F. S. Afshari, K. Ptak, Z. M. Khaliq, T. M. Grieco, N. T. Slater et al., Resurgent Na currents in four classes of neurons of the cerebellum, J Neurophysiol, vol.92, pp.2831-2843, 2004.

A. Ouares, K. Filipis, L. Tzilivaki, A. Poirazi, P. Canepari et al., Two Distinct Sets of Ca 2+ and K + Channels Are Activated at Different Membrane Potentials by the Climbing Fiber Synaptic Potential in Purkinje Neuron Dendrites, J. Neurosci, vol.39, pp.1969-1981, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02441713

A. Ouares, K. Jaafari, N. Canepari, and M. , A generalised method to estimate the kinetics of fast Ca 2+ currents from Ca 2+ imaging experiments, J Neurosci Methods, vol.268, pp.66-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324477

R. W. Aldrich and C. F. Stevens, Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells, J Neurosci, vol.7, issue.2, pp.418-431, 1987.

K. Amunt, C. Ebell, J. Muller, M. Telefont, A. Knoll et al., The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain, Neuron, vol.92, issue.3, pp.574-581, 2016.

H. Anwar, S. Hong, D. Schutter, and E. , Controlling Ca 2+ -activated K + channels with models of Ca 2+ buffering in Purkinje cells, Cerebellum, vol.11, pp.1-13, 2010.

T. Araki and T. Otani, Response of single motoneurons to direct stimulation in toad's spinal cord, JNeurophysiol, vol.18, pp.472-85, 1955.

N. Astman, M. J. Gutnick, and I. A. Fleidervish, Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon, J Neurosci, vol.26, issue.13, pp.3465-3473, 2006.

G. Baranauskas, Y. David, and I. A. Fleidervish, Spatial mismatch between the Na+ flux and spike initiation in axon initial segment, PNAS, vol.110, issue.10, pp.4051-4056, 2012.

S. F. Barnett, M. Snape, C. N. Hunter, M. A. Juárez, and A. J. Cadby, A Novel Application of Non-Destructive Readout Technology to, Localisation Microscopy. Sci Rep, vol.7, p.42313, 2017.

A. Bègue, E. Papagiakoumou, and B. Leshem, Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation, Biomed Opt Express, vol.4, issue.12, pp.2869-2879, 2013.

A. Berglund, Nonexponential statistics of fluorescence photobleaching, J. Chem. Phys, vol.121, pp.2899-2903, 2004.

J. Bernstein, Untersuchungen zur Thermodynamik der bioelektrischen Ströme, Pflügers Arch, vol.92, pp.521-562, 1902.

T. Boiko, A. Van-wart, J. H. Caldwell, S. R. Levinson, J. S. Trimmer et al., Functional specialization of the axon initial segment by isoform-specific sodium channel targeting, Journal of Neuroscience, vol.23, issue.6, pp.2306-2313, 2003.

R. T. Borlinghaus, High speed scanning has the potential to increase fluorescence yield and to reduce photobleaching, Microscopy Research and Technique, vol.69, issue.9, pp.689-692, 2006.

F. Bosmans, L. Rash, S. Zhu, S. Diochot, M. Lazdunski et al., , 2006.

, Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes, Mol. Pharmacol, vol.69, pp.419-429

S. Bovetti, C. Moretti, S. Zucca, D. Maschio, M. Bonifazi et al., Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain, Sci Rep, vol.7, p.40041, 2017.

B. B. Boycott, Biographical memoirs of fellows of the royal society, 1907.

F. Bradke, J. W. Fawcett, and M. E. Spira, Assembly of a new growth cone after axotomy: The precursor to axon regeneration, Nat Rev Neurosci, vol.13, issue.3, pp.183-193, 2012.

D. H. Brager and D. Johnston, Channelopathies and dendritic dysfunction in fragile X syndrome, Brain Research Bulletin, vol.103, pp.11-17, 2014.

S. D. Brenowitz and W. G. Regehr, Associative short-term synaptic plasticity mediated by endocannabinoids, Neuron, vol.45, pp.419-431, 2005.

R. Brette, Sharpness of spike initiation in neurons explained by compartmentalization, PLoS Comput Biol, vol.9, issue.12, p.1003338, 2013.

C. Buckley and A. Vincent, Autoimmune channelopathies, Nat. Clin. Pract. Neurol, vol.1, issue.1, pp.22-33, 2005.

S. A. Burbidge, T. J. Dale, A. J. Powell, W. R. Whitaker, X. M. Xie et al., Molecular cloning, distribution and functional analysis of the NAv1.6. Voltage-gated sodium channel from human brain, Mol Brain Res, vol.103, pp.80-90, 2002.

M. Canepari, M. Djurisic, and D. Zecevic, Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre-and post-synaptic activity: a combined voltage-and calcium-imaging study, J Physiol, vol.580, pp.463-484, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00515634

M. Canepari and F. Mammano, Imaging neuronal calcium fluorescence at high spatio-temporal resolution, J Neurosci Methods, vol.87, pp.1-11, 1999.

M. Canepari, L. Nelson, G. Papageorgiou, C. J. Ogden, and D. , Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinylamino acids as novel, fast caged neurotransmitters, J. Neurosci. Methods, vol.112, pp.29-4210, 2001.

M. Canepari and D. Ogden, Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones, J Physiol, vol.573, pp.65-82, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00515646

M. Canepari, K. Vogt, and D. Zecevic, Combining voltage and calcium imaging from neuronal dendrites, Cell Mol Neurobiol, vol.58, pp.1079-1093, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00515600

M. Canepari and K. E. Vogt, Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP, PLoS ONE, vol.3, p.4011, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00449755

M. Canepari, S. Willadt, D. Zecevic, and K. E. Vogt, Imaging inhibitory synaptic potentials using voltage sensitive dyes, Biophys J, vol.98, pp.2032-2040, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00515238

S. C. Cannon, Channelopathies of the Nervous System, Principles of Molecular Medicine, pp.1088-1096, 2006.

W. A. Catterall, S. Dib-hajj, M. H. Meisler, and D. Pietrobon, Inherited neuronal ion channelopathies: new windows on complex neurological diseases, J. Neurosci, vol.28, pp.11768-11777, 2008.

F. Ceriani, C. D. Ciubotaru, M. Bortolozzi, and F. Mammano, Design and Construction of a Cost-Effective Spinning Disk System for Live Imaging of Inner Ear Tissue, Methods in Molecular Biology, vol.1427, 2016.

L. Claes, L. Deprez, A. Suls, J. Baets, K. Smets et al., The SCN1A variant database: a novel research and diagnostic tool, Hum Mutat, vol.30, pp.904-920, 2009.

J. Clay and L. Defelice, Relationship between membrane excitability and single channel open-close kinetics, Biophys J, vol.42, pp.151-157, 1983.

C. G. Coates, D. J. Denvir, E. Conroy, N. Mchale, K. Thornbury et al., Backillumintated electron multiplying technology; The world's most sensitive CCD for ultra low-light microscopy

C. G. Coates, D. J. Denvir, N. G. Mchale, K. D. Thornbury, and M. Hollywood, , 2004.

, Optimizing low-light microscopy with back-illuminated electron multiplying chargecoupled device: enhanced sensitivity, speed, and resolution, J. Biomed. Opt, vol.9, issue.6, pp.1244-1252

L. B. Cohen, B. M. Salzberg, and A. Grinvald, Optical methods for monitoring neuron activity, Annual Review of Neuroscience, vol.1, pp.171-182, 1978.

C. M. Colbert and D. Johnston, Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons, J. Neurosci, vol.16, pp.6676-6686, 1996.

C. M. Colbert and E. Pan, Ion channel properties underlying axonal action potential initiation in pyramidal neurons, Nat. Neurosci, vol.5, pp.533-538, 2002.

J. A. Connor, Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells, Proc Natl Acad Sci, vol.83, pp.6179-6183, 1986.

J. S. Coombs, D. R. Curtis, and J. C. Eccles, The interpretation of spike potentials of motoneurones, J Physiol, vol.139, pp.198-231, 1957.

T. R. Corle, C. H. Chou, and G. S. Kino, Depth response of confocal optical microscopes, Opt. Lett, vol.11, pp.770-772, 1986.

. Crank, The mathematics of diffusion, 1975.

L. Cueni, M. Canepari, J. P. Adelman, and A. Luthi, Ca 2+ signaling by T-type Ca 2+ channels in neurons, Arch Eur J Physiol, vol.457, pp.1161-1172, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00515354

L. Cueni, M. Canepari, and R. Luján, T-type Ca 2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites, Nat Neurosci, vol.11, pp.683-692, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00515629

M. Dal-maschio, F. Difato, R. Beltramo, A. Blau, F. Benfenati et al., , 2010.

, SSimultaneous two-photon imaging and photo-stimulation with structured light illumination, Opt Express, vol.18, issue.18, pp.18720-18751

R. Davies, J. Graham, and M. Canepari, Light Sources and Cameras for Standard in Vitro Membrane Potential and High-Speed Ion Imaging, J Microsc, vol.251, pp.5-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01137829

D. Schutter and E. , Dendritic Voltage and Calcium-Gated Channels Amplify the Variability of Postsynaptic Responses in a Purkinje Cell Model, J. Neurophysiol, vol.80, issue.2, pp.504-519, 1998.

D. Schutter, E. Bower, and J. M. , An active membrane model of the cerebellar Purkinje cell: II Simulation of synaptic responses, J. Neurophysiol, vol.71, pp.401-419, 1994.

O. Deiters, Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere, pp.1-318, 1865.

S. D. Dib-hajj and S. G. Waxman, Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties, Neuroscience Letters, vol.486, issue.2, pp.84-91, 2010.

F. A. Dodge and J. W. Cooley, Action Potential of the Motorneuron, IBM J Res Dev, vol.17, pp.219-248, 1973.

G. Donnert, C. Eggeling, and S. W. Hell, Major signal increase in fluorescence microscopy through dark-state relaxation, Nat Methods, vol.4, pp.81-86, 2007.

D. Bois-reymond and E. , Laboratory diaries, Staatsbibliothek zu Berlin, Preußischer Kulturbesitz, Handschriftenabteilung: Sammlung Darmstaedter, pp.1841-1895

J. R. Edgerton and P. H. Reinhart, Distinct contributions of small and large conductance Ca 2+ -activated K + channels to rat Purkinje neuron function, J Physiol, vol.548, pp.53-69, 2003.

C. Edwards and D. Ottoson, The site of impulse initiation in a nerve cell of a crustacean stretch receptor, J Physiol, vol.143, issue.1, pp.138-148, 1958.

H. A. Fertig, Deconfinement in the two-dimensional XY model, Phys. Rev. Lett, vol.89, p.35703, 2002.

L. Filipis, A. Ouares, K. Moreau, and P. , A novel multisite confocal system for rapid Ca 2+ imaging from submicron structures in brain slices, J. Biophotonics, vol.11, p.201700197, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872699

E. Finch and G. Augustine, Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites, Nature, vol.396, pp.753-756, 1998.

A. Fine, Confocal microscopy: applications in neurobiology, Trends in Neurosciences, vol.11, issue.8, pp.346-351, 1988.

I. A. Fleidervish, N. Lasser-ross, M. J. Gutnick, and W. N. Ross, Na + imaging reveals little difference in action potential-evoked Na + influx between axon and soma, Nat Neurosci, vol.13, issue.7, pp.852-860, 2010.

A. Foust, M. Popovic, D. Zecevic, and D. A. Mccormick, Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons, J Neurosci, vol.30, issue.20, pp.6891-6902, 2010.

A. J. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, Computergenerated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures, Neurophotonics, vol.2, issue.2, p.21007, 2015.

B. H. Gähwiler and I. Llano, Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures, J Physiol, vol.417, pp.105-122, 1989.

M. Glickstein, F. Sultan, and J. Voogd, Functional localization in the cerebellum, Cortex, vol.47, issue.1, pp.59-80, 2011.

D. S. Goldman-wohl, C. E. Baird, D. Heintz, and N. , Kv3.3b: a novel Shaw type potassium channel expressed in terminally differentiated cerebellar Purkinje cells and deep cerebellar nuclei, J Neurosci, vol.14, issue.2, pp.511-522, 1994.

G. Grynkiewicz, A new generation of Ca2 þ indicators with greatly improved fluorescence properties, J. Biol. Chem, vol.260, pp.3440-3450, 1985.

0. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch. Eur. J. Physiol, vol.391, pp.85-100, 1981.

B. Hille, Ionic Channels of Excitable Membranes, 1991.

B. Hille, . Sinauer, and M. A. Sunderland, Ion Channels of Excitable Membranes, 2001.

M. L. Hines and N. T. Carnevale, The NEURON simulation environment, Neural Computation, vol.9, issue.6, pp.1179-1209, 1998.

T. Hirano and S. Hagiwara, Kinetics and distribution of voltage-gated Ca, Na and K channels on the somata of rat cerebellar Purkinje cells, Pflugers Arch, vol.413, pp.463-469, 1989.

A. Hodgkin and A. Huxley, Action Potentials Recorded from Inside a Nerve Fibre, Nature, vol.144, pp.710-711, 1939.

A. Hodgkin, A. Huxley, and B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J Physiol, vol.116, issue.4, pp.424-448, 1952.

E. Hosy, C. Piochon, E. Teuling, R. L. Hansel, and C. , SK2 channel expression and function in cerebellar cells, J. Physiol, vol.589, pp.3433-3440, 2011.

, ~ 118 ~

J. Hounsgaard and J. Midtgaard, Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro, J Physiol, vol.402, pp.731-749, 1988.

E. Hoxha, F. Tempia, P. Lippiello, and M. C. Miniaci, Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse, Front Synaptic Neurosci, vol.8, p.35, 2016.

W. Hu, C. Tian, and T. Li, Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation, Nat Neurosci, vol.12, pp.996-1002, 2009.

P. Isope, M. E. Hildebrand, and T. P. Snutch, Contributions of T-type voltagegated calcium channels to postsynaptic calcium signaling within Purkinje neurons, Cerebellum, vol.11, pp.651-665, 2012.

N. Jaafari and M. Canepari, Functional coupling of diverse voltage-gated Ca(2+) channels underlies high fidelity of fast dendritic Ca(2+) signals during burst firing, J Physiol, vol.594, issue.4, pp.967-983, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324474

N. Jaafari and M. Canepari, Functional coupling of diverse voltage-gated Ca2+ channels underlies high-fidelity of fast dendritic Ca2+ signals during burst firing, J Physiol, vol.594, pp.2557-2558, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324474

N. Jaafari, M. De-waard, and M. Canepari, Imaging Fast Calcium Currents beyond the Limitations of Electrode Techniques, Biophys J, vol.107, pp.1280-1288, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137812

N. Jaafari, E. Marret, and M. Canepari, Using simultaneous voltage and calcium imaging to study fast Ca2+ channels, Neurophotonics, vol.2, p.21010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01324485

A. Z. Jab?o?ski, Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren, Physik, vol.94, p.38, 1935.

K. Jurkat-rott, B. Holzherr, M. Fauler, and F. Lehmann-horn, Sodium channelopathies of skeletal muscle result from gain or loss of function, Pflugers Arch, vol.460, issue.2, pp.239-248, 2010.

M. Kole, S. Ilschner, and B. Kampa, Action potential generation requires a high sodium channel density in the axon initial segment, Nat Neurosci, vol.11, pp.178-186, 2008.

M. H. Kole, J. J. Letzkus, and G. J. Stuart, Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy, Neuron, vol.55, pp.633-647, 2007.

C. Kopp-scheinpflug and B. L. Tempel, Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder, Hear Res, vol.330, pp.213-220, 2015.

T. Kosaka, K. Kosaka, T. Nakayama, W. Hunziker, and C. W. Heizmann, Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of ~ 119 ~ parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling, Exp Brain Res, vol.93, pp.483-491, 1993.

S. Kozlov, Animal toxins for channelopathy treatment, Neuropharmacology, vol.132, pp.83-97, 2018.

M. J. Kushmerick, R. E. Larson, and R. E. Davies, The chemical energetics of muscle contraction I. Activation heat, heat of shortening and ATP utilization for activationrelaxation processes, Proc. R. Soc. Lond. B, vol.174, p.1036, 1969.

N. Lasser-ross and W. N. Ross, Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells, Proc. R. Soc. Lond. B, vol.247, p.1318, 1992.

R. Latorre, A. Oberhauser, P. Labarca, and O. Alvarez, Varieties of calcium-activated potassium channels, Annu Rev Physiol, vol.51, pp.385-399, 1989.

S. Lauxmann, N. Boutry-kryza, C. Rivier, S. Mueller, U. B. Hedrich et al., An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold, 2013.

+. Na and . Current, Epilepsia, vol.54, pp.117-121

E. Lazarov, M. Dannemeyer, B. Feulner, J. Enderlein, M. J. Gutnick et al., , 2018.

, An axon initial segment is required for temporal precision in action potential encoding by neuronal populations, Sci. Adv, vol.4, p.8621

I. Léna and M. Mantegazza, NaV1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age, Sci Rep, vol.9, issue.1, p.12886, 2019.

D. Linaro, M. Storace, and M. Giugliano, Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation, PLoS computational biology, vol.7, issue.3, p.1001102, 2011.

I. Llano, A. Marty, C. M. Armstrong, and A. Konnerth, Synaptic-and agonistinduced excitatory currents of Purkinje cells in rat cerebellar slices, J Physiol, vol.434, pp.183-213, 1991.

R. Llinás, M. Sugimori, and J. Lin, Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison, Proceedings of the National Academy of Sciences of the United States of America, vol.86, pp.1689-1693, 1989.

R. Llinas and M. Sugimori, Electrophysiological properties of in, 1980.

, vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol, vol.305, pp.197-213

A. Lorincz and Z. Nusser, Cell-type-dependent molecular composition of the axon initial segment, J Neurosci, vol.28, issue.53, pp.14329-14340, 2008.

A. Losonczy, J. Makara, and J. Magee, Compartmentalized dendritic plasticity and input feature storage in neurons, Nature, vol.452, pp.436-441, 2008.

H. Maeda, G. C. Ellis-davies, K. Ito, Y. Miyashita, and H. Kasai, , 1999.

, Ca 2+ signaling by cooperative and mobile Ca 2+ buffering in Purkinje neurons, Neuron, vol.24, pp.989-1002

J. C. Magee and D. Johnston, A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons, Science, vol.275, pp.209-213, 1997.

J. C. Magee and D. Johnston, Plasticity of dendritic function, Curr Opin Neurobiol, vol.15, pp.334-342, 2005.

Z. F. Mainen, J. Joerges, J. R. Huguenard, and T. J. Sejnowski, A model of spike initiation in neocortical pyramidal neurons, Neuron, vol.15, pp.1427-1439, 1995.

B. A. Maki, K. A. Cummings, M. A. Paganelli, S. E. Murthy, and G. K. Popescu, , 2014.

, One-channel cell-attached patch-clamp recording, J Vis Exp, vol.88, p.51629

M. Mantegazza, R. Rusconi, P. Scalmani, G. Avanzini, and S. Franceschetti, , 2010.

, Epileptogenic ion channel mutations: from bedside to bench and, hopefully, back again, Epilepsy Res, vol.92, pp.1-29

A. Markov, Extension de la loi de grands nombres aux evénements dependants les uns déautres, vol.15, pp.135-156, 1906.

R. A. Mcdougal, T. M. Morse, T. Carnevale, L. Marenco, R. Wang et al.,

M. Miller, P. L. Shepherd, G. M. Hines, and M. L. , Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience, J Comput Neurosci, vol.42, pp.1-10, 2017.

J. G. Mcgeown, Seeing is believing! Imaging Ca 2+ -signalling events in living cells, Exp Physiol, vol.95, issue.11, pp.1049-1060, 2010.

J. P. Meeks and S. Mennerick, Action Potential Initiation and Propagation in CA3, Pyramidal AxonsJournal of Neurophysiology, vol.97, issue.5, pp.3460-3472, 2007.

M. H. Meisler and J. A. Kearney, Sodium channel mutations in epilepsy and other neurological disorders, J Clin Invest, vol.115, issue.8, pp.2010-2017, 2005.

N. A. Minassian, A. Gibbs, A. Y. Shih, Y. Liu, and R. A. Neff,

T. , C. J. Fellows, R. Husovsky, M. Nelson, S. Hunter et al., Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (?-TRTX-Hh2a), J Biol Chem, vol.288, pp.22707-22720, 2013.

A. Minta and R. Y. Tsien, Fluorescent indicators for cytosolic sodium, 1989.

, Biol. Chem, vol.264, p.19449

K. Miyazaki and W. N. Ross, Simultaneous Sodium and Calcium Imaging from Dendrites and Axons. eNeuro 2 pii: ENEURO, pp.92-107, 2015.

J. W. Moore, A personal view of the early development of computational neuroscience in the USA, Front Comput Neurosci, vol.4, p.20, 2010.

J. W. Moore, N. Stockbridge, and M. Westerfield, On the site of impulse initiation in a neurone, J Physiol (Lond), vol.336, pp.301-311, 1983.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta et al.,

K. Yamaguchi, T. Fujiwara, and A. Kusumi, Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization, Nat. Cell Biol, vol.5, pp.626-632, 2003.

T. Narahashi, J. W. Moore, and W. R. Scott, Tetrodotoxin blockage of sodium conductance in lobster giant axons, J Gen Physiol, vol.47, issue.5, pp.965-974, 1964.

G. Naumann, K. Lippmann, and J. Eilers, , 2018.

, Na + -indicator dyes suitable for quantitative two-photon fluorescence-lifetime measurements, Journal of Microscopy, vol.272, pp.136-144

B. Naundorf, W. F. Volgushev, and M. , Unique features of action potential initiation in cortical neurons, Nature, vol.440, pp.1060-1063, 2006.

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, 1976.

J. P. Nguyen, F. B. Shipley, A. N. Linder, G. S. Plummer, M. Liu et al.,

. Jw and A. M. Leifer, Whole-brain calcium imaging with cellular resolution in freely behaving caenorhabditis elegans, Proc. Natl. Acad. Sci, vol.113, issue.8, 2011.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka et al., , 2008.

. Slm-microscopy, Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators, Front Neural Circuits, vol.2, p.5

B. Nilius, P. Hess, and J. Lansman, A novel type of cardiac calcium channel in ventricular cells, Nature, vol.316, pp.443-446, 1985.

T. Nishigaki, C. D. Wood, K. Shiba, S. A. Baba, and A. Darszon, Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging, BioTechniques, vol.41, pp.191-197, 2006.

H. C. Oerster, Experimenta circa effectum conflictus electrici in acun magneticum, Nuremburg, Schrag'schen Buchhandlung, 1820.

T. G. Oertner, Functional imaging of single synapses in brain slices, Exp. Physiol, vol.87, pp.733-736, 2002.

N. Osorio, L. Cathala, M. H. Meisler, M. Crest, J. Magistretti et al., , 2010.

, Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells, J Physiol, vol.588, pp.651-670

Y. Otsu, P. Marcaggi, A. Feltz, P. Isope, M. Kollo et al.,

M. , T. M. Sakimura, K. Dieudonné, and S. , Activity-dependent gating of calcium spikes by A-type K + channels controls climbing fiber signaling in Purkinje cell dendrites, Neuron, vol.84, pp.137-151, 2014.

P. Öz, M. Huang, and F. Wolf, Action potential initiation in a multicompartmental model with cooperatively gating Na channels in the axon initial segment, J Comput Neurosci, vol.39, p.63, 2015.

L. M. Palmer, B. A. Clark, J. Gründemann, A. Roth, G. J. Stuart et al., , 2010.

, Initiation of simple and complex spikes in cerebellar Purkinje cells, J Physiol, vol.588, pp.1709-1717

L. M. Palmer and G. J. Stuart, Site of action potential initiation in layer 5 pyramidal neurons, J. Neurosci, vol.26, pp.1854-1863, 2006.

E. Papagiakoumou, Optical developments for optogenetics, Biol. Cell, vol.105, pp.443-464, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02445535

E. Papagiakoumou, F. Anselmi, and A. Bègue, Scanless twophoton excitation of channelrhodopsin-2, Nat Methods, vol.7, pp.848-854, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01963417

G. H. Patterson, Fluorescence microscopy below the diffraction limit, Semin Cell Dev Biol, vol.20, issue.8, pp.886-893, 2009.

R. Penjweini, H. G. Loew, M. R. Hamblin, and K. W. Kratky, Long-term monitoring of live cell proliferation in presence of PVP-Hypericin: a new strategy using ms pulses of LED and the fluorescent dye CFSE, J Microsc, vol.245, issue.1, pp.100-108, 2012.

M. A. Popovic, A. J. Foust, D. A. Mccormick, and D. Zecevic, The spatiotemporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study, J Physiol, vol.589, issue.17, pp.4167-4187, 2011.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli et al., , 2015.

, High-throughput spatial light modulation two-photon microscopy for fast functional imaging, Neurophotonics, vol.2, issue.1, p.15005

W. Rall, Membrane time constant of motoneurons, Science, vol.126, 1957.

I. M. Raman and B. P. Bean, Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons, J Neurosci, vol.17, issue.12, pp.4517-4526, 1997.

E. A. Rancz and M. Häusser, Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons, J Neurosci, vol.26, pp.5428-5437, 2006.

A. P. Rizwan, X. Zhan, G. W. Zamponi, and R. W. Turner, Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second Messenger Regulation of Kv4 Channels, J Neurosci, vol.36, pp.11196-11207, 2016.

P. Roder and C. (. Hille, ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy, Photochem. Photobiol. Sci, vol.13, pp.1699-1710, 2014.

C. Rosker, B. Lohberger, D. Hofer, B. Steinecker, S. Quasthoff et al.,

, The TTX metabolite, vol.4

, Nav1. 6 voltage-dependent sodium channel, Am J Physiol Cell Physiol, vol.293, pp.783-789

A. E. Ross, M. D. Nguyen, E. Privman, and B. J. Venton, Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex, J Neurochem, vol.130, issue.1, pp.50-60, 2014.

W. Ross, I. Fleidervish, and N. Lasser-ross, Imaging Sodium in Axons and Dendrites Cold Spring Harb Protoc, Neuron, vol.48, pp.647-659, 2005.

B. Sakmann and E. Neher, Patch clamp techniques for studying ionic channels in excitable membranes, Annu. Rev. Physiol, vol.46, pp.455-472, 1984.

M. J. Sanderson, I. Smith, I. Parker, and M. D. Bootman, Fluorescence microscopy, Cold Spring Harb Protoc, 2014.

C. Schmidt-hieber, J. P. Bischofberger, and J. , Action potential initiation and propagation in hippocampal mossy fibre axons, J Physiol, vol.586, issue.7, pp.1849-1857, 2008.

S. Schorge, Channelopathies go above and beyond the channels, 2018.

, Neuropharmacology

B. Schwaller, Cytosolic Ca 2+ buffers, Cold Spring Harb Perspect Biol, 2010.

Y. Shu, Y. Yu, J. Yang, and D. A. Mccormick, Selective control of cortical axonal spikes by a slowly inactivating K+ current, Proc Natl Acad Sci, vol.104, issue.27, pp.11453-11458, 2007.

R. A. Silver, A. Momiyama, S. Cull-candy, M. R. Smith, R. D. Smith et al., Locus of frequencydependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses, J. Physiol, vol.510, pp.881-902, 1998.

, Functional analysis of the mouse Scn8a sodium channel, J. Neurosci, vol.18, pp.6093-6102

S. Solinas, L. Forti, E. Cesana, J. Mapelli, D. Schutter et al., , 2007.

L. Song, E. Hennink, T. Young, and H. Tanke, Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells, Front Cell Neurosci, vol.1, pp.2588-2600, 1995.

P. Spratt, R. Ben-shalom, C. M. Keeshen, K. J. Burke, and R. L. Clarkson,

. Sj and K. J. Bender, The Autism associated Gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex, Neuron, vol.103, issue.4, pp.673-685, 2019.

H. Stenmark, Seeing is believing, Nat.Rev.Mol.Cell Biol, vol.10, p.582, 2009.

D. Sterrat, B. Graham, A. Gillies, and D. Willshaw, Principles of computational modelling in neuroscience, 2011.

M. Stocker, Ca 2+ -activated K + channels: molecular determinants and function of the SK family, Nat Rev Neurosci, vol.5, pp.758-770, 2004.

G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Transactions of the Cambridge Philosophical Society, vol.9, pp.166-188, 1856.

G. Stuart and M. Häusser, Initiation and spread of sodium action potentials in cerebellar Purkinje cells, Neuron, vol.13, p.703, 1994.

G. J. Stuart and N. Spruston, Probing dendritic function with patch pipettes, 1995.

, Curr. Opin. Neurobiol, vol.5, issue.3, pp.389-394

G. J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature, vol.367, pp.69-72, 1994.

G. Stuart and N. Spruston, Probing dendritic function with patch, 1995.

T. Sugawara, E. Mazaki-miyazaki, M. Ito, and H. Nagafuji,

A. Wada, K. Kaneko, S. Hirose, S. Yamakawa, and K. , Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures, Swensen AM, Bean BP, vol.57, pp.9650-9663, 2001.

V. Szabo, C. Ventalon, D. Sars, V. Bradley, J. Emiliani et al., Spatially selective holography photoactivation and functinal fluorescence imaging in freely behaving mice with a fiberscope, Neuron, vol.84, issue.6, pp.1157-69, 2014.

Y. Takahara, N. Matsuki, and Y. Ikegaya, Nipkow confocal imaging from deep brain tissues, J. Integr. Neurosci, vol.10, pp.121-129, 2011.

H. Takechi, J. Eilers, and A. Konnerth, A new class of synaptic response involving calcium release in dendritic spines, Nature, vol.396, pp.757-760, 1998.

D. Tanese, J. Y. Weng, and V. Zampini, Imaging membrane potential changes from dendritic spines using computer-generated holography, Neurophotonics, vol.4, issue.3, p.31211, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01872740

F. Tempia, M. E. Alojado, P. Strata, and T. Knöpfel, Characterization of the mGluR1-mediated electrical and calcium signaling in Purkinje cells of mouse cerebellar slices, J. Neurophysiol, vol.86, pp.1389-1397, 2001.

F. Tempia, M. Kano, R. Schneggenburger, C. Schirra, O. Garaschuk et al.,

A. Konnerth, Fractional calcium current through neuronal AMPA-receptor channels with a low calcium permeability, J Neurosci, vol.16, pp.456-466, 1996.

F. Tombola, M. M. Pathak, and E. Y. Isacoff, How does voltage open an ion channel?, Annu Rev Cell Dev Bion, vol.22, pp.23-52, 2006.

T. Tominaga and Y. Tominaga, A new nonscanning confocal microscopy module for functional voltage-sensitive dye and Ca 2+ imaging of neuronal circuit activity, J. Neurophysiol, vol.110, issue.2, pp.553-561, 2013.

M. M. Usowicz, M. Sugimori, B. Cherksey, and R. Llinás, P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells, Neuron, vol.19, pp.1185-1199, 1992.

A. Van-wart, J. S. Trimmer, and G. Matthews, Polarized distribution of ion channels within microdomains of the axon initial segment, J Comp Neurol, vol.500, pp.339-352

K. Veys, D. Snyders, D. Schutter, and E. , Kv3.3b expression defines the shape of the complex spike in the Purkinje cell, Front Cell Neurosci, vol.7, p.205, 2013.

S. R. Williams and S. J. Mitchell, Direct measurement of somatic voltage clamp errors in central neurons, Nat. Neurosci, vol.11, issue.7, pp.790-798, 2008.

D. A. Wollner and W. A. Catterall, Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells, Proc Natl Acad Sci, vol.83, pp.8424-8428, 1986.

M. D. Womack, C. Chevez, and K. Khodakhah, Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons, J Neurosci, vol.24, pp.8818-8822, 2004.

W. Yang, J. E. Miller, and L. Carrillo-reid, Simultaneous Multi-plane Imaging of Neural Circuits, Neuron, vol.89, issue.2, pp.269-284, 2016.

M. Ye, J. Yang, and C. Tian, Differential roles of NaV1.2 and NaV1, 2018.

, in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures, Sci Rep, vol.8, issue.1, p.753, 2018.

Y. Mingyu, J. Yang, and C. Tian, Differential roles of NaV1.2 and NaV1.6 in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures, Sci Rep, vol.8, p.753, 2018.

F. H. Yu, V. Yarov-yarovoy, G. A. Gutman, and W. A. Catterall, Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacol Rev, vol.57, pp.387-295, 2005.

Y. Yu, C. Maureira, X. Liu, and D. Mccormick, P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons, J. Neurosci, vol.30, pp.11858-11869, 2010.

Y. Yu, Y. Shu, and D. A. Mccormick, Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics, J Neurosci, vol.28, pp.7260-7272, 2008.

R. Yuste, From the neuron doctrine to neural networks, Nature Rev. Neurosci, vol.16, pp.487-497, 2015.

E. Zagha, S. Manita, W. N. Ross, and R. B. , Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes, J Neurophysiol, vol.103, issue.6, pp.3516-3525, 2010.

Y. Zhang, A. Bonnan, G. Bony, I. Ferezou, S. Pietropaolo et al.,

J. Rossier, B. Oostra, G. Lemasson, and A. Frick, Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice, Nat Neurosci, vol.17, pp.1701-1709, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02064702

A. Zylbertal, Y. Yarom, and S. Wagner, The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study, Front Comput Neurosci, vol.11, p.85, 2017.