. Ericsson, Cellular networks for massive iot. White Paper, 2020.

Y. Rashmi-sharan-sinha, S. Wei, and . Hwang, A survey on lpwa technology: Lora and nb-iot, vol.3, pp.14-21, 2017.

, Cellular system support for ultra low complexity and low throughput internet of things, 3GPP

L. Feltrin, G. Tsoukaneri, M. Condoluci, C. Buratti, T. Mahmoodi et al., Narrowband iot: A survey on downlink and uplink perspectives, vol.26, pp.78-86, 2019.

Q. Techn and . Inc, Leading the lte iot evolution to connect the massive internet of things, 2017.

D. Feng, L. Lu, Y. Yuan-wu, G. Y. Li, S. Li et al., Device-to-device communications in cellular networks, IEEE Communications Magazine, vol.52, issue.4, pp.49-55, 2014.

G. Araniti, . Raschellà, . Orsino, M. Militano, and . Condoluci, Device-to-device communications over 5g systems: Standardization, challenges and open issues, 5G mobile communications, pp.337-360, 2017.

, 3GPP. Proximity-Based Services (ProSe

, Stage 2. Technical Specification (TS) 23.303, 3rd Generation Partnership Project (3GPP), 2015.

J. Schlienz and . Roessler, Device to device communication in lte whitepaper, 2015.

M. Series, IMT Vision-Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU, pp.2083-2083, 2015.

. Cisco, Cisco visual networking index: Forecast and trends, 2018.

K. Chang, Bluetooth: a viable solution for iot?, vol.21, pp.6-7, 2014.

Z. Alliance, Zigbee specification version 1.0, 2005.

S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, Wi-fi enabled sensors for internet of things: A practical approach, IEEE Communications Magazine, vol.50, issue.6, pp.134-143, 2012.

L. Alliance, Wide area networks for iot, 2015.

. Sa-sigfox, Sigfox technology overview, 2018.

C. Bockelmann, K. Nuno, G. Pratas, S. Wunder, M. Saur et al., Towards massive connectivity support for scalable mmtc communications in 5g networks, IEEE access, vol.6, pp.28969-28992, 2018.

R. Ratasuk, N. Mangalvedhe, D. Bhatoolaul, and A. Ghosh, Lte-m evolution towards 5g massive mtc, 2017 IEEE Globecom Workshops (GC Wkshps), pp.1-6, 2017.

G. Fodor, S. Roger, N. Rajatheva, S. Ben-slimane, T. Svensson et al., An overview of device-to-device communications technology components in metis, vol.4, pp.3288-3299, 2016.

, E2e-aware optimizations and advancements for network edge of 5g new radio (one5g

, Study on Facilitating Machine to Machine Communication in 3GPP Systems, 3GPP

, 3GPP. Service requirements for Machine-Type Communications

P. Popovski, . Mange, T. Gozalvez-serrano, G. Rosowski, P. Zimmermann et al., Final report on the metis 5g system concept and technology roadmap. METIS Document ICT-317669-METIS/D6. 6, 2015.

O. Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs, Cellular Internet of Things: Technologies, Standards, and Performance, 2017.

E. Altair, S. Virtuosys-att-verizon-sequans, K. Nokia, and N. Wireless, ORANGE. Evaluation of LTE-M towards 5G IoT requirements, 2017.

, Study on Scenarios and Requirements for Next Generation Access Technologies, 3GPP

M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner et al., Internet of things in the 5g era: Enablers, architecture, and business models, IEEE Journal on Selected Areas in Communications, vol.34, issue.3, pp.510-527, 2016.

, Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications. Technical Specification (TS) 23.682, 3GPP

C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson et al., Massive machine-type communications in 5g: physical and mac-layer solutions, IEEE Communications Magazine, vol.54, issue.9, pp.59-65, 2016.

R. Ratasuk, J. Tan, and A. Ghosh, Coverage and capacity analysis for machine type communications in lte, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), pp.1-5, 2012.

R. Ratasuk, N. Mangalvedhe, and A. Ghosh, Overview of lte enhancements for cellular iot, 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp.2293-2297, 2015.

M. L. Huang, V. Coia, and P. Brill, A cluster truncated pareto distribution and its applications, ISRN Probability and Statistics, 2013.

. 3gpp and . Geran, Study on Power Saving for MTC Devices, 2016.

. Naveen-mysore, L. Balasubramanya, G. Lampe, S. Vos, and . Bennett, On timing reacquisition and enhanced primary synchronization signal (epss) design for energy efficient 3gpp lte mtc, IEEE Transactions on Mobile Computing, vol.16, issue.8, pp.2292-2305, 2016.

S. Yun, K. Lee, S. Park, and J. Choi, Energy efficient relay selection scheme with drx mechanism in 3gpp lte network, 2013 International Conference on ICT Convergence (ICTC), pp.6-11, 2013.

R. Pec, M. S. Khan, C. Park, and Y. Cho, A detection for synchronization signal in lte-based machine-type communication, 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp.1-3, 2016.

L. Nasraoui, L. N. Atallah, and M. Siala, Performance analysis of low-complexity simply-differential time synchronization approach for mtc over lte systems, 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp.1-5, 2016.

, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC), 3GPP

, Technical Specification (TS) 36.331

Q. Song, X. Lagrange, and L. Nuaymi, An efficient m2m-oriented network-integrated multiple-period polling service in lte network, 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp.1-6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292734

K. Zhou and N. Nikaein, Packet aggregation for machine type communications in lte with random access channel, 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp.262-267, 2013.

K. Zhou and N. Nikaein, Low latency random access with tti bundling in lte/lte-a, 2015 IEEE International Conference on Communications (ICC), pp.2257-2263, 2015.

F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. Javed, A survey of device-to-device communications: Research issues and challenges, IEEE Communications Surveys & Tutorials, vol.20, issue.3, pp.2133-2168, 2018.

C. Shao-yu-lien, F. Chien, T. Tseng, and . Ho, 3gpp deviceto-device communications for beyond 4g cellular networks, IEEE Communications Magazine, vol.54, issue.3, pp.29-35, 2016.

P. Mach, Z. Becvar, and T. Vanek, In-band device-to-device communication in ofdma cellular networks: A survey and challenges, IEEE Communications Surveys & Tutorials, vol.17, issue.4, pp.1885-1922, 2015.

, Feasibility study for Proximity Services (ProSe), 3GPP, 2013.

K. Vanganuru, S. Ferrante, and G. Sternberg, System capacity and coverage of a cellular network with d2d mobile relays, MILCOM 2012-2012 IEEE Military Communications Conference, pp.1-6, 2012.

G. Zhao, S. Chen, L. Qi, L. Zhao, and L. Hanzo, Mobile-trafficaware offloading for energy-and spectral-efficient large-scale d2d-enabled cellular networks, IEEE Transactions on Wireless Communications, 2019.

S. Andreev, A. Pyattaev, K. Johnsson, O. Galinina, and Y. Koucheryavy, Cellular traffic offloading onto network-assisted device-to-device connections, IEEE Communications Magazine, vol.52, issue.4, pp.20-31, 2014.

Z. Kae-won-choi and . Han, Device-to-device discovery for proximity-based service in lte-advanced system, IEEE Journal on Selected Areas in Communications, vol.33, issue.1, pp.55-66, 2014.

U. Tefek and T. Lim, Relaying and radio resource partitioning for machinetype communications in cellular networks, IEEE Transactions on Wireless Communications, vol.16, issue.2, pp.1344-1356, 2016.

R. Ma, Y. Chang, H. Chen, and C. Chiu, On relay selection schemes for relay-assisted d2d communications in lte-a systems, IEEE Transactions on Vehicular Technology, vol.66, issue.9, pp.8303-8314, 2017.

C. V. Anamuro, N. Varsier, J. Schwoerer, and X. Lagrange, Energy-efficient discovery process for mmtc applications, 12th IFIP Wireless and Mobile Networking Conference (WMNC), pp.79-86, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02100252

Y. Li, C. Liao, Y. Wang, and C. Wang, Energy-efficient optimal relay selection in cooperative cellular networks based on double auction, IEEE Transactions on Wireless Communications, vol.14, issue.8, pp.4093-4104, 2015.

W. Viriyasitavat, M. Boban, H. Tsai, and A. Vasilakos, Vehicular communications: Survey and challenges of channel and propagation models, IEEE Vehicular Technology Magazine, vol.10, issue.2, pp.55-66, 2015.

B. Zhou, H. Hu, S. Huang, and H. Chen, Intracluster device-to-device relay algorithm with optimal resource utilization, IEEE transactions on vehicular technology, vol.62, issue.5, pp.2315-2326, 2013.

C. Vargas-anamuro, N. Varsier, J. Schwoerer, and X. Lagrange, Simple modeling of energy consumption for d2d relay mechanism, 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp.231-236, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01836546

, Preliminary multi-service performance optimization solutions for improved e2e performance, ONE5G project, 2018.

A. Asadi, Q. Wang, and V. Mancuso, A survey on device-to-device communication in cellular networks, IEEE Communications Surveys & Tutorials, vol.16, issue.4, pp.1801-1819, 2014.

M. Mohsen-nader-tehrani, H. Uysal, and . Yanikomeroglu, Device-to-device communication in 5g cellular networks: challenges, solutions, and future directions, IEEE Communications Magazine, vol.52, issue.5, pp.86-92, 2014.

F. Ouyang, J. Ge, F. Gong, and J. Hou, Collision resolving relay selection in large-scale blind relay networks, Wireless Networks, vol.23, issue.6, pp.1793-1807, 2017.

A. Alsharoa, X. Zhang, D. Qiao, and A. Kamal, An energy-efficient relaying scheme for internet of things communications, 2018 IEEE International Conference on Communications (ICC), pp.1-6, 2018.

A. Awang, X. Lagrange, and D. Ros, Toward an analysis of energy consumption in multihop wireless sensor networks, 2010 International Conference on Intelligent and Advanced Systems, pp.1-6, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515365

M. Seyfi, S. Muhaidat, J. Liang, and M. Dianati, Effect of feedback delay on the performance of cooperative networks with relay selection, IEEE Transactions on Wireless Communications, vol.10, issue.12, pp.4161-4171, 2011.

. Diomidis-s-michalopoulos, A. Himal, G. K. Suraweera, R. Karagiannidis, and . Schober, Amplify-and-forward relay selection with outdated channel estimates, IEEE Transactions on Communications, vol.60, issue.5, pp.1278-1290, 2012.

Z. Zhou, S. Zhou, J. Cui, and S. Cui, Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks, IEEE transactions on wireless communications, vol.7, issue.8, pp.3066-3078, 2008.

A. Bletsas, H. Shin, and M. Win, Cooperative communications with outage-optimal opportunistic relaying, IEEE Transactions on Wireless Communications, vol.6, issue.9, pp.3450-3460, 2007.

H. Feng, Y. Xiao, and L. J. Cimini, Net throughput of centralized and decentralized cooperative networks with relay selection, IEEE Wireless Communications Letters, vol.3, issue.5, pp.477-480, 2014.

S. Wu, R. Atat, N. Mastronarde, and L. Liu, Coverage analysis of d2d relay-assisted millimeter-wave cellular networks, 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp.1-6, 2017.

H. Wei, N. Deng, M. Zhao, W. Zhou, and P. Dong, Station density effect on energy efficiency of relay-assisted cellular networks, 1st IEEE International Conference on Communications in China (ICCC), pp.411-415, 2012.

, User Equipment (UE) to network relays for Internet of Things (IoT) and wearables, 3GPP. Study on further enhancements to LTE Device to Device (D2D), 2017.

G. Rigazzi, F. Chiti, R. Fantacci, and C. Carlini, Multi-hop d2d networking and resource management scheme for m2m communications over lte-a systems, 2014 international wireless communications and mobile computing conference (IWCMC), pp.973-978, 2014.

K. Nuno, P. Pratas, and . Popovski, Underlay of low-rate machine-type d2d links on downlink cellular links, 2014 IEEE International Conference on Communications Workshops (ICC), pp.423-428, 2014.

M. Bagaa, A. Ksentini, T. Taleb, R. Jantti, A. Chelli et al., An efficient d2d-based strategies for machine type communications in 5g mobile systems, 2016 IEEE Wireless Communications and Networking Conference, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01423579

G. Rigazzi, K. Nuno, P. Pratas, R. Popovski, and . Fantacci, Aggregation and trunking of m2m traffic via d2d connections, 2015 IEEE international conference on communications (ICC), pp.2973-2978, 2015.

G. Miao, A. Azari, and T. Hwang, E2 mac: Energy efficient medium access for massive m2m communications, IEEE Transactions on communications, vol.64, issue.11, pp.4720-4735, 2016.

A. Al-hourani, S. Kandeepan, and E. Hossain, Relay-assisted device-to-device communication: A stochastic analysis of energy saving, IEEE Transactions on Mobile Computing, vol.15, issue.12, pp.3129-3141, 2016.

J. Chai, L. Feng, F. Zhou, P. Zhao, P. Yu et al., Energyefficient resource allocation based on hypergraph 3d matching for d2d-assisted mmtc networks, 2018 IEEE Global Communications Conference (GLOBECOM), pp.1-7, 2018.

C. Tu, C. Ho, and C. Huang, Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications, 2011 IEEE Vehicular Technology Conference (VTC Fall), pp.1-5, 2011.

D. Chase, Code combining-a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets, IEEE transactions on communications, vol.33, issue.5, pp.385-393, 1985.

D. Mandelbaum, An adaptive-feedback coding scheme using incremental redundancy (corresp.), IEEE Transactions on Information Theory, vol.20, issue.3, pp.388-389, 1974.

P. Frenger, S. Parkvall, and E. Dahlman, Performance comparison of harq with chase combining and incremental redundancy for hsdpa, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No. 01CH37211), vol.3, pp.1829-1833, 2001.

C. Vargas-anamuro, N. Varsier, J. Schwoerer, and X. Lagrange, Modeling of mtc energy consumption for d2d communications with chase combining harq scheme, IEEE Globecom Workshops (GC Wkshps), pp.1-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01842196

X. Leturc, P. Ciblat, and C. Martret, Energy-efficient resource allocation for harq with statistical csi, IEEE Transactions on Vehicular Technology, vol.67, issue.12, pp.11936-11949, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02287660

M. Centenaro, G. Ministeri, and L. Vangelista, A comparison of energyefficient harq protocols for m2m communication in the finite block-length regime, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp.1-6, 2015.

S. Ge, Y. Xi, H. Zhao, S. Huang, and J. Wei, Energy efficient optimization for cc-harq over block rayleigh fading channels, IEEE Communications Letters, vol.19, issue.10, pp.1854-1857, 2015.

M. E. Elieser-b-manhas, G. Pellenz, . Brante, D. Richard, F. Souza et al., Energy efficiency analysis of harq with chase combining in multi-hop wireless sensor networks, 2014 IEEE Symposium on Computers and Communications (ISCC), pp.1-6, 2014.

S. Harpreet, J. Dhillon, and . Andrews, Downlink rate distribution in heterogeneous cellular networks under generalized cell selection, IEEE Wireless Communications Letters, vol.3, issue.1, pp.42-45, 2013.

Q. Song, L. Nuaymi, and X. Lagrange, Analysis of macro diversity based on maximum ratio combining in long range aloha networks, Telecommunication Systems, pp.1-12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02140290

M. Haenggi and R. K. Ganti, Interference in large wireless networks, Foundations and Trends® in Networking, vol.3, issue.2, pp.127-248, 2009.

. Leonard-r-kahn, Ratio squarer, Proceedings of the Institute of Radio Engineers, vol.42, pp.1704-1704, 1954.

G. John, M. Proakis, and . Salehi, Digital communications, McGraw-hill, vol.4, 2001.

A. Bessate and F. E. Bouanani, A very tight approximate results of mrc receivers over independent weibull fading channels, Physical Communication, vol.21, pp.30-40, 2016.

X. Lagrange, Performance analysis of harq protocols with link adaptation on fading channels. annals of telecommunications-annales des télécommunications, vol.66, pp.695-705, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02295711

Q. Song, X. Lagrange, and L. Nuaymi, Evaluation of macro diversity gain in long range aloha networks, IEEE Communications Letters, vol.21, issue.11, pp.2472-2475, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656227

F. Jeffrey-g-andrews, R. Baccelli, and . Ganti, A tractable approach to coverage and rate in cellular networks, IEEE Transactions on communications, vol.59, issue.11, pp.3122-3134, 2011.

H. Xing and S. Hakola, The investigation of power control schemes for a device-to-device communication integrated into ofdma cellular system, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1775-1780, 2010.

Q. Liu, S. Zhou, and G. Giannakis, Cross-layer combining of adaptive modulation and coding with truncated arq over wireless links, IEEE Transactions on wireless communications, vol.3, issue.5, pp.1746-1755, 2004.

, Recommended multi-service performance optimization solutions for improved e2e performance, ONE5G project, 2019.

A. Awang, X. Lagrange, and D. Ros, Rssi-based forwarding for multihop wireless sensor networks, Meeting of the European Network of Universities and Companies in Information and Communication Engineering, pp.138-147, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02345922

K. Jamieson, H. Balakrishnan, and Y. C. Tay, Sift: A mac protocol for event-driven wireless sensor networks, European workshop on wireless sensor networks, pp.260-275, 2006.

Z. Lin, Y. Li, S. Wen, Y. Gao, X. Zhang et al., Stochastic geometry analysis of achievable transmission capacity for relay-assisted device-to-device networks, 2014 IEEE international conference on communications (ICC), pp.2251-2256, 2014.

D. Xenakis and M. Kountouris, Performance analysis of network-assisted d2d discovery in random spatial networks, Lazaros Merakos, Nikos Passas, and Christos Verikoukis, vol.15, pp.5695-5707, 2016.

J. Xu, W. Liu, F. Lang, Y. Zhang, and C. Wang, Distance measurement model based on rssi in wsn, Wireless Sensor Network, vol.2, issue.08, p.606, 2010.

, 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA

, Radio Frequency (RF) system scenarios

P. Mogensen, W. Na, Z. István, F. Kovács, A. Frederiksen et al., Lte capacity compared to the shannon bound, IEEE 65th vehicular technology conference-VTC2007-Spring, pp.1234-1238, 2007.

L. Roy and . Streit, Poisson point processes: imaging, tracking, and sensing, 2010.

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications, 2013.

. Eric-w-weisstein, Incomplete gamma function. MathWorld, A Wolfram Web Resource, 2006.

, Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products, 2014.

, Contexte de la thèse

, L'internet des objets (IoT) représente un défi majeur pour les réseaux cellulaires car il se caractérise par un grand nombre d'objets connectés de faible complexité qui envoient de manière sporadique de petits paquets de données. Ces objets connectés, que nous appellerons MTDs (Machine-type devices), sont souvent alimentés par une batterie. Cette batterie doit fonctionner pendant de longues périodes sans avoir besoin d'être rechargée ou remplacée car ces objets se trouvent souvent dans des endroits difficiles d'accès ou hors couverture, où il n'y a pas de source d'énergie continue. Parmi les cas d'usage des applications mMTC on peut citer la surveillance de l'environnement ou encore les compteurs intelligents, Pour faire face à ce nouveau type d'applications, l'organisation de normalisation 3GPP (3rd Generation Partnership Project) propose trois nouvelles technologies cellulaires : LTE-M (Long-Term Evolution for Machine-Type Communications), NB-IoT (Narrowband Internet of Things), EC-GSM-IoT

, en passant par la station de base, c'est à dire que l'objet va établir un lien direct avec la station de base. Ces technologies permettent l'extension de la couverture cellulaire grâce à la technique de répétition. Cependant, l'utilisation de cette technique conduit à une forte consommation d'énergie et de ressources radio, Ces nouvelles technologies, comme les réseaux cellulaires traditionnels, permettent la connexion d'un objet avec le réseau