. .. Thérapies-existantes, 1.1. Injections d'insuline : avantages et inconvénients

2. Co, 2. Ni, and 2. Et-zn, L'affinité de l'ion pour le polymère dépend de l'ion utilisé, et suit l'ordre suivant (pour les ions non toxiques pour les cellules) : Ba 2+ > Sr 2+ > Ca 2+ 215, p.217

. .. Taille,

. .. Gouttes-satellites,

. .. Mesures-de-viabilité,

. .. Test-in-vivo,

. .. Discussion, J. Berthier, L. Vot, and S. , , pp.140-148, 2009.

R. Mahou, F. Borcard, and V. Crivelli, Tuning the Properties of Hydrogel Microspheres by Adding Chemical Crosslinking Functionality to Sodium Alginate, vol.27, pp.4380-4389, 2015.

R. Mahou and C. Wandrey, Alginate-Poly(ethylene glycol) Hybrid Microspheres with, Adjustable Physical Properties, vol.43, pp.1371-1378, 2010.

J. Berthier and P. Dalle, The physics of pressure powered micro-flow focusing device for the encapsulation of live cells, 2011.

R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman et al., Causes of Vision Loss Worldwide, 1990-2010: A Systematic Analysis, Lancet Glob. Health, vol.2013, issue.6, pp.339-349

,

A. J. Ryan, H. S. O'neill, G. P. Duffy, and F. J. O'brien, Advances in Polymeric Islet Cell Encapsulation Technologies to Limit the Foreign Body Response and Provide Immunoisolation, Curr. Opin. Pharmacol, vol.36, pp.66-71, 2017.

,

F. Lim and A. M. Sun, Microencapsulated Islets as Bioartificial Endocrine Pancreas, Science, vol.210, issue.4472, pp.908-910, 1980.

K. Y. Lee and D. J. Mooney, Alginate: Properties and Biomedical Applications, Prog. Polym. Sci, vol.2012, issue.1, pp.106-126

X. Zhao, N. Huebsch, D. J. Mooney, and Z. Suo, Stress-Relaxation Behavior in Gels with Ionic and Covalent Crosslinks, J. Appl. Phys, vol.2010, issue.6, p.107

R. Mahou, C. Wandrey, . Alginate, and . Poly, Ethylene Glycol) Hybrid Microspheres with Adjustable Physical Properties, Macromolecules, vol.2010, issue.3, pp.1371-1378

P. Dalle, Système intégré pour l'encapsulation monocouche de cellules, vol.186

C. Authesserre, Système microfluidique pour le contrôle et l'optimisation de l'encapsulation de cellules pour la thérapie du diabète, 2016.

, Bon Usage des insulines et de leurs stylos -Le stylo à insuline, vol.13, 2019.

. L'insulinothérapie-par-pompe-|-agir-À-dom,

K. Dungan, N. Verma, K. R. Feingold, B. Anawalt, A. Boyce et al., Monitoring Technologies -Continuous Glucose Monitoring, Mobile Technology, Biomarkers of Glycemic Control. In Endotext, 2000.

C. K. Boughton and R. Hovorka, Automated Insulin Delivery in Adults, Endocrinol. Metab. Clin. North Am, vol.2020, issue.1, pp.167-178

N. Allen and A. Gupta, Current Diabetes Technology: Striving for the Artificial Pancreas, Diagnostics, vol.2019, issue.1, p.31

A. Al-heeti and . Ces, This mobile handset aims to simplify type 1 diabetes management, 2019.

C. Tutin, Diabète de type 1 : commercialisation des premières "boucles fermées, Jul, vol.3, 2019.

K. Cogger and M. C. Nostro, Recent Advances in Cell Replacement Therapies for the Treatment of Type 1 Diabetes, Endocrinology, vol.156, issue.1, pp.8-15, 2015.

T. Desai and L. D. Shea, Advances in Islet Encapsulation Technologies, Nat. Rev. Drug Discov, vol.16, issue.5, pp.338-350, 2017.

M. Skinner, S. J. Tan, P. L. Garkavenko, O. Muzina, M. Escobar et al., Cell Replacement Therapy: The Rationale for Encapsulated Porcine Islet Transplantation

D. Wagner and . Ed, , 2011.

P. O'connell, P. Cowan, W. Hawthorne, S. Yi, and A. Lew, Transplantation of Xenogeneic Islets: Are We There Yet?, 2013.

, , vol.13

J. Van-der-windt, D. Bottino, R. Kumar, G. Wijkstrom, M. Hara et al., Clinical Islet Xenotransplantation: How Close Are We?, vol.61, 2012.

A. Frank, S. Deng, X. Huang, E. Velidedeoglu, Y. Bae et al., Transplantation for Type I Diabetes: Comparison of Vascularized Whole-Organ Pancreas With Isolated Pancreatic Islets, Trans. Meet. Am. Surg. Assoc, pp.229-241, 2004.

,

R. W. Gruessner and A. C. Gruessner, The Current State of Pancreas Transplantation, Nat. Rev. Endocrinol, vol.2013, issue.9, pp.555-562

C. A. Herberts, M. S. Kwa, and H. P. Hermsen, Risk Factors in the Development of Stem Cell Therapy, J. Transl. Med, vol.9, 2011.

S. Pellegrini, L. Piemonti, and V. Sordi, Pluripotent Stem Cell Replacement Approaches to Treat Type 1 Diabetes, Curr. Opin. Pharmacol, vol.43, pp.20-26, 2018.

C. Duffy, C. Prugue, R. Glew, T. Smith, C. Howell et al., Feasibility of Induced Pluripotent Stem Cell Therapies for Treatment of Type 1 Diabetes, Tissue Eng. Part B Rev, vol.24, issue.6, pp.482-492, 2018.

F. Barrot, En route vers la thérapie cellulaire et l'encapsulation des îlots! Equilibre, pp.40-45, 2016.

G. Nakagawara, Transplantation of Islets of Langerhans, J. Hepatobiliary. Pancreat. Surg, vol.1, issue.5, pp.542-545, 1994.

C. A. Hellerstroem, . Method-for-the, . Microdissection, . Intact, . Islets et al., Acta Endocrinol. (Copenh.), vol.45, pp.122-132, 1964.

S. Moskalewski, Isolation and Culture of the Islets of Langerhans of the Guinea Pig, Gen. Comp. Endocrinol, vol.5, issue.3, pp.90059-90065, 1965.

P. E. Lacy and M. Kostianovsky, Method for the Isolation of Intact Islets of Langerhans from the Rat Pancreas, Diabetes, vol.16, issue.1, pp.35-39, 1967.

A. M. Shapiro, J. R. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth et al., Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen, N. Engl. J. Med, vol.343, issue.4, pp.230-238, 2000.

C. Ricordi, J. S. Goldstein, A. N. Balamurugan, G. L. Szot, T. Kin et al., National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities, Diabetes, vol.65, issue.11, pp.3418-3428, 2016.

F. B. Barton, M. R. Rickels, R. Alejandro, B. J. Hering, S. Wease et al., Outcomes of Clinical Islet Transplantation, vol.35, pp.1436-1445, 1999.

V. Pathak, N. M. Pathak, C. L. O'neill, J. Guduric-fuchs, and R. J. Medina, Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives, Clin. Med. Insights Endocrinol. Diabetes, vol.12, 2019.

F. W. Pagliuca and D. A. Melton, How to Make a Functional ?-Cell, Dev. Camb. Engl, vol.140, issue.12, pp.2472-2483, 2013.

A. Pessina and L. Gribaldo, The Key Role of Adult Stem Cells: Therapeutic Perspectives, Curr. Med. Res. Opin, vol.22, pp.2287-2300, 2006.

A. Shafiee, J. Patel, J. S. Lee, D. W. Hutmacher, N. M. Fisk et al., Mesenchymal Stem/Stromal Cells Enhance Engraftment, Vasculogenic and pro-Angiogenic Activities of Endothelial Colony Forming Cells in Immunocompetent Hosts, Sci. Rep, 2017.

M. E. Castro-manrreza and J. J. Montesinos, Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications, J. Immunol. Res, 2015.

M. Ezquer, M. Arango-rodriguez, M. Giraud-billoud, and F. Ezquer, Mesenchymal Stem Cell Therapy in Type 1 Diabetes Mellitus and Its Main Complications: From Experimental Findings to Clinical Practice, J. Stem Cell Res. Ther, vol.4, pp.4-8, 2014.

E. Hisanaga, K. Park, S. Yamada, H. Hashimoto, T. Takeuchi et al., A Simple Method to Induce Differentiation of Murine Bone Marrow Mesenchymal Cells to Insulin-Producing Cells Using Conophylline and Betacellulin-Delta4, Endocr. J, vol.55, issue.3, pp.535-543, 2008.

,

Y. Zhang, W. Shen, J. Hua, A. Lei, C. Lv et al., Pancreatic Islet-like Clusters from Bone Marrow Mesenchymal Stem Cells of Human First-Trimester Abortus Can Cure Streptozocin-Induced Mouse Diabetes, Rejuvenation Res, issue.6, pp.695-706, 2010.

A. Rezania, J. E. Bruin, M. J. Riedel, M. Mojibian, A. Asadi et al., Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-Existing Diabetes in Mice, Diabetes, vol.2012, issue.8, pp.2016-2029

Y. Kunisada, N. Tsubooka-yamazoe, M. Shoji, and M. Hosoya, Small Molecules Induce Efficient Differentiation into Insulin-Producing Cells from Human Induced Pluripotent Stem Cells, Stem Cell Res, vol.8, issue.2, pp.274-284, 2012.

,

J. R. Millman, C. Xie, A. Van-dervort, M. Gürtler, F. W. Pagliuca et al., Generation of Stem Cell-Derived ?-Cells from Patients with Type 1 Diabetes, Nat. Commun, 2016.

E. Kroon, L. A. Martinson, K. Kadoya, A. G. Bang, O. G. Kelly et al., Pancreatic Endoderm Derived from Human Embryonic Stem Cells Generates Glucose-Responsive Insulin-Secreting Cells in Vivo, Nat. Biotechnol, vol.26, issue.4, pp.443-452, 2008.

H. Li, C. Stoicov, A. B. Rogers, and J. Houghton, Stem Cells and Cancer: Evidence for Bone Marrow Stem Cells in Epithelial Cancers, World J. Gastroenterol. WJG, vol.12, issue.3, pp.363-371, 2006.

T. E. Werbowetski-ogilvie, M. Bossé, M. Stewart, A. Schnerch, V. Ramos-mejia et al., Characterization of Human Embryonic Stem Cells with Features of Neoplastic Progression, Nat. Biotechnol, vol.27, issue.1, pp.91-97, 2009.

N. Amariglio, A. Hirshberg, B. W. Scheithauer, Y. Cohen, R. Loewenthal et al., Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient, PLoS Med, vol.6, issue.2, 2009.

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of Germline-Competent Induced Pluripotent Stem Cells, Nature, vol.448, issue.7151, pp.313-317, 2007.

,

C. Shih, S. J. Forman, P. Chu, and M. Slovak, Human Embryonic Stem Cells Are Prone to Generate Primitive, Undifferentiated Tumors in Engrafted Human Fetal Tissues in Severe Combined Immunodeficient Mice, Stem Cells Dev, vol.16, issue.6, pp.893-902, 2007.

P. S. Knoepfler, Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine, Stem Cells Dayt. Ohio, vol.27, issue.5, pp.1050-1056, 2009.

,

J. Houghton, C. Stoicov, S. Nomura, A. B. Rogers, J. Carlson et al., Gastric Cancer Originating from Bone Marrow-Derived Cells, Science, vol.306, issue.5701, pp.1568-1571, 2004.

A. Stark, T. Aparisi, and J. L. Ericsson, Human Osteogenic Sarcoma: Fine Structure of the Osteoblastic Type, Ultrastruct. Pathol, vol.4, issue.4, pp.311-329, 1983.

,

P. Barozzi, M. Luppi, F. Facchetti, C. Mecucci, M. Alù et al., Post-Transplant Kaposi Sarcoma Originates from the Seeding of Donor-Derived Progenitors, Nat. Med, vol.9, issue.5, pp.554-561, 2003.

,

S. Aractingi, J. Kanitakis, S. Euvrard, C. Le-danff, I. Peguillet et al., Skin Carcinoma Arising from Donor Cells in a Kidney Transplant Recipient, Cancer Res, vol.65, issue.5, pp.1755-1760, 2005.

A. Janin, H. Murata, C. Leboeuf, J. Cayuela, E. Gluckman et al., Donor-Derived Oral Squamous Cell Carcinoma after Allogeneic Bone Marrow Transplantation, Blood, vol.113, issue.8, pp.1834-1840, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00498762

L. Adès, P. Guardiola, and G. Sociè, Second Malignancies after Allogeneic Hematopoietic Stem Cell Transplantation: New Insight and Current Problems, Blood Rev, vol.16, issue.2, pp.135-146, 2002.

T. Toyoda, S. Mae, H. Tanaka, Y. Kondo, M. Funato et al., Cell Aggregation Optimizes the Differentiation of Human ESCs and IPSCs into Pancreatic Bud-like Progenitor Cells, Stem Cell Res, vol.14, issue.2, pp.185-197, 2015.

S. Hrvatin, C. W. O'donnell, F. Deng, J. R. Millman, F. W. Pagliuca et al., Differentiated Human Stem Cells Resemble Fetal, Not Adult, ? Cells, Proc. Natl. Acad. Sci. U. S. A, vol.111, issue.8, pp.3038-3043, 2014.

A. U. Ernst, L. Wang, and M. Ma, Islet Encapsulation. J. Mater. Chem. B, vol.6, issue.42, pp.6705-6722, 2018.

D. J. Steiner, A. Kim, K. Miller, and M. Hara, Pancreatic Islet Plasticity: Interspecies Comparison of Islet Architecture and Composition, Islets, vol.2010, issue.3, pp.135-145

S. A. Safley, H. Cui, S. Cauffiel, C. Tucker-burden, and C. J. Weber, Biocompatibility and Immune Acceptance of Adult Porcine Islets Transplanted Intraperitoneally in Diabetic NOD Mice in Calcium Alginate Poly-L-Lysine Microcapsules versus Barium Alginate Microcapsules without Poly-L-Lysine, J. Diabetes Sci. Technol. Online, vol.2, issue.5, pp.760-767, 2008.

D. Dufrane and P. Gianello, Pig Islets for Clinical Islet Xenotransplantation, Curr. Opin. Nephrol. Hypertens, vol.18, issue.6, p.495, 2009.

K. J. Potter, A. Abedini, P. Marek, A. M. Klimek, S. Butterworth et al., Islet Amyloid Deposition Limits the Viability of Human Islet Grafts but Not Porcine Islet Grafts, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.9, pp.4305-4310, 2010.

, Transplantation of Porcine Fetal Pancreas to Diabetic Patients. The Lancet, vol.344, pp.90570-90573, 1994.

S. Matsumoto, M. Tomiya, and O. Sawamoto, Current Status and Future of Clinical Islet Xenotransplantation, J. Diabetes, vol.8, issue.4, pp.483-493, 2016.

A. Good, D. Cooper, A. Malcolm, R. Ippolito, E. Koren et al., Identification of Carbohydrate Structures That Bind Human Antiporcine Antibodies: Implications for Discordant Xenografting in Humans, Transplant. Proc, vol.1992, issue.2, pp.559-562

I. Kourtzelis, P. U. Magnusson, K. Kotlabova, J. D. Lambris, and T. Chavakis, Regulation of Instant Blood Mediated Inflammatory Reaction (IBMIR) in Pancreatic Islet Xeno-Transplantation: Points for Therapeutic Interventions, Immune Responses to Biosurfaces, vol.865, pp.171-188, 2015.

J. Wiley, Dissecting the Instant Blood-Mediated Inflammatory Reaction in Islet Xenotransplantation, Xenotransplantation, vol.15, issue.4, pp.225-234, 2008.

,

D. J. Van-der-windt, M. Marigliano, J. He, T. V. Votyakova, G. J. Echeverri et al., Early Islet Damage after Direct Exposure of Pig Islets to Blood: Has Humoral Immunity Been Underestimated? Cell Transplant, vol.21, pp.1791-1802, 2012.

J. Deschamps, F. A. Roux, P. Saï, and E. Gouin, History of Xenotransplantation. Xenotransplantation, vol.12, issue.2, pp.91-109, 2005.

T. Wang, K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post et al., Identification and Characterization of Essential Genes in the Human Genome, Science, vol.350, issue.6264, pp.1096-1101, 2015.

F. Lebreton, Signaux électriques des îlots pancréatiques enregistrés sur matrices de microélectrodes: caractérisation et application au phénotypage d'animaux transgéniques, vol.222

B. Ludwig, S. Ludwig, and . Transplantable, Bioartificial Pancreas Devices: Current Status and Future Prospects, Langenbecks Arch. Surg, vol.400, issue.5, pp.531-540, 2015.

V. Iacovacci, L. Ricotti, A. Menciassi, and P. Dario, The Bioartificial Pancreas (BAP): Biological, Chemical and Engineering Challenges, Biochem. Pharmacol, vol.100, pp.12-27, 2016.

A. Prochorov, S. Tretjak, V. Goranov, A. Glinnik, and M. Goltsev, Treatment of Insulin Dependent Diabetes Mellitus with Intravascular Transplantation of Pancreatic Islet Cells without Immunosuppressive Therapy, Adv. Med. Sci, issue.2, p.53, 2008.

,

|. Mailpan-®-bioartificial-pancreas and . Defymed, , 2019.

A. R. Pepper, B. Gala-lopez, O. Ziff, and A. M. Shapiro, Revascularization of Transplanted Pancreatic Islets and Role of the Transplantation Site, Clin. Dev. Immunol, pp.1-13, 2013.

L. Jansson, The Regulation of Pancreatic Islet Blood Flow, Diabetes. Metab. Rev, vol.10, issue.4, pp.407-416, 1994.

N. Lifson, K. G. Kramlinger, R. R. Mayrand, and E. J. Lender, Blood Flow to the Rabbit Pancreas with Special Reference to the Islets of Langerhans, Gastroenterology, vol.79, issue.3, pp.466-473, 1980.

J. Kim, H. S. Park, K. Yoon, and E. Y. Lee, Development of Perfluorodecalin Contained Microcapsules for Islet Survival and Function, Diabetes, vol.2018, p.1743

;. Rodriguez-brotonsaida;-bietigerwilliam;-peronetclaude;-langloisallan and . Magissonjordan,

;. Muracarole;-sookhareeacynthia;-polardvalerie;-jeandidiernathalie;-zalfranck, Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation, Tissue Eng. Part A, 2016.

U. Barkai, G. C. Weir, C. K. Colton, B. Ludwig, S. R. Bornstein et al., Enhanced Oxygen Supply Improves Islet Viability in a, New Bioartificial Pancreas. Cell Transplant, vol.22, issue.8, pp.1463-1476, 2013.

B. Ludwig, A. Rotem, J. Schmid, G. C. Weir, C. K. Colton et al., Improvement of Islet Function in a Bioartificial Pancreas by Enhanced Oxygen Supply and Growth Hormone Releasing Hormone Agonist, Proc. Natl. Acad. Sci. U. S. A, vol.2012, issue.13, pp.5022-5027

,

T. Neufeld, B. Ludwig, U. Barkai, G. C. Weir, C. K. Colton et al., The Efficacy of an Immunoisolating Membrane System for Islet Xenotransplantation in Minipigs, PLoS ONE, vol.2013, issue.8

,

B. Ludwig, B. Zimerman, A. Steffen, K. Yavriants, D. Azarov et al., A Novel Device for Islet Transplantation Providing Immune Protection and Oxygen Supply, Horm. Metab. Res, issue.13, pp.918-922, 2010.

B. Ludwig, A. Reichel, A. Steffen, B. Zimerman, A. V. Schally et al., Transplantation of Human Islets without Immunosuppression, Proc. Natl. Acad. Sci, vol.110, pp.19054-19058, 2013.

, Beta-O2 Technologies Ltd. | Clinical Trials, 2019.

-. Beta and . Ltd, , 2019.

S. Song and S. Roy, Progress and Challenges in Macroencapsulation Approaches for Type 1

, Diabetes (T1D) Treatment: Cells, Biomaterials, and Devices: Progress and Challenges in Macroencapsulation, vol.113, pp.1381-1402, 2016.

,

D. W. Scharp and P. Marchetti, Encapsulated Islets for Diabetes Therapy: History, Current Progress, and Critical Issues Requiring Solution, Adv. Drug Deliv. Rev, pp.35-73, 2014.

R. P. Lanza, K. M. Borland, P. Lodge, M. Carretta, S. J. Sullivan et al., Treatment of Severely Diabetic Pancreatectomized Dogs Using a Diffusion-Based Hybrid Pancreas, Diabetes, issue.7, pp.886-889, 1992.

A. Prochorov, S. Tretjak, V. Goranov, A. Glinnik, and M. Goltsev, Treatment of Insulin Dependent Diabetes Mellitus with Intravascular Transplantation of Pancreatic Islet Cells without Immunosuppressive Therapy, Adv. Med. Sci, issue.2, p.53, 2008.

,

T. M. Chang and . Semipermeable-microcapsules, Science, vol.146, issue.3643, pp.524-525, 1964.

G. M. O'shea, M. F. Goosen, and A. M. Sun, Prolonged Survival of Transplanted Islets of Langerhans Encapsulated in a Biocompatible Membrane, Biochim. Biophys. Acta BBA -Mol

, Cell Res, vol.804, issue.1, pp.90107-90108, 1984.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz et al., Towards a Medically Approved Technology for Alginate-Based Microcapsules Allowing Long-Term Immunoisolated Transplantation, J. Mater. Sci. Mater. Med, vol.16, issue.6, pp.491-501, 2005.

P. Soon-shiong, E. Feldman, and R. Nelson, Successful Reversal of Spontaneous Diabetes in Dogs by Intraperitoneal Microencapsulated Islets, Transplantation, vol.54, issue.5, pp.769-774, 1992.

R. P. Lanza, D. M. Ecker, W. M. Kühtreiber, J. P. Marsh, J. Ringeling et al., Transplantation of Islets Using Microencapsulation: Studies in Diabetic Rodents and Dogs, J. Mol. Med, vol.77, issue.1, pp.206-210, 1999.

D. Dufrane and P. Gianello, Macro-or Microencapsulation of Pig Islets to Cure Type 1, Diabetes. World J. Gastroenterol. WJG, vol.2012, issue.47, pp.6885-6893

,

E. C. Opara, J. P. Mcquilling, and A. C. Farney, Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas, Methods Mol. Biol. Clifton NJ, vol.1001, pp.261-266, 2013.

J. A. Steele, J. Hallé, D. Poncelet, and R. J. Neufeld, Therapeutic Cell Encapsulation Techniques and Applications in Diabetes, Adv. Drug Deliv. Rev, pp.74-83, 2014.

S. Merani, C. Toso, J. Emamaullee, and A. M. Shapiro, Optimal Implantation Site for Pancreatic Islet Transplantation, Br. J. Surg, vol.95, issue.12, pp.1449-1461, 2008.

H. Zhu, W. Li, Z. Liu, W. Li, N. Chen et al., Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets, Tissue Eng. Part B Rev, vol.24, issue.3, pp.191-214, 2018.

,

Y. Teramura, H. Iwata, and . Pancreas, Microencapsulation and Conformal Coating of Islet of Langerhans, Adv. Drug Deliv. Rev, vol.62, issue.7-8, pp.827-840, 2010.

G. A. Paredes-juã¡rez, M. Spasojevic, M. M. Faas, and P. De-vos, Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems, Front. Bioeng. Biotechnol, 2014.

R. Calafiore and G. Basta, Clinical Application of Microencapsulated Islets: Actual Prospectives on Progress and Challenges, Adv. Drug Deliv. Rev, pp.84-92, 2014.

S. Lablanche, S. Borot, A. Wojtusciszyn, F. Bayle, R. Tétaz et al., Five-Year Metabolic, Functional, and Safety Results of Patients With Type 1 Diabetes Transplanted With Allogenic Islets Within the Swiss-French GRAGIL Network, Diabetes Care, vol.38, issue.9, pp.1714-1722, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850555

R. Mazaheri, P. Atkison, C. Stiller, J. Dupré, J. Vose et al., Transplantation of Encapsulated Allogeneic Islets into Diabetic BB/W Rats. Effects of Immunosuppression, Transplantation, vol.51, issue.4, pp.750-754, 1991.

V. F. Duvivier-kali, A. Omer, R. J. Parent, J. J. Neil, and G. C. Weir, Complete Protection of Islets Against Allorejection and Autoimmunity by a Simple Barium-Alginate Membrane, Diabetes, vol.50, issue.8, pp.1698-1705, 2001.

A. Omer, V. Duvivier-kali, J. Fernandes, V. Tchipashvili, C. K. Colton et al., Long-Term Normoglycemia in Rats Receiving Transplants with Encapsulated Islets: Transplantation, vol.79, pp.52-58, 2005.

,

P. Soon-shiong, E. Feldman, R. Nelson, R. Heintz, Q. Yao et al., Long-Term Reversal of Diabetes by the Injection of Immunoprotected Islets, Proc. Natl. Acad. Sci. U. S. A, vol.90, issue.12, pp.5843-5847, 1993.

T. Wang, J. Adcock, W. Kühtreiber, D. Qiang, K. J. Salleng et al., Successful Allotransplantation of Encapsulated Islets in Pancreatectomized Canines for Diabetic Management Without the Use of Immunosuppression: Transplantation, vol.85, pp.331-337, 2008.

G. Basta, P. Montanucci, G. Luca, C. Boselli, G. Noya et al., Long-Term Metabolic and Immunological Follow-Up of Nonimmunosuppressed Patients With Type 1 Diabetes Treated With Microencapsulated Islet Allografts: Four Cases, Diabetes Care, vol.34, issue.11, pp.2406-2409, 2011.

R. Calafiore, G. Basta, G. Luca, A. Lemmi, M. P. Montanucci et al., Microencapsulated Pancreatic Islet Allografts Into Nonimmunosuppressed Patients With Type 1 Diabetes

B. E. Tuch, G. W. Keogh, L. J. Williams, W. Wu, J. L. Foster et al., Safety and Viability of Microencapsulated Human Islets Transplanted Into Diabetic Humans, Diabetes Care, vol.32, issue.10, pp.1887-1889, 2009.

M. Chintinne, Z. Ling, P. Gillard, L. Schoonjans, G. Delvaux et al., Sustained Function of Alginate-Encapsulated Human Islet Cell Implants in the Peritoneal Cavity of Mice Leading to a Pilot Study in a Type 1 Diabetic Patient, Diabetologia, vol.56, issue.7, pp.1605-1614, 2013.

S. Matsumoto, P. Tan, J. Baker, K. Durbin, M. Tomiya et al., Clinical Porcine Islet Xenotransplantation Under Comprehensive Regulation, Transplant. Proc, vol.2014, issue.6, pp.1992-1995

Y. Teramura, Y. Kaneda, and H. Iwata, Islet-Encapsulation in Ultra-Thin Layer-by-Layer Membranes of Poly(Vinyl Alcohol) Anchored to Poly(Ethylene Glycol)-Lipids in the Cell Membrane, Biomaterials, vol.28, issue.32, pp.4818-4825, 2007.

,

Z. Zhi, A. Kerby, A. J. King, P. M. Jones, and J. C. Pickup, Nano-Scale Encapsulation Enhances Allograft Survival and Function of Islets Transplanted in a Mouse Model of Diabetes, Diabetologia, vol.2012, issue.4, pp.1081-1090

Y. Lee, D. Hee-nam, J. Byun, and Y. , Functional and Histological Evaluation of Transplanted Pancreatic Islets Immunoprotected by PEGylation and Cyclosporine for 1 Year, Biomaterials, vol.28, issue.11, pp.1957-1966, 2007.

,

G. Orive, E. Santos, D. Poncelet, R. M. Hernández, J. L. Pedraz et al., Cell Encapsulation: Technical and Clinical Advances, Trends Pharmacol. Sci, vol.2015, issue.8, pp.537-546

S. Krol, S. Del-guerra, M. Grupillo, A. Diaspro, A. Gliozzi et al., New Approach for Immune Protection of Human Pancreatic Islets, Nano Lett, vol.6, issue.9, pp.1933-1939, 2006.

J. T. Wilson, W. Cui, and E. L. Chaikof, Layer-by-Layer Assembly of a Conformal Nanothin PEG Coating for Intraportal Islet Transplantation, Nano Lett, vol.8, issue.7, pp.1940-1948, 2008.

H. M. Tse, V. Kozlovskaya, E. Kharlampieva, C. S. Hunter, and . Minireview, Directed Differentiation and Encapsulation of Islet ?-Cells-Recent Advances and Future Considerations, Mol. Endocrinol, vol.29, issue.10, pp.1388-1399, 2015.

,

R. B. Elliott, L. Escobar, P. L. Tan, M. Muzina, S. Zwain et al., Live Encapsulated Porcine Islets from a Type 1 Diabetic Patient 9.5 Yr after Xenotransplantation: Porcine Islets 9.5 Yr after Implant, Xenotransplantation, vol.14, issue.2, pp.157-161, 2007.

, Open-label Investigation of the Safety and Effectiveness of DIABECELL® in Patients With Type 1 Diabetes Mellitus, vol.3, 2019.

A. L. Hillberg, K. Kathirgamanathan, J. B. Lam, L. Y. Law, O. Garkavenko et al., Improving Alginate-Poly-L-Ornithine-Alginate Capsule Biocompatibility through Genipin Crosslinking, J. Biomed. Mater. Res. B Appl. Biomater, vol.101, issue.2, pp.258-268, 2013.

E. Dolgin, Encapsulate This, Nat. Med, vol.20, issue.1, pp.9-11, 2014.

,

, Pilot Investigation, to Assess the Safety and Efficacy of Transplantation of Macro-encapsulated Human Islets Within the Bioartificial Pancreas Beta-Air in Patients With Type 1 Diabetes Mellitus -Full Text View -ClinicalTrials, 2019.

J. Kriz, G. Vilk, D. M. Mazzuca, P. M. Toleikis, P. J. Foster et al., A Novel Technique for the Transplantation of Pancreatic Islets within a Vascularized Device into the Greater Omentum to Achieve Insulin Independence, Am. J. Surg, vol.2012, issue.6, pp.793-797

A. Safety, Tolerability and Efficacy Study of Sernova's Cell Pouch TM for Clinical Islet Transplantation, Jul, vol.5, 2019.

. Sernova--press, , 2019.

, One-Year Follow-up Safety Study in Subjects Previously Implanted With VC-01 TM, Jul, vol.5, 2019.

, A Safety, Tolerability, and Efficacy Study of VC-02 TM Combination Product in Subjects With Type 1 Diabetes Mellitus and Hypoglycemia Unawareness, vol.5, 2019.

R. Storrs, R. Dorian, S. R. King, J. Lakey, and H. Rilo, Preclinical Development of the Islet Sheet, Ann. N. Y. Acad. Sci, vol.944, issue.1, pp.252-266, 2001.

J. Schweicher, C. Nyitray, and T. A. Desai, Membranes to Achieve Immunoprotection of Transplanted Islets, Front. Biosci. Landmark Ed, vol.19, pp.49-76, 2014.

P. De-vos, H. A. Lazarjani, D. Poncelet, and M. M. Faas, Polymers in Cell Encapsulation from an Enveloped Cell Perspective. Adv. Drug Deliv. Rev, pp.15-34, 2014.

D. F. Williams, On the Mechanisms of Biocompatibility, Biomaterials, vol.29, issue.20, pp.2941-2953, 2008.

A. M. Rokstad, O. Brekke, B. Steinkjer, L. Ryan, G. Kolláriková et al., Alginate Microbeads Are Complement Compatible, Contrast to Polycation Containing Microcapsules, as Revealed in a Human Whole Blood Model, vol.7, pp.2566-2578, 2011.

,

A. M. Rokstad, I. Lacík, P. De-vos, and B. L. Strand, Advances in Biocompatibility and Physico-Chemical Characterization of Microspheres for Cell Encapsulation, Adv. Drug Deliv. Rev, pp.67-68, 2014.

J. Hilborn and L. M. Bjursten, A New and Evolving Paradigm for Biocompatibility, J. Tissue Eng. Regen. Med, vol.1, issue.2, pp.110-119, 2007.

I. Lacík, Polymer Chemistry in Diabetes Treatment by Encapsulated Islets of Langerhans: Review to 2006, Aust. J. Chem, issue.8, pp.508-524, 2006.

P. De-vos, M. Bu?ko, P. Gemeiner, M. Navrátil, J. ?vitel et al., Multiscale Requirements for Bioencapsulation in Medicine and Biotechnology, Biomaterials, vol.30, issue.13, pp.2559-2570, 2009.

K. Webb, V. Hlady, and P. A. Tresco, Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization, J. Biomed. Mater. Res, vol.41, issue.3, pp.422-430, 1998.

P. B. Van-wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers et al., Interaction of Cultured Human Endothelial Cells with Polymeric Surfaces of Different Wettabilities, Biomaterials, vol.6, issue.6, pp.90101-90103, 1985.

P. B. Van-wachem, A. H. Hogt, T. Beugeling, J. Feijen, A. Bantjes et al., Adhesion of Cultured Human Endothelial Cells onto Methacrylate Polymers with Varying Surface Wettability and Charge, Biomaterials, vol.8, issue.5, pp.90001-90010, 1987.

E. A. Vogler, Protein Adsorption in Three Dimensions, Biomaterials, vol.2012, issue.5, pp.1201-1237

L. Gasperini, J. F. Mano, and R. L. Reis, Natural Polymers for the Microencapsulation of Cells, J. R. Soc. Interface, vol.11, issue.100, pp.20140817-20140817, 2014.

,

B. L. Strand, L. Ryan, P. I. Veld, B. Kulseng, A. M. Rokstad et al., Poly-L-Lysine Induces Fibrosis on Alginate Microcapsules via the Induction of Cytokines, Cell Transplant, vol.10, issue.3, pp.263-275, 2001.

R. Bhatia, S. ;. Khattak, S. Roberts, and S. , Polyelectrolytes for Cell Encapsulation, Curr. Opin. Colloid Interface Sci, vol.10, pp.45-51, 2005.

A. Oliva, J. Fariña, and M. Llabrés, Development of Two High-Performance Liquid Chromatographic Methods for the Analysis and Characterization of Insulin and Its Degradation Products in Pharmaceutical Preparations, J. Chromatogr. B. Biomed. Sci. App, vol.749, issue.1, pp.25-34, 2000.

R. Calafiore, G. Basta, G. Luca, C. Boselli, A. Bufalari et al., Alginate/Polyaminoacidic Coherent Microcapsules for Pancreatic Islet Graft Immunoisolation in Diabetic Recipients, Ann. N. Y. Acad. Sci, vol.831, issue.1, pp.313-322, 2006.

P. De-vos, J. F. Van-straaten, A. G. Nieuwenhuizen, M. De-groot, R. J. Ploeg et al., Why Do Microencapsulated Islet Grafts Fail in the Absence of Fibrotic Overgrowth? Diabetes, vol.48, pp.1381-1388, 1999.

,

M. Lekka, D. Sainz-serp, A. J. Kulik, C. Wandrey, and . Microspheres, Influence of Chemical Composition on Surface Morphology, Local Elastic Properties, and Bulk Mechanical Characteristics, Langmuir, vol.20, issue.23, pp.9968-9977, 2004.

,

C. M. Bünger, C. Gerlach, T. Freier, K. P. Schmitz, M. Pilz et al., Biocompatibility and Surface Structure of Chemically Modified Immunoisolating Alginate-PLL Capsules: Biocompatibility of Chemically Modified Capsules, J. Biomed. Mater. Res. A, vol.67, issue.4, pp.1219-1227, 2003.

,

R. H. Li, Materials for Immunoisolated Cell Transplantation, Adv. Drug Deliv. Rev, p.23, 1998.

A. G. Mikos, M. G. Papadaki, S. Kouvroukoglou, S. L. Ishaug, and R. C. Thomson, Mini-Review: Islet Transplantation to Create a Bioartificial Pancreas, Biotechnol. Bioeng, vol.43, issue.7, pp.673-677, 1994.

P. De-vos, A. F. Hamel, and K. Tatarkiewicz, Considerations for Successful Transplantation of Encapsulated Pancreatic Islets, Diabetologia, vol.45, issue.2, pp.159-173, 2002.

,

B. ??hová, Immunocompatibility and Biocompatibility of Cell Delivery Systems, Adv. Drug Deliv. Rev, vol.42, issue.1-2, pp.65-80, 2000.

E. H. Nafea, A. M. Poole-warren, L. A. Martens, and P. J. , Immunoisolating Semi-Permeable Membranes for Cell Encapsulation: Focus on Hydrogels, J. Controlled Release, vol.154, issue.2, pp.110-122, 2011.

R. M. Olabisi, Cell Microencapsulation with Synthetic Polymers: Synthetic Cell Microencapsulation, J. Biomed. Mater. Res. A, vol.103, issue.2, pp.846-859, 2015.

P. B. Malafaya, G. A. Silva, and R. L. Reis, Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications, Adv. Drug Deliv. Rev, vol.59, issue.4-5, pp.207-233, 2007.

J. Y. Jang, D. Y. Lee, S. J. Park, and Y. Byun, Immune Reactions of Lymphocytes and Macrophages against PEG-Grafted Pancreatic Islets, Biomaterials, vol.25, issue.17, pp.3663-3669, 2004.

C. R. Nuttelman, M. A. Rice, A. E. Rydholm, C. N. Salinas, D. N. Shah et al., Macromolecular Monomers for the Synthesis of Hydrogel Niches and Their Application in Cell Encapsulation and Tissue Engineering, Prog. Polym. Sci, vol.33, issue.2, pp.167-179, 2008.

M. P. Lutolf and J. A. Hubbell, Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Nat. Biotechnol, vol.23, issue.1, pp.47-55, 2005.

G. M. Cruise, O. D. Hegre, F. V. Lamberti, S. R. Hager, R. Hill et al., In Vitro and in Vivo Performance of Porcine Islets Encapsulated in Interfacially Photopolymerized Poly(Ethylene Glycol) Diacrylate Membranes, Cell Transplant, vol.8, issue.3, pp.293-306, 1999.

M. Qi, Y. Gu, N. Sakata, D. Kim, Y. Shirouzu et al., PVA Hydrogel Sheet Macroencapsulation for the Bioartificial Pancreas, Biomaterials, vol.25, issue.27, pp.5885-5892, 2004.

Z. Qi, Y. Shen, G. Yanai, K. Yang, Y. Shirouzu et al., The in Vivo Performance of Polyvinyl Alcohol Macro-Encapsulated Islets, Biomaterials, vol.2010, issue.14, pp.4026-4031

K. Burczak, E. Gamian, and A. Kochman, Long-Term in Vivo Performance and Biocompatibility of Poly(Viny1 Alcohol) Hydrogel Macrocapsules for Hybrid-Type Artificial Pancreas, vol.17, p.6, 1996.

M. G. Cascone, M. Tricoli, P. Cerrai, and R. S. Del-guerra, Cell Cultures in the Biocompatibility Study of Synthetic Materials. Cytotechnology, vol.11, issue.1, pp.137-139, 1993.

R. B. Seymour and G. B. Kauffman, Polyurethanes: A Class of Modern Versatile Materials, J. Chem. Educ, 1992.

G. Soldani, P. Losi, M. Bernabei, S. Burchielli, D. Chiappino et al., Long Term Performance of Small-Diameter Vascular Grafts Made of a Poly(Ether)Urethane-Polydimethylsiloxane Semi-Interpenetrating Polymeric Network, Biomaterials, vol.2010, issue.9, pp.2592-2605

,

A. P. Khandwekar, D. P. Patil, A. A. Hardikar, Y. S. Shouche, and M. Doble, In Vivo Modulation of Foreign Body Response on Polyurethane by Surface Entrapment Technique, J. Biomed. Mater. Res. A, vol.2010, issue.2, pp.413-423

S. George, P. D. Nair, M. V. Risbud, and R. R. Bhonde, Nonporous Polyurethane Membranes as Islet Immunoisolation Matrices -Biocompatibility Studies, J. Biomater. Appl, vol.16, issue.4, pp.327-340, 2002.

M. V. Sefton, M. H. May, S. Lahooti, and J. E. Babensee, Making Microencapsulation Work: Conformal Coating, Immobilization Gels and in Vivo Performance, J. Controlled Release, p.14, 2000.

S. Lahooti and M. V. Sefton, Methods for Microencapsulation with HEMA-MMA, Methods Mol. Med, vol.18, pp.331-348, 1999.

W. T. Stevenson, M. V. Sefton, and . Graft, Copolymer Emulsions of Sodium Alginate with Hydroxyalkyl Methacrylates for Microencapsulation, Biomaterials, vol.8, 1987.

A. Sabnis, M. Rahimi, C. Chapman, and K. T. Nguyen, Cytocompatibility Studies of an in Situ Photopolymerized Thermoresponsive Hydrogel Nanoparticle System Using Human Aortic Smooth Muscle Cells, J. Biomed. Mater. Res. A, vol.91, issue.1, pp.52-59, 2009.

K. T. Nguyen and J. L. West, Photopolymerizable Hydrogels for Tissue Engineering Applications, Biomaterials, vol.23, issue.22, pp.175-183, 2002.

S. Prakash and T. M. Chang, Preparation and in Vitro Analysis of Microencapsulated Genetically Engineered E. Coli DH5 Cells for Urea and Ammonia Removal, Biotechnol. Bioeng, vol.46, issue.6, pp.621-626, 1995.

A. S. Hoffman, Hydrogels for Biomedical Applications, Adv. Drug Deliv. Rev, vol.64, pp.18-23, 2012.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Hydrogels in Regenerative Medicine, Adv. Mater, vol.21, pp.3307-3329, 2009.

R. P. Lanza and D. M. Ecker, A Simple Method for Transplanting Discordant Islets into Rats Using Alginate Gel Spheres, Transplantation, vol.59, issue.10, pp.1485-1487, 1995.

P. Aslani and R. A. Kennedy, Studies on Diffusion in Alginate Gels. I. Effect of Cross-Linking with Calcium or Zinc Ions on Diffusion of Acetaminophen, J. Controlled Release, vol.42, issue.1, pp.1369-1376, 1996.

H. Tanaka, M. Matsumura, and I. A. Veliky, Diffusion Characteristics of Substrates in Ca-Alginate Gel Beads, Biotechnol. Bioeng, vol.26, issue.1, pp.53-58, 1984.

,

C. K. Kuo and P. X. Ma, Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties, p.11, 2001.

Y. Miyoshi, I. Date, T. Ohmoto, and H. Iwata, Histological Analysis of Microencapsulated Dopamine-Secreting Cells in Agarose/Poly(Styrene Sulfonic Acid) Mixed Gel Xenotransplanted into the Brain, Exp. Neurol, vol.138, issue.1, pp.169-175, 1996.

,

M. Lahaye and C. Rochas, Chemical Structure and Physico-Chemical Properties of Agar, Hydrobiologia, vol.221, issue.1, pp.137-148, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02713919

L. Indovina, P. Tettamanti, E. ;. Micciancio-giammarinaro, M. U. Palma, and M. , Thermal Hysteresis and Reversibility of Gel-Sol Transition in Agarose-Water Systems, Chem. Phys. -CHEM PHYS, vol.70, pp.2841-2847, 1979.

T. Tun, A Newly Developed Three-Layer Agarose Microcapsule for a Promising Biohybrid Artificial Pancreas: Rat to Mouse Xenotransplantation, Cell Transplant, vol.5, issue.5, pp.59-63, 1996.

H. Gin, B. Dupuy, A. Baquey, C. H. Baquey, and D. Ducassou, Lack of Responsiveness to Glucose of Microencapsulated Islets of Langerhans after Three Weeks' Implantation in the Rat--Influence of the Complement, J. Microencapsul, vol.7, issue.3, pp.341-346, 1990.

H. Yang, K. Zhao, Y. Ye, and S. Deng, Study of macroencapsulated islet xenografts for treatment of diabetes in mice. Hua Xi Yi Ke Xue Xue Bao, J. West China Univ. Med. Sci. Huaxi Yike Daxue Xuebao, vol.29, issue.2, pp.132-135, 1998.

E. B. Hunziker, Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects, Osteoarthritis Cartilage, vol.10, issue.6, pp.432-463, 2002.

H. Uludag, P. D. Vos, and P. A. Tresco, Technology of Mammalian Cell Encapsulationq. Adv. Drug Deliv. Rev, p.36, 2000.

H. J. Kim, H. C. Lee, J. S. Oh, B. A. Shin, C. S. Oh et al., Polyelectrolyte Complex Composed of Chitosan and Sodium Alginate for Wound Dressing Application, J. Biomater. Sci. Polym. Ed, vol.10, issue.5, pp.543-556, 1999.

T. Wang, I. Lacik, M. Brissova, A. V. Anilkumar, A. Prokop et al., An Encapsulation System for the Immunoisolation of Pancreatic Islets, vol.15, p.5, 1997.

M. V. Risbud, S. Bhargava, and R. R. Bhonde, Vivo Biocompatibility Evaluation of Cellulose Macrocapsules for Islet Immunoisolation: Implications of Low Molecular Weight

, J. Biomed. Mater. Res. A, vol.66, issue.1, pp.86-92, 2003.

T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki, Tissue Biocompatibility of Cellulose and Its Derivatives, J. Biomed. Mater. Res, vol.23, issue.1, pp.125-133, 1989.

H. Dautzenberg, U. Schuldt, G. Grasnick, P. Karle, P. Müller et al., Development of Cellulose Sulfatebased Polyelectrolyte Complex Microcapsules for Medical Applications, Ann. N. Y. Acad. Sci, 1999.

H. W. Matthew, S. O. Salley, W. D. Peterson, and M. D. Klein, Complex Coacervate Microcapsules for Mammalian Cell Culture and Artificial Organ Development, Biotechnol. Prog, vol.9, issue.5, pp.510-519, 1993.

G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm et al., In Vivo Biocompatibility of Bacterial Cellulose. J. Biomed. Mater. Res. A, vol.76, issue.2, pp.431-438, 2006.

S. Schneider, P. J. Feilen, V. Slotty, D. Kampfner, S. Preuss et al., Multilayer Capsules: A Promising Microencapsulation System for Transplantation of Pancreatic Islets, Biomaterials, vol.22, issue.14, pp.1961-1970, 2001.

M. Pelegrin, M. Marin, D. Noël, M. D. Rio, R. Saller et al., Systemic Long-Term Delivery of Antibodies in Immunocompetent Animals Using Cellulose Sulphate Capsules Containing Antibody-Producing Cells, Gene Ther, vol.5, issue.6, pp.828-834, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02195931

T. Xu, P. Molnar, C. Gregory, M. Das, T. Boland et al., Electrophysiological Characterization of Embryonic Hippocampal Neurons Cultured in a 3D Collagen Hydrogel, Biomaterials, vol.30, issue.26, pp.4377-4383, 2009.

,

C. H. Lee, A. Singla, and Y. Lee, Biomedical Applications of Collagen, Int. J. Pharm, vol.221, issue.1-2, pp.691-694, 2001.

K. Edamura, H. Ohgawara, K. Nasu, Y. Iwami, A. Sato et al., Effect of the Extracellular Matrix on Pancreatic Endocrine Cell Function and Its Biocompatibility in Dogs, Cell Transplant, vol.10, issue.4-5, pp.493-498, 2001.

E. Jorge-herrero, P. Fernández, J. Turnay, N. Olmo, P. Calero et al., Influence of Different Chemical Cross-Linking Treatments on the Properties of Bovine Pericardium and Collagen, Biomaterials, vol.20, issue.6, pp.90205-90213, 1999.

T. Kobayashi, Y. Aomatsu, H. Iwata, T. Kin, H. Kanehiro et al., Indefinite Islet Protection from Autoimmune Destruction in Nonobese Diabetic Mice by Agarose Microencapsulation without Immunosuppression, Transplantation, vol.75, issue.5, pp.619-625, 2003.

,

T. Kobayashi, Y. Aomatsu, H. Kanehiro, M. Hisanaga, and Y. Nakajima, Protection of NOD Islet Isograft from Autoimmune Destruction by Agarose Microencapsulation, Transplant. Proc, vol.35, issue.1, pp.484-485, 2003.

S. Sakai and K. Kawakami, Synthesis and Characterization of Both Ionically and Enzymatically Cross-Linkable Alginate, Acta Biomater, vol.3, issue.4, pp.495-501, 2007.

,

S. Sakai, I. Hashimoto, and K. Kawakami, Agarose-Gelatin Conjugate for Adherent Cell-Enclosing Capsules, Biotechnol. Lett, vol.29, issue.5, pp.731-735, 2007.

,

V. Stadlbauer, P. B. Stiegler, S. Schaffellner, O. Hauser, G. Halwachs et al., Morphological and Functional Characterization of a Pancreatic ?-Cell Line Microencapsulated in Sodium Cellulose Sulfate/Poly(Diallyldimethylammonium Chloride), Xenotransplantation, vol.13, issue.4, pp.337-344, 2006.

L. Marinucci, C. Lilli, M. Guerra, S. Belcastro, E. Becchetti et al., Biocompatibility of Collagen Membranes Crosslinked with Glutaraldehyde or Diphenylphosphoryl Azide: An in Vitro Study, J. Biomed. Mater. Res. A, vol.67, issue.2, pp.504-509, 2003.

Y. A. Morch, Novel Alginate Microcapsules for Cell Therapy, 2008.

S. V. Bhujbal, B. De-haan, S. P. Niclou, and P. De-vos, A Novel Multilayer Immunoisolating Encapsulation System Overcoming Protrusion of Cells, Sci. Rep, vol.2015, issue.1, p.6856

Ý. A. Mørch, I. Donati, and B. L. Strand, Effect of Ca2+, Ba2+, and Sr 2+ on Alginate Microbeads, Biomacromolecules, vol.7, issue.5, pp.1471-1480, 2006.

G. T. Grant, E. R. Mon, and S. D. Rees, Biological Interactions Between Polysaccharides and Divalent Cations: The Egg-Box Model, FEBS Lett, vol.32, issue.1, p.4, 1973.

R. Kohn and B. Larsen, Preparation of Water-Soluble Polyuronic Acids and Their Calcium Salts, and the Determination of Calcium Ion Activity in Relation to the Degree of Polymerization, Acta Chem. Scand, vol.26, issue.6, pp.2455-2468, 1972.

B. T. Stokke and O. Smidsrod, Distribution of Uronate Residues in Alginate Chains in Relation to Alginate Gelling Properties --2: Enrichment of Fl-D-Mannuronic Acid and Depletion of a-L-Guluronic Acid in Sol Fraction, vol.8

D. Poncelet, R. Lencki, C. Beaulieu, J. P. Halle, R. J. Neufeld et al., Production of Alginate Beads by Emulsification/Internal Gelation, I. Methodology. Appl. Microbiol. Biotechnol, issue.1, p.38, 1992.

D. Poncelet, B. P. Smet, C. Beaulieu, M. L. Huguet, A. Fournier et al., Production of Alginate Beads by Emulsification/Internal Gelation. I1. Physicochemistry, p.7, 1995.

X. D. Liu, W. Y. Yu, Y. Zhang, W. M. Xue, W. T. Yu et al., Characterization of Structure and Diffusion Behaviour of Ca-Alginate Beads Prepared with External or Internal Calcium Sources, J. Microencapsul, vol.19, issue.6, pp.775-782, 2002.

L. W. Chan, H. Y. Lee, and P. W. Heng, Mechanisms of External and Internal Gelation and Their Impact on the Functions of Alginate as a Coat and Delivery System, Carbohydr. Polym, vol.63, issue.2, pp.176-187, 2006.

M. Mancini, M. Moresi, and R. Rancini, Mechanical Properties of Alginate Gels: Empirical Characterisation, J. Food Eng, vol.39, issue.4, pp.22-31, 1999.

J. L. Drury, R. G. Dennis, and D. J. Mooney, The Tensile Properties of Alginate Hydrogels, Biomaterials, vol.25, issue.16, pp.3187-3199, 2004.

,

M. Szekalska, A. Puci?owska, E. Szyma?ska, P. Ciosek, and K. Winnicka, Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications, Int. J. Polym. Sci, pp.1-17, 2016.

K. I. Draget, M. K. Simensen, E. Onsøyen, and O. Smidsrød, Gel Strength of Ca-Limited Alginate Gels Made in Situ, Hydrobiologia, vol.260, pp.563-565, 1993.

S. Fu, A. Thacker, D. M. Sperger, R. L. Boni, I. S. Buckner et al., Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties, AAPS PharmSciTech, vol.12, issue.2, pp.453-460, 2011.

T. E. Jørgensen, M. Sletmoen, K. I. Draget, and B. T. Stokke, Influence of Oligoguluronates on Alginate Gelation, Kinetics, and Polymer Organization, Biomacromolecules, vol.8, issue.8, pp.2388-2397, 2007.

A. D. Augst, H. J. Kong, and D. J. Mooney, Alginate Hydrogels as Biomaterials. Macromol. Biosci, vol.6, issue.8, pp.623-633, 2006.

A. Al-shamkhani and R. Duncan, Radioiodination of Alginate via Covalently-Bound Tyrosinamide Allows Monitoring of Its Fate In Vivo, J. Bioact. Compat. Polym, vol.10, issue.1, pp.4-13, 1995.

M. Otterlei, K. Ostgaard, G. Skjåk-braek, O. Smidsrød, P. Soon-shiong et al., Induction of Cytokine Production from Human Monocytes Stimulated with Alginate, J. Immunother. Off. J. Soc. Biol. Ther, vol.10, issue.4, pp.286-291, 1991.

U. Zimmermann, G. Klöck, K. Federlin, K. Hannig, M. Kowalski et al., Production of Mitogen-Contamination Free Alginates with Variable Ratios of Mannuronic Acid to Guluronic Acid by Free Flow Electrophoresis, Electrophoresis, vol.13, issue.5, pp.269-274, 1992.

, Biocompatibility of Microcapsules for Cell Immobilization Elaborated with Different Type of Alginates, Biomaterials, vol.23, issue.18, pp.118-125, 2002.

J. Lee and K. Y. Lee, Local and Sustained Vascular Endothelial Growth Factor Delivery for Angiogenesis Using an Injectable System, Pharm. Res, vol.26, issue.7, pp.1739-1744, 2009.

O. Smidsrød and G. Skjåk-braek, Alginate as Immobilization Matrix for Cells, Trends Biotechnol, vol.8, issue.3, pp.71-78, 1990.

A. Martinsen, G. Skjåk-braek, and O. Smidsrød, Alginate as Immobilization Material: I. Correlation between Chemical and Physical Properties of Alginate Gel Beads: ALGINATE AS IMMOBILIZATION MATERIAL, Biotechnol. Bioeng, vol.33, issue.1, pp.79-89, 1989.

J. Yang, Y. Xie, and W. He, Research Progress on Chemical Modification of Alginate: A Review, Carbohydr. Polym, vol.84, issue.1, pp.33-39, 2011.

,

K. M. Gattás-asfura, C. A. Fraker, and C. L. Stabler, Covalent Stabilization of Alginate Hydrogel Beads via Staudinger Ligation: Assessment of Poly(Ethylene Glycol) and Alginate Cross-Linkers, J. Biomed. Mater. Res. A, issue.1, pp.47-57, 2011.

,

K. K. Hall, K. M. Gattás-asfura, and C. L. Stabler, Microencapsulation of Islets within Alginate/Poly(Ethylene Glycol) Gels Cross-Linked via Staudinger Ligation, Acta Biomater, vol.7, issue.2, pp.614-624, 2011.

M. A. Mazumder, N. A. Burke, F. Shen, M. A. Potter, and H. D. Stöver, Core-Cross-Linked Alginate Microcapsules for Cell Encapsulation, Biomacromolecules, vol.10, issue.6, pp.1365-1373, 2009.

F. Shen, M. A. Mazumder, N. A. Burke, H. D. Stöver, and M. A. Potter, Mechanically Enhanced Microcapsules for Cellular Gene Therapy, J. Biomed. Mater. Res. B Appl. Biomater, vol.90, issue.1, pp.350-361, 2009.

A. Bidoret, E. Martins, . De, B. P. Smet, D. Poncelet et al., Cell Microencapsulation: Dripping Methods. In Cell Microencapsulation, vol.1479, pp.43-55, 2017.

D. Poncelet and S. K. Tam, 3 Microencapsulation Technologies for a Bioartificial Endocrine Pancreas, vol.14

U. Prüße, Bead Production with JetCutting and Rotating Disk/Nozzle Technologies, p.11, 2002.

D. Poncelet, R. J. Neufeld, M. F. Goosen, B. Burgarski, and V. Babak, Formation of Microgel Beads by Electric Dispersion of Polymer Solutions, AIChE J, vol.45, issue.9, pp.2018-2023, 1999.

V. Manojlovic, J. Djonlagic, B. Obradovic, V. Nedovic, and B. Bugarski, Immobilization of Cells by Electrostatic Droplet Generation: A Model System for Potential Application in Medicine, Int. J. Nanomedicine, vol.1, issue.2, pp.163-171, 2006.

B. Branko, Q. Li, M. Goosen, D. ;. Poncelet, R. Neufeld et al., Electrostatic Droplet Generation: Mechanism of Polymer Droplet Formation, AIChE J, vol.40, pp.1026-1031, 1994.

L. Rayleigh, On The Instability Of Jets, Proc. Lond. Math. Soc, vol.1878, issue.1, pp.4-13

U. Prüße, J. Dalluhn, J. Breford, and K. Vorlop, Production of Spherical Beads by JetCutting, Chem. Eng. Technol, vol.23, issue.12, pp.1105-1110, 2000.

C. Schwinger, S. Koch, U. Jahnz, P. Wittlich, N. G. Rainov et al., High Throughput Encapsulation of Murine Fibroblasts in Alginate Using the JetCutter Technology, J. Microencapsul, vol.19, issue.3, pp.273-280, 2002.

, Handbook of Encapsulation and Controlled Release

M. Mishra and . Ed, , 2015.

U. Pruesse and K. D. Vorlop, The JetCutter Technology. Fundam. Cell Immobil. Biotechnol, pp.295-309, 2004.

G. M. Whitesides, The Origins and the Future of Microfluidics, Nature, issue.7101, pp.368-373, 2006.

A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus et al., Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems: Capillary Electrophoresis on a Chip, J. Chromatogr. A, vol.593, issue.1, pp.253-258, 1992.

. Microfluidics and . Wikipedia, , 2019.

D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically Mediated Breakup of Drops in Microfluidic Devices, Phys. Rev. Lett, issue.5, p.54503, 2004.

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of Dispersions Using "Flow Focusing" in Microchannels, Appl. Phys. Lett, vol.82, issue.3, pp.364-366, 2003.

,

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Phys. Rev. Lett, issue.18, pp.4163-4166, 2001.

Z. Liu, Y. Yang, Y. Du, and Y. Pang, Advances in Droplet-Based Microfluidic Technology and Its Applications. Chin, J. Anal. Chem, vol.2017, issue.2, pp.282-296

H. Gu, M. H. Duits, and F. Mugele, Droplets Formation and Merging in Two-Phase Flow Microfluidics, Int. J. Mol. Sci, vol.12, issue.4, pp.2572-2597, 2011.

,

P. Zhu and L. Wang, Passive and Active Droplet Generation with Microfluidics: A Review, Lab. Chip, vol.17, issue.1, pp.34-75, 2016.

S. Teh, R. Lin, L. Hung, and A. P. Lee, Droplet Microfluidics. Lab. Chip, vol.8, issue.2, 0198.

G. T. Vladisavljevi?, N. Khalid, M. A. Neves, T. Kuroiwa, M. Nakajima et al., Design, Applications and Scale-up for Drug Discovery and Delivery, vol.65, pp.1626-1663, 2013.

J. Chen and J. Jiang, Droplet Microfluidic Technology: Mirodroplets Formation and Manipulation. Chin, J. Anal. Chem, vol.2012, issue.8, pp.1293-1300

, , pp.60567-60574

B. Lin and Y. Su, On-Demand Liquid-in-Liquid Droplet Metering and Fusion Utilizing Pneumatically Actuated Membrane Valves, J. Micromechanics Microengineering, vol.18, issue.11, p.115005, 2008.

W. S. Lee, S. Jambovane, D. Kim, and J. W. Hong, Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluid. Nanofluidics, vol.7, issue.3, p.431, 2009.

Y. Yamanishi, L. Feng, and F. Arai, On-Demand and Size-Controlled Production of Emulsion Droplets by Magnetically Driven Microtool, pp.4094-4099, 2010.

,

S. M. Murshed, S. H. Tan, N. T. Nguyen, T. N. Wong, and L. Yobas, Microdroplet Formation of Water and Nanofluids in Heat-Induced Microfluidic T-Junction, Microfluid. Nanofluidics, vol.6, issue.2, pp.253-259, 2009.

M. L. Steegmans, K. G. Schroën, and R. M. Boom, Characterization of Emulsification at Flat Microchannel Y Junctions, Langmuir, vol.25, issue.6, pp.3396-3401, 2009.

M. L. Steegmans, A. Warmerdam, K. G. Schroën, and R. M. Boom, Dynamic Interfacial Tension Measurements with Microfluidic Y-Junctions, Langmuir, vol.25, issue.17, pp.9751-9758, 2009.

J. Hong, M. Choi, J. B. Edel, and A. J. Demello, Passive Self-Synchronized Two-Droplet Generation, Lab. Chip, issue.20, pp.2702-2709, 2010.

H. Liu and Y. Zhang, Droplet Formation in Microfluidic Cross-Junctions, Phys. Fluids, vol.23, issue.8, p.82101, 2011.

P. Hoa, Y. Yap, N. Nguyen, and . Chai, J. Thermally Mediated Droplet Formation at a Microfluidic T-Junction. Micro Nanosyst, vol.2011, issue.1, pp.65-75

C. Cramer, P. Fischer, and E. J. Windhab, Drop Formation in a Co-Flowing Ambient Fluid, Chem. Eng. Sci, vol.59, issue.15, pp.3045-3058, 2004.

P. Garstecki, A. M. Gañán-calvo, and G. Whitesides, Formation of Bubbles and Droplets in Microfluidic Systems, Bull. Pol. Acad. Sci. Tech. Sci, vol.53, p.361, 2005.

P. C. Lewis, R. R. Graham, Z. Nie, S. Xu, M. Seo et al., Continuous Synthesis of Copolymer Particles in Microfluidic Reactors, Macromolecules, vol.38, issue.10, pp.4536-4538, 2005.

Q. Xu and M. Nakajima, The Generation of Highly Monodisperse Droplets through the Breakup of Hydrodynamically Focused Microthread in a Microfluidic Device, Appl. Phys. Lett, issue.17, pp.3726-3728, 2004.

A. M. Gañán-calvo, Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams, Phys. Rev. Lett, vol.80, issue.2, pp.285-288, 1998.

A. M. Gañán-calvo and J. M. Gordillo, Perfectly Monodisperse Microbubbling by Capillary Flow Focusing, Phys. Rev. Lett, vol.87, issue.27, p.274501, 2001.

T. Schneider, G. H. Chapman, and U. O. Häfeli, Effects of Chemical and Physical Parameters in the Generation of Microspheres by Hydrodynamic Flow Focusing, Colloids Surf. B Biointerfaces, vol.87, issue.2, pp.361-368, 2011.

S. Takeuchi, P. Garstecki, D. B. Weibel, and G. M. Whitesides, An Axisymmetric Flow-Focusing Microfluidic Device, Adv. Mater, vol.17, issue.8, pp.1067-1072, 2005.

,

S. L. Anna and H. C. Mayer, Microscale Tipstreaming in a Microfluidic Flow Focusing Device, Phys. Fluids, vol.18, issue.12, p.121512, 2006.

T. Ingram, The Formation of Emulsions in Definable Fields of Flow, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol.1934, issue.858, pp.501-523

T. D. Martz, D. Bardin, P. S. Sheeran, A. P. Lee, and P. A. Dayton, Microfluidic Generation of Acoustically Active Nanodroplets, Small Weinh. Bergstr. Ger, vol.2012, issue.12, pp.1876-1879

W. Jeong, J. Lim, J. Choi, J. Kim, Y. Lee et al., Controlled Generation of Submicron Emulsion Droplets via Highly Stable Tip-Streaming Mode in Microfluidic Devices, Lab. Chip, vol.2012, issue.8, pp.1446-1453

R. Suryo and O. A. Basaran, Tip Streaming from a Liquid Drop Forming from a Tube in a Co-Flowing Outer Fluid, Phys. Fluids, vol.18, issue.8, p.82102, 2006.

J. Gordillo, A. Sevilla, and F. Campo-cortés, Global Stability of Stretched Jets: Conditions for the Generation of Monodisperse Micro-Emulsions Using Coflows, J. Fluid Mech, vol.738, 2013.

O. A. Basaran and R. Suryo, Fluid Dynamics: The Invisible Jet, Nat. Phys, vol.3, issue.10, pp.679-680

E. Castro-hernández, F. Campo-cortés, and J. M. Gordillo, Slender-Body Theory for the Generation of Micrometre-Sized Emulsions through Tip Streaming, J. Fluid Mech, vol.698, pp.423-445, 2012.

J. Shim, R. T. Ranasinghe, C. A. Smith, S. M. Ibrahim, F. Hollfelder et al., Ultrarapid Generation of Femtoliter Microfluidic Droplets for Single-Molecule-Counting Immunoassays, ACS Nano, vol.7, issue.7, pp.5955-5964, 2013.

Y. Tan, V. Cristini, and A. P. Lee, Monodispersed Microfluidic Droplet Generation by Shear Focusing Microfluidic Device, Sens. Actuators B Chem, vol.114, issue.1, pp.350-356, 2006.

H. Zhang, E. Tumarkin, R. M. Sullan, G. C. Walker, and E. Kumacheva, Exploring Microfluidic Routes to Microgels of Biological Polymers, Macromol. Rapid Commun, vol.28, issue.5, pp.527-538, 2007.

W. Tan and S. Takeuchi, Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation, Adv. Mater, vol.19, issue.18, pp.2696-2701, 2007.

,

S. Akbari and T. Pirbodaghi, Microfluidic Encapsulation of Cells in Alginate Particles via an Improved Internal Gelation Approach, Microfluid. Nanofluidics, vol.16, issue.4, pp.773-777, 2014.

J. S. Hong, S. Shin, S. Lee, E. H. Wong, and J. Cooper-white, Spherical and Cylindrical Microencapsulation of Living Cells Using Microfluidic Devices, Korea-Aust. Rheol. J, vol.19, issue.3, pp.157-164, 2007.

H. Shintaku, T. Kuwabara, S. Kawano, T. Suzuki, I. Kanno et al., Micro Cell Encapsulation and Its Hydrogel-Beads Production Using Microfluidic Device, vol.13, pp.951-958, 2007.

K. Liu, H. Ding, Y. Chen, and X. Zhao, Droplet-Based Synthetic Method Using Microflow Focusing and Droplet Fusion, Microfluid. Nanofluidics, vol.3, issue.2, pp.239-243, 2007.

E. Rondeau and J. J. Cooper-white, Biopolymer Microparticle and Nanoparticle Formation within a Microfluidic Device, Langmuir, vol.24, issue.13, pp.6937-6945, 2008.

C. Choi, J. Jung, Y. W. Rhee, D. Kim, S. Shim et al., Generation of Monodisperse Alginate Microbeads and in Situ Encapsulation of Cell in Microfluidic Device, Biomed. Microdevices, vol.9, issue.6, pp.855-862, 2007.

C. Kim, K. S. Lee, Y. E. Kim, K. Lee, S. H. Lee et al., Rapid Exchange of Oil-Phase in Microencapsulation Chip to Enhance Cell Viability, Lab. Chip, vol.9, issue.9, 2009.

C. Kim, S. Chung, Y. E. Kim, K. S. Lee, S. H. Lee et al., Generation of Core-Shell Microcapsules with Three-Dimensional Focusing Device for Efficient Formation of Cell Spheroid, Lab Chip, vol.11, issue.2, pp.246-252, 2011.

D. Lee, W. Lee, E. Um, and J. Park, On-Chip Gelation of Temporally Controlled Alginate Microdroplets, 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp.234-237, 2011.

,

S. Passemard, D. Staedler, L. U??ová, G. S. Schneiter, P. Kong et al., Convenient Synthesis of Heterobifunctional Poly(Ethylene Glycol) Suitable for the Functionalization of Iron Oxide Nanoparticles for Biomedical Applications, Bioorg. Med. Chem. Lett, issue.17, pp.5006-5010, 2013.

S. Passemard, L. Szabó, F. Noverraz, E. Montanari, C. Gonelle-gispert et al., Synthesis Strategies to Extend the Variety of Alginate-Based Hybrid Hydrogels for Cell Microencapsulation, Biomacromolecules, vol.2017, issue.9, pp.2747-2755

L. Szabó, C. Gonelle-gispert, E. Montanari, F. Noverraz, A. Bornet et al., Cross-Reactive Alginate Derivatives for the Production of Dual Ionic-Covalent Hydrogel Microspheres Presenting Tunable Properties for Cell Microencapsulation, ACS Appl. Polym. Mater, vol.2019, issue.6, pp.1326-1333

F. Noverraz, E. Montanari, J. Pimenta, L. Szabó, D. Ortiz et al., Antifibrotic Effect of Ketoprofen-Grafted Alginate Microcapsules in the Transplantation of Insulin Producing Cells, Bioconjug. Chem, issue.6, pp.1932-1941, 2018.

S. H. Bjørnøy, S. Mandaric, D. C. Bassett, A. K. Åslund, S. Ucar et al., Gelling Kinetics and in Situ Mineralization of Alginate Hydrogels: A Correlative Spatiotemporal Characterization Toolbox, Acta Biomater, vol.44, pp.243-253, 2016.

R. Basics-of, , 2019.

J. Husny and J. J. Cooper-white, The Effect of Elasticity on Drop Creation in T-Shaped Microchannels, J. Non-Newton. Fluid Mech, vol.137, issue.1-3, pp.121-136, 2006.

D. Qiu, L. Silva, A. L. Tonkovich, and R. Arora, Micro-Droplet Formation in Non-Newtonian Fluid in a Microchannel, Microfluid. Nanofluidics, vol.8, issue.4, pp.531-548, 2010.

V. Tirtaatmadja, G. H. Mckinley, and J. J. Cooper-white, Drop Formation and Breakup of Low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration, Phys. Fluids, vol.18, issue.4, 2006.

P. E. Arratia, L. Cramer, J. P. Gollub, and D. J. Durian, The Effects of Polymer Molecular Weight on Filament Thinning and Drop Breakup in Microchannels, New J. Phys, vol.11, issue.11, p.115006, 2009.

Z. Gu, Experimental and Theoretical Study of Droplet Formation at a T-Junction with Xanthan Gum Solutions, 2013.

V. Wong, K. Loizou, P. Lau, R. S. Graham, and B. Hewakandamby, Non-Newtonian Effects on Droplet Breakup Dynamics in a T-Junction Microfluidic Channel

V. Melbourne, , 2015.

V. Wong, K. Loizou, P. Lau, R. S. Graham, and B. N. Hewakandamby, Fora: Cavitation and Multiphase Flow; Fluid Measurements and Instrumentation; Microfluidics; Multiphase Flows: Work in Progress, vol.2

, American Society of Mechanical Engineers, 2014.

J. Ma, Y. Lin, X. Chen, B. Zhao, and J. Zhang, Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions. Food Hydrocoll, vol.38, pp.119-128, 2014.

D. Gómez-d?áz and J. M. Navaza, Rheology of Aqueous Solutions of Food Additives: Effect of Concentration, Temperature and Blending, J. Food Eng, vol.56, issue.4, pp.387-392, 2003.

M. Marcotte, A. R. Taherian-hoshahili, and H. S. Ramaswamy, Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature, Food Res. Int, vol.34, issue.8, pp.91-97, 2001.

A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, Effect of Molecular Shape on Rheological Properties in Molecular Dynamics Simulation of Star, H, Comb, and Linear Polymer Melts, Macromolecules, vol.36, issue.13, pp.5020-5031, 2003.

J. M. Kim and C. Baig, Communication: Role of Short Chain Branching in Polymer Structure and Dynamics, J. Chem. Phys, vol.2016, issue.8, p.81101

A. J. Tsamopoulos, A. F. Katsarou, D. G. Tsalikis, and V. G. Mavrantzas, Shear Rheology of Unentangled and Marginally Entangled Ring Polymer Melts from Large-Scale Nonequilibrium Molecular Dynamics Simulations, Polymers, vol.2019, issue.7, p.11

,

C. A. García-franco, B. A. Harrington, and D. J. Lohse, Effect of Short-Chain Branching on the Rheology of Polyolefins, Macromolecules, vol.39, issue.7, pp.2710-2717, 2006.

,

A. D. Gotsis, B. L. Zeevenhoven, and C. Tsenoglou, Effect of Long Branches on the Rheology of Polypropylene, J. Rheol, vol.48, issue.4, pp.895-914, 2004.

R. L. Combs, D. F. Slonaker, and H. W. Coover, Effects of Molecular Weight Distribution and Branching on Rheological Properties of Polyolefin Melts, J. Appl. Polym. Sci, vol.13, issue.3, pp.519-534, 1969.

F. J. Stadler and T. Mahmoudi, Understanding the Effect of Short-Chain Branches by Analyzing Viscosity Functions of Linear and Short-Chain Branched Polyethylenes, Korea-Aust. Rheol. J, vol.23, issue.4, pp.185-193, 2011.

M. Verani, Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto-Capillary Breakup

;. Lisy, . Tothova, and . Zatovsky, The Joint Rouse-Zimm Theory of the Dynamics of Polymers in Dilute Solutions, Condens. Matter Phys, vol.9, issue.1, p.95, 2006.

Y. Amarouchene, Etude de l'Interaction Polymère-Ecoulement, 2002.

G. F. Christopher and S. L. Anna, Microfluidic Methods for Generating Continuous Droplet Streams, J. Phys. Appl. Phys, issue.19, pp.319-336, 2007.

J. K. Nunes, S. S. Tsai, J. Wan, and H. A. Stone, Dripping and Jetting in Microfluidic Multiphase Flows Applied to Particle and Fiber Synthesis, J. Phys. Appl. Phys, vol.2013, issue.11, p.46

W. Lee, L. M. Walker, and S. L. Anna, Role of Geometry and Fluid Properties in Droplet and Thread Formation Processes in Planar Flow Focusing, Phys. Fluids, vol.21, issue.3, p.32103, 2009.

Z. Nie, M. Seo, S. Xu, P. C. Lewis, M. Mok et al., Emulsification in a Microfluidic Flow-Focusing Device: Effect of the Viscosities of the Liquids, Microfluid. Nanofluidics, vol.5, issue.5, pp.585-594, 2008.

,

C. Zhao and A. P. Middelberg, Two-Phase Microfluidic Flows, Chem. Eng. Sci, vol.66, issue.7, pp.1394-1411, 2011.

P. Wu, Z. Luo, Z. Liu, Z. Li, C. Chen et al., Drag-Induced Breakup Mechanism for Droplet Generation in Dripping within Flow Focusing Microfluidics, Chin. J. Chem. Eng, vol.23, issue.1, pp.7-14, 2015.

N. Dietrich, S. Poncin, and H. Z. Li, Dynamical Deformation of a Flat Liquid-Liquid Interface, Exp. Fluids, vol.50, issue.5, pp.1293-1303, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606327

J. Chen, P. S. Hahn, and J. C. Slattery, Coalescence Time for a Small Drop or Bubble at a Fluid-Fluid Interface, AIChE J, vol.30, issue.4, pp.622-630, 1984.

M. Kemiha, E. Olmos, W. Fei, S. Poncin, and H. Z. Li, Passage of a Gas Bubble through a Liquid?Liquid Interface, Ind. Eng. Chem. Res, vol.46, issue.19, pp.6099-6104, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00273121

C. Lin and J. C. Slattery, Thinning of a Liquid Film as a Small Drop or Bubble Approaches a Fluid-Fluid Interface, AIChE J, vol.28, issue.5, pp.786-792, 1982.

,

G. E. Charles and S. G. Mason, The Coalescence of Liquid Drops with Flat Liquid/Liquid Interfaces, J. Colloid Sci, vol.15, issue.3, p.90026, 1960.

S. Hartland, The Approach of a Rigid Sphere to a Deformable Liquid/Liquid Interface, J. Colloid Interface Sci, vol.26, issue.4, pp.90285-90288, 1968.

D. Y. Chan, E. Klaseboer, and R. Manica, Film Drainage and Coalescence between Deformable Drops and Bubbles, Soft Matter, vol.7, issue.6, pp.2235-2264, 2011.

C. Gourdon and G. Casamatta, Influence of Mass Transfer Direction on the Operation of a Pulsed Sieve-Plate Pilot Column, Chem. Eng. Sci, vol.46, issue.11, p.85149, 1991.

D. Chen and B. Pu, Studies on the Binary Coalescence Model: II. Effects of Drops Size and Interfacial Tension on Binary Coalescence Time, J. Colloid Interface Sci, vol.243, issue.2, pp.433-443, 2001.

S. B. Lang and C. R. Wilke, A Hydrodynamic Mechanism for the Coalescence of Liquid Drops, II. Experimental Studies. Ind. Eng. Chem. Fundam, vol.10, issue.3, pp.341-352, 1971.

G. W. Stevens, H. R. Pratt, D. R. Tai, and . Droplet, Coalescence in Aqueous Electrolyte Solutions, J. Colloid Interface Sci, vol.136, issue.2, pp.90394-90398, 1990.

E. Dickinson, B. S. Murray, and G. Stainsby, Coalescence Stability of Emulsion-Sized Droplets at a Planar Oil-Water Interface and the Relationship to Protein Film Surface Rheology, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.84, issue.3, 1988.

I. B. Ivanov and P. A. Kralchevsky, Stability of Emulsions under Equilibrium and Dynamic Conditions, Colloids Surf. Physicochem. Eng. Asp, vol.128, issue.1, pp.155-175, 1997.

, , pp.3903-3912

I. B. Ivanov, K. D. Danov, and P. A. Kralchevsky, Flocculation and Coalescence of Micron-Size Emulsion Droplets, Colloids Surf. Physicochem. Eng. Asp, vol.152, issue.1, pp.620-627, 1999.

E. S. Basheva, T. D. Gurkov, I. B. Ivanov, G. B. Bantchev, B. Campbell et al., Size Dependence of the Stability of Emulsion Drops Pressed against a Large Interface, Langmuir, vol.15, issue.20, pp.6764-6769, 1999.

J. Kamp, J. Villwock, and M. Kraume, Drop Coalescence in Technical Liquid/Liquid Applications: A Review on Experimental Techniques and Modeling Approaches, Rev. Chem. Eng, vol.2017, issue.1, pp.1-47

C. Verdier and M. Brizard, Understanding Droplet Coalescence and Its Use to Estimate Interfacial Tension, Rheol. Acta, issue.6, pp.514-523, 2002.

Y. Shi, G. H. Tang, and H. H. Xia, Lattice Boltzmann Simulation of Droplet Formation in T-Junction and Flow Focusing Devices, Comput. Fluids, vol.90, pp.155-163, 2014.

T. Cubaud and T. G. Mason, Capillary Threads and Viscous Droplets in Square Microchannels, Phys. Fluids, vol.20, issue.5, p.53302, 2008.

Z. Nie, S. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors, J. Am. Chem. Soc, vol.127, issue.22, pp.8058-8063, 2005.

C. Zhou, P. Yue, and J. J. Feng, Formation of Simple and Compound Drops in Microfluidic Devices, Phys. Fluids, vol.18, issue.9, p.92105, 2006.

B. Steinhaus, A. Q. Shen, and R. Sureshkumar, Dynamics of Viscoelastic Fluid Filaments in Microfluidic Devices, Phys. Fluids, vol.19, issue.7, p.73103, 2007.

P. E. Arratia, J. P. Gollub, and D. J. Durian, Polymeric Filament Thinning and Breakup in Microchannels, Phys. Rev. E, vol.77, issue.3, 2008.

A. Blaeser, D. F. Duarte-campos, U. Puster, W. Richtering, M. M. Stevens et al., Controlling Shear Stress in 3D Bioprinting Is a Key Factor to Balance Printing Resolution and Stem Cell Integrity, Adv. Healthc. Mater, vol.5, issue.3, pp.326-333, 2016.

L. Ning, N. Betancourt, D. J. Schreyer, and X. Chen, Characterization of Cell Damage and Proliferative Ability during and after Bioprinting, ACS Biomater. Sci. Eng, vol.4, issue.11, pp.3906-3918, 2018.

M. Liu, L. Su, J. Li, S. Chen, Y. Liu et al., Z. Investigation of Spherical and Concentric Mechanism of Compound Droplets. Matter Radiat. Extrem, vol.2016, issue.4, pp.213-223

T. A. Desai, T. West, M. Cohen, T. Boiarski, and A. Rampersaud, Nanoporous Microsystems for Islet Cell Replacement, Adv. Drug Deliv. Rev, p.13, 2004.

N. Trivedi, G. M. Steil, C. K. Colton, S. Bonner-weir, and G. C. Weir, Improved Vascularization of Planar Membrane Diffusion Devices Following Continuous Infusion of Vascular Endothelial Growth Factor, Cell Transplant, vol.9, issue.1, pp.115-124, 2000.

R. P. Lanza, W. M. Kühtreiber, D. Ecker, J. E. Staruk, and W. L. Chick, Xenotransplantation of Porcine and Bovine Islets without Immunosuppression Using Uncoated Alginate Microspheres, Transplantation, vol.59, issue.10, pp.1377-1384, 1995.

,

C. Lin, P. D. Boyer, A. A. Aimetti, and K. S. Anseth, Regulating MCP-1 Diffusion in Affinity Hydrogels for Enhancing Immuno-Isolation, J. Controlled Release, vol.142, issue.3, pp.384-391, 2010.

J. Su, B. Hu, W. L. Lowe, D. B. Kaufman, and P. B. Messersmith, Anti-Inflammatory Peptide-Functionalized Hydrogels for Insulin-Secreting Cell Encapsulation, Biomaterials, vol.2010, issue.2, pp.308-314

B. L. Strand, A. E. Coron, and G. Skjak-braek, Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet, Stem Cells Transl. Med, vol.2017, issue.4, pp.1053-1058

E. S. O'sullivan, A. Vegas, D. G. Anderson, and G. C. Weir, Islets Transplanted in Immunoisolation Devices: A Review of the Progress and the Challenges That Remain, Endocr. Rev, vol.32, issue.6, pp.827-844, 2011.

M. Qi, Y. Mørch, I. Lacík, K. Formo, E. Marchese et al., Survival of Human Islets in Microbeads Containing High Guluronic Acid Alginate Cross-Linked with Ca2+ and Ba2+, Xenotransplantation, vol.19, issue.6, pp.355-364, 2012.

V. F. Duvivier-kali, A. Omer, M. D. Lopez-avalos, J. J. Neil, and G. C. Weir, Survival of Microencapsulated Adult Pig Islets in Mice In Spite of an Antibody Response, Am. J. Transplant, vol.4, issue.12, 1991.

R. Mahou, F. Borcard, V. Crivelli, E. Montanari, S. Passemard et al., Tuning the Properties of Hydrogel Microspheres by Adding Chemical Cross-Linking Functionality to Sodium Alginate, Chem. Mater, vol.27, issue.12, pp.4380-4389, 2015.