M. Berthelot, La Chimie dans l'antiquité et au moyen âge.-I.-Les Grecs, les Latins, les

, Syriens. Rev. des Deux Mondes, vol.119, pp.315-336, 1893.

A. Boudou, Y. Dominique, S. Cordier, and N. Frery, Les chercheurs d'or et la pollution par le mercure en Guyane française : conséquences environnementales et sanitaires

. Environnement, Risques & Santé, vol.5, pp.167-179, 2006.

V. Kumar and B. Tate, Chemical of the Month -Mercury, J. Chem. Educ, vol.59, pp.971-972, 1982.

L. Bensefa-colas, P. Andujar, and A. Descatha, Intoxication par le mercure, Rev. Med. Interne, vol.32, pp.416-424, 2011.

R. Eisler, Health risk of gold miners : A synoptic review, Env. Geochem Heal, vol.25, pp.325-345, 2003.

. Un-environment, UN Environ. Program. Chem. Heal. Branch Geneva, 2018.

, Methylmercury in Environmental Health Criteria 101, World Health Organization, 1990.

S. K. Pandey, K. Kim, and R. J. Brown, Measurement techniques for mercury species in ambient air, TrAC Trends Anal. Chem, vol.30, pp.899-917, 2011.

P. Sharma and G. Singh, Mercury toxicity and its management: need of the hour, Pharma Innov, vol.5, pp.96-99, 2016.

Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake, Sources and remediation for mercury contamination in aquatic systems -A literature review, Environ. Pollut, vol.131, pp.323-336, 2004.

L. Friberg and N. K. Mottet, Accumulation of methylmercury and inorganic mercury in the brain, Biol. Trace Elem. Res, vol.21, pp.201-206, 1989.

J. D. Park and W. Zheng, Human exposure and health effects of inorganic and elemental mercury, J. Prev. Med. Public Heal, vol.45, pp.344-352, 2012.

K. Leopold, M. Foulkes, and P. Worsfold, Methods for the determination and speciation of mercury in natural waters-A review, Anal. Chim. Acta, vol.663, pp.127-138, 2010.

J. Poupon, L'exposition au mercure en 2007: Toxicité et prise en charge. Rev. Francoph. des Lab, pp.51-56, 2007.

N. T. Loux, An assessment of mercury-species-dependent binding with natural organic carbon, Chem. Speciat. Bioavailab, vol.10, pp.127-136, 1998.

Q. Jia, X. Zhu, Y. Hao, Z. Yang, Q. Wang et al., Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure, J. Environ

. Sci, , vol.68, pp.73-82, 2018.

S. M. Ullrich, T. W. Tanton, and S. A. Abdrashitova, Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation, Crit. Rev. Environ. Sci. Technol, vol.31, pp.241-293, 2001.

M. Gochfeld, Cases of mercury exposure, bioavailability, and absorption, Ecotoxicol. Environ. Saf, vol.56, pp.174-179, 2003.

O. Lindqvist and H. Rhode, Atmospheric mercury-a review, Tellus B, vol.37, pp.136-159, 1985.

N. J. Langford and R. E. Ferner, Toxicity of mercury, J. Hum. Hypertens, vol.13, pp.651-656, 1999.

J. A. Camargo, Contribution of Spanish-American silver mines (1570-1820) to the present high mercury concentrations in the global environment: A review, Chemosphere, vol.48, pp.51-57, 2002.

F. Marliere, Métrologie Benzène-HAP-métaux Bilan des mesures et perspectives pour la surveillance du mercure dans l'air ambiant en France au titre de la Directive Européenne, 2010.

N. Kallithrakas-kontos and S. Foteinis, Recent Advances in the Analysis of Mercury in Water -Review, Curr. Anal. Chem, vol.12, pp.22-36, 2015.

D. S. Lee, G. J. Dollard, and S. Pepler, Gas-phase mercury in the atmosphere of the United Kingdom, Atmos. Environ, vol.32, pp.855-864, 1998.

C. Driscoll, R. Mason, H. M. Chan, D. Jacob, and N. P. , Mercury as a Global Pollutant : Source, Pathways, and Effects. Environmental Science and Technology, vol.47, pp.4967-4983, 2013.

. Citepa, Gaz à effet de serre et polluants atmosphériques -Bilan des émissions en France de, Extrait, vol.46, 1990.

O. Lindqvist, K. Johansson, M. Aastrup, A. Andersson, L. Bringmark et al., Mercury in the Swedish environment -Recent research on causes, consequences and corrective methods, Water, Air, Soil Pollut, vol.55, 1991.

N. Bloom and W. F. Fitzgerald, Anal. Chim. Acta, vol.208, pp.151-161, 1988.

N. E. Selin, D. J. Jacob, J. K. Park, R. M. Yantosca, S. Strode et al., Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys. Res. Atmos, vol.112, pp.1-14, 2007.

, European Environment Agency., Mercury in Europe's Environment, 2018.

N. E. Selin, Global Biogeochemical Cycling of Mercury: A Review, Annu. Rev. Environ. Resour, vol.34, pp.43-63, 2009.

B. N. Hygelund, R. K. Ambers, C. P. Ambers, J. C. Sánchez-hernández, J. A. Molina et al., Tracing the source of mercury contamination in the Dorena Lake watershed, Environ. Geol, vol.40, pp.853-859, 2001.

J. E. Gray, P. M. Theodorakos, E. A. Bailey, and R. R. Turner, Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci. Total Environ, vol.260, pp.21-33, 2000.

J. S. Rieuwerts and M. Farago, Mercury concentrations in a historic lead mining and smelting town in the Czech Republic: A pilot study, Sci. Total Environ, vol.188, pp.167-171, 1996.

P. Higueras, R. Oyarzun, J. Lillo, J. C. Sánchez-hernández, J. A. Molina et al., The Almadén district (Spain): Anatomy of one of the world's largest Hgcontaminated sites, Sci. Total Environ, vol.356, pp.112-124, 2006.

A. Barbillon, C. Aubry, F. Nold, S. Besancon, and N. Manouchehri, Health Risks Assessment in Three Urban Farms of Paris Region for Different Scenarios of Urban Agricultural Users: A Case of Soil Trace Metals Contamination, Agric. Sci, vol.10, pp.352-370, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02077525

J. Kotnik, M. Horvat, E. Tessier, N. Orginc, M. Monperrus et al., Mercury speciation in surface and deep waters of the Mediterranean Sea, Mar. Chem, vol.107, pp.13-30, 2007.

G. M. Vandal, R. P. Mason, D. Mcknight, and W. Fitzgerald, Mercury speciation and distribution in a polar desert lake (Lake Hoare, Antarctica) and two glacial meltwater streams

, Sci. Total Environ, vol.213, pp.229-237, 1998.

S. S. Knight and C. M. Cooper, Insecticide and metal contamination of a mixed cover agricultural watershed, Water Sci. Technol, vol.33, pp.227-234, 1996.

C. M. Cooper and W. B. Gillespie, Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed, Environ. Pollut, vol.111, pp.67-74, 2001.

T. D. Jardine, I. A. Halliday, C. Howley, V. Sinnamon, and S. E. Bunn, Large scale surveys suggest limited mercury availability in tropical north Queensland (Australia), Sci. Total Environ, vol.416, pp.385-393, 2012.

C. H. Conaway, F. J. Black, P. Weiss-penzias, M. Gault-ringold, and A. R. Flegal, Mercury speciation in Pacific coastal rainwater, Atmos. Environ, vol.44, pp.1788-1797, 2010.

S. E. Rothenberg, X. Feng, B. Dong, L. Shang, R. Yin et al., Characterization of mercury species in brown and white rice, Oryza sativa L.)

, Environ. Pollut, vol.159, pp.1283-1289, 2011.

T. Fang, W. Lu, K. Cui, J. Li, K. Yang et al., Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Chemosphere, vol.218, pp.1122-1130, 2019.

G. Li, G. Liu, C. Zhou, C. L. Chou, L. Zheng et al., Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Environ. Monit. Assess, vol.184, pp.2763-2773, 2012.

N. T. Nguyen, I. V. Volkova, and V. I. Egorova, Distribution of Mercury in Water and Bottom Sediments of the Estuary Area of the Red River (Vietnam), IOP Conf. Ser. Earth Environ

. Sci, , vol.224, 2019.

R. Nguetseng, A. Fliedner, B. Knopf, B. Lebreton, M. Quack et al., Retrospective monitoring of mercury in fish from selected European freshwater and estuary sites
URL : https://hal.archives-ouvertes.fr/hal-01242664

, Chemosphere, vol.134, pp.427-434, 2015.

R. P. Mason, K. R. Rolfhus, and W. F. Fitzgerald, Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic, Water, Air, Soil Pollut, vol.80, pp.665-677, 1995.

F. J. Laurier, R. P. Mason, G. A. Gill, and L. Whalin, Mercury distributions in the North Pacific Ocean -20 Years of observations, Mar. Chem, vol.90, pp.3-19, 2004.

C. H. Lamborg, O. Yi?iterhan, W. F. Fitzgerald, P. H. Balcom, C. R. Hammerschmidt et al., Vertical distribution of mercury species at two sites in the Western Black Sea, Mar. Chem, vol.111, pp.77-89, 2008.

V. Zupo, G. Graber, S. Kamel, V. Plitcha, C. Granitzer et al.,

, Environ. Pollut, vol.255, p.112975, 2019.

P. Gilfriche, J. M. André, S. Gentes, M. Brachet, R. Lgeay et al., Risk perception and specific behaviors of anglers concerning mercury contamination of fish, Hum. Ecol. Risk Assess, vol.25, pp.1-14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02499919

Y. Karim and A. , Sources and Distribution of Mercury Residues in Environmental and Food Matrices of the Mekrou River Watershed in Kèrou, Kouandé and Péhunco in Republic of Benin, Am. J. Appl. Chem, vol.6, p.57, 2018.

S. Kola, L. W. Kanja, J. M. Mbaria, J. G. Maina, and M. O. Okumu, Levels of mercury in Nile tilapia (Oreochromis niloticus), water, and sediment in the Migori gold mining belt, Kenya, and the potential ramifications to human health. F1000 Research, vol.8, p.1244, 2019.

X. Xu and W. X. Wang, Mercury exposure and source tracking in distinct marine-caged fish farm in southern China, Environ. Pollut, vol.220, pp.1138-1146, 2017.

A. L. Marriott, T. J. Kelly, S. K. Sarkar, S. R. Chenery, D. Rakshit et al., Elemental composition of aquaculture fish from West Bengal, India: nutrition versus food safety, Environ. Geochem. Health, vol.8, 2019.

S. Suboti?, S. Spasi?, ?. Vi?nji?-jefti?, A. Hegedi?, J. Krpo-?etkovi? et al., Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia), Ecotoxicol. Environ. Saf, vol.98, pp.196-202, 2013.

T. I. Moiseenko and N. A. Gashkina, Bioaccumulation of mercury in fish as indicator of water pollution, Geochemistry Int, vol.54, pp.485-493, 2016.

P. Johansen, D. Muir, G. Asmund, and F. Riget, Human exposure to contaminants in the traditional Greenland diet, Sci. Total Environ, vol.331, pp.189-206, 2004.

M. Be?dowska and L. Falkowska, Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the southern Baltic, Water. Air. Soil Pollut, vol.227, pp.1-11, 2016.

J. Fort, T. Lacoue-labarthe, H. L. Nguyen, A. Boué, J. Spitz et al., Mercury in wintering seabirds, an aggravating factor to winter wrecks?, Sci. Total Environ, vol.448, p.454, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186129

M. L. Mallory, J. F. Provencher, G. J. Robertson, B. M. Braune, E. R. Holland et al., Mercury concentrations in blood, brain and muscle tissues of coastal and pelagic birds from northeastern Canada, Ecotoxicol. Environ. Saf, vol.157, pp.424-430, 2018.

D. J. Maclachlan, K. Budd, J. Connolly, J. Derrick, L. Penrose et al., Arsenic, cadmium, cobalt, copper, lead, mercury, molybdenum, selenium and zinc concentrations in liver, kidney and muscle in Australian sheep, J. Food Compos. Anal, vol.50, pp.97-107, 2016.

Z. Dobrza?ski, R. Ko?acz, S. Czaban, F. Bubel, M. Malczewski et al., Assessing mercury content in plant and animal raw materials in an area impacted by the copper industry, Polish J. Environ. Stud, vol.26, pp.577-583, 2017.

J. F. Risher, Concise International Chemical Assessment Document 50: Elemental mercurcy and inorganic mercury compounds: Human health aspects, IPCS Concise Int. Chem. Assess

. Doc, , 2003.

D. Mergler and J. Lebel, Les effets de l'exposition au methylmercure chez les adultes, 1985.

M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol, vol.7, pp.60-72, 2014.

A. C. Bosch, B. O'neill, G. O. Sigge, S. E. Kerwath, and L. C. Hoffman, Heavy metals in marine fish meat and consumer health: A review, J. Sci. Food Agric, vol.96, pp.32-48, 2016.

H. Lohren, L. Blagojevic, R. Fitkau, F. Ebert, S. Schildknecht et al., Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes, J. Trace Elem. Med. Biol, vol.32, pp.200-208, 2015.

S. Asano, K. Eto, E. Kurisaki, H. Gunji, K. Hiraiwa et al., Acute inorganic mercury vapor inhalation poisoning, Pathol. Int, vol.50, pp.169-174, 2000.

M. Falcy, D. Jargot, B. La-rocca, F. Pillière, S. Robert et al., Mercure et composés minéraux, 2014.

K. M. Rice, E. M. Walker, M. Wu, C. Gillette, and E. R. Blough, Environmental mercury and its toxic effects, J. Prev. Med. Public Heal, vol.47, pp.74-83, 2014.

V. Mudgal, N. Madaan, A. Mudgal, R. B. Singh, and S. Mishra, Effect of Toxic Metals on Human Health, Open Nutraceuticals J, vol.3, pp.94-99, 2014.

S. Al-sinani, A. Al-rawas, and A. Dhawan, Mercury as a cause of fulminant hepatic failure in a child: Case report and literature review, Clin. Res. Hepatol. Gastroenterol, vol.35, pp.580-582, 2011.

W. Health-organization, Guidelines for Drinking-water Quality, 4 th Edition, 2011.

, World Health Organization Regional Office for Europe, Air quality guidelines. Air Qual

. Guidel, , vol.3, pp.1-25, 2001.

, United States Environmental Protection Agency. Guidance For Implementing the, Methylmercury Water Quality Criterion. EPA, vol.823, 2001.

U. S. Agency, National Primary Driniking Water Regulations, 2009.

, Edition of the Drinking Water Standards and Health Advisories, 2018.

M. Aceto, The Use of ICP-MS in Food Traceability, Advances in Food Traceability Techniques and Technologies: Improving Quality Throughout the Food Chain, pp.137-164, 2016.

F. Caruso, S. Mantellato, M. Palacios, and R. J. Flatt, ICP-OES method for the characterization of cement pore solutions and their modification by polycarboxylate-based superplasticizers

, Cem. Concr. Res, vol.91, pp.52-60, 2017.

, Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, 2002.

X. Yuan, G. Yang, Y. Ding, X. Li, X. Zhan et al., An effective analytical system based on a pulsed direct current microplasma source for ultra-trace mercury determination using gold amalgamation cold vapor atomic emission spectrometry

, Spectrochim. Acta -Part B At. Spectrosc, vol.93, pp.1-7, 2014.

X. Jia, Y. Han, C. Wei, T. Duan, and H. Chen, Speciation of mercury in liquid cosmetic samples by ionic liquid based dispersive liquid-liquid microextraction combined with highperformance liquid chromatography-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom, vol.26, pp.1380-1386, 2011.

S. Ma, M. He, B. Chen, W. Deng, Q. Zheng et al., Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples, Talanta, vol.146, pp.93-99, 2016.

N. Panichev, M. M. Kalumba, and K. L. Mandiwana, Solid phase extraction of trace amount of mercury from natural waters on silver and gold nanoparticles, Anal. Chim. Acta, vol.813, pp.56-62, 2014.

X. Y. Jia, D. R. Gong, Y. Han, C. Wei, T. C. Duan et al., Fast speciation of mercury in seawater by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry after on-line cation exchange column preconcentration, Talanta, vol.88, pp.724-729, 2012.

H. Cheng, C. Wu, L. Shen, J. Liu, and Z. Xu, Online anion exchange column preconcentration and high performance liquid chromatographic separation with inductively coupled plasma mass spectrometry detection for mercury speciation analysis, Anal. Chim. Acta, vol.828, pp.9-16, 2014.

C. C. Brombach, B. Chen, W. T. Corns, J. Feldmann, and E. M. Krupp, Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry, Spectrochim. Acta -Part B At. Spectrosc, vol.105, pp.103-108, 2015.

K. P. Carter, A. M. Young, and A. E. Palmer, Fluorescent sensors for measuring metal ions in living systems, Chem. Rev, vol.114, pp.4564-4601, 2014.

C. Kaewtong, N. Niamsa, B. Wanno, N. Morakot, B. Pulpoka et al., Optical chemosensors for Hg 2+ from terthiophene appended rhodamine derivatives: FRET based molecular and in situ hybrid gold nanoparticle sensors, New J. Chem, vol.38, pp.3831-3839, 2014.

M. Kumar and P. Zhang, Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles, Biosens. Bioelectron, vol.25, pp.2431-2435, 2010.

M. Li, X. Zhou, W. Ding, S. Guo, and N. Wu, Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II), Biosens. Bioelectron, vol.41, pp.889-893, 2013.

S. E. Wang and S. Si, Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis, Anal. Methods, vol.5, pp.2947-2953, 2013.

R. Tabaraki and N. Sadeghinejad, Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples, Ecotoxicol. Environ. Saf, vol.153, pp.101-106, 2018.

Z. Liu, W. Jin, F. Wang, T. Li, J. Nie et al., Ratiometric fluorescent sensing of Pb 2+ and Hg 2+ with two types of carbon dot nanohybrids synthesized from the same biomass, Sensors Actuators, B Chem, vol.296, p.126698, 2019.

J. J. Zhang, F. F. Cheng, J. J. Li, J. J. Zhu, and Y. Lu, Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives, Nano Today, vol.11, pp.309-329, 2016.

Y. Li, Y. Chen, H. Yu, L. Tian, and Z. Wang, Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials, TrAC -Trends Anal. Chem, vol.98, pp.190-200, 2018.

A. A. Christus, A. Ravikumar, P. Panneerselvam, and K. Radhakrishnan, A novel Hg(II) sensor based on Fe 3 O 4 @ZnO nanocomposite as peroxidase mimics, Appl. Surf. Sci, vol.449, pp.669-676, 2018.

E. Priyadarshini and N. Pradhan, Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review, Sensors Actuators, B Chem, vol.238, pp.888-902, 2017.

G. Chen, Z. Guo, G. Zeng, and L. Tang, Fluorescent and colorimetric sensors for environmental mercury detection, Analyst, vol.140, pp.5400-5443, 2015.

K. Tian, G. Siegel, and A. Tiwari, A simple and selective colorimetric mercury (II) sensing system based on chitosan, vol.2, p.6

, Mater. Sci. Eng. C, vol.71, pp.195-199, 2017.

C. H. Chao, C. S. Wu, C. C. Huang, J. C. Liang, H. T. Wang et al., A rapid and portable sensor based on protein-modified gold nanoparticle probes and lateral flow assay for naked eye detection of mercury ion, Microelectron. Eng, vol.97, pp.294-296, 2012.

Y. Liu, G. Su, B. Zhang, G. Jiang, and B. Yan, Nanoparticle-based strategies for detection and remediation of environmental pollutants, Analyst, vol.136, pp.872-877, 2011.

N. Elahi, M. Kamali, and M. H. Baghersad, Recent biomedical applications of gold nanoparticles: A review, Talanta, vol.184, pp.537-556, 2018.

A. Devadiga, K. Vidya-shetty, and M. B. Saidutta, Highly stable silver nanoparticles synthesized using Terminalia catappa leaves as antibacterial agent and colorimetric mercury sensor, Mater. Lett, vol.207, pp.66-71, 2017.

A. Jeevika and D. R. Shankaran, Functionalized silver nanoparticles probe for visual colorimetric sensing of mercury, Mater. Res. Bull, vol.83, pp.48-55, 2016.

Z. Yan, M. F. Yuen, L. Hu, P. Sun, and C. S. Lee, Advances for the colorimetric detection of Hg 2+ in aqueous solution, RSC Adv, vol.4, pp.48373-48388, 2014.

Y. Tao, Y. Lin, Z. Huang, J. Ren, and X. Qu, Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury

, Talanta, vol.88, pp.290-294, 2012.

Y. Wang, F. Yang, and X. Yang, Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides, ACS Appl. Mater. Interfaces, vol.2, pp.339-342, 2010.

B. Roy, P. Bairi, and A. K. Nandi, Selective colorimetric sensing of mercury(ii) using turn offturn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium, Analyst, vol.136, pp.3605-3607, 2011.

R. G. Kempegowda and P. Malingappa, Covalent modification of glassy carbon spheres through ball milling under solvent free conditions: A novel electrochemical interface for mercury(II) quantification, Talanta, vol.126, pp.54-60, 2014.

K. Asadpour-zeynali and R. Amini, A novel voltammetric sensor for mercury(II) based on mercaptocarboxylic acid intercalated layered double hydroxide nanoparticles modified electrode, Sensors Actuators, B Chem, vol.246, pp.961-968, 2017.

M. A. Djebbi, Les Hydroxydes Doubles Lamellaires au coeur de la biotechnologie : évaluation des applications médicales et environnementales, 2017.

Y. Liao, Q. Li, N. Wang, and S. Shao, Development of a new electrochemical sensor for determination of Hg(II) based on Bis(indolyl)methane/Mesoporous carbon nanofiber/Nafion/glassy carbon electrode, Sensors Actuators, B Chem, vol.215, pp.592-597, 2015.

A. Shah, S. Sultan, A. Zahid, S. Aftab, J. Nisar et al., Highly sensitive and selective electrochemical sensor for the trace level detection of mercury and cadmium, Electrochim. Acta, vol.258, pp.1397-1403, 2017.

H. Xing, J. Xu, X. Zhu, X. Duan, L. Lu et al., A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg 2+ and Pb 2+, J. Electroanal. Chem, vol.782, pp.250-255, 2016.

D. L. Peng, H. F. Ji, X. D. Dong, J. F. Tian, M. H. Wang et al., Highly Sensitive Electrochemical Bioassay for Hg(II) Detection Based on Plasma-Polymerized Propargylamine and Three-Dimensional Reduced Graphene Oxide Nanocomposite. Plasma Chem. Plasma Process, vol.36, pp.1051-1065, 2016.

D. Wu, Q. Zhang, X. Chu, H. Wang, G. Shen et al., Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA, Biosens. Bioelectron, vol.25, pp.1025-1031, 2010.

Y. Zhang, M. Qi, and G. Liu, C-C Bonding of Graphene Oxide on 4-Aminophenyl Modified Gold Electrodes towards Simultaneous Detection of Heavy Metal Ions, Electroanalysis, vol.27, pp.1110-1118, 2015.

Z. Liu, E. Puumala, and A. Chen, Sensitive electrochemical detection of Hg(II) via a FeOOH modified nanoporous gold microelectrode, Sensors Actuators, B Chem, vol.287, pp.517-525, 2019.

M. A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M. D. Shirsat, and A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions, Electrochim. Acta, vol.259, pp.930-938, 2018.

A. Moutcine and A. Chtaini, Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode, Sens. Bio-Sensing Res, vol.17, pp.30-35, 2018.

O. Abollino, A. Giacomino, M. Malandrino, G. Piscionieri, and E. Mentasti, Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode, Electroanalysis, vol.20, pp.75-83, 2008.

X. H. Gao, W. Z. Wei, L. Yang, T. J. Yin, and Y. Wang, Simultaneous determination of lead, copper, and mercury free from macromolecule contaminants by square wave stripping voltammetry, Anal. Lett, vol.38, pp.2327-2343, 2005.

T. Z. Gong, D. Song, L. Zhang, and X. Hu, Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Au?Pt Inorgani?Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode, Anal. Chem, vol.82, pp.567-573, 2010.

M. P. Bui, J. Brockgreitens, S. Ahmed, and A. Abbas, Dual detection of nitrate and mercury in water using disposable electrochemical sensors, Biosens. Bioelectron, vol.85, pp.280-286, 2016.

Z. Li, X. Miao, K. Xing, X. Peng, A. Zhu et al., Ultrasensitive electrochemical sensor for Hg 2+ by using hybridization chain reaction coupled with Ag at Au core-shell nanoparticles, Biosens. Bioelectron, vol.80, pp.339-343, 2016.

M. Giannetto, G. Mori, F. Terzi, C. Zanardi, and R. Seeber, Composite PEDOT/Au Nanoparticles Modified Electrodes for Determination of Mercury at Trace Levels by Anodic Stripping Voltammetry, Electroanalysis, vol.23, pp.456-462, 2011.

H. Xu, L. Zeng, S. Xing, G. Shi, Y. Xian et al., Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II), Electrochem. commun, vol.10, pp.1839-1843, 2008.

X. C. Fu, J. Wu, L. Nie, C. G. Xie, J. H. Liu et al., Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury

, Chim. Acta, vol.720, pp.29-37, 2012.

N. Zhou, J. Li, H. Chen, C. Liao, and L. Chen, A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+, Analyst, vol.138, pp.1091-1097, 2013.

G. Bhanjana, N. Dilbaghi, V. Bhalla, K. H. Kim, and S. Kumar, Direct ultrasensitive redox sensing of mercury using a nanogold platform, J. Mol. Liq, vol.225, pp.598-605, 2017.

A. Safavi and E. Farjami, Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury

, Chim. Acta, vol.688, pp.43-48, 2011.

N. Ratner and D. Mandler, Electrochemical detection of low concentrations of mercury in water using gold nanoparticles, Anal. Chem, vol.87, pp.5148-5155, 2015.

I. T. Somé, A. K. Sakira, D. Mertens, S. N. Ronkart, and J. M. Kauffmann, Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode, Talanta, vol.152, pp.335-340, 2016.

T. Hezard, Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis, J. Electroanal. Chem, vol.664, pp.46-52, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651892

T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra et al., Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection
URL : https://hal.archives-ouvertes.fr/hal-02650902

, Electrochim. Acta, vol.73, pp.15-22, 2012.

E. Gervais, Y. Aceta, P. Gros, and D. Evrard, Study of an AuNPs functionalized electrode using different diazonium salts for the ultra-fast detection of Hg
URL : https://hal.archives-ouvertes.fr/hal-01692696

, Electrochim. Acta, vol.261, pp.346-355, 2018.

L. Callonnec, F. Nouveaux, and C. , Nouveaux développements dans la chimie des sels de diazonium en catalyse organométallique : catalyse hétérogène en milieux aqueux, 2014.

S. Baranton and D. Bélanger, In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface, Electrochim. Acta, vol.53, pp.6961-6967, 2008.

C. Lagrost, A. Mattiuzzi, P. Hapiot, and O. Reinaud, Fonctionnalisation moléculaire des surfaces par réduction de sels d' aryldiazonium, vol.33, 2016.

G. Liu, M. Chockalingham, S. M. Khor, A. L. Gui, J. Gooding et al., A comparative study of the modification of gold and glassy carbon surfaces with mixed layers of in situ generated aryl diazonium compounds, Electroanalysis, vol.22, pp.918-926, 2010.

M. Bouriga, M. M. Chehimi, C. Combellas, P. Decorse, F. Kanoufi et al., Sensitized photografting of diazonium salts by visible light, Chem. Mater, vol.25, pp.90-97, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01654441

Y. Pan, B. Tong, J. Shi, W. Zhao, J. Shen et al., Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and ruthenium(III) ions, J. Phys. Chem. C, vol.114, pp.8040-8047, 2010.

N. Karousis, S. P. Economopoulos, Y. Lizumi, T. Okazaki, Z. Liu et al., Microwave Assisted Covalent Functionalization of C60@ SWCNT Peapods, Chem. Commun, vol.46, pp.9110-9112, 2010.

J. Liu, M. R. Zubiri, B. Vigolo, M. Dossot, B. Humbert et al., Microwave-Assisted Functionalization of Single-Wall Carbon Nanotubes Through Diazonium, J. Nanosci. Nanotechnol, vol.7, pp.3519-3523, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01849011

S. A. Dahoumane, M. N. Nguyen, A. Thorel, J. P. Boudou, M. M. Chehimi et al., Protein-functionalized hairy diamond nanoparticles, Langmuir, vol.25, pp.9633-9638, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00523275

C. Mangeney, Z. Qin, S. A. Dahoumane, A. Adenier, . Herbst et al., Electroless ultrasonic functionalization of diamond nanoparticles using aryl diazonium salts, Diam. Relat. Mater, vol.17, pp.1881-1887, 2008.

J. L. Bahr and J. M. Tour, Highly functionalized carbon nanotubes using in situ generated diazonium compounds, Chem. Mater, vol.13, pp.3823-3824, 2001.

A. Adenier, N. Barré, E. Cabet-dliry, A. Chaussé, S. Griveau et al., Study of the spontaneous formation of organic layers on carbon and metal surfaces from diazonium salts, Surf. Sci, vol.600, pp.4801-4812, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00158280

A. Adenier, E. Cabet-dliry, . Chaussé, S. Griveau, F. Mercier et al., Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction, Chem. Matter, vol.3, pp.491-501, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00157436

C. Combellas, F. Kanoufi, J. Pinson, and F. I. Podvorica, Time-of-flight secondary ion mass spectroscopy characterization of the covalent bonding between a carbon surface and aryl groups, Langmuir, vol.21, pp.280-286, 2005.

D. Bélanger and J. Pinson, Electrografting: A powerful method for surface modification, Chem. Soc. Rev, vol.40, pp.3995-4048, 2011.

A. L. Gui, G. Liu, M. Chockalingam, G. Le-saux, E. Luais et al., A Comparative Study of Electrochemical Reduction of 4-Nitrophenyl Covalently Grafted on Gold and Carbon, Electroanalysis, vol.16, pp.1824-1830, 2010.

M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc, vol.114, pp.5883-5884, 1992.

P. Allongue, P. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, J. Am. Chem. Soc, vol.119, pp.201-207, 1992.

B. Ortiz, C. Saby, G. Y. Champagne, and D. Bélanger, Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media, J. Electroanal. Chem, vol.455, pp.75-81, 1998.

C. Henry-de-villeneuve, J. Pinson, M. C. Bernard, and P. Allongue, Electrochemical formation of close-packed phenyl layers on Si(111), J. Phys. Chem. B, vol.101, pp.2415-2420, 1997.

M. V. Raicopol, L. Brânzoi, M. Necula, and L. P. Ionita, Comparatibe studies on the redox reaction of Fe(CN6) 4-/3-at modified glassy carbon electrodes, Rev. Roum. Chim, vol.57, pp.807-814, 2012.

P. Abiman, G. G. Wildgoose, and R. G. Compton, A mechanistic investigation into the covalent chemical derivatisation of graphite and glassy carbon surfaces using aryldiazonium salts, J. Phy. Org. Chem, vol.21, pp.433-439, 2008.

S. Ranganathan and R. L. Mccreery, Electroanalytical Performance of Carbon Films with Near-Atomic Flatness, Anal. Chem, vol.73, pp.893-900, 2001.

P. A. Brooksby and A. J. Downard, Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions

, Langmuir, vol.20, pp.5038-5045, 2004.

M. A. Alonso-lomillo, O. Domínguez-renedo, A. Hernández-martín, and M. J. Arcos-martínez, Horseradish peroxidase covalent grafting onto screen-printed carbon electrodes for levetiracetam chronoamperometric determination, Anal. Biochem, vol.395, pp.86-90, 2009.

A. Grondein and D. Bélanger, Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations : Applicability of the grafted powder towards CO 2 capture, Fuel, vol.90, pp.2684-2693, 2011.

E. Coulon, J. Pinson, J. D. Bourzat, A. Commerçon, and J. P. Pulicani, Electrochemical attachment of organic groups to carbon felt surfaces, Langmuir, vol.17, pp.7102-7106, 2001.

P. Urchaga, M. Weissmann, T. Girardeau, and . Coutanceau, Improvement of the Platinum Nanoparticles -Carbon Substrate Interaction by Insertion of a Thiophenol Molecular Bridge
URL : https://hal.archives-ouvertes.fr/hal-01378695

, Langmuir, vol.25, pp.6543-6550, 2009.

J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, ,. R. Smalley et al., Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts : A Bucky Paper Electrode, J. Am. Chem. Soc, vol.123, pp.6536-6542, 2001.

M. Delamar, . G. Désarmot, O. Fagebaume, R. Hitmi, J. Pinson et al., Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, vol.35, pp.801-807, 1997.

J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts, Langmuir, vol.20, pp.11450-11456, 2004.

J. Haccoun, C. Vautrin-ul, A. Chaussé, and A. Adenier, Electrochemical grafting of organic coating onto gold surfaces: Influence of the electrochemical conditions on the grafting of nitrobenzene diazonium salt, Prog. Org. Coatings, vol.63, pp.18-24, 2008.

E. Ahlberg, B. Helgée, and V. D. , The Reaction of Aryl Radicals with Metallic Electrodes, Acta Chemica Scandinavica, vol.34, pp.181-186, 1980.

B. L. Hurley and R. L. Mccreery, Covalent Bonding of Organic Molecules to Cu and Al Alloy 2024 T3 Surfaces via Diazonium Ion Reduction, J. Electrochem. Soc, vol.151, pp.252-259, 2004.

P. Actis, G. Caulliez, G. Shul, M. Opallo, M. Mermoux et al., Functionalization of Glassy Carbon with Diazonium Salts in Ionic Liquids
URL : https://hal.archives-ouvertes.fr/hal-00386284

, Langmuir, vol.29, pp.6327-6333, 2008.

J. Ghilane, P. Martin, O. Fontaine, J. Lacroix, and H. Randriamahazaka, Electrochemistry Communications Modification of carbon electrode in ionic liquid through the reduction of phenyl diazonium salt, Electrochemistry Communications, vol.10, pp.1060-1063, 2008.

B. K. Price, J. L. Hudson, and J. M. Tour, Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids, J. Am. Chem. Soc, vol.127, pp.14867-14870, 2005.

G. Liu, J. Liu, T. Böcking, P. K. Eggers, and J. J. Gooding, The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer, Chem. Phys, vol.319, pp.136-146, 2005.

C. Louault, M. D'amours, and D. Bélanger, The electrochemical grafting of a mixture of substituted phenyl groups at a glassy carbon electrode surface, ChemPhysChem, vol.9, pp.1164-1170, 2008.

B. Desalegn, T. Brousse, and D. Be, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon, vol.92, pp.362-381, 2015.

A. Chausse, M. M. Chehimi, N. Karsi, J. Pinson, F. Pdvorica et al., The Electrochemical Reduction of Diazonium Salts on Iron Electrodes . The Formation of Covalently Bonded Organic Layers and Their Effect on Corrosion, Chem. Mater, vol.14, pp.392-400, 2002.

C. Bourdillon and M. Delamar, Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts, J. Electroanal. Chem, vol.336, pp.113-123, 1992.

A. Corlu and C. Guguen-guillouzo, Covalent immobilization of antibodies on electrochemically functionalized carbon surfaces, New. J. Chemistry, vol.7, pp.1228-1234, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00673085

S. M. Chergui, A. Ledebt, F. Mammeri, F. Herbst, B. Carbonnier et al., Hairy Carbon Nanotube @ Nano-Pd Heterostructures : Design , Characterization , and Application in Suzuki C -C Coupling Reaction, Langmuir, vol.26, pp.16115-16121, 2010.

C. P. Andrieux and J. Pinson, The Standard Redox Potential of the Phenyl Radical/Anion Couple, J. Am. Chem. Soc, vol.125, pp.14801-14806, 2003.

A. J. Downard and M. J. Prince, Barrier properties of organic monolayers on glassy carbon electrodes, Langmuir, vol.17, pp.5581-5586, 2001.

J. M. Noël, A. Latus, C. Lagrost, E. Volanschi, and P. Hapiot, Evidence for OH radical production during electrocatalysis of oxygen reduction on pt surfaces: Consequences and application, J. Am. Chem. Soc, vol.134, pp.2835-2841, 2012.

S. S. Yu, E. S. Tan, R. T. Jane, and A. J. Downard, An electrochemical and XPS study of reduction of nitrophenyl films covalently grafted to planar carbon surfaces, Langmuir, vol.23, pp.11074-11082, 2007.

C. Combellas, M. Delamar, F. Kanoufi, J. Pinson, and F. I. Podvorica, Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution. Application to the protection of iron against corrosion, Chem. Mater, vol.17, pp.3968-3975, 2005.

M. D'amours and D. Bélanger, Stability of Substituted Phenyl Groups Electrochemically Grafted at Carbon Electrode Surface, J. Phys. Chem. B, vol.107, pp.4811-4817, 2003.

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts, Chem. Mater, vol.19, pp.4570-4575, 2007.

J. K. Kariuki and M. T. Mcdermott, Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts, Langmuir, vol.17, pp.5947-5951, 2001.

G. K. Kiema, G. Fitzpatrick, and M. T. Mcdermott, Probing morphological and compositional variations of anodized carbon electrodes with tapping-mode scanning force microscopy, Anal. Chem, vol.71, pp.4306-4312, 1999.

C. Saby, B. Ortiz, G. Y. Champagne, and D. Bélanger, Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups, Langmuir, vol.13, pp.6805-6813, 2002.

M. Khoshroo and A. A. Rostami, EIS study of the redox reaction of Fe (CN)6 3-/4-at glassy carbon electrode via diazonium reduction in aqueous and acetonitrile solutions, J. Electroanal. Chem, vol.624, pp.205-210, 2008.

S. S. Yu and A. J. Downard, Dynamic Behavior of Organic Thin Films Attached to, Carbon Surfaces. e-Journal Surf. Sci. Nanotechnol, vol.3, pp.294-298, 2005.

P. A. Brooksby and A. J. Downard, Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions, Langmuir, vol.20, pp.5038-5045, 2004.

Y. R. Leroux, F. Hui, J. M. Noël, C. Roux, A. J. Downard et al., Design of robust binary film onto carbon surface using diazonium electrochemistry, Langmuir, vol.27, pp.11222-11228, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632547

T. Menanteau, E. Levillain, A. J. Downard, and T. Breton, Evidence of monolayer formation via diazonium grafting with a radical scavenger : electrochemical, AFM and XPS monitoring

, Phys. Chem. Chem. Phys, vol.17, pp.13137-13142, 2015.

A. J. Downard, Potential-dependence of self-limited films formed by reduction of aryldiazonium salts at glassy carbon electrodes, Langmuir, vol.16, pp.9680-9682, 2000.

A. Mesnage, X. Lefèvre, P. Jégou, G. Deniau, and S. Palacin, Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces, Langmuir, vol.28, pp.11767-78, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00960572

M. C. González, A. G. Orive, R. C. Salvarezza, and A. H. Creus, Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces, Phys. Chem. Chem. Phys, vol.18, pp.1953-1960, 2016.

J. M. Noël, B. Sjöberg, R. Marsac, D. Zigah, J. F. Bergamini et al., Flexible strategy for immobilizing redox-active compounds using in situ generation of diazonium salts. investigations of the blocking and catalytic properties of the layers, Langmuir, vol.25, pp.12742-12749, 2009.

J. M. Noël, D. Zigah, J. Simonet, and P. Hapiot, Synthesis and immobilization of Ag0 nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces, Langmuir, vol.26, pp.7638-7643, 2010.

M. C. González, A. G. Orive, R. C. Salvarezza, and A. H. Creus, Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces, Phys. Chem

, Chem. Phys, vol.18, pp.1953-1960, 2016.

R. L. Mccreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev, vol.108, pp.2646-2687, 2008.

F. Anariba, S. H. Duvall, and R. L. Mccreery, Mono-and Multilayer Formation by Diazonium Reduction on Carbon Surfaces Monitored with Atomic Force Microscopy " Scratching, Anal. Chem, vol.75, pp.3837-3844, 2003.

W. Richard, D. Evrard, B. Busson, C. Humbert, L. Dalstein et al., The reduction of 4-nitrobenzene diazonium electrografted layer: An electrochemical study coupled to in situ sum-frequency generation spectroscopy, Electrochim. Acta, vol.283, pp.1640-1648, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865382

H. Ma, L. Lee, P. A. Brooksby, S. A. Brown, S. J. Fraser et al., Scanning tunneling and atomic force microscopy evidence for covalent and noncovalent interactions between aryl films and highly ordered pyrolytic graphite, J. Phys. Chem. C, vol.118, pp.5820-5826, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01151716

J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko et al., Covalent modification of graphene and graphite using diazonium chemistry: Tunable grafting and nanomanipulation, ACS Nano, vol.9, pp.5520-5535, 2015.

J. Lyskawa and D. Bélanger, Direct modification of a gold electrode with aminophenyl groups by electrochemical reduction of in situ generated aminophenyl monodiazonium cations

, Chem. Mater, vol.18, pp.4755-4763, 2006.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev, vol.60, pp.1307-1315, 2008.

S. H. Yau, O. Varnavski, and T. Goodson, An ultrafast look at Au nanoclusters, Acc. Chem. Res, vol.46, pp.1506-1516, 2013.

S. H. Yau, O. Varnavski, J. D. Gilbertson, B. Chandler, G. Ramakrishna et al., Ultrafast optical study of small gold monolayer protected clusters: A closer look at emission

, J. Phys. Chem. C, vol.114, pp.15979-15985, 2010.

Y. C. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles: Preparation, properties, and applications in bionanotechnology, Nanoscale, vol.4, pp.1871-1880, 2012.

M. C. Daniel and D. A. , Gold nanoparticles: assembly, supramolecularchemistry, quantum-sizerelated properties, and applications toward, Chem. Rev, vol.104, pp.293-346, 2004.

M. S. El-deab and T. Ohsaka, An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes, Electrochem. commun, vol.4, pp.288-292, 2002.

O. Pluchery and M. C. , Nanoparticules D 'or Fonctionnalisées, Innov. / Nanosci. nanotechnologies, pp.1-22, 2011.

A. Mesbahi, A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer, Reports Pract. Oncol. Radiother, vol.15, pp.176-180, 2010.

V. Calugaru, N. Magné, J. Hérault, S. Bonvalot, and C. Le-tourneau, Nanoparticles and radiation therapy, Bull. Cancer, vol.102, pp.105-112, 2015.

A. Mezni, Synthèse et caractérisation de nanoparticules métalliques vers la nanomédecine, 2013.

C. M. Welch and R. G. Compton, The use of nanoparticles in electroanalysis: a review, Anal. Bioanal. Chem, vol.384, pp.601-619, 2006.

J. Neddersen, G. Chumanov, and T. M. Cotton, Laser ablation of metals: A new method for preparing SERS active colloids, Appl. Spectrosc, vol.47, pp.1959-1964, 1993.

F. Mafuné, J. Y. Kohno, Y. Takeda, and T. Kondow, Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control, J. Phys. Chem

S. Scaramuzza, M. Zerbetto, and V. Amendola, Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: Insights to improve size control and productivity, J. Phys. Chem. C, vol.120, pp.9453-9463, 2016.

J. Yu, J. Nan, and H. Zeng, Size control of nanoparticles by multiple-pulse laser ablation, Appl. Surf. Sci, vol.402, pp.330-335, 2017.

M. L. Faraday, Experimental relations of gold (and other metals) to light.-The bakerian lecture, Dublin Philos. Mag. J. Sci, vol.14, pp.512-539, 1857.

J. Turkevich, P. C. Stevenson, and J. H. , A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc, vol.11, pp.55-75, 1857.

. G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci, vol.241, p.20, 1973.

F. Douglas, . R. Ya?ez, J. Ros, D. Marín, A. La-escosura-mu?iz et al., Silver , gold and the corresponding core shell nanoparticles : synthesis and characterization, J. Nanopart

. Res, , pp.97-106, 2008.

P. Pimpang and S. Choopun, Monodispersity and stability of Gold nanoparticles stabilized by using polyvinyl alcohol, Chiang Mai J. Sci, vol.38, pp.31-38, 2011.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi et al., PEG-modified gold nanorods with a stealth character for in vivo applications, J. Control. Release, vol.114, pp.343-347, 2006.

F. Chen, G. Q. Xu, and T. S. Hor, Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion, Mater. Lett, vol.57, pp.3282-3286, 2003.

S. Aryal, R. B. Remant, N. Bhattarai, C. K. Kim, and H. Y. Kim, Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids, J. Colloid Interface Sci, vol.299, pp.191-197, 2006.

M. Giersig and P. Mulvaney, Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition, Langmuir, vol.9, pp.3408-3413, 1993.

U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani, and B. A. Chopade, Microbial synthesis of gold nanoparticles: Current status and future prospects, Adv. Colloid Interface Sci, vol.209, pp.40-48, 2014.

E. Braun, Y. Eichen, U. Sivan, and G. Ben-yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, vol.391, pp.775-778, 1998.

J. S. Sohn, Y. W. Kwon, J. Jin, J. Il, and B. W. , DNA-templated preparation of gold nanoparticles, Molecules, vol.16, pp.8143-8151, 2011.

P. Ravindra, Protein-mediated synthesis of gold nanoparticles, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.163, pp.93-98, 2009.

A. Bharde, A. Kulkarni, M. Rao, A. Prabhune, and M. Sastry, Bacterial enzyme mediated biosynthesis of gold nanoparticles, J. Nanosci. Nanotechnol, vol.7, pp.4369-4377, 2007.

N. Gupta, H. P. Singh, and R. K. Sharma, Single-pot synthesis: Plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride

, Colloids Surfaces A Physicochem. Eng. Asp, vol.367, pp.102-107, 2010.

S. E. Kleijn, S. C. Lai, M. T. Koper, and P. R. Unwin, Electrochemistry of nanoparticles. Angew. Chemie -Int. Ed, vol.53, pp.3558-3586, 2014.

U. S. Mohanty, Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Electrochem, vol.41, pp.257-270, 2011.

F. Mirkhalaf, K. Tammeveski, and D. J. Schiffrin, Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template, Phys. Chem. Chem. Phys, vol.11, pp.3463-3471, 2009.

C. J. Clukay, C. N. Grabill, M. A. Hettinger, A. Dutta, D. J. Freppon et al., Controlling formation of gold nanoparticles generated in situ at a polymeric surface, Appl. Surf. Sci, vol.292, pp.128-136, 2014.

M. O. Finot, G. D. Braybrook, and M. T. Mcdermott, Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes, J. Electroanal. Chem, vol.466, pp.234-241, 1999.

C. M. Welch, O. Nekrassova, X. Dai, M. E. Hyde, and R. G. Compton, Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes

, ChemPhysChem, vol.5, pp.1405-1410, 2004.

L. Agüí, J. Manso, P. Yáñez-sedeño, and J. M. Pingarrón, Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on nanocrystal gold-carbon paste electrodes, Sensors Actuators, B Chem, vol.113, pp.272-280, 2006.

G. Gotti, K. Fajerwerg, D. Evrard, and P. Gros, Electrodeposited gold nanoparticles on glassy carbon: Correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media, Electrochim. Acta, vol.128, pp.412-419, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00977362

E. Majid, S. Hrapovic, Y. Liu, K. B. Male, and J. H. Luong, Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis, Anal. Chem, vol.78, pp.762-769, 2006.

L. Laffont, T. Hezard, P. Gros, L. E. Heimbürger, J. E. Sonke et al., Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step, Talanta, vol.141, pp.26-32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01143054

H. Liu and R. M. Penner, Size-Selective Electrodeposition of Mesoscale Metal Particles in the Uncoupled Limit, J. Phys. Chem. B, vol.104, pp.9131-9139, 2000.

L. Komsiyska and G. Staikov, Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing, Electrochim. Acta, vol.54, pp.168-172, 2008.

Y. Ma, J. Di, X. Yan, M. Zhao, Z. Lu et al., Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application, Biosens. Bioelectron, vol.24, pp.1480-1483, 2009.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu et al., Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor, Electrochem. commun, vol.10, pp.673-676, 2008.

G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, Electrochemical nucleation. Part I. General considerations, J. Electroanal. Chem, vol.138, pp.225-239, 1982.

G. Gunawardena, G. Hills, and I. Montenegro, Electrochemical nucleation. Part II. The Electrodeposition of Silver on Vitreous Carbon, J. Electroanal. Chem, vol.138, pp.241-254, 1982.

A. P. O'mullane, S. J. Ippolito, Y. M. Sabri, V. Bansal, and S. K. Bhargava, Premonolayer oxidation of nanostructured gold: An important factor influencing electrocatalytic activity

, Langmuir, vol.25, pp.3845-3852, 2009.

E. Sheridan, J. Hjelm, and R. J. Forster, Electrodeposition of gold nanoparticles on fluorinedoped tin oxide : Control of particle density and size distribution

, Electroanalytical Chemistry, vol.608, pp.1-7, 2007.

Y. Hu, Y. Song, Y. Wang, and J. Di, Electrochemical synthesis of gold nanoparticles onto indium tin oxide glass and application in biosensors, Thin Solid Film.s, vol.519, pp.6605-6609, 2011.

M. S. El-deab, On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time, Electrochim. Acta, vol.54, pp.3720-3725, 2009.

Y. Wang, J. Deng, J. Di, and Y. Tu, Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor, Electrochem. commun, vol.11, pp.1034-1037, 2009.

R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc, vol.85, pp.3533-3539, 1963.

R. G. Pearson, Hard and soft acids and bases, HSAB, part 1: Fundamental principles, J. Chem. Educ, vol.45, p.581, 1968.

A. E. Williams-jones, R. J. Bowell, and A. A. Migdisov, Gold in solution, Elements, vol.5, pp.281-287, 2009.

W. Richard, D. Evrard, and P. Gros, Kinetic study of redox probes on glassy carbon electrode functionalized by 4-nitrobenzene diazonium, Int. J. Electrochem. Sci, vol.14, pp.453-469, 2019.

A. Barfidokht, S. Ciampi, E. Luais, N. Darwish, and J. J. Gooding, The Influence of Organic-Film Morphology on the Efficient Electron Transfer at Passivated Polymer-Modified Electrodes to which Nanoparticles are Attached, Chem. Phys. Chem, vol.14, pp.2190-2197, 2013.

S. Tanimoto and A. Ichimura, Discrimination of inner-and outer-sphere electrode reactions by cyclic voltammetry experiments, J. Chem. Educ, vol.90, pp.778-781, 2013.

A. Barfidokht, S. Ciampi, E. Luais, N. Darwish, and J. J. Gooding, Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles, Anal. Chem, vol.85, pp.1073-1080, 2013.

S. Schauff, M. Ciorca, A. Laforgue, and D. Bélanger, Electron transfer processes at arylmodified glassy carbon electrode, Electroanalysis, vol.21, pp.1499-1504, 2009.

P. Chen and R. L. Mccreery, Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification, Anal. Chem, vol.68, pp.3958-3965, 1996.

S. Baranton and D. Cations, Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated, J. Phys. Chem.B, vol.109, pp.24401-24410, 2005.

J. N. Chazalviel and P. Allongue, On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer, J. Am. Chem. Soc, vol.133, pp.762-764, 2011.

G. Gotti, Modification De Surfaces Électrochimiques Par Des Nanoparticules D'or Pour La Détection De Molécules Impliquées Dans Le Stress Oxydant, 2013.

Y. Wang, E. Laborda, A. Crossley, and R. G. Compton, Surface oxidation of gold nanoparticles 183 supported on a glassy carbon electrode in sulphuric acid medium: Contrasts with the behaviour of 'macro' gold, Phys. Chem. Chem. Phys, vol.15, pp.3133-3136, 2013.

S. G. Shackleford, C. Boxall, S. N. Port, and R. J. Taylor, An in situ electrochemical quartz crystal microbalance study of polycrystalline gold electrodes in nitric acid solution, J. Electroanal. Chem, pp.109-119, 2002.

H. Angerstein-kozlowska, B. E. Conway, A. Hamelin, and L. Stoicoviciu, Elementary steps of electrochemical oxidation of single-crystal planes of Au-I. Chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochim. Acta, vol.31, pp.1051-1061, 1986.

D. Kotnik, M. Novi?, W. R. Lacourse, and B. Pihlar, Cathodic re-activation of the gold electrode in pulsed electrochemical detection of carbohydrates, J. Electroanal. Chem, vol.663, pp.30-35, 2011.

P. Rodriguez, N. Garcia-araez, A. Koverga, S. Frank, and M. T. Koper, Co electroxidation on gold in alkaline media: A combined electrochemical, spectroscopic, and DFT study

, Langmuir, vol.26, pp.12425-12432, 2010.

D. Q. Hung, O. Nekrassova, and R. G. Compton, Analytical methods for inorganic arsenic in water: A review, Talanta, vol.64, pp.269-277, 2004.

M. S. El-deab, T. Sotomura, and T. Ohsaka, Oxygen reduction at electrochemically deposited crystallographically oriented Au(1 0 0)-like gold nanoparticles, Electrochem. commun, vol.7, pp.29-34, 2005.

M. S. El-deab, T. Sotomura, and T. Ohsaka, Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates, Electrochim. Acta, vol.52, pp.1792-1798, 2006.

A. C. Cruickshank and A. J. Downard, Electrochemical stability of citrate-capped gold nanoparticles electrostatically assembled on amine-modified glassy carbon

. Acta, , vol.54, pp.5566-5570, 2009.

J. T. Steven, V. B. Golovko, B. Johannessen, and A. T. Marshall, Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry

, Electrochim. Acta, vol.187, pp.593-604, 2016.

A. Zierhut, K. Leopold, L. Harwardt, P. Worsfold, and M. Schuster, Activated gold surfaces for the direct preconcentration of mercury species from natural waters, J. Anal. At. Spectrom, vol.24, pp.767-774, 2009.

E. Granado, E. Gervais, G. Gotti, S. Desclaux, M. Meireles et al., Mercury(II) Trace Detection Using a Glassy Carbon Electrode Functionalized by Chemically Prepared Gold Nanoparticles. Influence of Coating Process on Surface Reactivity and Analytical Performances, Int. J. Electrochem. Sci, vol.12, pp.6092-6107, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560915

C. Garnier, L. Lesven, G. Billon, A. Magnier, O. Mikkelsen et al., Voltammetric procedure for trace metal analysis in polluted natural waters using homemade bare gold-disk microelectrodes, Anal. Bioanal. Chem, vol.386, pp.313-323, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01096818

S. Daniele, C. Bragato, M. A. Baldo, J. Wang, and J. M. Lu, The use of a remote stripping sensor for the determination of copper and mercury in the Lagoon of Venice, Anal, vol.125, pp.731-735, 2000.

C. Ariño, N. Serrano, J. M. Díaz-cruz, and M. Esteban, Voltammetric determination of metal ions beyond mercury electrodes. A review, Anal. Chim. Acta, vol.990, pp.11-53, 2017.

Y. Lu, X. Liang, C. Niyungeko, J. Zhou, J. Xu et al., A review of the identification and detection of heavy metal ions in the environment by voltammetry, Talanta, vol.178, pp.324-338, 2018.

A. Widmann, . Van-den, and C. M. Berg, Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode, Electroanalysis, vol.17, pp.825-831, 2005.

B. Khadro, A. Sikora, A. S. Loir, A. Errachid, F. Garrelie et al., Electrochemical performances of B doped and undoped diamond-like carbon (DLC) films deposited by femtosecond pulsed laser ablation for heavy metal detection using square wave anodic stripping voltammetric (SWASV) technique, Sensors Actuators, B Chem, vol.155, pp.120-125, 2011.
URL : https://hal.archives-ouvertes.fr/ujm-00549680

P. Salaün, . Van-den, and C. M. Berg, Voltammetric detection of mercury and copper in seawater using a gold microwire electrode, Anal. Chem, vol.78, pp.5052-5060, 2006.

B. Petovar, K. Xhanari, and M. Fin?gar, A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis, Anal. Chim. Acta, vol.1004, pp.10-21, 2017.

N. Baig and M. Sajid, Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends Environ, Anal. Chem, vol.16, pp.1-15, 2017.

T. Hezard, L. Laffont, P. Gros, P. Behra, and D. Evrard, Hg(II) trace electrochemical detection on gold electrode: Evidence for chloride adsorption as the responsible for the broad baseline
URL : https://hal.archives-ouvertes.fr/hal-00815071

, J. Electroanal. Chem, vol.697, pp.28-31, 2013.

J. Barón-jaimez, M. R. Joya, J. Barba-ortega, A. D. Barrios, J. D. González et al., Anodic stripping voltammetry -ASV for determination of heavy metals, J. Phys. Conf. Ser, vol.466, p.12023, 2013.

Y. Bonfil, M. Brand, and E. Kirowa-eisner, Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode, Anal. Chim. Acta, vol.424, pp.65-76, 2000.

L. Sipos, the Reliable Determination of Mercury Traces in Sea, Anal. Chim. Acta, vol.115, pp.25-42, 1980.

C. M. Watson, D. J. Dwyer, J. C. Andle, A. E. Bruce, and M. R. Bruce, Stripping analyses of mercury using gold electrodes: Irreversible adsorption of mercury, Anal. Chem, vol.71, pp.3181-3186, 1999.

. Gervais, Design et optimisation d'une interface fonctionnalisée par des nanoparticules métalliques et de couches organiques électroformées pour la détection de métaux lourds à l'état de traces dans les eaux, 2017.

C. Schopf, A. Wahl, A. Martín, A. O'riordan, and D. Iacopino, Direct Observation of Mercury Amalgamation on Individual Gold Nanorods Using Spectroelectrochemistry, J. Phys. Chem. C, vol.120, pp.19295-19301, 2016.

C. Schopf, A. Martín, M. Schmidt, and D. Iacopino, Investigation of Au-Hg amalgam formation on substrate-immobilized individual Au nanorods, J. Mater. Chem. C, vol.3, pp.8865-8872, 2015.

S. F. Mertens, M. Gara, A. S. Sologubenko, J. Mayer, S. Szidat et al., Au@Hg nanoalloy formation through direct amalgamation: Structural, spectroscopic, and computational evidence for slow nanoscale diffusion

. Funct and . Mater, , vol.21, pp.3259-3267, 2011.

P. Gil, E. Ostapczuk, and P. , Selenium(IV), copper(II) and lead(II) at a gold film electrode in water samples, Anal. Chim

. Acta, , vol.293, pp.55-65, 1994.

, Elaboration d'un capteur électrochimique basé sur une interface mixte film de diazonium / nanoparticules d'or pour la détection des traces de mercure(II) dans les eaux naturelles

, Ayant la propriété de s'accumuler dans les organismes vivants, il est présent dans tous les éléments de la chaîne alimentaire. Il est à l'origine de nombreuses maladies et peut même entraîner la mort à hautes doses. Il est donc nécessaire d'assurer un suivi continu du niveau de pollution dans les eaux naturelles. Les techniques spectroscopiques classiques utilisées actuellement permettent de détecter le Hg(II) à des faibles concentrations mais elles sont souvent coûteuses et complexes, d'où le besoin de développer d'autres techniques plus simples pour un suivi en temps réel. Dans ce contexte, les capteurs électrochimiques se distinguent comme une excellente alternative, Le mercure est un métal toxique provenant des rejets industriels et des émissions naturelles

L. De, un capteur électrochimique basé sur la fonctionnalisation d'une électrode de carbone vitreux par des nanoparticules d'or (AuNPs) utilisées pour améliorer la sensibilité et la sélectivité du capteur. Les AuNPs ont été électrodéposées sur une électrode de carbone vitreux modifiée avec des couches organiques. Les interfaces mixtes ainsi obtenues ont été caractérisées par diverses méthodes électrochimiques et microscopiques. Après une étape d'activation électrochimique, les performances analytiques du capteur (stabilité, sensibilité, sélectivité) ont été évaluées par la

, Mots clefs : Nanoparticules d'or, Mercure, Sels de diazoniums, électrodépôt, activation, stabilité, sensibilité, sélectivité

, Classical Spectroscopic techniques are routinely used for Hg(II) determination. Although they offer good sensitivity and selectivity, they involve complex procedures and expensive material, which limit their use for on-site analysis. In this context, electrochemical sensors present excellent candidates for in situ Hg(II) trace analysis, taking in account their numerous advantages compared to spectroscopic techniques: easier handling, simple procedure, low energy consuming, low cost material and portability, Mercury (Hg) is highly toxic metal originating from natural sources and mainly from anthropogenic processes

. Hg, II) sensor based on the functionalization of a glassy carbon electrode with gold nanoparticles (AuNPs) and diazonium salts in order to enhance the sensor lifetime. The gold nanoparticles were directly electrodeposited on the glassy carbon electrode, previously functionalized by diazonium salts. The mixed interfaces were then characterized using different electrochemical and spectroscopic techniques. An activation step was finally performed prior to mercury detection. The analytical performances of the sensor (stability, sensitivity, selectivity) towards mercury detection were evaluated using different amounts of Hg

, Key words: Gold nanoparticles, Mercury, Diazonium salts, electrodeposition, activation, stability, sensitivity, selectivity