R. Bashir, BioMEMS: State-of-the-art in detection, opportunities and prospects, Adv. Drug Deliv. Rev, vol.56, issue.11, pp.1565-1586, 2004.

A. Gupta, D. Akin, and R. Bashir, Single virus particle mass detection using microresonators with nanoscale thickness, Appl. Phys. Lett, vol.84, issue.11, pp.1976-1978, 2004.

F. Artis, T. Chen, T. Chretiennot, J. Fournie, M. Poupot et al., Microwaving biological cells, IEEE Microw. Mag, vol.16, issue.4, pp.87-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01951696

D. L. Stokes and G. D. Griffin, Detection of E. coli using a microfluidics-based antibody biochip detection system, Fresenius. J. Anal. Chem, pp.295-301, 2001.

R. Bendoula, Biocapteur optique : Sonde fibrée à cavité Fabry-Pérot intrinsèque et à couplage évanescent, Thèse de l'Université, 2005.

U. Schwerthoeffer, R. Weigel, and D. Kissinger, A highly sensitive glucose biosensor based on a microstrip ring resonator, IEEE MTT-S Int. Microw. Work. Ser. RF Wirel. Technol. Biomed. Healthc. Appl. IMWS-BIO 2013 -Proc, issue.4, pp.5-7, 2013.

Y. Kim, Y. Park, and H. K. Baik, Development of LC resonator for label-free biomolecule detection, Sensors Actuators, A Phys, vol.143, issue.2, pp.279-285, 2008.

D. Narayanswamy, D. G. Beetner, W. V. Stoecker, P. Mehta, R. Zoughi et al., Microwave Reflectometry as a Novel Diagnostic Tool for Detection of Skin Cancers, IEEE Trans. Instrum. Meas, vol.55, issue.4, pp.1309-1316, 2006.

A. Lonappan, V. Thomas, G. Bindu, J. Jacon, C. Rajasekaran et al., New method of detecting lymphatic disease using microwaves, Microw. Opt. Technol. Lett, vol.49, issue.5, pp.1189-1192, 2007.

I. Jasim, A. Abdullha, Z. Shen, S. Zhang, M. Alalem et al., An impedance biosensor for simultaneous detection of low concentration of salmonella serogroups in poultry samples, Transducers, pp.726-729, 2017.

R. Manczak, F. Hjeij, T. Provent, S. Saada, C. Dalmay et al., Tracking Cancer Cells with Microfluidic High Frequency DEP Cytometer Implemented on BiCMOS Lab-on-Chip Platform, IEEE MTT-S International Microwave Symposium Digest, pp.104-107, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975284

G. N. Stewart, The relative volume or weight of corpuscles and plasma in blood, J. Physiol, vol.24, issue.5, pp.356-373, 1898.

R. Höber, Ein zweites Verfahren, die Leitfähigkeit im Innern von Zellen zu messen, Pflüg. Arch. Für Gesamte Physiol. Menschen Tiere, vol.148, issue.4-5, pp.189-221, 1912.

N. Tesla, High Frequency Oscillators for Electro-Therapeutic and Other Purposes, Proc. IEEE, vol.87, p.1282, 1999.

E. C. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, Confocal Microwave Imaging for Breast Cancer Detection: Localization of Tumors in Three Dimensions, IEEE Trans. Biomed. Eng, vol.49, pp.812-822, 2002.

J. Manceau, Etude du phénomène de relaxation diélectrique dans les capacités Métal-Isolant-Métal, 2008.

T. Chen, Développement de biocapteurs hyperfréquences microfluidiques pour la spectroscopie diélectrique non-invasive de la cellule unique. Applications en cancérologie, Thèse de l'université Paul Sabatier, 2012.

H. P. Schwan, Electrical Properties of Blood and its Constituents: Alternating current spectroscopy, Blut Zeitschrift für die Gesamte Blutforsch, vol.46, pp.185-197, 1983.

N. Demierre, Continuous-flow separation of cells in a Lab-on-a-Chip using liquid Licence CC BY-NC-ND 3.0 electrodes and multiple-frequency dielectrophoresis, 2008.

N. Islam and S. Sayed, Microelectromechanical systems and devices, pp.39-64, 2012.

G. Martinsen, S. Grimnes, and H. P. Schwan, Interface phenomena and dielectric properties of biological tissue, Encycl. Surf. Colloid Sci, issue.7, pp.2643-2652, 2002.

R. Pethig, Dielectrophoresis: An assessment of its potential to aid the research and practice of drug discovery and delivery, Adv. Drug Deliv. Rev, vol.65, issue.11-12, pp.1589-1599, 2013.

H. Fricke, XXXIII. The theory of electrolytic polarization, London, Edinburgh, Dublin Philos. Mag. J. Sci, vol.14, issue.90, pp.310-318, 1932.

C. Gabriel, S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol, vol.41, issue.11, pp.2231-2249, 1996.

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol. Phys. Med. Biol, vol.41, issue.41, pp.2251-2269, 1996.

G. E. Moore, Cramming more components onto integrated circuits, Electronics, vol.38, issue.8, p.114, 1965.

M. Gad-el-hak, MEMS: introduction and fundamentals, 2006.

K. H. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart et al., An integrated force-balanced capacitive accelerometer for low-G applications, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, vol.1, pp.593-596, 1995.

W. O. Davis, R. Sprague, and J. Miller, MEMS-based Pico projector display, IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, vol.1, pp.31-32, 2008.

Y. Fujino, K. Kitagawa, T. Furukawa, and H. Ishii, Development of vehicle intelligent monitoring system (VIMS)," in Sensors and smart structures technologies for civil, mechanical, and aerospace systems, pp.148-157, 2005.

K. H. Kim, J. S. Ko, Y. Cho, K. Lee, B. M. Kwak et al., A skew-symmetric cantilever accelerometer for automotive airbag applications, Sensors and Actuators, vol.50, pp.121-126, 1995.

S. C. Terry, J. H. Jerman, and J. B. Angell, A Gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Devices, vol.26, issue.12, pp.1880-1886, 1979.

A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors Actuators B Chem, vol.1, issue.1-6, pp.244-248, 1990.

J. G. Gardeniers, A. Van-den, and . Berg, Lab-on-a-chip systems for biomedical and environmental monitoring, Int. J. Comput. Eng. Sci, vol.4, pp.157-162, 2003.

H. Cai, J. W. Parks, T. A. Wall, M. A. Stott, A. Stambaugh et al., Optofluidic analysis system for amplification-free, direct detection of Ebola infection, Sci. Rep, vol.5, pp.1-8, 2015.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M. G. Casabona et al., On-chip microbial culture for the specific detection of very low levels of bacteria, R. Soc. Chem, vol.13, issue.20, pp.4024-4032, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322346

D. Sefrioui, N. Sarafan-vasseur, L. Beaussire, M. Baretti, A. Gangloff et al.,

I. Chapitre, Spectroscope diélectrique pour la détection et la caractérisation cellulaire Licence CC

J. C. Clatot, R. Sabourin, T. Sesboüé, P. Frebourg, F. D. Michel et al., Clinical value of chip-based digital-PCR platform for the detection of circulating DNA in metastatic colorectal cancer, Dig. Liver Dis, vol.47, issue.10, pp.884-890, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02353257

C. Parra-cabrera, J. Samitier, and A. Homs-corbera, Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection, Biosens. Bioelectron, vol.77, pp.1192-1200, 2016.

E. Lopez-crapez, T. Livache, J. Marchand, and J. Grenier, K-ras mutation detection by hybridization to a polypyrrole DNA chip, Clin. Chem, vol.47, issue.2, pp.186-194, 2001.

A. Maitra, Y. Cohen, and S. E. ,

E. Gillespie, N. Mambo, M. O. Fukushima, N. Hoque, M. Shah et al., The human mitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection, Genome Res, vol.14, issue.5, pp.812-819, 2004.

M. H. Bhuyan, History and evolution of CMOS technology and its application in semiconductor industry, SEU J. Sci. Eng, vol.11, issue.1, pp.30-42, 2017.

M. Bao, Y. Li, and H. Jacobsson, A 25-GHz Ultra-Low Phase Noise InGaP/GaAs HBT VCO, IEEE Microw. Wirel. COMPONENTS Lett, vol.15, issue.11, pp.751-753, 2005.

C. H. Lin, S. H. Weng, K. H. Liang, H. Y. Chang, Y. J. Chan et al., A Kuband low phase noise wide tuning range voltage controlled oscillator using 2-?m GaAs HBT process, Asia-Pacific Microwave Conference Proceedings, pp.119-122, 2007.

G. Nabovati, E. Ghafar-zadeh, A. Letourneau, and M. Sawan, CMOS capacitive sensor array for continuous adherent cell growth monitoring, IEEE Int. Symp. Circuits Syst, pp.2254-2257, 2016.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, issue.7101, pp.368-73, 2006.

F. Fan, H. Shen, G. Zhang, X. Jiang, and X. Kang, Clinica Chimica Acta Chemiluminescence immunoassay based on micro fl uidic chips for ? -fetoprotein, Clin. Chim. Acta, vol.431, pp.113-117, 2014.

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol, vol.41, issue.11, pp.2251-2269, 1996.

A. Toropainen, P. Vainikainen, A. Drossos, H. E. Meissner, and D. P. Shepherd, Method for accurate measurement of complex permittivity of tissue equivalent liquids, Electron. Lett, vol.36, issue.1, p.32, 2000.

C. Dalmay, A. Pothier, M. Cheray, F. Lalloue, P. Jauberteau et al., Label-free RF biosensors for human cell dielectric spectroscopy, Int. J. Microw. Wirel. Technol, vol.1, issue.6, pp.497-504, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00595293

A. Landoulsi, J. Leroy, C. Dalmay, A. Pothier, A. Bessaudou et al., A microfluidic sensor dedicated to microwave dielectric spectroscopy of liquids medium and flowing colloidal suspension, Procedia Eng, vol.87, pp.504-507, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01025893

A. Landoulsi, C. Dalmay, A. Bessaudou, P. Blondy, and A. Pothier, A microwave sensor dedicated to dielectric spectroscopy of nanoliter volumes of liquids medium and flowing particles, IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), pp.42-44, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244986

M. A. Suster, D. Maji, N. Vitale, U. Gurkan, and P. Mohseni, An RF/Microwave microfluidic sensor for miniaturized dielectric spectroscopy based on sensor transmission characteristics, IEEE Sensors, pp.2-5, 2015.

T. Chen, D. Dubuc, and K. Grenier, Accurate nanoliter liquid complex admittance characterization up to 40 GHz for biomedical applications, IEEE/MTT-S International Microwave Symposium Digest, pp.7-9, 2012.

A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, Novel microwave microfluidic sensor using a microstrip split-ring resonator, IEEE Trans. Microw. Theory Tech, vol.62, issue.3, pp.679-688, 2014.

P. Poleni, M. Kumemura, T. Fujii, H. Toshiyoshi, D. Dubuc et al., Integrated broadband microwave and microfluidic sensor dedicated to bioengineering, IEEE Trans. Microw. Theory Tech, vol.57, issue.12, pp.3246-3253, 2009.

Y. F. Chen, H. W. Wu, Y. H. Hong, and H. Y. Lee, 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization, Biosens. Bioelectron, vol.61, pp.417-421, 2014.

H. W. Wu, Label-Free and Antibody-Free Wideband Microwave Biosensor for Identifying the Cancer Cells, IEEE Trans. Microw. Theory Tech, vol.64, issue.3, pp.982-990, 2016.

T. Chen, D. Dubuc, M. Poupot, J. J. Fournié, and K. Grenier, Broadband discrimination of living and dead lymphoma cells with a microwave interdigitated capacitor, IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, pp.64-66, 2013.

T. Chen, D. Dubuc, M. Poupot, J. J. Fournie, and K. Grenier, Accurate nanoliter liquid characterization up to 40 GHz for biomedical applications: Toward noninvasive living cells monitoring, IEEE Trans. Microw. Theory Tech, vol.60, issue.12, pp.4171-4177, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02475433

T. Chen, F. Artis, D. Dubuc, J. Fournié, M. Poupot et al., Microwave biosensor dedicated to the dielectric spectroscopy of a single alive biological cell in its culture medium, IEEE MTT-S International Microwave Symposium Digest (MTT), pp.7-10, 2013.

A. Landoulsi, Capteurs RF pour la caractérisation diélectrique de solutions et de particules à l'échelle micrométrique : Application aux biopuces à cellules, 2016.

Y. Yang, H. Zhang, J. Zhu, G. Wang, T. Tzeng et al., Distinguishing the viability of a single yeast cell with an ultra-sensitive radio frequency sensor, R. Soc. Chem, pp.553-555, 2010.

P. C. Huang, C. F. Liu, and R. Q. Chen, A microwave resonator biosensors for biological cell trapping in portable biomedical application, IEEE International Conference on Consumer Electronics, pp.159-160, 2017.

M. M. Bajestan, A. A. Helmy, H. Hedayati, and K. Entesari, A 0.62-10GHz CMOS dielectric spectroscopy system for chemical/biological material characterization, IEEE MTT-S Int. Microw. Symp, pp.1-4, 2014.

A. A. Helmy, H. Jeon, Y. Lo, A. J. Larsson, R. Kulkarni et al., A self-sustained CMOS microwave chemical sensor using a frequency synthesizer, IEEE J. Solid-State Circuits, vol.47, issue.10, pp.2467-2483, 2012.

J. C. Chien, M. Anwar, E. C. Yeh, L. P. Lee, and A. M. Niknejad, A 1-50 GHz dielectric spectroscopy biosensor with integrated receiver front-end in 65nm CMOS, IEEE MTT-S International Microwave Symposium Digest, pp.0-3, 2013.

J. C. Booth, N. D. Orloff, J. Mateu, M. Janezic, M. Rinehart et al., Quantitative permittivity measurements of nanoliter Liquid volumes in microfluidic channels to 40 GHz, IEEE Trans. Instrum. Meas, vol.59, issue.12, pp.3279-3288, 2010.

A. A. Helmy and K. Entesari, A 1-to-8 GHz miniaturized dielectric spectroscopy system for chemical sensing, IEEE/MTT-S International Microwave Symposium Digest, vol.1, pp.1-3, 2012.

K. Schmalz, J. Borngraber, M. Kaynak, W. Winkler, J. Wessel et al., A 120 GHz Dielectric Sensor in SiGe BiCMOS, IEEE Microw. Wirel. Components Lett, vol.23, issue.1, pp.46-48, 2012.

M. Kaynak, M. Wietstruck, C. B. Kaynak, S. Marschmeyer, P. Kulse et al., BiCMOS integrated microfluidic platform for Bio-MEMS applications, IEEE MTT-S International Microwave Symposium, pp.1-3, 2014.

S. Guha, K. Schmalz, C. Wenger, and F. Herzel, Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems, R. Soc. Chem, vol.140, issue.9, pp.3262-3272, 2015.

M. Matsunaga, T. Nakanishi, A. Kobayashi, K. Nakazato, and K. Niitsu, Threedimensional millimeter-wave frequency-shift-based CMOS biosensor using vertically stacked LC oscillators, IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), pp.1-6, 2017.

J. Geng, L. Zhang, C. Zhu, and H. Qian, An oscillator-based CMOS magneto-sensitive biosensor with a low noise and low temperature coefficient LDO regulator, IEEE Int. Conf. Electron Devices Solid-State Circuits, pp.48-51, 2016.

H. Wang, Y. Chen, A. Hassibi, A. Scherer, and A. Hajimiri, A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet, IEEE International Solid-State Circuits Conference -Digest of Technical Papers, pp.438-439, 2009.

T. Mitsunaka, D. Sato, N. Ashida, A. Saito, K. Iizuka et al., CMOS Biosensor IC focusing on dielectric relaxations of biological water with 120 and 60 GHz oscillator arrays, IEEE J. Solid-State Circuits, vol.51, issue.11, pp.2534-2543, 2016.

J. C. Chien, M. Anwar, and A. M. Niknejad, A CMOS single-cell deformability analysis using 3D hydrodynamic stretching in a GHz dielectric flow cytometry, IEEE MTT-S International Microwave Symposium, vol.1, pp.861-864, 2017.

H. Wang, C. C. Weng, and A. Hajimiri, Phase noise and fundamental sensitivity of oscillator-based reactance sensors, IEEE Trans. Microw. Theory Tech, vol.61, issue.5, pp.2215-2229, 2013.

Y. Hong, H. J. Lee, S. G. Kim, B. H. Kim, G. H. Yun et al., A label-free biosensing platform using a PLL circuit and biotin-streptavidin binding system, IEEE Trans. Biomed. Circuits Syst, vol.9, issue.3, pp.345-352, 2015.

J. C. Chien and A. M. Niknejad, Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy, IEEE J. Solid-State Circuits, vol.51, issue.2, pp.457-472, 2016.

O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, and K. Entesari, A 0.18-?m CMOS fully integrated 0.7-6 GHz PLL based complex dielectric spectroscopy system, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014.

V. Sekar, W. J. Torke, S. Palermo, and K. Entesari, A self-sustained microwave system for dielectric-constant measurement of lossy organic liquids, IEEE Trans. Microw. Theory Tech, vol.60, issue.5, pp.1444-1455, 2012.

K. Entesari, A. A. Helmy, and V. Sekar, A review of frequency synthesizer-based microwave chemical sensors for dielectric detection of organic liquids, 2013.

, Annu. Wirel. Microw. Technol. Conf. WAMICON, vol.2013, issue.1, pp.1-3, 2013.

O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, and K. Entesari, A wide-band fullyintegrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system, IEEE Trans. Circuits Syst. I Regul. Pap, vol.62, issue.8, pp.1940-1949, 2015.

O. Elhadidy and M. Elkholy, A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy, vol.61, pp.3402-3416, 2013.

H. Wang, S. Kosai, C. Sideris, and A. Hajimiri, An ultrasensitive CMOS magnetic biosensor array with correlated double counting noise suppression, IEEE MTT-S International Microwave Symposium, pp.616-619, 2010.

H. Wang, A. Hajimiri, and S. Kousai, Noise suppression techniques in high-precision long-term frequency/timing measurements, 2010.

B. Razavi, A study of injection locking and pulling in oscillators, Proc. IEEE 2003 Cust. Integr. Circuits Conf, vol.39, pp.305-312, 2004.

E. De-foucauld, Conception et réalisation d'oscillateurs accordables en fréquence en technologie SiGe pour les radio-téléphones, Thèse de l'université de Limoges, 2001.

R. Adler, Locking phenomena in microwave oscillators, Proc. IEEE, vol.34, pp.351-357, 1946.

A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, The quadrature LC oscillator: A complete portrait based on injection locking, IEEE J. Solid-State Circuits, vol.42, issue.9, pp.1916-1932, 2007.

J. Lee and H. Wang, Study of subharmonically injection-locked PLLs, IEEE J. Solid

I. I. Chapitre, Conception d'un biocapteur hyperfréquence actif en technologie BiCMOS SiGe :C 0, p.25

, Licence CC BY

, State Circuits, vol.44, issue.5, pp.1539-1553, 2009.

L. J. Paciorek, Injection locking of oscillators, PROCEEDISGS IEEE, vol.53, issue.11, 1965.

R. Adler, Locking phenomena in oscillators, Proc. IEEE, vol.61, pp.1380-1385, 1973.

I. Ali, A. Banerjee, A. Mukherjee, and B. N. Biswas, Study of injection locking with amplitude perturbation and its effect on pulling of oscillator, IEEE Trans. Circuits Syst. I Regul. Pap, vol.59, issue.1, pp.137-147, 2012.

K. Kurokawa, Injection locking of microwave solid-state oscillators, Proc. IEEE, vol.61, pp.1386-1410, 1973.

N. Lanka, S. Patnaik, and R. Harjani, Understanding the transient behavior of injection locked LC oscillators, IEEE Cust. Integr. Circuits Conf, pp.667-670, 2007.

D. Cordeau, Etude comportementale et conception d'oscillateurs intégrés polyphases accordables en fréquence en technologies Si et SiGe pour les radiocommunications, 2004.

L. Wu, A. Li, and H. C. Luong, A 4-path 42.8-to-49.5 GHz lo generation with automatic phase tuning for 60 ghz phased-array receivers, IEEE J. Solid-State Circuits, vol.48, issue.10, pp.2309-2322, 2013.

, Licence CC BY

, IHP -Start

I. F. Cheng, H. C. Chang, D. Hou, and H. C. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting, Biomicrofluidics, vol.1, issue.2, pp.1-15, 2007.

M. Kersaudy-kerhoas, R. Dhariwal, and M. P. Desmulliez, Recent advances in microparticle continuous separation, IET nanobiotechnology, vol.1, issue.1, pp.10-14, 2007.

A. Tamra, M. Deburghgraeve, D. Dubuc, M. P. Rols, and K. Grenier, Microwave dielectric spectroscopy for single cell irreversible electroporation monitoring, IEEE MTT-S Int. Microw. Symp. Dig, pp.1-4, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01951589

A. Zedek, D. Dubuc, and K. Grenier, Microwave permittivity extraction of individual biological cells submitted to different stimuli, IEEE MTT-S Int. Microw. Symp. Dig, pp.865-868, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01597796

M. Babay-;-c.-hallepee, ;. Dalmay, and ;. Barelaud,

E. C. Durmaz-;-c.-baristiran and . Kaynak,

M. Kaynak,

D. Cordeau,

A. Pothier, « Highly sensitive capacitive sensor based on injection locked oscillators with ppm sensing resolution, IEEE International Microwave Symposium: IMS 2020, 2020.

M. Babay and ;. Dalmay,

B. C. Barelaud-;-e, . Durmaz-;-c.-baristiran, and . Kaynak,

M. Kaynak-;-d.-cordeau and ;. Pothier, « Design and Implementation of Injection Locked Oscillator Biosensors, 49th European Microwave Conference (EuMC), 2019.

M. Babay, C. Dalmay, and B. Barelaud, Emre Can Dumaz, Canan Baristiran Kaynak et al. « Lab-On-A -Chip for cellular analysis by dielectric spectroscopy based on injection locked oscillators », PLUMEE 2019 : Colloque francophone PLUridisciplinaire sur les Matériaux, l'Environnement et l'Electronique, 2019.

M. Babay and C. Dalmay, Emre Can Dumaz, Canan Baristiran Kaynak, Mehmet Kaynak et al. « Potentialités d'architectures de biocapteurs basées sur des oscillateurs hyperfréquences verrouillés par injection, XXIèmes Journées Nationales Microondes, 2019.

A. Lacroix, E. Deluche, L. Y. Zhang, C. Dalmay, C. Mélin et al., Meissa Babay et al. « A New Label-Free Approach to Glioblastoma Cancer Stem Cell Sorting and Detection, Analytical Chemistry, 2019.