ2
x
J2
r c

0
y + 1

2δx
Jrf̃ c

0
y − 1

2δy
Jrg̃c

0
x

+
(

2P+1ÎT φ̃2y Î − φ̃y
)
c0y

)
δt

δ0
v =

(
−γv,cεdiag(Cn(ỹ))v0 −

q∑
k=1

γv,mkdiag(mn
k )v0 + ψ̃v

)
δt

δ0
mk

=
(
DmkJ

2
rm

n
k + ψmk − εC0(g̃)− γmkmn

k

)
δt .

(2.27)

The stability of the primary term in these discrete time differences is depen-

dent upon the operator Jr, whose analysis was the focus of section 1.4.1.

Stability Analysis of the Global Numerical Scheme

Returning now to the stability analysis of the global numerical scheme associated

to 1D-spatio 1D-structural case of (2.3), we will focus now only those operators

occurring in (2.28) that have eigenvalues Re(λ) > 0. Therefore, as Jr was proved

to be stable, of interest for the stability analysis remains the behaviour of the

following remainders of the operators from (2.28) without those terms involving



2.2. COMPUTATIONAL APPROACHES FOR UPA SYSTEMS 43

Jr that we indicate with ,̄ namely:

δ̄0
c =

(
2P+1ÎT φ̃2y Î − φ̃y

)
c0yδt

δ̄0
v =

(
− γv,cεdiag(Cn(ỹ))v0 −

q∑
k=1

γv,mkdiag(mn
k )v0 + ψ̃v

)
δt

δ̄0
mk

=
(
ψmk − εC0(g̃)− γmkmn

k

)
δt .

(2.28)

We begin by assessing the stability of the structural dimension by considering

the mitotic operator for the 2nd and 3rd such iterations on c, wherein we have:

δ̄1
c = (Aφy +Aφ2y

)c0yδt + (Aφy +Aφ2y
)2c0yδ

2
t , (2.29)

δ̄2
c = (Aφy +Aφ2y

)c0yδt + (Aφy +Aφ2y
)2c0yδ

2
t

+(Aφy +Aφ2y
)3c0yδ

3
t ,

(2.30)

such that the nth iteration is given by

δ̄nc =
n+1∑
i=1

(Aφy +Aφ2y
)iδitc

0
y . (2.31)

The basic criterion for stability is that a small perturbation in the solution

will decrease or remain constant in value through time, t → ∞. Now, since

in the above sum, the order of the terms (with respect to δt) increases with i,

we can form a preliminary estimate of the perturbation’s growth using only the

first i = 1 terms, namely

c1xi,yj = c0xi,yj +
(
−φyjc0xi,yj + 2P+1φ2yjc

0
xi,2yj

)
· δt (2.32)

and so we get the following condition for stability

φyjc
n
xi,yj ≥ 2P+1φ2yjc

n
xi,2yj . (2.33)



44 CHAPTER 2. MODELLING UPA DYNAMICS

Given that 0 ≤ φ ≤ 1, we have that for stability

lim
δyj→0

lim
yj→0

cnxi,yj = ∞, ∀n ∈ [0, N),

lim
δyj→0

lim
yj→∞

cnxi,yj = 0, ∀n ∈ [0, N).
(2.34)

Further, concerning the structural dynamics, denoting now by ¯̄δnc;xi,yj the change

in the cancer cell distribution c due to the y-flux of the system at a given spatio-

structural position (xi, yj) during a time interval [nδt, (n + 1)δt], we have that

¯̄δ0
c;xi,yj :=Ayc

0
y · δt

=

(
1

2δy
(byj−1

− dyj−1
)c0xi,yj−1

− 1

2δy
(byj+1

− dyj+1
)c0xi,yj+1

)
· δt .

(2.35)

Therefore, if we have that b, d are proportional to y, then we can extract the

modified binding and unbinding rates b̄ and d̄ as

bnyj (yj ,m
n) = b̄(mn) · yj and dyj (y) = d̄ · yj , (2.36)

and so we can then write

¯̄δ0
c;xi,yj =

(
yj−1c

0
xi,yj−1

− yj+1c
0
xi,yj+1

)
· 1

2δy
(b̄0 − d̄0) · δt, (2.37)

whose stability is ensured by having either

b̄ ≤ d̄, (2.38a)

or

c0xi,yj−1
≤
yyj+1

yyj−1

c0xi,yj+1
, ∀xi, yj . (2.38b)

Thinking biologically about the ramifications of the former constraint, (2.38a),
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this would mean that the unbinding of the molecular species involved was more

frequent than the binding of these species which would imply a relationship

of affinity that approaches 0. Although these exist biologically, the considered

system is one in which the binding of molecular species plays a major role in

the metabolic processes of the cell and one can thusly disregard (2.38a) from

consideration as trivial. Therefore, we consider here only (2.38b) as viable.

From (2.33), (2.34), and (2.38b), however, we have a contradiction and there-

fore, the system must be unstable with neither an absolute nor a convective

instability. The instability present is absolute in its source but convective in its

requirement and behaviour.

For the stability of the equation in v of the discretised 1D-spatio 1D-structural

system (2.3), from (2.28) we observe first that 0 ≤ cnxi,yj ≤ 1 and 0 ≤ mn
k;xi,yj

,

∀k ∈ {1, ..., q}. It is then trivial to show the following eigenvalues relations

λdiag(cnxi,yj
) = cnxi,yj ≥ 0,

λdiag(mnk;xi
) = mn

k;xi
≥ 0,∀k ∈ {1, ..., q},

λBx ≤ 0

(2.39)

where λdiag(cnxi,yj
) denote the eigenvalues of diag(cnxi,yj ), λdiag(mnk;xi

) are the

eigenvalues of diag(mn
k;xi

), and λBx represent the eigenvalues of Bx. Therefore,

using a similar notation, since for the eigenvalues of Bφ, we have that λBφ ≥ 0,

given smooth solutions for cnx and mn
x , we finally obtain that the solutions for

vnx will remain smooth and stable.

Finally, using the similar eigenvalue notation, for the stability in the equa-

tions for m, we obtain that the eigenvalues for Cn(g̃), δm and ψ̃m have the

properties

λCn(g̃) ≥ 0,

λδm = γm,

λψ̃m
≥ 0.

(2.40)
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Moreover, we can also observe that eigenvalues of Dφ have the property that

λDφ ≤ 0 iff λψ̃m
≤ γm + ελCn(g̃). (2.41)

where for convenience we used the vector convention in writing the above in-

equality, which simply means that the inequality is respected per each compo-

nent. Thus, we have that either (1) ψ̃m is proportional to εCn(g̃) or (2) ψ̃m

is proportional to Cn(Ir). For case (1), if we let kψ,1 be the proportionality

constant within the relation ψm, then we can write that there must exist some

values for Cnx (g̃) at which

kψ,1ελCn(g̃) ≤ γm + ελCn(g̃)

(kψ,1 − 1)ελCn(g̃) ≤ γm

(kψ,1 − 1)εCn(g̃) ≤ γm ,

(2.42)

where we used the same vector convention as in (2.41). Thus, using integration

by parts, we can write

(kψ,1 − 1)ε (g̃Cn(I)− (b̄− d̄)yrC
n(Ir)) ≤ γm. (2.43)

For case (2), if we let kψ,2 be the proportionality constant within the relation

ψm then we can write that there must exist some values for Cn(Ir) at which

kψ,2λCn(Ir) ≤ γm + ελCn(g̃)

kψ,2C
n(I) ≤ γm + ε (g̃Cn(I)− (b̄− d̄)yrC

n(Ir))

kψ,2C
n(Ir) ≤ γm + ε (g̃ − (b̄− d̄)yr)C

n(Ir)

(2.44)

where g̃ ≥ (b̄− d̄)yr. Therefore, given sufficiently large values for Cn(Ir), given

by

Cn(Ir) ≤
γm

kψ,2 − ε (g̃ − (b̄− d̄)yr)
, (2.45)
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the solutions for mn
i will be unstable with

lim
n→∞

mn
i =∞ ∀i where ψmi = ψmi(c

n
x , ·) . (2.46)

For sufficiently low values of Cn(Ir), given by the contrary argument to (2.45),

the solutions for mn
i will be stable with mn

i = 0.

2.2.3 Numerical Results and Simulations in 1D-Spatial

Case

The parameters considered throughout this work are chosen to be consistent

with those set out in Domschke et al. [97], and other previous models [120], and

are detailed in 2.1.

Numerical results generated by running the test case, and finite difference

scheme for the system, through MATLAB are given below (Fig. 2.1-2.9). Sev-

eral different cases are simulated in order to numerically verify the validity of

proposed changes to the system and in order to perform analyses of the system

using numerically generated graphic results:

For the 1D-spatial, 1D-structural case the associated model (2.3), was ex-

plored numerically in the presence of initial conditions for c(t, x, y) for t = 0,

given by

c0(x, y) := c(0, x, y) = exp
[
−100

(
x2 + 4(y − 1

4 )2
)]
, (2.47)

and the homogeneous ECM conditions

v0(x) := v(0, x) = 1−
∫
P
c(0, x, y) dy . (2.48)

uPA in the absence of PAI-1: 1D-Spatial 1D-Structural Results

One characteristic of the numerical solution, which has not previously been

observed, is that of the partial travelling wave translation in the structural
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c : Dc = 10−4 ξv = 5× 10−2 ξ1 = 1× 10−3 µc = 0.1

Scc = 10−4 Scv = 10−4 vc = 0.524 vv = 0.476

i-state : ε = 0.1 β = 0.5 γy = 0

v : γv = 10 µv = 0.05

mb,1 : Dmb,1 = 10−3 αmb,1 = 0.1 γmb,1 = 0.1

mb,1 : Dmb,1 = 10−3 αmb,1 = 0.1 γmb,2 = 0.1

mf,1 : Dmf,1 = 10−3 αmf,1 = 0.5 γmf,1 = 0.1

Table 2.1: Table of parameters for use in simulating (2.3)

dimension (Fig. 2.1). That is to say that the proliferative terms lead to the

travelling wave being depleted and replaced, to a greater extent at a lower value

for y. These features shall be henceforth referred to as structural “y-waves”

and is an essential feature in understanding the dynamics of such systems, given

their recurrence in all domains. There is not sufficient evidence in the biological

literature to verify that this is the case or to contradict this result.

The hyper-affinity binding also results in the behaviour of “replicative y-

trapping” (referring to the behaviour of c collection at the upper y boundary

as y-trapping and the proliferative duplication at 1
2y as replicative of this y-

trapping) behaviour producing a discontinuity that fails to allow the system to

continue the migration of c through P and raises significant questions of the

biological efficacy of this system when coupled to assumptions of equal mitosis.

Again, this results from the binding a production of these species occurring at

far higher rates than the unbinding or degradation of these species.

The y-waves actually caused a resultant x-resolved profile, C(t, x), which was

itself not smooth (Fig. 2.1); this is a ramification of the proliferative contribution

to the replication of steep gradient profiles. One must observe that, within the

discrete space, the proliferative term necessarily means that any gradient is

replicated with a proliferative constant, µc.

Further, one observes an sharp spiking behaviour that occurs only at the

boundary, which can be directly observed for t = 50 (Fig. 2.1c). The source

of this spiking is not clear, since it occurs to a lesser extent for other values of
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(a) t=10 (b) t=20 (c) t=40

(d) t=60 (e) t=80 (f) t=100

(g) t=120 (h) t=140 (i) t=160

Figure 2.1: Numerical 1D-spatial 1D-structural results generated from simulation of the system
(2.3), with c plotted in the x- and y-dimension (top), with values for C (black), v (blue), mb,1
(green dashed), and mf,1 (red dashed) plotted spatially (bottom).
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(t, x), but could be due to the gradient-guided dissipation occurring only one

side of the spike. In other words, the accuracy of the estimate of the double

derivative is lessened by the fact that the peak occurs on the boundary and one

can obtain information about the local features on only one side of the peak.

It is also possible that this results from the contribution of the chemotaxis to

the molecular species, on the bulk of the population, and the haptotaxis, on the

exterior of the population.

There exists, however, some biological evidence to corroborate this behaviour

as a natural process occurring due to the difference between forces between cell-

cell junctions and cell-ECM based motility. For instance, Yamaguchi et al.

[342] report the phenomenon of differential behaviours between ‘leader’ and

‘follower’ cells during collective cell migration, often resulting in a clustered cell

subpopulation leading the migration of the tumour’s boundary. Likewise, in

vivo experimentation (necessarily invoking the heterogeneity of the underlying

migratory substrate) has demonstrated breakaway clusters of cells which develop

anterior to the invasive front [58].

2.2.4 Numerical Results in 2D-Spatial Cases

Proceeding in a similar manner to the 1D-spatial case, also in the 2D-spatial

cases, with the appropriate 1D- or 2D-structural domain P, we we assume equal

spatial and structural step size δxi := δyj := δx, i, j ∈ {1, 2} and an equal

number r ∈ N∗ of collocation points in both spatial and structural dimensions,

and in the following we will proceed to discretise c, v, and m at any given time

node nδt, with n ∈ N.

For the 2D-spatial 1D-structural model, numerical results have been ob-

tained for the initial condition for c(t, x, y) which are the extension of (2.47),

and in this case are given by

c0(x, y) := c(0, x, y) = exp
[
−100

(
‖x‖2

2
+4(y − 1

4 )2
)]
, (2.49)

Furthermore, for the ECM, we use both the homogeneous initial conditions
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given in (2.48) and a new set of heterogeneous initial conditions given as in [13],

namely:

(x1, x2) := 1
3

(
x+ 3

2

)
∈ [0, 1]2 for x ∈ D , ζ := 6π,

h(x1, x2) := 1
2 + 1

2 sin
(
ζx1

x2+1

)
sin (ζx1x2) sin

(
ζ(1−x1)
x2+1

)
sin (ζ(x1 − 1)(x2 − 1)) ,

v0(x) := v(0, x) = min
{
h(x1, x2), 1−vcC(0,x)

vv

}
.

(2.50)

Finally, for the 2D-spatial 2D-structural model, numerical results have been

obtained for the appropriate extension of the initial conditions for c(t, x, y) con-

sidered in (2.47) and (2.49) which in this case recast as follows:

c0(x, y) := c(0, x, y) = exp
[
−100

(
‖x‖2 +4 ‖ (y − [ 1

4 ,
1
4 ]T ) ‖2

)]
, (2.51)

as well as the homogeneous and heterogeneous ECM initial conditions given in

(2.48) and (2.50).

uPA in the absence of PAI-1: 2D-Spatial 1D-Structural Results

Results from the simulations were consistent with the 1D-spatial 1D-structural

case but varied widely due to the effect of the ECM on the cancer species.

Results for the 2D-spatial 1D-structural system for lower binding values are

given (Fig. 2.2 & 2.3). For c, the the spatial distribution of the tumour in

2-spatial dimensions and isosurface figure in a 2D-spatial 1D-structural domain

(in the absence of PAI-1) are displayed to attempt to give the fullest impression

of the progress of the cancer through the spatial and structural domains in

time. One can see, again, the y-wave behaviour in the 2D-spatial system with

mushroom-like forms replicating themselves at progressively lower values for y.

A typical symmetric cancer cluster grows into the spatial domain, giving higher

values for concentration at the upper boundary of P towards the epicentre of

the cancer cluster.

In biological terms, this indicates that the more established, inner, portion

of the tumour will likely have a higher bound population of molecules that
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mb,1

mf,1

v

C

(a) t=3 (b) t=15

Figure 2.2: Numerical 2D-spatial 1D-structural results for (2.3) for homogeneous ECM, plotted at
times t ∈ {3, 15}: mb,1 (row 1), mf,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface
on the 2D x-plane.
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v

C

(a) t=35 (b) t=50

Figure 2.3: Numerical 2D-spatial 1D-structural results for (2.3) for homogeneous ECM, plotted at
times t ∈ {35, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

the boundary, outer, portion. This result is counter-intuitive since, given that

these bound species are more effective at degrading the extracellular matrix, a

theoretical postulation might lead one to believe that these species would exist

to a greater extent on the boundary. This is either a flaw within the application

of the model or may provide an interesting observation about the efficiency of

natural biological cancers.

Biological evidence does exist, on the other hand, to support the claim that

both uPAR, and consequently surface bound uPA, are more highly concentrated

towards the interior of invasive cell structures. Invading T lyphocytes have been

reported to exhibit such internally high expression levels, with only individuated
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exterior cells expressing high levels of uPARs [35]. A biological spatio-temporal

model of tumour invasion reported high levels of uPA of the tumour’s leading

edge but also found extremely high levels on the invading mass’ interior [5].

The y-waves occur within the 2D-spatial model also (Fig. 2.2–2.3), where

one may observe graduated levels of binding for c. One can observe that the

largest concentration of c begins and remains at the epicentre of the population.

All results show a significant correlative relationship between the ECM levels,

v(t, x), and the destructive molecular species, mf,1(t, x), and therefore a wave

of ECM destruction follows closely behind the travelling wave of the cancer cell

population. This is an indicator of the indirect relationship between the cancer

growth mechanism and the cancer population itself (i.e. acting through the

intermediate degradative protein species mf,1).

Results generated using a heterogeneous initial ECM density (Fig. 2.4–2.6)

varied from the previously observed results with similar behaviour, nonetheless.

One observes the spiking behaviours developing into a particularly defined wave

front for the growing cancer population. Here, the boundary wave-like solution

may be caused by the high affinity between the cancer cell population and the

ECM.

Although it is difficult to depict this behaviour, one again observes y-waves

in the numerics for the behaviour at the interior of the cancer population. This

is masked by the isosurface for the spiking shell of the cancer population. The y-

waves play an important role in determining the initial behaviour of the cancer

population, during growth and establishment of the perimeter. It is unclear

wether these waves contribute to the dramatic change in behaviour and form

t ∈ (9, 15).

Just as in the 1D- and 2D-spatial homogeneous-ECM cases, one can observe

the initial spatial splitting of the cancer population. Unlike in the homogeneous

case (Fig. 2.2–2.3), however, the heterogeneity appears to mediate the consol-

idation of the cancer subpopulations (Fig. 2.4b–2.5b) into the characteristic

tumour that one associates with the biological paradigm.
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mb,1

mf,1

v

C

(a) t=3 (b) t=9

Figure 2.4: Numerical 2D-spatial 1D-structural results for (2.3) for heterogeneous ECM, plotted at
times t ∈ {3, 9}: mb,1 (row 1), mf,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface
on the 2D x-plane.
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v

C

(a) t=15 (b) t=20

Figure 2.5: Numerical 2D-spatial 1D-structural results for (2.3) for heterogeneous ECM, plotted at
times t ∈ {15, 20}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

Given that a periodic function is used to generate the ECM heterogeneity, it

is not terribly surprising that the result produced (t ≤ 20) resembles that of a

cyclic environment, with 180◦ turn symmetry. Further results (not shown) were

generated with an asymmetric, or with non radial symmetry with respect to the

initial positioning of the tumour. These results again displayed an asymmetric

splitting of the population (typically into two spatially distinct subpopulations)

with the larger portion of the subpopulation migrating to those regions with the

steepest ECM gradients. Given that all of these environments were normalised

with respect to their overall nutritional capacity, the underlying ECM patterning

has no significant bearing on the invasive success of the tumour.
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v

C

(a) t=30 (b) t=50

Figure 2.6: Numerical 2D-spatial 1D-structural results for (2.3) for heterogeneous ECM, plotted at
times t ∈ {30, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

Moreover, the cancer, in this 2D-spatial 1D-structural heterogeneous case, is

particularly exploitative of its environment, protruding into areas of low ECM

density before the diffusion of the molecular species through the more dense

sections of the ECM allows the remainder of the population to follow. This

feature of the cancer behaviour is repeated until total permeation of the spa-

tial domain occurs. This also leads to the boundary of the cancer population

becoming somewhat amorphous, as one observes with cancer in the natural,

biological environment of the human tissue. It may be interesting to consider

the case in which molecular species are more free to diffuse into areas of lower

ECM density.
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uPA in the presence of inhibitor PAI-1: 2D-Spatial 2D-Structural

Results

Results generated using a heterogeneous initial ECM density were similar to

those generated for the system with 1-structural dimension (in the absence of

PAI-1, Fig. 2.7–2.9). One observes again that the spiking behaviours developing

into a particularly defined wave front for the growing cancer population. Again,

this is likely to be due to the attractive forces, leading to haptotaxis, between the

cellular population and the ECM causing cells to chemotactically self-aggregate

on the boundary of the tumour. This is also likely accentuated by the local

inhibition of invasion (through PAI-1 binding), which contrasts the advancement

of the tumour boundary and encourages hyper-localised behaviours.

All of those significant features, appearing in the case of 1D-structural di-

mension (in the absence of PAI-1), appear in those for 2-structural dimensions

(in the presence of PAI-1), with the important difference being that the nature

of the tumour in this 2D-structural case develops at a much slower rate. This is

expected behaviour given that the introduction of a 2nd structural dimension,

in this case, corresponds to the introduction of an inhibitor to the degradative

activation protein, uPA. The apparent rate of change in tumour growth can be

approximately given by αmf,1 −γmf,1 such that the rate by which the tumour is

slowed down is equal to the binding ability of the inhibitor. This can be clearly

seen in the differences in morphology at t < 20 (Fig. 2.7–2.8).

2.2.5 Discussion & Conclusions

In the case where we consider a homogeneous cancer population and ECM den-

sity (Fig. 2.2-2.3) one observes a logistic boundary that expands, unimpeded, to

its maximal radius within the given domain. Within this one observes a lower

peak that clearly continues to expand throughout the space with the y-wave be-

haviour (which can be observed within the raw data), although at much lower

values for C. This is likely due to the initial conditions remaining constant with

the addition of a spatial dimension, causing values for c to be distributed and
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mb,1

mf,1

v

C

(a) t=3 (b) t=9

Figure 2.7: Numerical 2D-spatial 2D-structural results for (2.3) for heterogeneous ECM, plotted
at times t ∈ {3, 9}: mb,1 (row 1), mf,1 (row 2), v (row 3), C (row 4),

∫
[0,1]

c dy2 (row 5) and∫
[0,1]

c dy1 (row 6) as isosurfaces on the 2D x-plane.
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v

C

(a) t=12 (b) t=20

Figure 2.8: Numerical 2D-spatial 2D-structural results for (2.3) for heterogeneous ECM, plotted at
times t ∈ {12, 20}: v (row 1), C (row 2),

∫
[0,1]

c dy2 (row 3) and
∫
[0,1]

c dy1 (row 4) as isosurfaces

on the 2D x-plane.

for C to be reduced. Overall, these solution were in line with the 1D-spatial

test-systems but not indicative of natural cancer behaviour.

Once we endow the cancer species with its natural habitat (the heterogeneous

ECM) one observes behaviours absolutely characteristic of the biological system.

These behaviours included the volume filling properties for the inside of the
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v

C

(a) t=25 (b) t=35

Figure 2.9: Numerical 2D-spatial 2D-structural results for (2.3) for heterogeneous ECM, plotted at
times t ∈ {25, 35}: v (row 1), C (row 2),

∫
[0,1]

c dy2 (row 3) and
∫
[0,1]

c dy1 (row 4) as isosurfaces

on the 2D x-plane.

tumour; the aggressive behaviour of the cancer’s perimeter; and the primary

invasion into areas of lower tissue density. It is not clear whether or not the

initial splitting of the cancer into two subpopulations is characteristic of nature

but certainly is of the model, which is again likely a consequence of the initial

conditions.
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It can also be directly observed that the numerical solution is stable in its

spatial dynamics but unstable in structural dynamics, which can be seen from

the total permeation of P on the boundary of c whilst the spatially considered

cancer population, C, does not exhibit uncontrolled migration in D. The areas

of higher values for C (Fig. 2.6) can be attributed to the fact that y-waves

continue to exist within the body of the tumour and behave as in the 1D-spatial

model.

The largest errors arise from the structural differentiation in the second term

of the equation for ∂c
∂t , where we incur second order errors as a result of the sym-

metric difference quotient approximation. This method is commonly used and

there are no clear contenders to be used in its place since reaching a higher order

approximation is far more difficult than incurring computational and processing

penalties as a result of increasing the number of required arithmetic calculations.

We then have a third order error that results from the trapezoidal approxima-

tion on the local integral. This could, potentially, be improved by, for example,

taking a higher order approximation, such as Simpson’s rule polynomial approx-

imation, but one necessarily has a trade off between accuracy and computational

intensity.

On the whole, these errors tend to be small so long as δx and δy are kept

sufficiently small, δx, δy ≤ 10−2.

The result of stability analysis was to confirm the conclusions of the numer-

ical simulations that, notwithstanding ones ability to compensate for the errors

produced, the system is unstable in y. Any perturbation induced with non-zero

y-component will result in the exponential growth of the perturbation through

the structure space.

This simply implies that for fine perturbations in x, one must have suffi-

ciently low migration in y so as to allow the profile to remain stable. This is

particularly interesting when taken in combination with the numerical solutions

which revealed explosive instabilities upon rapid migration to the y boundary,

or the boundary of P̄, ∂P̄.
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Given that, for stability, one considers the magnitude (or absolute values) of

the parameters involved, one has that m is unstable under all conditions and for

small perturbation around any hypothetical stable solution. We also find that

v is stable at the cancer-ECM equilibrium such that, since we are interested in

the cancer growth and destruction of its local environment, the system is stable,

notwithstanding the instability in m.

Numerical results show interesting behaviours, particularly with the intro-

duction of y-waves, resulting from the structural considerations in c. One sees

the expected characteristics of the aggressive cancer species considered, with

smooth degradation of the ECM and concurrent advancement of the cancer

species to encroach on the healthy tissue. One shows how various consider-

ations as to how one could amend the system result in more reasonable and

expected behaviours in the cancer species but how, ultimately, the results that

most closely correlate with the biological paradigm require a rethink of the

underlying assumptions for the system, as a whole.

The numerical results for the system may elucidate an interesting propensity

of the biological cancer system to utilise unconventional mechanisms of invasion,

under the influence of chemical inhibitors. Inhibiting the uPA system appears,

in some way, to impede the uniform invasion of the stroma by this aggressive

cancer species, whilst allowing the ECM to remain intact by reducing the can-

cer’s ability to degrade collagen has allowed the cancer to more readily utilise

haptotactic behaviours. Therefore, what one observes in the inhibitor system,

in comparison to its counterpart, is a more sporadic distribution of cancer cells

who invade but do not degrade the ECM (growing in areas where competition

for space is reduced.

This gives rise to important biological decisions about how one treats and

prevents the spread of these cells, since inhibition may cause greater clinical

issues. The inhibitors fail to inhibit the initial devastation of the ECM by uPA

but leave the ECM open to exploitation. This may be a survival mechanism

utilised by cancer and may have been evolutionarily beneficial to it propensity to
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arise in the human body, rather than acting to the detriment of its progression.



Chapter 3

Novel Approaches to

Modelling Drug Resistance

in Melanoma

3.1 Introduction to Drug Resistance in Melanoma

as a Multi-Scale, Spatio-Temporal Process

Although novel targeted therapies have significantly improved the overall sur-

vival of patients with advanced melanoma [200], understanding and combat-

ting drug resistance remains a major clinical challenge. This is mainly due to

the propensity of advanced melanoma to rapidly develop resistance to targeted

therapies, such as BRAF inhibitors (BRAFi) or MEKi, or, indeed, to general

immune-enhancing therapies, such as ipilimumab. We find that increasing our

ability to deal with this problem on multiple scales, with spatial invasion on a

macro-scale and metabolic interactions occurring on a micro-scale, allows the

mathematical formulation of the problem to more closely model the biological

reality of the situation.

65
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(a) (b)

Figure 3.1: Diagrams indicative of (a) a discrete paradigm, wherein a cell undergoes instantaneous
and complete transitions between healthy and resistant states, and (b) a continuous paradigm, in
which a cell undergoes a continuous alteration between two extreme healthy and resistant states
and is capable of inhabiting all points between these two extremes.

Current mathematical abstractions of the biological paradigm for drug resis-

tance characterise the biological system as existing in a series of discrete states;

perhaps susceptible cells; cells with resistance to drug 1; cells with resistance to

drug 2; and cells with resistance to both drugs. This discrete interpretation (Fig.

3.1a), however, is not born out in experimentation since the observation of cells

under the influence of any given drug will demonstrate a spectrum of response

patterns. The common assumption that cells instantaneously realign themselves

to a ‘resistant’ phenotype also appears to presuppose the eventual survival of

such cells. Moreover, gene expression levels of a given cell population submitted

to treatment do not appear to exhibit strong qualitative differentiation and are

more accurately described as a continuum.

Therefore, we take an alternative approach to modelling wherein we consider

the cellular population as a single population which is continuously variable

through some structural dimension (Fig. 3.1b). The structural dimension can

be understood as a set of variables characterising the cell state at a molecular

and/or phenotypic level. Within the cell population, subgroups are differen-

tially sensitive to drugs and may exhibit differing proliferative and migratory

behaviours, more generally. This gives us extended scope to model the more

nuanced aspects of the heterogeneous cellular pathways towards resistance and

invasion of the surrounding tissue in cancer.
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Uniquely, this allows us to deal with the question of resistance to targeted

and general cancer therapies by treating the tumour – and surrounding tissue

– as a single bio-mathematical entity; accounting for resistance phenomena in

terms of the modern notion of spatio-structural heterogeneity [321, 44, 234, 233].

In this view of the tumour, cancer cells evolve, through time and in the context of

their local spatial environment [22], into individuated entities which will exhibit

differential responses to the cancer treatment, on the basis of their phenotype

[321]. Rather, then, of developing drugs to defeat ‘cancer’ it is necessary to think

of the tumour as heterogeneous and treat the qualities of these individuated

subpopulations appropriately for their personal survival stratagem. Moreover,

these subpopulations may interact with one another, as well as the drug, either

cooperatively, competitively, or separately in accordance with their phenotypes

[234]. We attempt to account for each and all of these behaviours through

modelling techniques that allow us to represent and continuously evolving and

related tumour and its altered behaviours when faced with a drug challenge.

In the proceeding sections, we will explore both a theoretical and a data-

driven approach to the modelling of drug resistance; each with its own ad-

vantages and disadvantages. The theoretical approach, utilised in Section 3.2,

allows for a simple and elegant demonstration of the problem and the under-

lying mechanics which give rise to resistance but provides only a theoretical,

or hypothetical, solution to the problem. The data-driven approach, employed

in Section 3.3 on the other hand, poses a difficult series of propositions with

which we must mathematically characterise the microscopic problem but allows

us to generate immediately testable hypotheses with instantly recognisable con-

sequences for clinical practice and scientific investigation. The verity of each

of these approaches shall require extensive scrutiny, validation, and comparison

with experimental observation.
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3.2 Spatio-Genetic and Phenotypic Modelling Elu-

cidates Resistance and Re-Sensitisation to

Treatment in Heterogeneous Melanoma

3.2.1 Mathematical Background

The vast majority of existing, quantitative models of drug resistance are based

on discrete stochastic mechanisms of evolution, which fail to take into account

the intermediary stages and continuous nature of phenotypic development [172,

122, 42, 189].

Of the continuous models, several provide insights into the dynamics of evo-

lutionary processes but are often restricted to single cell or non-spatial pop-

ulation models [213, 212], necessarily containing space averaging assumptions

(well-stirred reactor hypothesis). Of these models, few take into account the

prominent theory of PE [103] or have the depth to explain its significance in the

context of drug resistance. Herein, we present a continuous spatio-structuro-

temporal model to describe both the dynamics of the population of evolving

tumour cells as a whole and how targeted therapy can produce resistant strains.

We further use the model to recommend future strategies for prevention of this

process. One recent study has further looked at the effect of diffusion-based

drug gradients on the effective outcome of population diversity and heterogene-

ity [332].

A new addition to the variety of available bio-mathematical modelling frame-

works has been spatio-structuro-temporal modelling, introduced by Domschke

et al. [97] and later subjected to higher-dimensional simulation and numerical

analysis [158]. This allows one to represent not only the spatial aspects of a pop-

ulation but also, simultaneously, some underlying aspect of its structure, giving

one more insight into the co-evolution of these characteristics. This model has

since been extended further [161] but has not yet been used to look at intrinsic

properties of tumours, with respect to their systematic resistance to targeted
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therapies.

In the proceeding section (Section 3.2.2), we present a general mathemat-

ical approach to modelling biological cancer systems whose spatial and struc-

tural dynamics are coupled and introduce the various terms within this system.

Moving forward we provide a possible application for this model in the study

of systems who develop resistance through the sequential mutation of particu-

lar oncogenes and the effects of BRAF inhibitors and immunotherapies on this

development (Section 3.2.3). The results for this mutational model are then

studied in detail, with particular interest given to the effects of the order and

methodology of treatment and heterogeneity in the tumour environment (Sec-

tion 3.2.4). Next, we provide a second possible application for this model in

the study of systems whose metabolism of certain nutrients, particularly the

metabolism of glucose through glycolysis or oxidative phosphorylation, shapes

their response to drugs, resulting in a plastically resistant system (Section 3.2.5).

We then explore results coming from this metabolically plastic system with a

specific view to understanding the effect of treatment of spatial and metabolic

heterogeneity and the resulting responses to treatment (Section 3.2.6). Finally

we discuss the results from both of these systems in the wider context and the

ramifications of this current study (Section 3.2.7).

3.2.2 Presentation of the General Model

Herein, we present a mathematical model that contains

(1) One cell species function, denoted c(t, x, y), depending on time t, space x,

and structure y, representing a continuous distribution of mutational or

metabolic phenotypes of cancerous cells:

(1a) The structure variables y describe either mutational or metabolic

status of the cell. In general, cells will be able to move in either

a positive or negative mutational or metabolic direction, depending

on the paradigm in question and possibly based on environmental
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factors.

(1b) The mutational or metabolic alterations taking place within this cel-

lular species will fundamentally alter its behaviour and the nature of

its interaction with the micro- and macro-environments,

(2) A function representing the extracellular nutritional environment (ECNE),

denoted v(t, x); including the collagen matrix, distributed fibronectin, and

vasculature, assumed to be proportional to one another as explored in the

mathematical model of Gatenby [117],

(3) A vector valued function representing the concentrations of diffusible molec-

ular species, denoted m̄(t, x), including metabolites, metallo-proteases,

chemo-attractants or chemo-repellents, which will have the ability to me-

diate the interactions among the variables c(t, x, y), and ECNE, v(t, x),

(4) A vector valued function representing the concentrations of some medicines,

denoted p̄(t, x), of detriment to the growth of certain of the cancerous

species.

In the following, we describe the main steps for building the model:

Mathematically, we employ a multi-dimensional framework which allows for

the coupling of spatial dynamics, in x, with other biological or biochemical

dynamics in the cells themselves, which we call structural dynamics and denote

by y. Then we can use an existing mathematical framework [97, 161] to deduce

that the change in cell density c(t, x, y) is given by the continuity equation

∂

∂t
c(t, x, y) = ∇x · F (c, v, m̄)︸ ︷︷ ︸

Spatial Flux

+∇y ·G(y, c, v, m̄, p̄)︸ ︷︷ ︸
Structural Flux

+S(y, c, v, m̄, p̄)︸ ︷︷ ︸
Source

, (3.1)

where ā · b̄ stands for the dot product of vectors ā and b̄.

Through this, we recognise that the function F (c, v, m̄) describes the move-

ment of the cellular population in space, whilst G(y, c, v, m̄, p̄) describes the

structural change in the cellular population, and S(y, c, v, m̄, p̄) describes the
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overall change in the population or the number of cells entering or leaving the

system through mitosis or apoptosis/necrosis, respectively.

Spatial flux of the cellular population

Begin by denoting ρ the collective spatial volume of the cellular and ECNE

populations, defined as

ρ(c, v) :=

∫
P

c(t, x, y) dy + v(t, x) . (3.2)

where P is the structural domain. This ρ(c, v) then represents a measure of the

total volume occupied by the cellular and ECNE population, together, and will

allow us to model the unoccupied volume into which the cells and ECNE may

grow. Further, we assume that the cell spatial dynamics are given by diffusion,

chemo- and haptotactic directed transport, as in Chaplain et al. [56]. Diffu-

sive dynamics correspond to autonomous stochastic motility in spatial cellular

dynamics whilst chemo- and haptotaxis correspond to directed motion evoked

through attraction to biochemicals or substrate components, respectively. The

diffusion, chemotactic, and haptotactic rate constants are then given by Dc, χ̄m,

and χv, respectively. This may be mathematically represented as the following

term:

F (c, v, m̄) = Dc∇xc+ c(1− ρ(c, v)) (∇x(χ̄m · m̄) +∇xχvv) . (3.3)

As in [56], the chemo- and haptotactic fluxes are volume constrained and

vanish when the collective spatial volume reaches a maximum capacity that,

without loss of generality, is considered equal to one. A simple way to take this

constraint into account is to consider that these two fluxes are proportional to

1− ρ, where ρ(c, v) is defined as in (3.2).
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Structural flux of the cellular population

The structural flux is the sum of two terms, an advection flux and a structural

diffusion flux, corresponding to biased and unbiased evolution in the structure

space, respectively.

In order to define the advection flux we introduce the function Ψ(y, m̄, p̄),

representing the normalized structural velocity, who is dependent upon the pop-

ulation’s structural distribution, the local nutrient concentration and the local

concentration of drugs. Given some maximal rate for the population’s velocity

through the structural dimension, rµ, the structural velocity shall be given by

rµΨ(y, m̄, p̄), where the normalized structural velocity satisfies |Ψ(y, m̄, p̄)| ≤ 1.

The structural advection flux term is the product of the structural velocity and

the cell distribution density and reads

Ga(y, c, v, m̄, p̄) = rµΨ(y, m̄, p̄)c . (3.4)

In this paper, we shall consider one cellular system in which behaviour is adapted

through the accumulation of consecutive mutation (Section 3.2.3) and one in

which a cell may plastically evolve its behavioural phenotype through metabolic

reprogramming dynamics (Section 3.2.5). For each of these scenarios, it will be

necessary to define a distinct and biologically relevant form for the function

Ψ(y, m̄, p̄).

Diffusion in structural space can occur as the result of a stress, following

a change of environmental conditions. In order to adapt to the environment,

the population tends to diversify its behaviour which leads to an increase in

spread of the y-space cell distribution. This diversification of behaviour can be

phenomenologically described by a structural diffusion matrix Σ(y, m̄, p̄). The

structural diffusion flux is supposed to satisfy Fick’s law and reads

Gd(y, c, v, m̄, p̄) = −Σ(y, m̄, p̄)∇yc . (3.5)

Although structural diffusion is possible both in a mutational and a metabolic
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context, in this paper we will consider it only in relation to metabolic remod-

elling.

The total structural flux is the sum of the structural advection and structural

diffusion terms and reads

G(y, c, v, m̄, p̄) = Ga(y, c, v, m̄, p̄) +Gd(y, c, v, m̄, p̄) . (3.6)

Source/Sink terms for the cellular population

The growth of any given cell will be dependent on an assortment of intracellular

and environmental factors, including its structural state, y; the availability of

nutrients, m̄; and the volume surrounding the cell which has not yet been filled,

ρ(c, v). Therefore, we write the growth rate of the population generically as

Φ(y, m̄, c, v) such that we may define its particular dynamics for the considered

scenario. It is important to remember that this term accounts only for growth

of the cell population and not the negative growth caused by the introduction

of drugs.

It is clear that, since drugs are typically designed to exploit a particular

behaviour or dependence of a given cancerous population, its effectiveness will

be dependent upon the current structural state of the cell, y. We account for

the effect of drugs on the cellular population, then, by taking the product of

the cellular apoptosis rate, the drugs’ effectiveness functions, and the respective

local drug concentrations δcp̄(t, x)f̄(y). Multiplying this by the cellular concen-

tration, itself, will yield the degradative sink. As such, the entire source/sink

term may be written mathematically as

S(y, c, v, m̄, p̄) = Φc(y, m̄, c, v)c− δcf̄(y) · p̄c . (3.7)

Since, in this particular study, we are interested in the effects of structural

heterogeneity on the success of a given cancer population the normalized struc-

tural velocity, Ψ(y, m̄, p̄); structurally-dependent growth function, Φc(y, m̄, c, v);

and the structurally-dependent drug effectiveness function, f̄(y), are of most in-
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terest. Their dependence on structural considerations makes them of particular

relevance to the particular situation in which they are applied and so all 3 terms

will be specifically defined for the mutational (Section 3.2.3) or phenotypic (Sec-

tion 3.2.5) considerations, respectively.

Dynamics in the ECNE, molecular, and drug species

The dynamics of the ECNE, v(t, x), will be described simply, without spatial

dynamics, as growth given by the ECNE remodelling function Φv(c, v) and the

degradation of the ECNE by chemical species. The degradation constant vector

will then be given by δ̄v = [δv,m1
, δv,m2

, . . . ]T and will have the same number

of components as there are chemical species. For any ith chemical species that

does not degrade the ECNE, the degradation constant δv,mi = 0. Our PDE for

the ECNE dynamics is then given by

∂v

∂t
= Φv(c, v)v − δ̄v · m̄v . (3.8)

Spatial dynamics of the molecular species vector, m̄(t, x), are given simply by

diffusion with its rate vector D̄m. Chemical species are then produced either by

the ECNE, and connected network of capillaries, v(t, x), or the cellular species,

c(t, x, y), with rates dependent on y such that its general expression may be given

by the function Φ̄m(y, m̄, c, v). We then assume that environmental factors,

which are not directly accounted for, shall contribute to the degradation of

molecular species with respective degradation rates of δ̄m. Dynamics for the

molecular species are then collectively written as

∂m̄

∂t
= ∇x · diag(D̄m)∇xm̄+

∫
P

Φ̄m(y, m̄, c, v) dy − diag(δ̄m)m̄ . (3.9)

Finally, spatial dynamics for the drug species vector, p̄(t, x), are also given

by diffusive dynamics, with a rate vector D̄p. We then represent the input

of drug species to the population as a vectorial function, θ̄(t, x), which is to

define the drug regimen used by the clinician/scientist in treating the tumour.
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This will normally be given by a sum of Dirac delta functions centred at the

time of injection of the drug but may be given by other forms and will be

particular to the experiment that the model attempts to replicate. Finally,

we assume that the drug’s effect on the cellular system requires the drug to be

taken in by cells and systematically degraded during apoptosis. Therefore, given

a drug degradation vector, δ̄p, this degradation shall be committed by the non-

structured cellular population, written as the integral
∫
P c dy. The complete

equation for drug dynamics is then given by

∂p̄

∂t
= ∇x · diag(D̄p)∇xp̄+ θ̄(t, x)− diag(δ̄p)p̄

∫
P

c dy . (3.10)

Summary of the General Mathematical Model

We then write the system of PDEs as

∂c

∂t
= ∇x · [Dc∇xc+ c(1− ρ(c, v)) (∇x(χ̄m · m̄) +∇xχvv)]︸ ︷︷ ︸

Spatial Flux

+∇y · Σ(y, m̄, p̄)∇yc− rµ∇y ·Ψ(y, m̄, p̄)c︸ ︷︷ ︸
Structural Flux

+ Φc(y, m̄, c, v)c︸ ︷︷ ︸
Growth

− δc f̄(y) · p̄c︸ ︷︷ ︸
Drug Influence

∂v

∂t
= Φv(c, v)v︸ ︷︷ ︸

ECNE Remodelling

− δ̄v · m̄v︸ ︷︷ ︸
MMP Degradation

∂m̄

∂t
= ∇x · diag(D̄m)∇xm̄︸ ︷︷ ︸

Spatial Diffusion

+

∫
P

Φ̄m(y, m̄, c, v) dy

︸ ︷︷ ︸
Chemical Synthesis

− diag(δ̄m)m̄︸ ︷︷ ︸
Natural Degradation

∂p̄

∂t
= ∇x · diag(D̄p)∇xp̄︸ ︷︷ ︸

Spatial Diffusion

+ θ̄(t, x)︸ ︷︷ ︸
Drug Input

−diag(δ̄p)p̄

∫
P
c dy︸ ︷︷ ︸

Drug Degradation

.

(3.11)

This system of equations (3.11) is considered together with no-flux boundary

conditions in c, m, and p̄. In the case of c we consider zero spatial fluxes, and

zero structural fluxes on the boundaries of the spatial and structural domains,

respectively.
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In the following sections, we present an intuitive explanation for the origin of

the equations and relations used for two particularisations of this general math-

ematical system, along with a thorough description of the biological evidence

for such phenomena.

Discussion and justification of the mathematical model

Current modelling approaches consider the cell as a discretely changing variable

who exists in an explicitly sensitive or resistant state. We wish, here, to conceive

of the cell as a continuously changing and finely tunable evolutionary population.

Different cancer cells have similar, if not identical, origins and are not innately

differentiable but have rather gained different characteristics. Therefore, we

introduce a novel modelling framework in order to reconceive the mathematical

representation of the cell, from this more nuanced perspective.

Cells do, however, function differently. Within these categories, then, there

must be a wealth of diversity to reflect the reality of the structural differences be-

tween cells. In order to reflect this, we incorporate a term that operates similarly

to those structural models previously employed [213, 212], whilst building on

the solid mathematical derivation given by existing spatio-structuro-temporal

models [97, 161]. Letting I := [0, T ] ⊂ R+ be the time interval over which

the experiment is conducted; D := [0, 1]2 ⊂ R2
+ be the spatial domain; and

P := [0, 1] ⊂ R+ define the continuous domain over which the mutational or

metabolic changes may occur, we couple these dynamics using a simple con-

servation of mass assumption. If V ×W ⊆ D × P is an arbitrary volume of

the spatio-structural domain with piecewise smooth boundaries ∂V and ∂W

respectively, then we can write that the total population of cells in this volume

is given by

c(t)V×W =

∫
W

∫
V

c(t, x, y) dx dy . (3.12)

Then we can use an existing mathematical framework [97, 161] to deduce that
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the change in cell density c(t, x, y) is given by the partial differential equation

∂

∂t
c(t, x, y) = ∇x ·F (c, v, m̄)︸ ︷︷ ︸

Spatial Flux

+∇y ·G(y, c, v, m̄, p̄)︸ ︷︷ ︸
Structural Flux

+S(y, c, v, m̄, p̄)︸ ︷︷ ︸
Source

. (3.13)

Let Ψ(y, m̄, p̄) : I ×D×P → R be the normalized structural velocity for

the cellular population. During a time interval of small length ∆t, those cells

having the mutational or metabolic state y initially at t, will evolve to a state

y+rµΨ(y, m̄, p̄)∆t at t+∆t, where rµ is the mean mutation rate. Moreover, let

Σ(y, m̄, p̄) : I×D×P be the structural diffusion matrix for the cellular population.

Hence, the structural flux reads

G(y, c, v, m̄, p̄) =Ga(y, c, v, m̄, p̄) +Gd(y, c, v, m̄, p̄) ,

Ga(y, c, v, m̄, p̄) =rµΨ(y, m̄, p̄)c(t, x, y) ,

Gd(y, c, v, m̄, p̄) =− Σ(y, m̄, p̄)∇yc(t, x, y) .

(3.14)

With this concept of a continuum of phenotypic progression, we then recog-

nise that pharmaceuticals are generally targeted at specific metabolic pathways

(related to selected cancer-related phenotypes and their respectively triggered

mechanisms). Therefore, we employ a description of a phenotypic ’spectrum’

wherein cells may inhabit any point on that available spectrum in y. These drugs

may then target specific regions on this spectrum which employ the molecular

pathways inhibited by these drugs. For this we form an effectiveness vector

f̄(y) ∈ YP which describes the bandwidth in the mutational dimension P on

which the drug is effective at diminishing the population of cells, for each given

drug, pj , j ∈ {0, ..., P}.
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3.2.3 Mutational Evolution and the Establishment of Drug

Resistance

Resistance to BRAF inhibitors (BRAFi) and antibody therapies in

melanoma

Melanoma is one of the most common cancers of the skin and approximately

50% of melanomas contain a mutation in an oncogene known as BRAF, often

appearing at codon 600 [178]. Therefore, BRAF inhibitors (BRAFi) have been

the major drug of choice in treating advanced melanoma tumours and their vari-

ous subtypes. The application of BRAFi as an anti-oncogenic, however, has had

mixed results due to the frequent presence of BRAFi resistant phenotypes ex-

isting as subspecies within the overall melanoma species [37, 257, 256, 286, 300].

The resistance mechanism could involve activation of collateral signalling path-

ways when the main signaling is inhibited [231]. For this reason, simultaneous

inhibition of several pathways is often proposed as a possible strategy against

resistance [231].

Moreover, recent studies suggest that intravenously injected, water-soluble

MAPK activator can overcome, to some extent, the resistance to BRAFi [134].

This, in turn, suggests that the penetration to the inner domain of the tumour

is a critical component of the destruction of the resistant cancer cells. More-

over, BRAFi is often used in combination with MEKi in order to target several

mechanisms of activation within the MAPK pathway.

In animal models, as well as in patients, relapse occurs systematically sev-

eral months after treatment with BRAFi [267]. Studies have shown that the

adaptations and resistance to BRAFi happen early in the treatment process

[328, 296], which may suggest that cancer cells have acquired a resistant state

before application of BRAFi.

The order in which drugs are supplied to the tumour may also have a sig-

nificant effect on the clinical outcome. Progression-free survival rates were

higher among those receiving immunotherapy prior to BRAFi than vice versa

[2] whereas one particular study looking at treatment with immunotherapy and
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BRAFi found that preceding BRAFi with immunotherapy does not alter the ef-

fectiveness of the drug. Treatment with immunotherapy post-BRAFi, however,

gives the patient a particularly poor clinical outcome [3].

One strategy for drug application on the premature tumour has been shown

to apparently forestall the resistance to BRAFi. This methodology involved

applying the drug to the tumour, for a period of time appearing to demonstrate

a reduction in the tumour volume, before removing the drug and repeating

the process, again. This method showed mixed results although a significant

number of the resistant tumours did not survive the treatment [77].

Tumours that have been shown to have innate BRAFi resistance have further

been shown to have increased incidence of mutations in genes known as NRAS

[244, 10] and PTEN [299], respectively.

In human liver cells, those cells with an induced PTEN knockdown have been

shown to increase the rates of Akt phosphorylation and, importantly, to inhibit

Foxo1 signalling [182]. Foxo1, in return, is a transcription factor responsible for

mediating the T-cell response to healthy cells [254]. In CD8+ T-cells, Foxo1 has

been shown to have an intrinsic role in establishing long-lived memory programs

that are essential for developing cells capable of immune reactivation during

secondary responses to infection [186, 154].

On the other hand, the gene encoding for phosphatidylinositol 3-kinase

(PI3K), whose oncogenic pathway is inhibited by PTEN expression, has been

shown to reduce the cytokine expression in cells [135], thereby reducing the in-

flammatory response of the surrounding tissue and limiting T-cell recruitment to

the site. Cells with a PTEN deletion might then be protected from immune re-

sponse through mediation of cytokines and the local apoptosis induced through

PI3K/Akt signalling, which may subsequently be overcome by the induction

of T-cell hyperactivity induced by ipilimumab – a melanoma-specific immune

enhancer therapy.

Therefore, it is possible that melanoma cells undergo sequential genetic al-

terations in BRAF and PTEN, respectively, and that the pattern in which these

mutations occur, along with considerations with respect to competition for nu-
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trients, could explain the build up of resistance to the combined effects of BRAFi

and ipilimumab anti-oncogenic treatments.

It may also be that BRAF mutated cells, as a result of causal genomic insta-

bility, acquire NRAS mutations which confer resistance. This change, for exam-

ple, was observed within ovarian cell lines and was predicted to have formed as

a result of exon 11 BRAF mutations being insufficient to satisfactorily activate

the MAPK pathway, requiring additional NRAS activity [79]. Furthermore,

BRAF V600E cells have sufficient MAPK activity such that they do not neces-

sitate supplementary mutation and, as such, display a more positive response

to therapy [59], which is supported in the majority of cases of melanoma with

a native BRAF mutation [126]. Yet, despite the fact that BRAF and NRAS

mutations are described commonly as “mutually exclusive”, NRAS mutations

appear in increased numbers of BRAFi resistant tumours [10].

In our model, we interpret the primary and consequent mutation to be that

in BRAF and assume, further, that the cell will acquire some further mutation

capable of conferring resistance to BRAF inhibitors.

Interpreting the structural dimension for a mutational system

In order to understand how this system of sequential mutations contributes to

the cancer cell population’s success at avoiding targeted and immune-enhancement

therapies, we must first interpret the structural-, y-, dimension. So, letting the

cellular population be given by a function c(t, x, y) and the ECNE concentrations

be given by the function v(t, x), with m̄(t, x) and p̄(t, x) giving the molecular

and drug species, respectively, we observe the bio-mathematical dynamics of

such a system in the structure space, P.

We also assume, that the cellular species will migrate unidirectionally through

the structure space, which is to say that mutations are irreversible. Let the

structural mutation variable and space, then, be given by the interval y ∈ P =

[0, 1], such that y = 0 and y = 1 give the extreme states of primary tumour

(or as yet without a mutation) and resistant, respectively. For ease, let us
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also define that y = 1/2 defines a BRAF mutation and the state at which

the cellular species is most sensitive to BRAFi. Realistically, the ipilimumab

immune-enhancer drug will be effective across the entire spectrum of mutations

but we assume it to be most effective posterior to BRAF mutation and prior to

complete consolidation of resistant features at y = 1.

Growth, ECNE remodeling and drug dosing in a mutational system

Let ρ(t, x) be defined as in 3.2 such that the growth of the cellular species,

c(t, x, y), shall be dependent upon the unoccupied local volume, 1− ρ(t, x) and

is also dependent upon the nutritional species, m2(t, x), being above a given

threshold, θm2 . The cellular growth rate, with an overall rate parameter φc, is

then written as

Φc(y, m̄, c, v) = φc(m2 − θm2
)(1− ρ(c, v)) , (3.15)

where we consider that growth, in this case, is not dependent upon the muta-

tional status of the cells y.

Again, the ECNE remodelling takes place within the unoccupied portion of

the local available volume, 1− ρ(t, x), and with a rate constant φv, such that

Φv(c, v) = φv(1− ρ(c, v)) . (3.16)

Although we assume here that ECNE remodelling is only dependent on the

unoccupied volume, we recognise that more realistically this could depend on

fibroblast cells and ultimately on the cell phenotype represented by y.Therefore,

future iterations of this modelling approach could incorporate more complex

remodelling through a redefinition of the Φv term.

We then endow the system with two molecular species. m1 is a species that

is secreted by the cell species and will act to degrade the ECNE. This can be

thought of as a matrix metalloproteinase (MMP) which acts to break-down the

ECNE. m2 is a species which is secreted by the ECNE and acts to the benefit
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of the cellular species. This chemical species can be thought of as a nutrient or

growth factor, the presence of which aids the growth of cellular species.

We further assume that more mutated and aggressive cellular populations

will produce MMP molecules at a greater rate, such that their production is

proportional to y, and that the overall rate constant is given by φm1
. We write

this as

Φm1(y, m̄, c, v) = φm1(1−m1)yc . (3.17)

Nutrient, or nutritional species, are produced by the ECNE and with a rate of

φm2 , such that

Φm2
(y, m̄, c, v) = φm2

(1−m2)v . (3.18)

We assume an instantaneous introduction of drug species through the vascula-

ture, which we assume to be proportional to ECNE concentration. The instan-

taneous nature of this drug introduction mean that we may write this as a Dirac

delta function δ̆(t− τ) centered at some time τ , whilst its introduction through

the vasculature of the ECNE is represented by proportionality to v(t, x). Then,

given that the number of doses of some jth drug species, pj(t, x), is a natural

number, Npj ∈ N, we write that the doses are given at the ordered set of time

points {τj,1, τj,2, . . . , τj,Npj }, τj,1 < τj,2 < · · · < τj,Npj . Then the mathematical

expression for drug dosing is given by

θj(t) = v(t, x)
Npj∑
k=1

δ̆(t− τj,k) . (3.19)

Mutational dynamics in melanoma: Phyletic gradualism or punctu-

ated equilibria?

Patterns in genetic evolution can generally be categorised by the theory of punc-

tuated equilibrium (PE) or phyletic gradualism (PG). PG originates in the the-

ory of Darwinian evolution by natural selection and seeks to explain the variety

of species by continuous gradual change [75, 81]. PE, on the other hand, is a

currently prominent theory in evolutionary biology that seeks to explain the
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nature of evolution by natural selection through the prism of large scale genetic

and environmental changes, rather than a gradual process [232, 103]. Recent

papers in the field of evolutionary biology advance the PE framework as a supe-

rior explanation of microbiological, paleontological, and phylogenetic evidence

available today [208].

Starting with pioneering contributions of Knudson [191], Cairns [48] and

Nowell [250], theory of evolution and population genetics ideas were applied to

explain cancer progression. These theories added chromosome instabilities and

selection processes to the older idea that cancer results from an accumulation

of somatic mutations [19]. Furthermore, the gradual accumulation of mutations

over time has been challenged by recent evidence that tumours evolve by a

few catastrophic events that generate large scale genome[305] or chromosome

lesions[240, 295]. These findings suggest that cancer genomes evolve by PE,

being thus able to acquire quickly new capacities such as invasiveness and drug

resistance [68, 290, 249]. This PE can be explained on a more microscopic level

by assuming that the intermediary stages of mutation, although significant,

happen more quickly and to greater effect under certain optimal conditions.

Conflictingly, gradualism would convey a sense of regular and linear progression

within the phyletic tree of the cancer species with little or no change in the rate

of mutation.

Single-cell genetic analysis reveals clonal frequencies and phylogeny patterns

of evolving tumours [28, 236, 234, 80]. Various clones have heterogeneous sur-

vival properties in the presence of drugs; as a result of this selection pressure,

drug resistant clones can become predominant. For instance, mutations of the

genes BRAF and NRAS are well known to be driver mutations for melanoma

[162, 44, 78, 294]. The wealth of literature on melanomal branching evolution

has identified BRAF as the major trunk driver mutation and NRAS or MEK1 as

the major branch driver mutations [325, 334]. It has also been recognised that

the targeted treatment of genetically evolved melanoma results in a reduction

of their heterogeneity [78], as only drug resistant genetic variants survive, but

not in their eradication.
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For the sake of simplicity, in our model we consider that only two mutations

can occur, and that their occurrence is sequential.

A structural flux function in a mutational system

To clarify the mathematical evolution of our cancer cell population, we must

more clearly define how the population changes in structure, through the nor-

malized structural velocity Ψ(y, m̄, p̄) (further discussion in 3.2.3). This function

is intended to represent the velocity of any given cell in the y-direction (in other

words, the mutation rate), for given current structural state (y-coordinate) and

local nutritional condition, m2(t, x). We shall define a separate normalized

structural velocity for both a PG and a PE assumption.

In the case of PG, we wish for the evolution of this population to be steady

and regular throughout the domain, such that the mutation rate must funda-

mentally be constant throughout the domain. Then, in order to ensure that

our population does not migrate beyond the boundaries of the domain, y = 0

or y = 1, we set the values of the normalized structural velocity to 0 at these

locations, yielding no mutation at these biological positions (Fig. 3.2a).

In the PE case, we require for the mutation rate to be significantly greater

in periods between mutational realisation that at those positions themselves.

Therefore, we represent the normalized structural velocity as a bimodal func-

tion with velocity maxima positioned between the mutational states. Likewise

with the PG function, however, we require for the PE paradigm to yield a 0,

non-mutational behaviour at the boundaries of the domain (Fig. 3.2b). Remem-

ber, given that these function represent the rate of mutation, a higher value of

Ψ(y, m̄, p̄) will convey a faster rate of mutation whilst a lower value will convey

a more quiescent state, where change is somewhat slower.

For the sake of simplicity, we do not consider genetic diversification and

structural diffusion in this context.
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(a) (b)

Figure 3.2: Normalized structural velocity, Ψ(y, m̄, p̄) for the (a) phyletic gradualism (PG) and (b)
punctuated equilibrium (PE) assumptions.

On mutationally evolving systems

The choice of mutational rate of change function would have to accurately rep-

resent the most sensible possible case for PG and PE, respectively. From (3.14)

it is clear that the no-flux boundary condition is fulfilled automatically if the

structural veolocity satisfies

Ψ(ỹ, m̄, p̄) = 0, ∀ỹ ∈ ∂P,

where ∂P is the boundary of the structural domain P.

The structural velocity for PG is considered to be constant, except for a

small region at the boundary. In order to construct such a function, we start

with

Ψ̂g(y, m̄, p̄) := 1−
1∑
i=0

(
1 + exp

[
−βg

(
(2y − 1)i− y +

5

βg

)])−1

, (3.20)

where βg is chosen sufficiently large such that the function Ψ̂g(y, m̄, p̄) is close

to one everywhere except at narrow neighborhoods of y = 0 and of y = 1. The

symmetry of the function Ψ̂g implies that no-flux boundary conditions can be

achieved by the imposition of

Ψg(y, m̄, p̄) := ψg

(
Ψ̂g(y, m̄, p̄)− cg

)
,
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where the lower case ψg gives the mutation rate parameter and cg := Ψ̂g(0, m̄, p̄) =

Ψ̂g(1, m̄, p̄) (Fig. 3.2a).

For the PE function, one must consider several features. Beyond smoothness,

that is needed for both technical and biological reasons, one must again satisfy

the no-flux conditions and impose the further conditions

∂2

∂y2
Ψe(y, m̄, p̄)

∣∣∣∣
y= 1

2

> 0 ,
∂2

∂y2
Ψe(y, m̄, p̄)

∣∣∣∣
y={ 1

4 ,
3
4}
< 0 ,

∂

∂y
Ψe(y, m̄, p̄)

∣∣∣∣
y={ 1

4 ,
1
2 ,

3
4}

= 0

(3.21)

which is to say that maximal mutational velocity should occur between points

of phyletic stability, ”equilibria”, and minimal velocity should occur at interme-

diate points of phyletic stability (where boundary conditions cover the cases of

minimal and maximal phyletic deviance). Thus, one can choose a function of

the form

Ψ̂e(y, m̄, p̄) :=
1

2

(
1− cos

(
2πN̂ψy

))
+ αg

Nψ−1∑
i=1

exp

[
−βe

(
y − i

Nψ

)]
,

(3.22)

where Nψ = 3 is the number of absolute mutational states in the considered

paradigm (pre-mutated, BRAF mutated, & resistantly mutated); βe is chosen

such that distribution is increased smoothly; and the symmetry of this function

in the domain implies that the no-flux boundary conditions can be satisfied by

imposing

Ψe(y, m̄, p̄) := ψe

(
Ψ̂e(y, m̄, p̄)− ce

)
, (3.23)

where ψe again gives the mutational rate and ce := Ψ̂e(0, m̄, p̄) = Ψ̂e(1, m̄, p̄)

(Fig. 3.2b).

Drug effectiveness functions in a mutational system

The drug effectiveness is given by a vector valued function f̄(y) := [f1(y), f2(y)]T ,

where fi(y) gives the effectiveness of its corresponding ith drug, pi(t, x). For
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Figure 3.3: Distribution for the drug effectiveness functions f1(y) (green) and f2(y) (red).

simplicity, we assume that each of these functions is given by a Gaussian function

centred at its point of greatest structural significance, or the structural location

in y at which it is most effective against cancer cells.

Now, since p1(t, x) is define to be a BRAFi therapy and we have defined

that the BRAF mutation is fully realised at the structural location y = 1/2,

we assume that f1(y) attains its maximal value at y = 1/2 (Fig. 3.3 green).

The considerations for ipilimumab are somewhat more numerous and difficult

to entirely confirm but are, for our purposes, limited to the following. Firstly, we

assume that immune cells should largely ignore healthy cells without a mutation

such that there effectiveness at y = 0 should be negligible. Moreover, we know

that cancer cells will eventually become resistant even to this immune-enhancer

therapy and, as such, the value of effectiveness function must be sufficiently

low in the neighbourhood of y = 1, so as to allow this resistance phenomenon

to manifest. Likewise, immune cells require the expression of some protein on

the surface of any given cell in order to identify its genetic properties; as such,

we assume that only as the BRAF mutation becomes realised, near y = 1/2,

shall the ipilimumab therapy begin to have a significant effect. Given these

considerations, we place the maximum of f2 at y = 3/4 (Fig. 3.3 red).

3.2.4 Results for the Mutational System

Primarily, in the application of this system to studying the death and regrowth

models of tumour resistance in mice, we wished to know whether or not our in
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silico model was able to recapitulate in vivo results. In the process of exploring

this potential in the model, we attempt to asses the ability of either phyletic

gradualistic or punctuated equilibrium assumptions, on the tumour’s evolution,

were more able to consistently capture this phenomenon (Section 3.2.4). Sec-

ondly, we wished to test whether, given knowledge of sequenced treatments’

ability to succeed in the ablation of the tumour, we could draw conclusions

about the sequencing of treatments and their relative success (Section 3.2.4).

In line with this, we tested periodic treatments to understand what the hetero-

geneity in initial conditions of the tumour could teach us about the outcomes for

treatments (Section 3.2.4) and, finally, what effect a heterogeneous environment

would have on these above conclusions (Section 3.2.4); whether results would

be conserved or altered in the presence of a heterogeneous spatial conditions.

In order to test these scenarios, the in silico experimental approach was

primarily as so: We began by choosing a melanoma mouse model for which

one could attempt to tune our parameters and, effectively, challenge the model.

The model that we chose for this task was that of Perna et al. who explored

the explosive regrowth of tumours after some post-treatment dormancy period

[267], amongst other things. Once we had used this in vivo model to tune and

test our mathematical in silico model, we would use other biological models

in order to challenge the mathematical model with no further doctoring of the

mathematical model or its parameters. For this challenge we chose, initially,

that of Thakur et al. [77].

Thus, we obtain that these mutations occur at maximal probabilistic rates of

approximately 1.9× 10−2 genetic events per day. This corresponds to acquiring

a genetic mutation every 40-50 days posterior to some precursor event, where we

consider only 2 such events. This is supported by the fact that tumours planted

in the mouse species show significant change in expression pattern after 25-45

days [88, 183], where below 40 days BRAFi was a largely successful treatment

[38], and mouse models show significant behavioural change in the cancer cell

dynamics after 100 days since inocculation [267].

Proliferative and degradative parameters were chosen to be in line with pre-
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c v m1 m2 p
D 1× 10−5 1× 10−4 1× 10−4 5× 10−4

φ 0.4 5× 10−2 0.1 0.1
δ 2 10 0.1 5× 10−2 5× 10−2

χ 5× 10−5 1× 10−3 0 0

Table 3.1: List of parameters used for numerical simulations of the model. Parameters are defined
within a non-dimensionalised system (excepting for time measured in days) and, as such, are defined

in terms of units days−1.

vious models and were fine-tuned for the mouse model considered, based on

tumour growth rates observed in tuning experiments [267]. All of these values

are summarised in Table 3.1.

Initial conditions were chosen to be consistent with previous models [28] and

for consistency with the biological methodology, as regards the impregnation

of mice with cancerous cells. The particular study, using animal models, with

which we compare our results injected mice with approximately 5×103−2×105

cells [150]. Therefore, our initial conditions reflect this with

c0 = exp
[
−50(x2 + 8 · (y − η)2)

]
such that

x

D

∫
P

c0(t, x, y) dx dy ≈ 1× 108 ,

(3.24)

where, since we know that the biological experiments were initiated with an

approximate cell count of 2.5 × 104 cells, we assume that the cellular distribu-

tion is measured approximately in 103 cells unit−2
x . Further, the default initial

location in the phenotypic dimension is given by η = 1
50 . One should also clarify

that this constitutes not an entirely pre-mutated cell population but an already

heterogeneous mixture of cells with at least one precursor event that induces

the early stages of the BRAF mutation process.

Other quantities for which it is imperative that one have measures include

the gross spatial population, which is given by the cellular population taken

over the entirety of the structure domain, P, and is given by

C(t, x) :=

∫
P

c(t, x, y) dy . (3.25)
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To calculate the volume of their tumour from its 2-dimensional section, Perna

et al. [267] measure the lengths of the major and minor axes of the visible

tumour, given by a and b respectively, and use the formula of an ellipsoid to

write

V =
4π

3

a

2

b

2

b

2
=
π

6
abb (3.26)

In order to avoid having to define the value of our function, c(t, x, y), above

which the tumour would constitute a visible tumour, which would otherwise be

given by a threshold of visibility θv, we assume the proportionality of the tumour

mass and the area of the section over which the tumour is visible, written as

x

D

1∫
θy

c(t, x, y) dy dx ≈ k(θv)
x

D

1{ 1∫
θy

c(t,x,y) dy≥θv

} dx , (3.27)

where the proportionality constant is dependent on the visibility threshold and

is given by k : R→ R. To calculate the model’s tumour volume, i.e. the volume

of cells which have developed into cancerous subtypes, we then take the mass

of the tumour at y ≥ θy and invoke the calculation from the tuning model [267]

such that

Vc := K

√√√√√√
x

D

1∫
θy

c(t, x, y) dx dy


3

, (3.28)

with the adaptation of the ellipsoidal volume equation to V = π
6 ab
√
ab and

where we take that θy = 0.2 and K is an arbitrary constant.

Then, in order to carry out our test experiment, we control the heterogeneity

using the following formula for the initial condition

c0 :=

J∑
j=1

exp
[
−
(
x2 + (y − ηj)2

)]
, ηj ∈ (0, 0.5], ∀j ∈ {1, ..., J}

and also in line with the initial volume condition (3.24), and where J is in some

sense a measure of the initial heterogeneity. We then apply the drug dosage

periodically in time intervals given by [0, 20]∪ [40, 60]∪ [80, 100]∪ [120, 140]. For
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η = 0.05

η = 0.05 + r
(a) Punctuated Equilibrium (PE)

η = 0.05

η = 0.05 + r
(b) Phyletic Gradualism (PG)

Figure 3.4: Punctuated evolution is more consistent with biological results than gradual
evolution. Tumour volume graphs for (a) punctuated equilibrium (PE) and (b) phyletic gradualism
(PG) assumptions under a simply BRAFi therapy option applied at t = 40 for initial conditions of
η = 0.05 or η = 0.05 + r, where η represents the initial mean location of the tumour cells along the
phenotypic dimension, and r = 0.1 represents a perturbation.

the simulations given in this current study, we use the range J ∈ {1, . . . , 5} to

establish example data.

Punctuated equilibrium (PE) assumptions are more consistent with

in vivo experimental results than phyletic gradualism (PG) assump-

tions

Given certain initial conditions for the cellular population, namely an initial

structural distribution centred at η = 1/20, both PE and PG assumptions can

give rise to the characteristic death and regrowth curves, albeit with differing

characteristics (Fig. 3.4). In both cases, one observes an initial growth phase

which is quickly stunted and violently reversed by the introduction of the drug

species at t = 45. This is followed by a period of dormancy or ‘tolerance’ before

the characteristic resistant growth (or regrowth) phase, which is of particular
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interest to our current study. Observe, initially that the regrowth phase mani-

fests a an earlier time point and with a faster growth rate under PE assumptions

than with PG assumptions.

Now, observe that inducing a significant (200%) perturbation in only the

position of the initial conditions, we evoke dramatically differing behaviours

from our two in silico tumours (Fig. 3.4). For the case of PE, the rate at which

our tumour regrows to its pre-treatment volume is much slower but the death

and prolonged dormancy phases are conserved between these two experiments

(Fig. 3.4a). Under the assumptions of PG, however, one observes at all time

points a tumour volume with a significant positive minimum value (Fig. 3.4b).

This shift in the volumes of tolerant tumours to be visible for all time points

is not consistent with the results of comparative in vivo experiments [267] and,

thusly, the initial conditions of a PG model would have to be strictly constrained

to some smaller subset of possible conditions in order to maintain its relevance.

In biological, and especially in the case of in vivo, experimentation, however,

the initial conditions of a given tumour or its new environment may never be

strictly limited. This would suggest, due to its robustness to fluctuations in

initial conditions, that the PE modelling assumption is most consistent with the

results of murine experimentation, since the characteristic death and regrowth

curve is conserved.

Sequencing and order of treatments are vital to their success

In order to test the importance of the order of drug treatments on the resistance

phenomenon we have first used homogeneous initial conditions for the ECNE.

These conditions also preserves the spherical symmetry of the tumour when

drugs are applied uniformly on the periphery. Heterogeneous initial conditions

leading to non-spherically symmetric tumours will be tested in Section 3.2.4.

With that understood, in all cases and treatment scenarios the tumours ini-

tially respond to treatment, exhibiting a significant period of apoptotic degrada-

tion (Fig. 3.5). Experiments wherein only one treatment was used (Fig. 3.5a &
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(a) (b)

(c) (d)

Figure 3.5: The sequencing of treatments is crucial to success. Overall tumour volume over
time, calculated using (3.28), with the drug strategies (a) BRAFi, (b) ipilimumab, (c) BRAFi fol-
lowed by ipilimumab, and (d) ipilimumab followed by BRAFi; where the drugs are applied constantly

after some t = 45 (1st green arrow) and then t = 100 (2nd green arrow) when applicable

3.5b) show dramatically differing clinical treatment profiles. BRAFi treatment

shows an extremely promising tumour response with almost complete erradica-

tion occuring within days of treatment but followed by an exaggerated regrowth

(Fig. 3.5a), as seen in murine experiments. Ipilimumab therapy does not show

as successful an eradication pattern at earlier time points but is more consistent

in quelling its resistance and resulting regrowth (Fig. 3.5b), although ultimately

unsuccessful in eradicating the tumour.

Observing the therapeutic strategy of utilising a BRAFi treatment followed

by an ipilimumab post-treatment is ineffective at destroying the tumour (Fig.

3.5d). Although the ipilimumab post-treatment is slowing the growth of the

now aggressive tumour, it may already be resistant to immunological therapies.

The ipilimumab treatment followed by BRAFi post-treatment, however, ap-

pears to be extremely effective (Fig. 3.5d), with a negative growth rate for the

tumour volume maintained as of t = 1000 (Results not shown). This counter-
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intuitive result may be explained as follows: Firstly, BRAFi appears extremely

effective at depleting the tumour volume but is incapable of preventing the re-

sistant escape of subpopulations to higher values of y (Fig. 3.5a). On the other

hand, ipilimumab’s effectiveness function is centred at a greater value of y than

BRAFi’s, making ipilumumab appear less effective but allowing ipilimumab to

effectively confine surviving tumour cells at lower values of y, where BRAFi

remains effective. Therefore, these results would suggest that BRAFi should

be used to destroy the tumour once its tendency towards resistance has been

stemmed through ipilimumab’s immunological mechanisms.

Oscillatory tumour volumes as a result of periodic treatments do not

necessarily imply re-sensitisation

Our second experimental approach was to attempt the experiment of Thakur

et al. [77] who implemented a periodic treatment regimen for their in vivo

tumours. This periodic treatments managed to eradicate the death and rapid

regrowth phases of those previous experiments and instead resulted in oscillatory

dynamics in the tumour volume. Across several cycles of these treatments, some

tumours managed to outgrow the drugs and became resistant, although more

slowly, whilst others appeared to reduce their volume even over far longer time-

periods. The research team explained this by suggesting that the application

of less severe treatment regimes may delay the resistance to treatment in solid

tumours by failing to encourage the development of such resistance.

Likewise, in our experiments we observed an oscillatory dynamics resulting

from the periodic application of smaller dosages to the tumour and subsequent

removal of the dose. We found that as we increased the number of independent

starting y positions in the initial conditions for our cancer cell population, our

results gave a greater qualitative agreement with those of Thakur et al. [77].

Moreover, we found that there was a strong correlation between the average

y-position of the initial condition and the final tumour volume at t = 160.

These results allowed us to reinterpret this oscillatory behaviour. In our in
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Figure 3.6: Oscillatory tumour volumes can emerge in the absence of re-sensitisation.
The top and middle panels are figures from Das Thakur et al. [77] for in vivo melanoma tumours
under an intermittent dosing strategy and the bottom panel gives the in silico results of the same
experiments run using the mutational mathematical model. (Licenses applied for from Nature
Publishing Ltd.)

silico model, the acquisition of resistance is certainly not delayed because cells

are progressing irreversibly in the y direction. In fact, what may be occurring

is that in a situation where some number of cells are resistant whilst other are

not, these two heterogeneous subpopulations will have to compete for available

nutrients in the environment. Not only this but, together, they will consume

more nutrients, leaving fewer such nutrients for the resistant subpopulation

and leaving a greater subpopulation sensitive to existing treatment options. A

dynamical state will be reached where the two sub-populations are oscillating

while keeping their volumes bounded.
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(a) t=5 (b) t=40 (c) t=80 (d) t=120

Figure 3.7: Spatial heterogeneity eradicates treatment success. Panels displaying (top) the
structured cellular population with space across the lower plane and mutational state given along
the vertical axis; (middle) the spatial cellular distribution; and (bottom) the ECNE density, where
ipilimumab treatment is given at t = 40 and BRAFi treatment is given at t = 100, for time points
t ∈ {5, 40, 80, 120} are shown.

Drug success rates decay under heterogeneous spatio-environmental

assumptions

In order to examine the effect that spatial heterogeneity of the ECNE concen-

trations and, thusly, the resulting cancer cell population on the longer term ef-

fectiveness of targeted and immunological treatments, we considered only that

treatment protocol which proved effective in the homogeneous case; namely

that of an ipilimumab treatment followed by BRAFi post-treatment. The in-

troduction of spatial heterogeneity whilst maintaining all other factors, in their

entirety, was sufficient to cause the degeneration of treatment success into the

characteristic death and regrowth curves seen previously (Results not shown,

although they may be inferred from figures 3.7 & 3.8 middle).

Notice, firstly, that the spatial cancer cell population (Fig. 3.7 & 3.8 middle)

initially spreads to the nearby regions of elevated ECNE concentration, prior

to treatment. As the treatment is applied, and the regions of highest cell pop-

ulation coincide with the regions of highest ipilimumab concentration, the cell
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population is reduced to invisibility for some times 40 < t < 200. It should be

understood, here, that under a great evolutionary selective pressure only very

few cells survive these initial waves of treatment but those cells which do survive

will be completely resistant to both treatments. At this time, and with almost

the entirety of the surviving cellular population being resistant to both BRAFi

and ipilimumab, the cellular population begins to regrow at regions of highest

nutritional content, or ECNE.

One may observe this dynamic in the spatio-structural cellular population,

progressively over the entire time domain. Consistently with the punctuated

equilibrium assumptions within the model, one notices a pulsatile movement of

the cellular subpopulations between y = 0 and y = 1/2, and again towards y = 1

(Fig. 3.7 & 3.8 top). In particular, however, the first time at which the cancer

cell population has been visibly eradicated (Fig. 3.7c), the visible coincidence

of those areas of low ECNE concentration with those cancer cell clusters at the

most elevated value of y. In other words, the difference in the heterogeneous

case, as compared with the homogeneous case, is that the cancer cell population

is able to preferentially avoid drug-induced apoptosis by remaining in regions

of low ECNE and drug concentrations, which allows the cellular population to

become resistant before migrating to regions of high nutrition and increasing

their collective proliferation rate.

This demonstrates that particular prudence must be paid during consid-

eration of spatial factors in the study of drug resistance and strategy. One

should also notice the clinically difficult tumour that results from this method

of treatment (Fig. 3.8d middle) and the nature of the underlying environmen-

tal infrastructure, or ECNE. The tumour is viable although sparsely populated

which raises significant questions about the ability to remove such a tumour,

surgically. The approach to treating such a patient would classically be to use

chemical means, which have now been exhausted and given rise to a uniformly

resistant tumour.
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(a) t=160 (b) t=200 (c) t=240 (d) t=280

Figure 3.8: Spatial heterogeneity eradicates treatment success. Panels displaying (top) the
structured cellular population with space across the lower plane and mutational state given along
the vertical axis; (middle) the spatial cellular distribution; and (bottom) the ECNE density, where
ipilimumab treatment is given at t = 40 and BRAFi treatment is given at t = 100, for time points
t ∈ {160, 200, 240, 280} are shown.

3.2.5 Metabolic Remodeling and the Re-Establishment of

Drug Sensitivity

Recent studies have looked at the effect of BRAFi on the human melanoma

PDX lines implanted in the immunodeficient mouse and found that this drug is

largely ineffective, implicating a role for the immune system in its functioning.

This result is contrasted with the effectiveness at eradicating the tumour with

BRAFi+MEKi, again with the characteristic relapse curve [278].

These same studies have suggested that after a primary phase of treatment,

and subsequent washing of the drug species from the tumour, the cancerous cells

may regain their sensitivity [278]. This is illustrated in the cells’ recapitulation

to later phases of treatment and suggests that some metabolic, or other, plas-

ticity may lead to the observed resistance to BRAFi and MEKi. This plastic

response may be reversed upon the removal of the drug and is believed to be as

a direct result of stress on the cells themselves.

Beyond these conclusions of the study, the observation is made that the
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system remains the genetic equal of the precursor tumour at every stage during

this adaptive process. This suggests that a population-wise phenotypic switch

occurs from populations that are composed 1% of epigenetically resistant cells,

prior to treatment, to being comprised 70% of this cell type, post-treatment and

post relapse [278]. Little is known about the phenotypic status of the tumour

immediately prior to the secondary round of BRAFi+MEKi dosing.

Moreover, cutaneous tissue is naturally and significantly heterogeneous in its

composition and, being the tissue furthest from the major vasculature, is greatly

dependent on the arterial supply of oxygen and other nutritional components of

the cellular system. In areas with the lowest such supplies of oxygen, cells switch

their metabolism from mostly oxidative phosphorylation (oxphos) to glycolysis.

Using, then, BRAFi and MEKi in order to inhibit the glycolytic pathway [259,

41] induces an excessive stress regimen within the cell. It has been suggested

that, under such powerful metabolic stresses, the cell will diversify its metabolic

behaviour in order to attempt an increase in efficiency. This switching between

glycolytic and oxphos modes of metabolism may, therefore, be instrumental in

facilitating the avoidance of targeted inhibition within cancer cells; cancer cells

may use oxphos metabolism to avoid the targeted inhibition of glycolysis [145].

This, however, implies that we are now existing within a different paradigm

with respect to the evolution of the cells in response to drug application or,

perhaps, in general. To begin with, we recall that p1(t, x) is given by the spatio-

temporal concentration of BRAFi and we, now, redefine that p2(t, x) should

be given by the spatio-temporal concentration of MEKi, a second metabolic

inhibitor of glycolysis.

Re-interpreting the structural dimension for a metabolic system

In order to capture the re-sensitisation phenomenon, we must reinterpret the

structural y variable to take into account the newfound plasticity of the cellular

population. We assume that the effect of the drugs and the variability in the

cellular population may be adequately illustrated through the cellular pathways
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Figure 3.9: Visual reinterpretation of the structural y variable to account for the metabolism of
glucose molecules proportionally and competitively through glycolytic and oxphos pathways, re-
spectively.

involved in the metabolism of glucose; namely those of glycolysis and of oxphos.

Given that a given glucose molecule, may be metabolised through the utilisation

of either one of these pathways, but not both, we may represent the structure of

the cell as the proportion of glucose sent to glycolytic pathways as opposed to

oxphos pathways; such that y = 0 represents 100% of glucose being metabolised

through glycolysis, and 0% by oxphos, whilst y = 1 represents 0% of glucose

being metabolised through glycolysis, and 100% by oxphos (Fig. 3.9).

A cellular growth function in a metabolic system

Likewise with our previous paradigm, we assume that proliferation requires the

presence of nutrients, m2(t, x), above a certain threshold, θm2
. As was recog-

nised by Warburg in 1956 [338], and was subsequently termed the Warburg

effect, highly proliferative cancer cells appear to preferentially utilise glycolytic

pathways to synthesise membrane lipids and other essential components from

glucose. Therefore, we assume that there exists some underlying proliferation

rate, φc,1, which is common amongst all cells and a further ‘Warburg’ prolifer-

ation rate, φc,2, which is contributed dependent upon the degree to which the

cell utilises glycolysis; as the cell utilises the glycolytic pathways to a greater

extent, its proliferation rate shall increase concurrently. Moreover, since we are

particularly interested in the cell’s ability to absorb and utilise available nutri-

ents in the environment, we modify our competition assumptions so that the

cellular population’s proliferation will not be inhibited by the presence of the

ECNE but will rather simply increase the pressure on the ECNE itself. Thusly,
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we replace the unoccupied volume term by 1−
∫
P c dy and write the full growth

term as

φM (y, c, m̄) := c

1−
∫
P

c dy

(m2 − θm2

)(
φc,1 + φc,2(1− y)

)
. (3.29)

A structural flux function in a metabolic system

The cell is biologically engineered to complete its cell cycle and evolution has

selected for cellular populations who are particularly efficient at achieving this

goal. Therefore, given that a cell requires nutrition and the ability to freely

adapt in order to achieve this objective, if the cell is deprived of its essential en-

vironment then it will take extreme measures in order to continue to proliferate.

We here define stress, or ‘stressed conditions’, as those conditions which are not

conducive to cellular metabolism and proliferation. In particular, those scenar-

ios which would lead the cell to feel ‘stressed’ are given explicitly by nutritional

deprivation or targeted inhibition of metabolically essential genes, such as BRAF

or MEK. Therefore, we define the weighted stress term as ψp1p1+ψp2p2−ψm2m2,

where ψp1
, ψp2

, ψm2
, are positive weights such that ψp1

+ ψp2
+ ψm2

= 1. Un-

der stress, the cell shall randomly diversify its behaviour; each cell becoming

stochastically more or less oriented towards glycolytic metabolism such that the

population, as a whole, becomes more metabolically diverse. Therefore, we may

represent this at the population level by a structurally diffusive behaviour. The

structural diffusion coefficient Σ(y, m̄, p̄) is proportional to the weighted stress,

therefore

Σ(y, m̄, p̄) = σc (ψp1p1 + ψp2p2 − ψm2m2) , (3.30)

where σc is a positive constant.

In the absence of stress, the cell population relaxes by advection to the

preferential metabolic state y = ωc. The relaxation rate is proportional to the

weighed non-stressed factor defined as 1−ψp1
p1−ψp2

p2. Thus, the normalized
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structural velocity reads

ΨM (y, m̄, p̄) = σ̄c (ωc − y) (1− ψp1
p1 − ψp2

p2) , (3.31)

where σ̄c is a positive constant.

On phenotypically evolving systems

Thusly, we describe the metabolic change function, Ψ : D×P → R, in terms of

the phenotypic stress on the cell. We assume, firstly, that under a condition in

which the influence of stressors is minimised, the cell has a preferred phenotypic

state at y = ωc, which corresponds to a given utilisation of each pathway. We

also assume that the primary stressors for the cell are malnutrition, which will

be a function of m2, the presence of BRAFi, p1, and that of MEKi, p2, which

act to deplete the cells ability to proliferate effectively.

Then the non-stressed term in the function must be given such that pheno-

typic advection is positive below this preferential state and negative above this

state such that it will depend upon the relation 1−ωc for a non-dimensionalised

system. The non-stressed condition must then be given by the opposing prob-

ability to that of stress such that Ψσ̄ := 1 − ψp1
p1 − ψp2

p2, with parameters

chosen such that Ψσ̄ ≥ 0, ∀(t, x) ∈ I×D.

Stressed conditions for the cell are then quantified by the gradient of the

cellular concentration in the region, giving a measurement of the collectivity of

the behaviours of local cells. This choice of function for stressed conditions gives

rise to diffusion under cellular stress, the rationale for which can be given by the

intuitive understanding that cells diversify their behaviours in the presence of

stressors. The magnitude of this stress is then determined by the concentrations

of BRAFi, p1, and MEKi, p2, and is linearly diminished with the concentration

of nutrient species, m2. All of these factors act as stressors to the cell and have

their relative effects quantified by the weights ψp1
, ψp2

, ψm2
≥ 0, respectively.



3.2. MODELLING RESISTANCE & RESENSITISATION 103

Then, the structural flux has diffusion and advection terms as follows

ΨM (y, m̄, p̄) :=− σc (ψp1
p1 + ψp2

p2 − ψm2
m2)∇yc(t, x, y)

+ σ̄c (ωc − y) (1− ψp1
p1 − ψp2

p2) c(t, x, y) ,
(3.32)

with the introduction of the stress, σc, and non-stress, σ̄c, parameters deter-

mining the weightings of the diffusion and advection terms with respect to one

another.

Now, one must consider the nature and form of the effectiveness functions

for the drug species, BRAFi (p1) and MEKi (p2), on the cellular population, in

terms of their effect on the glycolytic or oxphos pathways. Firstly, we begin by

writing the vector

f(y) := [f1(y), f2(y)]T ,

to represent functions f1(y) and f2(y) in compact notation and begin by noticing

that both of these drugs target genes essential to glycolysis. The transcription

factors HIF1α, c-Myc, and Mondo A have been found to be downstream upreg-

ulators of glycolytic behaviours in BRAFv600 cells [259, 146]. Moreover, BRAFi

has been shown to prevent the hyperswitching of mutant melanoma cells to

pyruvate based metabolism [84] – the primary product of glycolysis.

Withal, MEKi is responsible for targeting this same pathway, in melanoma

cells. It has also been found that the PI3K pathway, activated by MEK, is re-

sponsible for glucose transport, and glycolytic metabolism, and can be inhibited

by inhibition of MEK [315, 229].

The biological literature points to a link between melanoma associated genes,

including BRAF and MEK, and the glycolytic pathway for glucose metabolism.

Therefore, we write that the standard forms of the effectiveness functions will

be Gaussian functions, with low values for variance, or high values for βf1 and

βf2 , such that f1(y) := exp[−βf1(y − αf1)2]

f2(y) := exp[−βf2(y − αf2)2] .
(3.33)
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The values around which these functions are centred, αf1 <
1
2 and αf2 <

1
2 , are

chosen to align with the peak effect of the drug on the glycolytic and oxphos

pathways.

Finally, we choose the proliferation function, φM : I×D×P → R, such that it

is space-wise logistic in c(t, x, y). Moreover, we assume that the cellular popula-

tion requires nutrient in order to achieve positive proliferation and choose some

arbitrary threshold value θm2
in order that, below such a value, the cellular pop-

ulation is depleted due to malnutrition. It is then imposed upon the system that

there are two concurrent modes of proliferation: glycolytic and non-glycolytic.

The non-glycolytic mode is not dependent upon the phenotypic state of the cell,

y, and is rather an underlying process of all cells, whereas the glycolytic pathway

is linearly enhanced by the percentage of glycolytic metabolism utilised (such

that it is maximal at y = 0). This is justified on account of the excess lipids

produced through utilisation of glycolytic pathways. Therefore, we write

φM (y, c, m̄) := c

1−
∫
P

c(t, x, y) dy

(m2 − θm2

)(
φc,1 + φc,2[1− y]

)
,

(3.34)

where φc,1 and φc,2 give the rates of non-glycolytic and glycolytic metabolism,

respectively.

Due to the nature of the structural flux (3.32), it is necessary to develop

a set of zero-flux boundary conditions which prevent, for example, diffusion in

y from causing cells to exit the domain, P. Although (3.32) has both advec-

tion and diffusion terms, the metabolic change function is defined such that

Ψσ̄(y) = 0, y ∈ ∂P, meaning that advection fluxes are identically zero on the

boundary. Therefore, we simply implement zero-Neumann boundary conditions

on structural diffusion fluxes, namely ∇yc(t, x, y) = 0, y ∈ ∂P.

To begin treatment, one gradual dosage was given between t = 80 and

t = 100, linearly in time, t. The drug was then washed from the tumour, in a

step-wise fashion, at t = 210, as this is the point at which the tumour volume

had regrown to ∼20% of its previous maximum, and the tumour was allowed to
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Figure 3.10: Distributions for the drug effectiveness functions f1(y) (green) and f2(y) (red).

regrow, unencumbered by glycolytic inhibitors for 30 days. A second gradual

dosage was then given between t = 240 and t = 260, whereafter no further

interventions were made.

Further, we define the unique structured population profile by the cellular

population over the entirety of the spatial domain, D, given by

k(t, y) :=
x

D

c(t, x, y) dx . (3.35)

This can be used to describe the metabolic or structural profile of the tumour

at a given time, t.

Drug effectiveness functions in a metabolic system

The drug effectiveness functions for BRAFi and MEKi, p1(t, x) and p2(t, x)

respectively (further discussion in 3.2.5), are given simply by Gaussian functions

centred at αf1 = 0 and αf2 = 3/10 respectively. We write these mathematically

f1(y) := exp[−βf1(y − αf1)2]

f2(y) := exp[−βf2(y − αf2)2] .
(3.36)

whilst the widths of these Gaussian functions are uniform with βf1 = βf2 = 50

(Fig. 3.10), in order to replicate results from the murine models from [278].
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3.2.6 Results for the Metabolic System

Again, our primary motivating factor for these metabolically plastic systems was

to understand whether these mathematical models were capable of recreating

or predicting the complex dynamics underlying in vivo results (Section 3.2.6).

Beyond this, we wished to try to understand the spatio-metabolic dynamics

of the tumour which are allowing resistance to develop (Section 3.2.6). Finally,

given the complexity of the plastic model, we wished to know what the dynamics

of the cellular population, under the influence of drugs, might tell us about the

reaction of this population to treatments and the clinical significance of this

reaction (Section 3.2.6).

In order to test this in silico model, we attempted to recreate the conditions

in the experiments run by Rambow et al. [278]. In these experiments, mice were

given a PDX melanoma and the tumour was allowed to grow for some initial

period without treatment. Tumours were then treated with BRAFi+MEKi

combination therapy at a time point which corresponded to 80 days of growth

(t = 80) in our in silico tumours. As the tumour developed resistance to the

treatment, the dose was released at the time point corresponding to the volume

of tumour increasing to approximately 50% of its volume prior to treatment,

which we selected as t = 210 in our tumours. A final dose was given after

approximately 30 days of unimpeded growth, at t = 240.

Resistance and re-sensitisation dynamics are captured by plastic,

metabolic in silico modelling

As is the case with the in vivo experiments, we observe the death, tolerance,

and regrowth pattern within the tumour (Fig. 3.11). This is then followed by a

period of rapid, unimpeded growth due to the removal of drugs from the tumour.

It is important to notice that upon the second wave of treatment, the tumour is

again eradicated entirely for some brief period before becoming resistant more

rapidly on this second occasion (Fig. 3.11). This correlates qualitatively with

the in vivo results but may not be explained by a mutational model since those
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Figure 3.11: Resistance and re-sensitisation dynamics are captured by in silico modelling.
Graph displaying the tumour volume of the metabolic tumour model over the duration of the in
silico experiment, with continuous doses given from t ∈ {80, 240} and a drug holiday initiated at
t = 210

resistant cells would not reestablish their sensitivity to treatment. This effect is

termed ‘re-sensitisation’ and may be biologically and clinically significant.

In order to more accurately capture the results of the biological, experi-

mental approach we use a lower dosing rate in this model. Also, the dose was

applied uniformly in time between the start and the end of the treatment, in-

stead of instantaneously (we used Heaviside functions instead of Dirac functions

for the drug temporal profiles). This ensured a more gradual switch from the

initial growth stage in the tumour to a drug-sensitive apoptotic phase, prior

to tolerance (Fig. 3.11). Moreover, the primary regrowth stage appears to be

damped in comparison to the mutational model under BRAFi treatment, alone,

but this could be explained by the supplementary dosing of the tumour with

MEKi, stunting regrowth to a greater extent.

Temporary oxphos metabolism may allow cancers to evade targeted

treatments

Recall that lower values in y are associated with more glycolytic modes of

metabolism, where higher values of y are associated with more oxphos modes of

metabolism and that each of these structural y-coordinates is associated with a

2D spatial x-coordinate. Moreover, a green encircled 1 in the upper right-hand
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(a) t=50 (b) t=100 (c) t=150

Figure 3.12: Tumours use oxphos metabolic pathways to resist targeted inhibition of
glycolytic pathways by BRAFi and MEKi therapies. Shown are the phenotypic distribution
(1st row); the spatio-phenotypic surface distributions (2nd row); and spatial distribution (3rd row)

of the cellular population. The spatial distribution of the ECNE, with colour-bar, is also shown (4th

row), for completeness and in order that one can place the tumour within its environmental context.
All figures are given at times t ∈ {50, 100, 150} within subfigures (a), (b), and (c) respectively.
Within the surface plots, the colours represent surfaces of approximately equal concentrations within
the spatio-phenotypic context of the cell gradiated from lowest to highest concentration as purple,
blue, green, then yellow.

corner of a graphic shall signify that the tumour is under BRAFi treatment,

where a red encircled 2 in the upper right-hand corner of a graphic shall signify

that the tumour is under MEKi treatment (Fig. 3.12–3.15).

Observe, then, that in the initial growth phase (Fig. 3.12a) the cell popula-

tion is tightly associated with a glycolytic metabolic state and that its spatial

composition is compact, whilst during the sensitivity phase (Fig. 3.12b) the cell
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(a) t=200 (b) t=220 (c) t=240

Figure 3.13: Tumours use oxphos metabolic pathways to resist targeted inhibition of
glycolytic pathways by BRAFi and MEKi therapies. Shown are the phenotypic distribution
(1st row); the spatio-phenotypic surface distributions (2nd row); and spatial distribution (3rd row)

of the cellular population. The spatial distribution of the ECNE, with colour-bar, is also shown (4th

row), for completeness and in order that one can place the tumour within its environmental context.
All figures are given at times t ∈ {200, 220, 240} within subfigures (a), (b), and (c) respectively.
Within the surface plots, the colours represent surfaces of approximately equal concentrations within
the spatio-phenotypic context of the cell gradiated from lowest to highest concentration as purple,
blue, green, then yellow.

population begins to diverge from this behaviour and cells may be spatially ob-

served further afield. Moreover, and throughout this phase, one can observe the

degeneration of the narrow peak, during the initial growth phase (Fig. 3.12a,

1st row), into a larger metabolic distribution centred at the same position as

this initial peak (Fig. 3.12b, 1st row). The increase in variance of the metabolic

distribution is as a result of the diversification of metabolism under stressed
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(a) t=245 (b) t=250 (c) t=255

Figure 3.14: Tumours use oxphos metabolic pathways to resist targeted inhibition of
glycolytic pathways by BRAFi and MEKi therapies. Shown are the phenotypic distribution
(1st row); the spatio-phenotypic surface distributions (2nd row); and spatial distribution (3rd row)

of the cellular population. The spatial distribution of the ECNE, with colour-bar, is also shown (4th

row), for completeness and in order that one can place the tumour within its environmental context.
All figures are given at times t ∈ {245, 250, 255} within subfigures (a), (b), and (c) respectively.
Within the surface plots, the colours represent surfaces of approximately equal concentrations within
the spatio-phenotypic context of the cell gradiated from lowest to highest concentration as purple,
blue, green, then yellow.

conditions, whereas the displacement of the mean towards a resistant oxphos

population (Fig. 3.12c, 1st row) is as a result of selective pressure.

During the resistance phase, the newly oxphos population continues to prolif-

erate (Fig. 3.13a), whilst any glycolytic cells are induced to apoptosis. When the

drugs are washed from the tumour, however, at t = 210 one observes the cellular

population beginning to migrate monotonically towards its preferred metabolic



3.2. MODELLING RESISTANCE & RESENSITISATION 111

(a) t=260 (b) t=280 (c) t=300

Figure 3.15: Tumours use oxphos metabolic pathways to resist targeted inhibition of
glycolytic pathways by BRAFi and MEKi therapies. Shown are the phenotypic distribution
(1st row); the spatio-phenotypic surface distributions (2nd row); and spatial distribution (3rd row)

of the cellular population. The spatial distribution of the ECNE, with colour-bar, is also shown (4th

row), for completeness and in order that one can place the tumour within its environmental context.
All figures are given at times t ∈ {260, 280, 300} within subfigures (a), (b), and (c) respectively.
Within the surface plots, the colours represent surfaces of approximately equal concentrations within
the spatio-phenotypic context of the cell gradiated from lowest to highest concentration as purple,
blue, green, then yellow.

state (Fig. 3.13b, 1st & 2nd rows), ωc as observed at earlier time points (Fig.

3.12a, 1st row), before reestablishing its glycolytic phenotype y ≈ ωc = 0.2 at

t = 240 (Fig. 3.13c). This whole process is then repeated during the second

wave of treatment (Fig. 3.13c, 3.14 & 3.15), with the tumour being visibly erad-

icated during a process of metabolic diversification and upheaval (Fig. 3.14b,

3.14c & 3.15a) before regrowing as an oxphos oriented tumour (Fig. 3.15b &
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3.15c).

In this model, one may far more clearly see that the regrowth in the tu-

mour is spatially correlated with the regions of highest ECNE concentrations

(Fig. 3.12c, 3rd & 4th rows) and those regions where the cellular species will

necessarily have the greatest access to nutrients. Interestingly, this will also be

the spatial subregion in which the selective pressure is most elevated due to the

presence of high concentrations of BRAFi+MEKi leading to the apoptosis of

glycolytic cells and selecting for a more oxphos-dependent population of cells

(Fig. 3.12c & 3.13a, 2nd row).

To sum the above analysis of these results, the tumour exhibits an initially

glycolytic mode of metabolism which, through stress-induced diversification, de-

cays into a less defined mode of glucose metabolism. By spatially correlating

with regions of heightened nutritional content, these resistant oxphos cells are

able to outgrow their drug-induced apoptotic rate and proliferate. By removing

the drug from the tumour, and the stressor of the cell, the cellular population

attempts to reconsolidate its glycolytic state and increases its proliferative rate,

ultimately allowing the second wave of treatment to visibly eradicate the re-

maining population of cells. Nevertheless, these cells are able to regain their

metabolic advantage and return to an oxphos state, in order to once again be-

come resistant to treatment.

More rapid secondary resistance wave may be explained by residual

oxphos populations

One feature of the growth, which is of great clinical significance, is that of the in-

creased rapidity to resistance upon the second wave of treatment (Fig. 3.11). In

order to understand this, notice the pattern of metabolic migration in the cancer

cell population, towards the preferred glycolytic state, during the drug holiday

(Fig. 3.13). The tail on the right-hand side of the oxphos cell distribution (Fig.

3.13a & 3.13b, 1st row) are not entirely consolidated during their backwards

migration but, rather, remain as a residual oxphos cell population (Fig. 3.13b,
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1st row), which begin to appear upon selective degradation of glycolytic popula-

tions (Fig. 3.14b, 1st row). Although these cells will migrate gradually towards

their preferred metabolic state, ωc, it could be that their lower local nutritional

value is allowing them to retain their oxphos state to a greater extent than the

remainder of the population. Under the selective pressure applied by the drug,

the glycolytic subpopulation is degraded, as it again attempts to diversify its

metabolic status, whilst the oxphos population is free to grow (Fig. 3.14b, 3.14c,

& 3.15, 1st & 2nd rows), eventually replacing the glycolytic population as the

dominant population within the tumour (Fig. 3.15b & 3.15c).

One may also clearly observe the difference in the spatio-structural distribu-

tions 20 days posterior to the first wave of treatment (Fig. 3.12b, 2nd row) in

comparison to 20 days posterior to the second (Fig. 3.15a, 2nd row). After the

first wave of treatment, the tumour having never been exposed to stress prior

to this event, the metabolic profile of the tumour is neatly distributed around

its preferred glycolytic state. After the second wave of treatment, however,

the metabolic profile is bimodal, with a distinct oxphos as well as a glycolytic

population. This appears to be due to the fact that not all of the cells from

the resistant oxphos population have migrated fully back to their preferred gly-

colytic state and are, thus, able to repopulate the new resistant population far

more rapidly since they are not subject to the same selective pressures as their

glycolytic counterparts.

3.2.7 Discussion

We have introduced a general modelling framework for evolution of heterogene-

ity in solid tumours submitted to multiple drug therapy, wherein the definition

of an appropriate normalized structural velocity, Ψ(y, m̄, p̄); structural diffu-

sion matrix, Σ(y, m̄, p̄); growth function, Φc(y, m̄, c, v); and vector valued drug

effectiveness function, f̄(y), may give rise to importantly nuanced patterns of

behaviour. Using this framework, we then introduced two primary models for

considering different dynamics within a tumour population. Firstly, the mu-
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tational model considered population level dynamics for a system in which an

individual cell will sequentially undergo a BRAF mutation, followed by subse-

quent mutations which confer resistance to BRAFi and ipilimumab therapies.

Secondly, we considered a plastic model of drug resistance, in which the switch-

ing of cellular dependence on glycolytic and oxphos pathways for the metabolism

of glucose may confer a survival advantage when faced with glycolysis inhibiting

BRAFi+MEKi treatments.

Using our mutational model to consider paradigms of punctuated equilib-

rium and phyletic gradualism in the evolution of the cellular genome, we found

that punctuated equilibrium assumptions were more consistent with biological

data. This shows good consistency with the modern cancer genomic litera-

ture, in asserting that short term catastrophes, rather than the gradual accu-

mulation of mutations, is more likely to contribute to the mutational state of

tumours [305, 240, 295]. We also predicted that using ipilimumab, immune

cell-enhancers, in advance of a BRAFi is more effective at reducing the tumour

population over the long term. This model prediction is confirmed by studies

which used both ipilimumab and BRAFi [3].

Performing experiments for which drug was applied periodically in time we

were able to qualitatively recapitulate the results of Thakur et al. [77]. We have

suggested a mechanism for the apparently counterintuitive result of this exper-

iment, that consists in keeping the tumour under control without completely

eliminating the resistant subpopulation. We suggest that relative success of

this therapy protocol in some tumours may imply their lesser mutated states

at the initiation of the experiment, where the irregularity of the oscillations

appears to depend on the number of different clones within or the clonal hetero-

geneity of the sample. This hypothesis may, presumably, be tested biologically

in order to confirm this prediction from our model. The decay of the success of

varying treatment strategies within a heterogeneous ECNE is consistent with

the in vivo failure of treatments to adequately deal with tumours on the long

term, and our experiments still predicted the preservation of the characteristic

death and growth curves [267] under heterogeneous initial conditions.
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Turning to the plastic metabolic model for the development of resistance to

targeted therapies, we proposed and conformed the ability of such a model to

predict re-sensitisation in silico. This model may then provide a clinical op-

portunity to model the success of therapy against such tumours on the basis

of their respective environments (i.e. for tumours in differing tissue elasticities

or densities). Moreover, our model illustrates the metabolic switching of the

tumour as a continually heterogeneous spatio-structural population, allowing

one to understand how spatial effects may influence structural resistance ma-

noeuvres. The evolution of the glycolytic tumour to a metabolically oxphos

cell populations, in combination with the coincidence of strongly selected cell

populations and nutrient populations, may allow for the resistant proliferation

of these subpopulations. These metabolically resistant populations will then

preferentially re-sensitise themselves through metabolic remodelling, allowing

for the effective second wave of treatment.

Moreover, our model provides an opportunity to understand the underly-

ing dynamics of such metabolically plastic tumours and also the mechanisms

of resistance and re-sensitisation, showing strong agreement with in vivo PDX

tumour experiments. For both waves of treatment, our model shows a char-

acteristic death, tolerance, and regrowth pattern, but with a quicker relapse

occurring with the second wave of treatment. Experiments conducted by Ram-

bow et al. [278] also show this pattern of death and growth, with faster regrowth

posterior to the second wave of treatment, such that our model may provide an

explanation of this phenomenon. Residual, metabolically resistant cells from the

first wave of treatment may provide a basis for a resistant population to grow

back more quickly upon the second wave of treatment. Implicitly, our model

would predict that reducing treatment to as great an extent as is possible, whilst

still eradicating the tumour, would reduce the opportunity for the tumour to

establish this residual population and resist future waves of treatment.
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3.3 Higher-Dimensional, Data-Driven Modelling

of Drug Resistance in Melanoma

3.3.1 Introduction

In an important advancement to the paradigm of cancer investigation, Ram-

bow et al. [278] used single-cell RNA-sequencing to anlyse whole melanoma

tumours from patient-derived xenografted (PDX) mice who had been treated

with BRAF and MEK targeted inhibitory therapies. Using principle compo-

nent analysis (PCA) followed by t-distributed stochastic neighbour embedding

(tSNE) techniques, subpopulations of cells exhibiting several phenotypes sig-

nificant to cancer prognosis and progression were identified, alongside their

development in time. In this particular case, although this also holds more

generally, the treated tumour development cycle was separated into 4 major

stages (pre-treatment; sensitivity, exhibiting extensive cell death; tolerance, ex-

hibiting neither death nor growth of cells; and resistance, exhibiting growth

even with the continued presence of the treatment), while measurements were

taken from several mice during each of these stages. This yielded significant

insights about the fundamental nature of cancer cells, including a detailed and

temporally quantitative demonstration of the, at least, inter-generational plas-

ticity of cancer cells and their propensity to give rise to resistant strains that

were absent before treatment.

In order to deal with this paradigm, we employ those multi-dimensional

models that we had used previously, for the modelling of phenotypic resistance to

treatment in melanoma, and utilise this same framework (3.11) once more. The

method by which we establish the nature of the functions within this framework,

however, must entirely differ since we had, previously, the dynamics of our

structural dimensions, a priori, and had simply to place these within a spatial

context. On this occasion, the functions describing the structural dynamics

of the system are not pre-determined. Therefore, the function to be placed

within these dynamical equations shall be determined through a meta-heuristic
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−→

Figure 3.16: tNSE data becomes principal axis map (PrAM).

analysis of the data, rather than through a theoretical approach; producing a

system which is significantly more difficult to interpret. This is also likely due

to the difficult nature of interpreting the tSNE data itself, since these represent

more abstract natural constructs rather than pure properties. Finally, we must

rëınterpret the structural variable, y, in order that it is able to account for the

biological context in which we wish to place our model.

3.3.2 Spatio-Structuro-Temporal Modelling of Single-Cell

RNA-seq Data

Firstly, we note the biological context in which we place this model: The map-

ping of the metabolic profile, drawn through the use of principal component

analysis on single cell RNA-seq data [278], has managed to describe the vast

array of biological, or metabolic, heterogeneity within PDX melanomas under

treatment, using only two principal axes. As such, we call this map the princi-

pal axis map (PrAM) and define our metabolic variable ȳ correspondingly with

those principal axes (Fig. 3.16). Therefore, y1 becomes the ‘east-west’ variable

and y2 becomes the ‘north-south’ variable where, for example, to move metabol-

ically north is only to move through positive values on the secondary metabolic

principal axis, or y2. As in traditional cartography, the difficulty and ramifica-

tions of moving in a given direction are dependent on the context provided with
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(a) Phase t0 (b) Phase t1 (c) Phase t2 (d) Phase t3

Figure 3.17: Time resolved tNSE scatter plots for Phases t0 − t3.

the initial position (ξ0, ν0) ∈ P.

Our PrAM then characterises all of the significant RNA-dependent states

available to the tumour, without biological motivation for its form. It is an im-

portant factor of this diagram, however, that, within the paradigm of metabolic

reorganisation or adaptation, sufficient research has not yet been conducted in

order to establish the nature of the dynamics between any two states on this

PrAM. Therefore, it is the task of the modeller to infer these dynamics from

the data provided and confirm them through the validation of predictions.

To begin, using the tNSE data, we then identify and delineate the same 5

overriding subpopulations explored in Ranbow et al. [278]:

s1. ‘Mitotic’ :- exhibiting high rates of cellular proliferation and appearing in

the south-west corner of the PrAM;

s2. ‘Invasive’ :- exhibiting high levels of activation within the subset of invasion-

related genes and appearing on the western border;

s3. ‘Neuro’ :- exhibiting high expression levels of neural markers and appear-

ing in the north-west corner;

s4. ‘Pigmented’ :- exhibiting heightened levels of pigmentation, lower levels of

MITF-pathway utilisation, and appearing in the north-east corner; and

s5. ‘Immune’ :- exhibiting higher activation levels of IFN-inducible, immune-

related genes and appearing in the south-east corner.

Proliferation

Unsupervised clustering of gene expression in single cells showed a distinct sub-

set of cells utilising high transcriptional rates in genes known to be linked to
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mitosis, within the cell. This subset of cells the researchers named ‘mitotic’

and reside within the south-west corner region of the PrAM. Moreover, one can

locate a band-region running from north to south down the centre of the map,

wherein cells are utilising MITF-related metabolic pathways (with more north-

ern cells exhibiting hypometabolic attributes) (Fig. 3.17). Cells transcribing

high levels of MITF-related genes are known to exhibit greater rates of mitosis

than those transcribing lower such levels [58]. Likewise, hypometabolic cells, or

those exhibiting very low levels of MITF-related genetic transcription, exhibit

extremely low levels of cell-cycle progression and mitosis.

Accepting these observations, we make the following assumptions on the

behaviours of our mathematical system:

Φ1. Mitotic cells are those cells with the highest mitotic rates of the entire

population;

Φ2. MITF high cells have elevated mitotic rates, with respect to the average

non-mitotic cell;

Φ3. hypo-metabolic cells are incapable of exhibiting mitotic behaviours; and

Φ4. all cells, consistent with the above assumptions, exhibit some basic mitotic

rate, φ0.

Degradation

Since the targeted therapies, BRAFi and MEKi, are known to target cells utilis-

ing glycolytic pathways [259, 41] and that the glycolytic pathways, themselves,

constitute a related subgrouping to MITF pathways [17, 107], we need then

make only one major assumption on the system, with regards to drug-motivated

degradation:

∆1 Drugs BRAFi and MEKi primarily target genes involved in characterising

the mitotic and MITFhigh states.



120 CHAPTER 3. MODELLING DRUG RESISTANCE

Metabolic Adaptation

The metabolic adaptation of cancer cells, since it constitutes a set of dynamic

parameters of the system (affecting the way that the system behaves rather

than through direct augmentation or diminution), involves a set of far more

complicated considerations. In order to attempt to extract these dynamics from

only sparsely collected still representations of specific phasic phenotypes, in the

absence of intermediate measurements, we must couple dynamic observations

with our a priori knowledge and assumptions on cancer-drug interactions. We

also commit to making the simplest possible assumptions which are capable

of explaining the data with which we are faced; in line with this, diffusion

is considered a simpler assumption than advection since it does not assume

directionality. (The addition of any assumptions beyond the necessary may

lead to the addition of scientific bias in the spatio-structuro-temporal results

and is, hence, avoided.)

Firstly, notice that cells in the north-westerly corner of the graphic (in the t1

phase) are replaced by cells more skewed towards the north-easterly quadrant,

through time, and that this takes place mostly in the absence of drug-mediated

death, since neural stem cells are not particularly susceptible to BRAFi or

MEKi. Couple this with the observation that diffusive, or random, processes

should not result in a shift in the mean position in the PrAM and we arrive

at our first observation over the model mechanics. A similar observation may

be made concerning cells in the south-easterly quadrant, since these give rise

to cells within the mid-section of the PrAM, at later time points in spite of

degradation acting to achieve the opposite dynamic.

Starting with either northerly or southerly biased cell distributions seems to

result in an interchange between these distributions, so that each sub-grouping

will feed the population of the other. This appears to be especially true at

the easterly and westerly edges of the PrAM, where cells are frequently seen

switching between northerly and southerly states, between phases. Likewise,

cells in the northerly region of the PrAM appear far more dynamic than those in
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southerly regions and, therefore, an increasing assumption that this is conveyed

by convective processes must be accompanied by an equal commitment that

random processes govern this interchange.

Thusly, we arrive at the following set of dynamical assumptions:

A1 Northern cells are characterised by a fondness for migration towards a

pigmented state;

A2 southern cells are characterised by a slow rate of migration towards a

mitotic cell state;

A1.5 the metabolic point of attraction for cells between north and south is

giverned by a linear relationship between these two foci;

A3 western and eastern cells exhibit high levels of north-south cellular inter-

change (or metabolic diffusion), decreasing with centrality;

A4 east-west diffusion increases with proximity to the northern border; and

AX The metabolic dynamics of cancer cells are otherwise net-neutral.

Full System

In order to build the following model, we have employed a multi-dimensional

approach capable of embracing the fullest complexity of this model [161] and

which we have previously utilised in modelling similar dynamics in tumour drug

resistance [160]. This method uses partial differential equations (PDEs) to cou-

ple 2-dimensional spatial dynamics to the 2-dimensional dynamics of the PrAM

given above. Given the continuous nature of PDEs, however, this places some

major constraints upon the dynamics of the model, itself.

To cope with these constraints, one large implicit assumption of the model

is that cells may only enter adjacent points in the diagram and that their are

no discrete jumps between locations in tSNE space. That is to assume that the

values measured in the single cell RNA-seq experiments in fact measure changes

in RNA states which exist on a continuum, which is accurately represented by
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the tSNE diagram, and that these states may only be reached by incremen-

tal movements towards any given location from the current; paths between

points are themselves continuous. This necessarily means that proliferation is

metabolically local and that metabolic evolution is achieved through advective

and diffusive processes.

Using the above set of assumptions, we can then write the full mathematical

system as
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3.3.3 Results

Initial conditions for the tumour are given by a normal, or Gaussian, joint distri-

bution in (x1, x2, y1, y2) ∈ D×P centred at ( 1
2 ,

1
2 ,

1
5 ,

1
5 ), such that the tumour is

centred in its spatial domain and mitotic in metabolism. The initial conditions

for the extra cellular nutritional environment (ECNE) are given by a spatially

heterogeneous distribution generated as in (2.50) (Fig. 3.18a) Although spatial

and metabolic dynamics are simulated as codependent in a joint distribution,

we have chosen to represent the resultant data separately, due to the high di-

mensional nature of the data and in order to avoid confusion: Spatial data is

represented by a 2-dimensional heat map in x1 and x2, where ‘yellow’ regions

represent regions of high cancer cell density and ‘blue’ regions represent those

of low density. Likewise, representative metabolic t-SNE data is represented by

a 2-dimensional heat map in y1 and y2, where ‘yellow’ regions represent regions

of high cancer cell density and ‘blue’ regions represent those of low density. The

metabolic heat maps are a direct representation of those produced by Rambow

et al. [278], where cellular subpopulation identified are represented by analogous

subregions within our own plots.

In our in silico experiment, we allow the tumour to grow for some arbitrary

time before treating continuously from t = 0. The first thing to notice about
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v(0, x)

(a) (b)

Figure 3.18: Numerical simulations of (a) the initial conditions for the heterogeneous ECNE system
and (b) tumour volume over time, normalized with respect to its maximal volume. On the tumour
volume plot, we have indicated the tumour volume (black - - -) below which the tumour is no longer
clinically visible.

the results from simulation is that we are able to fully recover the 4 stage death

and regrowth cycle for the tumour under treatment with BRAFi and MEKi.

This implies that, on the lowest possible resolution representation of the in

vivo tumour, we have a hypothetically sound model with which to explore the

dynamics of this tumour. Since the purpose of this model was not to make any

prediction as to the evolution of the metabolic data but simply to reproduce

this data, all of the parameters for this model were chosen in order to accurately

recreate the metabolic dynamics measured in the in vivo single-cell RNA-seq

experiment.

During the tumour growth, pre-treatment period the initially mitotic tumour

remains mitotic and hyper-metabolic (Fig. 3.19, t ∈ [−8, 10)), exhibiting an

exponential growth rate (Fig. 3.18b). Upon treatment, the vascularised tumour

retreats from its hyper-metabolic status and a new invasive, neural stem cell-

like and hypo-metabolic generation is born in the north-west of the PrAM (Fig.

3.19, t ∈ (0, 20)). (The reason that we refer to this tumour as vascularised may

not be immediately obvious but is because the ECNE is dense within the tumour

and the tissue’s vascular density is assumed to be proportional to the density

of the ECNE.) This is followed by a further degeneration of the tumour volume

and consolidation of the hypo-metabolic subpopulation through the tolerance

phase (Fig. 3.19, t ∈ (10, 30]), inducing the emergence of a pigmented cell

subpopulation (Fig. 3.20, t ∈ [30, 40)) which are themselves hypo-metabolic.
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t = −8

t = 0

t = 10

∫
P c(t, x, y) dy

∫
D c(t, x, y) dx p(t, x)

Figure 3.19: Numerical simulations of tumour growth and drug particle dynamics prior to and dur-
ing treatment for t ∈ {−8, 0, 10}, where t = 0 indicates the time at which treatment began. Given
are the 2-dimensional spatial cancer population,

∫
P c(t, x, y) dy, in (x1, x2); structural cancer popu-

lation,
∫
P c(t, x, y) dy, in (y1, y2); and the drug particle population, p(t, x), in (x1, x2), respectively

for each time point.
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t = 20

t = 30

t = 40

∫
P c(t, x, y) dy

∫
D c(t, x, y) dx p(t, x)

Figure 3.20: Numerical simulations of tumour growth and drug particle dynamics during treatment
for t ∈ {20, 30, 40}, where t = 0 indicates the time at which treatment began. Given are the
2-dimensional spatial cancer population,

∫
P c(t, x, y) dy, in (x1, x2); structural cancer population,∫

P c(t, x, y) dy, in (y1, y2); and the drug particle population, p(t, x), in (x1, x2), respectively for
each time point.
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Since the numbers of cells, within the tumour during the tolerance phase, be-

comes infinitesimal, although measurable, the primary signature of the tumour

entering resistance phase and beginning to regrow is the recession of drugs from a

certain location in space, indicating the local regrowth of cells in the region. The

metabolic resistance of tumour is then mainly characterised by the spawning of

immune-reactive cells (Fig. 3.20, t ∈ (30, 60]) who are simultaneously resistant

to treatment, as may be inferred from the data [278], and hyper-metabolic in

comparison to their pigmented neighbours in the PrAM. Throughout this resis-

tance phase the immune-reactive subpopulation continues to grow with respect

to the, also resistant, pigmented cell subpopulation but one should also notice

the increased growth of the mitotic cell subpopulation (Fig. 3.20, t ∈ [40, 60])

who, until resistance, had been subdued with respect to their absolute numbers.

As an overall trend, one will notice that, at least qualitatively, the metabolic

results from the in silico simulated experiment (Fig. 3.19 & 3.20) well capture

those of the in vivo experiment (Fig. 3.17). The spatial dynamics of the tu-

mour are also similar to those expounded through previous modelling using this

framework [160], with drugs diffusing towards the centre of the tumour and with

highest density where tumour cell density is lowest. It is worth noting that, as

with the in vivo PDX tumour, the mitotic cell population remains throughout

the simulation, although it is diminished relatively and absolutely.

For the final act in this experiment, we attempt to make a prediction which

may be verified by experiment, by accounting for the limitations of experimental

technique. To do this, we simulate the taking of a sample from the resistant

tumour (t = 70) simultaneously at regions of high tumour density and low

drug concentration (Fig. 3.22, red) and of low tumour density and high drug

concentration (Fig. 3.22, green); the former occurring on the interior of the

tumour and the latter on the exterior. In the region of highest tumour density

and lowest drug concentration, one observes that the metabolic state of the cell is

described by a preponderance of mitotic cells (sensitive to treatment) alongside

some significant numbers of immune-reactive and pigmented cells. In the case

where the tumour density is at its lowest and drug concentration at its highest,
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t = 50

t = 60

∫
P c(t, x, y) dy

∫
D c(t, x, y) dx p(t, x)

Figure 3.21: Numerical simulations of tumour growth and drug particle dynamics during treatment
for t ∈ {50, 60}, where t = 0 indicates the time at which treatment began. Given are the 2-
dimensional spatial cancer population,

∫
P c(t, x, y) dy, in (x1, x2); structural cancer population,∫

P c(t, x, y) dy, in (y1, y2); and the drug particle population, p(t, x), in (x1, x2), respectively for
each time point.

however, one observes that the bulk of the cells are immune-reactive (resistant to

treatment) and that the remainder of the cells of hypo-metabolic or pigmented.

This predicts, therefore, that despite the heterogeneous nature of the biological

results, this heterogeneity is in fact compartmentalised in the tumour, where the

resistant exterior of the tumour provides an absorptive barrier to the penetration

of the treatment to internal regions. This means that sensitive but highly mitotic

cells are able to continue to proliferate on the interior of the tumour where drug

concentrations are sufficiently low as to allow it.

3.3.4 Discussion

In comparison with previous, theoretically derived mutli-dimensional models

[157] (Section 3.2–3.2.7), however, both the simplicity of interpretation and

mechanism of action are lost in the data-driven approach. The reasons for this

are two-fold: Firstly, the data-driven approach itself constrains the theoretician

to using only those mathematical constructs which will given rise the to the

data before them; using the data as an a priori structure to guide the model

rather than for the purposes of post hoc verification. Secondly, in reality these
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∫
P c(t, x, y) dy p(t, x)

c(t, (0.40, 0.65), y) c(t, (0.90, 0.50), y)

Figure 3.22: Simulation of in silico sample collection for the tumour at regions of high cancer cell
density and low drug particle concentration, and vice versa, at the final time point after treatment.
Above are given the regions from which samples were taken, indicated on the spatial maps of the
cancer population and drug particle population as red and green squares, respectively, whilst below
are given the structural distribution in the cancer population at the sample points.

phenotypic changes to the cancer cell population are multi-faceted and would

more aptly be described using a far greater number of dimensions, each of

which with its own dynamics, in order to approach and fully describe the true

transcriptional landscape of the cells.

Although the data-driven model presented herein may not exhibit the same

level of theoretical parsimony as previous similar models [157], it does have

the major advantage of being completely derived from, and explanatory of, a

set of empirical in vivo data. This advantage, alone, allows it the potential of

deriving new hypotheses about the nature of reality from existing knowledge.

In this particular case, we have been able to hypothesise, on the basis of in vivo

PDX single cell RNA-seq data [278], that the spatio-phenotypic heterogeneity

of the tumour is driving both the resistance of the tumour and its ability to

grow rapidly in its post-resitsance state.
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Chapter 4

Modelling Ligand-Activated

Signalling Processes

Applied to Interferon

4.1 Introduction to Inter-cellular Signalling and

Interferon

The field of immunology is of increasing interest to oncologists, due to the in-

creased interest in oncolytic viral therapies – which induce a local infection

within cancerous cells, leading to their eventual lysis – and the increasing real-

isation that the tumour interacts dynamically with the immune environment –

decreasing the avidity of T-cells for tumour cells. Therefore, we have chosen to

investigate some of the fundamental problems within the field of immunology,

which directly impact the fields of cancer therapy.

The interferon (IFN) system, in particular, is of crucial importance to the

success of oncolytic viral therapies; since it is often the IFN activated pathway

which leads to the suppression of viral proliferation and the resulting lysis of

131
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infected cells. It is also of fundamental interest, therefore and in advance of

interfering with such a system, to understand why, in a system with extremely

high-affinity ligands, humans and other mammals have such a diverse range of

genetically-encoded affinities of IFN. The first of our investigations, therefore,

sought to tackle precisely this problem and introduce a higher-dimensional mod-

elling approach for the IFN binding system, and subsequent metabolic reaction.

We found that low affinity IFNs could evade capture by surrounding cells and,

thusly, propagate through a system, across far more vast distance than high

affinity ligands, who mainly maintain this signal on a more local scale.

Using this result, we embarked on a secondary path of discovery and asked

what precisely is the role of this IFN propagation and maintenance pathway

when interacting with a local viral infection. Coupling our higher-dimensional

system with a viral population; increasing the number of IFN subspecies repre-

sented within the model; and more realistically characterising the biological, in

vivo situation, we asked what the potential consequences were for the infection

itself. We found that systems with low affinity ligands, as opposed to those

missing only the very lowest affinity ligands, reduced the viral load by up to

23% over their counterpart systems, constituting a major evolutionary survival

advantage.

4.1.1 Ligand-Activated Sensing and Reciprocating Systems

In order for biological systems to initiate changes in behaviour at the scale of

a group of cells or of a tissue in response to a localized event, it is necessary

for small signals to be transformed into large signals and sequentially commu-

nicated to other cells. This is no more apparent than in the human immune

response where T-cells are actively recruited to the site of infection through

the amplification and dispersion of the precursor signal [222]. The intermediate

signal must be received and amplified, in order that distant cells may receive

the signal with sufficient veracity as to respond.

In the case of the immune system, the cell-to-cell communication can be at
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least partially orchestrated by dynamic changes of the cell membrane receptors

and by secretion of communication proteins such as chemokines [222] and cy-

tokines [255]. Other cell-to-cell communication and amplification mechanisms

are used by bacteria in a phenomenon known as “quorum sensing” [247] and

by yeast to optimize mating efficiency [25]. In order to synchronise the phe-

notypes expressed by a local group of cells, bacteria and yeast posses internal

feedback loops that amplify incoming diffusible chemical signals. Similar exam-

ples where local behavior spreads by cell-to-cell communication can be found

in animal development, when blocks of tissues can be developed from sheets of

cells by a phenomenon called “community effect” [136] or when cell fate is spec-

ified by “sequential patterning” such as in the spatial regulation of Delta-Notch

signalling [165, 152]. Collective synchronous behaviour of cells is also needed in

insulin secretion by pancreatic islets but, in this case, the possible cell-to-cell

communication mechanisms are still under debate [263]. We call such systems

sensing and reciprocating systems (SARs), on the basis that the initial chemical

signals are replicated and amplified, which is similar to the concept of secrete

and sensing cells [228, 252].

SARs are ubiquitous in biology and some mathematical models dealing with

properties of such systems exist. The versatility of collective properties of se-

crete and sensing cells was studied using phenomenological, compartment based

models and ordinary differential equations (ODEs) [344]. The same type of

formalism was used for metabolic synchronisation of insulin secretion in islets

[263] and for studying cell-to-cell communication in the immune system [112].

ODE based models allow rather detailed descriptions of intracellular signalling

and metabolic dynamics but do not cope accurately with cell proliferation, mi-

gration, and cell-to-cell interactions.

Although not yet used for SARs, frameworks based on partial differential

equations (PDEs) could integrate many of these processes and explain aspects

related to spatial heterogeneity such as the role played of spatial arrangement

of cells in determining the conveyance of these signals [255]. However, in PDE

models, non-spatial heterogeneity, resulting from the fact that cells in close
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spatial proximity do not necessarily respond synchronously to stimuli, is lost

by averaging. This “structural heterogeneity” can be an essential part of a

complex cell dynamics, in which cell sub-populations behave differently to the

average, and may be essential to understanding the complicated dynamics of

biological systems. As an example, such models have predicted that below a

certain threshold value, interferon (IFN) signalling allows the activity of the

cellular population to decay entirely [149].

A paradigm which seems appropriate to exploring the possible structural

dimensions of biological problems, in a mathematical context, is that of the

continuous structural approach [29, 213, 212]. This approach encompasses the

genetic or epigenetic state of a cell, under temporal conditions which are consis-

tent with the continuous nature of dynamic biological problems by employing

the application of PDEs in structure, rather than in spatial position. On the

other hand, these approaches neglect the spatial dimensions associated with

chemical communication between cells and, thusly, do not provide the descrip-

tive breadth necessary to analyse these situations.

One recent “spatio-structural-temporal” (SST) framework, which demon-

strates the potential to represent greater details of dynamical processes in di-

mensions of both structure and space, was developed in order to model the

urokinase plasminogen activator system in breast cancer [97, 318]. Herein, we

present a similar derivation in order to augment the generality of this frame-

work and present a modelling form capable of capturing the intricacies, and

important heterogeneous features of SARs. Compared to [97, 318] we introduce

new metabolic structural variables and conjugated advection fluxes that are de-

rived from the continuity equation and Liouville’s theorem. These variables are

needed for modelling stimulated amplification in SARs. The use of Liouville

theorem is a major advance in the SST framework as it can relate any single

cell ODE dynamics to population dynamics in structure space.
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4.1.2 An Example of a SAR System: Cellular Interferon

(IFN) System

We look, here, specifically at a detailed model for the IFN binding process of a

given cell and the concurrent metabolic processes that result from this binding

process. This SAR shall serve as an exemplar biological system on which to

base models that will explore the efficacy of the framework to be proposed.

There are 13 forms of IFNα and 1 of IFNβ, which we subcategorise as low and

high affinity and denote as IFNα and IFNβ respectively. Their ability to activate

a cell’s internal infrastructure is dependent on their ability to concurrently bind

the IFN-α/β receptors 1 (IFNAR1) and 2 (IFNAR2) on the surface of the

cell. The association rate of IFN with IFNAR2 is approximately 10× that of

IFNAR1, therefore the primary interaction is with the jak1 signalling complex of

IFNAR2 [119, 118]. It is also essential, however, that IFN bind the lower affinity

IFNAR1 and so IFNAR1 is recruited to the location of the bound IFN/IFNAR2

complex [119, 118]. These tyk2 and jak1 protein phosphorylate one another to

initiate what is known as the Jak-Stat pathway [304].

The Jak-Stat pathway is predicated on the fact that the phosphorylated

Jak1-tyk2 complex is capable of phosphorylating the transcription factors Stat1

and Stat2. These two factors are then able to bind the IFN regulatory (transcrip-

tion) factor (IRF)-9 in order to form the IFN stimulated gene factor (ISGF)-3

complex [304, 288], which is capable of entering the nucleus [209]. Having

achieved this step, this complex can bind to the promoter region of IFN stimu-

lated genes (ISGs) and effectively initiate their transcription [304, 288].

One particularly significant ISG is the IRF-7 protein who is capable of the

downstream binding of and IRF-3. This IRF-7-3 complex is directly respon-

sible for the promotion of IFN-α and IFN-β genes [142]. Another effect of

transcribing ISGs is the transcription of USP18, which will compete with jak1

for binding of the intracellular domain of IFNAR2 [111]. IFNAR2s bound by

USP18 have also been shown to be ineffective at affecting the transcription of

IRF-7 [279, 341, 18].
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Therefore, this system can be looked at through the simplified lens of two

major and important processes:

(a) the binding of IFN to the surface of the cell, and

(b) the activation of the metabolic pathway which eventually leads to the

creation of new IFN molecules.

We use the phrase ‘metabolic activation’ in order to characterise the state of

the cell in terms of the chemical activity levels of those proteins involved in the

Jak/Stat pathway and, ultimately, the transcription of the genes necessary for

the synthesis of IFN. Thus, when one describes the metabolic activation of the

cell, with regards to the IFN pathway, one is actually describing, in some way,

the spatially differentiated presence of IRF-7-3 within the cell (Figure 4.2).

Moreover, one review of experimental data plotted the relationship over time

between the activation of genes within the cell and the fractional levels of bound

and unbound surface receptors, for both IFNα2 and IFNβ [292]. This graph

importantly showed that, for low levels of IFNα2, as the number of surface re-

ceptors decreased, the metabolic activation level rose concurrently. Further, as

genetic activation levels decreased, one could observe a corresponding normali-

sation of the fractional surface receptor levels [202]. Comparably, for high levels

of IFNβ, one finds that the cells genetic mechanism is activated in a locally

irreversible process and that the fraction of IFNAR1 receptors is maintained at

approximately 40% [292].

In order to demonstrate the descriptive power within the existing modelling

frameworks, we choose the biological IFN system in T-cells as an illustrative

example of such a system of SARs. This will serve as a comparative case for the

development of a framework, which is capable of significantly improving upon

one’s existing capacity.
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4.2 Signal Propagation in Sensing and Recip-

rocating Cellular Systems with Spatial and

Structural Heterogeneity

4.2.1 A Simple Spatio-Temporal Model of SARs

If one were to create the simplest possible system of SARs, one would begin

with only the population of SARs, themselves, and the molecular population of

SAR diffusing ligands. In reality, however, these systems are rarely as simplistic

as this and often require consideration of spatially intermediate cells which may

mediate the levels of the SAR ligands, by consuming these proteins without

reciprocally producing them. This is the case in the biological IFN system

and, as such, we call such intermediate cells ‘consumers’ and the SAR cells as

‘producers’, within a system that considers only such a responsive protein.

Therefore, begin by defining a temporal domain, given by I = [0, T ] with

t ∈ I, and a two-dimensional spatial domain, given by D ⊆ R2 with x ∈ D.

We then write cellular population functions such that c1 : I ×D → R gives

the population of IFN producing cells and c2 : I ×D → R gives the global

population of consumer cells, whilst m : I×D → R gives the non-dimensionalised

concentration of IFN molecules.

In order to write as simple a model as is possible, we begin by ignoring

all dynamics in the cellular populations are given simply by c1(t, x) := c1(0, x)

and c2(t, x) := 1, respectively. This is so that one might analyse only the

communicative capabilities of the IFN itself.

We then write the dynamics of the system as a whole as a spatio-temporal

partial differential equation (PDE) in m(t, x), such that the spatial dynamics

are given entirely by the diffusion of this molecule in the solution. Interferon is

then systematically consumed by c2, at a rate λ, and is autoreplicated within

c1 cells, at a rate φ2, and where this autoreplication is further stabilized by
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λ t = 0 t = 25 t = 50 t = 75 t = 100

0.01

0.1

0.15

Figure 4.1: Multi-cluster results in the concentration of molecular species m(t, x) from simulation
of the simple model (4.1) for varying affinities, λ ∈ {0.01, 0.1, 0.15}, and for t ∈ {0, 25, 50, 75, 100}
respectively.

negative self-regulation, with the rate constant φ3. Therefore, we have that

∂m

∂t
= Dm∇2

xm− λmc2 + (φ2m
2 − φ3m

3)c1 (4.1)

where Dm is the coefficient for diffusion of IFN.

Simulations were performed for this system using a 4th order Runge-Kutta

predictor and MacCormack corrector, with a central difference formula used for

the calculation of diffusion terms. Initial conditions for the producer cells are

given by

c1(0, x) =

5∑
j=1

5∑
i=1

exp

[
−(x1 −

1

2
i)2 − (x2 −

1

2
j)2

]
,

and for the IFN concentration is given by the Gaussian distribution

m0 := m(0, x) = exp

[
−(x1 −

1

2
)2 − (x2 −

1

2
)2

]
,

with the rate constants given by Dm = 10−3, φ2 = 3
4 , and φ3 = 1

8 and λ being

variable between simulations. Moreover, zero-Neumann boundary conditions

are used in order to conserve the molecular population.

The results for the simulation of system (4.1) show, most simply, that com-

municative capability increases with decreasing values for affinity of IFN for its
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consumer cells (Fig. 4.1). The approximate threshold value for which this is

true falls in the interval λ ∈ (0.1, 0.15) (Fig. 4.1), given the values chosen for

Dm, λ, φ2, φ3.

This may, to some extent, give a mathematical explanation for why it may

be biologically advantageous to maximise the utilisation of lower affinity IFN in

a system where one wishes to stop the spread of the infection. It could be that

cells employ this methodology in order to spread a panic signal upon the initial

detection of a virus and initialisation of a local IFN signal.

The explanation given by this simple model, however, does not explain the

nature of the interaction between molecules and cells that allows this system

to proffer communicative capabilities as it does. For example, we artificially

introduce the notion that increasing the affinity of IFN molecules will increase

their consumption but must still question what effect this alteration should have

on the interaction with producer cells. It is difficult to intuit, also, how this in-

crease in affinity should change the interactions that impact the metabolism

of IFN within the cell. One might expect that affinity would increase produc-

tion but would it also increase feedback sufficiently to dampen that response?

Alterations to equation 4.1, however, require suppositions on the desired final

behaviour of the system, rather than a priori biological assumptions.

Therefore, in response to this fundamental issue, we aim to create a more

biologically descriptive model that will serve to quantify dynamics in the cell-

surface receptors; the binding of these receptors by free molecules; and the

consequential alterations in metabolism in a spatial context. We will also re-

alise the interactions between these various dynamical behaviours, in order that

one might better understand how the biological reality is affected by changing

individual characteristics.

4.2.2 General SAR Model Within the Spatio-Structuro-

Temporal Framework

We introduce here a general SST model for SAR systems. Various instances of
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this model can serve to study different biological problems.

In this framework we consider that cells of the same type can differ in their

states. The cell state is described by three variables ξ ∈ Υ ⊂ Rυ, y ∈ P ⊂ Rp

and α ∈ Γ ⊂ Rγ , where ξ, y, α represent the total density of receptors on the

cell membrane; the part of receptors that have bound ligands; and the metabolic

variables, respectively. We consider that there are q different diffusible ligands of

concentrations ml(t, x), 1 ≤ l ≤ q. As a simplifying assumption we consider that

ligands mk bind with no competition to their cognate receptors ξi, 1 ≤ i ≤ υ.

Competition could be easily introduced by considering that the same receptor

can bind several ligands, but in this case the y space has to be supplemented with

extra dimensions corresponding to the simple and double charge of the receptors.

The binding event can trigger the signalling and activation of metabolic variables

αk, 1 ≤ k ≤ γ that are responsible of the production of the ligandsmj , 1 ≤ j ≤ q.

A spatially and structurally heterogenous cell population is described by a

structured cell density, namely by a positive, integrable function ĉ(t, x, ξ, y, α),

with t ∈ (0, T ], x ∈ D ⊂ Rd, ξ ∈ Υ, y ∈ P, and α ∈ Γ.

The spatial cell density c(t, x) can be obtained as the marginal distribution

of the structured cell density

c(t, x) =

∫
Υ×P×Γ

ĉ(t, x, ξ, y, α)dξ dy dα. (4.2)

The dynamics of the structured cell density is described by

∂
∂t ĉ(t, x, ξ, y, α) = Ŝ(t, x, ξ, y, α)−∇x · F̂ (t, x, ξ, y, α)−∇ξ · Ĝ(t, x, ξ, y, α)

−∇y · Ĥ(t, x, ξ, y, α)−∇α · K̂(t, x, ξ, y, α)

(4.3)

whose full derivation is based upon work by Domschke et al.[97] and is given

in 1.2, along with a novel derivation of a structural source term, where Ŝ is a

source term and where F̂ , Ĝ, Ĥ, K̂ are space-structure fluxes conjugated to the

variables x, ξ, y, α, respectively.

We then proceed to more clearly define each of the flux terms in (4.3) as
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follows.

Spatial flux

The general form of the spatial flux equation is commonly obtained from Fick’s

law and is given by

F̂ (t, x, ξ, y, α) = −Dc∇xĉ(t, x, ξ, y, α)

+ĉ(t, x, ξ, y, α)χv∇xv(t, x)

+ĉ(t, x, ξ, y, α)
q∑
i=1

χi(y)∇xmi(t, x),

(4.4)

where the first term represents the spatial undirected diffusion of cells, the

second term and third terms correspond to directed haptotactic and chemotactic

cell migration, respectively.

Dynamics in receptoro-binding space

Notice that each ligand binds to the available cognate receptors. Thus, the

binding rate depends on the free receptor amount ξi− yi and is proportional to

the ligand concentration mi

bi(ξ, y,m) = βiϑ(ξi − yi)mi, (4.5)

where ϑ is a function allowing to cope with the situation when binding is thresh-

olded in the concentration of free receptors. The unbinding rate is simply pro-

portional to the fraction of the carrying capacity of bound receptors

ui(y) = ηiyi. (4.6)

Bound receptors are internalised with a rate

ιi(y) = kiyi. (4.7)
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A subset of these internalised receptors are recycled. The timescale ζ−1
i of this

process results from complex interactions between receptors and scaffolds inside

the endosome [133] and depends nonlinearly on y. Therefore, the recycling rate

reads

ri(y) = ζi(y)yi, 0 ≤ ζi(y) ≤ ki. (4.8)

Receptors are synthesised by the cell with a rate pi(α, ξ) that depends on the

metabolic variables α and also on actual concentration of receptors ξ and are

lost by various mechanisms with a rate proportional to ξ

di(ξ) = diξi. (4.9)

In summary, the receptoro-binding variables of a single cell follow the differential

equations

dξ

dt
= Ψξ(ξ, y, α) = P(α, ξ)−Dξ + (R(y)− I)y (4.10)

dy

dt
= Ψy(ξ, y) = βB(ξ − y)m− (U + I)y, (4.11)

where P, D, R, I,β, B, U are diagonal matrices with diagonal entries pi, di, ζi,

ki, βi, ϑ(ξi − yi), ηi, respectively.

It follows that the advection fluxes in receptor and binding spaces are

Ĝ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[P(α, ξ)−Dξ + (R(y)− I)y] (4.12)

Ĥ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[βB(ξ − y)m− (U + I)y]. (4.13)

Dynamics in metabolic space

The part of internalisation flux that is not recycled and that escapes lysosome

degradation triggers signaling and induces changes of the metabolic variables

α. We use a flux-based description of these variables that considers that there
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are γ irreversible metabolic fluxes each one producing a different molecule. The

reversible case can be simply obtained by doubling the number of variables for

each reversible flux. To each one of these fluxes we associate a scalar vari-

able 0 ≤ αi ≤ 1, meaning no production activity and maximum production

activity for αi = 0 and αi = 1, respectively. In order to represent competi-

tion between fluxes we impose the condition
∑r
i=1 αi ≤ 1. Thus α ∈ Γ, where

Γ = {(α1, . . . , αr) | 0 ≤ αi ≤ 1,
∑r
i=1 αi ≤ 1} is a simplex. This description

is equivalent to the space of admissible fluxes in stoichiometric and flux bal-

ance analysis of metabolic networks where αi, 1 ≤ i ≤ r represent activities of

extreme pathways or currents [62, 291]. The dynamics in the metabolic space

is described phenomenologically imposing the invariance of the simplex Γ as

fundamental property. A possible such choice is

dαi
dt

= Ψαi(y, α) = fi(y)(1− αi)− µiαi , (4.14)

where µi ≥ µ0 > 0, fi ≤ f0, f0 > 0, rf0 < (f0+1). The corresponding advection

flux in the metabolic structure space is K̂ = (K1, . . . ,Kγ) with the components

Ki = ĉ[fi(y)(1− αi)− µiαi] . (4.15)

Spatial dynamics of diffusible ligands

Begin by denoting m̄ := [m1, . . . ,mp,mp+1, . . . ,mq]
T , with mj := mj(t, x), as

the total vector of molecular species, where there exist q molecular species of

which the first p ≤ q species are binding ligands.

Then, the spatial dynamics of all molecular species are defined by a diffu-

sive process, and with a species specific diffusion coefficient Dmj for mj(t, x).

The binding ligands, within the molecular species, are removed from the pop-

ulation of free molecules through binding. All molecules are produced by the

cellular population, in a metabolic-activity-dependent manner, and are either
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contributed to or detracted from by a situation specific sink or source func-

tion Θ̄(t, x). Therefore, denoting the q-dimensional vectors of parameters ·̄ :=

[·1, . . . , ·q]T , we obtain the relations for molecular species as

∂m̄

∂t
=∇x · diag(Dm̄)∇xm̄− ε

∫
Γ

∫
P

∫
Υ

(diag(β̄ϑ(ξ − y))m̄− diag(η̄)ȳ)ĉ dξ dy dα

+

∫
Γ

∫
P

∫
Υ

φ̄α(α)(1− m̄)ĉ dξ dy dα+ Θ̄(t, x) ,

(4.16)

with φ̄α(·) : Υ→ Rq defining a vector of production values for each molecular

species given the cellular metabolic activity level, α; β̄ = [β1, . . . , βp, 0, . . . , 0]T ;

and η̄ = [η1, . . . , ηp, 0, . . . , 0]T ; ε is a constant converting surface to volume

binding/unbinding rates.

Summary of the derived modelling framework

The modelling framework derived above has been given in its most general form

to allow applicability to most any problem in cell-cell communication. The

major contribution of this model is its completeness, in relation to other such

models. The spatial partial derivative form allow the description of cell migra-

tion, including directional motility resulting from chemotactic and haptotactic

interactions. The Liouville equation form in structure variables can cope with

distribution dynamics of heterogeneous cellular populations. The dynamics of

the cellular population in space and structure is described by major flux func-

tions given by

Ŝ(t, x, ξ, y, α)– who can be used to specify the precise nature of the mitotic

process within the cellular population (for which a suggestion for cell-cycle

based mitosis is given in Sections 1.3);

F̂ (t, x, ξ, y, α)– who specifies the spatial movements and interactions of

the cellular populations within its micro- and macro-environment, such as

diffusive, hapto- or chemotactic dynamics;
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Ĝ(t, x, ξ, y, α)– who particularises the dynamic mechanisms through which

the cell alters its receptor expression pattern and who may depend on spa-

tial, binding, or metabolic considerations;

Ĥ(t, x, ξ, y, α)– who intimates the binding dynamics of the particular molec-

ular species to the cellular population in question and who, in previous

treatments [97, 161], has been used to describe even binding-contingent

inhibitory dynamics;

K̂(t, x, ξ, y, α)– who describes the metabolic dynamics of the cellular pop-

ulation in response to binding or other dynamics.

Together, these flux functions allow one to describe the dynamics of cellular

populations in oncological, immunological, and many other scenarios.

The totality of the above propositions are summarised as the system of
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equations



∂c

∂t
=Ŝ(t, x, ξ, y, α)

−∇x ·
[
−Dc∇x + χv∇xv(t, x) +

q∑
i=1

χi(y)∇xmi(t, x)

]
ĉ(t, x, ξ, y, α)︸ ︷︷ ︸

F̂

−∇ξ · [P(α, ξ)−Dξ + (R(y)− I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĝ

−∇y · [βB(ξ − y)m− (U + I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĥ

−∇α · [fi(y)(1− αi)− µiαi] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
K̂

∂m̄

∂t
=∇x · diag(Dm̄)∇xm̄

− ε
∫
Γ

∫
P

∫
Υ

(diag(β̄ϑ(ξ − y))m̄− diag(η̄)ȳ)ĉ(t, x, ξ, y, α) dξ dy dα

+

∫
Γ

∫
P

∫
Υ

φ̄α(α)(1− m̄)ĉ(t, x, ξ, y, α) dξ dy dα+ Θ̄(t, x) ,

(4.17)

and shall be used as the basis of the particular models used throughout the

remainder of this paper.

4.2.3 Particularised IFN-Based Model

It is necessary to first have a discussion about the context into which we shall

place this model, with respect to the generalised SST framework for SARs. First

of all, and for simplicity, we neglect the receptor space and source terms in the

IFN case. This is due to the fact that we do not consider the creation of IFN

SARs, but rather their behaviour and spatial recruitment, and the change in

binding in the IFN case appears to be related to affinity rather than flux of the

binding proteins themselves.

It should be clear, that a main concern in modelling the IFN system is the
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numerical simplification involved in the reduction of the number of necessary

dimensions under consideration. This has succeeding consequences in terms of

our ability to intuit the results of the system and better understand both the

SST framework, and the internal processes for communicative SARs. For this

reason, we also neglect, initially, the spatial dynamics of the SAR cells and

concentrate first on cell-cell communication mediated by the diffusible ligand.

Now, we contextually define the binding variable, y ∈ P with v = p = 1,

0 ≤ y ≤ ξ = 1, such that increasing values of y correspond to the increas-

ing concentration of bound IFN-IFNAR1-IFNAR2 complexes for some given

(t, x, α) ∈ I×D×Γ.

The metabolic variable, α ∈ Γ, is somewhat more complicated in biological

terms since we wish to encapsulate a state of the cell under which a certain

reaction is more likely to take place. In the particular case of IFN, for example,

we understand the metabolic variable as describing a state of the cell wherein

ISGs implicated in the production of or response to IFN (such as IRF-7, im-

plicated in production, or USP18, a key regulator of the cellular response to

IFN) are more frequently transcribed. Therefore, begin by describing α = 0 as

a state in which ISGs are not transcribed and α = 1 as some state where ISGs

are transcribed at their physiologically maximal rates. Then we understand α,

itself, as encapsulating the propensity for the cell to proactively transcribe ISGs

through the activity of the Jak-Stat pathway.

Within this paradigm, then, these two variables will interact in the following

way. Begin by considering a scenario in which one cluster of IFN SARs are stim-

ulated by a single initial dosage of IFN. The cell will bind these IFN molecules

and increase in binding state of the cell, y, will form the IFN-IFNAR1-IFNAR2

complex and initiate the reactions of the Jak-Stat pathway. This will subse-

quently increase the cells metabolic state, α, of the cell and cause the increased

production of IFN. The increase in transcription of ISGs, specifically USP18,

will also cause a decrease in the efficacy of the ternary complex (IFNAR1-IFN-

IFNAR2) assembly [341] or maximal effective binding, y. This, in turn, will

subsequently lead to a decrease the physiological concentration of the Jak-Stat
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Figure 4.2: Diagram describing the simplified IFN cell-regulatory system. Unbound IFN (top left)
will attempt to bind unbound receptors (‘Y’s) on the surface of the cell (circle), in accordance with
its affinity for these receptors, with binding rate β. Likewise, these bound IFN-receptor complexes
unbind with some rate η. The other way in which the proportion of surface bound molecules may
decrease in through the internalisation of IFN receptor complexes with rate δ. The internalisation of
IFN, through a complicated biological pathway, leads to a metabolic switching of the IFN-producing
cell infrastructure from the default state of dormant (OFF) to active (ON), in which state the cell
produces greater levels of IFN with rate φ (centre). The cell infrastructure attempts to return to
the default (OFF) state with a constant rate µ0. In the active (ON) state the conformation of
receptors, in the presence of IFN, is reduced which can be modelled through the reduction of the
ability of IFN molecules to bind their receptors (i.e. β ↓, bottom right).

reactions and reduce the metabolic state, α, of the cell.

Unthresholded binding model

Throughout this model, we assume a homogeneous and constant concentration

of biological pathogen, such that IFN response is consistently encouraged. We

have chosen illustrative values for the binding rates, consistently with previous

models [97, 318], but with the difference that we consider here the negative

feedback loop of the IFN system between the metabolic state of the cell and the

binding of molecular species to the surface. In this respect, we consider binding

to be non-dimensionalised and that feedback causes the maximal binding rate

to decrease linearly with the metabolic state of the cell such that the range

of values of y for which positive binding exists is given by y < 1 − α. Thus,

we consider that the binding dynamics of molecular species to the surface, b :
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I × D × P × Γ→ R, can be given by

b(m, y, α) := β(1− y − α)m

where β is the binding rate constant for IFN.

When we say ’binding’ in this context, we actually make a generalisation

of the concept of ’meaningful binding’ which is to say that binding is sufficient

to allow for recruitment of the secondary complex (IFNAR2) and subsequent

co-phosphorylation of their protein tails.

The rate of removal of bound molecular species from the surface of the

cell has a first component corresponding to unbinding and a second component

corresponding to internalisation and degradation of bound receptors. Therefore,

we consider that the removal of species from the cell surface, d : P → R, can be

given by

d(y) := (η + δ)y ,

where η gives the unbinding rate of molecules from the surface of c1(t, x, y, α)

and δ gives the rate of cellular degradation of bound IFN.

Further, we make the assumption that the gene responsible for regulating

the production of IFN has a default transcriptional state of ‘off’, such that the

gene is not transcribed unless appropriately upregulated. Therefore we arrive at

a relation for the advective rate for change in metabolic profile, µ : P × Γ→ R,

of the cells which is given by

µ(y, α) := δy(1− α)− µ0α

where δy is the internalisation-degradation rate (as above) and µ0 is the intrin-

sic metabolic restoration rate, the purpose of which is to restore the default

metabolic position of the cell α = 0. The term (1− α) is chosen such that the

metabolic state of the cell might never exceeds a maximum value normalized to

one.

Production of m with respect to the metabolic state of the cell is given by
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the production rate function φ : Γ→ R and is assumed to be of the form

φ(α) := φαα(α− θα) ,

where φα is the rate constant for metabolic production of m and θα is some

thresholding value above which the cell become metabolically active with respect

to the production of IFN, m.

For reasons that will become clear in the following subsection we call this

model the unthresholded binding model, which is then written

∂c1
∂t = −∇y · [β(1− y − α)m− (η + δ)y] c1 −∇α · [δ(1− α)y − µ0α] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Γ

∫
P

(β(1− y − α)m− ηy)εc1(t, x, y, α) dy dα∫
P

∫
Γ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 .

(4.18)

Thresholded binding model

There are several alternative interpretations of potency of a ligand for mean-

ingful binding and signaling triggering [184]. One interpretation associate this

potency to the product between concentration and affinity of the ligand, suggests

that ligands are detected irrespective to their quality as long as their concentra-

tion is above a threshold. Thresholds in the number of triggered receptors have

been observed for immune T cells [329]. The second interpretation is based

on kinetic proof-reading and suggests that a minimal binding time is needed

for a given ligand to trigger signaling [112]. The correlation between binding

time characteristics and immune cell activation is confirmed by several studies

[184, 116]. Furthermore, recent dynamical studies demonstrated the phospho-

rylation of STAT2 to follow the formation of the complex (which is more or

less instantaneous, < 1 second) by approximately 8 seconds [211] for complete
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activation. All these studies suggest the intrinsic assumption that meaningful

binding requires that receptor-ligand complex to be bound for at least a mini-

mal time τmin. In general, depending on the comparison between the timescales

of meaningful complex formation and dissolution and those of activation of the

signaling processes it is possible that both concentration and temporal thresh-

olds apply to the ligand recognition. We do not aim to resolve this issue here.

Because our model does not account for binding time heterogeneity, we simply

replace the temporal threshold by a concentration one, considering that there

is a function τb(m) relating the concentration of ligands to the binding time.

Then, for some concentration m(t, x) = θm we have that

τb(θm) = τmin

such that θm gives the concentration of m sufficient for effective binding of the

IFNAR2 protein and IFNAR1-IFNAR2 complex. In order to cope with this

threshold effect, we rewrite the binding flux term as

b(y, α,m) := β(1− y − α)(m− θm).

Substituting this new relation back into our model, we obtain the thresholded

binding model

∂c1
∂t = −∇y ·[β(1− y − α)(m− θm)− (η + δ)y] c1−∇α ·[δ(1− α)y − µ0α] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Γ

∫
P

(β(1− y − α)m− ηy)εc1(t, x, y, α) dy dα∫
P

∫
Γ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 .

(4.19)
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Spatially dynamic, thresholded binding model

Finally, we consider a spatially dynamic system wherein cells are able to move

through the spatial domain. We choose to endow this system with 2 primary

functions of migration:

(i) diffusion, by virtue of immune cells’ natural inclination to motility, and

(ii) chemotaxis, by virtue of immune cells’ ability to actively respond to an

immune-response signal as a recruitment signal.

In stating this, we therefore assume that the immune cell will interpret the

presence of IFN as a response to, for example, a viral threat to the body and

respond to this signal by migrating towards its origin. We further assume that

even in the absence of an IFN gradient, cell Brownian motion will generate

spatial fluxes leaving regions of highest cell concentration.

We thusly rewrite the system as

∂c1
∂t = ∇x ·Dc1∇xc1 −∇y · [β(1− y − α)(m− θm)− (η + δ)y] c1

−χm∇x · c1∇xm−∇α · [µ̆+(1− α)y − µ−] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Υ

∫
P

(β(1− y − α)− (η + νrδ)y)εc1(t, x, y, α) dy dα∫
P

∫
Υ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 ,

(4.20)

4.2.4 Numerical methods

We use the 4th order Runge-Kutta predictor for this system, given by

c̄τ+1
1 := cτ1 +

dτ

6

(
F (kτc1,1) + 2F (kτc1,2) + 2F (kτc1,3) + F (kτc1,4)

)
,
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with

kτc1,1 := cτ1 , kτc1,2 := cτ1 +
h

2
kτc1,1,

kτc1,3 := cτ1 +
h

2
kτc1,2, kτc1,4 := cτ1 + dτkτc1,3 ,

where F (cτ1) := F (cτ1 ,m
τ ) are given by the local central difference approxima-

tion of the spatio-structural dynamics for cτ1 := c1(tτ , x, y, α) at the given time

point tτ . We then use a MacCormack corrector, of the form

ĉτ+1
1 :=

cτ1 + c̄τ+1
1

2
+
dτ

2
F (c̄τ+1

1 ) .

Likewise, these formulae are used for the calculation of the solution for the IFN

molecular species, m(t, x).

We further apply the population-based constraint

cτ+1
1 := ĉτ+1

1

∫
P

∫
Γ

c01 dα dy∫
P

∫
Γ

ĉτ+1
1 dα dy

, (4.21)

in order to constrain growth in the population due to the advective term under

condition c(t, x, ξ, y, α) ≥ 0. We can write this in the particular case give since

S(t, x, ξ, y, α) = 0 and therefore we have that there is no overall change in

population. Otherwise, however, this can be achieved by stepwise accumulation

and conformity.

In order to compute accurate solutions to the multi-cluster distribution ar-

rays, we denote one individual cluster as c1,i(t, x, y) for any i ∈ {1, . . . , k}, where

k is the total number of clusters or initial distributions. Then we have that the

entire cellular population distribution is defined as

c1(t, x, y, α) :=

k∑
i=1

c1,i(t, x, y, α).
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Observe that from the fundamental theorem of calculus we, therefore, have

∇x · c1(t, x, y, α)∇xm = ∇x ·

(
k∑
i=1

c1,i(t, x, y, α)

)
∇xm

=

k∑
i=1

∇x · c1,i(t, x, y, α)∇xm

(4.22)

Since we have that the overall population does not change with respect to

changes time (S(t, x, y, α) = 0), we can use that (4.21) and (4.22) imply that

the population constraint holds on each individual cluster of IFN producer cells

cτ+1
1,i := ĉτ+1

1,i

∫
P

∫
Γ

c01,i dα dy∫
P

∫
Γ

ĉτ+1
1,i dα dy

, ∀i. (4.23)

and then the total population changes with

cτ+1
1 := ĉτ+1

1

∫
P

∫
Γ

k∑
i=1

c01,i dα dy∫
P

∫
Γ

ĉτ+1
1 dα dy

, ∀i. (4.24)

These constraints should either leave the population c(t, x, y, α) unaltered or

correct for any small instabilities arising from the long-term cumulation of O(δ2)

spatial advective errors, which are not adequately dealt with by the predictor-

corrector methodology.

We also introduce the notations

cα :=

∫
P

c(t, x, y, α) dy and cy :=

∫
Γ

c(t, x, y, α) dα

as quantifying the spatio-metabolic and spatio-binding distributions, respec-

tively, and

c̆ :=
x

D

c(t, x, y, α) dx

as quantifying the non-spatial metabolo-binding distribution of the cellular pop-

ulation c(t, x, y, α).
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Parameters

Here we give the table of parameters for the complete, SST system:

dependent independent parameters
variable variable

ĉ x Dc = 10−5 χm = 10−4

y β = 2λ υ = 10−1 θm = 10−1

α d = 1
4β µ0 = 10−1

m x Dm = 4×10−3

ε = 10−2 θα = 10−1 φ = 1

Table 4.1: Table of parameters

4.2.5 Results from Numerical Simulations

Spatially static, single-cluster results were generated by simulating (4.18), whilst

multi-cluster results generate by simulating (4.19) with Neumann zero bound-

ary conditions in spatial variables and Neumann zero boundary conditions in

structural variables. Spatially-dynamics results were generated by simulating

(4.20). A full description of numerical parameters used for simulating this sys-

tem of equations is given in 4.2, where parameters were used as appropriate for

the simulated model.

dependent independent parameters
variable variable

ĉ x Dc = 10−5 χm = 10−4

y β = 2λ υ = 10−1 θm = 10−1

α d = 1
4β µ0 = 10−1

m x Dm = 4×10−3

ε = 10−2 θα = 10−1 φ = 1

Table 4.2: Table of parameters for a model SAR system

In the following we will refer to two types of numerical simulations that differ

by the type of initial condition. Single cluster simulations start with a localized

cell distribution having a single maximum. Multiple cluster simulations start
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cα

cy

c̆

m1

t = 0 t = 5 t = 10 t = 15

Figure 4.3: Single-cluster results from simulation of model (4.18) for low affinity (λ = 0.1) are given
for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and α

on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal plane and

y on the vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the horizontal axis

and y on the vertical axis; and for m(t, x) in space (4th row), for t ∈ {0, 5, 10, 15} respectively.

with an initial cell distribution having several maxima periodically positioned

in space.

Spatially-static, single-cluster simulations

Single-cluster results (Fig. 4.3 & 4.4) demonstrate an initial rise in average

binding position, cy, of the cellular population with a concurrent rise in average

metabolic position, cα. In c̆ we also observe the rise in metabolo-binding state

with a focus developing at approximately (y, α) ≈ (0.45, 0.55), with a negatively

graduated non-linear ridge, and a tail between the focus and (y, α) = (0, 0).

Beyond t = 20, the average distribution in the binding space remains largely

static, whilst the population continues to redistribute itself into a teardrop ge-
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cα

cy

c̆

m1

t = 20 t = 25 t = 30 t = 35

Figure 4.4: Single-cluster results from simulation of model (4.18) for low affinity (λ = 0.1) are given
for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and α

on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal plane and

y on the vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the horizontal axis

and y on the vertical axis; and for m(t, x) in space (4th row), for t ∈ {20, 25, 30, 35} respectively.

ometry, around the average position. This indicates, firstly, that the cell is

capable of sustaining its own binding state, through production, upon initial

stimulation with IFN. The formation of this geometry could be as a result of

the maximal concentration of producer cells being central, and thusly producing

greater levels of IFN which can be bound by the population, itself.

The distribution in the metabolic space exhibits oscillation, around its av-

erage position, for all time points t ≥ 15 (Fig. 4.4 cα). This oscillation is both

transverse and longitudinal, and is likely to occur as a result of the SAR-cycling

between the metabolic and binding states of these cells. This demonstrates the

importance of the establishment of heterogeneity within the cellular popula-

tion as it acts to regulate the IFN output of the system, whilst concurrently
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cα

cy

m1

t = 0 t = 15 t = 30

Figure 4.5: Multi-cluster results from simulation of model (4.19) for low affinity (λ = 0.01) are
given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane

and α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal

plane and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively.

maximising metabolic expedition from the available and bound IFN supplies.

Interferon producer cells do not act in unison and, indeed, use heterogeneity to

co-regulate cells within such a cluster.

The final observation that one wishes to make in the results for the single-

cluster case is the visible SAR-cycle displayed within the metabolo-binding space

(Fig. 4.3 & 4.4 c̆). Regions of the solution for the cellular population ap-

pear to increase their binding state of IFN; before concurrently increasing their

metabolic state and slightly decreasing their binding state; subsequently de-

creasing their metabolic and binding states, together; and beginning this cycle,

once more. Whilst the majority of the population maintains its position within

the bulk of this distribution, there exist cells (or subpopulations of the cellular
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cα

cy

m1

t = 45 t = 60 t = 75

Figure 4.6: Multi-cluster results from simulation of model (4.19) for low affinity (λ = 0.01) are
given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane

and α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal

plane and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively.

population) that are affected by this feedback cycle.

Spatially-static, multi-cluster simulations

In the multi-cluster results (Fig. 4.5–4.8) we observe a significant difference in

the behaviour of the metabolic and binding spaces, in comparison to those of

the single cluster. One observes the appearance of stable regions within the

metabolic space, at high values for α; a phenomenon that we term ‘metabolic

trapping’. In the low affinity case, where the focal point for metabolo-binding

dynamics would be lower in value, this effect is likely due to the feeding back

of IFN proteins between clusters that lead the internal feedback mechanism to

be ineffective at downregulating the metabolic state of the cell. In the high
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cα

cy

m1

t = 0 t = 15 t = 30

Figure 4.7: Multi-cluster results from simulation of model (4.19) for high affinity (λ = 0.5) are given
for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and

α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal plane

and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively.

affinity case, this is likely to be due to the high binding and retention rates,

in comparison to the unbinding rate, which causes the internalisation rate to

remain high.

The binding state (Fig. 4.5–4.8 cy), on the other hand, demonstrate oscil-

latory dynamics which were before characteristic of the metabolic state. Upon

the establishment of stable metabolic dynamics, at high values for α, one ex-

pects that the conflict between the high rates of binding (caused by high rates

of production and subsequent values for free chemical concentrations) and the

feedback mechanism of the metabolic gene circuitry would cause such a be-

haviour. Cells will attempt to bind the high levels of IFN whilst the feedback

mechanism continually acts to diminish the affinity of producer cells for IFN.
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cα

cy

m1

t = 45 t = 60 t = 75

Figure 4.8: Multi-cluster results from simulation of model (4.19) for high affinity (λ = 0.5) are given
for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and

α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal plane

and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively.

One should also notice that in the low affinity case (Fig. 4.5 & 4.6), as

opposed to the high affinity case (Fig. 4.7 & 4.8), one observes that the signal

is conveyed to the neighbouring cells. This can only be achieved through the

implementation of a threshold in the binding dynamics for c(t, x, y, α) and this

same threshold mediates the distance at which the signal can be conveyed.

Moreover, a simple comparative between the high affinity multi-cluster (Fig.

4.7 & 4.8), low affinity multi-cluster (Fig. 4.5 & 4.6), and single-cluster (Fig.

4.3 & 4.4) results will show that the concentrations of IFN produced by the low

affinity multi-cluster system were far in excess of those in the other two cases.

This is likely as a result of the cumulative production but also as a result of the

production of the two, or more, clusters feeding back the IFN to one another,
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cα

cy

m1

t = 0 t = 10 t = 20

Figure 4.9: Multi-cluster results from simulation of model (4.20) for high affinity (λ = 0.5) are given
for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and

α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal plane

and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 10, 20} respectively.

causing a metabolic trapping effect. This metabolic trapping is manifest as an

emergence of the population at the upper boundary of the metabolic space and

retention of this position. This effect is opposed to that of the metabolo-binding

SAR-cycling that one observes in the single cluster case and is as a direct result

of inter-cluster heterogeneity, where the promotion of the primed state in one

cluster will facilitate the priming of the second, and so on.

Spatially-dynamic, multi-cluster simulations

Consider, now, the numerically generated results for the system (4.20), with

parameters given as in above sections (Table 4.2). We give the simulated solu-
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cα

cy

m1

t = 30 t = 40 t = 50

Figure 4.10: Multi-cluster results from simulation of model (4.20) for high affinity (λ = 0.5) are
given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane

and α on the vertical axis; in the spatio-binding domain (2nd row, cy), with x on the horizontal

plane and y on the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {30, 40, 50} respectively.

tions for the high-affinity, multi-cluster IFN case (Fig. 4.9 & 4.10), only, as the

spatio-metabolo-binding dynamics are similar at both high and low affinities.

One immediately observes the dissolution of the discrepancy between the two

species in terms of their communicative capability. The high affinity SARs are

able to communicate with one another under a spatially-dynamic, chemotactic

regime.

In order to best understand these dynamics, one must observe them in

the passage of time. The chosen initial conditions impose a stimulus on the

central cluster of cells, whilst peripheral clusters are in a state of metabolic

relaxation (Fig. 4.9). The spatial dynamics of the central cluster, at early
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time-points, will be mainly balanced between diffusive processes and chemotac-

tic auto-aggregation. In the peripheral clusters, however, the absence of IFN

means that the spatial dynamics are mainly dictated by diffusive processes.

This diffusion in the cellular population allows some small subpopulation of

cells to migrate sufficiently towards the central cluster so as to overcome the

thresholding in the metabolic dynamics. Coupling this subpopulation with high

affinity molecules, one achieves a fast dynamics in the binding and metabolic

spaces on the perimeter of the peripheral clusters (Fig. 4.9, t = 20). Once

these peripheral subpopulations have been potentiated to the point where they

are capable of producing high affinity IFN, the cluster attains an intra-cluster

supply and is capable of maintaining its own levels of IFN (Fig. 4.9, m(20, x)),

resulting in initially peaked levels of IFN concentration at peripheral sites.

In the chemotactic simulations, one can more clearly see the elements of

inter-cluster oscillation as an illustration of similar intra-cluster events. One

observes an initially raised production dynamics in the central clusters (Fig. 4.9,

t = 10); followed by fast metabolic dynamics within, and a concurrent raising

of the local concentrations around, the peripheral clusters (Fig. 4.9, t = 20); a

subsequent response from the central cluster as the peripheral clusters feedback

IFN to elevate binding rates (Fig. 4.10, t = 30); and the resolution of this

oscillatory behaviour in the establishment of a quasi-equilibrium (Fig. 4.10,

t ≥ 40), where intra-cluster dynamics prevail but result in little macroscopic

change. The initial inter-cluster heterogeneity is a necessary precursive state

for the establishment of this uniformity in behavioural dynamics.

Moreover, the establishment of this synchronicity between the clusters leads

to another effect stemming from the chemotactic dynamic. Not only are cells

capable of communicating in the chemotactic paradigm but they also self-

attenuate their diffusion and auto-aggregate upon the establishment of intra-

cluster activation. This may have profound implications for immunity: If, as

one might intuitively predict, cells who are inclined to utilise chemotactic dy-

namics were attracted to the first cluster, and activated at some gradualistic

pace, then the infection of the organism by a pathogen would result in the ac-
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cumulation of IFN excreting cells. The decay of the spatial diversity in the cells

would then lead the body to become more vulnerable to infection at novel sites,

as there would no longer be IFN SARs present. If, however and as predicted

by our model, we have a slight diffusive process which allows the signal to be

passed but followed by auto-aggregation, then the cells would remain mostly in

situ and would propogate the signal without compromising their position in the

event of a further wave of infection.

4.2.6 Discussion

The model and framework that we have herein developed is sufficiently general

so as to be useful in cases that extend beyond the IFN system and even be-

yond the more general category of SARs. Generality is achieved through the

biologically global forms of the binding and unbinding functions as well as the

particularly general form chosen for the metabolic flow function, which describes

a whole metabolic pathway in a reasoned but condensed single ODE form.

The single-cluster model demonstrates a qualitative biological SAR-cycling

between binding and metabolic dynamics of a SAR (Fig. 4.3 & 4.4). More basic,

or simplistic, models may be capable of producing quantitatively similar results

but could not capture the mechanistic heterogeneity within biological systems

which cause them to function as they do. Alone, this illustrates the potential for

SST systems to differentially mimic biological systems to a far greater accuracy

than can current modelling techniques.

In terms of the biology, this model makes two important realisations: That

low affinity molecules may be necessary, for the functioning of the system, in

order that the concentrations of such molecules, at long range, are sufficiently

high so as to activate distant clusters of producer cells. In other words, low

affinity molecules allow cell-cell communication, at a distance. Also, the biolog-

ical system actually has two important functions of heterogeneity internally, in

order to self regulate clusters and maintain sensible levels of IFN, and externally

between clusters, so as to convey the activation signal of one cluster by firstly
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priming an initially excited cluster at a distance.

The internal heterogeneity established by clusters informs one that the abil-

ity for a cluster of SARs (specifically those for IFN) to maintain optimal levels

of metabolism and reciprocal output, it is necessary for some subpopulation

of cells to sacrificially reduce their levels of binding. This appears to be as a

consequence of the feedback between metabolism, α, and binding, y, such that

as one subpopulation rapidly increases its metabolism it will feel and subse-

quent inhibition of its ability to bind and will sacrifice itself such that another

subpopulations may rapidly increase its binding and metabolism, due to the

increased availability of local IFN. This is an important effect of intra-popular

heterogeneity which we term ‘subpopular quiescence’, and may explain several

of the inter-cellular, intra-popular oscillatory events in biology.

The latter of these two realisations recognises the importance of heterogene-

ity to the biological system. We demonstrate that in order that a primary

cluster be primed, upon excitation, it must be allowed to be internally hetero-

geneous such that more active cells serve to activate less active cells whilst down

regulating their own activity. This is essential for maintenance of activity levels

and eventually for switching the system off. We further show that this ability

for one cluster to self-activate and autoregulate is essential to maintain the long

range signal and activate further clusters, at a distance. This nuancing is not

possible within the simple spatial model (4.1).

One phenomenon, observed within the multi-dimensional model, which can-

not be recreated within more simple mathematical models is that of ‘metabolic

trapping’, and therefore, production in the presence of inter-cluster cooperativ-

ity. In the simple models, one has a mechanism of feedback wherein a cluster

will create IFN in the presence of IFN, amplifying a given local signal. This

return, however, always achieves a maximal concentration and the rate is de-

pendent only on local IFN concentration. In the SST context, one observes that

the inter-cluster supply of IFN protein between clusters actually increases the

metabolic state of all involved clusters causing the productions rates to increase,
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concurrently. This is a qualitative result which makes a qualitative difference

to the final resting state of IFN concentration.

We recognise, also, that the conveyance of the signal in the low affinity cases

(Fig. 4.5 & 4.6) is dependent on some thresholding parameter in the binding

space, and can be justified through the biological realisation that sufficiently low

quantities of chemical are insufficient to bind the receptor for long enough dura-

tions so as to cause co-phosphorylation of the internal proteins. This is a further

major difference between this and previous modelling techniques, since previous

modelling techniques make no comment on this phenomenon. A demonstrable

advantage of this modelling framework is the ability to flag up novel biological

problems, not necessarily perceptible to simpler state-variable frameworks.

Spatially dynamic results demonstrated a breakdown in the different abili-

ties of high and low affinity IFN to affect inter-cluster cell communication. This

demonstrates that communication can be achieved either by means of reducing

the barriers to the travelling molecule (affinity to consumer cells) or by cellular

migration, reducing the distance between SARs themselves. In biology these

dynamics may occur in environments which have more freedom for the cells

to migrate and may not be achievable in many instances. In cases where mi-

gration is not possible it may be advantageous to increase production of lower

affinity IFN, where high affinity IFN may be advantageous otherwise, due to

the resultant increase in dynamic rate.

The biological significance of these processes are underscored by the intri-

cate intra- and inter-cluster spatial and metabolo-binding dynamics. The ma-

jor features are an intra-cluster oscillatory dynamic and a intra-cluster, post-

potentiation auto-aggregation which may be immunologically advantageous (de-

pending on the paradigm considered). In the paradigm where cells are capable

of migration, however, one will immediately notice that any given signal is much

harder to contain or confine to a local spatial domain. This may be important

in organs, such as he brain, where the body wishes to localise inflammatory

response and antiviral behaviour as far as is possible. Therefore, local biological
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considerations may effect the evolutionary choice of method for communication

chosen.

Finally, this framework is far more approachable for the biological commu-

nity, in terms of understanding. The internal and inter-cluster heterogeneity

described by the SST framework is relatable to biologists in a way that is con-

ducive to dialogue. In line with this a further explanation proffered to the

thresholding problem, however, could be that there are two such IFN molecules

involved in this process; one of high and one of low affinity. The high affinity

molecules may serve to perpetuate the activation of the considered cell, or clus-

ter, whilst the low affinity molecule may serve to convey this signal to other

producer cells. This is a theme that the authors intend to explore in a further

publication.

4.3 Human Multi-Affinity Interferon System is

Necessary for an Effective Antiviral Response

4.3.1 Further Biological Details of the Interferon (IFN)

System

(In this subsection, we briefly recap many of the biological details of the IFN

system that have not yet been covered, in order to inform the latter biological

discussion of the presented results.)

Cytokine signalling is the primary mechanism by which immune cells com-

municate and may play a major role in the spatial suppression of viral infec-

tions. Systems biological investigations have significantly contributed to the

current understanding of cytokine communication [12, 106], and other such sys-

tems with the ability to detect and amplify biochemical signals [344, 280]. The

spatial aspects and characteristics of cytokine communication have been given

much attention and play a significant part in determining the outcomes of in-

fection, defining the efficiency by which such communication may take place
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[110, 108, 6, 261, 190, 303]. Novel modelling techniques provide an opportunity

to intertwine mechanistic biochemical models with spatial models to determine

interactions between, and the relative contributions of, these two aspects in the

biological immune machinery [161].

One cytokine of particular interest, due to its prevalence throughout the

mammalian body and its function in antiviral defences, is the type I interferon

(IFN) family[40]. Several human pathologies take root in the alteration of the

molecular pathways leading to type I IFN production and responses[284]. In

humans, the type I IFN family includes several molecules; among them the 13

IFN-α subtypes and the IFN-β represent the vast majority of the IFN produced

in response to viral infection. All these type I IFNs act through the same cellular

receptor composed by IFNAR1 and IFNAR2[324]. Their actions are critical for

alleviating viral infections through direct antiviral function in non-infected cells

and through indirect effects elsewhere; activating the humoural and cellular

immune responses[314].

All human cells are capable of producing type I IFNs in response to viral

infection, through a process which is tightly regulated. Three phases can be

distinguished: (i) The recognition of pathogen-associated molecular patterns

(PAMPs) by pattern recognition receptors (PRRs), leading to the phosphoryla-

tion of IRF3 which, in conjunction with NFκB, induces the secretion of IFN-β.

(ii) This IFN-β then acts in autocrine and paracrine manners through IFNAR1

and IFNAR2 present on the infected and neighbouring cells. This activates the

JAK/STAT signalling pathway and induces the IFN-stimulated genes (ISGs);

among them, the transcription factor IRF7. (iii) In the continued presence of

PAMPs, IRF7 is capable of inducing the transcription of the remaining type I

IFN genes, mainly IFN-α genes, as well as IFN-β[205]. The production of the

IFN-α is thus, first of all, dependent of the presence of IFN-β and also in the

response of the cells to this IFN for the induction of IRF7. Since IRF7 is an

ISG, its synthesis is repressed by pathways which negatively control IFNAR-

associated signalling, such as USP18 – an ISG which decreases the efficacy of

the IFN receptor complex assembly[340].
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Such a tightly controlled process for a hierarchical type IFN subtypes pro-

duction appears to be largely conserved in all mammalian orders. All possess at

least one IFN-α and one IFN-β gene as defined at least by their different pro-

moter structure[205, 148]. The biological relevance of the network architecture,

however, is poorly understood. In humans, the IFN-β and the 13 IFN-αs can be

distinguished by the kinetic parameters of their interaction with IFNAR1 and

IFNAR2. These binding parameters determine the stability of the ternary IFN-

receptor complexes and, consequently, the specific activity or biological potency

of each IFN subtypes. The IFN-β is the higher affinity subtype and the IFN-α

contains several less potent subtypes, particularly IFN-α1 and IFN-α13 – two

subtypes strictly identical in their primary sequence but exhibiting > 100 lower

specific activity compared to IFN-β[323, 324]. Interestingly, whereas some IFN-

α subtypes accumulate nonsense mutations in the human population, suggesting

that they are undergoing pseudogenization, the IFN-α13 is one of the type I IFN

subtypes that have been subject to the strongest purifying selection[230].

In this paper, we employ a recently developed mathematical framework to

describe the simultaneous binding process of several IFN populations, of differ-

ing affinities, and their relative effect on the levels of ISG transcription, including

IRF-7 and USP18. We propose that the existence of multiple subtypes in the

IFN system will bestow, upon the host of a given pathogen, an evolutionary ad-

vantage through the increased ability to alert neighbouring cells to the presence

of a pathogen, through low-affinity IFN molecules, whilst retaining the ability

to sustain this reaction, through high-affinity IFN molecules.

4.3.2 A Mathematical Model for IFN Dynamics

In order to perform a controlled study into the dynamics of multi-affinity ligand

systems, we composed a mathematical model to describe this system.

Accordingly as in Hodgkinson et al.[161], begin by defining the temporal and

spatial domains I = [0, T ) ∈ R and D ⊂ Rd, respectively, and their respective

variables t ∈ I and x ∈ D. Then allow that the binding dimensions P ⊂ Rp, with
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p ∈ N, and binding variable y ∈ P exist, such that they define the percentage of

the cells’ available surface receptors, at a given spatio-temporal location (t, x),

which have formed one of p different complexes with ligands. Further, let q ∈ N

be the total number of different ligands. Finally, allow that the metabolic

dimensions Γ ⊂ Rγ , with γ ∈ N, and the binding variable α ∈ Γ exist, such

that they define the metabolic state of the cells as a percentage of the carrying

capacity of the cells metabolic activity in some ith pathway, for i ∈ {1, . . . , γ}.

In the current case, where we focus on the system’s ability to communicate,

we focus primarily on the instance d = 2 or a system of 2 spatial dimensions.

Further, we simplify the system to take into account 2 IFN proteins (high-

and low-affinity), q = 2 such that m̄(·, ·) : I×D → Rq, forming one binding

complex, IFNAR-IFN such that p = 1. Further, we only comprehensively take

into account 1 group of metabolic pathways (those producing IRF-7) such that

γ = 1.

Consider, now, a cellular distribution in time, space, binding, and metabolism,

c1 : I×D×P×Γ → R. The spatial dynamics of this distribution are not con-

sidered. Gross binding is positive up to the carrying capacity of the receptors

minus the square of the metabolic state, 1 − α2, due to the negative feedback

mechanism within the cell, and occurs with a rate vector β̄. In physical terms,

each of the elements of β̄ := [βm1 , βm2 ] define the rate-normalised affinity of

IFNα1/13 and IFNβ for the IFNAR2 receptor, respectively. Unbinding is pro-

portional to the quantity of bound protein, with a rate δ. The metabolic state

of the cell is increased upon binding, up to the normalised maximum 1, with a

rate µ+ and decreases with a rate µ−. Then we write

∂c1
∂t

= −∇y ·
[
β̄ · m̄(1− y − α2)− δy

]
c1(t, x, y, α)

−∇α · [µ+(1− α)y − µ−α] c1(t, x, y, α).

(4.25)

For the first free molecular species, m1(t, x) or IFN-α1/13, we write that the

dynamics are given primarily by diffusion, with a rate Dm1
, and degradation
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by the consumer cell population, c2, at a rate δm1βm1 . Moreover, free IFN-

α1/13 is removed from the system upon binding and replaced into the system

upon unbinding, with a parameter, ε, responsible for scaling the rate of binding

with the surface area of the cell. IFN-α1/13 is further produced by the cell

population, c1, in a metabolically dependent manner in the presence of viral

protein, and up to the normalised capacity one, and at rate φα.

∂m1

∂t
=∇x ·Dm1

∇xm1 − δm2
βm1

m1c2

−
∫
Γ

∫
P

(βm1m1(1− y − α)− δy)εc1(t, x, y, α) dy dα

+ v

∫
P

∫
Γ

φαα(α− θα)(1−m1)c1(t, x, y, α) dα dy.

(4.26)

The second free molecular species is, likewise, defined in terms of its diffusion

and consumption, with rates Dm2
and δm2

βm2
respectively. The species is

further removed from its free state through binding and replaced in response to

metabolic potentiation. We assume, in this model, that the rates of production

due to the increase in IRF-7 is equal for both species (i.e. that the genes IFN-

α1/13 and IFN-β will be transcribed with equal veracity). Thus, the metabolic

production rate φα remains equal between the two species and

∂m2

∂t
=∇x ·Dm2∇xm2 − δm2βm2m2c2

−
∫
Γ

∫
P

(βm2
m2(1− y − α)− δy)εc1(t, x, y, α) dy dα

+ v

∫
P

∫
Γ

φαα(α− θα)(1−m2)c1(t, x, y, α) dα dy

+ φm2
(1−m2)v

∫
Γ

∫
P

c1(t, x, y, α) dy dα.

(4.27)
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Finally, we denote the virus v(t, x), endowing it with diffusive spatial dy-

namics, with a rate Dv, and logistic growth in the presence of c2, with a rate φv.

We also assume that the virus is naturally degraded, with rate δv, or destroyed,

with some immune dependent rate ιδι.

∂v

∂t
=∇x ·Dv∇xv + φvv(1− v)c2 − διιv − δvv. (4.28)

Since the immune cell population, ι, in this case serves as a biological marker

of the degradation of viral proteins, we consider that IFNβ is a proportional

surrogate for produced cytokines such that immune cell recruitment is propor-

tional to local IFNβ concentrations. The relation for recruitment is then given

by a normalised logistic growth function, with rate φι, such that

∂ι

∂t
=φιm2(1− ι). (4.29)

4.3.3 Numerical Methods

Simulations were run using a McCormack predictor-corrector scheme with a 4th

order Runge-Kutta time-step. Since we work within a normalised system, we

need only ensure that the orders of magnitude of our parameters are accurate,

with respect to one another. Therefore, we use the literature to gain this insight,

and choose the values of our parameters to reflect their relative difference and

to elucidate the mechanics of the process.

Studies have found that the diffusion coefficient of typeI IFN is ∼ 7.43×

10−5mm2 s−1 [275] whilst the diffusion coefficient of the influenza virus A,

for example, is within the range ∼ 1.02 − 5.58×10−6mm2 s−1, with a peak

at ∼ 2.62×10−6mm2 s−1 [260]. Therefore, we set the micron-scale diffusion

coefficients of IFN molecules at Dm = 7.4×10−3 and of the influenza A virus at

Dv = 2.6×10−4, as an exemplar.

We also have that IFNAR2 affinity is quantified by on-rates (or association

constants) of ∼757 and 151 M−1 hr−1 and off-rates (or dissociation constants)

of ∼ 2.78× 10−7 and 3.33× 10−5 hr−1 for IFN-α1 and IFN-β [177], respec-
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Variable Parameters

c1 β1 = λm1 β2 = λm2 δ = 2×10−1

µ+ = 2×10−2 µ− = 2×10−2

v Dv = 2.6×10−4 φv = 10−1 δv = 10−2

m Dm = 7.4×10−3 ε = 10−3 φα = 2.0

m1 δm1
= 6×10−2 λm1

= 5×10−1 θα,1 = 2×10−1

m2 δm2 = 6×10−2 λm2 = 8 θα,2 = 2×10−1

Table 4.3: Parameters used in generating numerical results for the full IFN system described by
(eq:4.25-4.29).

tively. Also, it has been found that control cells produced IFN-β at a rate

of ∼ 12.5–17pg ml−1 hr−1 in macrophages [164] and fibroblast [65] cells; for

which metabolic parameters are chosen, accordingly with appropriate binding

and unbinding rates, to reflect this behaviour at µ+ = 2×10−2, µ− = 5×10−2,

θα,1 = θα,2 = 0.2, and φα = 2.0. The remainder of the parameters – namely

those quantifying degradation rates – are estimated. The parameters used in

numerically simulating (eq:4.25-4.29) are then given in Table 4.3.

Initial conditions are given by c01 := c1(0, x, y, α), c02 := c2(0, x), m0
1 :=

m1(0, x), and m0
2 := m2(0, x) with

c01 =

2∑
i=0

2∑
j=0

exp

[
− 500

(
(x1 −

1

5
− 3i

10
)2 + (x2 −

1

5
− 3j

10
)2

+(y − 1

10
)2 + (α− 1

10
)2

)]
,

c02 = 1 , v0 = m0
1 = m0

2 =
1

2
exp

[
− 500

(
x2

1 + x2
2

)]
.

(4.30)

Furthermore, in order to simplify the analysis and illustration of non-temporal,

spatio-metabolo-binding (4-dimensional), we use the notations

cy1 =
∫
Υ

c1(t, x, y, α) dα and cα1 =
∫
P
c1(t, x, y, α) dy (4.31)

to denote the spatio-binding and spatio-metabolic distributions, respectively.
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A dual-affinity, sparsely distributed IFN model

To begin, we consider only one high-affinity IFN ligand in IFN-β and one low-

affinity IFN ligand in IFN-α1. We take, as an illustrative example of viral

dynamics, the model parameters of the influenza A virus. Using a relatively

narrow gaussian distribution to represent a ‘cluster’ of hæmatopoietic, IFN pro-

ducing cells, we arrange these clusters in a 3x3 square grid. This provides a

spatially heterogeneous distribution of cells with spatially consistent clusters

but with spatial separation between clusters, allowing one to observe differenti-

ated communication patterns within and between clusters.

A humanoid IFN model

In order to study the human type I IFN system consisting of 1 high-affinity,

10 medium-affinity, and 2 low-affinity ligands, we insert an additional term,

m3(t, x) to account for medium-affinity populations and augment our normalised

system to account for the respective changes in carrying capacity. The carry-

ing capacity for medium-affinity ligands becomes 10 whilst that of low-affinity

ligands becomes 2. Moreover, in an attempt to more realistically capture the

biologically relevant spatial distribution of cells, we assume that hæmatopoi-

etic cells are continuously and homogeneously distributed across the considered

spatial domain.

4.3.4 Results & Discussion

Henceforth, the use of the general term ‘IFN’ shall be used to refer to all of the

members of the type I IFN family, simultaneously. IFN-β refers to itself, an IFN

exhibiting high-affinity for its receptor and having the ability to be produced

independently of IRF-7 activity. IFN-α refers to the IFN-α subtypes showing

low-affinity for IFNAR2, such as IFN-α1 or IFN-α13 in humans.

Our model then characterises the interactions between 6 populations: the

cellular population, c, who produce IFN upon infection; the surrounding con-

sumer cell population, c2 who is not dynamic; the IFN-α and IFN-β popu-
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c1y

m2

t = 20 t = 30 t = 40 t = 50

Figure 4.11: Time series showing the temporal dynamics of the interferon binding system upon
mimesis of the artificial stimulation of a central cell cluster with IFNβ, in a High/Low IFN system
where IFNα1/13 production is inhibited. Top: The cellular population is illustrated as a 3D iso-
surface with space represented across the lower plane and the proportion of the cell surface bund to
IFN along the vertical axis. Bottom: The IFNβ concentration is illustrated in terms of its spatial
distribution (high: yellow, low: blue).

lations, m1 and m2 respectively; the population of virions, v; and a distant

cellular population, ι, representing immune cells and who mount the immune

response. The model then describes the proliferation of the virus within cells

and the consequent production and release of IFN-β in response to the viral

population. The cellular population will bind IFN-α or -β with their respective

affinity-dependent binding rates and will concurrently remove those IFN pro-

teins from the free molecular population. (Cells are also capable of unbinding

these ligands.) In order to understand how the feedback between binding and

metabolic processes influences the overall dynamics of the system, we model

these processes through cell-specific y and α values respectively. The binding

of IFN molecules will increase a given cell’s y-value, or binding state, and lead

to an increase in its ISG transcription state, or α-value. IFN-α is, further, only

produced upon the elevation of this α state and strictly in the presence of the

virus. Finally, the production and release of IFN-β will act as a proportional

surrogate for cytokine release and lead to an increase in the local immune cell

population who, in turn, will then locally degrade the viral population.

Parameters for the system are, as far as possible, taken from the available

biological literature, where others are estimated in order to approach the be-

haviours described in the literature. Initial conditions of the cellular populations

for simulations are given by a 3×3 grid of cellular Gaussian distributions, each
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Figure 4.12: Time series showing the temporal dynamics of the interferon binding system upon
mimesis of the artificial stimulation of a central cell cluster with IFNβ, in a High/Low IFN system.
Top: The cellular population is illustrated as a 3D isosurface with space represented across the
lower plane and the proportion of the cell surface bound to IFN along the vertical axis. Bottom:
The IFNα concentration is illustrated in terms of its spatial distribution (high: yellow, low: blue).

of which we refer to as a ‘cluster’. This choice facilitates the study of long-range

communication of the signal and mimics particular experimental settings.

Results of numerical simulations using (eq:4.25-4.29) are displayed in two

forms. The first represents a spatial distribution of quantities of IFN-α or IFN-

β, as a colour-mapping on a 2-dimensional axis between dark blue representing

low values (near 0) and yellow representing high values (near 1). The second

one displays higher dimensional variables, such as the IFN producer cells, as

a 3-dimensional isosurface where space is given along the lower plane and the

binding (y) or transcriptional (α) value is given along the vertical axis, with each

body separated in space representing a separate cluster of IFN producing cells.

Yellow isosurfaces indicate regions of maximal values for the cellular population,

whilst blue isosurfaces indicate regions of (1/100)th the maximal value, at any

given time point.

High-affinity ligands sustain local activity whilst low-affinity ligands

transmit local signals.

We simulate cells who were capable of producing only IFN-β by preventing the

production of IFN-α within the population. Moreover, we realise the constraint

that autocrine signalling should be sufficient to produce IFN by imposing a

constant, spatially-homogeneous distribution of viral protein and the condition

that ISG transcription should be necessary and sufficient. This is equivalent
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Figure 4.13: Time series showing the temporal dynamics of the interferon binding system upon
mimesis of the artificial stimulation of a central cell cluster with IFNβ, in a High/Low IFN system
where IFNα1/13 production is inhibited. 1st Row: The cellular population is illustrated as a 3D
isosurface with space represented across the lower plane and the proportion of the cell surface bound
to IFN along the vertical axis. 2nd Row: The cellular population is illustrated as a 3D isosurface with
space represented across the lower plane and non-dimensionalised ISG activity along the vertical
axis. 3rd Row: The IFNβ concentration is illustrated in terms of its spatial distribution. 4th Row:
The virion concentration is illustrated in terms of its spatial distribution. 5th Row: The immune
cell concentration is illustrated in terms of its spatial distribution (high: yellow, low: blue).

to demanding that increases in the transcriptional state, or α-value, of the cell

permit the cell’s increase in IFN-β production rate.

Upon stimulation of the central cluster with high-affinity IFN-β, we observe

the cluster respond by producing its own IFNβ in response. This results in

the augmentation the incoming signal and maintenance of the transcription of

IRF-7/USP18 in the long term (Fig. 4.11). We also see, however, that the high

rate of degradation by consumer cells, resulting from IFN-β’s high-affinity for

IFNAR2, causes a sharper decline of IFN-β concentrations from the central clus-

ter. This, in turn, results in a highly localised distribution and prevents IFNβ

from activating peripheral clusters. This demonstrates that IFN-β production

is locally sustained through to the molecule’s affinity for the producer cells, aug-
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Figure 4.14: Time series showing the temporal dynamics of the interferon binding system upon
mimesis of the artificial stimulation of a central cell cluster with IFNβ, in a High/Low IFN system.
1st Row: The cellular population is illustrated as a 3D isosurface with space represented across
the lower plane and the proportion of the cell surface bound to IFN along the vertical axis. 2nd

Row: The cellular population is illustrated as a 3D isosurface with space represented across the
lower plane and non-dimensionalised ISG activity along the vertical axis. 3rd Row: The IFNα1/13

concentration is illustrated in terms of its spatial distribution. 4th Row: The IFNβ concentration
is illustrated in terms of its spatial distribution. 5th Row: The virion concentration is illustrated
in terms of its spatial distribution. 6th Row: The immune cell concentration is illustrated in terms
of its spatial distribution (high: yellow, low: blue).

menting the intracellular production of IRF-7, and is spatially diminished due

to its high-affinity for consumer cells.

We then, likewise, simulated cells who were capable of producing only IFN-

α by preventing the local production of IFN-β by the cellular population. We

also impose the autocrine signalling sufficient criterion, requiring transcriptional

activation of IFN-α production. Since IFN-α is a low-affinity ligand, we stimu-

lated the central cluster with a constant artificial stimulus of IFN-β at all times,

in order to maintain local transcriptional activation and IFN-α production.
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Figure 4.15: Time series showing the temporal dynamics of the interferon binding system after the
mimesis of the artificial stimulation of a central cell cluster with IFNβ, in a High/Low IFN system.
Shown are IFNα1/13 concentrations at time points t ∈ {100, 120, 140, 160, 180, 200}, showing the
relaxation of the IFN signalling system.

In this case, results show a global inability of the system to communicate the

IFN response (Fig. 4.12). One observes a local excitation of the central cluster,

to significant transcriptional levels and due to the IFN-β stimulation, but with

no such reciprocal response from distant neighbouring clusters. Concurrently

with the decrease in central cluster activation, however, and compared with

systems unable to produce IFN-α (Fig. 4.11), one notices a potentiation of

peripheral clusters’ binding states. Therefore, systems capable of producing

only IFN-α are able to activate peripheral IRF-7 transcriptional states but not

sufficiently to cause the production of IFN.

Together, these scenarios imply that although IFN-α appears capable of

traversing greater distance than IFN-β, and thusly potentiating distant clus-

ters, it is incapable of sustaining its own levels of production due to its low

binding affinity and continual consumption by the ubiquitous non-producer cell

population.
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Systems with additional low affinity ligands elicit faster responses to

advancing viral fronts.

We began by simulating cells capable of producing only IFN-β, by arresting the

production of IFN-α, with the ability to recruit immune cells in the presence of

a advancing viral wave front. We observed an immediate IFN response from the

central cluster, leading to the recruitment of immune cells and depletion of the

virus at this location. This produced an advancing viral front with a depleted

central region, resulting in a ring-like viral distribution (Fig. 4.13, t ∈ [35, 50])

at intermediate time-points. As the virus reaches significant concentrations in

the locality of peripheral clusters, IFN producer cells begin to produce and

secrete IFN-β, in an IRF-3-3 or first-wave response. This production of high-

affinity IFN-β is sufficient to increase local binding and transcriptional states,

to the extent where second-wave IFN production may be established (Fig. 4.13,

t = 60). Finally, we see a recruitment of immune cells to the peripheral regions

of the domain and a local destruction of the viral pathogen (Fig. 4.13, t ≥ 65).

We then simulated the full system (4.18) of cells capable of producing both

IFN-α and IFN-β, with the ability to recruit immune cells in the presence of a

viral wavefront. Again, one observes the local recruitment of immune cells (Fig.

4.14, ι) and formation of a ring-like front in the viral pathogen, at low times

(Fig. 4.14, t ≈ 35).

Also at low times, however, one observes a potentiation of the binding state

and underlying transcriptional state of the peripheral cellular subpopulations as

a result of the increased permeation of IFN-α (Fig. 4.14, t = 20). This means

that as the viral pathogenic travelling front approaches the peripheries of the

domain, the cellular population achieves an early onset second wave production

process at lower concentrations of the virus (Fig. 4.14, t = 35). This means

that, in comparison to those cells who can only produce IFN-β (Fig. 4.13), cells

capable of producing both IFN-α and IFN-β reach their asymptotic production

capacity at far earlier time points (Fig. 4.14, t = 50).

Moreover, in both cases, and upon the local depletion of the viral popula-
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tion, one observes a gradual decrease in the local concentrations of IFN-β (Fig.

4.13 & 4.14, t ≥ 65), particularly in the central cluster. The deactivation of

intra-cellular IRF-3, as a direct result of the depletion of viral pathogen, may

be sufficient to explain this phenomenon. This more rapid removal of the virus

may confer an evolutionary advantage to the host as they suffer immunologi-

cally derived symptoms of infection for less time than those who are incapable

of producing IFN-α, which may explain the abundance of low-affinity IFN in

nature.

Over long time scales, and upon the degradation of the local viral popula-

tion, one observes the dissipation of the local IFN-β signal (Fig. 4.15). The

slow relaxation time of cytokine concentrations may explain, to some extent,

the prolongation of the symptoms of the immune response beyond the time of

infection whilst in some way validating the model.

The communicative relationship between the production and diffusion of IFN

molecules, along with the affinity dependent consumption of these molecules, is

reminiscent of results shown for experiments performed with IFN-β in IFNAR1−/−

mice[1] and interleukin-2[255], another cytokine. Further, our results would

support the differential antiviral effects of these molecules[245] and explain the

finding that the blocking of IFN-β signalling would be sufficient to significantly

reduce antiviral effects[246], through the observation that high-affinity IFN-β

alone is capable of sustaining the IFN response.

As in previous biological[258, 227] and mathematical[253] studies, we ob-

served differing STAT1/downstream ISG expression responses to varying affini-

ties of IFN molecule. In contrast to previous studies focusing on the bistability

of the STAT1 pathway and neglecting spatial effects[253], however, our expla-

nation of the differential response is based on the spatial organisation of ligands

diffusing in a biochemical system designed to sense and amplify an incoming

signal.

Our results may thusly go some way to explaining the abundance of lower-

affinity IFNs despite their inability to elicit a significant response, relative to

high-affinity IFNs[177, 201], under normal conditions. Our model suggests that
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Figure 4.16: Time series showing the temporal dynamics of the interferon binding system
upon mimesis of the stimulation of a central cell cluster with low diffusivity virions, in a
High/Medium/Low IFN system where IFNα1/13 production is inhibited. 1st Row: The cellu-
lar population is illustrated as a 3D isosurface with space represented across the lower plane and
the proportion of the cell surface bound to IFN along the vertical axis. 2nd Row: The cellular
population is illustrated as a 3D isosurface with space represented across the lower plane and non-
dimensionalised ISG activity along the vertical axis. 3rd Row: The summed IFN concentration is
illustrated in terms of its spatial distribution. 5th Row: The virion concentration is illustrated in
terms of its spatial distribution. 6th Row: The immune cell concentration is illustrated in terms of
its spatial distribution (high: yellow, low: blue).

both high-and low-affinity IFN are necessary for a biological IFN-dependent

immune system and that low-affinity interferon acts as a communicator whilst

high-affinity interferon acts as a consolidator. Therefore, the greater the number

of tiers of IFN affinity within a biological system, the more that system may

maximise its response at differing distances from the source of infection.

This relationship is further supported by the independent evolution of human

and murine type I IFN families[170], both of whom display a vast diversity of

affinities[326, 177, 123]. These diverse affinities have been established to produce

a diversity of activities and biological functions[155, 289] within the organism

and in response to any given virus[123, 163]. It is also possible that other

such biological systems operate using the same duality in order to sustain and
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Figure 4.17: Time series showing the temporal dynamics of the interferon binding system
upon mimesis of the stimulation of a central cell cluster with low diffusivity virions, in a
High/Medium/Low IFN system. 1st Row: The cellular population is illustrated as a 3D isosur-
face with space represented across the lower plane and the proportion of the cell surface bound to
IFN along the vertical axis. 2nd Row: The cellular population is illustrated as a 3D isosurface with
space represented across the lower plane and non-dimensionalised ISG activity along the vertical
axis. 3rd Row: The summed IFN concentration is illustrated in terms of its spatial distribution.
5th Row: The virion concentration is illustrated in terms of its spatial distribution. 6th Row: The
immune cell concentration is illustrated in terms of its spatial distribution (high: yellow, low: blue).

propagate local signalling.

Cells capable of producing multiple IFN subtypes elicit more diverse

response to infection.

In order to demonstrate the effect on the immune system elicited by system

of multiple IFN affinities, we simulated a system of 1 high-affinity IFN, 2 low-

affinity IFNs, and 10 intermediate-affinity IFNs; as in the case of humans[177,

201]. We denote this medium-affinity population as m3 – redefining the carrying

capacities of the molecular species accordingly – and begin with a homogeneous

spatial distribution of cells; closer to the in situ experiment. We assume, in

line with the existing literature, that all of these IFN species are produced with
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Figure 4.18: Time series showing the temporal dynamics of the interferon binding system
upon mimesis of the stimulation of a central cell cluster with high diffusivity virions, in a
High/Medium/Low IFN system where IFNα1/13 production is inhibited. 1st Row: The cellu-
lar population is illustrated as a 3D isosurface with space represented across the lower plane and
the proportion of the cell surface bound to IFN along the vertical axis. 2nd Row: The cellular
population is illustrated as a 3D isosurface with space represented across the lower plane and non-
dimensionalised ISG activity along the vertical axis. 3rd Row: The summed IFN concentration is
illustrated in terms of its spatial distribution. 4th Row: The virion concentration is illustrated in
terms of its spatial distribution. 5th Row: The immune cell concentration is illustrated in terms of
its spatial distribution (high: yellow, low: blue).

approximately equal rates[64, 351].

To test the hypothesis that these populations of low-affinity IFN molecules

would become more biologically relevant in the presence of increasingly diffusive

viral species, we tested the system’s differential reaction across 10 differing viral

diffusivities, ranging from 1×10−4 to 1×10−3.

One observes, firstly, that the transition of distributions between unbound

or inactive states and bound or active states appear smoother in systems pro-

ducing IFNα molecules (Fig. 4.16 – 4.19, cy1 & cα1 ). As high-affinity IFNs act

more effectively at the site of infection, the medium-affinity IFNs become dom-

inant immediately outside the range of high-affinity IFNs, and low-affinity IFN

molecules are dominant at longer ranges. The medium-affinity molecular popu-



186 CHAPTER 4. MODELLING INTERFERON DYNAMICS

cy1

cα1

m̄

v

ι

t = 10 t = 25 t = 40 t = 55 t = 70

Figure 4.19: Time series showing the temporal dynamics of the interferon binding system
upon mimesis of the stimulation of a central cell cluster with high diffusivity virions, in a
High/Medium/Low IFN system. 1st Row: The cellular population is illustrated as a 3D isosur-
face with space represented across the lower plane and the proportion of the cell surface bound to
IFN along the vertical axis. 2nd Row: The cellular population is illustrated as a 3D isosurface with
space represented across the lower plane and non-dimensionalised ISG activity along the vertical
axis. 3rd Row: The summed IFN concentration is illustrated in terms of its spatial distribution.
4th Row: The virion concentration is illustrated in terms of its spatial distribution. 5th Row: The
immune cell concentration is illustrated in terms of its spatial distribution (high: yellow, low: blue).

lation appears to be more acutely sensitive to heterogeneity within the cellular

population, resulting in a less smooth and more sporadic distribution of these

ligands (Fig. 4.16 – 4.19, m̄).

One observes an ability of both low- and medium-affinity IFN molecules to

diffuse and sustain an IFN distribution at a greater range than the maximal

reach of the virion population (Fig. 4.16 & 4.17, m̄ & v). Moreover, the virion

population is dissipated to a slightly greater extent at its peak but its distribu-

tion is not significantly altered in the case involving low-affinity molecules (Fig.

4.16 & 4.17, v). This is likely due to low-affinity molecules remaining dominant

at long ranges, where the virus progresses too slowly for this potentiation to be

important to the system reactivity.
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Figure 4.20: Total viral concentration over time for an infected system where IFNα1/13 production
is inhibited (red) and for a fully functional system (green) for viruses with diffusion coefficients of

1×10−4, 4×10−4, 7×10−4, and 10×10−4, respectively.

Therefore, we simulated a system of viral infection for a 4-fold increase

in viral diffusivity, to explore the effect of these longer-range IFN molecules

in a system where virions approach peripheral regions at earlier time points.

Again, one finds that the distribution of low-affinity IFNs extends further that

that of the virus (Fig. 4.18 & 4.19, m̄ & v) such that one observes peripheral

transcriptional potentiation of cells. At higher time points (t ∈ (40, 60)) one

can see an approximate 23% decrease in the overall virion population for high

viral diffusion coefficients (Dv = 1×10−3) as compared to a 4% decrease for

low values (Dv ∈ [1×10−4, 4×10−4], Fig. 4.20 & 4.21). Interestingly, in the case

where IFNα1/13 production is suppressed, the system appears to attenuate for

the lack of low-affintiy IFNs through the sufficient expression of medium-affinity

IFNs (Fig. 4.18 & 4.19, m̄) whereas, for viruses diffusing outside the range of the

medium-affinity IFN, low-affinity IFNs appear to confer a significant advantage

to the system.

It was recently found that Rousettus aegyptiacus, a species of bat, have a nat-

ural immunity to the Marburg virus; a virus which is deadly when contracted by

humans and other primates. The authors explain this as deriving, for the most

part, from a genetically diversified family of type I interferon molecules[262].

The major distinction in this species are the 22 IFN-ω subtypes, which may

inhibit the proliferation of such a virus. Our results may explain this inhibition
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Figure 4.21: Percentage change in total viral concentration for a system without IFN-α1/13, as
compared to one with, corresponding to the populations given in Figure 4.20 for all times t, and
given for 4 different viral diffusion coefficients.

simply through the increased diversity of affinities in the type I IFNs allowing

for cells to more efficiently activate the immune system at various ranges from

the site of infection. This effect may allow Rousettus aegyptiacus to suppress

the spatial advancement of the virus.

Furthermore, our model showed that the multiple IFN system is capable

of activating the immune response at an earlier time than either the high- or

high/medium-affinity systems. This conferred advantage may play a critical

role in containing the virus and curtailing long-term symptoms in the organism.

Moreover, this provides the first quantitative rationalisation for the evolutionary

conservation of multi-ligand systems, since mutations which increase the number

of affinities of IFN available to the organism will confer additional fitness in

response to viral selective pressures.



Chapter 5

Multi-Dimensional Analysis

of Theoretical Problems in

Evolution

5.1 Introduction to Evolutionary Modelling as

a Multi-Scale Process

Evolution is a process which takes place within an individual – as an interaction

between their phenotype, extended phenotype, and environment – but whose

effects only truly manifest themselves on the longest of imaginable time scales

and across vast regions of space. Predation events, likewise, take place between

individuals and within instants, depending on the identification and capture of

the prey item by the predator. Moreover, the evolution of a tumour also has

important dynamical consequences realised over the time-scale of a cell-cycle,

where the evolutionary survival of the tumour is determined over the lifetime

of the host. Therefore, evolution is truly a multi-scale process which requires a

appreciation of population- and individual-scale adaptations.

189
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To tackle this problem, we employ the higher-dimensional approach in the

absence of spatial considerations (since concrete results for spatial interactions

between predator and prey are difficult to fully characterise) to ask whether

beauty, which we assume to be a trait worthy of sexual selection, will be con-

served in a system where its manifestation in a phenotype is detrimental to

survival of the individual. This is important to the context of cancer and IFN

since, in order to know whether the existence of a trait owes its existence to

survival advantage, we must know whether there are reasons outside survival

for which a trait may be developed or conserved. We find that this is, indeed,

the case and that beauty, even in the case where it is evolutionarily disadvan-

tageous from a survival point of view, will be conserved so long as it is sexually

desirable.

5.1.1 Current Evolutionary Theory & Modelling

Evolution by natural selection [75] has an extensive evidentiary backing but,

even with the later Darwinian augmentation of sexual selection [76], still strug-

gles to explain the aberration of natural male æsthetic elaboration. In general,

females tend to be the selective sex whilst males are the ornamented sex [105].

Often, elaboration will provide direct or parallel benefits, for example looking

threatening or dangerous to a potential predator [66, 306], and may also provide

a camouflage or crypsis into one’s environment [237, 124]. There are, however,

elaborations which provide immediate and isolated impediments to survival.

It is, therefore, absolutely necessary that the following question be answered:

In systems where trait inheritance is dependent upon offspring survival and

where increasing beauty comes with increasing costs to survival, why is sexual

selection for beautiful males preserved?

The earliest credible attempt to answer this question, theoretically was the

handicap principle (HP) [346, 130], which states that males with expressed

impedimentary traits are advertising to females that they can survive in spite

of this evolutionary impediment. The honest signalling hypothesis (HSH) was an
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extension of this principle and supposes that only those signals which honestly

convey enhanced survival will be selected for [347, 348]. Both the HP and HSH

have been supported by modelling [273, 130, 131, 274], which has come under

recent criticism [310, 311]. Controversial experiments, designed to test these

hypotheses [272], have also been criticised [311] for failing to critically scrutinise

evolutionary honesty rather than temporally local honesty. It is clear that a

new model is required to overcome these criticisms and transcend the current

debate.

The biological case is demonstrated in the peacock, whose bright colouration

and functionally irrelevant feathering may only increase the bird’s vulnerability

to predation, yet encourages the female to mate with him [76, 270]. Conflict-

ing studies, observing peafowl mating habits, found that the ornate nature of

the male train did [271, 270] and did not [312] positively influence a females

preference to copulate with such a male. It is, therefore, clear that other, more

obscure, factors also influence this selection process [72]. More palpably, female

red-winged blackbird copulation correlated strongly with male epaulet redness

[343]. The case for sexual selection is relatively strong but selection for garish

males may also contribute to vulnerability.

Observations of remains from Sparrowhawk nests revealed that the plumage

intensity of prey was the greatest factor in determining predation risk [171] and

that colouration accounted for approximately 23% of measured vulnerability

[242]. Studies in Denmark, however, found that predatory Sparrowhawks at-

tacked colourful male chaffinches more often than inconspicuous female chaffinches

[129] but inconspicuous flycatcher females more often than colourful males

[128, 129]. Moreover, these orthogonal traits, or beneficial traits which are

not directly related and yet arise within the same species, have been shown to

be under current selection within species [241]. In certain of these cases, dec-

orative impediments are accompanied by advantageous compensations such as

increasing escape capabilities in conspicuous chameleons [69]; increased timid-

ity towards dangerous environments in increasingly vocal crickets [151]; and

amplified escape behaviours among other conspicuous lizard species [53].
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Moreover, and in birds, an increase in vivaciousness of colouration between

species, correlated with an increased exhibition of locomotive deterrence sig-

nalling in response to predator audition [181]. This has caused some to hypoth-

esise that colouration is used to warn predators that preying upon them would

be unproductive [23], through the unprofitable prey hypothesis (UPH), but this

certainly does not hold true across all species [129]. Also, in contrast to the

UPH, peacocks who displayed their tail feathers more frequently and had larger

numbers of tail ocelli responded better to an immune challenge than their coun-

terparts [218]. Likewise, the plumage yellowness of the blue tit has been found

to be predictive of foraging ability [114], postulating an orthogonal advantage

rather than a direct one.

We, herein, use mathematics to test a novel hypothesis: That, in a system

where costly colouration evolves orthogonally with genes yielding sufficiently

evolutionarily advantageous phenotypes, selection for brightly coloured males

will select more highly for the orthogonal trait, yielding genetically advantaged

offspring. For simplicity, we shall refer to this as the ‘orthogonal disadvantage

(OD) hypothesis’, where the colourful disadvantage is playing the role of a

selection pressure for the advantageous gene. We present a novel mathematical

model capable of testing this hypothesis, which utilises structural evolution

within a population to observe dynamics of the population as a whole, and

validate this model by showing adherence to existing evolutionary literature.

5.2 Darwinian Beauty and Survival Traits are

Evolutionarily Symbiotic

5.2.1 An Evolutionary Mathematical Model

Evolutionary theory has long provided a welcome nexus between the experimen-

tal work of ecology and the theoretical pursuit of modelling [20]. A significant

gain for mathematical modelling was achieved when Grafen [130] used a genetic
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model to successfully demonstrate the independence of the handicap principle

in evolutionary biology. This result has been widely accepted, even by those

who previously denigrated the handicap model, and brought welcome valida-

tion for the role of mathematical modelling in this difficult field. Since then,

alternative hypotheses to account for these evolutionary dynamics have been

suggested with the aid of modelling and simulation [353]. As a consequence of

the complexity of biology, however, deterministic models are often disfavoured

with the respect to modern trends towards game theoretic [143, 238, 147, 7] or

stochastic [350, 167, 219] models, which are able to more accurately account for

the nuanced realities implied by probability theory.

Recently, we and others have used higher-dimensional, partial differential

equation (PDE)-based, mathematical modelling techniques to great effect in de-

scribing dynamic biological processes in oncology and beyond [96, 158, 161, 160].

Similar methods have already been employed for the exploration of spatially dis-

tributed evolutionary models [26]. Herein, we intend to use a novel approach

where adaptive processes are not an intrinsic character of the system but rather

occur randomly during the process of reproduction, where the population’s

source term gives rise to the variability in traits. Likewise, following the rich

history of predator-prey modelling, originally derived by Lotka [215, 216, 217]

and Volterra [330, 331], we adopt predator-prey dynamics to aid us in under-

standing the process of natural selection [75]. This approach has been used

extensively and throughout the literature to demonstrate processes of specia-

tion and environmental adaptation [39, 67, 281, 98, 297, 43].

Description of the theoretical paradigm

In order to understand how natural selection interacts with sexual selection we

postulate the existence of two discrete species; namely a predator, p(t), and a

prey species. We then decompose the prey species into its female, f(t,y, z),

and male, m(t,y, z), constituents, who are in turn decomposed into their dis-

tributions through some trait space described by (y, z) ∈ Υ2×Z. In Drosophila
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serrata, a quantitative study found that male mate choice correlates extremely

weakly with generational ornamentation, while female mate choice correlated

very strongly with male ornamentation; producing female ornamentation as

a secondary byproduct [127]. Therefore, since y is composed of the vector

y := [y1, y2]T , we are implicitly assuming that there exists 3 sets of character

traits important to this particular study: ‘trait selectivity,’ y1 ∈ Υ, which re-

lates the extent to which females display an avidity to mate with males who

present vibrant or patterned facades; ‘trait elaboration,’ y2 ∈ Υ, which relates

the extent to which males posses or present vibrant or patterned facades; and

‘trait survival,’ z ∈ Z, which relates an animal’s particular ability to evade

predation.

Of course, y1 and y2 will co-evolve dependently upon the other’s character

traits and we assume that fundamentally female traits, y2, are passed to progeny

through the female lineage whilst male traits, y1, are passed exclusively through

the male lineage. Moreover, we assume that androgynous traits, z, are other-

wise undiscriminated for and that males and females with particular z traits will

mate indiscriminately with those of differing z traits. The result of copulation

between a male and female, randomly paired with traits z† and z‡, is a progeny

with an intermediate z state, 1
2 (z† + z‡). The dynamics of the male and fe-

male populations will then depend upon their position in the trait space, whilst

predators will have differential success in preying on male or female subgroups

dependent upon their respective positions. A predator’s predatory capacity is

unaffected by the female selectivity, y1, for attractive males, although females

will preferentially mate with more attractive males as they increase in selec-

tivity. As males increase their attractiveness, y2, although they will receive a

mating advantage from selective females, will also become more conspicuous to

potential predators and will be preyed upon more often then their less attrac-

tive counterparts. Traits which advantage survival in a species, z, on the other

hand, will evolve orthogonally with y traits and serve only to decrease the rate

of predation. These relationships are described concisely within figure 5.1.
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Figure 5.1: Diagram displaying the interactions between traits survival (z), beauty (y2), and selec-
tivity (y1) within the prey population and between the prey and unstructured predator populations:
As trait survival increases, the ability of the predator to catch prey decreases (↓). As trait beauty
increases in expressive males, the ability of the predator to catch male prey increases. As trait
selectivity increases in expressive females, females more often choose to mate with males who are
high in trait beauty.

Bio-mathematical description

We allow, to take the female population as exemplary of the male, that the

dynamics of any given population is given by the difference between its re-

productive capacity, R(t,y, z), and its degradative cost, D(t,y, z), imposed by

predation, such that

∂

∂t
f(t,y, z) = R(t,y, z)−Df (t,y, z) . (5.1)

The reproductive terms for females and males are the same whereas the degrada-

tive terms will differ due to the influence of male plumage variation on predation,

which does not affect females. Moreover; since females are considered not to

display male attractiveness traits, while males are considered to mate without

inhibition we respectively describe the unembellished female and indecisive male

populations as

f‡(t, y1, z) :=

∫
Υ

f(t,y, z) dy2 (5.2)

and

m†(t, y2, z) :=

∫
Υ

m(t,y, z) dy1 , (5.3)

where we shall refer to these populations as f‡ := f‡(t, y1, z) and m† :=

m†(t, y2, z) for brevity.
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The reproductive term gives rise to the dynamics of population growth,

inheritance, and mutation, making it of particular importance to the current

theoretical model. Therefore, we denote the choice kernel κ : Υ→ R+, defined

by

κ(y) :=
y2y1

2∫
Υ

y2y1

2 dy2

, (5.4)

such that κ([1, y2]T ) = 3y2
2 and κ([0, y2]T ) = 1, with a continuous transition

between these two selective profiles with y1. This is a formal statement that

nonselective females, y1 = 0, will mate with all males equally whilst hyper-

selective females, y1 = 1, will mate proportionally with the square of male trait

beautifulness. Moreover, recall that both female and male traits which assist

survival will be passed on to the offspring, resulting in an averagely successful

child. This can be accounted for by introducing a non-dimensional variable

ζ ∈ [0, 1], over which one may sum, such that as 2ζz increases for the female

species, the result of copulation with her counterpart at structural location

(2 − 2ζ)z will be an offspring with structural location z. The factor of 2 is

accounting for the factor 1
2 from the resultant averaging. We thusly arrive at

the following expression for reproduction:

R′(t,y, z) = α

∫
[0,1]

2ζ(1− ζ)κ(y)

∫
Υ

f(t,y, 2ζz) dy2

∫
Υ

m(t,y, (2− 2ζ)z) dy1 dζ ,

(5.5)

whose full mathematical derivation and justification can be found within Section

1.3.1.

Furthermore, we assume that mutation may occur during reproduction, con-

ferring some stochastic differentiation of the offspring’s genes from those of the

parents. The simplest assumption is that this genetic reproductive variation

occurs, for a population at a given genetic location (y, z), across a normalised

Gaussian distribution around that point. This is supported by evidence in fairy-

wrens, for which distributions in male patterning were found to fit Brownian

models of variation [179]. In order to describe this mathematically, we integrate
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our reproductive term across a Gaussian kernel, called the ‘mutation kernel’

µ : Υ2×Z×Υ2×Z and given by

µ(y, z,y′, z′) :=
exp(−diag(νy)(y − y′) · (y − y′)− νz(z′ − z)2)∫

Z

s

Υ2

exp(−diag(νy)(y − y′) · (y − y′)− νz(z′ − z)2) dy dz
,

(5.6)

such that the population is slightly distributed across the structural space. The

degree to which the population varies over time are parameters of the model,

given by νy := [νy1 , νy2 ]T and νz. Reproduction of males and females, together,

is also limited by some maximal sustainable carrying capacity, K. The repro-

ductive term may then be given by

R(t,y, z) =α

1− 1

K

y

Υ2×Z

(f +m) d(y, z)


·
y

Υ2×Z

µ(y, z,y′, z′)R′(t,y′, z′) dζ d(y′, z′),

(5.7)

where α will be given respectively by αf and αm for females and males.

It is assumed that the degradation of a population of males or females is

mediated entirely by predation. Survival is also augmented by increases in the

structural z-location. The survival function, s : Z → [0, 1], is then assumed to

have an exponential decay on the interval Z such that it is given by s(z) :=

exp(z lnβ), where β ∈ (0, 1] is the relative predation probability of a female at

state z = 1 with respect to a female at z = 0. Given a constant of degradation,

δf , we write the female degradative term as

Df (t,y, z) = δfp(t)s(z)f(t,y, z) . (5.8)

For males, we require an supplementary term to account for the additional threat

to survival resulting from colouration r(y2) := 1 + (q − 1)y2, where q ∈ R+ is

the relative vulnerability of a male at (y2, z) = (1, 0) with respect to a male at

(y2, z) = (0, 0). For values of q < 1, the colouration of an individual would be

advantageous to their survival, while for values of q > 1, colouration would be
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a detriment to survival, and q = 1 makes colouration a neutral transformation.

Therefore, we write the degradative term for males as

Dm(t,y, z) = δmp(t)r(y2)s(z)m(t,y, z) . (5.9)

Predators are assumed to have a carrying capacity, given by Kp, and a cor-

responding population growth rate, given by αp, while their overall growth is

logistic. Predatory success is proportional to their ability to prey on the male

and female populations considered, taking into account the effects of the sur-

vival advantage and relative vulnerability functions, s(z) and r(y2) respectively.

Therefore, the predatory reproduction term is given by the logistic relationship

Rp(t) = αpp

(
1− p

Kp

)y

Υ2×Z

s(z)
(
f(t,y, z) + r(y2)m(t,y, z)

)
d(y, z) . (5.10)

Meanwhile, popular predatory degradation is a naturally occurring process –

assumed to be due to ageing, starvation, or intra-species conflict – with the rate

constant δp. The whole term is written simply as

Dp(t) = δpp(t) . (5.11)

A system of equations for sexual and natural trait selection

By collating all of the relationships described above, we obtain the following

system of partial integro-differential equations, which describe the dynamics

of sexually and naturally selected populations of randomly evolving male and
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female members of an arbitrary species:

∂

∂t
f(t,y, z) =− δfp(t)s(z)f(t,y, z) + αf

(
1−

t
Υ2×Z(f +m) d(y, z)

K

)

·
y

Υ2×Z

µ(y, z,y′, z′)

∫
[0,1]

[
2ζ(1− ζ)κ(y)

·
∫
Υ

f(t,y′, 2ζz′) dy2

∫
Υ

m(t,y′, (2− 2ζ)z′) dy1

]
dζ d(y′, z′)

∂

∂t
m(t,y, z) =− δmp(t)r(y2)s(z)m(t,y, z) + αm

(
1−

t
Υ2×Z(f +m) d(y, z)

K

)

·
y

Υ2×Z

µ(y, z,y′, z′)

∫
[0,1]

[
2ζ(1− ζ)κ(y)

·
∫
Υ

f(t,y′, 2ζz′) dy2

∫
Υ

m(t,y′, (2− 2ζ)z′) dy1

]
dζ d(y′, z′)

d

dt
p(t) =αpp

(
1− p

Kp

)y

Υ2×Z

s(z)
(
f(t,y, z) + r(y2)m(t,y, z)

)
d(y, z)

− δpp(t) .
(5.12)

5.2.2 Equilibrium Analysis

For all of the algebraic analysis contained within this study, the integrals over ζ

in the above system (5.12) are ignored, as are the asymmetries in contribution

of the male and female population with regards to their traits’ heritability. This

should form the basis of a future study but was considered too challenging in

the absence of the preliminary results that we present herein. As shall be ex-

pounded, even given these simplifications the analytic steady-state solutions to

this model are challenging to come by and require much scrutiny to understand.

Nevertheless, we shall present 3 scenarios in which the populations differ,

primarily in their structure, and extract equilibria for each. These populations
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are (a) unstructured prey populations, for which particular values of (y, z) are

assumed to be fixed parameters of the system; (b) discretely structured prey

populations, for which we assume that the populations are distributed between

two discrete states within the domain Υ2×Z; and, finally, (b) continuously

structured populations, for which we take discrete populations distributed across

N points in the trait space and use this to generalise our solutions to the case

of continuous distribution. We take each situation in turn:

Equilibria for Unstructured Populations (a)

For the unstructured populations we consider that our female and male equilib-

rium solutions are given respectively by

F ∗ := lim
t→∞

y

Υ2×Z

f(t,y, z) d(y, z), M∗ := lim
t→∞

y

Υ2×Z

m(t,y, z) d(y, z), (5.13)

and assume that these populations are both located at some point in Υ×Z which

we generically term (y, z), as in the above system with the exception that this

point is assumed to be discrete and fixed. Likewise, the predator population is

defined by p∗ = limt→∞ p(t) and we may rewrite the full system of equations

(5.12) at steady state as



0 = − δfp∗s(z)F ∗ + αf

(
1− F ∗ +M∗

K

)
κ(y)F ∗M∗

0 = − δmp∗r(y2)s(z)M∗ + αm

(
1− F ∗ +M∗

K

)
κ(y)F ∗M∗

0 = − δpp∗ + αpp
∗
(

1− p∗

Kp

)
s(z)(F ∗ + r(y2)M∗) .

(5.14)

Let us first consider the case in which there exists no predator species at the

steady state, such that p∗ = 0 and our system simplifies to


0 =αf

(
1− F ∗ +M∗

K

)
κ(y)F ∗M∗

0 =αm

(
1− F ∗ +M∗

K

)
κ(y)F ∗M∗ ,

(5.15)
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yielding the trivial solutions for the unstable and stable steady states of our

system, (F ∗,M∗, p∗), given by (0, 0, 0) and (F ∗,K−F ∗, 0), F ∗ ∈ [0,K], respec-

tively. In the latter case, the steady state is dependent upon the initial condi-

tions of the system and, therefore, does not contain a fixed point but, rather,

a line in the solution space defined by all possible values of (F ∗,M∗) ∈ [0,K]2.

This is also due to the fact that the female and male populations, F (t) and

M(t), have a shared carrying capacity, K.

It is trivial to prove that the steady state given by (F ∗,M∗, p∗) = (0, 0, 0) is

unstable, except in the case where solely the predator population is perturbed.

For the slightly less trivial steady state, given by (F ∗,K − F ∗, 0), we take the

derivative with respect to the predator population, p∗, yielding

 0 > − δfs(z)F ∗ , 0 > −δmr(y2)s(z)(K − F ∗)

0 > − δp + αps(z)(F
∗ + r(y2)(K − F ∗)) ,

(5.16)

which is trivially unstable with respect to the prey population, in the sense that

small perturbation will yield long-term alterations in F ∗, and stable in the the

predator population, so long as s(z) < δp and assuming that we have αpK ≤ 1.

Leaving this assumption, let us observe the more general case in which the

predator population is non-zero, p∗ > 0. Begin by observing that the differential

equations (5.14) for f(t,y, z) and m(t,y, z) yield the following equalities for the

equilibrium values of p∗,


p∗ =

αf
δfs(z)F ∗

(
1 +

F ∗ +M∗

K

)
κ(y)F ∗M∗

p∗ =
αm

δmr(y2)s(z)M∗

(
1− F ∗ +M∗

K

)
κ(y)F ∗M∗ .

(5.17)

Equating, these, we may then express the equilibrium value for the male popu-

lation of prey animals as a fraction of the female population, as so

M∗ =
αmδf

αfδmr(y2)
F ∗ . (5.18)
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Next we substitute this (5.18) result into the steady state equation for the

predator’s growth (5.14),

δp
αps(z)

=

(
1− p∗

Kp

)
(F ∗ + r(y2)M∗) , (5.19)

in order to obtain an expression for p∗ in terms of F ∗, given by

p∗ =Kp

(
1− δp

αps(z)

[
F ∗
(

1 +
αmδf
αfδm

)]−1
)
. (5.20)

Substituting both this result (5.20) and our previous result, for M∗ (5.18), into

our steady state equation for the female population (5.14), itself, we obtain

δfs(z)F
∗Kp

(
1− δp

αps(z)

[
F ∗
(

1 +
αmδf
αfδm

)]−1
)

= αf

(
1− F ∗

K

(
1 +

αmδf
αfδmr(y2)

))
κ(y)F ∗

αmδf
αfδmr(y2)

F ∗ .

(5.21)

Now, the equation (5.22) may be simply manipulated to yield a cubic in F ∗,

through an initial simplification

s(z)Kp

(
F ∗ − δp

αps(z)

(
1 +

αmδf
αfδm

)−1
)

=
αmκ(y)

Kδmr(y2)

(
K(F ∗)2 − (F ∗)3

(
1 +

αmδf
αfδmr(y2)

))
.

(5.22)

and using the simplifying substitutions

Γ = 1 +
αmδf
αfδm

, Γ̂ = 1 +
αmδf

αfδmr(y2)
, Ω =

δmKKpr(y2)

αmκ(y)
, (5.23)

we write our equation in standard form, as

ΓΓ̂(F ∗)3 −KΓ(F ∗)2 − s(z)ΓΩF ∗ +
δp
αp

ΓΩ = 0. (5.24)
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Finally, our equilibrium solution for F ∗ is given by the cubic equation

F ∗ =
K

3Γ̂
+

(
K3

33Γ̂3
+
s(z)KΩ

6Γ̂2
− δpΩ

2αpΓ̂

+

( K3

33Γ̂3
+
s(z)KΩ

6Γ̂2
− δpΩ

2αpΓ̂

)2

+

(
−s(z)Ω

3Γ̂
− K2

32Γ̂2

)3
 1

2 ) 1
3

+

(
K3

33Γ̂3
+
s(z)KΩ

6Γ̂2
− δpΩ

2αpΓ̂

+

( K3

33Γ̂3
+
s(z)KΩ

6Γ̂2
− δpΩ

2αpΓ̂

)2

+

(
−s(z)Ω

3Γ̂
− K2

32Γ̂2

)3
 1

2 ) 1
3

(5.25)

Unfortunately, however, not only does this not yield a simple result for the

steady state value of F ∗ but we are yet able to determine whether equilibrium

solutions actually exist. In order to achieve this, we require that the discriminant

of the above equation (5.24) is greater than or equal to zero, such that

0 <
K6

36Γ̂6︸ ︷︷ ︸
1∗

+
s2(z)K2Ω2

62Γ̂4
−

δ2
pΩ2

22α2
pΓ̂

2
+ 2

K3

33Γ̂3

s(z)KΩ

6Γ̂2︸ ︷︷ ︸
2∗

−2
K3

33Γ̂3

δpΩ

2αpΓ̂

− 2
s(z)KΩ

6Γ̂2

δpΩ

2αpΓ̂
− s3(z)Ω3

33Γ̂3
− K6

36Γ̂6︸ ︷︷ ︸
1∗

−3
s2(z)Ω2

32Γ̂2

K2

32Γ̂2
− 3

s(z)Ω

3Γ̂

K4

34Γ̂4︸ ︷︷ ︸
2∗

(5.26)

By eliminating the denominators of this inequality, and simplifying significantly,

we yield the discriminant function

∆(Ω) := − 3 · 22s3(z)Γ̂2α2
pΩ

3 + 32s2(z)K2Γ̂5α2
pΩ

2 − 2 · 33s(z)KΓ̂2αpδpΩ
2

+ 34δ2
pΓ̂3Ω2 − 23K4α2

ps(z)Ω− 3 · 22K3Γ̂αpδpΩ− 22s(z)K4α2
pΩ

(5.27)

whilst retaining the inequality ∆(Ω) := ∆(Ω) > 0 for real roots. Given that this

discriminant function is a quadratic in Ω, we choose to phrase it in terms of Ω.

Now, given a certain parameter set, let us ask for what values of r we have real

roots for our discriminant. By then taking the derivative of the discriminant

function with respect to Ω, we may ask the behaviour of the discriminant, with
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respect to the point Ω = 0 as we change the variable y2, for which Ω is a

dependent:

∆(1)(Ω) := − 32 · 22s3(z)Γ̂2α2
pΩ

2 + 2 · 32s2(z)K2Γ̂5α2
pΩ− 22 · 33s(z)KΓ̂2αpδpΩ

+ 2 · 34δ2
pΓ̂3Ω− 23K4α2

ps(z)− 3 · 22K3Γ̂αpδp − 22s(z)K4α2
p

(5.28)

Likewise, and for completeness, we take the second derivative of the discriminant

function ∆(Ω), giving

∆(2)(Ω) := − 32 · 23s3(z)Γ̂2α2
pΩ + 2 · 32s2(z)K2Γ̂5α2

p − 22 · 33s(z)KΓ̂2αpδp

+ 2 · 34δ2
pΓ̂3 .

(5.29)

Reimposing an inequality which would guarantee that solutions do exist as

Ω→∞, we may rearrange this for Ω to find the fundamental constraint

Ω <
32δ2

pΓ̂ + s2(z)K2Γ̂3α2
p − 3 · 2s(z)Kαpδp

22s3(z)α2
p

. (5.30)

Observing the definition for Ω (5.23), we may realise that this is, in fact a

constraint on the definition of the predator carrying capacity, Kp. The carrying

capacity of the predator species, and its proliferation rate αp, must be sufficiently

low in order to maintain a real steady state within an ecosystem. This is an

interesting observation on reality itself; as a predator grows too fast or to too

great numbers the ecosystem will be at risk of exceeding its capacity to survive,

without the introduction of a higher-order predator or new prey item.

Moving to the first derivative, we ask the associated discriminant is greater

than 0, as follows

(2 · 32s2(z)K2Γ̂5α2
p − 22 · 33s(z)KΓ̂2αpδp + 2 · 34δ2

pΓ̂3)2

> 32 · 24s3(z)Γ̂2α2
p(2

3K4α2
ps(z) + 3 · 22K3Γ̂αpδp + 22s(z)K4α2

p) .
(5.31)

One clear case where this inequality is satisfied is where the relative advantage

to the male species, from elaboration, is exceptionally high so that predation
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becomes 0. In this case Γ̂ → ∞ and the steady states may disappear. This

is true without regard to the condition on Ω given by (5.30). In nature, also,

one might expect that near-invulnerability to predation may yield populations

who oscillate around their carrying capacity (not obtaining it on the basis that

a healthy female population is necessary for reproduction.

Another such case where this inequality is satisfied is when the predator

reproduction constant is on the same scale as the reciprocal carrying capacity

of the prey population, αpK ≤ 1, which is realistic. Taking the case where

αpK = 1, for example, we obtain

(2 · 32s2(z)Γ̂5 − 22 · 33s(z)Γ̂2δp + 2 · 34δ2
pΓ̂3)2

> 32 · 24s3(z)Γ̂2(3 · 22s(z) + 3 · 22Γ̂δp) ,
(5.32)

which holds so long as s(z) < 1, since RHS → 0 faster than LHS → 0 in the

case s(z)→ 0. let us evaluate the case at s(z) = 1, for clarity, which would give

Γ̂5 + 9δ2
pΓ̂3 > 6Γ̂2δp + 4(

1

3
Γ̂2 +

1

3
Γ̂3δp)

1
2 . (5.33)

In this case, we obtain the constraint that the relative disadvantage of the

male species (q, y2), implicit in Γ̂, must not be too great in order to maintain

real roots. As relative disadvantage increases, Γ moves from having a value of

2 to a value of 1, where the inequality eventually collapses. This constraint is

decreasingly restrictive with the increasing advantage due to trait survival, s(z).

Therefore, in the range of acceptable parameters, we have that there are

no turning points in the discriminant (with respect to Ω) and that the double

derivative is positive so that we have established that the gradient of the dis-

criminant is positive. If we now establish that, for some value of Ω = Ω0, the

discriminant provides real roots, then we may say that real roots exist across all

values of Ω ≥ Ω0. Let us then return to our discriminant function and reimpose
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the inequality to yield

3 · 22s3(z)Γ̂2α2
pΩ

3
0 − 2 · 33s(z)KΓ̂2αpδpΩ

2
0 − 23K4α2

ps(z)Ω0 − 3 · 22K3Γ̂αpδpΩ0

− 22s(z)K4α2
pΩ0 ≤ 32s2(z)K2Γ̂5α2

pΩ
2
0 + 34δ2

pΓ̂3Ω2
0 .

(5.34)

Since we know that the above holds at least for Ω0 = 0, we may conclude that,

notwithstanding the above stated constraints, our system of equations has real

steady states given precisely by (F ∗,M∗, p∗), as defined by (5.25), (5.18), and

(5.20) respectively.

Equilibria for Discretely Structured Populations (b)

As in the above case, the discretely structured populations are assumed to have

a collective populations which is distributed, not necessarily equally, at two

discrete locations given by (yi, zi) and (yj , zj) so that our 4 prey populations

are given by

F ∗i := lim
t→∞

f(t,yi, zi) , F ∗j := lim
t→∞

f(t,yj , zj) ,

M∗i := lim
t→∞

m(t,yi, zi) , M∗j := lim
t→∞

m(t,yj , zj) .
(5.35)

Additionally, we define that

lim
t→∞

y

Υ2×Z

f(t,y, z) d(y, z) = F ∗i + F ∗j (5.36)

and likewise for m(t,y, z) so that the above quadruplet (5.35) defines the whole

system at steady state.

Then our steady states for the full set of differential equations yields the



5.2. DARWINIAN TRAIT EVOLUTION 207

following system of nonlinear polynomial functions



0 = −δfp∗siF ∗i + αf

(
1 +

F∗i +F∗j +M∗i +M∗j
K

)
(µ0κiF

∗
i M

∗
i + µ1κjF

∗
jM

∗
j )

0 = −δmp∗siriM∗i + αm

(
1 +

F∗i +F∗j +M∗i +M∗j
K

)
(µ0κiF

∗
i M

∗
i + µ1κjF

∗
jM

∗
j )

0 = −δpp∗ + αpp
∗
(

1− p∗

Kp

)
(s1F

∗
1 + s2F

∗
2 + s1r1M

∗
1 + s2r2M

∗
2 ) ,

∀i ∈ {1, 2},
(5.37)

for which we must attempt to find solutions.

Equating the first two equations of this system (5.37) and analogously to

the steps followed in the above example, (5.17) & (5.18), we may obtain an

equation for the steady state of a given ith male population M∗i in terms of the

structurally related female population, given by

M∗i =
αmδf
αfδmri

F ∗i . (5.38)

Then, using equation (5.38), we may substitute this into the predator equation

in the full steady state system of equations (5.37) to yield

p∗ =Kp

(
1− δp

αp

[
s1F

∗
1

(
1 +

αmδf
αfδm

)
+ s2F

∗
2

(
1 +

αmδf
αfδm

)]−1
)
. (5.39)

If we now rearrange the equation for any given ith female population, in

the steady-state system (5.37), for the predator term, we obtain a particular

nonlinear equation,

p∗ =
αf

δfsiF ∗i K

(
1− F ∗i

[
1 +

αmδf
αfδmri

]
+ F ∗j

[
1 +

αmδf
αfδmrj

])
·
(
µ0κi(F

∗
i )2αmδf

αfδm
+ µ1κj(F

∗
j )2αmδf

αfδm

)
,

(5.40)

belonging to that ith female population. An analogous equation may be written

for the jth female population.

Equating these two relations, (5.40) and the analogy for the jth population,
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we obtain the following

siF
∗
i

(
µ0κj
rj

(F ∗j )2 +
µ1κi
ri

(F ∗i )2

)
= sjF

∗
j

(
µ0κi
ri

(F ∗i )2 +
µ1κj
rj

(F ∗j )2

)
. (5.41)

For convenience, we use the notation F̄ = F ∗i /F
∗
j and the like notations

s̄ =
si
sj
r̄ =

ri
rj
κ̄ =

κi
κj
µ̄ =

µ0

µ1
, (5.42)

such that we may rewrite (5.41) as the cubic polynomial equation

s̄κ̄F̄ 3 − µ̄κ̄F̄ 2 + s̄µ̄r̄F̄ − r̄ = 0 . (5.43)

Using Cardano’s formula for cubic polynomials [50], we find that the solution

to this polynomial is given by

F̄ =

(
µ̄3

33s̄3
− µ̄2r̄

6s̄κ̄
+

r̄

2s̄κ̄
+

{[
µ̄3

33s̄3
− µ̄2r̄

6s̄κ̄
+

r̄

2s̄κ̄

]2

+

[
µ̄r̄

3κ̄
− µ̄2

32s̄2

]3} 1
2
) 1

3

+

(
µ̄3

33s̄3
− µ̄2r̄

6s̄κ̄
+

r̄

2s̄κ̄
−
{[

µ̄3

33s̄3
− µ̄2r̄

6s̄κ̄
+

r̄

2s̄κ̄

]2

+

[
µ̄r̄

3κ̄
− µ̄2

32s̄2

]3} 1
2
) 1

3

+
µ̄κ̄

3s̄κ̄
,

(5.44)

where the discriminant of this cubic must be greater than 0, to guarantee real

roots, and is clearly given by

µ̄6

36s̄6︸ ︷︷ ︸
1∗

+
µ̄4r̄2

62s̄2κ̄2︸ ︷︷ ︸
2∗

+
r̄2

22s̄2κ̄2
− 2

µ̄3

33s̄3

µ̄2r̄

6s̄κ̄︸ ︷︷ ︸
3∗

+2
µ̄3

33s̄3

r̄

2s̄κ̄
+ 2

µ̄2r̄

6s̄κ̄

r̄

2s̄κ̄

+
µ̄3r̄3

33κ̄3
− 3

µ̄2r̄2

32κ̄2

µ̄2

32s̄2︸ ︷︷ ︸
2∗

+ 3
µ̄r̄

3κ̄

µ̄4

34s̄4︸ ︷︷ ︸
3∗

− µ̄6

36s̄6︸ ︷︷ ︸
1∗

≥ 0 .

(5.45)

Several terms of the discriminant (5.45) have been denoted 1∗, 2∗, or 3∗ on the

basis that the parameter combinations, and respective orders, match in those
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marked with the synonymous label. Cancelling these terms, we arrive at

r̄2

22s̄2κ̄2
+

µ̄3r̄

33s̄4κ̄
+

µ̄2r̄2

6s̄2κ̄2
+
µ̄3r̄3

33κ̄3
− µ̄4r̄2

12s̄2κ̄2
≥ 0 , (5.46)

which may be simplified by eliminating the denominators and dividing through

to remove extraneous terms of the function. This yields

22µ̄3κ̄2 + 22µ̄3r̄2s̄4 + 32(3 + 6µ̄2 − µ̄4)s̄2r̄κ̄ ≥ 0 , (5.47)

where the factorisation has been done strategically to display the primacy of µ̄

in determining the existence of roots to this system. If µ̄ is large then certain

parameter values may not be allowed, particularly in consideration of the fact

that (κ̄, s̄, r̄) ∈ [0,∞)4. On the other hand, µ̄ ∈ (1,∞) since µ0 > µ1 by

definition of our particular system and this parameter provides a measure of

the distance between our two populations, F ∗i and F ∗j . As our two population

diverge, in proximity, µ̄ increases and we lose our guarantee of steady state

solutions to our system. If, however, our two populations remain closely related

in structure then we maintain our equilibria solutions – as given in (5.38), (5.39),

& (5.49) – for all other parameter values.

This may be explained simply, by the observation that for a steady state

to exist, each of these populations must maintain one another through muta-

tional contribution to one another’s numbers. The probability of contributing

to another population, µ, given one’s own trait state necessarily decreases with

the extent of the mutation necessary for such a contribution (or a given popu-

lation’s relative trait distance from another). If two populations are sufficiently

far from one another that contribution of one population to the other, and vice

versa, becomes too low, then the steady state will not be maintained and, there-

fore, may not exist. Notice, also, that the other parameters remaining within

this inequality are the survival advantage from contributory traits; relative dis-

advantage from æsthetic augmentation; and the reproductive choice kernel of

females for æsthetically augmented males, which all contribute positively to this
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explanation.

Moving on to establish the steady-state for either of the two female popula-

tions – so that we may recover the steady states for the system, in general – for

notational convenience we turn our attention to the steady-state equation for

the jth female population (5.37) and substitute in the steady state solutions for

M∗i and p∗, (5.38) & (5.39), to give

δfsjF
∗
j Kp

(
1− δp

αp

[
siF
∗
i

(
1 +

αmδf
αfδm

)
+ sjF

∗
j

(
1 +

αmδf
αfδm

)]−1
)

= αf

(
1− F ∗i

(
1 +

αmδf
αfδmri

)
− F ∗j

(
1 +

αmδf
αfδmrj

))
·
(
µ0κj(F

∗
j )2 αmδf

αfδmrj
+ µ1κi(F

∗
i )2 αmδf

αfδmri

)
.

(5.48)

Then, noicing that we have, by definition

F ∗i = F̄F ∗j , (5.49)

we may substitute this value into the above equation (5.48) and rearrange this

to yield

αm
δm

(
µ0κj
rj

+
µ1κi
ri

F̄ 2

)(
1 +

αmδf
αfδmrj

+ F̄

[
1 +

αmδf
αfδmri

])
(F ∗j )3

−αm
δm

(
µ0κj
rj

+
µ1κi
ri

F̄ 2

)
(F ∗j )2 + sjKpF

∗
j

−sjKp
αp
δp

(
1 +

αmδf
αfδm

)−1 (
siF̄ + sj

)−1
= 0 ,

(5.50)

which is a simple polynomial in F ∗j . Also notice, in passing, that we have

recovered the trivial steady-state through this conversion.

Next, for notational brevity we use the following substitutions, for parameter
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values which remain constant in time,

γ =
αm
δm

(
µ0κj
rj

+
µ1κi
ri

F̄ 2

)
, ω =

αp
δp

(
1 +

αmδf
αfδm

)(
siF̄ + sj

)
,

ξ =

(
1 +

αmδf
αfδmrj

+ F̄

[
1 +

αmδf
αfδmri

])
,

(5.51)

to rewrite the polynomial (5.50) as

ξγ(F ∗j )3 − γ(F ∗j )2 + sjKpF
∗
j −

sjKp

ω
= 0 . (5.52)

This cubic polynomial gives the steady-state solution for our system, so long as

the discriminant inequality is satisfied. This gives us our full system of steady-

state solutions for all 5 populations, given individually by (5.38), (5.39), (5.49),

& (5.52).

The discriminant inequality for the cubic polynomial solution to (5.52) is

given by

(
γ3

33ξ3γ3
− γsjKp

6ξ2γ2
+
sjKp

2ωξγ

)2

+

(
sjKp

3ξγ
− γ2

9ξ2γ2

)3

≥ 0 . (5.53)

Then, factorising this inequality and eliminating denominators, we arrive at

0 ≤ 22γ3ω2︸ ︷︷ ︸
4∗

+36s2
jK

2
pξ

4γ − 3222sjKpξγ
2ω2︸ ︷︷ ︸

5∗

+2233sjKpξ
2γ2ω − 352sjK

2
pξ

3γω

+ 2233s3
jK

3
pξ

3ω2 − 22γ3ω2︸ ︷︷ ︸
4∗

−3322s2
jK

2
pξ

2ω2γ + 3222sjKpξγ
2ω2︸ ︷︷ ︸

5∗

.

(5.54)

The terms denoted 4∗ and 5∗ cancel one another to simplify the above relation,

whilst the remainder of terms may be factorised again;

0 ≤33sjKpξ
2
(
33sjKpξ

2γ + 22γ2ω − 322Kpξγω + 22s2
jK

2
pξω

2 − 22sjKpω
2γ
)
,

(5.55)

which we may phrase in terms of a quadratic in the predatory carrying capacity
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of our ecosystem, Kp:

22s2
jω

2K2
p + (33ξ2sjγ + 22γ2ω − 322ξγω − 22ω2sjγ)Kp + 22γ2ω ≥ 0 . (5.56)

Finally, we know that as Kp → ∞ this inequality is satisfied (which may

also be confirmed by checking that the second derivative of this quadratic is

positive) and, therefore, we know that the greater root of this quadratic gives the

root above which this equation remains positive for all values. Using quadratic

equation, then, we may guarantee that solutions exist for our steady states so

long as

Kp ≥


√
B2 − 4AC −B

2A
if B2 ≥ 4AC

0 otherwise.
(5.57)

where

A = 22s2
jω

2 , B = 33ξ2sjγ + 22γ2ω − 322ξγω − 22ω2sjγ , C = 22γ2ω .

Due to the complicated nature of each of these terms, it is difficult to say under

which conditions this is satisfied although, in any given particular situation, the

bounds for Kp are well defined, given the solutions for F̄ . The solutions for F̄

are independent on Kp. It is worth observing that each of our parameters in this

quadratic does seem to have a particular role, given that γ depends upon our

reproductive parameter values; ω is dependent upon our predation parameter

values; and ξ is dependent upon the relative disadvantage to the male prey

population due to æsthetic augmentations. It is too difficult to say, however,

which factor is of greatest influence in any given situation and this must be

evaluated for each system independently.

Equilibria for Continuously Structured Populations (c)

Allow that the population of female prey has a solution which is given by the

discrete sum across step functions, along a linear path through the domain
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Υ2×Z, such that

F ∗ =

N∑
`=1

F ∗` , F ∗` := lim
t→∞

f(t,y`, z`) (5.58)

and likewise for the male prey population. Let us also assume that each of these

points in Υ2×Z is equally distant from the next and the last and that they

are distributed across the entire domain, such that d((yi−1, zi−1), (yi, zi)) =

d((yi, zi), (yi+1, zi+1)) = N−1, ∀i ∈ {2, . . . , N − 1}. Then the steady-state

system of equations becomes



0 = −δfp∗siF ∗i + αf

(
1 +

1

KN

N∑̀
=1

[F ∗` +M∗` ]

)
· 1

N

(
N−i∑
`†=0

µ`†κi+`†F
∗
i+`†M

∗
i+`† +

i−1∑
`‡=1

µ`‡κi−`‡F
∗
i−`‡M

∗
i−`‡

)
0 = −δmp∗siriM∗i + αm

(
1 +

1

KN

N∑̀
=1

[F ∗` +M∗` ]

)
· 1

N

(
N−i∑
`†=0

µ`†κi+`†F
∗
i+`†M

∗
i+`† +

i−1∑
`‡=1

µ`‡κi−`‡F
∗
i−`‡M

∗
i−`‡

)
0 = −δpp∗ +

αp
N
p∗
(

1− p∗

Kp

)
N∑̀
=1

(s`F
∗
` + s`r`M

∗
` ) , ∀i ∈ {1, . . . , N}.

(5.59)

As in the previous examples, we have that the solutions for M∗i are a function

of the solutions for F ∗i given by (5.38). Moreover, solving the steady-state

relations for the first (i = 1) and second (i = 2) female prey populations for p∗

and equating these, we obtain

s1F
∗
1

(
µ1κ1

r1
(F ∗1 )2 +

µ0κ2

r2
(F ∗2 )2 +

N−2∑
`=1

µ`κ`+2

r`+2
(F ∗`+2)2

)

= s2F
∗
2

(
µ0κ1

r1
(F ∗1 )2 +

µ1κ2

r2
(F ∗2 )2 +

N−1∑
`=2

µ`κ`+1

r`+1
(F ∗`+1)2

)
.

(5.60)

Dividing this equation through by the primary female prey population and
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defining F̄i,j := F ∗j /F
∗
i , we may rewrite the above equation (5.60) as

s1
µ1κ1

r1
+ s1

µ0κ2

r2
F̄ 2

1,2 + s1

N−2∑
`=1

µ`κ`+2

r`+2
F̄ 2

1,`+2

= s2
µ0κ1

r1
F̄1,2 + s2

µ1κ2

r2
F̄ 3

1,2 + s2

N−1∑
`=2

µ`κ`+1

r`+1
F̄ 2

1,`+1F̄1,2

(5.61)

and this may finally be written as a cubic equation in F̄1,2, given by

s2
µ1κ2

r2
F̄ 3

1,2 + s1
µ0κ2

r2
F̄ 2

1,2 +

(
s2
µ0κ1

r1
+ s2

N−1∑
`=2

µ`κ`+1

r`+1
F̄ 2

1,`+1

)
F̄ 2

1,2

+s1
µ1κ1

r1
+ s1

N−2∑
`=1

µ`κ`+2

r`+2
(F ∗`+2)2 = 0

(5.62)

and solved so that F̄1,2 = F1,2(F̄1,3, . . . , F̄1,N ). Therefore, we have written the

ratio between the first (i = 1) and second (i = 2) structural populations in the

female prey population as a function of the remaining ratios.

Let us continue in this direction by equating the relations for the first (i = 1)

and third (i = 3) female populations, such that

s1F
∗
1

(
µ2κ1

r1
(F ∗1 )2 +

µ1κ2

r2
(F ∗2 )2 +

µ0κ3

r3
(F ∗3 )2 +

N−3∑
`=1

µ`κ`+3

r`+3
(F ∗`+3)2

)

= s3F
∗
3

(
µ0κ1

r1
(F ∗1 )2 +

µ1κ2

r2
(F ∗2 )2 +

µ2κ3

r3
(F ∗3 )2 +

N−1∑
`=3

µ`κ`+1

r`+1
(F ∗`+1)2

)
(5.63)

and substituting the solution to (5.62) in order to further reduce this system of
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equation to

s1
µ2κ1

r1
+ s1

µ1κ2

r2
F2

1,2(F̄1,3, . . . , F̄1,N ) + s1
µ0κ3

r3
F̄ 2

1,3 + s1

N−3∑
`=1

µ`κ`+3

r`+3
F̄ 2

1,`+3

= s3
µ0κ1

r1
F̄1,3 + s3

µ1κ2

r2
F2

1,2(F̄1,3, . . . , F̄1,N )F̄1,3

+s3
µ2κ3

r3
F̄ 3

1,3 + s3

N−1∑
`=3

µ`κ`+1

r`+1
F̄ 2

1,`+1 .

(5.64)

One may observe that we now have a polynomial regression where, by solving

iterative pairs of equations, we come converge towards a solution for F̄1,N which

depends only upon the fundamental parameters of this system. Then, any other

ratio may be obtained using the following substitution

F̄i,j =Fi,j(F̄i,j+1, . . . , F̄i,N )

=Fi,j(Fi,j+1(Fi,j+2(. . . ),Fi,j+3(. . . ), . . . ), . . . ,Fi,N−1(F̄N ), F̄N )

= : F̄i,j(F̄N ), ∀i ∈ {1, . . . , N − 1} .

(5.65)

Solving the equation for the predator population, within the full system

(5.59), we obtain

p∗ =Kp

1− Nδp
αp

[
N∑
`=1

(s`F
∗
` + s`r`M

∗
` )

]−1
 , (5.66)

which may be substituted into the steady-state equation for the first (i = 1)

female population to arrive at

δfKp

1− Nδp
αp

[
N∑
`=1

s`F
∗
`

(
1 +

αmδf
αfδm

)]−1
 s1F

∗
1

=
αf
N

(
1 +

1

KN

N∑
`=1

F ∗`

[
1 +

αmδf
αfδmr`

])
·
N−1∑
`†=0

µ`†κ`†+1

r`†+1

(F ∗`†+1)2αmδf
αfδm

,

(5.67)

where we have also substituted in the solutions for the male prey populations

(5.38). Finally, we may substitute in the definitional relations for F ∗i with
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respect to F ∗1 (5.49), for which all terms have now been evaluated, and factorise

this relation to yield

Kp

1− Nδp
αpF ∗1

(
1 +

αmδf
αfδm

)−1
[
s1 +

N∑
`=2

s`F̄1,`

]−1
 s1F

∗
1

=
αm
δmN

(
1 +

F ∗1
KN

[(
1 +

αmδf
αfδmr1

)
+

N∑
`=2

F̄`

(
1 +

αmδf
αfδmr`

)])

·

(
µ0κ1

r1
+

N−1∑
`†=1

µ`†κ`†+1

r`†+1

F̄ 2
`†+1

)
(F ∗1 )2 ,

(5.68)

which is a cubic equation of the form

αm
δmK

[(
1 +

αmδf
αfδmr1

)
+

N∑̀
=2

F̄`

(
1 +

αmδf
αf δmr`

)](
µ0κ1

r1
+
N−1∑
`†=1

µ
`†κ`†+1

r
`†+1

F̄ 2
`†+1

)
(F ∗1 )3

+N αm
δm

(
µ0κ1

r1
+
N−1∑
`†=1

µ
`†κ`†+1

r
`†+1

F̄ 2
`†+1

)
(F ∗1 )2

−Kps1N
2F ∗1 +Kps1

N3δp
αpF∗1

(
1 +

αmδf
αf δm

)−1
[
s1 +

N∑̀
=2

s`F̄1,`

]−1

= 0 .

(5.69)

In order to avoid tedium, we shall not venture to solve this equation or,

even, look for its discriminant but leave it to the reader to decide upon the

necessity of such a task. It is, however, worth pointing out that such a general

solution holds for all or any number of such step functions and, as such, may be

easily extrapolated to the continuous case as N → ∞. Therefore, despite the

fact that this is a discrete handling of the model, we call this the continuous

solution to the model on the basis that it provides a direct route to the semi-

analytic solution for continuous distributions. In fact, while F ∗1 , here, provides

an absolute steady-state solution at some discrete point in the structure space,

Υ2×Z, as N → ∞ we obtain a continuous distribution, relative to F ∗1 , as the

system of points

lim
N→∞

{
1,

N⋃
`=1

{F̄1,`}

}
, (5.70)

where F̄1,1 = 1. Likewise, for an n-dimensional system of points, this same
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method may be used to obtain analytic solutions as the union of infinitesimally

narrow step-functions on the domain. This is true since we have maintained

the generality of the path across which the 1-dimensional distribution is ob-

served across the domain and, therefore, we maintain the generality of all sub-

distributions and functions across it.

(It is also worth noting the fairness of the term distribution here since – in the

case where either κi 6= κj , si 6= sj , or ri 6= rj for any (i, j) ∈ {1, . . . , N}2, i 6= j

– uniform distribution across the domain is not permitted. The functions κ(y),

s(z), and r(y2) feature heavily in the characteristic polynomials for F̄i and will

thusly shape the distribution of the solutions across the domain. It is also worth

noting that, in this particular case, the functions f∗(y, z) and m∗(y, z) will

necessarily have the same distribution, on the basis that we have assumed away

the asymmetries in their reproductive terms, in order to simplify the analysis.

This discrepancy would be expected to show up in the numerical solutions, since

the numerical system will conserve these asymmetries and the distributions will

not align precisely.)

We have shown here, firstly that steady state solutions for all three scenar-

ios; unstructured, discrete, and continuous. For the unstructured population, we

have been able to go further by providing a tangible constraint on the predator

and prey carrying capacities, Kp and K, for which steady states will be guar-

anteed so long as αpK ≤ 1 and s(z) ≤ 1. Since these values occur in nature,

these constraints provide a welcome validation of the model with respect to its

realism; as does the suggestion that predator numbers must be controlled for an

ecosystem to persist (5.30). Secondly, we go on to provide methods for obtain-

ing these solutions, which in the case of unstructured populations is somewhat

trivial. In the case of the discrete structured and continuous we provide non-

trivial, implicit, analytic solutions and these methods constitute a substantial

contribution to analytic methods in integro-differential mathematics.



218 CHAPTER 5. MODELLING EVOLUTION

5.2.3 Numerical Methods

Numerical schemes were implemented in MatLab, where, to attempt to increase

the stability and accuracy of numerical solutions, we implemented a McCor-

mack predictor-corrector system. All integrals were evaluated using the stan-

dard, numerical trapezoidal rule, while integrands, under the integrals over ζ in

particular, were linearly interpolated from existing results, since to choose an

interpolation spline would be to assume a form for the solutions.

The constants chosen with which to simulate this system of equations (Table

5.1) was designed to explore the dynamics of the mathematical, or theoretical,

system rather than of a specific species or set of species. This will not allow

one to draw any specific conclusion about the dynamics of a particular species

but, rather, allows one to understand the logical and necessary conclusions of

the simple and few assumptions made in order to give rise to such a model.

In order to assess how the mass of the populations of females and males

evolve over time, we define the female mass, fM : I → R+, and the male mass,

mM : I → R+, as being given by the quantities

fM (t) =
y

Υ2×Z

f(t,y, z) d(y, z), and mM (t) =
y

Υ2×Z

m(t,y, z) d(y, z) .

(5.71)

Likewise, in order to present a more absolute quantitative measure of the female

or male populations at any given time, we would like to know the average

position of each population in a given trait. This is achieved by evaluating the

centre of mass (COM) of the population in the quantities y1, y2, or z respectively

variable constants
f, m

f
m
p

νy1
= 50 νy2

= 50 νz = 20
q ∈ [0, 4] β ∈ (0, 1)

αf = 3.2×10−2 δf = 0.2 K = 2×103

αm = 3.2×10−2 δm = 0.2 ”
αp = 1.5×10−3 δp = 0.5 Kp = 2×102

Table 5.1: Table of constants for the evolutionary sexual selection model. All constants
stated above and utilised within the simulation of the theoretical model are given along with their
corresponding variable.
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with

fCy (t) =

t

Υ2×Z
y1f(t,y, z) d(y, z)

t

Υ2×Z
f(t,y, z) d(y, z)

, fCz (t) =

t

Υ2×Z
zf(t,y, z) d(y, z)

t

Υ2×Z
f(t,y, z) d(y, z)

and

mCy (t) =

t

Υ2×Z
y1m(t,y, z) d(y, z)

t

Υ2×Z
f(t,y, z) d(y, z)

, mCz (t) =

t

Υ2×Z
zm(t,y, z) d(y, z)

t

Υ2×Z
f(t,y, z) d(y, z)

,

(5.72)

where female populations are evaluated solely for their COM in y1 and likewise

for males in y2, since these are the expressed traits of each sex.

5.2.4 Results

The theoretical model used throughout this paper explores the dynamics be-

tween a predatory species, p(t), and female, f(t,y, z), and male, m(t,y, z),

cohorts within some arbitrary prey species. These populations may change

through selectivity-elaboration, y := [y1, y2]T , and trait survival, z, dimensions

which together we refer to as the trait space. Whilst we assume, for the most

part, that trait elaboration brings a natural disadvantage to male prey who ex-

press this trait; trait selectivity does not bring any survival disadvantage but

increases the probability that females will mate with more elaborate males; and

trait survival evolves orthogonally to these traits whilst always endowing the

host to a survival advantage, with regard to predation. Offspring receive traits

dependent upon those of the parents, whilst mutations are acquired through

reproduction alone.

Results are presented in 3 major forms:

1) Mass-time plots present the temporal distribution in the overall popula-

tion of each subpopulation of females, males, and predators as fM (t), mM (t),

and p(t) (Fig. 5.2), where fM (t) and mM (t) are defined as in (5.71). Each of

these quantities is plotted with time in the x-dimension. Likewise, centre of
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a

b

Figure 5.2: Population dynamics for a system with advantage parameters q = 1.6 and β = 0.4,
presented as (a) mass-time plots illustrating the absolute population masses for fM (t) (blue), mM (t)
(green), and p(t) (red) and (b) centre of mass (COM)-time plots illustrating the COMs in y1 (blue),
y2 (green), and z (red) respectively for females, males, and both during the interval t ∈ I.

mass (COM)-time plots give the COM, or the average position, of the distribu-

tion in y1, y2, and z appropriately (Fig. 5.2, 5.5 & 5.9) as fCy , fCz , mCy , and

mCz are defined in (5.72).

2) Time series, or final states, may be given as a series of 2-dimensional

colour-maps (along with their respective colour-bars) to illustrate the relative

distributions of f(t,y, z) and m(t,y, z) across the (yi, z)-plane, for a given time

point t and where i = 1 for females and i = 2 for males (Fig. 5.3, 5.4, 5.6,

& 5.8). Thusly, female distributions are illustrated in their active (y1, z)-plane

and males are illustrated in their active (y2, z)-plane.

3) Finally, parameter-COM colour-maps (along with their respective colour-

bars) describe the final COM for a given distribution, at t = 10, as a colour

plotted on axes defined by the value of two given parameters, where all other

parameters have remained fixed (Fig. 5.7).
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Figure 5.3: Time series colour-maps representing 2-dimensional distribution of population concen-
trations on the (y1, z)-plane, for females, and the (y2, z)-plane, for males, at time points t ∈ {0, 2, 4}.

Female sexual selection drives male elaboration

Observe, for example, the evolution of a predator-prey system given the relative

trait elaboration disadvantage of 110%, q = 1.1, and the relative trait survival

advantage of 20%, β = 0.2, (Fig. 5.2 – 5.4). Firstly, one should notice that

the opening phases of the development of both the female and male populations

are characterised by a broadening of the distribution in trat selectivity, trait

elaboration, and trait survival, although to a comparatively greater extent in

trait survival (Fig. 5.3). This dynamic is mediated by the mutation of the

species in both elaboration and through the orthogonally advantageous trait

survival, described by z. Further, these opening moments are characterised, to

a great extent, by predation and result in the diminution of the female and male

populations (Fig. 5.2).

The secondary phase of this process is characterised by a dynamic shift of

the male population from a well defined inconspicuous population, low y2, to

a more genetically dispersed population, in terms of elaboration (Fig. 5.3).

This shift is furthered by a subsequent consolidation of the population’s genetic

configuration, at high values of trait elaboration, and a subsequent dispersal

in the selectivity of females. As males become less elaborate, then, females
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may become more selective and this is observed through the fast dispersal and

consolidation of females in more selective traits (Fig. 5.4) since those females

who are less selective will be more likely to mate with unsuccessful males. This

is a symbiotic relationship wherein selective females allow elaborate males to

proliferate and survive whilst male elaboration allows females to become yet

more selective. Throughout this process, the orthogonally advantageous trait

propagates ever more steadily towards higher values of trait survival, increasing

the population’s average survival rate when considering only this trait (Fig. 5.3

& 5.4).

To be clear, this model does not allow for the population to organically shift,

in the absence of growth or destruction, but rather it is the selective pressures

of random mutation and natural selection by predation which are causing the

shifts in trait survival. In the case of traits selectivity and elaboration, however,

the case is more complicated. As the male population increases its standing in

trait elaboration it will become more vulnerable to predation and, as a result,

should die more frequently than its more elaborate counterparts. This would

cause the population to remain at low values of elaboration. Given, on the

other hand, the propensity of females to become concurrently more selective

about which males they choose to mate with, the population of highly elaborate

males will become more attractive mates and will copulate more often than their

inconspicuous sexual rivals. This causes the growth in highly elaborate males to

become sufficiently higher than less elaborate males and allows them to outgrow

this inconspicuous population. This is a theoretical illustration of the process

known as sexual selection.

To confirm the effect of sexual selection, we ran two almost identical ex-

periments; one (i) wherein females would genetically diversify whilst, in the

second (ii), females would remain non-selective at all times (Fig. 5.5). All

other parameters affecting the experiment were kept constant throughout. In

experiment (i) one observes a gradual increase in male trait elaboration and,

although mean female trait selectivity is monotonically increasing, a retarded

increase in female selectivity (Fig. 5.5, —). This increase in selectivity is, as in
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previous experiments, triggered by male diversity in elaboration and the presen-

tation of reasonable choice to female populations. In experiment (ii), however,

one observes the regression of the female population monotonically towards a

non-selective phenotype, despite initial conditions being identical (Fig. 5.5, - -

-). This results in male populations initially exhibiting some, female selectivity-

driven, increase in elaboration before a subsidence in trend and regression to a

state of low elaboration, which is still maintained by the small selective female

population maintained in the narrow distribution across trait selectivity. In

this particular case, the success of orthogonal survival traits, z, is unaffected by

changes in female or male distributions across selectivity and elaboration.

Advantageous elaboration gives rise to augmented male success

In order to test, and validate, the model further, we checked to confirm that

defining the elaboration on males to be advantageous against predators, for ex-

ample to serve as a warning or deterrence to predators, would result in strong

selection for this trait. To do this, we set the relative disadvantage q < 1.

Choosing an arbitrary value q = 0.8, satisfying q < 1, we ran the experiment

as previously, with β = 0.2. We found that, in this case, male populations

f

m

t = 6 t = 8 t = 10

Figure 5.4: Time series colour-maps representing 2-dimensional distribution of population con-
centrations on the (y1, z)-plane, for females, and the (y2, z)-plane, for males, at time points
t ∈ {6, 8, 10}.
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Figure 5.5: Female sexual selection drives male elaboration. Centre of mass (COM)-time
plots for solutions to equations with mutation in the y1-dimension, νy1 = 50 (- - -), and without
mutation in the y1-dimension, νy1 =∞ (—). Temporal distributions are given for female selectivity,
y1 (blue); male elaboration, y2 (green); and overall orthogonal survival traits, z (red), across the
time interval t ∈ I.

dominated female populations (Fig. 5.6A), by merit of their selective advan-

tage. This also gave rise to strongly elaborate males and selective females (Fig.

5.6B), whose traits were more well defined than with previous populations (Fig.

5.5) but whose mass distributions across the trait space (Fig. 5.6) were not

significantly altered with respect to previous experiments (Fig. 5.4).

Meanwhile, a parameter sweep across values of q < 1 and β ∈ (0, 1) found

that a strongly elaborate phenotype was achieved homogeneously across param-

eter space and that male populations consistently existed in greater numbers

than female populations; a trend that increased inversely with q. This demon-

strates that, no matter the advantage presented by orthogonal traits, advan-

tageous elaboration always gives rise to a final population of highly elaborate

males and a population with more males than females.

Theoretical models support the orthogonal disadvantage (OD) hy-

pothesis, sometimes

In order to test the validity of the OD hypothesis, one must find those scenarios

wherein trait elaboration is expressed and compare to those wherein trait elab-

oration is not selected for. To achieve this, a parameter sweep was performed

across the elaboration disadvantage and survival advantage space, (q, β)-plane,

to observe the dynamics of respective populations under differing systems of
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pressure. Completing this, one observes extremely well defined phenotypes,

high-y and low-y, in the elaboration and selectivity trait spaces, whilst a less

well defined transitionary dynamic is observed for survival traits (Fig. 5.7).

Above certain values in elaborative disadvantage, and depending on survival

advantage, there exists a steep transition between elaborate, selective and in-

conspicuous, non-selective populations. Nevertheless, the correlation between

this behaviour and that in trait survival is strong and statistically relevant.

Figure 5.6: Advantageous elaboration gives rise to augmented male success. Population
dynamics for a system with advantageous growth parameters q = 0.8 and β =, presented as (A)
mass-time plots illustrating the absolute population masses for fM (t) (blue), mM (t) (green), and
p(t) (red) and (B) centre of mass (COM)-time plots illustrating the COMs in y1 (blue), y2 (green),
and z (red) respectively for females, males, and both during the interval t ∈ I. (C & D) Final state
colour-maps representing 2-dimensional distribution of population concentrations on the (y1, z)-
plane, for females, and the (y2, z)-plane, for males.
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Figure 5.7: Modelling predicts a steep drop-off in elaboration as costs exceed orthogonal
compensations. Final population states with varying trait advantage, presented as parameter-
COM colour-maps for female and male final states in y1/y2 and z, where colour-bars indicate
magnitude.

Moreover, one can clearly see that the significant decrease in y2 value, or

elaboration in males, resulting from the raised evolutionary cost of this trait

correlates strongly with a decrease in both male and female z position, inflict-

ing a clear penalty on any resultant female offspring. Although one may argue

that this increase in trait survival, z, is only compensating for trait elaboration,

y2, in males, no such disadvantage is felt by female populations through the

augmentation of trait selectivity or elaboration – since the model assumes that

elaborate phenotypes are not expressed in females. Therefore, females are re-

ceiving a selective advantage from male elaboration, in that this causes a greater

selection for higher trait survival in male populations and this is passed down

to inconspicuous female offspring.

On the other hand, one should not fail to notice that this effect is only

seen so long as the disadvantage of trait elaboration is not too great so as to
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negate early compensatory dynamics for male populations; resisting the expres-

sion of elaborate phenotypes which allows for female selectivity to develop. In

these cases, male elaboration is finally low and, although the residual benefit

of augmented trait survival is not felt by female offspring, trait survival is still

maintained to a relatively high degree, ∼ 63%.

Beauty is an evolutionary end in itself, when the cost is low

Observe that, in earlier experiments (Fig. 5.2), although trait survival and

trait elaboration appear to co-evolve with one another, trait survival also leads

the evolution of elaboration at early time points; that is, z increases ahead

of y2. Combining this observation with the OD hypothesis, therefore, implies

that populations may be using an increase in trait survival to compensate for

evolutionary or survival deficits incurred due to an increase in disadvantageous

f
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β = 0.1, q = 1.8 β = 0.1, q = 2.2

Figure 5.8: Shifting elaboration costs causes elaborate-selective and inconspicuous-non-
selective phenotypic selection. Population states for a system with advantage parameters as
indicated, presented as final state colour-maps representing 2-dimensional distribution of population
concentrations on the (y1, z)-plane, for females, and the (y2, z)-plane, for males.
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Figure 5.9: Beauty is an evolutionary end in itself. Centre of mass (COM)-time plots illustrat-
ing the COMs in y1 (blue), y2 (green), and z (red) respectively for females, males, and both during
the interval t ∈ I, where for t < 5 mutation in female trait selectivity and male trait elaboration is
stemmed. At t = 5 (black, - - -) mutation in female trait selectivity, y1, and male trait elaboration,
y2, are reinstated and maintained through t ≥ 5.

elaboration. This would mean that beauty was an evolutionary end, in itself,

that survival advantage was used to achieve in certain circumstances.

In order to test this hypothesis, we designed an experiment wherein the

evolution of traits selectivity, y1, and elaboration, y2, would be stemmed dur-

ing some initial period t ∈ [0, 5) before the mutation through these trait spaces

would be reinstated. During the initial period, trait survival increases monoton-

ically whilst traits selectivity are greatly diminished (Fig. 5.9) when compared

to fully mutational experiments (Fig. 5.2). Upon reinstatement of the full muta-

tional dynamic, inclusive of traits selectivity and elaboration, to the female and

male populations, one observes an increase in both traits without any significant

augmentation in trait survival.

This suggests that, despite no survival advantage to the population, trait

elaboration is sexually selected for by females purely through allowing trait se-

lectivity to persist and freely mutate. In this case, the sexual urge to reproduce

with attractive males will overcome the tendency of more naturally adept sur-

vivors to outnumber less successful survivors. Sexual selection for beauty is

equally as strong a force as natural selection for survival. What one should also

observe in these results is that the growth in trait elaboration COM is preceded

by a fast increase in trait selectivity COM. This indicates that, although male

trait elaboration leads females selectivity, female trait selectivity is necessary

for the initial survival and diversification of elaborate males.
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5.2.5 Discussion

To verify that our theoretical model is ecologically and evolutionarily relevant,

we performed experiments which verified the origin of conserved disadvanta-

geous traits were in female sexual selection, fittingly with the canon of evolu-

tionary theory. We also found that imposing that this elaborative mutation

was advantageous gave males an evolutionary advantage, which was conserved,

and promoted female selectivity. These are precisely the results that one would

expect to see in a functionally relevant theoretical model of evolution by natural

and sexual selection [130]. Moreover, this modelling framework overcomes the

criticisms [174, 121, 195, 310, 311] of previous models [273, 130, 131, 274] by

acknowledging intra-species diversity, whilst allowing for the speciation mech-

anisms identified in others [188, 337] – for example by imagining a greater

selective disadvantage in some autonomous spatial region, as compared to an-

other. Likewise, we find support in statistical observations in dichromatic

species [94, 337, 345], where our model supports the increasing turnover rate in

these species whilst providing a mechanism for their local extinction. Our model

also suggests, however, that speciation may not occur through sexual selection

in a local environment where all pressures are equal.

Existing theoretical answers and approaches for this problem tend to involve

the employment of deterministic ordinary or partial differential based modelling

[130, 121, 195, 188, 293, 266] or game-, rule-, based systems [327, 174]. Our ap-

proach allows for the modelling of diverse distributions of populations across a

well-defined trait space, resulting in a more nuanced solution and more natu-

ral interpretation for the results. Moreover, recent comparisons of vertebrate

datasets to stochastic models found that evolution tends to happen in a pulsatile

manner, through periods of rapid change [197]. Evolution of population distri-

butions, in our model, follows periods of relatively small evolutionary change,

which may be described as evolution by stasis [173], followed by periods of rapid

upheaval and large phenotypic shifts in male and female populations, reconciling

existing observations.
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These results also provide strong basis for support of the HP [346, 130],

although not the HSH. The HSH supposes that elaborative signalling, which

is evolutionarily conserved, must be honest in order that it provides advantage

to future generations and allows them to survive [347, 348, 273]. Our results

have shown, however, that even when elaboration is purely disadvantageous,

and does not provide any secondary advantage to male or female offspring,

these elaboration will sometimes be conserved, so long as they are not too

costly. Moreover, evolutionary advantage and elaboration are either directly

related, in which case selection for elaboration may be explained solely through

natural selection, or they are unrelated (orthogonal), in which case there is

no mechanism to conserve honesty within a stochastic evolutionary system.

This is in agreement with much of the modern literature [121, 310, 311]. To

make mention of the UPH; this is actually covered within the trivial case of

advantageous elaboration, in males, causing a male domination and evolutionary

advantage to specifically male offspring.

The fact that female selectivity phenotypes begin to subside, upon decreas-

ing advantages arising from trait survival, indicates that there must exist some

significant compensatory mechanism in order for intra-species elaboration to be

achieved. Likewise, as this advantage decreases, one observes a stronger ex-

pression of the trait; at once suggesting that disadvantageous sexual selection

encourages selection for the orthogonal trait and that natural selective mecha-

nisms will punish and compensate for this decreasing advantage. This supports

the OD hypothesis and concurs with existing models for sexual and natural se-

lective dynamics [346, 130, 174, 266] and recent natural observations [345]. The

OD hypothesis is, however and in actual fact, a more formal sub-hypothesis

stemming from the larger HP and the support that we lend for the OD hypoth-

esis should be construed as a support for the HP itself.

This model may also suggest something quite unfamiliar to the scientific

convention; that survival may not be the only end of evolution. This theoretical

framework suggests that, at least, females are willing to assume the burden to

their male offspring from mating with a disadvantaged male in order to fulfil
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their genetically favoured æsthetic desires to mate with an attractive male, even

when no survival gains are to be had.
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Chapter 6

Further Methods in

Multi-Scale Modelling of

Cancer Invasion

6.1 Introduction to Pseudo-Spectral and Cellu-

lar Automata in Multi-Scale Cancer Prob-

lems

During the development and exposition of these higher-dimensional applica-

tions, a few limitations became clear in its scope. Although these methods

remain extremely useful, when conceived in the appropriate settings, finite dif-

ference numerical strategies require a large computational memory capacity in

order to implement – often in excess of that available. To overcome this, we at-

tempted to implement a pseudo-spectral Chebyshev polynomial-based method-

ology for the estimation of solutions to yet higher dimensional problems and

applied this to solving the problem of drug resistance (Section 6.2), covered in

Section 3.2. The purpose of this was primarily to provide a comparison between

233
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the justified results produced by finite difference and the estimations produced

by the pseudo-spectral method – allowing us to estimate the reliability of the

method.

In other cases, a continuous representation of space, where specific instances

require dynamics to be considered at an individual cellular scale, are simply

not capable of displaying the complex finite dynamics of individual cells and,

instead, represent these dynamics as a probability distribution. This, occasion-

ally, lacks the ability to align itself with the data which is often demanded of

a model, if it is to be considered convincing. In order to rectify this, we im-

plement an agent-based cellular automata model with the ability to simulate

intra-cellular, cell-membrane, and population-level dynamics of a prearranged

tumour. Herein (Section 6.3), we directly and explicitly tackle the problem of a

proliferative cell population whose phenotypic behaviour alters in the presence

of an invasive species of cancer cell, resulting in co-invasion of the prolifera-

tive cells. We also apply this method, for verification purposes, to additional

problems in cellular invasion.

6.1.1 Brief Recap of Multi-Scale Drug Resistance

Drug resistance is a complex phenomenon which formed the primary focus of

Chapter 3, wherein we discussed the major dynamics involved in the develop-

ment of resistance to targeted therapies in melanoma. In the system which

developed plastic resistance to therapy, by means of their metabolism, we make

the following assumptions:

The cancer population, c exhibits diffusive, chemotactic, and haptotactic

mechanics in space, representing random motion; attraction to environmen-

tal chemicals; and attraction to the extra-cellular matrix, respectively. In the

structural or metabolic dimension, the cancer cells exhibit random motion in the

presence of drugs and in the absence of nutrition – altering their metabolism

without direction with Σ – and convection towards a genetically favourable

metabolic state, ω, in the absence of drugs – as defined by Ψ. Cells are assumed
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– in Φc – to grow logistically in the presence of nutrition, whilst – as with f̄ – be-

ing degraded by targeted drug species appropriately with the targeted metabolic

state space, in y.

The extra cellular nutritional environment (ECNE) population, v, is remod-

elled, using a logistic growth function, as in the function Φv, and is degraded

linearly with the abundance of cancer cell produced matrix-metalloproteinases

(MMPs). Molecular species, m̄, consists of an MMP species, produced by can-

cer cells, and a nutritional species, produced by the ECNE. These species may

diffuse throughout the domain and will be produced, as stated above, as defined

by their production term Φ̄m and will be naturally degraded. Finally, the drug

populations, p̄, are given by BRAFi and MEKi and may diffuse throughout the

domain; will be artificially injected into the system, as defined by the function

¯theta; and will be degraded as they induce apoptosis among the cancer cells.

In order to explore the paradigm of drug resistance, using the pseudo spectral

Chebyshev polynomial methods, we recall the system used in Section 3.2, given

by

∂c

∂t
= ∇x · [Dc∇xc+ c(1− ρ(c, v)) (∇x(χ̄m · m̄) +∇xχvv)]︸ ︷︷ ︸

Spatial Flux

+∇y · Σ(y, m̄, p̄)∇yc− rµ∇y ·Ψ(y, m̄, p̄)c︸ ︷︷ ︸
Structural Flux

+ Φc(y, m̄, c, v)c︸ ︷︷ ︸
Growth

− δc f̄(y) · p̄c︸ ︷︷ ︸
Drug Influence

∂v

∂t
= Φv(c, v)v︸ ︷︷ ︸

ECNE Remodelling

− δ̄v · m̄v︸ ︷︷ ︸
MMP Degradation

∂m̄

∂t
= ∇x · diag(D̄m)∇xm̄︸ ︷︷ ︸

Spatial Diffusion

+

∫
P

Φ̄m(y, m̄, c, v) dy

︸ ︷︷ ︸
Chemical Synthesis

− diag(δ̄m)m̄︸ ︷︷ ︸
Natural Degradation

∂p̄

∂t
= ∇x · diag(D̄p)∇xp̄︸ ︷︷ ︸

Spatial Diffusion

+ θ̄(t, x)︸ ︷︷ ︸
Drug Input

−diag(δ̄p)p̄

∫
P
c dy︸ ︷︷ ︸

Drug Degradation

.

(6.1)

This system of equations (6.1) is considered together with no-flux boundary
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conditions in c, m, and p̄. In the case of c we consider zero spatial fluxes, and

zero structural fluxes on the boundaries of the spatial and structural domains,

respectively.

6.1.2 Oncological co-invasion

Biological paradigms involving mixtures of heterogeneous subpopulations of

cells have become the subject of increased scrutiny in recent years. Begin-

ning from problems of cell sorting [132], cellular interactions now have a field

of automata devoted to their exploration. One problem of significance is the

change in behaviour of ordinarily non-invading proliferative cells (MITFHIGH )

in the presence of highly invasive, non-proliferative cells (MITFLOW ). Injection

of these cellular populations, in vivo, in isolation yielded ordinary pathological

behaviour whereas co-injection of disparate species led to the co-invasion of the

local stroma by MITFHIGH cells, on a substrate altered by leading MITFLOW

cells [58].

This also gives cause to discuss more general problems in invasion. One

methodology of cellular invasion involves the utilisation of ‘microtracks’, or

spaces of reduced ECM concentration, by cells in order to gain a competitive

advantage, travelling at increased speeds by direct comparison with those cells

forced to travel through the dense ECM [51]. This increase in migration through

native microtracks was shown, using time-lapse photography, to occur within

the 3D collagen matrix. These microtracks have further been shown to have

varying mean width and variance [193] which may be as a result of underlying

matrix structuring and varying collagen densities across a given region. Impor-

tantly, the cells were shown to exhibit patterns of actin recruitment that were

not discernible from those found in migratory cells out with microtracks [193].

The discrete Cellular Potts models which have been proposed model the cell

moving through a grid-like structure, however fine, guided by a mechanistic,

stochastic function [132]. Indeed, these have great power in reproducing qual-

itatively realistic results and can model even relatively complex systems [322].



6.2. PSEUDO-SPECTRAL CHEBYSHEV APPROACHES 237

These models exist in a discrete space where the implementation of behaviours

is dependent on a delta probability function rather than the continuous machin-

ery of the cell. This means that they lack the ability to, for example, explain or

describe microtrack motility or to fully explain any emergent phenomena due

to the model’s reliance on stochastic dynamics.

One particular model which does not study the cell mechanics themselves,

demonstrates that one can take a more physical interpretation of the tumour

and its environment [349]. This model, again, chooses to describe a cellular

population as a non-autonomous series of ball-like structures in arbitrary space

acting under the standard forces (drag, traction, et cetera). The complexity

of membrane-dependent biological interactions requires the creation of a novel

cellular automata model who describes not only the position of the cells but

endows them with some physical form which mediates its interaction with its

environment.

6.2 Pseudo-Spectral, Chebyshev Polynomial-Based

Modelling

6.2.1 The Mathematics of Chebyshev Polynomials

The most fundamental Chebyshev formulation is derived from the dilated in-

verse transformation through the trigonometric cosine function, given by

Tk(x) := cos(k cos−1 x), ∀k = 0, 1, 2, . . . , (6.2)

and for values of x ∈ [−1, 1]. Of course, the inverse cosine transformation of x

yields values in [0, π] such that the dilation by k serves to increase the periodicity

of the function within the domain, or the number of rotations in the function

(Fig. 6.1). In this way, k yields the ‘degree’ of the Chebyshev polynomial in its

traditional sense; with a degree k polynomial having a maximal integer power

of k and having k roots.
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Figure 6.1: By pictorially representing the domain of x ∈ [−1, 1] in terms of its sinusoidal transform

cos−1 x, we notice that the successive Chebyshev expansions represent an internal dilation on the
circle and increase the number of minima/maxima by 1 each time.

Furthermore, setting x := cos z we arrive at the usual sinusoidal expression

of the polynomial as Tk(x) = cos kz. In order to simplify this notation and

remove the sinusoidal terms from our Chebyshev system, notice that

Tk−1(x) + Tk+1(x) = cos(k − 1)z + cos(k + 1)z

= cos(kz − z) + cos(kz + z) .
(6.3)

Then, using the trigonometric identity cos(A + B) = cosA cosB − sinA sinB,

we arrive at

Tk−1(x) + Tk+1(x) = cos kz cos z + sin kz sin z + cos kz cos z − sin kz sin z

=2 cos kz cos z

=2xTk(x),

(6.4)

which, using k 7→ k − 1, yields the recurrence relation

Tk(x) = 2xTk−1(x)− Tk−2(x) (6.5)

for generation of kth-degree Chebyshev polynomials. Moreover, since the the

two primary Chebyshev polynomials are arrived at by definition, T0(x) = 1 and
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T1(x) = x, we may derive the entire sequence of Chebyshev polynomials by

iteration (Table 6.1).

Next, we acknowledge that the direct sum of any of these two polynomials is

of no great use or consequence, directly, where the weighted infinite sum of such

polynomials, on the other hand, is capable of representing any given function,

on the domain [−1, 1]. Therefore, each ith polynomial given a weighting of αi,

we may write the complete polynomial as the sum of its constituent parts;

pN (x) =
N∑
i=0

αiTi(x) . (6.6)

Moreover, in order to avoid the Runge phenomena which result from a equi-

spaced discretisation of x on its domain[287], we use the Gauss-Lobatto points

given by

xi = cos

(
πi

N

)
, ∀i ∈ {0, ..., N}. (6.7)

since the evaluation of our solution, g(x), at these points, gi := g(xi), shall guar-

antee that the Chebyshev collocation is capturing the most extreme behaviours

of our solution. The Gauss-Lobatto points, after all, are chosen to coincide with

the x-coordinates at which the N th Chebyshev polynomial takes its extreme

values, ±1.

Multiplication of Chebyshev terms has been throughly discussed in several

existing works and so we shall begin by acknowledging the forms of such a

Index Approximated T-notation Polynomial
0 1 T0(x) 1
1 cosx T1(x) x
2 cos 2x T2(x) 2x2 − 1
3 cos 3x T3(x) 4x3 − 3x
4 cos 4x T4(x) 8x4 − 8x2 + 1
5 cos 5x T5(x) 16x5 − 20x3 + 5x
6 cos 6x T6(x) 32x6 − 48x4 + 18x2 − 1

Table 6.1: Example of the first 6 Chebyshev polynomials and their approximated functions, calcu-
lated using (6.5).
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multiplication as

Ti(x)Tj(x) =
1

2

(
Ti+j(x) + T|i−j|(x)

)
. (6.8)

Therefore, the multiplication of 2 sums of such polynomials to degree d− 1 can

be given by(
d∑
i=1

αiTi−1(x)

)(
d∑
j=1

βjTj−1(x)

)
=

d∑
i=1

d∑
j=1

1
2αiβj

(
Ti+j−2(x) + T|i−j|(x)

)
(6.9)

Therefore, the 1-dimensional change in any one coefficient can be given by

(
B∑
i=1

αiTi(x)

)(
B∑
j=1

βjTj(x)

)
=

2B∑
i=1

γiTi(x)

γm =
m∑

i=q(m2 )

1
2αiβm−i +

2B∑
j=m

1
2αjβ|m−j|

(6.10)

where q(·) := ceil(·) is the upwards, integer rounding function.

Following this methodology, one can write the multiplication of 2 summed

N-dimensional Chebyshev polynomials as[ ∑
(i1,...,iN )

αi1,...,iNTi1−1(x) . . . TiN−1(x)

][ ∑
(j1,...,jN )

βj1,...,jNTj1−1(x) . . . TjN−1(x)

]

=
∑

(i1,...,iN ,j1,...,jN )

1

2
αi1,...,iNβj1,...,jN

(
Ti1+j1−2,...,iN+jN−2(x)+T|i1−j1|,...,|iN−jN|(x)

)
.

(6.11)

In order to computationally implement this, however, would require a double

iteration of the nested loops such that, for a 5-dimensional system, one would

implement (105)2 = 1010 or 10bn iterations and would require two scalar mul-

tiplication operations per iteration giving 20bn operations.

This would make a straight implementation of an N-dimensional Chebyshev

polynomial multiplication less efficient than that of a finite difference scheme.

Therefore, one must derive an implementation scheme that takes advantage of

the linear algebraic computational regimes in order to reduce the number of
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necessary operations. For this substantive reason, we choose to implement a

pseudo-spectral method in which we switch between finite difference grid and

Chebyshev representations as necessary.

From trigonometric theory, the derivative of a single Chebyshev polynomial

is given by
dTn(x)

dx
=n · sinnz

sin z
= n · Un−1(x)

=2n

n−1∑′

i=0
n−i odd

Ti(x)
(6.12)

Further, the derivative of a Chebyshev sum is then given by

∇x
B∑
i=0

αiTi(x) =

B∑
i=0

2iαi

i−1∑′

j=0
i−j odd

Tj (6.13)

Therefore, we write the resulting expression as

∇x
B∑
i=0

αiTi(x) =

B∑
i=0

γiTi(x) (6.14)

where the individual coefficients to this polynomial are given by the collected

terms
γ0 =

1

2

B∑
i=h

h∈{0,2,4,6,...}

2iαi , γm =

B∑
i=Hm+h

h∈{0,2,4,6,...}

2iαi ,

Hm =2
(m

2
+ 1− q

(m
2

))
, m ∈ {1, 2, 3, ..., B},

(6.15)

where q(·) := ceil(·) is the upwards, integer rounding function.

Moreover, using the trigonometric relation

x = cos z =⇒ dx = − sin z dz (6.16)

and the standard definition for the expression of the Chebyshev polynomial
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Tk(x) in trigonometric form, we have that

x∫
−1

Tk(x) dx = −
cos z∫
−1

cos kz sin z dz

= −1

2

cos z∫
−1

[sin(k + 1)z − sin(k − 1)z] dθ

=
1

2

[
cos(k + 1)z

k + 1
− cos(k − 1)z

k − 1

]
.

(6.17)

Finally, using the inverse substitution, one finds that

x∫
−1

Tk(x) =
Tk+1(x)

2(k + 1)
− Tk−1(x)

2(k − 1)
. (6.18)

such that we may use a similar reasoning to that which was used for products

of Chebyshev polynomials.

Finally, one must establish a methodology to go between the finite differ-

ence grid, in which we wish to store solutions, and the Chebyshev polynomials,

which we wish to utilise in order to increase the accuracy of our calculations on

this system. In order to retrieve the values in the finite difference grid, from

the polynomial in question, we may simply evaluate the polynomial at these

points. The remaining operation, then, is that of interpolating coefficients from

a discrete set of points which we wish to represent.

The standard method of interpolation of a given function g(x), where i ∈

{0, . . . , N} discrete values for this function are given by gi = g(xi), is to use

γk =
2

c̄kN

N∑
i=0

1

c̄i
gi cos

(
kπi

N

)
, (6.19)

where

c̄k =

2 if k ∈ {0, N}

1 otherwise .
(6.20)
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Beyond these basic operations, one must define the aliasing operator which

is used for numerically reducing the problem to that of a base B problem. This

is necessary as the multiplication operator alone takes a polynomial of base B,

pB(x), and returns a polynomial of base 2B, p̄2B(x). Aliasing uses the roots of

the B+1th chebyshev polynomial, TB+1(x), to reflect higher degree polynomial

degrees with those with degree < B + 1. In order to alias, we use the property

that certain cosinusoidal functions are similar to write the coefficients of the

aliasing Chebyshev polynomial, ᾰi, as

ᾰi = αi − α2B+2+i − α2B+2−i , ∀i ∈ 0, 1, 2, ..., B . (6.21)

6.2.2 An Algorithm for Pseudo-Spectral Chebyshev Poly-

nomial Methods

In order to achieve the decomposition of this process, we separate its entirety

into 6 steps which, when iterated, shall yield the solution for a single time

step in a finite temporal marching methodology. These steps may be described

schematically (fig. 6.2) or are given explicitly as:

1. Simplification; evaluate the local addition, subtraction, multiplication,

and division operations terms in order to reduce the number of Chebyshev

operations.

2. Reorientation; rotate and reorient the solutions around the origin to bring

the dimension of interest in line with the x-direction.

3. Interpolation; use the reorientation to determine the values of the coef-

ficients for 1D Chebyshev polynomials in the x-direction, at the Gauss-

Lobatto points through remaining dimensions.

4. Computation; compute the values of the operations of interest analytically,

using the generated Chebyshev polynomials.

5. Reification; evaluate the 1D Chebyshev polynomials at their respective
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Figure 6.2: Schematic representation of the numerical Chebyshev polynomial scheme implemented,
with individual steps given by simplification; reorientation; interpolation; computation; reification;
iteration. Diagrams are given in a maximum of 3 dimensions in order to simplify their interpretation.

Gauss-Lobatto points and appropriately reorient the solutions, inversely

with their earlier reorientation.

6. Iteration; continue by repeating the above steps for the next term in one’s

system of PDEs.

To expand upon these steps, begin with simplification. In this step, we aim

to reduce the number of operation which must be computed using the Chebyshev

polynomials, since these operations end to involve iterative processes without

a concurrent or guaranteed increase in accuracy. Therefore, we take locally

calculated terms, operations which require the comparison or interaction only

of quantities evaluated both at the same location, within the super-term of

interest. It is also necessary only to precompute local terms which would not be

affected by collocation, since the Chebyshev results are analytic and should be

given ultimate preference. For example, the addition of two quantities prior to

collocation yield the same resultant polynomial and applying addition posterior
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to collocation, since the addition of the solutions happens locally.

The process of reorientation may seem somewhat arbitrary and, rather than

being mathematically necessary, serves to simplify the numerical and algorith-

mic implementation of the Chebyshev system by certifying the dimension of

interest. To do this, we observe the dimension of interest in the current term

and perform a rotational transformation upon the entire set of relevant solu-

tions, in order that the dimension of interest now aligns with the x-dimension,

formerly. Posterior to the reorientation, and by definition of the process itself,

all subsequent operations are to take place upon Chebyshev polynomials whose

coefficients have been evaluated for an x-directional polynomial system. This re-

duces numerical complexity and the need for iterative checking or reorientation

within substages.

The next step is interpolation and requires that the coefficients be obtained

for Chebyshev polynomials oriented in the x-direction. In this way, we use the

Gauss-Lobatto points at which we are currently storing our solutions, in the

form of a finite difference grid, to obtain the coefficients of polynomials up to

degree 2N − 1, where N is the number of Gauss-Lobatto points. This must be

done across all points in the x-direction but upon all such points in all remaining

dimensions, such that the number of values stored shall, in fact, increase; the

idea being that the Gauss-Lobatto points, themselves, are too sparse to yield

sufficiently high resolution calculations on non-local terms (such as derivatives)

where the Chebyshev systems will yield analytic results. The subsequent step,

then, is calculation wherein the term of interest is calculated with absolute

accuracy and using the formulæ provided above (Section 6.2.1).

Finally, the solutions must go through a process of reification such that they

reflect the form of the solutions from which they were derived. In order to do

this, we evaluate the Chebyshev polynomials at their respective Gauss-Lobatto

points and reassign these to a finite difference grid. This grid must then be

reoriented, through the reverse transformation to that utilised above, such that

they bare comparison to earlier generated solution and that the time stepping

may continue. This step gives rise to a finalised calculation (although further
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t = 0 t = 30 t = 60

Figure 6.3: Results of the numerical simulations for the phenotypically evolving tumour model, using
pseudo-spectral Chebyshev polynomial methods, are given. Panels displaying (top) the structured
cellular population with space across the lower plane and mutational state given along the vertical
axis; (middle) the spatial cellular distribution; and (bottom) the ECNE density, where ipilimumab
treatment is given at t = 40 and BRAFi treatment is given at t = 100, for time points t ∈ {0, 30, 60}
are shown.

steps may, in fact, require the calculation of super-terms to this one) and the

iteration step, requiring one to repeat the above procedure until all terms in the

system of equations are exhausted.

6.2.3 Results & Conclusions

All of our solutions are generated using the above described methodology and

using degree 20 Chebyshev polynomials, which should produce an interpola-

tive error on the scale 10−6. The initial condition for our solutions are given
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t = 90 t = 100 t = 110

Figure 6.4: Results of the numerical simulations for the phenotypically evolving tumour model, using
pseudo-spectral Chebyshev polynomial methods, are given. Panels displaying (top) the structured
cellular population with space across the lower plane and mutational state given along the vertical
axis; (middle) the spatial cellular distribution; and (bottom) the ECNE density, where ipilimumab
treatment is given at t = 40 and BRAFi treatment is given at t = 100, for time points t ∈
{90, 100, 110} are shown.

by the order 20 Chebyshev approximation of a Gaussian distribution across

the spatial and structural domains, centred around (0, 0, 7
20 ) as in [160]. Re-

sults of numerical simulations are displayed in three forms: The first displays

higher dimensional variables, such as the IFN producer cells, as a 3-dimensional

isosurface where space is given along the lower plane and the metabolic state

(y) value is given along the vertical axis. Yellow isosurfaces indicate regions

of maximal values for the cellular population, whilst blue isosurfaces indicate

regions of (1/100)th the maximal value, at any given time point. The second
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t = 120 t = 150 t = 180

Figure 6.5: Results of the numerical simulations for the phenotypically evolving tumour model, using
pseudo-spectral Chebyshev polynomial methods, are given. Panels displaying (top) the structured
cellular population with space across the lower plane and mutational state given along the vertical
axis; (middle) the spatial cellular distribution; and (bottom) the ECNE density, where ipilimumab
treatment is given at t = 40 and BRAFi treatment is given at t = 100, for time points t ∈
{120, 150, 180} are shown.

represents a spatial distribution of quantities of cells, or drug molecules, as a

colour-mapping on a 2-dimensional axis between dark blue representing low val-

ues (near 0) and yellow representing high values (near 1). The third, and last,

represents a quantitative probability density function (PDF) of the cell popu-

lation in the metabolic dimension (y), for a higher-resolution depiction of the

tumour’s metabolic status.

The initial dynamics of the tumour cell population, free of drugs, displays

a migration towards its genetically favourable metabolic state, ω = 1
4 , but
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quickly develops smaller but significant populations of cells at more disparate

locations in the metabolic space (Fig. 6.3, 1st & 3rd rows). This appears to

be as a direct result of the inhomogeneous of flux rates for populations spread

across the metabolic space; where populations close to the genetically favourable

metabolic position, ω, have relatively low flux rates in y whereas populations far

from this positions may have a significant fold-difference in their flux rate. Given

that the Chebyshev polynomials, by definition and necessarily, have real values

at all locations in y, this, when combined with no-flux boundary conditions,

artificially amplifies populations closer to the boundaries of the domain with

respect to those nearer to ω.

After an initial tumour growth period, we applied targeted BRAFi + MEKi

treatment to the tumour at t = 80, resulting in a decline in the tumour popula-

tion over the time period t ∈ [90, 120) (Fig. 6.4). In the meantime, small oxphos

subpopulations, generated prior to treatment and who were decreasingly forced

to compete for resources with faster growing glycolytic populations, were able

to proliferate and became the more dominant population within the tumour

(Fig. 6.4, 1st & 3rd rows), resulting in a phenotypic switch. It is worth remem-

bering, at this stage that we assume that our targetted therapies are aimed at

eradicating cancerous glycolytic cells, rather than oxphos cells, such that the

dominant population within the tumour has rapidly become the more resistant

subpopulation.

One clear benefit of this method is that one may run simulations in a much

greater number of dimensions at a fraction of the memory costs, the major

limitation of finite difference methods. On the other hand, the cancer cell pop-

ulations generated using finite difference methods and representations display

a slower rate in generating resistance, supported by in vivo experimentation

[328, 296, 267]; follow, more strictly, the dynamics implied by the governing

system of equations, which are occasionally violated by pseudo-spectral meth-

ods due to superordinate constraints; and allow for recapitulation of experiments

that display clear resensitisation of a melanoma tumour to treatment [278]. Al-

though the numerical methods had been rigorously tested on functions for which
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known analytic solutions exist, displaying significant agreement, it is possible

that these discrepancies reflect either genuine differences in resolution between

these two approaches. It is also possible, however, that these discrepancies are

manifestations of the fact that linear interpolation between finite grid points are

a better approximation of a gaussian initial condition, given analytic agreement

at grid points, than cosinusoidal interpolants of the same order.

6.3 A Novel Cellular Automata Framework for

Cancer Cell Invasion and Micro-Environmental

Interaction

Firstly, we choose to express the environmental system in standard Cartesian

coordinates and the radial equations for the radial distance of the membrane

from the nucleus. We then have that the standard coordinate conversion from

polar to Cartesian is given by x = r cos θ, y = r sin θ and we write x := [x, y]T .

Therefore, let I = [0, T ) be the time domain on which the system exists and

D ⊆ R2 be the spatial domain.

Secondly, let r(t, θ), be a 2π periodic function such that r(t, θ + 2nπ) =

r(t, θ), ∀n ∈ N, and let it further define the perimeter of a cell with the brief

notation r := r(θ) := r(t, θ). Let Θ = [0, 2π) be the domain for the nucleus-

centred radius and let R ⊆ R be the domain for the radius of the cell such that

r : I × Θ → R. For cell i, we denote the radius ri. Finally, let v : I × D → R

define the extracellular matrix (ECM) density and let m : I × D → Rq define

the q molecular species densities on the domain.

On Cell-Cell Bonding and Associated Field Equations

6.3.1 Development of a Novel Cellular Automata Model

We begin by reposing every cell-cell interaction problem as a generic problem

between two cells situated a given distance d from one another and with both
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of their respective centres at y = 0. First, let the vector p(ci, cj) be the vector

in polar coordinates such that

||p|| :=
√

(c̄i,x − c̄j,x)2 + (c̄i,x + c̄j,x)2 , pθ := tan−1
(
c̄j,y−c̄i,y
c̄j,x−c̄i,x

)
(6.22)

where c̄i denotes the centre of mass for the cell ci, then call this the pointing

vector and perform the transforms (rj , θj)→
(
rj , θj − pθ + π

2

)
and (c̄j,x, c̄j,y)→

(0, ||p||), in order to move cell j onto the x-axis and to rotate the cell such that

the same are aligned as was the case prior to the coordinate transform.

Then, from simple algebraic reasoning, one has that the distance between

any two points on the membranes of these cells, with respect to θ, is given by

d(θ) =
√

(ci,r cos(θ)− cj,r cos(θ))2 + (ci,r sin(θ)− cj,r sin(−θ) + ||p||)2 (6.23)

and this means that the contribution to a given radius can be calculated by

the force at that point, multiplied by the appropriate elongation factor which is

given by the trigonometric relation d̄ = d cos
(
θ − π

2

)
, where π

2 is a factor which

accounts for the reorientation of the cells.

Let us now look at the attractive intercellular force, FA(d). There is evi-

dence to suggest that, below some limiting distance, the negative charges on

repeat 3 of α-actinin and positive charges on intercellular adhesion molecule

(ICAM)-1 dominate the interaction. Above this distance, the contribution of

the positive-positive interaction is increased between the acidic centre of the α-

actinin domain and Lys acids on ICAM1 [52, 251]. We model this by introducing

some constant imaginary distance, i, between the two membranes.

The repulsive Coulomb force, FR(d), emanates from the addition of pressure

to the membrane reducing the spacing between membranous lipids, producing

a restorative force. Therefore, we calculate the distance at which the centre

of charge of the membrane sits, with respect to the cell radius. For a circle of

uniform radius r(θ) = r, the radial centre of charge is approximated by r̄ ≈ 4
3π r,

which shall serve as a positioning of the internal charge.
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We can then write the overall field equation as

F (d) = 1
(d−dA)2+1

− 1

(d+ 4
3π )

2
+ 1
Qs

(6.24)

where Qs gives the ratio of charge separation for the protein complex, with

respect to the separation of the charges in the lipid bilayer of the melanoma cells

themselves. Biological precedents for this force distribution exists, with physical

measurement being taken between staphylococcus aureus cells and biofilms [153]

On Cell-ECM Bonding and Associated Field Equations

The dissociation rate of one protein from another is widely considered [180, 46]

to have the form k = k0 exp (fx/kbT ) , where k0 is the zero rate of dissociation, f

is the force applied in separating the proteins, x is the distance of separation, and

kBT gives the thermal energy of the system. Now, consider an arbitrary force

that brings the proteins of the cell and the ECM together, then their normalised

association rate, k̄, would be given by k̄ = [1− (k0/K) exp (−fx/kbT )] where

the maximal rate of dissociation is given by K.

The force on the cell from the ECM is proportional to the density of the

ECM itself and therefore we write |F+
c | = k̄v. We also have that the direction

of association is from lower to higher densities of protein, which follows directly

from their proportionality. As for the force equation for pressure, we assume

the field generated scales with the square of the ECM density, and acts in the

opposite direction. Therefore, we can write the entirety of the force equation as

|F | =
[
1− k0

K
exp

(
− fx

kbT

)]
v − kP v2 , F̂ = tan−1

(
∂v

∂y

∂x

∂v

)
. (6.25)

Molecular Species on the Boundary — Chemotaxis

The chemotaxis of a cell is dependent on the molecular species concentration

m(t, x) on the immediate boundary of the cell, since it is not endocytosis but

simply sensory response that is necessary for this stimulus.
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Using the standard definition of a line integral, we can write the line integral

of the molecular species concentration mi(x, y) over the boundary of the cell and

with surface element σ as

I =
∫
∂Ωi

mi(x̄) dσ , dσ =
√

r(θ)2 sin2 θ + r(θ)2 cos2 θ dθ = r(θ) dθ . (6.26)

It is then trivial to rewrite the line integral with respect to the individual cell

and a specific molecular species, mj(t, x), to obtain the overall molecular species

concentration on the boundary, and the bias of such a concentration.

Taking the biased molecular concentrations and extract from them the op-

timal direction, in terms of chemical attractants, the mean biased chemotaxis

is be given by

◦
χ =

1
q∑
j=1

χmj


χm1

...

χmq


·


tan−1

( ∫
Θ
m1(r(θ) cos θ,r(θ) sin θ) cos θ dθ∫

Θ
m1(r(θ) cos θ,r(θ) sin θ) sin θ dθ

)
...

tan−1
( ∫

Θ
mq(r(θ) cos θ,r(θ) sin θ) cos θ dθ∫

Θ
mq(r(θ) cos θ,r(θ) sin θ) sin θ dθ

)
 (6.27)

where the chemotactic constant for any given molecular species mj(t, x) is given

by χmj .

Temporal Changes in Intracellular Properties

We must, further, have a means by which the cell’s interior can reposition itself

with respect to the environment. A sensible candidate for this movement can

simply be taken as a result of the net forces which move the membrane of the

cell having direct and proportionate effect on the position of the nucleus such

that we can write

∂x1

∂t =
∫

[0,2π)

∂
∂tr(θ̃) · cos θ̃ dθ̃ , ∂x2

∂t =
∫

[0,2π)

∂
∂tr(θ̃) · sin θ̃ dθ̃ , (6.28)

reflecting a mechanical movement of the nucleus with the membrane.
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Consider the overall change in the polarisation, φ, of the cell and that the cell

is capable of rearranging its internal infrastructure in response to the attraction

of chemicals and in order to maximise its potential for utilising the byproducts

of this infrastructure. Then we assume that the cell will attempt to reorient

itself to the optimal direction

φ̄ = 1
ωF+ωχ

(
ωF tan−1

(
∂x2

∂t
∂t
∂x1

)
+ ωχ

◦
χ
)
, (6.29)

given the weightings ωF , ωχ for the force and chemotactically mediated polarity

preferences, respectively.

Then consider that the cell will have more success in achieving small angular

reorientation than in large angular reorientations. Therefore, we make the as-

sumption that the polarisation may only change through small changes around

the perimeter of the cell and that ln (∂φ/∂t) ∝ −
(
φ̄− φ

)2
. We write that the

change in polarisation can be given by

∂φ
∂t = exp

[
−
((

∂x1

∂t

)2
+
(
∂x2

∂t

)2)− 1
2·
(
φ̄− φ

)2]
. (6.30)

6.3.2 Numerical Aspects of Cellular Automata Modelling

Movement of the nucleus: A simple translation method

The current methodology for reassignment, or mathematical translation, of the

position of a radial function r(θ) to a differing position is given as follows

r1 =
√

r2 + r2
0 + 2rr0 cos(θ0 − θ) , θ1 = cos−1

(
r cos θ+r0 cos θ0

r1

)
, (6.31)

where (r, θ) gives the original solution in polar coordinates; (r0, θ0) gives the

magnitude and direction of the translation; and (r1, θ1) gives the translated set

of solutions. Then observe the following simplification:

Theorem 6.3.1. Let the space N ⊆ R2 define the cartesian plane on which the

nucleus of a given 2-dimensional cell is defined, and the space Q ⊆ R × [0, 2π)
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define the polar domain centred at (x, y) ∈ N on which the membrane of the cell

is defined. Then we can define a cell as some [(x0, y0), (r0(θ0), θ0)] ∈ N × Q,

where r(θ) : [0, 2π) → R is the radial membrane distance as measured from the

centre of the cell. Define further a formula for translation of the nucleus of this

cell, given by (x, y) → (x + ξ, y), where the membrane of the cell retains its

position in the cartesian space and dependence on θ0, given by

r1(θ0) = r0(θ0)− ξ cos(θ0) .

Then the error for this translation is given by

Er ≤

1− sin

1

2
cos−1

−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

 ξ,

where r(θ̂) = max
θ∈[0,2π)

r(θ).

Proof. Recall the coordinate relations given by x0 = r(θ) cos θ, y0 = r(θ) sin θ

and the counter-relation r(θ)2 = x2 + y2. Consider, further, the translation

in only the cartesian x-direction, of magnitude ξ, corresponding to a linear

progression in an aligned set of polar axes given by x1 = r(θ) cos θ − ξ, y1 =

r(θ) sin θ.

Using the translation approximation r1(θ0) = r0(θ0)−ξ cos(θ0) and allowing

that the maximal error for this approximation is given at θ0 = θ̂, defined by

r(θ̂) := max
θ∈[0,2π)

r(θ), the maximal error is given by

Ē = (r(θ̂) + ξ cos θ̂) sin θ̂︸ ︷︷ ︸
approximation

− (r(θ̂)2 − (r(θ̂) sin θ̂ − ξ)2)
1
2︸ ︷︷ ︸

absolute calculation

. (6.32)

We can then find this maximum at θ̂ by considering the derivative of the term

for the translation approximation, which simplifies to

Ẽ′ = r(θ̂) cos θ̂ + ξ cos 2θ̂ = 0 (6.33)
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and by further using the trigonometric relation cos 2θ = 2 cos2 θ−1 we can write

r(θ̂) cos θ̂ + 2ξ cos2 θ̂ − ξ = 0 (6.34)

who is a quadratic in cos θ̂, such that the solution for θ̂ is given by

cos θ̂ =
−r(θ̂)±

√
r(θ̂)2+8ξ2

4ξ =⇒ θ̂ = cos−1

(
−r(θ̂)+

√
r(θ̂)2+8ξ2

4ξ

)
. (6.35)

Substituting this into the original equation, and recognising that the negative

term in the error is minimised at x = ξ, one has that the maximal error is

written

Ē = r

(
cos−1

(
−r(θ̂)+

√
r(θ̂)2+8ξ2

4ξ

))
+

(
−r(θ̂)+

√
r(θ̂)2+8ξ2

4ξ

)
ξ − r(θ̂) .

(6.36)

Then the precise value of y(
ˆ̃
θ) is given at y(

ˆ̃
θ) = r( 1

2 θ̂) sin( 1
2 θ̂), such that the

maximal error can be given precisely by

Ē =

(
1− sin

(
1
2 cos−1

(
−r(θ̂)+

√
r(θ̂)2+8ξ2

4ξ

)))(
−r(θ̂)+

√
r(θ̂)2+8ξ2

4ξ

)
ξ .

(6.37)

In this case, using Theorem 6.3.1, the error for values of ξ ≤ 0.1 is such that

Er <
1
2ξ

2 and ξ is proportional with the time step such that ξ ∝ δτ . Thus, for

sufficiently small time steps one is able to discern that the error is sufficiently

small, and non-cumulative, and that this may be acceptable within the bounds

of expected numerical error.

Numerical approximations of line integrals

We begin by recalling that the analytic, single-variable line integral for a radial

function is given by I =
∫
S r(θ) dσ, where S is used to denote the surface of

the cell and σ is some surface element on S. Discretisation of this system leads

us to derive a metric on the basis of maximal efficacy on the discrete radial
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interval, (θ̃, θ̃ + δθ). Begin by considering the true arc length in this portion of

the radius of a given cell and notice that this can be approximated by sketching

a line between the two extreme radii, r(θ̃), r(θ̃ + δθ).

Theorem 6.3.2. Let Ω be the internal cell space of a cell whose radius is is

given by r : I ×Θ→ R. Further, let the perimeter length of the cell be given by

Ic =
∫
∂Ω

r(t, θ) dσ∂Ω , where σ∂Ω is a surface element on ∂Ω, and let Ĩc be given

by the numerical approximation

Ĩ =
∑

θ̃∈{0,δθ,...,2π−δθ}

δθ ·

((
min(r(θ̃), r(θ̃ + δθ))δθ

)2

+

∣∣∣∣r(θ̃)− r(θ̃ + δθ)

∣∣∣∣2
) 1

2

.

Then, for a discrete step length, h, the error, EL, for this approximation is of

order O(h2) and is given explicitly by

EL ≤
∫
∂Ω

[
h2

2

∂2

∂θ2
r(θi + η) +O(h3)

]
dσ∂Ω

Proof. Begin by noticing that our approximation is given precisely by the length

of the line connecting the points r(θi) and r(θi + h) such that

r̃(η) = r(θi+h)−r(θi)
h η + r(θi) (6.38)

for η ∈ (0, h) and centred around the point θi and where we are interested in

values in the interval (θi, θi + h).

Further, write the analytic function as the Taylor series

Ic(θi + η) ≈ r (θi + η) + η ∂
∂θr(θi + η) + η2

2
∂2

∂θ2 r(θi + η) +O(η3) (6.39)

then from the intermediate value theorem, we can choose η such that it satisfies

∂
∂θr(θi + η) = r(θi+h)−r(θi)

h . (6.40)

Next, we take the difference between the two line integrals to find the analytic
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t = 2 t = 4 t = 6 t = 8 t = 10

Figure 6.6: Snapshots of simulated cells migrating through the ECM for the initial condition for
the nucleus of the cell given within the ECM itself (top) or within an artificial microtrack (bottom)
at times t′ ∈ {2, 4, 6, 8, 10}.

error in our approximation

EL =
∫
∂Ω

[
r (θi + η) + η ∂

∂θr(θi + η) + η2

2
∂2

∂θ2 r(θi + η) +O(h3)
]
dσ∂Ω

−
∫
∂Ω

[
r(θi+h)−r(θi)

h η + r(θi)
]
dσ∂Ω

(6.41)

and since the linear terms for the Taylor expansion and the approximation

(6.40) describes straight lines between two equidistant points, their magnitudes

are equal. Therefore, considering that we have h ≥ η, we obtain the maximal

error bound

EL ≤
∫
∂Ω

[
h2

2
∂2

∂θ2 r(θi + η) +O(h3)
]
dσ∂Ω . (6.42)

6.3.3 Results & Conclusions

In order to attempt the sorting experiment, we began with high affinity cells as

the outer cells of a cellular Bravais lattice and low affinity cells in the centre,

repeating the results of Garner et al. [132] (data not shown), which provided

some base validation of the model. Counterintuitively, cells who have high

cell-cell binding coefficients quickly separate into a web like structure whereas

low binding constant scenarios tend to instead form a 2-dimensional hexagonal
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Figure 6.7: Results of cell microtrack experiments from the biological literature [51] (left) and from
the numerical simulations (right).

lattice.

In our second experiment we wanted a testable scenario to measure the mi-

gration of simulated cancerous cells through the ECM. For this we chose the

scenario of microtracks since this presents to unique and measurably distinguish-

able scenarios in which to place our cells. We endow each with a polarisation

of θp = 0 and with the initial conditions r0(θ) = const. such that they are

represented as circular cells in the 2D domain.

The first thing to notice is that although the membranes of cells within the

microtracks start partially submerged in the ECM, they retract their membranes

and conform entirely to the width of the microtrack (Fig. 6.6 bottom), as in

the biological case [51]. Moreover, elongation in the microtrack cell is marked

compared with those who remain within the ECM (Fig. 6.6).

Travel through the ECM also appears to be more conducive to the extension

of lamellipodia (Fig. 6.6 top), whereas travel through the microtrack appears

to be more conducive to the extension of longer, thinner, and more directive

filopodia (Fig. 6.6 bottom). Not only this but the heterogeneity of the envi-

ronment, alone, is sufficient to give rise to differing rates of travel within or

without microtracks. Moreover, for increasing ECM density, one observes a de-

crease in velocity for cells within the ECM but no such changes in velocity for

those within the microtrack (Fig. 6.7).

Our final experiment involves the interaction between two different metabolic

phenotypes of cell: Highly proliferative, non-invasive (MITFHIGH ) cells and

highly invasive, non-proliferative (MITFLOW ) cells. We begin with a hetero-

geneous distribution of v1 and v2(t, x) = 0. MITFHIGH cells are attracted to
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t = 0 t = 50 t = 100 t = 150 t = 200

Figure 6.8: Experimental in silico injection of red MITFHIGH cells (top); green MITFLOW cells
(middle); or both cell types (bottom) onto a heterogeneous density function for v1 coloured blue
through yellow, at time points t ∈ {0, 50, 100, 150, 200}.

v2 but not v1 and MITFLOW cells are attracted to v1 but not v2 and convert

v1 → v2 [58].

Injection of MITFHIGH cells, alone (and in the absence of mitosis), reveals

and extremely non-invasive behaviour with dominating cell-cell adhesive dy-

namics (Fig. 6.8 top). Injection of MITFLOW cells, alone, one observes a highly

invasive dynamic (Fig. 6.8 middle). Co-injection of the two disparate popula-

tions displays a mixture of behaviours between cell-cell binding and cell-ECM

motility and one observes a co-invasion of MITFHIGH cells in the wake of invad-

ing MITFLOW cells (Fig. 6.8 bottom). Again, one can identify the production

of filopodia by cells who have elongated upon the heterogeneous substrate for

invasion (Fig. 6.8).

We have derived a modelling framework to solve problems which previous

frameworks [132, 322] were unable to approach. Errors for the numerical im-

plementation of estimates for these models are small and, as such, allow one to

be confident in their predictive power. This novel modelling framework has also

shown practical promise; recreating the cell sorting experiment before predict-

ing the outcomes of biological microtrack [51] and co-invasion [58] experiments.

Moreover, this model may explain emergent phenomena, such as cellular elon-
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gation and filo- or lamellipodia extension, could be explained through simple

physical interactions between the cellular membrane and the homo- or heteroge-

neous ECM. Future work should aim to extend this model through the addition

of microscale boundary interactions and look to explore more complex biolog-

ical phenomena. This cellular automata model could also be useful in other

contexts where one requires a nuanced interaction between automata and their

environment.
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Chapter 7

Conclusion

Heterogeneity invariably leads to the vast unpredictability of biological systems

and, yet, remains in need of formal methods whose generality is capable of fully

exploring the domains of this variation – whether this heterogeneity be tempo-

ral, spatial, or structural. The major focus of this investigation was to produce

and expound new modelling methodologies, particular to the circumstances in

which they were required, capable of grappling with the dynamic complexities

of population or cell biology and oncology. We have rigorously explored the pos-

sibilities of modelling biological systems in higher-dimensions, although much

remains to be explored, and have sought to expand this method as far as was

necessary in our particular case and beyond. Through this investigation, it has

also been necessary to explore novel methods of generating solutions to such sys-

tems and conducting analysis but many important results have been produced

on the basis of the organic heterogeneity of the systems considered.

7.1 Particular Conclusions

We begin from the assumptions of the continuity equation to establish a method-

ology capable of capturing the complex biological dynamics of cell-based sys-

tems. After deriving a novel mathematical framework for the generation of

263
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systems of PDEs appropriate for application to biological systems with dynam-

ics in time; space; surface receptors; binding ligands; and intracellular metabolic

pathways, we have proceeded to demonstrate the vast potential for the appli-

cation of these framework across various scenarios [158, 161, 160]. These appli-

cations have spanned the fields of oncology, pharmacodynamics, immunology,

evolutionary ecology, and cellular biology to reach general conclusions about

the behaviour of biological systems as well as precise hypotheses concerning the

nature of the system in question. As such, we compare and contrast several

such conclusions, in order to clarify their contribution to the work as a whole.

From first principles, we derived in Chapter 1 a novel higher-dimensional

mathematical framework, for the specific purpose of scientifically scrutinising

biological systems, and generated source terms for this framework specific to

continuous population-level mitotic events, accounting for cell cycle dynamics.

We then went on to apply these source terms in Section 2.2, Section 4.2 and

Section 5.2.1, demonstrating the applicability of these functions to the natural

sciences. We also provide a clarification of the numerical scheme that we use

through the generation of numerical solutions to the problems set out in Chap-

ter 2 through Chapter 5 and provide a novel theorem for the stability of the

non-local, central difference, gradient operator in linear analysis. These meth-

ods and theorems are applicable not only within the current framework but

across all numerical schemes currently utilising the finite difference approach to

approximating solutions to nonlocal PDEs, making their reach extensive.

The first biological paradigm that we analyse is then an application of the

predecessor to this framework, given in Section 2.2, and involves the urokinase

plasminogen activator (uPA) system of cancer invasion. Herein, we present

the first numerical solutions of their kind in higher-dimensional biology and

demonstrate the ability to generate such frameworks in coming applications.

These results also show the propensity for structurally heterogeneous models

to generate spatial heterogeneities in concentration time profiles. Here we also

reflect that the discontinuities produced by the system given in Section 2.2 have

since been rectified by the source term given in Section 1.3.1 [161].
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Previously, both spatial [248, 82, 333, 203] and structural [212] models had

been used to investigate the interaction between anti-cancer drugs and a given

cancer cell population but we provide the first spatio-structural model of this

interaction and provide a basis for the importance of its consideration. In the

first instance (Section 3.2), we generated a theoretical drug resistance model on

the basis of observations in the literature that targeted therapies (namely BRAF

and MEK inhibitors) tend to target genes upstream of those coding for glycolytic

enzymes. This allowed us to describe and explain the process of an initial

resistance episode and, posteriorly, the partial resensitisation to those drugs, in a

spatially heterogeneous tumour. Following this, in Section 3.3 we apply the same

model to the case of an in vivo murine tumour, for which we obtained temporally

resolved single-cell RNA-sequencing data received from Dr. Jean-Christophe

Marine [278]. In this instance we were able to couple the population level RNA-

seq dynamics to a spatial tumour model in order to generate a hypothesis on

the spatial organisation of the biologically heterogeneous tumour; namely, that

highly resistant cells on the outside of the tumour would protect those sensitive

cells within the tumour, allowing even a partially sensitive tumour to continue

to grow unimpeded by treatment.

The application of this model to both the theoretical model-driven situation

and, alternatively, the single cell RNA-seq data-driven situation poses an inter-

esting comparative. There is no direct comparison to be drawn in this case, of

course, since the biological scenarios considered are disparate but comparisons

may be drawn as to the approach and success of these approaches. Firstly, the

success of each is roughly equal, in that the theoretical models generate solu-

tions which possess at least persuasive power over the biological community,

whist the data-driven models were capable of generating sensible and testable

hypotheses for a particularly complex, in vivo system. In terms of laborious-

ness, however, the theoretical model presents as far more elegant approach and

required far less human interpretative effort in comparison to the single cell

RNA-seq based models. As time goes on, however, perhaps computational re-

sources will increasingly be allocated to such tasks and labour will be reserved
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for the interpretation of model outputs.

The ways in which cancer cells evolve and behave are not well known and

are frequently the subject of controversy in biology; therefore, in order to con-

duct a fundamental investigation using our framework, in Chapter 4 we chose a

biological problem in immunology for which the parameters were better defined.

The particular immunological circumstance that that we wished to answer to

was the seemingly paradoxical existence of both high and low affinity variants

of the interferon (IFN) molecule – a ligand used for intercellular communication

upon infection with a virus. Firstly, we found that whilst high affinity molecules

were good at inducing and sustaining a local response to the virus, low affinity

molecules were poor at achieving this but better equipped to travel through the

biological system and prime farther molecules for the incoming viral infection.

This novel hypothesis answers this pertinent question directly and also reveals

a role for this type of mathematical modelling in systems where receptors, bind-

ing ligands, and genetic/metabolic responses are simultaneously orchestrating

a particular behaviour.

Answering a less fundamental – although equally prescient – question, we

wanted to use our modelling technique to discover how these two ligands would

come into existence, in the first instance. Whenever ontology is invoked in biol-

ogy, evolution will generally feature in the response. We, therefore, investigated

the influence of an additional low affinity ligand, to a system with only high or

medium affinity molecules, in the response to a localised viral inflection. We

found that systems with additional low affinity ligands would respond signif-

icantly faster than those without and, in an analogous case to that found in

humans, systems with 1 high and 10 medium affinity ligands increased their

ability to reduce a viral load by ∼ 23% in the presence of 2 additional low affin-

ity ligands. Low affinity ligands, then, may grant the host of a viral infection

a significant survival advantage over their counterparts without such a ligand.

This was in line with empirical studies which found that the Rosettus ægyptiacus

bat, who has significantly greater numbers of IFN species than his cousins, is

immune to a particularly lethal mammalian virus – namely the Marburg virus.
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In order to then investigate whether factors that impact survival are solely

the arbitrators of evolutionary progress, in Chapter 5 we study a ecosystem in

which populations may evolve through trait spaces for survival, sexual selectiv-

ity, and sexually attractive elaboration. Within the mathematical analysis of

this system, wherein selective females over-select for elaborate males and elab-

orate males have a predatory survival disadvantage, we present new approaches

to obtaining analytic solutions to systems whose spatial dynamics are not based

on flux in the unstructured, discrete-structured, and quasi-continuous cases.

These methods may be useful in other cases where source terms are formed of

nested integral operations. We establish the validity of our model by observing

that completely advantageous traits are always selected for, before finding that,

even in the case where male elaboration is costly to survival, evolution will sex-

ually select for male elaborations; indicating that beauty is an evolutionary end

in itself. These models also support a hypothesis that selection for a disadvan-

tageous trait will aid selection, in the non-expressive children, for orthogonal

advantageous traits, in certain particular cases.

The main scientific difference between the studies conducted in oncology,

immunology, and evolution is the abundance of evidence for each. In the pres-

ence of the overwhelming evidence that graces the field of evolutionary biology,

it is possible to rigorously test hypotheses against the natural world, since any

modelling inconsistencies will necessarily come into contradiction with this nat-

ural order of things. This has been the case with the handicap and honest

signalling principles, for example, which have been criticised for their lack of

natural adherence [310, 311]. In the case of immunology, their exists a wealth

of knowledge [40, 177, 111] around the mechanisms of action pertaining to this

system but the experiments necessary to test or validate our spatially dependent

hypotheses are not yet possible. The oncological scenarios that we attempted

to scrutinise, on the other hand, are neither well-defined, in terms of the essen-

tial mechanics involved, nor are they easily tractable or testable, at least in the

in vivo context for which they are most relevant. We find, therefore, that our

modelling in evolution is far more verifiable than either of our other studies, al-
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though certain degrees of validation still exist for each of our other approaches.

One such method of validation for the oncological model is to carry out cross-

sectional rainbow cell barcoding [16] on in vivo obtained tumour sections, as is

currently being carried out on the tumours used by Rambow et al. [278], where

a comparison will clarify the validity of our model-based conclusions.

One of the major practical limitations of generating solutions for models,

built with the framework used throughout this paper, is that the discrete finite

difference tensors (described in Section 3.2) require large dedications of acces-

sible memory and increasingly long processing times. This limited our ability

to increase the number of dimensions beyond 5 (or 4 plus time) and, in or-

der to remedy this, we investigated the use of spectral methods. In Chapter

6 we expound a pseudo-spectral Chebyshev polynomial-based method for the

generation of solutions to higher-dimensional problems. We apply this to our

theoretical oncological model [160], presented first in section 3.2, and find that

the pseudo-spectral representation of the tumour is not capable of showing suf-

ficient sensitivity to treatment so as to elicit a response to any conceivable drug

species. It was unclear as to whether this insufficiency stemmed from the im-

plementation or from the methodology itself but extensive testing was carried

out on the individual operations within the model to attempt to validate their

behaviour.

The comparison between those solutions generated through finite difference

schemes and through pseudo-spectral Chebyshev polynomial-based methods

makes for a discursive interaction between discreteness and continuity. The

original intention for generating this novel cancer resistance model was to ex-

plore the biological problem of cancer within a more continuous representation

and, yet, the extension to the fully continuous paradigm of polynomials has

resulted in the dissolution of the very phenomenon that we had hoped to re-

produce. It seems that, in this case, the errors in using the polynomial-based

methods stem from the inherent discreteness of the natural system, on the scale

at which we consider the problem. This is not always true and, in cases where

the indivisible unit of the system (the cell in the case of tumour population
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modelling) is insignificant with respect to the domain over which the problem is

considered, poynomial-based methods may be more appropriate. For example,

Chebyshev polynomials are commonly used in the simulation of solutions to

fluid dynamical problems but, in this case, the scale of the domain is usually

several billion orders greater than the order of the individual fluid molecules,

themselves. Perhaps this realisation of scales is a factor which must be more

quantitatively considered in the choice of numerical approach.

As with the limitation in the number of accessible dimensions, one par-

ticular biological problem whose mathematical representation remained elusive

was that of cancer cell co-invasion; where formerly non-invasive cancer cells

(MITFHIGH ) would co-invade the stroma in the presence of naturally inva-

sive cancer (MITFLOW ) cells. After attempting to solve this problem using a

spatio-temporal PDE approach, and failing to establish a system parameteri-

sation with sufficient biological realism and inter-situational heterogeneity, in

Chapter 6 we build a novel agent-based cellular automata approach to solving

this problem. In solving this problem, we derived a generic framework capable

of accounting for not only the intra-cellular mechanics but also the dynamics at

the cellular membrane and the interactions of this membrane with the cellular

environment. In order to simulate cells using this framework, we develop sev-

eral numerical error bound theorems for mathematical substitutions designed

to computationally simplify simulations. We found that this model was able to

recapitulate the results of experiments wherein cells migrate through artificial

ECM microtracks [51] and the co-injection experiments of Chapman et al. [58].

Although spatial heterogeneity has come under recent focus within the bio-

logical community, our modelling approaches and results show that a far greater

emphasis deserves to be placed on correlated changes across time, space, and

bio-dynamics of these complicated systems. We have shown that coupling the

dynamics of resistance to the spatial dynamics of drug infiltration allows one

to understand the mechanisms, by which resistance develops and sustains it-

self, and make predictions concerning the behaviour of the system during and

after the development of resistance. Using the same techniques in immunology
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and evolution, we have managed to develop sensible hypotheses interesting to

both theoretical and experimental biologists, demonstrating at least the power

of this approach to capture complicated and intricate biological systems. Our

greatest contribution, then, may be that of a tool which is now able to capture

true covariants of biological reality and, in the age of big-data, provide models

capable of utilising biological data more fully.

7.2 Perspectives

The work stemming from this document could potentially be used across 3 major

streams: Firstly, it seems that this higher-dimensional modelling technique will

likely be used to further our theoretical knowledge and understanding of systems

with dynamic, spatio-structural heterogeneity. Secondly, the application of this

model to extrapolating further results from high-resolution singe cell data was

intriguing and is certainly worthy of further exploration. Thirdly, the agent-

based cellular automata methods developed herein are powerful and may well

be used for descriptive and demonstrative purposes in the field of cell biology.

There are also very important questions to be answered about how cancer

cells interact with the immune system, both of which are structured populations.

For instance, oncolytic viruses gained much celebrity during their inception, for

their potential ability to preferentially degrade tumours, but failed to produce

the expected results as the immune system reacted to the incoming threat of

viral infection. This process is importantly mediated by the IFN signalling

system and the interaction of these two systems – cancer and IFN – is an

important and logical next step in the utilisation of this higher-dimensional

framework.

Another particular application of this modelling framework has been to prob-

lems involving the stochastic dynamics of genetic transcription and protein syn-

thesis [176], from the resultant RNA. In the same line, there exists an exceptional

potential to use such a framework for the conversion of systems of governing

ODEs for genetic, metabolic, or alternative intra-cellular pathways and mod-
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elling these pathways on the population level, and indeed through space. This

has not yet been done and would certainly represent a desirable stage in the

development of these modelling approaches, which could prove invaluable to the

associated biological experimentalists.

Moreover, there are scientific advances which allow both the theoretical

model-driven and data-driven approaches to be utilised simultaneously, through

the use of modern computer scientific deep learning techniques. Currently,

we are looking at the potential for genetically barcoded, and simultaneously

metabolically marked, tumours to be experimentally imaged in a spatial con-

text which, using deep learning trained to the model framework, would allow

for concurrent data-driven model improvement. Ideally this would be achieved

through time and in the presence of various, clinically relevant drugs. In the

clinical context this databased model could then be used to make important

predictions about the behaviour of in situ biopsied tumours in response to a

drug or, indeed, to suggest drug-dose regimens.
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[195] Lachmann, M., Számadó, S., Bergstrom, C.T.: Cost and conflict in animal

signals and human language. Proceedings of the National Academy of

Sciences 98(23), 13,189–13,194 (2001)

[196] Lambert, J.D.: Numerical Methods for Ordinary Differential Systems:

The Initial Value Problem. John Wiley & Sons, Inc. (1991)

[197] Landis, M.J., Schraiber, J.G.: Pulsed evolution shaped modern vertebrate

body sizes. Proceedings of the National Academy of Sciences 114(50),

13,224–13,229 (2017)

[198] Langlais, M.: Large time behavior in a nonlinear age-dependent popula-

tion dynamics problem with spatial diffusion. Journal of Mathematical

Biology 26(3), 319–346 (1988). DOI 10.1007/BF00277394

[199] Langlais, M., Milner, F.A.: Existence and uniqueness of solutions for a dif-

fusion model of host–parasite dynamics. Journal of Mathematical Analysis

and Applications 279(2), 463 – 474 (2003). DOI 10.1016/S0022-247X(03)

00020-9

[200] Larkin, J., del Vecchio, M., Ascierto, P.A., Krajsova, I., Schachter, J.,

Neyns, B., Espinosa, E., Garbe, C., Sileni, V.C., Gogas, H., Miller Jr,
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