N. El-amine, A. Kechad, S. Jananji, and G. R. Hickson, Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring, The Journal of cell biology, vol.203, issue.3, pp.487-504, 2013.

P. Steigemann, Aurora B-mediated abscission checkpoint protects against tetraploidization, Cell, vol.136, issue.3, pp.473-484, 2009.

A. Echard, G. R. Hickson, E. Foley, &. O'farrell, and P. H. , Terminal Cytokinesis Events Uncovered after an RNAi Screen, Current biology : CB, vol.14, issue.18, pp.1685-1693, 2004.

M. A. Marchetti, Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells, Invest Ophthalmol Vis Sci, vol.46, issue.6, pp.2107-2112, 2005.

S. Fremont, Oxidation of F-actin controls the terminal steps of cytokinesis, Nat Commun, vol.8, p.14528, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492528

E. F. Crowell, A. L. Gaffuri, B. Gayraud-morel, S. Tajbakhsh, and A. Echard, Midbody remnant engulfment after cytokinesis abscission in mammalian cells, J Cell Sci, vol.127, issue.17, pp.3840-3851, 2014.

H. Wioland, ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends, Current biology : CB, vol.27, issue.13, pp.1956-1967, 2017.

J. A. Spudich and S. Watt, The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin, The Journal of biological chemistry, vol.246, issue.15, pp.4866-4871, 1971.

J. F. Casella, D. J. Maack, and S. Lin, Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments, The Journal of biological chemistry, vol.261, issue.23, pp.10915-10921, 1986.

R. Gieselmann, D. J. Kwiatkowski, P. A. Janmey, and W. Witke, Distinct biochemical characteristics of the two human profilin isoforms, Eur J Biochem, vol.229, issue.3, pp.621-628, 1995.

A. Jegou, Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin, PLoS biology, vol.9, issue.9, p.1001161, 2011.

R. A. Green, E. Paluch, and K. Oegema, Cytokinesis in Animal Cells. Annual review of cell and developmental biology, 2012.

P. P. D'avino, M. G. Giansanti, and M. Petronczki, Cytokinesis in animal cells, Cold Spring Harbor perspectives in biology, vol.7, issue.4, p.15834, 2015.

T. D. Pollard, Nine unanswered questions about cytokinesis, The Journal of cell biology, vol.216, issue.10, pp.3007-3016, 2017.

B. Mierzwa and D. W. Gerlich, Cytokinetic Abscission: Molecular Mechanisms and Temporal Control, Developmental cell, vol.31, issue.5, pp.525-538, 2014.

S. Fremont and A. Echard, Membrane Traffic in the Late Steps of Cytokinesis, Current biology : CB, vol.28, issue.8, pp.458-470, 2018.

L. K. Dionne, X. J. Wang, and R. Prekeris, Midbody: from cellular junk to regulator of cell polarity and cell fate, Current opinion in cell biology, vol.35, pp.51-58, 2015.

E. F. Crowell, A. L. Gaffuri, B. Gayraud-morel, S. Tajbakhsh, and A. Echard, Midbody remnant engulfment after cytokinesis abscission in mammalian cells, J Cell Sci, vol.127, issue.17, pp.3840-3851, 2014.

J. Carlton and J. Martin-serrano, Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery, Science, vol.316, issue.5833, pp.1908-1912, 2007.

E. Morita, Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis, The EMBO journal, vol.26, pp.4215-4227, 2007.

C. Stoten and J. G. Carlton, ESCRT-dependent control of membrane remodelling during cell division, 2017.

J. W. Connell, C. Lindon, J. P. Luzio, and E. Reid, Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion, Traffic, vol.10, issue.1, pp.42-56, 2009.

J. A. Schiel, Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission, J Cell Sci, vol.124, pp.1411-1424, 2011.

J. Lafaurie-janvore, ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge, Science, vol.339, issue.6127, pp.1625-1629, 2013.

C. Addi, J. Bai, and A. Echard, Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis, Current opinion in cell biology, vol.50, pp.27-34, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114062

S. J. Terry, F. Dona, P. Osenberg, and J. G. Carlton, Capping protein regulates actin dynamics during cytokinetic midbody maturation, Proceedings of the National Academy of Sciences of the United States of America, vol.115, issue.9, pp.2138-2143, 2018.

D. Dambournet, Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis, Nature cell biology, vol.13, issue.8, pp.981-988, 2011.

J. A. Schiel, FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis, Nature cell biology, vol.14, pp.1068-1078, 2012.

S. Fremont, Oxidation of F-actin controls the terminal steps of cytokinesis, Nat Commun, vol.8, p.14528, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492528

K. Klinkert and A. Echard, Rab35 GTPase: a central regulator of phosphoinositides and F-actin in endocytic recycling and beyond, Traffic, 2016.

, MICALs. Current biology : CB, vol.28, issue.9, pp.538-541, 2018.

S. Fremont, G. Romet-lemonne, A. Houdusse, and A. Echard, Emerging roles of MICAL family proteins -from actin oxidation to membrane trafficking during cytokinesis, J Cell Sci, vol.130, issue.9, pp.1509-1517, 2017.

B. Manta and V. N. Gladyshev, Regulated methionine oxidation by monooxygenases, Free radical biology & medicine, vol.109, pp.141-155, 2017.

S. S. Giridharan and S. Caplan, MICAL-Family Proteins: Complex Regulators of the Actin Cytoskeleton, Antioxid Redox Signal, 2013.

R. J. Hung, C. W. Pak, and J. R. Terman, Direct redox regulation of F-actin assembly and disassembly by Mical, Science, vol.334, issue.6063, pp.1710-1713, 2011.

B. C. Lee, MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation, Mol Cell, vol.51, issue.3, pp.397-404, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02929707

M. R. Lundquist, Redox modification of nuclear actin by MICAL-2 regulates SRF signaling, Cell, vol.156, issue.3, pp.563-576, 2014.

E. E. Grintsevich, Catastrophic disassembly of actin filaments via Micalmediated oxidation, Nat Commun, vol.8, issue.1, p.2183, 2017.

H. Wu, H. G. Yesilyurt, J. Yoon, and J. R. Terman, The MICALs are a Family of F-actin Dismantling Oxidoreductases Conserved from Drosophila to Humans, Scientific reports, vol.8, issue.1, p.937, 2018.

M. Mendoza, A mechanism for chromosome segregation sensing by the NoCut checkpoint, Nature cell biology, vol.11, issue.4, pp.477-483, 2009.

C. Norden, The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage, Cell, vol.125, issue.1, pp.85-98, 2006.

N. Amaral, The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress, Nature cell biology, vol.18, issue.5, pp.516-526, 2016.

A. Echard, G. R. Hickson, E. Foley, &. O'farrell, and P. H. , Terminal cytokinesis events uncovered after an RNAi screen, Current biology, vol.14, issue.18, pp.1685-1693, 2004.

U. S. Eggert, Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets, PLoS biology, vol.2, issue.12, p.379, 2004.

A. R. Skop, H. Liu, J. Yates, B. J. Meyer, and R. Heald, Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms, Science, vol.305, issue.5680, pp.61-66, 2004.

U. Euteneuer and J. R. Mcintosh, Polarity of midbody and phragmoplast microtubules, The Journal of Cell Biology, vol.87, issue.2, pp.509-515, 1980.

M. Glotzer, The 3Ms of central spindle assembly: microtubules, motors and MAPs, Nature reviews Molecular cell biology, vol.10, issue.1, p.9, 2009.

W. M. Bement, H. A. Benink, and G. Von-dassow, A microtubule-dependent zone of active RhoA during cleavage plane specification, J Cell Biol, vol.170, issue.1, pp.91-101, 2005.

Ö. Yüce, A. Piekny, and M. Glotzer, An ECT2-centralspindlin complex regulates the localization and function of RhoA, The Journal of cell biology, vol.170, issue.4, pp.571-582, 2005.

J. Pines, Mitosis: a matter of getting rid of the right protein at the right time, Trends in cell biology, vol.16, issue.1, pp.55-63, 2006.

J. P. Fededa and D. W. Gerlich, Molecular control of animal cell cytokinesis, Nature cell biology, vol.14, issue.5, p.440, 2012.

L. Christ, C. Raiborg, E. M. Wenzel, C. Campsteijn, and H. Stenmark, Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery, Trends in biochemical sciences, vol.42, issue.1, pp.42-56, 2017.

B. Mierzwa and D. W. Gerlich, Cytokinetic abscission: molecular mechanisms and temporal control, Developmental cell, vol.31, issue.5, pp.525-538, 2014.

C. Stoten and J. G. Carlton, ESCRT-dependent control of membrane remodelling during cell division, Seminars in cell & developmental biology, pp.50-65, 2018.

E. F. Crowell, A. Gaffuri, B. Gayraud-morel, S. Tajbakhsh, and A. Echard, Engulfment of the midbody remnant after cytokinesis in mammalian cells, J Cell Sci, vol.127, issue.17, pp.3840-3851, 2014.

W. Jiang, PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis, Molecular cell, vol.2, issue.6, pp.877-885, 1998.

P. Bieling, I. A. Telley, and T. Surrey, A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps, Cell, vol.142, issue.3, pp.420-432, 2010.

R. Subramanian, Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein, Cell, vol.142, issue.3, pp.433-443, 2010.

M. Mishima, S. Kaitna, and M. Glotzer, Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity, Developmental cell, vol.2, issue.1, pp.41-54, 2002.

V. Pavicic-kaltenbrunner, M. Mishima, and M. Glotzer, Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex, Molecular biology of the cell, vol.18, issue.12, pp.4992-5003, 2007.

M. Mishima, V. Pavicic, U. Grüneberg, E. A. Nigg, and M. Glotzer, Cell cycle regulation of central spindle assembly, Nature, vol.430, issue.7002, p.908, 2004.

M. E. Douglas, T. Davies, N. Joseph, and M. Mishima, Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis, Current biology, vol.20, issue.10, pp.927-933, 2010.

M. E. Burkard, Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells, PLoS biology, vol.7, issue.5, p.1000111, 2009.

M. Carmena, M. Wheelock, H. Funabiki, and W. C. Earnshaw, The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis, Nature reviews Molecular cell biology, vol.13, issue.12, p.789, 2012.

S. Hümmer and T. U. Mayer, Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex, Current biology, vol.19, issue.7, pp.607-612, 2009.

A. Echard, Interaction of a Golgi-associated kinesin-like protein with Rab6, Science, vol.279, issue.5350, pp.580-585, 1998.

R. N. Bastos, Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A, J Cell Biol, vol.202, issue.4, pp.605-621, 2013.

U. Gruneberg, R. Neef, R. Honda, E. A. Nigg, and F. A. Barr, Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2, The Journal of cell biology, vol.166, issue.2, pp.167-172, 2004.

Y. Nishimura and S. Yonemura, Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis, Journal of cell science, vol.119, issue.1, pp.104-114, 2006.

F. A. Barr and U. Gruneberg, Cytokinesis: placing and making the final cut, Cell, vol.131, issue.5, pp.847-860, 2007.

D. H. Castrillon and S. A. Wasserman, Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene, Development, vol.120, issue.12, pp.3367-3377, 1994.

A. F. Severson, D. L. Baillie, and B. Bowerman, A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans, Current biology, vol.12, issue.24, pp.2066-2075, 2002.

S. Watanabe, ) mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells, Molecular biology of the cell, vol.19, issue.5, pp.2328-2338, 2008.

F. Matsumura, Regulation of myosin II during cytokinesis in higher eukaryotes, Trends in cell biology, vol.15, issue.7, pp.371-377, 2005.

P. P. D'avino, M. G. Giansanti, and M. Petronczki, Cytokinesis in animal cells, Cold Spring Harbor perspectives in biology, vol.7, issue.4, p.15834, 2015.

P. P. D'avino, How to scaffold the contractile ring for a safe cytokinesis-lessons from Anillin-related proteins, Journal of cell science, vol.122, issue.8, pp.1071-1079, 2009.

U. S. Eggert and T. J. Mitchison, Animal cytokinesis: from parts list to mechanisms, Field CM, vol.75, pp.543-566, 2006.

A. J. Piekny and M. Glotzer, Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis, Current biology, vol.18, issue.1, pp.30-36, 2008.

R. A. Green, E. Paluch, and K. Oegema, Cytokinesis in animal cells, Annual review of cell and developmental biology, vol.28, pp.29-58, 2012.

O. Gershony, T. Pe'er, N. , M. , E. N. Tzur et al., Cytokinetic abscission is an acute G1 event, Cell cycle, vol.13, issue.21, pp.3436-3441, 2014.

J. Mathieu, Aurora B and cyclin B have opposite effects on the timing of cytokinesis abscission in Drosophila germ cells and in vertebrate somatic cells, Developmental cell, vol.26, issue.3, pp.250-265, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02119430

S. Frémont and A. Echard, Membrane traffic in the late steps of cytokinesis, Current Biology, vol.28, issue.8, pp.458-470, 2018.

C. Addi, J. Bai, and A. Echard, Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis, Current opinion in cell biology, vol.50, pp.27-34, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114062

J. Guizetti, Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments, Science, vol.331, issue.6024, pp.1616-1620, 2011.

J. Mullins and J. Biesele, Cytokinetic activities in a human cell line: the midbody and intracellular bridge, Tissue and cell, vol.5, issue.1, pp.47-61, 1973.

N. Jouvenet, M. Zhadina, P. D. Bieniasz, and S. M. Simon, Dynamics of ESCRT protein recruitment during retroviral assembly, Nature cell biology, vol.13, issue.4, p.394, 2011.

J. Hurley and P. I. Hanson, Membrane budding and scission by the ESCRT machinery: it's all in the neck, Nature reviews Molecular cell biology, vol.11, issue.8, p.556, 2010.

A. J. Jimenez, ESCRT machinery is required for plasma membrane repair, Science, vol.343, issue.6174, p.1247136, 2014.

J. Carlton and J. Martin-serrano, Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery, Science, vol.316, issue.5833, pp.1908-1912, 2007.

N. Elia, R. Sougrat, T. A. Spurlin, J. H. Hurley, and J. Lippincott-schwartz, Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission, Proceedings of the National Academy of Sciences, vol.108, issue.12, pp.4846-4851, 2011.

B. E. Mierzwa, Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis, Nature cell biology, vol.19, issue.7, p.787, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01653774

E. Morita, Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis, The EMBO journal, vol.26, pp.4215-4227, 2007.

W. M. Henne, N. J. Buchkovich, and S. D. Emr, The ESCRT pathway, Developmental cell, vol.21, issue.1, pp.77-91, 2011.

E. Morita, Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division, The FEBS journal, vol.279, issue.8, pp.1399-1406, 2012.

S. Frémont, Oxidation of F-actin controls the terminal steps of cytokinesis, Nature communications, vol.8, p.14528, 2017.

J. Lafaurie-janvore, ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge, Science, vol.339, issue.6127, pp.1625-1629, 2013.

M. J. Renshaw, J. Liu, B. D. Lavoie, and A. Wilde, Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site, Open biology, vol.4, issue.1, p.130190, 2014.

I. Goliand, Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM, Cell reports, vol.24, issue.7, pp.1756-1764, 2018.

J. Schöneberg, I. Lee, J. H. Iwasa, and J. H. Hurley, Reverse-topology membrane scission by the ESCRT proteins, Nature reviews Molecular cell biology, vol.18, issue.1, p.5, 2017.

N. Elia, G. Fabrikant, M. M. Kozlov, and J. Lippincott-schwartz, Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling, Biophysical journal, vol.102, issue.10, pp.2309-2320, 2012.

R. Bastos and F. A. Barr, Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission, The Journal of cell biology, vol.191, issue.4, pp.751-760, 2010.

M. Fabbro, Cdk1/Erk2-and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis, Developmental cell, vol.9, issue.4, pp.477-488, 2005.

I. Martinez-garay, A. Rustom, H. Gerdes, and K. Kutsche, The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody, Genomics, vol.87, issue.2, pp.243-253, 2006.

. Zhao-w-m and A. Seki, Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis, Molecular biology of the cell, vol.17, issue.9, pp.3881-3896, 2006.

H. H. Lee, N. Elia, R. Ghirlando, J. Lippincott-schwartz, and J. H. Hurley, Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55, Science, vol.322, issue.5901, pp.576-580, 2008.

L. Christ, ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission, J Cell Biol, vol.212, issue.5, pp.499-513, 2016.

. Foe and G. Ve-&-von-dassow, Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation, The Journal of cell biology, vol.183, issue.3, pp.457-470, 2008.

G. Piperno, M. Ledizet, and X. Chang, Microtubules containing acetylated alphatubulin in mammalian cells in culture, The Journal of cell biology, vol.104, issue.2, pp.289-302, 1987.

J. Rosa, P. Canovas, A. Islam, D. C. Altieri, and S. J. Doxsey, Survivin modulates microtubule dynamics and nucleation throughout the cell cycle, Molecular biology of the cell, vol.17, issue.3, pp.1483-1493, 2006.

J. A. Schiel, Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission, J Cell Sci, vol.124, issue.9, pp.1411-1424, 2011.

J. W. Connell, C. Lindon, J. P. Luzio, and E. Reid, Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion, Traffic, vol.10, issue.1, pp.42-56, 2009.

D. Yang, Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B, Nature structural & molecular biology, vol.15, issue.12, p.1278, 2008.

M. Vietri, Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing, Nature, vol.522, issue.7555, p.231, 2015.

A. T. Saurin, The regulated assembly of a PKC? complex controls the completion of cytokinesis, nature cell biology, vol.10, issue.8, p.891, 2008.

J. A. Schiel, FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis, Nature cell biology, vol.14, issue.10, p.1068, 2012.

D. Dambournet, Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis, Nature cell biology, vol.13, issue.8, p.981, 2011.

S. J. Terry, F. Donà, P. Osenberg, and J. G. Carlton, Capping protein regulates actin dynamics during cytokinetic midbody maturation, Proceedings of the National Academy of Sciences, vol.115, issue.9, pp.2138-2143, 2018.

A. Echard, Connecting membrane traffic to ESCRT and the final cut, Nature cell biology, vol.14, issue.10, p.983, 2012.

C. Cauvin, Rab35 GTPase triggers switch-like recruitment of the Lowe syndrome lipid phosphatase OCRL on newborn endosomes, Current Biology, vol.26, issue.1, pp.120-128, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02431336

C. Cauvin and A. Echard, Phosphoinositides: Lipids with informative heads and mastermind functions in cell division, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, vol.1851, issue.6, pp.832-843, 2015.

A. Echard, Phosphoinositides and cytokinesis: the "PIP" of the iceberg, Cytoskeleton, vol.69, issue.11, pp.893-912, 2012.

R. Hung, C. W. Pak, and J. R. Terman, Direct redox regulation of F-actin assembly and disassembly by Mical, Science, vol.334, issue.6063, pp.1710-1713, 2011.

S. Frémont, G. Romet-lemonne, A. Houdusse, and A. Echard, Emerging roles of MICAL family proteins-From actin oxidation to membrane trafficking during cytokinesis, J Cell Sci, vol.130, issue.9, pp.1509-1517, 2017.

T. D. Pollard, Actin and actin-binding proteins, Cold Spring Harbor perspectives in biology, vol.8, issue.8, p.18226, 2016.

S. Varland, J. Vandekerckhove, and A. Drazic, Actin post-translational modifications: the cinderella of cytoskeletal control, Trends in biochemical sciences, 2019.

J. R. Terman and A. Kashina, Post-translational modification and regulation of actin, Current opinion in cell biology, vol.25, issue.1, pp.30-38, 2013.

R. Hung, C. S. Spaeth, H. G. Yesilyurt, and J. R. Terman, SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics, Nature cell biology, vol.15, issue.12, p.1445, 2013.

B. C. Lee, MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation, Molecular cell, vol.51, issue.3, pp.397-404, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02929707

T. Suzuki, MICAL, a novel CasL interacting molecule, associates with vimentin, Journal of Biological Chemistry, vol.277, issue.17, pp.14933-14941, 2002.

H. Kim and V. N. Gladyshev, Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases, Molecular biology of the cell, vol.15, issue.3, pp.1055-1064, 2004.

J. R. Terman, T. Mao, R. J. Pasterkamp, H. Yu, and A. L. Kolodkin, MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion, Cell, vol.109, issue.7, pp.887-900, 2002.

J. Fischer, T. Weide, and A. Barnekow, The MICAL proteins and rab1: a possible link to the cytoskeleton?, Biochemical and biophysical research communications, vol.328, issue.2, pp.415-423, 2005.

H. Wu, H. G. Yesilyurt, J. Yoon, and J. R. Terman, The MICALs are a family of F-actin dismantling oxidoreductases conserved from Drosophila to humans, Scientific reports, vol.8, issue.1, p.937, 2018.

H. Nakatsuji, N. Nishimura, R. Yamamura, H. Kanayama, and T. Sasaki, Involvement of actinin-4 in the recruitment of JRAB/MICAL-L2 to cell-cell junctions and the formation of functional tight junctions, Molecular and cellular biology, vol.28, issue.10, pp.3324-3335, 2008.

, MICALs. Current Biology, vol.28, issue.9, pp.538-541, 2018.

C. Siebold, High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16836-16841, 2005.

M. Nadella, M. A. Bianchet, S. B. Gabelli, J. Barrila, and L. M. Amzel, Structure and activity of the axon guidance protein MICAL, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16830-16835, 2005.

S. Giridharan, B. Cai, N. Naslavsky, and S. Caplan, Trafficking cascades mediated by Rab35 and its membrane hub effector, MICAL-L1, Communicative & integrative biology, vol.5, issue.4, pp.384-387, 2012.

C. Wilson, J. R. Terman, C. González-billault, and G. Ahmed, Actin filaments-a target for redox regulation, Cytoskeleton, vol.73, issue.10, pp.577-595, 2016.

A. Rai, bMERB domains are bivalent Rab8 family effectors evolved by gene duplication, Elife, vol.5, p.18675, 2016.

M. R. Lundquist, Redox modification of nuclear actin by MICAL-2 regulates SRF signaling, Cell, vol.156, issue.3, pp.563-576, 2014.

R. Hung, Mical links semaphorins to F-actin disassembly, Nature, vol.463, issue.7282, p.823, 2010.

S. Ashida, Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression, Clinical cancer research, vol.12, issue.9, pp.2767-2773, 2006.

R. Loria, Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells, Oncotarget, vol.6, issue.5, p.2779, 2015.

Y. Zhou, MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis, Molecular and cellular biology, vol.31, issue.17, pp.3603-3615, 2011.

P. K. Aggarwal, Semaphorin3a promotes advanced diabetic nephropathy, Diabetes, vol.64, issue.5, pp.1743-1759, 2015.

S. Giridharan, J. L. Rohn, N. Naslavsky, and S. Caplan, Differential regulation of actin microfilaments by human MICAL proteins, J Cell Sci, vol.125, issue.3, pp.614-624, 2012.

R. Bachmann-gagescu, The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking, PLoS genetics, vol.11, issue.10, p.1005575, 2015.

I. Grigoriev, Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers, Current Biology, vol.21, issue.11, pp.967-974, 2011.

J. Luo, Expression pattern of Mical-1 in the temporal neocortex of patients with intractable temporal epilepsy and pilocarpine -induced rat model, Synapse, vol.65, issue.11, pp.1213-1221, 2011.

D. Beuchle, H. Schwarz, M. Langegger, I. Koch, and H. Aberle, Drosophila MICAL regulates myofilament organization and synaptic structure, Mechanisms of development, vol.124, issue.5, pp.390-406, 2007.

B. O. Orr, R. D. Fetter, and G. W. Davis, Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity, Nature, vol.550, issue.7674, p.109, 2017.

E. F. Schmidt, S. Shim, and S. M. Strittmatter, Release of MICAL autoinhibition by semaphorin-plexin signaling promotes interaction with collapsin response mediator protein, Journal of Neuroscience, vol.28, issue.9, pp.2287-2297, 2008.

W. Deng, MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells, BMC cancer, vol.16, issue.1, p.489, 2016.

L. J. Cole, D. L. Gatti, B. Entsch, and D. P. Ballou, Removal of a methyl group causes global changes in p-hydroxybenzoate hydroxylase, Biochemistry, vol.44, issue.22, pp.8047-8058, 2005.

A. Morinaka, Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse, Sci. Signal, vol.4, issue.170, pp.26-26, 2011.

M. Fedorova, T. Todorovsky, N. Kuleva, and R. Hoffmann, Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress, Proteomics, vol.10, issue.14, pp.2692-2700, 2010.

A. Milzani, The oxidation produced by hydrogen peroxide on Ca-ATP-Gactin, Protein Science, vol.9, issue.9, pp.1774-1782, 2000.

T. Vitali, E. Maffioli, G. Tedeschi, and M. A. Vanoni, Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains, Archives of biochemistry and biophysics, vol.593, pp.24-37, 2016.

E. E. Grintsevich, Catastrophic disassembly of actin filaments via Micalmediated oxidation, Nature communications, vol.8, issue.1, p.2183, 2017.

E. E. Grintsevich, F-actin dismantling through a redox-driven synergy between Mical and cofilin, Nature cell biology, vol.18, issue.8, p.876, 2016.

A. Esposito, Human MICAL1: Activation by the small GTPase Rab8 and small-angle X-ray scattering studies on the oligomerization state of MICAL1 and its complex with Rab8, Protein Science, vol.28, issue.1, pp.150-166, 2019.

Q. Liu, MICAL3 flavoprotein monooxygenase forms a complex with centralspindlin and regulates cytokinesis, Journal of Biological Chemistry, vol.291, issue.39, pp.20617-20629, 2016.

J. B. Reinecke, D. Katafiasz, N. Naslavsky, and S. Caplan, Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis, Traffic, vol.16, issue.1, pp.48-67, 2015.

A. Kaplan and O. Reiner, Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein, J Cell Sci, vol.124, issue.23, pp.3989-4000, 2011.

C. Chao, Y. Ma, and E. R. Stadtman, Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.2969-2974, 1997.

S. Fourquet, M. Huang, D. 'autreaux, B. Toledano, and M. B. , The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling, Antioxidants & redox signaling, vol.10, issue.9, pp.1565-1576, 2008.

E. Stadtman and R. Levine, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino acids, vol.25, issue.3-4, pp.207-218, 2003.

E. R. Stadtman, H. Van-remmen, A. Richardson, N. B. Wehr, and R. L. Levine, Methionine oxidation and aging, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1703, issue.2, pp.135-140, 2005.

A. Kaya, B. C. Lee, and V. N. Gladyshev, Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1, Antioxidants & redox signaling, vol.23, issue.10, pp.814-822, 2015.

J. R. Erickson, A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation, Cell, vol.133, issue.3, pp.462-474, 2008.

J. C. Lim, G. Kim, and R. L. Levine, Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A. Free Radical, Biology and Medicine, vol.61, pp.257-264, 2013.

H. Kim and V. N. Gladyshev, Different catalytic mechanisms in mammalian selenocysteine-and cysteine-containing methionine-R-sulfoxide reductases, PLoS biology, vol.3, issue.12, p.375, 2005.

F. L. Aachmann, Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2, Proteins: Structure, Function, and Bioinformatics, vol.79, issue.11, pp.3123-3131, 2011.

Y. Fukasawa, MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites, Molecular & Cellular Proteomics, vol.14, issue.4, pp.1113-1126, 2015.

Z. M. Ahmed, Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74, The American Journal of Human Genetics, vol.88, issue.1, pp.19-29, 2011.

G. Kwak, J. Kim, and H. Kim, Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae, BMB reports, vol.42, issue.2, pp.113-118, 2009.

F. L. Aachmann, Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis, Journal of Biological Chemistry, vol.285, issue.43, pp.33315-33323, 2010.

D. E. Fomenko, MsrB1 (Methionine-R-sulfoxide Reductase 1) Knock-out Mice ROLES OF MsrB1 IN REDOX REGULATION AND IDENTIFICATION OF A NOVEL SELENOPROTEIN FORM, Journal of Biological Chemistry, vol.284, issue.9, pp.5986-5993, 2009.

A. Drazic, Methionine oxidation activates a transcription factor in response to oxidative stress, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9493-9498, 2013.

L. C. Santarelli, R. Wassef, S. H. Heinemann, and T. Hoshi, Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large -conductance Ca2+ -activated K+ channels, The Journal of physiology, vol.571, issue.2, pp.329-348, 2006.

Y. Xiong, High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase, Biochemistry, vol.45, issue.49, pp.14642-14654, 2006.

J. Yoon, S. B. Kim, G. Ahmed, J. W. Shay, and J. R. Terman, Amplification of F-actin disassembly and cellular repulsion by growth factor signaling, Developmental cell, vol.42, issue.2, pp.117-129, 2017.

J. Yoon, R. Hung, and J. R. Terman, Characterizing F-actin disassembly induced by the semaphorin-signaling component MICAL, Semaphorin Signaling, pp.119-128, 2017.

H. Maiato, O. Afonso, and I. Matos, A chromosome separation checkpoint: A midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition, Bioessays, vol.37, issue.3, pp.257-266, 2015.

C. Norden, The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage, Cell, vol.125, issue.1, pp.85-98, 2006.

M. Mendoza, A mechanism for chromosome segregation sensing by the NoCut checkpoint, Nature cell biology, vol.11, issue.4, p.477, 2009.

P. Steigemann, Aurora B-mediated abscission checkpoint protects against tetraploidization, Cell, vol.136, issue.3, pp.473-484, 2009.

V. Nähse, L. Christ, H. Stenmark, and C. Campsteijn, The abscission checkpoint: making it to the final cut, Trends in cell biology, vol.27, issue.1, pp.1-11, 2017.

M. Agromayor and J. Martin-serrano, Knowing when to cut and run: mechanisms that control cytokinetic abscission, Trends in cell biology, vol.23, issue.9, pp.433-441, 2013.

, Cytokinesis defects and cancer, Nature Reviews Cancer, p.1, 2018.

E. Petsalaki and G. Zachos, Building bridges between chromosomes: novel insights into the abscission checkpoint, Cellular and Molecular Life Sciences, pp.1-17, 2019.

D. R. Mackay, M. Makise, and K. S. Ullman, Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint, The Journal of cell biology, vol.191, issue.5, pp.923-931, 2010.

A. Caballe, ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins, Elife, vol.4, p.6547, 2015.

R. Bhowmick, The RIF1-PP1 Axis Controls Abscission Timing in Human Cells, Current Biology, vol.29, issue.7, pp.1232-1242, 1235.

J. G. Carlton, A. Caballe, M. Agromayor, M. Kloc, and J. Martin-serrano, ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C, Science, vol.336, issue.6078, pp.220-225, 2012.

L. Capalbo, The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis, Open biology, vol.2, issue.5, p.120070, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02406820

S. B. Thoresen, ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4, Nature cell biology, vol.16, issue.6, p.547, 2014.

E. Petsalaki and G. Zachos, Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint, Nature communications, vol.7, p.11451, 2016.

D. R. Mackay and K. S. Ullman, ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission, Molecular biology of the cell, vol.26, issue.12, pp.2217-2226, 2015.

M. Dandoulaki, E. Petsalaki, D. Sumpton, S. Zanivan, and G. Zachos, Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis, J Cell Biol, vol.217, issue.9, pp.3071-3089, 2018.

J. B. Sadler, A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability, Proceedings of the National Academy of Sciences, vol.115, issue.38, pp.8900-8908, 2018.

R. Colnaghi, G. Carpenter, M. Volker, &. O'driscoll, and M. , The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer, Seminars in cell & developmental biology, pp.875-885, 2011.

K. E. Gascoigne and I. M. Cheeseman, Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis, Chromosome research, vol.21, issue.4, pp.407-418, 2013.

A. Orthwein, Mitosis inhibits DNA double-strand break repair to guard against telomere fusions, Science, vol.344, issue.6180, pp.189-193, 2014.

N. Shimizu, K. Shingaki, Y. Kaneko-sasaguri, T. Hashizume, and T. Kanda, When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation, Experimental cell research, vol.302, issue.2, pp.233-243, 2005.

R. A. Burrell, Replication stress links structural and numerical cancer chromosomal instability, Nature, vol.494, issue.7438, p.492, 2013.

K. L. Chan and I. D. Hickson, New insights into the formation and resolution of ultrafine anaphase bridges, Seminars in cell & developmental biology, pp.906-912, 2011.

E. C. Dykhuizen, BAF complexes facilitate decatenation of DNA by topoisomerase II?, Nature, vol.497, issue.7451, p.624, 2013.

S. M. Germann, TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability, J Cell Biol, vol.204, issue.1, pp.45-59, 2014.

L. Wang, B. Mayer, O. Stemmann, and E. A. Nigg, Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division, J Cell Sci, vol.123, issue.5, pp.806-813, 2010.

S. Cuylen, J. Metz, A. Hruby, and C. H. Haering, Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis, Developmental cell, vol.27, issue.4, pp.469-478, 2013.

N. Amaral, The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress, Nature cell biology, vol.18, issue.5, p.516, 2016.

J. Maciejowski, Y. Li, N. Bosco, P. J. Campbell, and T. De-lange, Chromothripsis and kataegis induced by telomere crisis, Cell, vol.163, issue.7, pp.1641-1654, 2015.

Y. Chan and S. C. West, A new class of ultrafine anaphase bridges generated by homologous recombination, Cell Cycle, vol.17, issue.17, pp.2101-2109, 2018.

C. Baumann, R. Körner, K. Hofmann, and E. A. Nigg, PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint, Cell, vol.128, issue.1, pp.101-114, 2007.

S. R. Wente and M. P. Rout, The nuclear pore complex and nuclear transport, Cold Spring Harbor perspectives in biology, vol.2, issue.10, p.562, 2010.

A. K. Schellhaus, D. Magistris, P. Antonin, and W. , Nuclear reformation at the end of mitosis, Journal of molecular biology, vol.428, issue.10, pp.1962-1985, 2016.

D. R. Mackay and K. S. Ullman, Coordinating postmitotic nuclear pore complex assembly with abscission timing, Nucleus, vol.2, issue.4, pp.923-931, 2011.

C. Lukas, 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress, Nature cell biology, vol.13, issue.3, p.243, 2011.

J. A. Harrigan, Replication stress induces 53BP1-containing OPT domains in G1 cells, The Journal of cell biology, vol.193, issue.1, pp.97-108, 2011.

D. Lee, Dephosphorylation enables the recruitment of 53BP1 to doublestrand DNA breaks, Molecular cell, vol.54, issue.3, pp.512-525, 2014.

M. Kumar, K. Pushpa, and S. V. Mylavarapu, Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos, IUBMB life, vol.67, issue.7, pp.575-587, 2015.

A. J. Blasky, A. Mangan, and R. Prekeris, Polarized protein transport and lumen formation during epithelial tissue morphogenesis, Annual review of cell and developmental biology, vol.31, pp.575-591, 2015.

L. K. Dionne, X. Wang, and R. Prekeris, Midbody: from cellular junk to regulator of cell polarity and cell fate, Current opinion in cell biology, vol.35, pp.51-58, 2015.

S. Hauf, The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint, J Cell Biol, vol.161, issue.2, pp.281-294, 2003.

F. Girdler, Validating Aurora B as an anti-cancer drug target, J Cell Sci, vol.119, issue.17, pp.3664-3675, 2006.

R. Honda, R. Korner, and E. A. Nigg, Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis, Molecular biology of the cell, vol.14, issue.8, pp.3325-3341, 2003.

Y. Yasui, Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis, Journal of Biological Chemistry, vol.279, issue.13, pp.12997-13003, 2004.

F. Sessa, Mechanism of Aurora B activation by INCENP and inhibition by hesperadin, Molecular cell, vol.18, issue.3, pp.379-391, 2005.

E. Petsalaki, T. Akoumianaki, E. J. Black, D. A. Gillespie, and G. Zachos, Phosphorylation at serine 331 is required for Aurora B activation, J Cell Biol, vol.195, issue.3, pp.449-466, 2011.

G. Zachos, Chk1 is required for spindle checkpoint function, Developmental cell, vol.12, issue.2, pp.247-260, 2007.

E. Petsalaki and G. Zachos, Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments, J Cell Sci, vol.126, issue.5, pp.1235-1246, 2013.

E. Petsalaki and G. Zachos, Chk2 prevents mitotic exit when the majority of kinetochores are unattached, J Cell Biol, vol.205, issue.3, pp.339-356, 2014.

O. Fernandez-capetillo, A. Lee, M. Nussenzweig, and A. Nussenzweig, H2AX: the histone guardian of the genome, DNA repair, vol.3, issue.8-9, pp.959-967, 2004.

P. E. Row, The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation, Journal of Biological Chemistry, vol.282, issue.42, pp.30929-30937, 2007.

C. Dimaano, C. B. Jones, A. Hanono, M. Curtiss, and M. Babst, Ist1 regulates Vps4 localization and assembly, Molecular biology of the cell, vol.19, issue.2, pp.465-474, 2008.

E. Frankel, Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos, Nature communications, vol.8, issue.1, p.1439, 2017.

M. Bajorek, Biochemical analyses of human IST1 and its function in cytokinesis, Molecular biology of the cell, vol.20, issue.5, pp.1360-1373, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01601816

M. P. Playford and M. D. Schaller, The interplay between Src and integrins in normal and tumor biology, Oncogene, vol.23, issue.48, p.7928, 2004.

G. S. Goldberg, Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells, Journal of Biological Chemistry, vol.278, issue.47, pp.46533-46540, 2003.

M. C. Brown, L. A. Cary, J. S. Jamieson, J. A. Cooper, and C. E. Turner, Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness, Molecular biology of the cell, vol.16, issue.9, pp.4316-4328, 2005.

S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility, Nature reviews Molecular cell biology, vol.6, issue.1, p.56, 2005.

R. C. Hengeveld, Rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability, Developmental cell, vol.34, issue.4, pp.466-474, 2015.

T. Pike, N. Brownlow, S. Kjaer, J. Carlton, and P. J. Parker, PKC? switches Aurora B specificity to exit the abscission checkpoint, Nature communications, vol.7, p.13853, 2016.

Q. Shi and R. W. King, Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines, Nature, vol.437, issue.7061, p.1038, 2005.

J. Pampalona, C. Frías, A. Genesca, and L. Tusell, Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells, PLoS genetics, vol.8, issue.4, p.1002679, 2012.

Y. Aylon and M. Oren, p53: guardian of ploidy, Molecular oncology, vol.5, issue.4, pp.315-323, 2011.

Z. Storchova and C. Kuffer, The consequences of tetraploidy and aneuploidy, Journal of cell science, vol.121, issue.23, pp.3859-3866, 2008.

T. Fujiwara, Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells, Nature, vol.437, issue.7061, p.1043, 2005.

C. Kuffer, A. Y. Kuznetsova, and Z. Storchová, Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells, Chromosoma, vol.122, issue.4, pp.305-318, 2013.

N. J. Ganem, Cytokinesis failure triggers hippo tumor suppressor pathway activation, Cell, vol.158, issue.4, pp.833-848, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085073

Y. Hong, LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis, Nature communications, vol.9, issue.1, p.728, 2018.

C. M. Dittrich, LEM-3-a LEM domain containing nuclease involved in the DNA damage response in C. elegans, PloS one, vol.7, issue.2, p.24555, 2012.

D. R. Hoffelder, Resolution of anaphase bridges in cancer cells, Chromosoma, vol.112, issue.8, pp.389-397, 2004.

D. Gisselsson, Classification of chromosome segregation errors in cancer, Chromosoma, vol.117, issue.6, pp.511-519, 2008.

N. J. Ganem and D. Pellman, Linking abnormal mitosis to the acquisition of DNA damage, J Cell Biol, vol.199, issue.6, pp.871-881, 2012.

T. I. Zack, Pan-cancer patterns of somatic copy number alteration, Nature genetics, vol.45, issue.10, p.1134, 2013.

P. H. Duijf, N. Schultz, and R. Benezra, Cancer cells preferentially lose small chromosomes, International journal of cancer, vol.132, issue.10, pp.2316-2326, 2013.

L. M. Zasadil, E. M. Britigan, and B. A. Weaver, 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells, Seminars in cell & developmental biology, pp.370-379, 2013.

N. Waddell, Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, vol.518, issue.7540, p.495, 2015.

Y. Li, Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia, Nature, vol.508, issue.7494, p.98, 2014.

P. D. Pharoah, GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer, Nature genetics, vol.45, issue.4, p.362, 2013.

E. Petsalaki and M. Dandoulaki, The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling, J Cell Biol, vol.217, issue.3, pp.861-876, 2018.

M. Dinur-mills, M. Tal, and O. Pines, Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge, PloS one, vol.3, issue.5, p.2161, 2008.

L. Bursell, Src kinase inhibition promotes the chondrocyte phenotype, Arthritis research & therapy, vol.9, issue.5, p.105, 2007.