P. A. Dickey, The First Oil Well : oil Industry centennial, Journal of petroleum technology, pp.14-25, 1959.

, BP. BP Statistical Review of World Energy, 2018.

G. J. Hirasaki, C. A. Miller, and M. Puerto, Recent Advances in Surfactant EOR, SPE Annual Technical Conference and Exhibition, pp.889-907, 2011.

D. B. Levitt, A. C. Jackson, C. Heinson, L. N. Britton, T. Malik et al., Identification and evaluation of high-performance EOR surfactants, pp.243-253, 2009.

X. Boy-de-la-tour and . Le-pétrole, , 2004.

G. P. Willhite and . Waterflooding, , 1986.

C. ;. Blazquez-egea, M. Université-pierre-et, and . Curie, Formation, stabilité et cassage des mousses non aqueuses : Contribution à l'étude des mousses pétrolières, 2014.

N. R. Morrow, Interfacial phenomena in petroleum recovery (Chapitre 1); Surfactant science series 36

M. Dekker, , 1991.

S. Thomas, Enhanced Oil Recovery -An Overview. Oil & Gas Science and Technology -Rev, IFP, vol.63, pp.9-19, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02001980

V. Alvarado and E. Manrique, Enhanced Oil Recovery: An Update Review. Energies, vol.3, pp.1529-1575, 2010.

W. Dehu, H. Qingfeng, L. Yousong, Z. Youyi, and F. Hongfu, Feasibility Studies on CO2 Foam Flooding EOR Technique After Polymer Flooding for Daqing Reservoirs, Journal of Dispersion Science and Technology, vol.36, pp.453-461, 2014.

R. Sen, Biotechnology in petroleum recovery: The microbial EOR, Progress in Energy and Combustion Science, vol.34, pp.714-724, 2008.

A. Andrianov, R. Farajzadeh, M. Mahmoodi-nick, M. Talanana, and P. L. Zitha, Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments, Ind. Eng. Chem. Res, vol.51, pp.2214-2226, 2012.

E. Alliance, , 2019.

W. C. Griffin, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, p.311, 1949.

M. J. Rosen, Surfactants and Interfacial Phenomena, 2004.

J. Wolanin and ;. Curie, Étude des conditions d'adsorption des tensioactifs sur des surfaces représentatives des roches réservoirs, 2018.

J. J. Sheng, Modern chemical enhanced oil recovery: Theory and practice, 2011.

C. Negin, S. Ali, and Q. Xie, Most common surfactants employed in chemical enhanced oil recovery, vol.3, pp.197-211, 2017.

R. L. Reed and R. N. Healy, SOME PHYSICOCHEMICAL ASPECTS OF MICROEMULSION FLOODING: A REVIEW. Improved Oil Recovery by Surfactant and Polymer Flooding, pp.383-437, 1977.

J. Salager, R. Anton, J. M. Andérez, and J. Aubry, Formulation des microémulsions par la méthode du HLD. Technique de l'ingénieur, Génie des procédé J2, Chapitre, vol.157, pp.1-20, 2001.

A. Bera and A. Mandal, Microemulsions: A novel approach to enhanced oil recovery: a review, J Petrol Explor Prod Technol, vol.5, pp.255-268, 2015.

J. Salager, A. M. Forgiarini, and J. Bullón, How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 1. Optimum Formulation for Simple Surfactant-Oil-Water Ternary Systems, J Surfact Deterg, vol.16, pp.449-472, 2013.

J. Salager, A. M. Forgiarini, L. Márquez, L. Manchego, and J. Bullón, How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter-and Intra-Molecular Mixtures, Journal of surfactants and detergents, vol.16, pp.631-663, 2013.

J. Salager, A. M. Forgiarini, and M. J. Rondón, How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review-Part 3. Practical Procedures to Optimize the Laboratory Research According to the Current State of the Art in Surfactant Mixing, J Surfact Deterg, vol.20, pp.3-19, 2017.

M. ;. Moire, M. Université-pierre-et, and . Curie, Etude des propriétés interfaciales eau/huile/tensioactifs par microfluidique : application à l'EOR chimique, 2015.

T. Masadome, T. Imato, and Y. Asano, End-point detection of the potentiometric titration of anionic polyelectrolytes using an anionic surfactant-selective plasticized poly (vinyl chloride) membrane electrode and an anionic surfactant as a marker ion, Fresenius' Journal of Analytical Chemistry, vol.363, pp.241-245, 1999.

O. Pornsunthorntawee, P. Wongpanit, S. Chavadej, M. Abe, and R. Rujiravanit, Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil, Bioresource technology, vol.99, pp.1589-1595, 2008.

H. R. Ryu, H. S. Park, and C. K. Rhee, Universal LC Method for a Determination of Fourteen Cationic Surfactants Widely Used in Surfactant Industry, Bulletin of the Korean Chemical Society, vol.28, pp.85-88, 2007.

S. H. Im, Y. H. Jeong, and J. Ryoo, Simultaneous analysis of anionic, amphoteric, nonionic and cationic surfactant mixtures in shampoo and hair conditioner by RP-HPLC/ELSD and LC/MS, Analytica chimica acta, vol.619, pp.129-136, 2008.

J. Salager, N. Marquez, A. Graciaa, and J. Lachaise, Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion?Oil?Water Systems: Influence of Temperature and Relation between Partitioning Coefficient and Physicochemical Formulation, Langmuir, vol.16, pp.5534-5539, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00703357

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

K. Ohno, K. Tachikawa, and A. Manz, Microfluidics: Applications for analytical purposes in chemistry and biochemistry, Electrophoresis, vol.29, pp.4443-4453, 2008.

D. J. Beebe, G. A. Mensing, and G. M. Walker, Physics and applications of microfluidics in biology, Annual review of biomedical engineering, vol.4, pp.261-286, 2002.

T. Gavoille, N. Pannacci, G. Bergeot, C. Marliere, and S. Marre, Microfluidic approaches for accessing thermophysical properties of fluid systems, React. Chem. Eng, vol.12, p.4381, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02294392

D. Mark, S. Haeberle, G. Roth, F. Stetten, and . Von,

R. Zengerle, Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications, Chemical Society reviews, vol.39, pp.1153-1182, 2010.

C. Hansen, Microfluidics in structural biology: Smaller, faster? better, Current Opinion in Structural Biology, vol.13, pp.538-544, 2003.

J. M. Ottino, The kinematics of mixing: Stretching, chaos, and transport; Cambridge texts in applied mathematics 1, 1989.

R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago et al., Passive mixing in a three-dimensional serpentine microchannel, J. Microelectromech. Syst, vol.9, pp.190-197, 2000.

A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone et al., Chaotic mixer for microchannels, vol.295, pp.647-651, 2002.

R. A. Vijayendran, K. M. Motsegood, D. J. Beebe, and D. E. Leckband, Evaluation of a Three-Dimensional Micromixer in a Surface-Based Biosensor ?, Langmuir, vol.19, pp.1824-1828, 2003.

K. Chen, H. Lu, M. Sun, L. Zhu, and Y. Cui, Mixing enhancement of a novel C-SAR microfluidic mixer, Chemical Engineering Research and Design, vol.132, pp.338-345, 2018.

M. Zagnoni, G. Le-lain, and J. Cooper, Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels, Langmuir, vol.26, pp.14443-14449, 2010.

P. Uhlmann, F. Varnik, P. Truman, G. Zikos, J. Moulin et al., Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures, Journal of physics : Condensed matter, vol.23, p.184123, 2011.

D. E. Angelescu, B. Mercier, D. Siess, and R. Schroeder, Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures, Analytical chemistry, vol.82, pp.2412-2420, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00692929

J. G. Kralj, H. R. Sahoo, and K. F. Jensen, Integrated continuous microfluidic liquid-liquid extraction, vol.7, pp.256-263, 2007.

J. S. Paustian, R. N. Azevedo, S. B. Lundin, M. J. Gilkey, and T. M. Squires, Microfluidic Microdialysis: Spatiotemporal Control over Solution Microenvironments Using Integrated Hydrogel Membrane Microwindows, Phys. Rev. X, issue.3, p.335, 2013.

J. Decock, M. Schlenk, and J. Salmon, In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels, Lab on a chip, vol.18, pp.1075-1083, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346508

J. H. Bannock, T. W. Phillips, A. M. Nightingale, and J. C. Demello, Microscale separation of immiscible liquids using a porous capillary, Anal. Methods, issue.5, p.4991, 2013.

T. W. Phillips, J. H. Bannock, and J. C. Demello, Microscale extraction and phase separation using a porous capillary, vol.15, pp.2960-2967, 2015.

H. Breisig, M. Schmidt, H. Wolff, A. Jupke, and M. Wessling, Droplet-based liquid-liquid extraction inside a porous capillary, Chemical Engineering Journal, vol.307, pp.143-149, 2017.

A. Gaubert, Y. Clement, A. Bonhomme, B. Burger, D. Jouan-rimbaud-bouveresse et al., Characterization of surfactant complex mixtures using Raman spectroscopy and signal extraction methods: Application to laundry detergent deformulation, Analytica chimica acta, vol.915, pp.36-48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363725

G. Garcia-olvera, T. Reilly, T. E. Lehmann, L. Zhang, and V. Alvarado, Surfactant Behavior Analysis in Enhanced Oil Recovery Blends Using One-Dimensional Proton Nuclear Magnetic Resonance, Energy Fuels, vol.30, pp.63-71, 2016.

G. Garcia-olvera, T. M. Reilly, T. E. Lehmann, and V. Alvarado, Physicochemical Constraints on Surfactant Blends under Harsh Conditions and Evaluation of a Proposed Solution, Energy Fuels, vol.31, pp.95-106, 2017.

L. Carolei and I. G. Gutz, Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR, Talanta, vol.66, pp.118-124, 2005.

K. Kargosha, S. H. Ahmadi, M. Mansourian, and J. Azad, Simultaneous determination of one nonionic and two anionic surfactants using Fourier transform infrared spectrometry and multivariate analysis, Talanta, vol.75, pp.589-593, 2008.

Z. Huang, Z. Yan, and T. Gu, Mixed adsorption of cationic and anionic surfactants from aqueous solution on silica gel, Colloids and Surfaces, vol.36, pp.353-358, 1989.

K. E. Bremmell, G. J. Jameson, and S. Biggs, Adsorption of ionic surfactants in particulate systems: flotation, stability, and interaction forces. Colloids and Surfaces A, vol.146, pp.75-87, 1999.

J. Salmon, A. Ajdari, P. Tabeling, L. Servant, D. Talaga et al., In situ Raman imaging of interdiffusion in a microchannel, APPLIED PHYSICS LETTERS, vol.86, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00107980

W. Ferstl, T. Klahn, W. Schweikert, G. Billeb, M. Schwarzer et al., Inline Analysis in Microreaction Technology: A Suitable Tool for Process Screening and Optimization, Chem. Eng. Technol, vol.30, pp.370-378, 2007.

S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts et al., Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry, Journal of the American Chemical Society, vol.133, pp.3601-3608, 2011.

H. Wensink, F. Benito-lopez, D. C. Hermes, W. Verboom, H. J. Gardeniers et al., Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR, vol.5, pp.280-284, 2005.

A. Perro, G. Lebourdon, S. Henry, S. Lecomte, L. Servant et al., Combining microfluidics and FT-IR spectroscopy: Towards spatially resolved information on chemical processes, React. Chem. Eng, vol.1, pp.577-594, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415473

F. Benito-lopez, W. Verboom, M. Kakuta, J. H. Gardeniers, R. J. Egberink et al., Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor, Chemical communications, pp.2857-2859, 2005.

P. M. Günther, F. Möller, T. Henkel, J. M. Köhler, and G. A. Gro, Formation of Monomeric and Novolak Azo Dyes in Nanofluid Segments by Use of a Double Injector Chip Reactor, Chem. Eng. Technol, vol.28, pp.520-527, 2005.

T. Krebs, K. Schroenb, and R. Boomb, A microfluidic method to study demulsification kinetics, vol.12, pp.1060-1070, 2012.

P. Cologon, Dosage de tensio-actifs EOR par HPLC-DEDL: Note interne IFPEN, confidentiel; IFPEN, 2017.

, MICROCHEM. SU-8 Data sheet, 2017.

P. Berne, P. Bachaud, and M. Fleury, Diffusion Properties of Carbonated Caprocks from the Paris Basin, Oil Gas Sci. Technol. -Rev. IFP, vol.65, pp.473-484, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01937534

, PLUG'IM. PLUG'IM. www.plugim.fr, vol.17, 2018.

P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 1997.

A. Fukumoto, C. Dalmazzone, D. Frot, L. Barré, and C. Noïk, Investigation on Physical Properties and Morphologies of Microemulsions formed with Sodium Dodecyl Benzenesulfonate, Isobutanol, Brine, and Decane, Using Several Experimental Techniques, Energy Fuels, vol.30, pp.4690-4698, 2016.

H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in droplets in microfluidic channels, Angewandte Chemie, vol.45, pp.7336-7356, 2006.

S. H. Jang, P. J. Liyanage, M. Tagavifar, L. Chang, K. A. Upamali et al., A Systematic Method for Reducing Surfactant Retention to Extremely Low Levels; SPE-179685-MS presented in Improved Oil Recovery Conference, 2016.

A. Skauge and B. S. Shiran, Low Salinity Polymer Flooding, Paper presented in 17th European Symposium on Improved Oil Recovery, 2013.