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Résumé

Durant les dernières décennies, la quantité de données disponibles en génétique a consi-
dérablement augmenté. D’une part, une amélioration des technologies de séquençage de
molécules a permis de réduire fortement le coût d’extraction du génome humain. D’autre
part, des consortiums internationaux d’institutions ont permis la mise en commun de la
collecte de données sur de larges populations. Cette quantité de données nous permet
d’espérer mieux comprendre les mécanismes régissant le fonctionnement de nos cellules.
Dans ce contexte, l’épidémiologie génétique est un domaine cherchant à déterminer la
relation entre des caractéristiques génétiques et l’apparition d’une maladie. Des méthodes
statistiques spéci�ques à ce domaine ont dû être développées, en particulier à cause des
dimensions que les données présentent : en génétique, l’information est contenue dans un
nombre de variables grand par rapport au nombre d’observations.

Dans cette dissertation, deux contributions sont présentées. Le premier projet appelé
PIGE (Pathway-Interaction Gene Environment) développe une méthode pour déterminer
des interactions gène-environnement. Le second projet vise à développer une méthode de
sélection de variables adaptée à l’analyse de données provenant de di�érentes études et
présentant une structure de groupe de variables.

Le document est divisé en six parties. Le premier chapitre met en relief le contexte,
d’un point de vue à la fois biologique et mathématique. Le deuxième chapitre présente les
motivations de ce travail et la mise en œuvre d’études en épidémiologie génétique. Le troi-
sième chapitre aborde les questions relatives à l’analyse d’interactions gène-environnement
et la première contribution de la thèse y est présentée. Le quatrième chapitre traite des
problématiques de méta-analyses. Le développement d’une nouvelle méthode de réduction
de dimension répondant à ces questions y est présenté. Le cinquième chapitre met en avant
la pertinence de la méthode dans des cas de pleiotropie. En�n, le sixième et dernier chapitre
dresse un bilan du travail présenté et dresse des perspectives pour le futur.
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Abstract

During the last decades, the amount of available genetic data on populations has grown
drastically. From one side, a re�nement of chemical technologies have made possible the
extraction of the human genome of individuals at an accessible cost. From the other side,
consortia of institutions and laboratories around the world have permitted the collection
of data on a variety of individuals and population. This amount of data raised hope on
our ability to understand the deepest mechanisms involved in the functioning of our cells.
Notably, genetic epidemiology is a �eld that studies the relation between the genetic
features and the onset of a disease. Speci�c statistical methods have been necessary for
those analyses, especially due to the dimensions of available data: in genetics, information
is contained in a high number of variables compared to the number of observations.
In this dissertation, two contributions are presented. The �rst project called PIGE (Pathway-
Interaction Gene Environment) deals with gene-environment interaction assessments.
The second one aims at developing variable selection methods for data which has group
structures in both the variables and the observations.
The document is divided into six chapters. The �rst chapter sets the background of this work,
where both biological and mathematical notations and concepts are presented and gives a
history of the motivation behind genetics and genetic epidemiology. The second chapter
present an overview of the statistical methods currently in use for genetic epidemiology.
The third chapter deals with the identi�cation of gene-environment interactions. It includes
a presentation of existing approaches for this problem and a contribution of the thesis. The
fourth chapter brings o� the problem of meta-analysis. A de�nition of the problem and an
overview of the existing approaches are presented. Then, a new approach is introduced.
The �fth chapter explains the pleiotropy studies and how the method presented in the
previous chapter is suited for this kind of analysis. The last chapter compiles conclusions
and research lines for the future.
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Chapter1

Molecular biology

The material in this dissertation deals with the statistical analysis of biological data. Before
going into the details of the contributions of this thesis we need to review some fundamental
concepts. In the �rst part of this chapter basic molecular biology concepts are presented.
Then, computation biology and its vocabulary is introduced. Finally data used for analyses
are presented.

1.1 Biological background

1.1.1 Behaviour of a cell

The cell is the structural and functional unit of all known living organisms (cell comes
from the Latin cellula, meaning, a small room). Some organisms have only one cell (they
are called unicellular), whereas, other organisms are composed of several ones (they are
called multi-cellular). For a human, the number of cells is estimated to be 1014 and a typical
cell size is 10 µm (10−5m) with an average mass of 1 ng (10−9g). Each cell is a small
zone of water and chemicals wrapped by a membrane, which can interact with its close
environment, and perform specialized functions. Two types of cell exist: eukaryotic and
prokaryotic. Eukaryotic cells are often found in multi-cellular organisms. Prokaryotic cells
are usually independent and they show the simplest structure. Eukaryotic cells present in
general additional internal structures compared to prokaryotic cells (Figure 1.1). Notably,
the major di�erence between those is that eukaryotic cells contains a nucleus in opposition
to prokariotic ones: a membrane-delineated compartment that houses the eukaryotic cell’s
DNA (Deoxyribonucleic Acid) as presented in Figure 1.2) .
Eukariotic cells have the following notable internal entities that ensure its behaviour:

• The mitochondrion provides the energy needed by the cell through enzymes ex-
changing electrons. In a cell, mitochondria extract the energy contained in the
nutrients used by the cell, as well as doing many other specialized tasks. Each human
mitochondrion has a chromosome composed of mitochondrial DNA. This DNA is
distinct from the DNA that is located in the cell’s nucleus.

• The ribosomes are a large complex of RNA (Ribonucleic Acid) and protein molecules,
and they are essential in the production of proteins. Those proteins will determine
the behaviour of the cell.

3



1. Molecular biology

Figure 1.1 – Illustration of a the structure of a cell including: the nucleolus which is inside
the nucleus, the ribosomes, a mitochondrion, the cilia, the lysosome, the centrioles, the
microtubules, the golgi smooth endoplasmic reticulum, rough endoplamsic reticulum (cell
membrane), the cytoplasm, the chromatin. Image taken from [1].

• The cell nucleus is the most noticeable structure in an eukaryotic cell. The nucleus
has a spherical shape and is separated from the rest of the cell by a double membrane
called the nuclear envelope. It is the location of the chromosomes (the structures
that contain the genome), and it is responsible for maintaining them and controlling
the activities of the cell by regulating the gene expression (i.e. the protein produc-
tion). The nucleolus is a specialized region within the nucleus where ribosome are
assembled. It is where the transcription process takes place (Section 1.1.3).

The nucleus of human cells (except for notable exceptions such as sperm cells) contains two
sets of 23 chromosomes (22 regular ones and X or Y sex chromosome), each set inherited
from each parent. Each chromosome is a very long DNA molecule that is wrapped tightly
around proteins. Thus, chromosomes are structures of signi�cant size (it can be seen under
a light microscope). Di�erences in size and composition allow the 24 di�erent chromosomes
to be distinguished from each other through an analysis called a karyotype. Near the center
of a chromosome is the centromere which is a narrow region that divides the chromosome
into a long arm and a short arm. Chromosomes contain the information necessary to build
a human being which is called the genome. It is often put in opposition with the phenotype
which represents the external features of an organism.

1.1.2 DNA

DNA is made of a pair of molecules forming an helix structure. The molecules are held
together by weak hydrogen bonds between base pairs of nucleotides. The double helix can
be seen as an extremely long ladder twisted into a helix. The sides of the ladder are formed
by a backbone of sugar and phosphate molecules, and the rungs consist of nucleotide bases
weakly joined in the middle by the hydrogen bonds. The DNA chain is 2.2 to 2.6 nm wide,
and one nucleotide unit is 0.33 nm long. Although each individual base is very small, the
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1.1. Biological background

Figure 1.2 – Represenation of the DNA and its location in the cell. The cell (top left) contains
the nucleus (bottom left) where chromosome are stored (middle). The chromosome is a
long molecule with a double helix structure (right). Image taken from [1]

full molecule is a combination of millions of base units and is much larger. For instance,
the largest human chromosome has around 300 million base pairs (bp).
DNA is coded in an alphabet with 4 basic units, the nucleotides. A DNA nucleotide is made
of a �ve carbon sugar (a deoxyribose), a molecule of phosphoric acid, and a molecule called
a base. The code letters for nucleotides are A, C, G, and T, which stand respectively for
adenine, cytosine, guanine, and thymine. In DNA base pairing, adenine always pairs with
thymine, and guanine always pairs with cytosine. Based on this, the information contained
in one strand of the DNA can be inferred looking at the other strand. This information
relies on the order of the nucleotides. DNA sequencing aims at retrieving this order. The
genome of an organism is in fact made of the sequence of all the nucleotide bases for all
the existing chromosomes.
Raw information in the genome must go through a certain chemical process before being
able to be exploited by the cell. This genetic information must �rst be translated into
proteins (amino acid sequences) by living cells. The canonical genetic code de�nes a
mapping between DNA and the formation of the proteins.

1.1.3 From DNA to proteins

DNA is transcripted in RNA (Ribonucleic acid), a nucleic acid molecule similar to DNA.
While DNA is only one molecule, the RNA is replicated in several copies in the cell which
are then interpreted for creating proteins. The amount of copies of RNA molecules changes
from one cell to another. This explains that even though every cell has the same DNA, their
behaviour will be di�erent depending on which part of the DNA is transcripted.
Contrarily to DNA, RNA is usually single-stranded and the sugar molecule of its nucleotides
is a ribose rather than a deoxyribose. Furthermore, the nucleotide base thymine (T), that
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1. Molecular biology

is present in DNA, is replaced by uracil (U) in RNA. RNA play crucial roles in protein
synthesis and other cell activities.
RNA is formed following DNA information. Synthesis of RNA is usually catalysed by the
RNA polymerase which is an enzyme (a protein) that assembles the RNA from ribonu-
cleotides. The transcription begins with the binding of the enzyme to a promoter sequence
in the DNA. The DNA double helix is unwound by the enzyme and, then, the enzyme
progresses along the template strand synthesizing a complementary RNA molecule. A
DNA sequence indicates where RNA synthesis stops. There are more than thirty classes of
RNA molecules. Among the most important ones we can cite the following three:

• Messenger RNA (mRNA) carries information from DNA to the ribosome where
proteins are synthesized. The amino acid sequence in the protein is determined by
the coding sequence of the mRNA.

• Transfer RNA (tRNA) is a short-chain type of RNA present in cells that carry a
speci�c amino acid through the cell.

• Ribosomal RNA (rRNA) forms a site for the synthesis of the proteins.

The identi�cation of the role of each part of the DNA (called genes) in the coding of speci�c
proteins is then interesting. All humans have in common most of the genome, but the
relatively few genomic di�erences between individuals account for most of the di�erences
among individuals. There are estimated between 20 000 and 25 000 human protein-coding
genes, although this number could drop. Human genes are distributed unevenly across
the chromosomes: each chromosome contains various gene-rich and gene-poor regions. A
gene contains both coding sequences that determine what the gene does, and non-coding
sequences that determine when the gene is expressed (i.e. active) which have a crucial role
in the control of the expression.
The most basic unit of genetic variation is the single nucleotide polymorphism or SNP.
SNPs are single base-pair changes in the DNA sequence that occur with high frequency in
the human genome [2]. Despite the high number of existing SNP, only some of them have
an impact on the behaviour of cells through the transcription that leads to the production
of proteins [3]. Genetic variants can also be called alleles.
SNPs exist in a variable proportion in human populations. The �rst information that is
taken for a SNP is it’s Minor Allele Frequency (MAF) that indicates whether the alleles
know for that SNP are common or not. For instance, a SNP with a MAF of 0.30 implies
that 30% of a population has the allele versus the more common allele (the major allele)
which is found in 70% of the population (assuming that it has only 2 variants, which is
the most common situation). An allele is called “rare” below 0.5% MAF, “low frequency”
between 0.5% and 5% and “common” above 5% [4]. Depending on the categorization, the
allele can be speci�c to small or large populations and the statistical tools used to assess an
association can di�er.
When a SNP is scarse in the population (i.e. rare variant), the SNP can be called a mutation.
Cystic �brosis is an example involving those rare variants. Results have shown that certain
mutations show an association with a disease [5]. In those cases, the SNPs have a strong
role in the biological process. Unfortunately, data on common variants can be easier to
obtain and analyze, but SNP-disease association can be hard to �nd [6].
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1.2. Computational biology disciplines

Studies on rare variants deal with small portions of the population being a�ected by a
genetic trait. The idea of working with common variants aims at making the genetic
studies bene�cial for a larger portion of the population. It relies on the idea that common
diseases have a di�erent underlying genetic architecture than rare disorders which led to
the development of the common disease/common variant (CD/CV) hypothesis [7].
The concept of linkage disequilibrium (LD) is commonly used for the correlation between
SNPs. “ Equilibrium ” stands for the fact that, when a mutation appears in a population, cor-
responding data will be correlated in this population in opposition with other populations.
Knowing the LD gives a priori information on the structure of the data.
Many measures of LD have been proposed, though all are ultimately related to the di�erence
between the observed frequency of co-occurrence for two alleles and the frequency expected
if the two markers were independent. The choice of measures for LD has been discussed in
the litterature [8, 9].

1.2 Computational biology disciplines

With the increase in the computational capacity of computers and the amount of available
biological data “bioinformatics” and “biostatistics” became key-words for various �elds.
Computational biology can be de�ned as a new interdisciplinary �eld that applies the
techniques of computer science, applied mathematics and statistics to address biological
problems. Being a very general de�nition, it encompasses many di�erent �elds. Here is a
list of di�erent approaches that have been taken.

• Computational biomodeling builds computational models of biological systems.
These biomodels try to mathematically emulate the biological mechanisms involved
in a particular system.

• Computational genomics is a �eld that studies the genomes of the organisms. It
aims at understanding the genome and, particularly, the principles of how DNA
controls the biology of any species at the molecular level. This is the axis studied in
this document.

• Molecular modeling similarly to the computational biomodeling, models the be-
haviour of molecules (hence in a smaller scale). The �elds of application can range
from small chemical systems to large biological molecules. Typical examples are
potential or energy functions that simulate biological behaviours by mathematics.

• Protein structure prediction aims at discovering the shape of the proteins, how it
folds in di�erent environments. The observation of the 3D structure of the proteins
being extremely expensive, mathematical models are built to guess the possible
shapes.

• Computational biochemistry makes extensive use of structural modeling and
simulation methods in an attempt to elucidate the kinetics and thermodynamics of
protein functions. Di�erential equations without a close solution and computational
optimization are used to adjust a kinetic model corresponding to the real measures
obtained by experimental methods.
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1. Molecular biology

1.3 Genetic epidemiology

Among the previously listed domain of computational biology, genomics focuses on DNA
analysis. After decades of research, several biological mechanisms have been highlighted
and di�erent statistical approaches have been developed. Genetic epidemiology aims at
understanding the role of genetic factors in the development of diseases. The issue consists
in knowing which genetic factors are associated with the onset of a particular illness. For
this purpose it is necessary to compare the genotype of people with the phenotype traits in
question.
Since past decades, data analysis applied to high dimensional data has become essential,
especially in biostatistics. Extracting information from ever larger data has become a
trend in numerous �elds. The key word "Big Data" has arisen to describe this kind of
analysis which covers a variety of �elds such as experimental data in physics (plasma data,
astronomy data), or internet data (data from Facebook, emails). Medicine and biology are
also involved in the increasing amount of data generated [10]. While the existence of the
genome was discovered early in the 20th century, the ability to extract all the genome
information on consequent amount of population have been quite recent. In the 70’s
extraction of sequences of the genome was performed with extremely expensive methods
and huge means. Nowadays, a whole genome can be sequenced within the day at an
a�ordable cost (less than 1 000 dollars); technological leaps have permitted to gather data
at a much higher pace.
This amount of data have permited to explain more disease/trait heritability and have led
to advances in genetic epidemiology [11].
Because of this need for managing ever-growing data the development of methods adapted
for high-dimensional data is rising. The problem concerns not only the volume of data but
also the variety of data.

1.3.1 Statistical focuses

From a statistical point of view, data are collected in a data set. Observations are performed
on variables. Some variables are related to the genome and are predictors. Other variables
(also called “traits”) are related to the phenotype which is related to a disease in genetic
epidemiology, they are outcome that must be explained from the predictors. Additional
variables can exist and help building models and they are called covariates.
Variables can be either quantitative or qualitative. Qualitative variables represent types and
are not countable, where as quantitative variables are the results of a measure. Models are
inferred on the data by means of a given method or algorithm. They can either explain the
data or being able to make predictions about the outcome when predictors are observed
for a new case. When outcome data is qualitative, the prediction is called classi�cation.

1.3.2 Association Studies

A �rst area of investigation consists in identifying the association between variants of SNPs.
It permits to characterize a population by establishing correlation between variants. The
study of this correlation leads to establishing of linkage disequilibrium information which
represents the correlation between SNPs.

8



1.3. Genetic epidemiology

At the larger scale of association studies, Genome Wide Association Studies (GWAS) analyse
DNA sequence variations at the genome level.
The �rst sequencing of a whole genome was achieved in 2003 [12]. Since then, the �rst
Genome Wide Association Study, was conducted in 2005. 96 patients with age-related
macular degeneration (ARMD) were compared with 50 healthy control individuals [13].
It was the �rst time the whole genome of patients was gathered on a population and the
study identi�ed two SNPs with signi�cantly altered allele frequency from one group to
the other. The establishing of a link from a statistical point of view was followed by the
establishing of a link from a biological point of view.
A major motivation on GWAS is to highlight DNA sequences associated to a phenotype
with the hope of revealing new biological mechanisms. Another motivation is providing
models that help for the medication of patient after a genetic test. For instance, after the
discovery of the in�uence of DNA sequences on warfarin dosing for blood treatments [14],
a genetic test was proposed. Using genetic information from the patients to adapt and
optimize their treatment is one of the main goals of personalized medicine.

1.3.3 Gene-Environment Interaction

Another approach consists in considering the gene-environment interaction: the exposition
to a certain environment can act as a catalyst for the expression of a given genetic feature.
Identifying such an interaction allow to highlight patient that would be more likely to have
a certain disease under the exposition to a given environment. From a statistical point of
view, the identi�cation of interaction e�ect requires speci�c statistic tools. The problem is
discussed in further details in Chapter 3.

1.3.4 Multi-level data analysis

As it will be explained in Section 1.3.7, data can be related to either the genome, the
transcription, or the proteins. Most of the analyses in genetic focus on one type of data,
but some approaches build models taking into account several of those type of data. In the
context of this manuscript, only one type of data (genomic) is considered.

1.3.5 Meta-analysis

Meta-analysis is the study of data from a given omic data type but coming from di�erent
datasets. In this case biases between them cannot be quanti�ed. In this case, separate
models can be applied on each source, but the comparison of the results and the formulation
of global model need a particular work. Some issues can appear like batch e�ects due to
biases. The matter is explained in more details in Chapter 4.

1.3.6 Pleiotropy

Pleiotropy is the �eld that studies the case where one or more genetic factor have an e�ect
on one or more phenotypes [15]. The problem can be seen either as a multivariate analysis
or a meta-analysis problem and, thus, it can be tackled with several statistical approaches
such as multivariate models, set based models or meta-analysis models. The subject is
discussed in further detail in Chapter 5.
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1. Molecular biology

1.3.7 Data sources

A recent English neologism, omics, has been used to address biology �elds that study cell
molecules in their entirety. The �rst example is genomics, which stands for the study of the
whole genome. In general, the term omics focuses on large scale and holistic data research
to understand information contained in cells. Genomic data are the focus of this document
and a list of the current database sources is given below. The study of genomic data is
called genomics.
There are other types of omic worth of mentioning. Due to the success of high-throughput
biological devices and new analytical tools, the su�x -om- has also been picked up by a wide
array of other large-scale quantitative biology �elds. Some of them are very recent terms
that are not fully accepted by all the research community. Some of the most established
ones are presented in the following.
Genomics

At �rst DNA data was sequenced pair by pair [16]. Since then, the methods of acquisition
have been improved. Nowadays, two ways of acquisition of DNA data are mainly used:
Microarrays and deep sequencing technologies (NGS). Microarrays are based on the hy-
bridization of DNA [17]. Genetic information is retrieved through probes that correspond
to prede�ned location in the genome. NGS (next-generation sequencing) relies on the
fragmentation of DNA into pieces that are then sequenced and assembled to recontruct the
complete sequence [18]. Microarrays can retrieve information faster to process but also
need an a priori knowledge of locations in the genome while NGS is longer to process but
can �nd new sequences.
The collection at genome wide level of DNA sequencing have been lead by consortia of
institutions and laboratories. A list of the main ones is:

• The international HapMap Project established a catalog of SNPs mostly in European
populations but also in Africa (the Yoruba population), in China (the Han population)
and in Japan (Tokyo) [8], [19]. To increase the number of SNPs new projects have
been lead and the project has been reaching 11 populations on its last version [4]. This
collection of data has been made possible thanks to the edi�cation of a nomenclature
for the human genome project [20].

• The 1000 Genomes Project was concluded in 2015, with 2504 genomes sequenced
from 26 populations [21].

• The UK 10K project propose an even larger number of observations[22].

• The 100k Genomes Project is one of the latest project [23].

• Precision Medicine Initiative is another of the latest project [24].

These databases allow to de�ne the genetic variation in large populations. In genetic
epidemiology, the genome of individuals showing given diseases are the main focus. The
problem is more speci�c and hence, databases have less observations, and can show a
reduced number of variables. Despite not being necessarily genome-wide studies, those
genome studies are still subject to the same issues in the analysis.
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Transcriptomic data

Transcriptomcis deals with the recollection of sequences of mRNA. Data on this kind
of information can come from either microarrays or RNA sequencing and are analyzed
through di�erent steps. In microarrays, sequences of interest in the mRNA are a priori
known. They are isolated through an array of probes, each probe corresponds to a feature
that have been determined a priori. Data are compiled recollecting information from each
probe. In RNA sequencing the full sequence of ribonucleic acid is obtained and is analysed.
From one side, RNA sequencing allow to discover new RNA markers. From the other side,
microarray can recollect data at a higher pace. Both approaches are used in a back and
forth process where RNA sequencing help building a priori knowledge for making RNA
sequencing.
We can note that genomic data and transcriptomic data have similarities: they have a large
number of variables, each variable being related to a gene. This is the reason why statistical
methods used for one of the type of data is also used for the other. They give an insight
into the role of a gene in the behavior of a cell. Especially, it can give an apriori knowledge
of the parts of the DNA that are most likely to have an impact on a cell (remember most of
the DNA is not transcripted [25]). eQTLs (Expression quantitative trait loci) identify loci
related to gene expressions. A large amount of loci has already been determined [26].
Proteomic data

Proteomic data are related to the proteins in the cell. The sequencing of the proteins on
a basis of 20 amino acids is determined. Then, the shape of the molecule, i.e. how the
molecule is folded, is inferred. This shape determines the function of the protein [27]. The
comparison of proteins present within each cell permits to understand the dynamics in the
cell. This information can be used for diagnostic but also for designing drugs with speci�c
targets [27]. The �eld has its own databases like [28] and protein-protein interaction can
be studied similarly to SNP data [29, 30].

1.4 Conclusion

Genetic studies aim at understanding the mechanisms ruling the behaviour of the cell.
Genetic epidemiology raises hope for new medical approaches for treating diseases with
preventive medicine or risk assessments in the application of drugs. The increase of results
in the �elds is due to the recent arrival of a deluge of new data. In terms of statistics
presented, new challenges are raised by this data, advancing in these challenges is the
motivation of this thesis. Especially, in the following chapters, studied data will be genomic
data and the aim is to deal with genetic epidemiology.
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Chapter2

Statistical methods for genetic

epidemiology

Genetic epidemiology aims at explaining the in�uence of the genome on the onset of
a disease. It leads to studying the association between a genotype and a phenotype,
i.e. predictors and an outcome. In this chapter statistical methods aiming at analyzing
such associations are presented. First the mathematical notations for biological data are
introduced. Secondly the challenges of the analysis are developed. Finally, statistical
methods for �nding simple e�ects in genomics are presented.

2.1 Mathematical notations

Data are represented by X ∈ Rn×p and Y ∈ Rn×q , two matrices, representing n obser-
vations of p predictors and q independent variables. For any matrix A of size (a, b), for
i ∈ {1, . . . , a}, its rows are noted Ai,· and, for j ∈ {1, . . . , b}, its columns are noted A·,j .
For subsets ã ⊂ {1, . . . , a} and b̃ ⊂ {1, . . . , b} resp. row and column sub-matrices are
noted Aã,· and A·,b̃. For any vector v of size a, for i ∈ {1, . . . , a}, its elements are noted vi
and for subsets ã ⊂ {1, . . . , a}, vã represents the elements of the vector corresponding to
the positions in the subset.
The Frobenius norm on matrices is denoted ‖ ‖F . We note XT the transpose matrix of
X and the cardinal of a set S is noted #S. The positive value of a real number x is noted
(x)+ = |x|+x

2 and is equal to the number if it is positive and equal to zero otherwise.
The notations for submatrices permit to represent a data matrix considering sets of obser-
vations and/or group of variables. Let us consider M di�erent sets of observations in the
data. Noting, for m ∈ N, Mm a subset of {1, . . . , n}, let M = (Mm)m=1..M be a partition
of {1, ..., n} corresponding to the observations sets. We note #Mm = nm. Row blocks
are de�ned by this partition and a representation is given in Figure 2.1 (observations are
assumed to be ordered by observation set).
Let us consider that the variables are gathered in K groups. Let P = (Pk)k=1..K be a
partition of {1, ..., p} corresponding to this variable group structure. We note #Pk = pk.
We then we have

∑K
k=1 pk = p. Column blocks are de�ned by this partitions as presented

in Figure 2.2 (observations are assumed to be ordered by observation set).
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2. Statistical methods for genetic epidemiology

Figure 2.1 – Illustration of data structured by groups of observations. Observations are
assumed to be ordered by observation set. p represents the number of variables of matrix
X , q the number of variables of matrix Y and n is the number of observations. n1, · · · , nM
are the resp. the number of observations of each observation set.

Both observation set structure and variable group structure can be de�ned at the same time
as shown in Figure 2.3.

Figure 2.2 – Illustration of data structured by groups of variables. Variables are assumed
to be ordered by observation set. p represents the number of variables of matrix X , q the
number of variables of matrix Y and n is the number of observations. p1, · · · , pK are the
resp. the number of variables in each group of variables.

In general, observation sets can represent the fact that di�erent sets of observations come
from di�erent sources and must be analyzed accordingly. For instance, data coming from
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Figure 2.3 – Illustration of data structured by groups of variables and groups observations.
Observations and variables are assumed to be ordered by resp. observations sets and variable
groups. p represents the number of variables of matrix X , q the number of variables of
matrix Y and n is the number of observations. n1, · · · , nM are resp. the number of
observations of each observation set, p1, · · · , pK , are the resp. the number of variables in
each group of variables.

di�erent studies may present biases. Group of variables can represent either a set of
variables that is known to be quite correlated or a group of variables that must be treated
together. For instance, in genetics, a locus de�nes a group of SNP variables.

2.2 Statistical challenges for genomics analysis

Due to the nature of the biological process and the method of acquisition of data, SNP data
present particular statistical challenges. The main challenges are discussed in this section.

2.2.1 Ill-posed problems

In genomic data, the number of variables is often much bigger than the number of ob-
servations. Indeed, the number of variables is extremely large due to the length of the
studied molecule while the number of observations remains smaller due to the cost of their
acquisition. A large portion of the existing data analysis tools are not suited for this kind of
data which is the reason why, in mathematics, such a case is called an “ill-posed” problem.
As an example, the limitation of linear regression in this case is presented.
Let us consider the following linear model :

Y = Xβ + ε (2.1)

where Y is a variable to explain, X are the predictors β are the coe�cent of the linear
regression and ε is the noise term which is assumed to follow a normal distribution.
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The estimated coe�cients of the linear regression β̂ are chosen in order to minimize the
residuals.

β̂ = argmin
β

‖Y −Xβ‖2 (2.2)

The solution is

β̂ = (XTX)−1XTY (2.3)

and then the predictive outcome is

Ŷ = X(XTX)−1XTY (2.4)

However such a model requires the inversion of the matrixXTX which cannot be calculated
when the number of variables is larger than the number of observations.
In the following, each method used copes with the problem of p� n.

2.2.2 Correlated variables

In genomics, a large number of variables can be correlated. Notably, it is known that genes
associated to a same gene will be highly correlated. In statistics, correlation can have a
huge impact in the accuracy of the methods. Having correlated data imply that similar
information belongs in several variables. Hence, it a�ects the performance of statistical
methods for which the lesser variables exist, the better they behave. Furthermore, the
addition of variables makes the results harder to interpret as several variables will have
synonymous roles in the model. After years of analysis of the genome, sets of SNPs or
genes have been highlighted. The location of a gene or a SNP of interest is often called
locus (loci for plural). A set of genes that are known to be involved in a same biological
process is called a pathway. This common representation leads to consider group of SNPs
in general, as SNPs from a same gene are often highly correlated. We can gain power and
reduce the number of tests by combining weak signals from SNP-level analysis. This is
why in genomics, making inference at a group of variables is preferred. Over the recent
years, numerous pathway analysis for GWAS data have been proposed in the literature for
�nding pathways associated with the studied disease [12, 31].
Two approaches compete for pathway analyses. From one side, self-contained GSA methods
test whether genes within a pathway are collectively associated to the phenotype of interest
[32]. Most widely used self-contained GSA methods combine either SNP-level or gene-level
p-values into pathway test statistics, where their signi�cance is typically assessed through
permutation testing. From the other side pathway analysis has also been shown in enriching
GWAS results by identifying SNPs that were missed by single-SNP analyses [33, 34, 35].

2.2.3 Variety of type of variables

While the �rst two challenges where related to the nature of the predictors, another
challenge concerns the de�nition of the outcome. In genomic studies, phenotype of interest
can either be quantitative or qualitative and statistical method exist for each case. When
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a physical feature can be measured in an organism, the outcome is quantitative. When
an expert performs a diagnostic on an organism, a trial is set and the variable is then
qualitative. However, statistical methods must be adapted to the nature of the outcome.
Some tricks can allow to pass from one case to another. For instance, threshold can be set
on a quantitative outcome to create categories, but a biological incentive is needed. For
the contrary case, a qualitative variable with r di�erent possible values can be seen as r
dummy variables which are equal to 0 or 1 and that are then considered as quantitative
variable between 0 and 1. However, a loss of power in the method can arise due to this
transformation.
When a method is developed for genomics, it is important to be aware to which case it can
be applied.

2.3 Methods for genetic epidemiology

In this section, a list of methods that have been developed for genetic epidemiology is
presented.

2.3.1 Group of variables structure

As we have seen in Section 1.1.3, certain SNPs tend to be highly correlated due to their being
transmitted together. Moreover, a single gene typically contains several SNPs and several
genes take part in the same pathway. These facts can be used to reduce the complexity of
the resulting models, incorporating the information in the methods. One way to achieve
this is by considering a group structure for the variables, as shown in Figure 2.2.
The approaches dealing with this structure can be classi�ed into two groups. A �rst group
of approaches consist in summarizing the SNP data to a gene-level data or a pathway level
data in a pre-process step. The obtained data are supposed to overcome the challenges
listed bellow and a second step analysis can be performed on data showing less intrinsic
correlation and the number of variables is reduced. A second group of approaches uses this
group structure and integrates into the framework of a statistic tool.
In the �rst set of approaches requires, there is a loss of information in the pre-process and
a well-established a priori biological knowledge is required. Conversely, the second set of
approaches, keeps all information and is then less stringent on the a priori assumptions
and less in�uenced by a pre-preocessing step. Its drawback is that integrating the a priori
information to the framework needs investment in the mathematical analysis and in the
coding of the implementation.

2.3.2 Pre-processing methods

As a �rst simple approach, a pre-processing can be performed. A �rst pre-processing
method consists in summurizing closely related variables in a weighted sum. The idea is
that single variables may have a low e�ect on a disease but the overall e�ect may be more
noticeable. The use of the weighted sum principle has been proposed on linear model [36]
and on Fourier transform analysis [37]. Other methods called screening methods, perform
low time cost tests on variablse to identify variables with higher chances of being relevant
for association. A pre-selection of variables is made which can be followed by a second
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step analysis on data with a reduced number of variables [38, 39, 40, 41]. The methods
presented in the following integrate the group structure to their framework.

2.3.3 Dimension reduction methods

Dimension reduction techniques is a set of popular methods that have been used in genetic
studies, being the most common ones Canonical Correlation Analysis (CCA) [42], Principal
Component Analysis (PCA) [43] and Partial Least Square (PLS) [44]. All these methods
rely on the projection of the data into a subspace of lower dimension which represents
most of the variation of the data, and they are often posed as an eigen value problem [45].
PLS and CCA are both supervised models and di�er from the norm used whereas PCA is
unsupervised. PCA was developed in the early days of statistics [46] and have been raised
interest in last decades since the number of available variables has become larger and larger.
It has been one of the �rst methods to be used to study GWAS . PLS was introduced later
by H. Wold [47]. It has had succes in domains with a large number of variables to analyze,
like Chemometrics [48], and GWAS [44]. CCA was proposed by Hotelling [49] and its
application to GWAS came even later than the two previous methods[42]. All methods
called “dimension reduction methods” derive from those ones.
Principal Component Analysis

In PCA we search for two linear regressions, u, of the variables of X that explains most of
the covariance

u = argmax
‖u‖2=1

‖Xu‖2 (2.5)

Partial Least Square

For PLS, we search for a linear combinations, u and v, of the variables of X and Y that
explain most of the covariance of X and Y :

(u, v) = argmax
‖u‖2=‖v‖2=1

∥∥uTXTY v
∥∥
2 (2.6)

Canonical Correlation Analysis

The CCA is similar to PLS, we search for linear combinations, u and v of the variable of X
and Y that explain most of the correlation, instead of the covariance for the PLS, between
X and Y .

(u, v) = argmax
‖u‖2=‖v‖2=1

∥∥uTXTY v
∥∥2
2

‖Xu‖2 ‖Y v‖2
(2.7)

Both PLS and CCA are closely related and are generally applied in �elds with similar
properties but they have di�erence statistical meaning. The study of the correlation (CCA)
impose a normalization of the analyzed data. In practice, for most of the analysis, data are
already standardized and hence PLS and CCA give similar results.
Sparse formulations

In these dimension reduction techniques, results are formulated with new variables that are
linear combinations of the original ones. These combinations can be hard to interpret due
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to the huge number of coe�cient they represent. To cope with this problem, Lasso methods
have been used [50]. Lasso’s penalization shrinks to zero the participation to the model of
the least relevant variables. Results highlight a smaller number of variables that are easier
to explain. In addition, the noise in the signal is reduced and the power of the methods is
boosted. In particular sparse Partial Least Square (sPLS), has shown encouraging results
[51]. In the rest of the document the Lasso penalization is applied only to the weights
associated to X but the Lasso penalization could also be applied to the weights associated
to Y .
For PLS the sparse formulation with a Lasso penalization on u is as follows :

min
||u||=1,||v||=1

∥∥Z − uvT
∥∥2
F
+ λP (u)

P (u) =

p∑

i=1

|ui|1

Z = XY T

(2.8)

where λ is a parameter controlling the sparsity of the model. The larger the parameters,
the less the number of non-null elements in the linear combination.
Group of variables

The Lasso penalization can be adapted when groups of variables are known a priori. In
genetics, incorporation of this grouping structure is becoming increasingly common due
to the success of gene set enrichment analysis approaches [52]. Using a model that takes
into account this variable group structure allow to improve the performance and the
readability of the results. To this purpose, the group Lasso has been proposed for the linear
regression and used in genetics [53]. The sparse group Partial Least Square (sgPLS) adapts
the penalization to the PLS [54] where two overlaid Lasso penalizations translate the group
structure in the Partial Least Square formulation. A structure with group and sub-groups
can also be handled by this generalization with three overlaid Lasso penalizations which is
called sparse group sparse PLS (sgsPLS) [55].
The application of a group Lasso for the PLS is :

{uopt, vopt} = argmin
u,v

∥∥Z − uvT
∥∥2
F
+ λPgroup(u)

with Pgroup(u) =
K∑

k=1

√
pk ‖uPk

‖2 and Z = XTY.

where Pk refers to the notation for group of variables from section 2.1.
A group Lasso level penalization and a classical lasso penalization can be added up in a
same model.

{uopt, vopt} = argmin
u,v

∥∥Z − uvT
∥∥2
F
+ λ (1− α)Pgroup(u) + λαPvariable(u)

with Pgroup(u) =
K∑

k=1

√
pk ‖uPk

‖2 , Pvariable(u) =
p∑

i=1

‖ui‖2

and Z = XTY.
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Where α is a parameter between 0 and 1 controlling weather the group penalization or
the individual variable penalization have more impact, the lower the parameter, the more
group penalization is prevalent.
Case of the overlapping groups

The solution of the optimization problems presented above can be obtained through an
SVD (Singular Value Decomposition) algorithm or a NIPALS algorithm [56]. However
if the groups of variables are overlapped the solution is hard to obtain. Some methods
proposed to integrate the overlap in the algorithm of the solution whereas Jacob [57]
proposed to duplicate the variables related to the overlap. Pathways group Lasso with
adaptive weights accounts for the presence of overlapping pathways [58]. It has been used
to identify pathways associated with a trait of interest and its application [59]. Several other
methods were also proposed for handling overlapping group structure and it is still a �eld
of interest [60, 61]. In this dissertation, the method from Jacob is preferred as duplicating
do not force a modi�cation of the framework of an algorithm. It is the easiest approach to
implement the possible increment of the number of variables.

2.3.4 P-value combination methods

Methods presented above have the common feature of trying to make an overall model
of the data based on an underlying structure assumption. Other methods only aim at
testing associations. It is the case of the methods presented in this section. While former
approaches can provide a larger interpretability of the model and formulate predictions,
latter need less stringent hypotheses on the data.
The idea behind p-value combination methods is to perform statistical tests for single
variables and combine them to a group of variables result. In epidemiology genetics, groups
of variables are typically genes (group of SNPs) or pathways (group of genes).
Fisher’s method

Fisher’s method is a well-established p-value combination method that combines the p-
values from multiple statistical tests. The FM test statistic equals

FM = −2
L∑

`=1

log (p`) = −2 log
(

L∏

`=1

p`

)
, (2.9)

where L is the number of tests combined (for example the number of SNPs within a
pathway). Under null hypothesis (that the p-values are independent) FM test statistic
follows a χ2 distribution with 2L degrees of freedom.
Adaptive rank truncated product (ARTP)

The idea behind the ARTP is to truncate the highest p-values in the FM method. The
only p-values left are the most signi�cant ones. We denote the ordered statistics of those
p-values p(1) ≤ . . . ≤ p(L), with p(`) being the `-th smallest p-value. The original RTP
statistic given by

WK =

K∑

k=1

log (p(k)) = log

(
K∏

k=1

p(k)

)
(2.10)

20



2.3. Methods for genetic epidemiology

combines the K smallest p-values statistics of the tested pathway [62]. In the adaptive
RTP method J di�erent truncation K1 ≤ . . . ≤ KJ are investigated. Let ŝ(Kj) be the
estimated p-value for WKj , (1 ≤ j ≤ J ). The ARTP statistic is then de�ned using the
minimum p-value procedure

MinP = min1≤j≤J ŝ(Kj). (2.11)

Let p(0)1 , . . . , p
(0)
L be the p-values for each interaction test on the null hypothesis based on

the observed data. B datasets under the complete null hypothesis H0 = H0,1 ∩ . . . ∩H0,L

using appropriate resampling procedure are generated. Let p(b)1 , . . . , p
(b)
L be the p-values for

each interaction test on the null hypothesis based on the b-th generated data set, 1 ≤ b ≤ B.
The RTP statistic

W
(b)
j =

Kj∑

i=1

log (p
(b)
(i)), 0 ≤ b ≤ B, 1 ≤ j ≤ J (2.12)

is calculated for each truncation point, for both the observed data set and each of the B
simulated datasets. A p-value is computed

ŝ
(b)
j =

∑B
b∗=0 I

(
W

(b∗)
j ≤W (b)

j

)

B + 1
, 0 ≤ b ≤ B, 1 ≤ j ≤ J (2.13)

for each Wj . The p-value for the ARTP statistic MinP (0) of the group of variable is
estimated as

p̂ARTP =

∑B
b∗=0 I

(
MinP (b) ≤MinP (0)

)

B + 1
, (2.14)

where
MinP (b) = min1≤j≤J ŝ

(b)
j , 0 ≤ b ≤ B, 1 ≤ j ≤ J. (2.15)

In order to compute this minimum, several p-values are needed for the same variable. A
resampling of the data can provide those p-values, it can either be, permutations, bootstraps
or parametric bootstraps.
Resampling methods

Both ARTP and FM rely on appropriate resampling strategy to generate data set under the
null hypothesis considered.
Yu [63] proposed a permutation procedure to evaluate the signi�cance level of the ARTP
statistic. An alternative to the permutation procedure is to used a parametric bootstrap
procedure [64, 65]. For permutation procedures, the number of valid permutation can be
limited while their is not such a problem for parametric bootstrap [66].
Methods that perform a gene-based pathway analysis �rst combine the p-values of single-
SNP analysis into gene-level test statistics (or p-values) that are subsequently summarized
into pathway-level associations. The SNP-level p-values can also lead directly to a pathway-
level analysis.
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2.3.5 Variance component methods

Another group of methods has been popular in GWAS: the variance component methods.
A joint test is propose at a group of variables level. The originality is to test the variance
instead of means or weighting to capture information even with variables in di�erent
direction. This family of methods use commonly a variance component test [67] which has
been used in genetic studies [68]. The burden test is a similar test that have also been used
in genetics [36].
The most popular application of these types of methods to genetics is called SKAT [68]. It is
especially suited for dealing with the rare variants case, but it can also be used for common
variants. Indeed, a formulation combining rare and common variants has been formulated
[69]. Improvements to its power and robustness have been also developed [70, 71].
A genotype can generally be related to the phenotype by a regression model. Let us
consider a dichotomous phenotype y and a set of variables i1, · · · , ir. The following
logistic regression model can be proposed:

logit(πi) = α0 +
r∑

l=1

βilXil (2.16)

where logit is the function x 7→ log
(

p
1−p

)
and πi denotes the disease probability. Xi is

the predictor and βi, the regression parameter.
The regression model can be rewritten as

logit(πi) = α0 + βC

r∑

l=1

wilXil (2.17)

where βC iks a general coe�cient parameter and wil are weights that can depend on the
minor allele frequency.
The burden score for testing the null hypothesis that βC = 0 is:

QB =




n∑

i=1

(yi − π̂i)




m∑

j=1

wjXi,





2

(2.18)

where yj is the phenotype j.
The SKAT score is then:

QS = (y − π̂)′K(y − π̂) (2.19)

where K = XWWX ′ is and n× n kernel matrix de�ned by the matrix of predictors X
and a diagonal matrix of weights W .
The SKAT-O score combines burden and SKAT statistics in a weighted sum.

Qρ = ρQB + (1− ρ)QS (2.20)
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where ρ is a parameter that determine the participation of the burden score and the SKAT
score.
The optimal Qρ is considered for SKAT-O

Qoptimal = min
0≤ρ≤1

Qρ (2.21)

2.3.6 Other methods

The methods presented so far are the basis for the work in this dissertation, but are not
the only approaches to the problems posed in genetic epidemiology. For frequentist side,
methods are for instance c-alpha test [72], the group additive regression model [73], Tukey’s
model [74] and entropy-based methods [75]. Methods can also be Bayesian [76, 77] or been
take from the machine learning domain [77]. We can also cite pairwise similarity based
model [78] and U-statistic models [79, 80, 81].

2.4 Conclusion

Data analysis on omics data sets particular challenges in terms of statistics. Data have
a low number of observations compared to the number of variables. Models must be
able to extract information from this too wide variety of information and summarize it
as readable results. A large number of variables are known to be correlated, which is a
wide-spread problem in statistic in general and models must be resilient to it. Furthermore,
variables are often gathered into groups of variables (like when di�erent SNP data refer
to the same gene). Models need to be able to give interpretations at group of variables
results. In this manuscript, a special focus is given to dimension reduction methods and
p-value combining statistics, and extensions are presented in both cases. In the rest of
the document, the contributions of this dissertation to cope with these problems will be
presented. The Chapter 3 is devoted to gene-environment interaction methods, while
Chapter 4 and Chapter 5 deals with meta-analysis and pleiotropy. In both cases, after a brief
summary of the work is presented and, then, the original papers where the contribution
was published are reproduced.
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Chapter3

Gene-environment interaction

methods

This part covers the study of gene-environment interactions (G×E) which accounts for
situations in genetic epidemiology when the exposure to a certain environment catalyst
the appearance of a disease. First, G×E interactions are presented. Then the statistical
challenges raised by this kind of analyses are explained. After, current approaches used
in the literature are presented. Finally, a novel method is presented. It is an extension
of a combination test framework for a set based G×E interactions analysis, and it is the
contribution of this thesis to G×E interactions studies. The methods have been highlighted
by a piblication in the Journal of the French Society of Statistics [82]. The article is presented
right after the chapter.

3.1 De�nition of gene-environment interaction

A �rst de�nition of the phenomenom was given two decades ago [83]. In the case of
dichotomous environments and phenotypes for instance, the analysis relies on having a
population with individuals i) either exposed or not to an environment ii)with di�erent
disease diagnostic iii) with di�erent genotype information. Observations need to span
each possible combination. Then the question is to know if a population exposed to the
environment and with speci�c genetic variants has disease appearance larger than the one
that can be expected from a simple environment e�ect or a simple genetic e�ect. Formal
genetic evidence for G×E interaction can consist in the observation that a certain exposure
has di�erent e�ects in di�erent populations or ethnic groups or in people with di�erent
genetically determined phenotypes.
A �rst motivation, for these studies, is the idea of personalized recommendations in a public
health perspective. Identifying G × E interaction helps identifying high-risk individuals if
their environmental exposure is known. A second motivation is pharmacogenetics. The
idea is to determine conditions enhancing the response of a patient to a treatment [84].
Interactions have been highlighted for a large variety of etiologies. Cigarette smoking has
been identi�ed as interacting with genetic markers for cancers [85, 86] and alcohol con-
sumption interacts with genes in upper aerodigestive cancers [87]. Environment in�uence
has also been noted for Parkinson disease [88], for example with co�ee consumption [84].
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3.2 Statistical challenges

From a statistical point of view interactions are often related to an interaction test. However,
interaction e�ects are known to be harder to highlight. Especially, is has been settled that a
four times larger database in terms of observations is needed for highlighting an interaction
e�ect compared to a simple disease/trait e�ect [89]. This means that G×E questions are
expected to need more extensive studies than usual.
The design of the recollection of clinical data takes a major role in this problem. For
instance, in a �rst step, case-only studies were developed for G×E [90]. It appears that
such studies rely heavily on strong hypothesis and the performances can be hindered when
the hypothesis are violated. Then, methods using a case-control study were also used [91].
Unfortunately, case-control analysis su�ers from low statistical power. In contrast, the
case-only studies can be powerful in certain scenarios, although violation of the assumption
of independence between the genetic and environmental factors can greatly bias the results.
Some propositions to deal with the hypothesis reliance has been developed. A bayesian
method trying to cope with this reliance was proposed [92] with a trade o� between the
hypothesis reliance and the method e�ciency. Another model combines both case-only
and case-control approaches in one method [93]. Nowadays the case-control approach is
more common due to its freedom to assumptions.

3.3 Current methods

In general the global framework of statistical methods for detecting interaction can be
quite similar to the simple e�ect case. If the methods rely on summary statistics at single
variable levels, we can just take a summary statistic suited for interaction detection instead
of simple e�ect detection, although interaction e�ects are harder to highlight.

3.3.1 iSKAT and GESAT

The SKAT method presented in Section 2.3.5 has been adapted to G×E interaction stud-
ies. The Gene-Environment Set Association Test (GESAT) [94] method adapts the SKAT
framework for the analysis of common variants and the iSKAT method [95] adapt it for
rare variants. The main di�erence with SKAT relies on the di�erence of regression models
considered. For instance, for a dichotomous phenotype variable, a simple e�ects can be
modelled by a regression model as

logit[P (Y = 1)] = αi + βiXi (3.1)

Where logit is the function x 7→ log
(

p
1−p

)
, Xi refers to the i-th SNP variable and Y is the

outcome.
Under the null hypothesis, the model would be

logit[P (Y = 1)] = αi (3.2)

For G × E studies, the regression model would be

logit[P (Y = 1|Xi, E)] = αi + βE + βiXi + γXi × E (3.3)
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and under the null hypothesis, the model would be

logit[P (Y = 1|Xi, E)] = αi + βE + βiXi (3.4)

3.3.2 P-value combination methods

Methods for combining p-values can be used for G×E interaction. In these methods, the
p-value is computed for a G × E interaction like in iSKAT, as it has been described in
Section 3.3.1.
A change in the resampling framework is also needed especially for permutations. Yu [63]
use a permutation procedure to evaluate the signi�cance level of the ARTP statistic in the
context of disease-pathway association.
For the interaction model, the permutation procedure to generate data set under the
complete null hypothesis �xes SNP and E and permutes Y for generating data. Although
the procedure seems easy to implement, the number of a valid permutations can be restricted
and alter the quality of the results. The alternative is a parametric bootstrap procedure [64]
which implies less stringent assumptions [66, 65]. In our context, this procedure is chosen
in the following.

3.4 Contribution to gene-environment interaction methods

In our contribution, we have decided to compare the Fisher’s product test statistic and
ARTP approach because they have been discussed in the literature to be the most powerful
pathway analyses among combination tests [96, 97].
We choose to use an ARTP (Adaptative Rank Truncated Product) method. For SNP-
environment interactions, p-values are computed and a result at the gene-environment and
pathway environment is inferred. The chosen method uses a null hypothesis corresponding
to a self contained approach [96]. In most of the p-value combination methods used in
genetic epidemiology the null hypothesis is chosen to highlight simple e�ect. Instead, an
interaction test is performed in the presented method. Also, the framework of the ARTP
requires a resampling procedure. The permutation is widely used for this purpose. However,
promising results with parametric bootstrap have been shown which is interesting as the
method is more adaptable to cases where the number of observations is low [98]. The
method still hasn’t been used in a case of interactions. The proposed model aims at �lling
this gap.
The contribution has been used on real data.
The analysis is conducted in a population-based case-control study from France including
1 126 breast cancer cases and 1 174 controls. Data are composed of 23 genes gathered in
one pathway: the circadian pathway. This is a case-control study conducted in Côte d’Or
and Ille-et-Vilaine (France) [99]. Eligible cases were women aged between 25 and 75 years,
resident in one of these two areas and diagnosed breast cancer between 2005 and 2007.
A total of 1 232 incident breast cancer cases were included in the study. Controls were
selected among women living in the same areas with no history of breast cancer. In total 1
317 controls were enrolled in the study. Genotyped data from a microarray for oncology
(called oncoarray) are available on 1019 cases and 999 controls. The OncoArray chip targets
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up to 500 000 variants with a genome-wide backbone of 250 000 tag SNPs. A preselection
of SNP of interest can then be performed by epidemiologists.
The developed methods have been implemented in an R package [100].

3.5 Conclusion

This part presents the G × E interaction questions in general. We can note that there are
not so many statistical methods dedicated to this problem and we can wonder how to use
properties of existing statistical methods in genomics and apply them to G × E interaction.
This approach have been followed in this chapter where the parametric bootstrap as a
resampling is used while it has only been highlighted in the literature for simple e�ects
but no G × E interaction e�ects.
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Abstract: Pathway analysis can increase power to detect associations with a gene or a pathway by combining several
signals at the single nucleotide polymorphism (SNP)-level into a single test. In this work, we propose to extend two
well-known self-contained methods, the Fisher’s method (FM) and the Adaptive Rank Truncated Product (ARTP)
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simulation studies. We illustrate its application by analysing the interaction between night work and circadian gene
polymorphisms in the risk of breast cancer in a case-control study. The ARTP method, adapted for both gene- and
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par une approche Bootstrap. Ainsi, nous analysons et comparons dans une étude de simulation les performances de
l’extension des méthodes FM et ARTP en utilisant une procédure de permutation et une méthode de Bootstrap para-
métrique. Ces méthodes sont également appliquées aux données de l’étude cas-témoins CECILE sur les cancers du
sein dans laquelle nous avons analysé l’interaction entre le travail de nuit et les polymorphismes des gènes circadiens
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1. Introduction

During the last decade, genome-wide association studies (GWAS) have been successful in iden-
tifying several hundred single nucleotide polymorphisms (SNPs) associated with multiple cancer
types (http://www.genome.gov/gwastudies/). However, such findings are not enough for explain-
ing the genetic heritability of these cancers. Several reasons have been discussed that possibly
explain the “missing heritability” in complex diseases such as the fact that most of these genetic
associations were identified through single-SNP analyses (each SNP tested independently). It has
been raised that polygenic effects, gene-gene and gene-environment (GxE) interactions are not
fully explored in traditional methods (Manolio et al., 2009). Several approaches were developed
in order to complete the agnostic GWAS in the discovery of additional genetic risk factors or to
provide additional insights into the mechanisms involved in the studied disease.

One such approach is pathway analysis that consists of aggregating signals from SNPs (and/or
genes) to pathways. Pathways are sets of genes that work together for the production of a specific
biological outcome. Pathway analysis therefore incorporates the available biological knowledge
of genes and SNPs for a better understanding of the genetic and biological mechanisms of the
studied disease (Mooney et al., 2014, Pers (2016)). One of the main thrust of the statistical
analyses will be to gain power and reduce the number of tests by combining weak signals from
SNP-level analysis. Over the recent years, numerous pathway analysis for GWAS data have
been proposed in the literature for finding pathways associated with the studied disease (a non
exclusive list includes the methods proposed by Wang et al., 2007; Yu et al., 2009; Holmans
et al., 2009; O’Dushlaine et al., 2009; Shahbaba et al., 2012; Carbonetto and Stephens, 2013;
Evangelou et al., 2014a,b; Su et al., 2016). The challenges, properties and statistical methods for
conducting pathway (and gene-set) analysis for GWAS data have been discussed and reviewed
by Wang et al. (2011); Fridley and Biernacka (2011); de Leeuw et al. (2016).

These methods can be divided by the null hypothesis they test, namely the competitive (enrich-
ment) or self-contained (association) null hypotheses. The self-contained null hypothesis states
that no pathway genes are associated with the phenotype. On the other hand, the competitive
hypothesis states that the statistics of the pathway genes are no more associated with the phe-
notype than the statistics of the genes outside of the pathway. A pathway where the competitive
null hypothesis is rejected, is said to be an enriched one. The self-contained null hypothesis can
be tested in both GWAS and candidate gene analysis, since only the statistics from a selection
of genes is required. By contrast, competitive methods are usually used in GWAS data as all
pathways are tested simultaneously. As discussed in the literature self-contained methods are
generally more powerful than competitive methods (Evangelou et al., 2012).

Self-contained methods could also be classified into marginal approaches, which are based
on the combination of p-values of individual SNPs (such as for instance Fisher’s Method (FM),
Adaptative Rank Truncated Product (ARTP)), or joint approaches that jointly model and test
the effect of all the SNPs in the set (such as random and mixed effect models, Sequence Kernel
association Test (SKAT) proposed by Ionita-Laza et al., 2013). p-value combination test statistics
are usually combined with phenotype permutations for estimating their significance. Phenotype
permutations avoid making any assumptions about the distribution of the effect of the genetic
variants on the disease.

Another distinction factor is whether the pathway analysis is considered at the gene-level or
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at the SNP-level. Methods that perform a gene-based pathway analysis they first combine the
p-values of single-SNP analysis into gene-level test statistics (or p-values) that are subsequently
summarised into pathway-level associations. On the other hand, SNP level pathway methods
skip the intermediate gene level and map SNPs directly to pathways.

Although a number of statistical approaches have been proposed to test for pathway associa-
tion with disease, the literature has not been greatly extended for testing for GxE interactions at
the pathway level. Lin et al. (2013) proposed a computationally efficient GxE set association test
(GESAT), a variance component score test statistic is proposed that extends the SNP-set Kernel
association test for GxE testing. The proposed method tests each set of SNPs independently from
the other sets and it is a SNP-based pathway analysis approach.

In addition to this, Jiao et al. (2013) proposed the set based gene environment interaction
(SBERIA) method and two more extensions that overcome the limitations of SBERIA (Jiao et al.,
2015) for both rare and common variants. SBERIA firstly computes the correlation between
the environmental factors and all SNPs in the set, where a z-score of correlation is obtained.
These scores are translated into weights based on a preselected threshold that are included in
a regression model that tests whether they are needed or not in the model. The first extension,
named enhanced set-based GxE testing (eSBERIA), is composed of two steps: the first one tests
the null hypothesis that the gene-environment weights are not associated with the response. The
second step implements the SKAT statistic that accounts for any residual effects that might have
been missed by the logistic regression model with the gene-environment interactions. As the
two tests are independent, their p-values are combined using Fisher’s product statistic. The third
proposed approach is coSBERIA which combines SBERIA and SKAT tests for the case-only
test. The case-only GxE test for a single SNP has been found to improve the power for testing
for GxE under the assumption that G and E are independent (Albert et al., 2001).

In this work we were interested in extension of combination tests to the analysis of set based
GxE interactions for which we have looked at replacing the phenotype permutation procedure
for testing the significance of each pathway (and/or gene) by the bootstrap approach proposed by
Buzkova et al. (2011). We have decided to compare the Fisher’s product test statistic and ARTP
approach as these two approaches have been discussed in the literature to be the most powerful
pathway analyses among combination tests (Evangelou et al., 2012; Su et al., 2016). In contrast
to the other proposed approaches GESAT and SBERIA, we are considering the case of gene-
based pathway analyses over SNP-based ones. Further, Su et al. (2016) discussed the need for a
fast algorithm to test for GxE interactions through pathway analysis and in this conducted work
we aim to fill this gap.

A brief description of the context which has first motivated the development of our R package
PIGE (Pathway Interaction Gene Environment, Liquet et al., 2017) is presented in Section 2. In
Section 3, Fisher’s Method (FM) and ARTP approaches are presented in context of gene and
pathway-environment interaction. Both permutation and parametric bootstrap resampling meth-
ods are presented. In Section 4, a simulation study is presented to analyse the performances of
FM and ARTP methods combined with both permutation and parametric bootstrap approaches.
The methods are applied on genotype data from the CECILE case-control study in Section 5.
Concluding remarks are presented in Section 6.
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2. Motivation

In a first step, we propose to test the performance of the proposed methods in simulated datasets
that mimic the application dataset. In a second step, the methods will be illustrated on genotype
data from the CECILE case-control study, in which we are interested in the interaction between
nightwork, a binary environmental factor (defined as ever worked at night more than two years:
yes/no) and polymorphisms from genes in the circadian rhythm pathway (Truong et al., 2014).

In the case of a binary response Y , the null hypothesis that there is no association between
the response and the interaction term between SNP̀ and environment is evaluated through the
following logistic model:

logit[P(Y = 1|SNP̀ ,E)] = α`+β`SNP̀ +βE,`E + γ`E×SNP̀ . (1)

where E presents the environmental factor. The likelihood ratio test (LRT) could be used to test
the evidence of the interaction term (H0,` : γ` = 0 versus H1,` : γ` 6= 0), resulting to the `-th
p-value (p`).

As discussed earlier, there are usually multiple SNPs within each gene and multiple genes
within each pathway. The questions that we will answer through our conducted work are: how
to combine these results to get (i) association evidence between gene-environment interaction
and the outcome, (ii) association evidence between pathway-environment interaction and the
outcome?

In the context of a gene-based pathway analysis, a two-step procedure is needed. At the first
level the association evidence between a gene and the response is found and at the second level
these gene-level p-values are combined into a test statistic for the disease-pathway association.

Phenotype permutations are usually implemented for computing the null distribution of the
test statistic that can be used for obtaining a p-value for the global null hypothesis of no asso-
ciation between the gene with the response. In this work, we are investigating the performance
of two alternative resampling approaches one based on phenotype permutations and a second
one on the bootstrap approach proposed by Buzkova et al. (2011) that has been proposed for
interaction models. Both these resampling approaches are presented in Section 3.3.

3. Methods

In this section, we first present two frequentist approaches for combining p-values under in-
vestigation FM, and ARTP methods. We subsequently present the two resampling approaches.
Finally, we shortly present an alternative frequentist approach iSKAT.

3.1. Fisher’s method

Fisher’s method is a well established association method that combines the results from multiple
statistical tests. The FM test statistic equals

FM =−2
L

∑̀
=1

log(p`) =−2log

(
L

∏̀
=1

p`

)
, (2)
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where L is for example the number of SNPs within a pathway. Under null hypothesis the FM test
statistic follows a χ2 distribution with 2L degrees of freedom when the p-values are independent.
In the presence of linkage disequilibrium, the correlation between SNPs leads to dependent test-
statistics. We have used the resampling approaches (presented in Section 3.3) to approximate the
empirical distribution of the FM test statistics.

3.2. Adaptive rank truncated product (ARTP)

The idea behind the ARTP is to truncate the highest p-values in the FM method. The only p-
values left are the most significant ones. To simplify the presentation of the ARTP proposed by Yu
et al. (2009), we consider a pathway consisting of L SNPs and we want to test the null hypothesis
that there is no pathway-environment interaction associated to the disease phenotype. Using
model (1), we can perform a LRT test on individual interaction E×SNPs within the considered
pathway. We denote the ordered statistics of those p-values p(1) ≤ . . .≤ p(L), with p(`) being the
`-th smallest p-value. The original RTP statistic given by

WK =
K

∑
k=1

log(p(k)) = log

(
K

∏
k=1

p(k)

)
(3)

combines the K smallest p-values E×SNP statistics of the tested pathway (Dudbridge and Koele-
man, 2003). In the adaptive RTP method J different truncation K1 ≤ . . . ≤ KJ are investigated.
Let ŝ(K j) be the estimated p-value for WK j , (1≤ j ≤ J). The ARTP statistic is then defined using
the minimum p-value procedure

MinP = min1≤ j≤J ŝ(K j). (4)

Note that for a single truncation point (J = 1), the ARTP method is the RTP method and the RTP
statistic simplifies to the FM test statistic when the truncation point K is fixed to L. Two levels
of resampling approach are required to get the adjusted p-value for MinP: (1) for estimating
ŝ(K j), (2) for the adjustment for multiple testing over different truncation points. To avoid this
computational issue specially when the number of test L is large, Yu et al. (2009) uses the Ge
et al. (2003)’s algorithm which reduces the multiple-level resampling procedure into a single
level resampling procedure. In this work, we use the same algorithm.

Let p(0)1 , . . . , p(0)L be the p-values for each interaction test on the null hypothesis based on the
observed data. We generate B datasets under the complete null hypothesis H0 = H0,1 ∩ . . .H0,L

using appropriate resampling procedure (see section 3.3). Let p(b)1 , . . . , p(b)L be the p-values for
each interaction test on the null hypothesis based on the b-th generated dataset, 1 ≤ b ≤ B. The
RTP statistic

W (b)
j =

K j

∑
i=1

log(p(b)(i) ), 0≤ b≤ B, 1≤ j ≤ J (5)

is calculated for each truncation point, for both the observed data-set and each of the B simulated
datasets. Then Ge’s algorithm is used to estimate the p-value

ŝ(b)j =
∑B

b∗=0 I
(

W (b∗)
j ≤W (b)

j

)

B+1
, 0≤ b≤ B, 1≤ j ≤ J (6)
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for each Wj. The p-value for the ARTP statistic MinP(0) of the pathway is estimated as

p̂ART P =
∑B

b∗=0 I
(
MinP(b) ≤MinP(0)

)

B+1
, (7)

where
MinP(b) = min1≤ j≤J ŝ(b)j , 0≤ b≤ B, 1≤ j ≤ J. (8)

Remark. The adjusted p-value for MinP(b), the ARTP statistic from the b-th dataset, can also be

estimated similarly using ∑B
b∗=0 I(MinP(b∗)≤MinP(b))

B+1 .

Thus this procedure can give an evidence of association between a pathway-environment inter-
action and the disease outcome. It is called a SNP-based strategy. We describe in the following the
gene-based strategy consisting to used the ARTP method for both derive the gene-environment
interaction level summary and to combine gene-environment interaction level p-values across all
genes within a pathway. This procedure adapted for interaction investigation is the one described
in Yu et al. (2009).

Consider a pathway composed of L genes, with the `-th composed of n` SNPs, 1 ≤ ` ≤ L.
Let p(0)`,i be the p-value for the association test on the i-th interaction SNP×environment of
the `-th gene based on the observed dataset. We then generate using resampling approach B
datasets under the null hypothesis, and define p(b)`, j the p-value for the test on the ith interac-
tion SNP×environment of the `-th gene based on the b-th generated dataset, 1 ≤ b ≤ B. The
ARTP is then applied (with a predetermined set of candidate truncation points, which could be
varied from gene to gene) to combine interaction SNPs×environment-level evidence of associ-
ation within a gene. For the `-th gene, we apply the minimum p-value procedure (MinP) given
earlier on, 1 ≤ i ≤ n`, 0 ≤ b ≤ B, to obtain p∗(0)` , the interaction gene×environment-level p-
value for the observed data, and p∗(b)` , the interaction GxE level p-value for the b-th permuted
dataset. Finally in order to get a evidence of interaction pathway×environment the ARTP statis-
tic is used to combine the gene×environment-level p-values for the observed and the resampling
"null" data sets. We use the MinP procedure one more time to obtain the adjusted p-value for the
pathway×environment-level ARTP statistic. Note that the same set of generated "null" datasets
are exploited each time for the MinP procedure to derive interaction gene×environment-level and
interaction pathway×environment-level evidence. Thus the full procedure overcomes the expen-
sive computational multi-layer resampling issue. The same procedure is used for FM method.

3.3. Resampling methods

Both ARTP and FM rely on appropriate resampling strategy to generate data set under the null
hypothesis considered. For gene- and pathways- environment interaction, we consider the global
null hypothesis:

H0 = H0,1∩ . . .H0,` . . .∩H0,L, with H0,` : γ` = 0 (see equation (1)) (9)

where L is the number of SNPs within a considered pathway.
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Yu et al. (2009) use a permutation procedure to evaluate the significance level of the ARTP
statistic in the context of disease-pathway association which for example corresponds to the
situation of the simplified model:

logit[P(Y = 1|SNP̀ ,E)] = α`+β`SNP̀ (10)

with H0,` : β` = 0. In this situation, there is no difficulty to define the permutation procedure
for the complete null hypothesis. One just need to permute the phenotype Y . However, for the
interaction model (1), a valid permutation procedure to generate data set under the complete
null hypothesis (9) is complex to define. As noted by Buzkova et al. (2011), fixing SNP and E
and permuting Y generates data in which the generated phenotype Y ∗ is independent of SNP
and E. This procedure fails to generate data set under the null hypothesis since in model (1)
the phenotype Y is not independent of SNP and E. Indeed, for the logistic model there is no
permutation procedure which can be used to generate data set for the complete null hypothesis
(Edgington, 1987). An alternative to the permutation procedure is to used a parametric bootstrap
procedure (Efron and Tibshirani, 1994; Liquet and Riou, 2013) which implies less stringent
assumptions (Good, 2000). In our context, the procedure could be defined in the following.

For each SNP (`= 1, . . . ,L):
1. Fit the model under the null hypothesis H0,`, using the observed data, and obtain α̂`, β̂`,

β̂E,`, the maximum likelihood estimate (MLE) of respectively α`, β` and βE,`

2. Generate a new outcome Y ∗i,` for each subject from the probability measure defined under
H0,`. For example, for model (1), we generate Y ∗i,` according to:

P(Y ∗i,` = 1|SNP̀ ,E) =
exp(α̂`+ β̂`SNP̀ + β̂E,`E)

1+ exp(α̂`+ β̂`SNP̀ + β̂E,`E)
.

Repeat this for all the subjects to obtain a sample noted s∗` = {Y ∗i,`,SNPi,`,Ei} which is
related to the `-th SNP.

3. Generate B new datasets s∗b,`, b = 1, . . . ,B by repeating B times the steps 1, 2 and 3.

Remark: In case of marginal association of both SNP and environmental factor, step 2 might
generate unbalanced data which could affect the statistical power of the resampling methods. A
screening investigation on the marginal association might be used before using the booststrap
method.

3.4. iSKAT

The other frequentist approach is iSKAT proposed by Lin et al. (2016). The method uses the
spirit of SKAT-O methods (Wu et al. (2011)) and apply it to an interaction test context. From
one side burden tests are know to be an efficient test in many cases but they struggle when rare
variants are involved in the data. From the other side kernel test can handle those rare variants.
The idea behind the algorithm is to separate from the data the rare variants from the rest and to
take advantage of both burden tests and kernel tests. Furthermore, iSKAT offer the possibility of
weighting the covariates to take into account extra information. However, no weight have been
added in the use of iSKAT in this article. The method GESAT is a particular case of the iSKAT
method.

Journal de la Société Française de Statistique, Vol. 159 No. 2 56-83
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Gene- and Pathway-environment Interaction analysis 63

4. Simulation Study

In this section, we compare the FM and ARTP methods through a simulation study inves-
tigating their control of Type-I error and FWER and their power performance. Two resam-
pling approaches (permutation and bootstrap) are compared for a range of sample sizes (n =
200, 500,1000). The combination methods FM and ARTP are compared to iSKAT and to the
popular frequentist approach MinP which combines p-value by considering only the most signi-
factive p-value:

MinP = min
`∈{1,...,L}

p`.

Let’s note that MinP method doesn’t have the same meaning than the quantity MinP used in the
intermediary steps of ARTP (see equation (4)).

4.1. Data Generated

We work on generated data which are supposed to mimic experimental data. The parameters of
the generation are inspired from Buzkova et al. (2011). The genetic structure simulated is com-
posed by one pathway containing I genes (genes are called G1,G2, . . . ,GI). Each gene contains
several SNPs. The SNPs are binary variables. In order to generate the i-th gene, composed by ki

SNPs, SNPi
1 . . .SNPi

ki
, we use the following procedure:

Si ∼ Bern(0.2)

logit(p j) = logit(0.2)+Si for j ∈ {1, . . . ,ki}
SNPi

j|Si ∼ Bern(p j) for j ∈ {1, . . . ,ki}.

Hence, conditionally on the latent polymorphism Si, for a given gene i, the individual SNPi
j

are independent and identically distributed, but they are marginally dependent.
A binary environment variable is also simulated that is marginally dependent with one gene

iE and generated with the following procedure:

logit(pE) = a+bSiE

P[E = 1] = pE

Finally, a binary outcome variable is simulated. It is generated from a logistic model using
SNPs from gene iY . Among those s′ SNPs only s SNPs are associated to the response variable Y
as specified in the following equations:

λ1, . . . ,λs′ ∈ {0,1} and
s′

∑
l=1

λl = s (11)

logit[P(Y = 1|GiY ,E)] = α +βEE +

kiY

∑
j=1

λ jβSNPiY
j

SNPiY
j +

kiY

∑
j=1

λ jγSNPiY
j

SNPiY
j ×E (12)
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The parameters λl control the choice of the SNP involved in the generation of Y and the
parameter s controls the number of those SNPs. Different choices for parameters β j and γ j are
chosen in order to highlight different results. For Type I error results the parameters γ j are set to
0 whereas for power results parameters β j and γ j are chosen in order to evidence the different
rejection of the null hypothesis for different parameters and methods used.

4.2. Simulation design

We present nine different simulation models. The first four ones are used to investigate the Type-
I error and the Family Wise Error Rate (FWER) results while the others are used to explore the
power of the different methods.

As discussed above, different resampling methods are used: (i) permutation that permutes
the outcome Y and (ii) parametric bootstrap. We set to 1,000 the number of permutations and
bootstrap resampling. The sample size n of the simulation datasets are 200, 500 and 1000. The
results we look for are the p-values at gene level that are based on SNP-level information. Then
a pathway-level p-values is computed from this information.

We use cases 1, 2, 3 and 4 (defined in the following) to investigate the control of the Type-I
error rate for each gene. We also investigate the control of the FWER at the gene level and at the
pathway level. An empirical FWER for gene-environment interaction is defined by the number of
times the procedure detects wrongly at least one significant gene-environment interaction (from
all the genes within the Pathway) over the N = 500 simulation replications. We also add the em-
pirical FWER computed using a Bonferroni correction (i.e., each gene-environment interaction
p-value is divided by the number of investigated genes). Indeed, the output of each method is a set
of p-values (one for each investigating gene-environment interaction). This set of p-values is as-
sociated to a set of null hypotheses which define our family of hypotheses. Then it is important to
control an overall error for these hypotheses. The empirical FWER for pathway-environment in-
teraction is defined by the number of times the procedure detects wrongly a significant pathway-
environment interaction over the 500 replications. As only one pathway is considered in our
simulation study, the control of the FWER at the pathway level is similar to the Type-I error rate
control of the pathway investigated.

Simulation cases for investigating Type-I error rate and FWER

— Case 1: Data is composed of 5 genes with 10 SNPs each. True model is based on the
main effect of E and the main effect of 5 randomly selected SNP from the first gene. The
environment is marginally correlated with the first gene but not with the other genes. The
outcome is therefore generated from the following model:

λ1, . . . ,λ10 ∈ {0,1} and
10

∑
j=1

λ j = 5

logit[P(Y = 1|G1,E)] = α +βEE +
10

∑
j=1

λ jβSNP1
j
SNP1

j
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— Case 2: Data is composed of 5 genes with 10 SNPs The true model is based on the main
effect of E and the main effect of all SNPs from the second gene. The environment is
marginally correlated with first gene but not with other genes. The outcome is therefore
generated from the following model:

logit[P(Y = 1|G2,E)] = α +βEE +
10

∑
j=1

βSNP2
j
SNP2

j

— Case 3: Data is composed of 5 genes, 4 of them with 5 SNPs and one with 50 SNPs (the
last one).True model is based on the main effect of E and 2 randomly selected SNPs from
the first gene. The environment is marginally correlated with the first gene but not with
other genes. The outcome is therefore generated from the following model:

λ1, . . . ,λ5 ∈ {0,1} and
5

∑
j=1

λ j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
5

∑
j=1

λ jβSNP1
j
SNP1

j

This model enables us to see how the methods perform when the pathway gene members
have different sizes.

— Case 4: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs
for the others. True model is based on: the main effect of E; the main effect of 10 ran-
domly selected SNPs from the first gene and 5 from the second genes. The environment
is marginally correlated with first gene but not with other genes. The outcome is therefore
generated from the following model:

λ 1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ 1
j = 10 and λ 2

1 , . . . ,λ
2
10 ∈ {0,1} with

10

∑
j=1

λ 2
j = 5

logit[P(Y = 1|G1,G2,E)] = α +βEE +
20

∑
j=1

λ 1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ 2
j βSNP2

j
SNP2

j

Simulation cases for power performance

— Case 5: Data is composed of 5 genes with 20, 10, 10, 10, 10 SNPs. True model is based
on the main effect of E and the main effect of 10 randomly selected SNPs from the first
gene and the interaction between the environment with each of the selected SNPs. The
environment is marginally correlated with first gene but not with other genes. The outcome
is therefore generated from the following model:

λ1, . . . ,λ20 ∈ {0,1} and
20

∑
j=1

λ j = 10

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ jβSNP1
j
SNP1

j +
20

∑
j=1

λ jγSNP1
j
SNP1

j ×E

Journal de la Société Française de Statistique, Vol. 159 No. 2 56-83
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



66 Broc, Evangelou, Truong, Guenel and Liquet

— Case 6: Data is composed of 5 genes with 20, 10, 10, 10, 10 SNPs. True model is based
on the main effect of E and the main effect of 2 randomly selected SNPs from the first
gene and the interaction between the environment with each of the selected SNPs. The
environment is marginally correlated with first gene but not with other genes. The outcome
is therefore generated from the following model:

λ1, . . . ,λ20 ∈ {0,1} and
20

∑
j=1

λ j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ jβSNP1
j
SNP1

j +
20

∑
j=1

λ jγSNP1
j
SNP1

j ×E

— Case 7: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs for
the others. True model is based on: the main effect of E; the main effect of 10 randomly
selected SNPs from the first gene and 5 from the second genes; the interactions between
the environment with each of the selected SNPs. The environment is marginally correlated
with first gene but not with other genes. The outcome is therefore generated from the
following model:

λ 1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ 1
j = 10 and λ 2

1 , . . . ,λ
2
10 ∈ {0,1} with

10

∑
j=1

λ 2
j = 5

logit[P(Y = 1|G1,G2,E)] = α +βEE +
20

∑
j=1

λ 1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ 2
j βSNP2

j
SNP2

j

+
20

∑
j=1

λ 1
j γSNP1

j
SNP1

j ×E +
10

∑
j=1

λ 2
j γSNP2

j
SNP2

j ×E

— Case 8: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs for
the others. True model is based on: the main effect of E; the main effect of 2 randomly
selected SNPs from the first gene and 2 from the second genes; the interactions between
the environment with each of the selected SNPs. The environment is marginally correlated
with first gene but not with other genes. The outcome is therefore generated from the
following model:

λ 1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ 1
j = 2 and λ 2

1 , . . . ,λ
2
10 ∈ {0,1} with

10

∑
j=1

λ 2
j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ 1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ 2
j βSNP2

j
SNP2

j

+
20

∑
j=1

λ 1
j γSNP1

j
SNP1

j ×E +
10

∑
j=1

λ 2
j γSNP2

j
SNP2

j ×E

— Case 9: Data is composed of 2 pathways with 10 genes in each pathways. Each genes
includes 10 SNPS. True model is based on: the main effect of E; the main effect of 2
randomly selected SNPs from the first gene and 2 from the second genes of each pathways;
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the interactions between the environment with each of the selected SNPs. The outcome is
therefore generated from the following model:

λ 1
1 , . . . ,λ

1
10 ∈ {0,1} with

10

∑
j=1

λ 1
j = 2 and λ 2

1 , . . . ,λ
2
10 ∈ {0,1} with

10

∑
j=1

λ 2
j = 2

λ 11
1 , . . . ,λ 11

10 ∈ {0,1} with
10

∑
j=1

λ 11
j = 2 and λ 12

1 , . . . ,λ 12
10 ∈ {0,1} with

10

∑
j=1

λ 12
j = 2

logit[P(Y = 1|G1,E)] = α +βEE + ∑
k∈K

10

∑
j=1

λ k
j βSNPk

j
SNPk

j

+ ∑
k∈K

10

∑
j=1

λ k
j γSNPk

j
SNPk

j ×E

where K = {1,2,11,12}.

Simulation parameters

The different coefficient used in our cases are gathered in table 1. The notation used refer to part
4.1. For each simulation case, FM, and ARTP methods are applied for the 9 simulation cases
to investigate the presence of interaction effects of gene- and pathway- environment based on a
gene-based strategy (see end of Section 3.2).

For all of the 9 cases the truncation points of the ARTP parameters are optimized like in
previous ARTP results Yu et al. (2009). Let m be an integer; kG and kSNP be real numbers; ki be
the number of SNP in the i-th gene; I the number of genes. Let bkG× Ic,b2× kG× Ic, . . . ,bm×
kG× Ic be a set of truncation points for genes and, for each gene i, let bkSNP× kic,b2× kSNP×
kic, . . . ,bm× kSNP× kic be a set of truncation points for the SNPs of this gene. The notation bxc
gives the largest integer that does not exceed x (if bxc = 0 we set the value to 1) . We define
pkSNP,kG,m the p-value of the ARTP computed with this set of truncation points. The optimal p-
value of the ARTP is defined as:

min
kSNP∈A ,kG∈A

pkSNP,kG,m with A = {2%,4%, . . . ,20%}.

The parameter m is fixed to 5 in our study.

4.3. Type I error rate and FWER

Type I error rate and FWER of the methods are computed in cases 1, 2, 3 and 4. The data are
generated under the null hypothesis (i.e. no interaction). The SNP-level tests are performed under
the interaction assumption with a significance level of 0.05. Hence, the expected value of all p-
values at gene-level and pathway level are 0.05. In the section, we study the behavior of the
different methods for this case. Tables 2, 3, 4 , 5 , 6 and 7 present the results. The expected
value of the average p-values is 0.05. Computing a binomial model, the average of the p-values
on the 500 iterations should be between 3% and 7%.
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TABLE 1. Generating parameters for cases 1 to 9. The notation used refer to part 4.1.

pE a b α βE βSNPiY
j

iY∈{1,...,kiY }

γSNPiY
j

iY∈{1,...,kiY }
case 1 0.2 logit(2) log(2) -2 2 ∈ {3,2,1} = 0
case 2 0.2 logit(2) log(2) -2 2 ∈ {1.5,1.0,0.5} = 0
case 3 0.2 logit(2) log(2) -2 2 ∈ {3,2,1} = 0
case 4 0.5 logit(2) 2 -1 1 ∈ {0.3,0.2,0.1} = 0
case 5 0.2 logit(2) log(2) -2 0.4 ∈ {0.06,0.04,0.02} = 0.5
case 6 0.2 logit(2) log(2) -2 2 ∈ {0.3,0.2,0.1} = 1.5
case 7 0.5 logit(2) 2 -1 0.1 ∈ {0.03,0.02,0.01} = 0.3
case 8 0.5 logit(2) 2 -1 0.1 ∈ {0.075,0.050,0.025} = 0.7
case 9 0.5 logit(2) 2 -1 0 = 0 = 0.5

The permutation approach obtained very low error rate for both approaches (FM, MinP,
ARTP). The bootstrap approach gives good results for controlling the Type-I error rate for both
FM and ARTP methods. As expected the FWER at the gene level is not controlled. The FWER
computed can then be corrected using the Bonferroni method which is known to be conservative
and more trustable. Finally, a pathway p-value is given by each combining method (FM, MinP,
ARTP). When the number of genes is low (cases 1 to 3), the Type-I error rate at the pathway
level is well controlled using the bootstrap approach for both FM, MinP and ARTP methods
while permutation approach give conservative results. When the number of genes is higher (case
4), the type-I error rate at the pathway level of the ARTP and iSKAT is slightly inflated.

4.4. Power performance

Tables 8, 9, 10, 11 and 12 present the results for the power of the methods. As expected for all
methods power performances increase with larger sample size.

In those results the proportion of significant SNP in the true model have a huge importance
on the performances. In cases 5 and 7 the proportions of significant SNPs are high whereas
in cases 6, 8 and 9 they are low. For higher proportions bootstrap is slightly but consistently
more powerful than the permutation. For lower proportions permutation and bootstrap results
are equivalent. We can see that when the proportion is high FM and ARTP have equivalent
results and MinP has abysmal results. This is due to the fact that MinP truncates too much of the
information contained in the data. When the proportion are lower, ARTP and then MinP have
a good performance but FM have lower ones. This is due to the fact that FM results take into
account too much irrelevant SNPs in its combination. The ARTP have the merit of having good
power whatever is the proportion of significant SNP in the true model. FM and MinP seems to
detect different patterns but ARTP can detect both. When we compare the combining methods
with iSKAT we can see that the level of performance of ARTP and iSKAT is similar. We notice
that in general, ARTP is more powerful on small sample sizes (200 and 500).
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TABLE 2. Simulation of case 1 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0 0.03 0.036 0.04 0.024 0.038 0.024
Gene2 10 0.016 0.08 0.04 0.04 0.038 0.076 0.052
Gene3 10 0.022 0.074 0.048 0.064 0.042 0.078 0.054
Gene4 10 0.008 0.056 0.04 0.052 0.028 0.05 0.05
Gene5 10 0.02 0.07 0.04 0.05 0.042 0.066 0.038

FWERBF 0.014 0.066 0.046 0.052 0.042 0.068 0.038
FWER 0.066 0.282 0.188 0.23 0.166 0.29 0.2

Type-I Error: Pathway 0.014 0.066 0.048 0.052 0.028 0.078 0.052

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.002 0.016 0.008 0.01 0.01 0.02 0.03
Gene2 10 0.028 0.062 0.052 0.062 0.044 0.064 0.044
Gene3 10 0.028 0.046 0.028 0.044 0.028 0.05 0.038
Gene4 10 0.018 0.034 0.03 0.044 0.028 0.038 0.03
Gene5 10 0.028 0.054 0.036 0.042 0.042 0.054 0.066

FWERBF 0.028 0.052 0.038 0.042 0.042 0.064 0.042
FWER 0.098 0.188 0.148 0.188 0.142 0.208 0.186

Type-I Error: Pathway 0.03 0.052 0.038 0.042 0.042 0.078 0.04

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.008 0.032 0.026 0.028 0.018 0.028 0.032
Gene2 10 0.032 0.04 0.03 0.048 0.036 0.052 0.042
Gene3 10 0.022 0.032 0.036 0.044 0.04 0.05 0.038
Gene4 10 0.044 0.054 0.046 0.064 0.06 0.076 0.054
Gene5 10 0.036 0.036 0.032 0.046 0.036 0.042 0.042

FWERBF 0.026 0.04 0.036 0.04 0.04 0.048 0.03
FWER 0.138 0.178 0.16 0.21 0.178 0.228 0.196

Type-I Error: Pathway 0.026 0.04 0.036 0.04 0.042 0.048 0.044
FWERBF stands for FWER results using Bonferroni correction
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TABLE 3. Simulation of case 2 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.018 0.09 0.032 0.046 0.03 0.094 0.046
Gene2 10 0.002 0.028 0.054 0.044 0.036 0.032 0.04
Gene3 10 0.008 0.062 0.03 0.046 0.02 0.054 0.038
Gene4 10 0.012 0.084 0.042 0.056 0.04 0.104 0.062
Gene5 10 0.016 0.076 0.03 0.038 0.032 0.07 0.038

FWERBF 0.008 0.084 0.03 0.034 0.04 0.076 0.038
FWER 0.056 0.304 0.172 0.212 0.152 0.31 0.204

Type-I Error: Pathway 0.008 0.086 0.03 0.036 0.03 0.09 0.028

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.02 0.046 0.028 0.05 0.022 0.05 0.032
Gene2 10 0.002 0.032 0.036 0.038 0.03 0.03 0.058
Gene3 10 0.028 0.07 0.038 0.046 0.034 0.066 0.054
Gene4 10 0.028 0.062 0.042 0.054 0.044 0.076 0.044
Gene5 10 0.018 0.05 0.036 0.052 0.026 0.046 0.026

FWERBF 0.016 0.046 0.042 0.042 0.042 0.06 0.036
FWER 0.09 0.232 0.164 0.214 0.146 0.238 0.196

Type-I Error: Pathway 0.016 0.046 0.048 0.044 0.032 0.066 0.036

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.056 0.07 0.044 0.064 0.056 0.078 0.046
Gene2 10 0.014 0.03 0.022 0.03 0.024 0.026 0.04
Gene3 10 0.038 0.054 0.03 0.042 0.042 0.06 0.038
Gene4 10 0.032 0.042 0.028 0.036 0.036 0.046 0.062
Gene5 10 0.042 0.048 0.028 0.038 0.038 0.046 0.038

FWERBF 0.032 0.048 0.032 0.038 0.034 0.07 0.038
FWER 0.164 0.216 0.144 0.194 0.178 0.226 0.204

Type-I Error: Pathway 0.032 0.048 0.032 0.04 0.042 0.076 0.044
FWERBF stands for FWER results using Bonferroni correction
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TABLE 4. Simulation of case 3 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.02 0.064 0.042 0.05 0.034 0.054 0.044
Gene2 5 0.026 0.07 0.048 0.068 0.038 0.07 0.07
Gene3 5 0.03 0.068 0.04 0.06 0.044 0.074 0.054
Gene4 5 0.018 0.04 0.026 0.036 0.02 0.034 0.04
Gene5 50 0.01 0.144 0.066 0.066 0.062 0.16 0.192

FWERBF 0.02 0.144 0.044 0.046 0.052 0.11 0.072
FWER 0.096 0.32 0.19 0.242 0.176 0.326 0.348

Type-I Error: Pathway 0.022 0.146 0.046 0.048 0.058 0.132 0.008

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.026 0.048 0.036 0.05 0.032 0.048 0.058
Gene2 5 0.028 0.042 0.038 0.052 0.036 0.056 0.042
Gene3 5 0.038 0.056 0.048 0.056 0.044 0.068 0.06
Gene4 5 0.042 0.062 0.032 0.062 0.04 0.06 0.052
Gene5 50 0.032 0.098 0.032 0.038 0.06 0.11 0.088

FWERBF 0.038 0.08 0.042 0.05 0.044 0.092 0.088
FWER 0.156 0.278 0.172 0.232 0.198 0.304 0.278

Type-I Error: Pathway 0.038 0.084 0.044 0.052 0.034 0.096 0.02

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.016 0.03 0.034 0.042 0.022 0.028 0.04
Gene2 5 0.046 0.05 0.04 0.054 0.046 0.054 0.046
Gene3 5 0.04 0.05 0.042 0.056 0.046 0.054 0.052
Gene4 5 0.03 0.042 0.038 0.046 0.032 0.04 0.04
Gene5 50 0.042 0.05 0.036 0.05 0.06 0.098 0.05

FWERBF 0.024 0.044 0.044 0.054 0.044 0.056 0.038
FWER 0.16 0.208 0.176 0.222 0.188 0.248 0.21

Type-I Error: Pathway 0.024 0.044 0.046 0.056 0.04 0.06 0.012
FWERBF stands for FWER results using Bonferroni correction
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TABLE 5. Simulation of case 4 for sample size of 200 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.046 0.062 0.036 0.05 0.058 0.076 0.028
Gene2 10 0.05 0.062 0.044 0.056 0.05 0.064 0.034
Gene3 10 0.038 0.042 0.034 0.036 0.046 0.058 0.024
Gene4 10 0.034 0.044 0.046 0.052 0.04 0.046 0.032
Gene5 10 0.048 0.066 0.038 0.042 0.048 0.062 0.042
Gene6 10 0.058 0.07 0.062 0.064 0.06 0.068 0.056
Gene7 10 0.044 0.042 0.026 0.034 0.036 0.038 0.036
Gene8 10 0.054 0.068 0.044 0.04 0.044 0.06 0.04
Gene9 10 0.046 0.064 0.052 0.062 0.06 0.066 0.044
Gene10 10 0.032 0.036 0.026 0.042 0.026 0.04 0.032
Gene11 10 0.042 0.056 0.038 0.044 0.046 0.058 0.034
Gene12 10 0.054 0.072 0.054 0.062 0.06 0.072 0.046
Gene13 10 0.038 0.052 0.036 0.052 0.048 0.058 0.026
Gene14 10 0.062 0.078 0.044 0.048 0.066 0.076 0.056
Gene15 10 0.032 0.044 0.05 0.06 0.04 0.048 0.038
Gene16 10 0.038 0.044 0.042 0.05 0.038 0.048 0.034
Gene17 10 0.062 0.076 0.028 0.038 0.048 0.07 0.056
Gene18 10 0.058 0.07 0.032 0.042 0.044 0.054 0.05
Gene19 10 0.038 0.042 0.032 0.048 0.042 0.046 0.028
Gene20 10 0.06 0.076 0.04 0.05 0.072 0.086 0.048

FWERBF 0.02 0.056 0.024 0.026 0.054 0.08 0.018
FWER 0.612 0.704 0.564 0.642 0.646 0.732 0.556

Type-I Error: Pathway 0.028 0.07 0.028 0.04 0.084 0.152 0.004
FWERBF stands for FWER results using Bonferroni correction
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TABLE 6. Simulation of case 4 for sample size of 500 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.054 0.060 0.046 0.056 0.068 0.073 0.038
Gene2 10 0.048 0.053 0.048 0.053 0.064 0.070 0.056
Gene3 10 0.044 0.043 0.046 0.049 0.052 0.051 0.032
Gene4 10 0.056 0.062 0.042 0.043 0.052 0.060 0.052
Gene5 10 0.048 0.043 0.052 0.049 0.052 0.053 0.038
Gene6 10 0.046 0.043 0.046 0.049 0.04 0.047 0.028
Gene7 10 0.054 0.058 0.042 0.053 0.05 0.049 0.042
Gene8 10 0.038 0.030 0.044 0.041 0.052 0.041 0.02
Gene9 10 0.066 0.073 0.052 0.053 0.064 0.071 0.054
Gene10 10 0.038 0.039 0.052 0.053 0.052 0.058 0.036
Gene11 10 0.036 0.045 0.038 0.043 0.054 0.058 0.04
Gene12 10 0.054 0.062 0.054 0.064 0.064 0.066 0.056
Gene13 10 0.05 0.058 0.04 0.047 0.06 0.075 0.042
Gene14 10 0.038 0.036 0.05 0.049 0.04 0.051 0.026
Gene15 10 0.048 0.053 0.06 0.062 0.056 0.058 0.044
Gene16 10 0.06 0.053 0.058 0.062 0.06 0.066 0.048
Gene17 10 0.056 0.060 0.074 0.068 0.058 0.056 0.044
Gene18 10 0.052 0.056 0.042 0.045 0.056 0.068 0.048
Gene19 10 0.046 0.043 0.07 0.071 0.07 0.079 0.036
Gene20 10 0.032 0.032 0.03 0.041 0.04 0.047 0.028

FWERBF 0.046 0.056 0.042 0.058 0.078 0.111 0.032
FWER 0.626 0.637 0.628 0.658 0.676 0.712 0.544

Type-I Error: Pathway 0.056 0.068 0.056 0.071 0.122 0.156 0.02
FWERBF stands for FWER results using Bonferroni correction
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TABLE 7. Simulation of case 4 for sample size of 1000 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.038 0.038 0.05 0.052 0.052 0.054 0.04
Gene2 10 0.066 0.074 0.058 0.054 0.076 0.07 0.054
Gene3 10 0.052 0.054 0.042 0.044 0.046 0.056 0.04
Gene4 10 0.044 0.054 0.038 0.038 0.042 0.044 0.03
Gene5 10 0.058 0.06 0.038 0.038 0.044 0.052 0.046
Gene6 10 0.052 0.058 0.066 0.068 0.06 0.06 0.036
Gene7 10 0.058 0.06 0.058 0.054 0.064 0.066 0.046
Gene8 10 0.048 0.052 0.044 0.044 0.046 0.046 0.034
Gene9 10 0.036 0.036 0.038 0.038 0.032 0.036 0.028
Gene10 10 0.062 0.06 0.064 0.064 0.07 0.072 0.052
Gene11 10 0.052 0.054 0.042 0.042 0.046 0.056 0.046
Gene12 10 0.044 0.048 0.032 0.036 0.038 0.03 0.034
Gene13 10 0.046 0.044 0.062 0.07 0.052 0.058 0.036
Gene14 10 0.05 0.048 0.054 0.046 0.05 0.058 0.036
Gene15 10 0.06 0.054 0.054 0.056 0.062 0.06 0.052
Gene16 10 0.034 0.036 0.052 0.048 0.054 0.05 0.028
Gene17 10 0.034 0.032 0.048 0.05 0.042 0.044 0.028
Gene18 10 0.056 0.06 0.038 0.032 0.052 0.048 0.048
Gene19 10 0.048 0.048 0.052 0.046 0.044 0.046 0.038
Gene20 10 0.044 0.048 0.06 0.066 0.056 0.06 0.036

FWERBF 0.044 0.056 0.044 0.05 0.076 0.092 0.046
FWER 0.614 0.61 0.63 0.622 0.634 0.67 0.536

Type-I Error: Pathway 0.058 0.058 0.054 0.066 0.12 0.13 0.104
FWERBF stands for FWER results using Bonferroni correction
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TABLE 8. Simulation of case 5 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.1 0.122 0.054 0.052 0.1 0.122 0.21
Power: Pathway 0.062 0.096 0.044 0.042 0.084 0.098 0.012

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.512 0.536 0.162 0.17 0.496 0.526 0.532
Power: Pathway 0.308 0.326 0.078 0.078 0.328 0.35 0.356

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene1 20 0.876 0.884 0.432 0.42 0.86 0.872 0.872
Power: Pathway 0.722 0.744 0.184 0.196 0.722 0.726 0.836

FWERBF stands for FWER results using Bonferroni correction

TABLE 9. Simulation of case 6 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.076 0.09 0.046 0.052 0.094 0.086 0.186
Power: Pathway 0.056 0.068 0.054 0.04 0.1 0.098 0.048

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.264 0.254 0.222 0.19 0.364 0.348 0.382
Power: Pathway 0.162 0.152 0.11 0.094 0.226 0.192 0.212

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.62 0.616 0.73 0.7 0.798 0.782 0.752
Power: Pathway 0.406 0.426 0.448 0.408 0.616 0.598 0.684

FWERBF stands for FWER results using Bonferroni correction
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TABLE 10. Simulation of case 7 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.108 0.118 0.060 0.080 0.108 0.134 0.096
Gene2 10 0.072 0.084 0.054 0.072 0.062 0.088 0.072

Power: Pathway 0.060 0.062 0.040 0.034 0.086 0.128 0.004

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.272 0.278 0.144 0.148 0.270 0.272 0.268
Gene2 10 0.158 0.170 0.100 0.100 0.138 0.144 0.132

Power: Pathway 0.112 0.132 0.074 0.070 0.214 0.240 0.168

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.572 0.580 0.262 0.268 0.562 0.578 0.592
Gene2 10 0.318 0.324 0.180 0.186 0.290 0.288 0.3

Power: Pathway 0.298 0.334 0.080 0.090 0.416 0.444 0.464
FWERBF stands for FWER results using Bonferroni correction

TABLE 11. Simulation of case 8 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.102 0.114 0.108 0.110 0.134 0.153 0.124
Gene2 10 0.092 0.094 0.104 0.102 0.128 0.125 0.120

Power: Pathway 0.044 0.060 0.050 0.048 0.142 0.157 0.016

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.224 0.230 0.160 0.160 0.256 0.250 0.302
Gene2 10 0.310 0.318 0.274 0.272 0.340 0.332 0.398

Power: Pathway 0.108 0.116 0.096 0.100 0.262 0.280 0.168

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.376 0.372 0.436 0.438 0.476 0.467 0.550
Gene2 10 0.538 0.548 0.544 0.544 0.602 0.618 0.700

Power: Pathway 0.266 0.284 0.292 0.288 0.516 0.526 0.568
FWERBF stands for FWER results using Bonferroni correction

Journal de la Société Française de Statistique, Vol. 159 No. 2 56-83
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Gene- and Pathway-environment Interaction analysis 77

TABLE 12. Simulation of case 9 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200

Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.070 0.080 0.040 0.045 0.070 0.065 0.090
Gene2 10 0.095 0.105 0.070 0.075 0.095 0.095 0.080
Power: Pathway1 0.055 0.065 0.04 0.030 0.110 0.130 0.012

Gene3 10 0.110 0.125 0.095 0.090 0.100 0.120 0.120
Gene4 10 0.085 0.100 0.085 0.100 0.110 0.115 0.118
Power: Pathway2 0.065 0.095 0.04 0.050 0.105 0.105 0.016

Power: Pathway all 0.055 0.070 0.05 0.025 0.115 0.155 0.012

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.150 0.145 0.130 0.135 0.150 0.170 0.194
Gene2 10 0.155 0.160 0.125 0.125 0.160 0.160 0.190
Power: Pathway1 0.085 0.10 0.075 0.075 0.145 0.150 0.132

Gene3 10 0.145 0.150 0.100 0.105 0.150 0.145 0.204
Gene4 10 0.135 0.145 0.125 0.110 0.140 0.145 0.166
Power: Pathway2 0.100 0.09 0.080 0.085 0.155 0.165 0.084

Pathway all 0.065 0.10 0.075 0.070 0.260 0.230 0.148

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.245 0.245 0.260 0.260 0.295 0.290 0.366
Gene2 10 0.235 0.260 0.225 0.220 0.275 0.270 0.364
Power: Pathway1 0.145 0.150 0.135 0.12 0.240 0.255 0.324

Gene3 10 0.230 0.235 0.240 0.240 0.270 0.285 0.364
Gene4 10 0.295 0.305 0.270 0.265 0.345 0.335 0.392
Power: Pathway2 0.160 0.195 0.150 0.14 0.250 0.265 0.304

Pathway all 0.160 0.220 0.170 0.18 0.425 0.465 0.484
FWERBF stands for FWER results using Bonferroni correction
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5. Application: Breast cancer and night work

Circadian rhythm is a roughly 24 hours cycle of biological processes that are synchronized by ex-
ternal cues such as light or temperature, and regulated endogenously by periodic transcription of
a set of genes that form a network of self-regulated feedback loop. The circadian rhythm pathway
plays a key role in the maintenance of various endocrine, physiological factors and behavioral
functions including cell cycle regulation, hormone secretion, body temperature and sleep/wake
cycle. Shift work that involves circadian disruption was classified as probably carcinogenic to
humans (group 2A) by the International Agency for Research on Cancer in 2007 (Straif et al.,
2007). An increased risk of breast cancer was reported in women working at night by several
studies (Hansen and Lassen, 2012; Menegaux et al., 2013) and it was hypothesized that this
association could be modulated by polymorphisms in the circadian pathway genes. As the cir-
cadian pacemaker requires multiple molecular interactions to generate the circadian rhythms,
single-SNP analyses may not be sufficient to analyze the association between circadian genes
and breast cancer. Therefore, we have investigated the role of circadian clock gene polymor-
phisms and their interaction with nightwork in breast cancer risk using a pathway analysis. This
work was previously described in more details using only the ARTP method with a modified
permutation procedure that permutes the outcome, the environmental factor and the adjustment
variables together (Truong et al., 2014). Here, we present the results using FM, MinP and ARTP
methods using permutation and Bootstrap resampling procedures as well as iSKAT method for
comparison.

Briefly, the analyses are conducted in a population-based case-control study from France in-
cluding 1126 breast cancer cases and 1174 controls.

We considered the circadian pathway as defined in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database that included 23 genes (CLOCK, ARNTL, NPAS2, CRY1, CRY2,
PER1, PER2, PER3, RORA, RORB, RORC, BHLHE40, BHLHE41, SKP1, FBXW11, CUL1,
TIMELESS, FBXL3, NR1D1, CSNK1D, CSNK1E, RBX1, and BTRC). These genes constitute
a complex regulatory network with multiple negative and positive feedback loops. A selection
of tag SNPs from these genes were selected in order to capture SNPs within 5 kb of each genes
(pairwise approach with a square of correlation coefficient r2 > 0.8) with a minimum minor al-
lele frequency of 0.05 in the CEU population from HapMap project. After quality controls, we
have included 577 SNPs from the 23 genes. The circadian pathway was additionnally divided
into two subpathways: the core circadian genes which are involved in the same transcriptional
feedback loop (CLOCK, ARNTL, NPAS2, CRY1, CRY2, PER1, PER2, PER3,CSNK1E) and the
other genes that are involved in other auxiliary loops.

Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated using un-
conditional logistic regression models adjusted for the matching factors (age, area of residence)
and for established risk factors of breast cancer (age at menarche, age at first full-term pregnancy,
parity, current use of menopausal hormone therapy, body mass index, alcohol consumption and
tobacco consumption). An OR of 1.42 (95% CI: 1.08-1.88) (p=0.01) was observed in women
that have a lifetime duration of nightwork greater than 2 years compared to less. The interaction
between the polymorphisms in circadian genes and nightwork were first analysed using a SNP
by SNP approach and no interaction term was statistically significant after correction for mul-
tiple testing (results not shown). Gene-level and pathway-level interaction p-values obtained by
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the FM, MinP, ARTP and iSKAT are shown in Table 13 for 1000 resampling. The parameters of
the ARTP are calibrated in the same way than in the simulation part (see section 4.2).

TABLE 13. Results of the investigation of gene-environment interaction of Circadian Pathway using 1000
permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.

Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap

ARNTL 24 0.04 0.001 0.1359 0.1578 0.0539 0.001 0.0078
PER1 5 0.0849 0.035 0.032 0.04 0.049 0.0619 0.1132
NPAS2 62 0.2647 0.1249 0.0879 0.1309 0.2957 0.1608 0.4338
CSNK1E 9 0.3337 0.3427 0.4166 0.4965 0.4655 0.5265 0.6011
CRY1 7 0.4935 0.5235 0.4985 0.5504 0.5295 0.5694 0.6081
CRY2 9 0.5425 0.7722 0.6603 0.9111 0.6374 0.8761 0.3475
PER2 11 0.9071 0.967 0.9401 0.983 0.8721 0.9491 0.734
PER3 15 0.8901 0.984 0.8571 0.976 0.8941 0.995 0.5695
CLOCK 11 0.9181 0.99 0.982 1 0.964 0.999 0.8104

subpathway 0.2967 0.007 0.2537 0.2997 0.2957 0.0020 0.2095
FBXL3 7 0.1658 0.0769 0.1239 0.1848 0.1628 0.1918 0.2986
SKP1 4 0.4046 0.4236 0.2128 0.2318 0.2827 0.3057 0.4056
CSNK1D 3 0.3706 0.3906 0.4256 0.4655 0.3736 0.4056 0.4412
RBX1 2 0.4146 0.3876 0.5005 0.4825 0.4505 0.4296 0.4977
BHLHE40 9 0.3277 0.3237 0.5864 0.7113 0.4126 0.4396 0.7204
RORA 288 0.3836 0.3027 0.6184 0.7612 0.4515 0.4456 0.4576
NR1D1 8 0.4476 0.4985 0.3906 0.4945 0.4206 0.4825 0.5439
RORC 14 0.1958 0.1139 0.4226 0.6434 0.2687 0.5055 0.4815
CUL1 23 0.4585 0.5814 0.1009 0.1578 0.3916 0.5105 0.1035
TIMELESS 7 0.6643 0.7632 0.4406 0.5504 0.5395 0.6513 0.7471
BTRC 13 0.977 0.998 0.4236 0.6064 0.7153 0.7013 0.8507
RORB 34 0.5974 0.7163 0.5994 0.7972 0.5614 0.7293 0.7152
FBXW11 8 0.8741 0.952 0.8711 0.9361 0.9121 0.962 0.7715
BHLHE41 4 0.959 0.983 0.8891 0.957 0.9211 0.97 0.8227

subpathway 0.9231 0.6474 0.7682 0.9101 0.8042 0.8951 0.5552
circadien 0.6054 0.009 0.5085 0.6114 0.6374 0.02 0.4166

At the gene level, we observed that both methods FM and ARTP highlight the same two genes
PER1 and ARNTL in the interaction analysis with nightwork, while only PER1 is significant with
the MinP method and only ARNTL is significant with the iSKAT method. Bootstrap resampling
method tends to give lower p-values than permutations for these two genes in particular. This
is in accordance with the simulation section in which we shown that the parametric bootstrap
method is more powerful for large sample size.

At the pathway level, a significant interaction p-value (see Table 13) was observed for the
overall circadian pathway for both FM and ARTP methods when parametric bootstrap is used
while no association is observed using permutation resampling approach. This association is
observed only for the core circadian genes subpathway that includes the genes PER1 and ARNTL.
No significant association was observed while using the methods MinP and iSKAT.

To summarize, FM and ARTP gave similar results in our data. Significant interaction p-values
were observed at the gene and pathway levels using the boostrap resampling method, while only
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significant results at the gene level were observed using the permutation resampling method.
MinP and iSKAT methods highlighted only part of the genes that were found significant by FM
and ARTP methods and reported non-significant interaction at the pathway level.

PER1 and ARNTL which are highlighted in the gene level analysis, are important components
of the circadian system which is regulated by molecular feedback loops. Heterodimers composed
of ARNTL and either of the two related proteins CLOCK or NPAS2 are transcriptional factors
that induce the expression of PER and CRY genes by binding to their promoters, which in turn
will act on the ARNTL-CLOCK/NPAS2 complex to repress their own transcription.

Variants in both genes has been previously associated to breast cancer risk (Hansen and
Lassen, 2012; Zienolddiny et al., 2013). The finding with PER1 from the interaction analysis
may be of particular interest, as a variant in PER1 (rs2735611) was previously associated with
an extreme morning preference (Carpen et al., 2006), a condition that was associated with an
increased breast cancer risk among Danish military women working in night shifts (Hansen and
Lassen, 2012).

5.1. Running time performance

The most demanding part of the p-value algorithms in terms of time computation is the resam-
pling part. All p-value combining methods have been ran with the same resampling samples. We
focus on the mesure of the running time related to this part of the algorithm. Tables 14 and 15
presents the running time performances of permutation and bootstrap approaches. The results
given are computed on one standard core, and results are running times on the application data
(see table 14) and on 500 iterations of simulation case 5 (see table 15). We can see that bootstrap
and permutation have similar running times. The running time of iSKAT is added in comparison.
p-value combining methods have a much higher running time than iSKAT. Hopefully it can be
computed in parallel, whereas iSKAT cannot.

TABLE 14. Running time: permutation and bootstrap performances using 1000 resampling related to the
application. Results are in seconds.

Running time

permutation bootstrap iSKAT

20187.5 20264.8 486.3

TABLE 15. Running time: permutation and bootstrap performances using 1000 resampling related to the simulation
case 5. Results are the average time in seconds over 500. replications.

Running time

size 200 size 500 size 1000

Permutation Bootstrap iSKAT Permutation Bootstrap iSKAT Permutation Bootstrap iSKAT

488 491 2.37 611 709 2.81 1170 1376 3.58
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6. Concluding Remark

Based on the work of Yu et al. (2009), we have proposed an efficient practical tool for investi-
gating gene- and pathway-environment interaction. Both FM and ARTP methods are extended
in this context and available through our R package PIGE (Liquet et al., 2017). Permutation and
parametric bootstrap approaches have been implemented. Our simulation study suggests sightly
better results from bootstrap compared to permutation, especially when the number of signifi-
cant SNP is high. Furthermore we have shown that our proposed methods can be competitive
and even slightly more powerful then the cutting edge methods like iSKAT.

The cornerstone of the implemented approaches are the running time of the resampling ap-
proaches which could be problematic in presence of large data set (i.e., large sample size and
large number of genetic information). To overcome this issue, PIGE offers a parallel imple-
mentation of these approaches. As an example, our application on interaction between circadian
genes and night work in breast cancer risk which includes n = 2300 subjects and p = 577 SNPs
took 45 minutes with the permutation procedure and 1 hours 5 minutes using 4 cores and 1000
resampling.

In this application study, using ARTP method with the parametric bootstrap approach, we
highlighted significant interactions at the pathway-level which were missed when using the per-
mutation procedures. Our results suggest that polymorphisms in the circadian rhythms pathway
could modulate the association between night work and breast cancer. This association seems to
be driven mostly by the genes PER1 and ARNTL.

Note that our approaches can deal in the context of p > n as the methods are based on com-
bining individual p-values. Finally, our proposed approaches are not restricted to a binary case-
control outcome. In this study, we focus the presentation on an binary environment variable
which was motivated by binary environment data of our application. The method is not restricted
to binary environment variable and has been extended and implemented in our R package PIGE
(Liquet et al., 2017) to any quantitative environment variable. Further, our package also offers the
possibility to deal with survival outcome variable or quantitative outcome in general. It is also
possible to investigate gene- and pathway-environment interaction for more than one pathway
during the same analysis.
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Chapter4

Meta-analysis methods for

genomics

This chapter deals with meta-analysis in the context of genetic epidemiology. Meta-analysis
consists in comparing results between di�erent studies. In genetic epidemiology, gathering
data coming from di�erent studies is an e�cient way to increase the amount of data
available which can enhance the power of statistical methods. In a �rst section, the batch
e�ect problem due to the meta-analysis is explained. In a second section, methods used for
meta-analysis in pleiotropy context are presented. Finally a novel method for tackling this
issue is presented. The method has been presented in an article in the Arabian Journal of
Mathematics which is reproduced after this chapter.

4.1 The batch e�ect

For a meta analysis, data are gathered di�erence sources, i.e., from di�erent institutions on
di�erent populations and with similar but potentially di�erent technologies and protocols.
In multi study data sets the accuracy of the results is impacted by the di�erent experimental
bias between each study. Those di�erences in the recollection of data can lead to involuntary
bias, known as batch e�ect. In general, a proper step of harmonization of the di�erent
chunks of data is necessary. Several methods have been proposed to “standardize” (or
normalize) data according to the sources [101, 102]. In general, before the application of a
method each column of X and Y is centered according to its mean and scaled according
to its standard deviation. As a basic approach for meta-analysis, the normalization has
to be changed to take this diversity into account. For instance, the normalization can be
performed study by study [103]. This decomposition can even be used to retrieve a study
by study model from dimension reduction models like in MINT method [103].
Another approach consists in integrating the knowledge in the framework of the method
[104] but this approach is less used than standardization methods. In general a mean-
centering method is commonly used. It is easy to implement and need few hypothesis on
data [105]. More advanced methods have been discussed extensively in notable articles
[106].
In the following, we consider that study by study standardization is applied to data.
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4.2 Methods for meta-analysis in genetic epidemiology

In this section three approaches to the meta-analysis question are presented. The �rst
one is ASSET which is one of the most used methods in this �eld for meta-analysis. The
method relies on the exploration of subsets of studies for the presence of true association
signals that are in either the same direction or possibly opposite directions. CPBayes is a
bayesian equivalent of the method. The second one is an extension of SKAT (see Section
2.3.5) named meta-SKAT. Finally, extensions of the Lasso methods are discussed.
A large number of other methods also exists, but are not developed in this dissertation.
ASSET and meta-SKAT are presented because they are the most established methods in the
�eld, while the last approach sets the background for the introduction of the novel method
“sparse group Partial Least Square for structured data” which is one the contribution of this
thesis.
Note that the mathematical notation are introduced in Section 2.1. Especially, for this
chapter, the structure of data presented in Figure 2.3 is considered.

4.3 ASSET and CPBayes

ASSET and CPBayes are methods outputting statistics for meta-analysis. Both frameworks
rely on common ideas, except that ASSET is a frequentist method whereas CPBayes is
Bayesian.
ASSET

ASSET is a method suited for meta-analysis providing a p-value across studies [107]. The
input of the method are single variables summary statistics which are combined by the
method. ASSET exhaustively explores subsets of studies for the presence of true association
signals that are in either the same direction or possibly opposite directions.
For a given variable i, the considered summary statistics are βi,m and si,m resp. the
regression parameter and standard error of a model for variable i and study m. The
standard �xed e�ect of the variable i is calculated as a weighted sum of Z statistics:

Zi =
M∑

m=1

wi,mZi,m (4.1)

with Zi,m =
βi,m
si,m

and where wi,m is a weight calculated as

wi,m =
1/si,k√∑M
m=1 1/w

2
i,m

(4.2)

With those weights, the statistic is known to be asymptotically equivalent to a pooled
analysis of the studies:

Zi =

∑M
m=1 Zi,m/si,m√

1/si,k
(4.3)
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In this framework, the hypothesis that some studies do not contribute to the pleiotropy
e�ect is considered. Hence for a given subset of study S ⊂ {1, · · · ,M}, the pooled Z
statistic associated is

Zi(S) =
∑

m∈S

√
πm(S)Zi,m (4.4)

in which πm(S) = nm/
∑

m∈S nm denotes the sample size of study m compared to the
subset S.

Zmeta−analysisi = max
possible S

|Zi(S)| (4.5)

The number of possible subsets S is high: 2K−1 but all the combinations are based on the
same statistics Zi,m which reduces the computational cost.
In order to address the possibility of e�ect with opposite directions a “two sided test” is pro-
posed (whereas the statistic Zmeta−analysis is called “one sided test”). Positive and negative
e�ect are detected separately through two statistics Zmeta−analysis,+ and Zmeta−analysis,−.
CPBayes

CPBayes [108] uses summary statistics combinations similar to ASSET but is based on a
Bayesian framework with and an approach called spike and slab priors and a MCMC Gibbs
sampling. The evidence of pleiotropy is measured by the local false discovery rate (locFDR)
and with Bayes factors (BF). CPBayes also estimates the posterior probability of association
(PPA) and coe�cient for each phenotype.
We can note that neither ASSET nor CPBayes take into account a group structure of the
variables. And, thus, they do not take advantage of any SNP-gene-pathway structure
knowledge.

4.3.1 Meta-SKAT

SKAT is a method to detect association between rare variants in a region and a phenotype
(continuous or binary). It is a supervised test for joint e�ects of multiple variants in a region
on a phenotype. Meta-SKAT can do the same but aggregating several studies. This method
outputs a p-value corresponding to a set of variables, for instance a gene or a pathway. The
method is based on a weighted sum of SKAT statistics of the di�erent studies [109].

4.3.2 Lasso penalization for meta analysis on dimension reduction

methods

Di�erent methods have been proposed for using dimension reduction methods in the case
of di�erent sets of observations. They rely on simultatenous selections of variables for each
study. The fuse Lasso proposed by Tibshirani [110] encourages the selected variables to be
similar from one study to another. A joint group Lasso that selects the same variables for
each study has also been proposed [111] .
For each study m, um and vm optimal weight vectors are computed to maximize the
covariance cov(Xmum, Ymvm). Let us gather in two matrices those weight vectors, U a
p×M matrix and V a q ×M matrix in which columns are respectively the vectors um
and vm. The rows correspond to all the weights related to a same variable. Then, we want
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to set to zero all the weights related to a same variable at the same time. This is why a L2

penalization is introduced on the columns (U·,i) of U .
Application of those penalization to the sparse PLS are presented and they can be generalized
to sparse group PLS. Data have the structured presented in Figure 2.3 from Section 2.1. The
fuse Lasso for a sparse PLS (penalizing X) is:

{Uopt, Uopt} = argmin
U,V

M∑

m=1

∥∥∥Z(m) − U·,mV T
·,m
∥∥∥
2

F
+ λ1PLasso(U) + λ2PFused(U)

with PLasso(U) =

p∑

i=1

‖Ui,·‖1

with PFused(U) =

p−1∑

i=1

‖Ui,· − Ui+1,·‖1

and Z(m) = XT
M,·YM,·

(4.6)

where λ1 and λ2 are parameters driving the fuse Lasso penalization P . PLasso is the
classical Lasso penalization whereas PFused is the fused term.
The common Lasso introduced by Obozinski is:

{Uopt, Uopt} = argmin
U,V

M∑

m=1

∥∥∥Z(m) − UTm,·Vm,·
∥∥∥
2

F
+ λP (U)

with P (U) =

p∑

i=1

‖Ui,·‖2

and Z(m) = XT
M,·YM,·

(4.7)

where λ a parameter driving the penalization P .
The fuse Lasso forces the coe�cients corresponding to di�erent observation sets to be
similar whereas the second penalization forces variables shrunk to zero to be shrunk to
zero for all observation sets at the same time.
This second penalization can then be seen as a variable selection method. This is why we
are interested in studying this kind of penalization.

4.4 Sparse group Partial Least Square for structured data

This part introduces the contributions developed during this PhD: the sgPLS for structured
data. The theoretical background of the method has been presented in [112]. The method
has also been presented in two conferences at the French Society of Statistics [113] [114].
The content of those presentations is not included in this section as they do not add
additionnal material to this dissertation and the presented journal articles. The contribution
is a Partial Least Square to which the Lasso penalization presented by Obozinski [111] is
adapted.
In this part, we consider that data that are composed of independent observation sets and
group of variables and this structure is knwon a priori. The presented methods allow
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us to use the information about the edi�cation of the data set in order to improve the
performance of the analysis. Although this theory has been developed with the aim to
answer a problem occurring in genomic public data sets, it can be applied to any �eld
where a certain observation set structure exists. The method called “penalized PLS for
structured data" is de�ned where separate PLS model are linked together with a common-
Lasso penalization similar to the one developed in [111]. Variables selected by the model
are the same for all observation sets but the underlying model computes separated models
for each observation set, giving both readability and �exibility to the model. The theoretical
background for this method is presented.
The implementation have been performed through an R package [115].

4.4.1 Framework of proposed method

The method is based on the following key results. In the same way that for Section 2.3.3
Lasso penalization is applied to X in the formulas but can be also applied to Y . Taking the
notations from Section 4.3.2, we can introduce the following sparse group PLS formulation:

min
U,V

M∑

m=1

∥∥∥Z(m) − U·,mV·,mT
∥∥∥
2

F
+ Pλ(U)

with Pλ(U) = λ
K∑

k=1

√
(pk) ‖UPk,·‖F

with Z(m) = XT
Mm,·YMm,·

(4.8)

The biconvex resolution use the following formulas. Fixing each ‖V·,m‖2 = 1 the optimal
U(k,m) is

U(·,m) =


1− λ

2

√
∑M

m=1

∥∥∥Z(m)
Pk,·V·,m

∥∥∥
2

F




+

Z
(m)
Pk,·V·,m (4.9)

and �xing ‖U‖2 = 1 the optimal V is

V(·,m),= Z(m)TV(·,m)

with Z(m) = XT
Mm,·YMm,·.

(4.10)

where um implies another thresholding function. The thresholding function sets to zero all
the weights of a same gene at the same time. Gene selection is performed across all the
study in this way.
Group Lasso and single variable Lasso can be combined in a Sparse Group Sparse PLS for
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structured data. The minimization problem becomes:

min
U,V

M∑

m=1

∥∥∥Z(m) − U·,mV T
·,m
∥∥∥
2

F
+ (α)P

(single)
λ (U) + (1− α)P (group)

λ (U)

with P (single)
λ (U) = λ

p∑

i=1

‖Ui,·‖2

P
(group)
λ (U) = λ

K∑

k=1

√
(pk) ‖UPk,·‖F

with Z(m) = XT
Mm,·YMm,·

(4.11)

The biconvex resolution use the following formulas. Fixing each
∥∥V(·,m)

∥∥
2
= 1 the optimal

U(k,m) is

UPk,· =


1− λ (1− α)

2
∥∥∥ŨPk,·

∥∥∥
2

F




+

ŨPk,·

with Ũi,· =
(
1− λα

2 ‖Zi,·V ‖2

)

+

Zi,·Vi,·

(4.12)

and �xing ‖U‖ = 1 the optimal V is

V·,m,= Z(m)TV·,m

with Z(m) = XT
Mm,·YMm,·

(4.13)

The Joint-Lasso needs to set two penalization parameters. The larger the �rst parameter is
the lesser variables are selected in the model. The parameters can be optimized for instance
by minimizing the error prediction of the model under a cross-validation procedure. The
minimum zone being quite �at we allow the parameters to be in a neighborhood of the
minimum.
Remark: If the number of observations is di�erent from one observation set to another,
the observation sets with the largest number of observation can prevail in the model. In
order to cope with this, we propose to divide data from a an observation set m by √nm.

4.5 Conclusions

This chapter presents the problems speci�c to meta-analysis. An extension of the PLS is
proposed which has the merit of taking into account both the group of variables structure
and the study structure. We will see in next chapter that the method can be used for a
particular case of meta-analysis where few method are well established: pleiotropy studies.
After this chapter, the original work where the method was proposed is reproduced.
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Abstract Nowadays, data analysis applied to high dimension has arisen. The edification
of high dimensional data can be achieved by the gathering of different independent data.
However each independant set can introduce its own bias. We can cope with this bias
introducing the observation set structure into our model. The goal of this article is to
build theoretical background for the dimension reduction method sparse Partial Least
Square (sPLS) in the context of data presenting such an observation set structure.
The innovation consist in building different sPLS models and linking them through a
common-Lasso penalization. This theory could be applied to any field where observation
present this kind of structure and therefore improve the sparse Partial Least Square in
domains where it is competitive. Furthermore it can be extended to the particular case
where variables can be gathered in given a priori groups, where sparse Partial Least
Square is defined as a sparse group Partial Least Square.

Keywords Batch Effect · High dimensional data · Partial Least Square · Sparse
methods

1 Introduction

Since past years data analysis applied to high dimension in all domains has arisen
[1]. Extracting information from ever larger data has become a trend in numerous fields
and a large number of observation need to be gathered in order to evaluate statistical
models. When data are hard to retrieve, gathering existing data sets is an efficient way for
assembling data of high dimension. However this technique have its drawbacks : existing
independent data sets can present intrinsic bias which can decrease the performance of
the models used.

Camilo Broc
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Those biases imply an unwanted underlying structure that will interfere with the
signal we want to find. Bias can come from a difference in the source of information or
the process used during the recollection of the data. This set structure has to be taken
into account in order to improve the efficiency of the models. For instance, in genomics,
data can be gathered from different studies because of the cost of the experimentation.
Each clinical study may have been performed with its own chemistry protocol, with its
own experimental material and on its specific populations, and bias can arise among
the different data sets obtained. This “batch effect” is known and can significantly
decrease the power of the analysis [2]. Another bias can occur in particular analysis where
different “dynamics” exist between the studies : a predictor can be highly correlated
with independent variable, but the direction of the correlation depends on the study.
For instance, pleiotropy [3] is a field of genetics where a gene (predictor) can have a
particular effect on different phenotypes (independent variables). Data can be gathered
from different studies where the nature of the phenotype differs. Therefore, a gene can
be highly correlated with each phenotype but an overall model struggles to catch the
particularity of those effects.

In the article we tackle the problem of “batch effect” for dimension reduction such
as Partial Least Square (PLS) method introduced by Wold [4]. Common dimension re-
duction techniques are Canonical Correlation Analysis (CCA) [5], Principal Component
Analysis (PCA) [6] and PLS [7]. All these methods rely on the projection of the data
into a subspace of lower dimension which represents most of the variation of the data.
They are often posed as an eigen value problem [8]. PLS and CCA are both analysis two
blocks of data and differ from the norm used whereas PCA analyses one block. Aiming
to apply our method to supervised analysis, PLS approach is considered in this article.

In these dimension reduction techniques, results are formulated with new variables
that are linear combination of the original ones. These combination can be hard to inter-
pret due to the huge number of coefficient they represent. To answer this problem, Lasso
methods have been used. Introducing this penalization shrink to zero the participation to
the model of the least relevant variables. Results highlight a smaller number of variable
that are easier to explain. In addition, noise of the signal is reduced and the power of the
methods is boosted. These are called sparse method and have been developed for linear
regression [9] [10], CCA [11], PCA [12] and Partial Least Square (sPLS). The sparse
PLS (sPLS) has shown encouraging results [13] [14] and is the object of analysis in this
article. The PLS and sPLS methods have also been used to control “the batch effect”
when related studies are combining to increase sample size combining independent but
related studies ([15],[16]). In particular combining sPLS separating models and linking
them can be an option like in the Multivariate INTegrative method (MINT) proposed
in [16]. However, this approach cannot identify the true signal in presence of different
dynamics.

For high dimensional regression problems, using problem-specific prior information
improves the accuracy of the prediction and the interpretability of the model[17]. For
example, in genomics, genes within the same pathway have similar functions and act
together in regulating a biological system. Incorporation of this grouping structure is
becoming increasingly common due to the success of gene set enrichment analysis ap-
proaches [18]. Using a model taking into account this variable group structure allow to
improve the performance and the readability of the results. To this end sparse group
Partial Least Square (sgPLS) have been developed [19] where two overlaid Lasso pe-
nalizations translate the group structure in the Partial Least Square formulation. A
structure with group and sub-groups can also be handle by its generalization with three
overlaid Lasso penalizations (sgsPLS [20]). Methods such as MINT don’t take into ac-
count this kind of group structure.
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In this article we consider data that are composed of independent observation sets.
The observation sets are assumed to be known and are expected to introduce bias in the
data. The presented methods allow us to use the information about the edification of
the data set in order to improve the performance of the analysis. Although this theory
have been developed with the aim to answer a problem occurring in genomic public
data sets, it can be applied to any field where a certain observation set structure ex-
ists. Different method using Lasso penalization on data structured toward observation
sets are discussed. In particular a “penalized PLS for structured data” is defined where
separate PLS model are linked together with a common-Lasso penalization. In the end
variables selected by the model are the same for all observation sets but the underlying
model computes separated models for each observation set, giving both readability and
flexibility to the model. We present the theoretical background for this method. Espe-
cially, we can show that the common-Lasso constraint that is used (i.e. a penalization
across studies) can be be written as a standard Lasso with an overlaid group structure
in an equivalent formulation of the PLS problems. We extend also this idea of common-
Lasso constraint to a case where an a priori structure is known, where the variables are
gathered into groups.

2 Notations

Before going into further details, the notation used in this article are introduced. Data
are represented by X ∈ Rp×n and Y ∈ Rqn, two matrices, representing n observations
of p predictors and q independent variables. Then X is a (n, p) matrix and Y a (n, q)
matrix. For any matrix A of size (a, b) , for i ∈ {1, . . . , a} its rows are noted A(i,·) and
for j ∈ {1, . . . , b} its columns are noted A(·,j) and for subsets ã ⊂ {1, . . . , a} and b̃ ⊂
{1, . . . , b} resp. row and column sub-matrices are noted A(ã,·) and A(·,b̃). For any vector
ω of size a , for i ∈ {1, . . . , a} its elements are noted ω(i) and for subsets ã ⊂ {1, . . . , a}
ω(ã) represents the elements of the vector corresponding to the positions in the subset.
Matrices will always be in uppercase letters and vectors in lowercase letters to avoid any
confusion.

The Frobenius norm on matrices is denoted ‖ ‖F . We note XT the transpose matrix
of X. The cardinal of a set S is noted #S. The positive value of a real number x is noted

(x)+ = |x|+x
2 .

2.1 Data with observation sets

Some data may present a structure among the observations gathered around groups
of observations. For instance data can be composed of different studies, each one present-
ing its own mechanisms and bias. Let us consider M different sets in the data. Noting,
for m ∈ N, Mm a subset of {1, . . . , n}, let M = (Mm)m=1..M be a partition of {1, ..., n}
corresponding to the observation sets. We note #Mm = nm. Row blocks are defined by
this partitions in Figure 1 (observations are assumed to be ordered by observation set).

2.2 Data with group of variables

Some data may present a structure among the variable gathered around groups. Let
us consider that the variables are gather in K groups. Let P = (Pk)k=1..K be a partition
of {1, ..., p} corresponding to this variable group structure. We note #Pk = pk. We

then have
∑K
k=1 pk = p. This partition can define column blocks among the variables if
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Fig. 1 Illustration of data structured by group of observation. Observations are assumed to be ordered
by observation set.

Fig. 2 Illustration of data structured by group of variables and group observation. Variables are as-
sumed to be ordered by variable group.

variables are assumed to be ordered by variable group. Both observation set structure
and variable group structure can be defined at the same time like in Figure 2.

3 Formulation of the sparse Partial Least Square

In the literature, two formulation of the Partial Least Square exist, some extension of
the PLS follow a first one usually called PLS1 [21] and other extensions follow a second
one called ”PLS2” [14]. In the context of the article we study exclusively the first one.



Penalized Partial Least Square applied to structured data 5

3.1 PLS and sPLS

Let X be a predictor matrix of size (n, p) and Y a matrix of independent variables
of size (n, q). PLS finds successively couples of vector {u1, v1}, . . . , {ur, vr} for r <
min(p, q) where the couples are composed of vectors of length resp. p and q, maximizing
Cov(Xui, Y vi) for any i ∈ {1, . . . , r}, under the constraint that the family of vectors
u1, . . . , ur and v1, . . . , . . . , vr are both of them orthogonal families [4]. It can be solved
considering successive maximization problems [22], for h ∈ {1, . . . , r}

max
||uh||2=||vh||2=1

Cov(Xh−1uh, Yh−1vh),

where X0 = X, Y0 = Y and Xh−1, Yh−1 are deflated matrices computed from uh−1,vh−1,
Xh−2, Yh−2 for h ∈ {2, . . . , r}. The deflation depends on the PLS mode that is chosen
( [23],[4]). In this article we focus on the enhancement of the optimization problem and
its Lasso formulation in its h-th step. According to [22] this step can be written as

{uopt, vopt} = argmin
||u||2=||v||2=1

∥∥XTY − uvT
∥∥2
F

+ λP (u)︸ ︷︷ ︸
Lasso Penalty term

for sparse PLS

. (1)

where the notation h is removed in order to simplify the formulation because we are
interested in only one of the r steps of the PLS.

The sparse PLS introduces a penalization in this formulation of the problem. The
penalty P (·) forces lowest values of u to be set to zero. The parameter controlling the
degree of sparsity in the model is λ. In the presented formula the sparsity is applied
only to the vector u, but a similar penalization can be define for v. In the context of this
article we treat only the penalization of u but all the results stand also for a v penal-
ization. The following sections compare different ways of writing the sPLS optimization
problem presented in Equation (1) taking into account an observation or/and variable
set structure.

Remark: Before analysis, the X and Y matrices are transformed by subtracting their
column averages. Scaling each column by their mean and standard deviation is also often
recommended [24]. Thus, the cross-product matrix XTY is proportional to the empirical
covariances between X- and Y -variables when the columns of X and Y are centered.
When the columns are standardized, XTY is proportional to the empirical correlations
between X- and Y -variables. In this article the standardization is an important step
to overcome the issue of the “batch effect” or to aggregate observations from different
studies.

3.2 Formulation of the penalized PLS

Six different formulations of the sPLS are presented in this article. The first four
correspond to data presenting an observation set structure like in Figure 1. The two
last correspond to data presenting an observation set structure and a variable group
structure like in Figure 2 which correspond to sgPLS models (see [19]). We can note
that Problem 5 is a particular case of Figure 2 where there is only one observation set
(M = 1). Loading vectors introduced in those figures refer to vectors formulated in the
following problems. The study of Problems 4 and 6 are the main contribution of the
article.
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– Problem 1 (standard sPLS): This approach consists in simply considering all the
observation set as one set. Data are standardized across all the sets, i.e. X and Y
are standardized. The formulation is a standard sPLS problem

{uopt, vopt} = argmin
||u||2=||v||2=1

∥∥XTY − uvT
∥∥2
F

+ λP (u). (2)

In the model the loading u is composed of p elements and the loading v is composed
of q elements. The sparsity of u is controlled by the parameter λ : for a given λ, sλ
elements of u will be non-zero.

– Problem 2 (MINT): Introduced in [16], this approach consists in considering M
different sPLS problems corresponding to each of the M observation sets. Data are
standardized within each observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·) and
Y (Mm,·) are standardized instead of X and Y . The sPLS problem is the same than
in previous problem in Equation (2).
In the model, the loading u is composed of p elements and the loading v is composed
of q elements. The sparsity of u is controlled by the parameter λ : for a given λ, sλ
elements of u will be non-zero.

– Problem 3 (multiple sPLS): This approach consists in considering all the observation
set as one set, i.e. X(Mm,·) and Y (Mm,·) are standardized. Data are standardized
within each observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·) and Y (Mm,·) are
standardized instead of X and Y . Formulation is a classic sPLS problem

{um,opt, vm,opt} = argmin
||um||2=||vm||2=1

∥∥∥X(Mm,·)TY (Mm,·) − umvTm
∥∥∥
2

F
+ λmP (um). (3)

In the model the set of loading {um}m∈{1,...,M} is composed of p ×m elements (p
elements per um). The set of loading {um}m∈{1,...,M} is composed of q×m elements
(q elements per vm). The sparsity of um is controlled by the parameter λm : for a
given λm, sm,λm

elements of um will be non-zero. Therefore, variables concerned by
the shrinkage to zero will depend on the observation set m.

– Problem 4 (“ sparse PLS for structured data”): This approach consists in considering
M different sPLS problems corresponding to each of the M observation sets. Data
are standardized within each observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·)

and Y (Mm,·) are standardized instead of X and Y . All problems are solved at the
same time with a common-Lasso.
The formulation of the problem is

{Uopt, Vopt} = argmin
U,V

M∑

m=1

∥∥∥Zm − U (·,m)V (·,m)T
∥∥∥
2

F
+ λP (U)

with P (U) =

p∑

i=1

∥∥∥U (i,·)
∥∥∥
2

and Zm = X(Mm,·)TY (Mm,·).

(4)

In the model the set of loading U is composed of p × m elements (p elements per
U (·,m)). The set of loading V is composed of q×m elements (q elements per V (·,m)).
The sparsity of all U (·,m) is controlled by the parameter λ : for a given λ, the same
sλ elements of each U (·,m) will be non-zero.

– Problem 5 (classical sgPLS): When variables can be gathered in groups (Figure 2),
the sgPLS propose to add a group-Lasso penalization to the classical PLS. Data are
standardized within each observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·) and
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Y (Mm,·) are standardized instead of X and Y . The formulation of the problem is

{uopt, vopt} = argmin
u,v

∥∥Z − uvT
∥∥2
F

+ λ (1− α)Pgroup(u) + λαPvariable(u)

with Pgroup(u) =
K∑

k=1

√
pk

∥∥∥u(Pk)
∥∥∥
2

, Pvariable(u) =

p∑

i=1

∥∥∥u(i)
∥∥∥
2

and Z = XTY.

(5)

In the model the loading vectors u and v is composed of resp. p and q elements. The
penalization Pvariable forces single variables to be set to zero whereas the penalization
Pgroup forces sets of variables to be set to zero. The degree of sparsity in general in
the model is λ whereas the parameter controlling the balance between both kind of
sparsity is α. In this model elements of u corresponding to least relevant variables
and least relevant group of variables are set to zero.

– Problem 6 (“ sgPLS for structured data”): In the same spirit of adapting problem 2
into problem 4, problem 5 can be adapted with a common-Lasso penalization. Data
are standardized within each observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·)

and Y (Mm,·) are standardized instead of X and Y . The formulation of the problem
is

{Uopt, Vopt} = argmin
U,V

∥∥∥Zm − U (·,m)V (·,m)T
∥∥∥
2

F
+ λ (1− α)Pgroup(U) + λαPvariable(U)

with Pgroup(U) =
K∑

k=1

√
pk

∥∥∥U (Pk,·)
∥∥∥
F

, Pvariable(U) =

p∑

i=1

∥∥∥U (i,·)
∥∥∥
2

and Zm = X(Mm,·)TY (Mm,·).
(6)

In the model the set of loading U is composed of p × m elements (p elements per
U (·,m)). The set of loading V is composed of q×m elements (q elements per V (·,m)). In
this model elements of U corresponding to least relevant variables and least relevant
group of variables are set to zero. In this model the same variables and variable
groups corresponding to least significant variables are set to zero for all U (·,m), m ∈
{1, . . . ,M}.

4 Solutions of the penalized PLS

The classical sPLS can be seen as a biconvex optimization problem. It can be solved
by successively optimizing the loading u and v [22]. For a given v an optimized ũ is
computed and the value of u is updated. Then the same is performed permuting the
roles of u and v. This optimization process relies on solving the problems

uopt = argmin
||u||2=1

∥∥XTY − uvT
∥∥2
F

+ λP (u)

vopt = argmin
||v||2=1

∥∥XTY − uvT
∥∥2
F
.

(7)

The solution of problems 1 to 3 (composed of standard sPLS methods) is given by the
following theorem :
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Theorem 1 The marginal optima in ũ and ṽ in the sPLS (Equation (1)) are : Fixing
v, the optimal uopt for (7) is

u
(i)
opt = u

(i)
0


1− λ

2
∥∥∥u(i)0

∥∥∥
2




+

, u0 = XTY v. (8)

Fixing u, the optimal vopt for (7) is

vopt = Y TXu. (9)

In this formula a soft thresholding sets down to zero loadings corresponding to vari-
ables whose scores are too low. Setting λ equal to zero we find the formulation of the
PLS problem without Lasso constraint. A proof can be find in [13].
For problems 4, 5 and 6 the solution is more complex. Problem 4 introduces a common-
Lasso penalization, problem 5 introduces a variable group structure and the problem 6
introduces both common-Lasso penalization and variable group structure. We can note
that problem 4 is a particular case of problem 6 where there is no group penalty, i.e.
α = 1. Problem 5 is a particular case of problem 6 where there is only one observation
set, i.e. M = 1. The solution of problem 6 is given in theorem 2 (presented in the fol-
lowing) whereas solutions of problem 4 and 5 are corollaries of this theorem and can be
found after the proof (corollary 1 and 2).

Theorem 2 The marginal optima in U and V in the “sparse group PLS for structured
data” (Equation (6)) are :

Fixing V , the optimal Uopt for (6) is :

U
(Pk,·)
opt = U

(Pk,·)
1


1− λ (1− α)

2

√
∑
i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

2




+

= U
(Pk,·)
1


1− λ (1− α)

2
∥∥∥U (Pk,·)

1

∥∥∥
F




+

With U
(i,·)
1 = U

(i,·)
0


1− λα

2
∥∥∥U (i,·)

0

∥∥∥
2




+

, U
(·,m)
0 = ZmV

(·,m) and Zm = X(Mm,·)TY (Mm,·)

(10)
Fixing U , the optimal Vopt for (6) is :

V
(·,m)
opt = ZTmU

(·,m) (11)

Proof. The proof is composed of three steps. In step 1 we settle the sub-gradient equation
corresponding to the minimization problem. In step 2, we make the sPLS thresholding
emerge in the equation. In step 3, we make emerge the group thresholding and prove
the theorem.
Let’s settle the sub-gradient equation. The optimal U for a given V is

min
U

M∑

m=1

∥∥∥Zm − U (·,m)V (·,m)T
∥∥∥
2

F
+ λ (1− α)

K∑

k=1

√
pk

∥∥∥U (Pk,·)
∥∥∥
F

+ λ

p∑

i=1

∥∥∥U (i,·)
∥∥∥
2
.

We note that the problem can be formulated making appearing the column blocks
corresponding to the variable groups. A second formulation of the problem would be

min
U

K∑

k=1

M∑

m=1

∥∥∥Z(Pk,·)
m − U (Pk,m)V (·,m)T

∥∥∥
2

F
+ λ (1− α)

K∑

k=1

√
pk

∥∥∥U (Pk,·)
∥∥∥
F

+ λ

K∑

k∈1

∑

i∈Pk

∥∥∥U (i,·)
∥∥∥
2
.
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We can see that the problem can be separated in K distinct problems for every k ∈
{1, . . . ,K}

min
U(Pk,·)

M∑

m=1

∥∥∥Z(Pk,·)
m − U (Pk,m)V (·,m))T

∥∥∥
2

F
+ λ (1− α)

√
pk

∥∥∥U (Pk,·)
∥∥∥
F

+ λ
∑

i∈Pk

∥∥∥U (i,·)
∥∥∥
2
.

In order to solve this problem, let’s consider the k-th problem developing the Frobenius
norm

min
U(Pk,·)

M∑

m=1

[
Trace

(
Z(Pk,·)
m Z(Pk,·)T

m

)
− 2Trace

(
Z(Pk,·)
m V (·,m)U (Pk,m)T

)
+ Trace

(
U (Pk,m)U (Pk,m)T

)]

+λ (1− α)
√
pk

∥∥∥U (Pk,·)
∥∥∥
F

+ λα
∑

i∈Pk

∥∥∥U (i,·)
∥∥∥
2
.

Taking the sub-gradient, the optimal Uopt verify for m ∈ {1, . . . ,M}

−U (Pk,m)
opt + U

(Pk,m)
0 =

λ (1− α)
√
pk

2
Θ(Pk,m)
g +

λα

2
Θ(Pk,m)
v

with the (p×M) matrix U0 such that U
(Pk,m)
0 = Z(Pk,·)

m V (·,m)

with the (p×M) matrix Θg such that Θ(Pk,m)
g =





U
(Pk,·)
opt∥∥∥U(Pk,·)

opt

∥∥∥
F

if U (Pk,·) 6= 0

Θg ∈ {Θg, ‖Θg‖F ≤ 1} if U
(Pk,·)
opt = 0

and with the (p×m) matrix Θv Θ
(i,·)
v =





U
(i,·)
opt∥∥∥U(i,·)
opt

∥∥∥
2

if U
(i,·)
opt 6= 0

Θg ∈ {Θv, ‖Θv‖2 ≤ 1} if U
(i,·)
opt = 0

.

(12)
We can note that when there is no penalty (i.e. λ = 0,) Uopt = U0 is the solution of the
non sparse problem.

The sub-gradient equation is settle (step 1). Let’s now make emerge the thresholding
of sPLS.
We investigate in which case U

(Pk,·)
opt = 0, i.e. when loading corresponding to a group of

variables is set to zero. If U
(Pk,·)
opt = 0 then U

(i,·)
opt = 0 for every i ∈ Pk. Hence we have

U
(Pk,m)
0 =

λ (1− α)
√
pk

2
Θ(Pk,m)
g +

λαΘ
(Pk,m)
v

2

with
∥∥∥Θ(Pk,·)

g

∥∥∥
2

2
≤ 1

and with
∥∥∥Θ(i,·)

v

∥∥∥
2

2
≤ 1.

(13)

and for i ∈ Pk we have also

U
(i,·)
0 − λαΘ

(i,·)
v

2
=
λ (1− α)

√
pk

2
Θ(i,·)
g

with
∥∥∥Θ(i,·)

g

∥∥∥
2

2
≤ 1

and with
∥∥∥Θ(i,·)

v

∥∥∥
2

2
≤ 1.
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Let’s define

U
(i,·)
1 =


1− λα

2
∥∥∥U (i,·)

0

∥∥∥
2




+

U
(i,·)
0 . (14)

We can establish in the following lemma, which makes emerge the variable thresh-
olding term of sPLS like in (1) in Equation (12).

Lemma 1 ∥∥∥U (i,·)
1

∥∥∥
2
≤
∥∥∥∥∥U

(i,·)
0 − λαΘ

(i,·)
v

2

∥∥∥∥∥
2

(15)

and there is a Θv such that

U
(i,·)
1 = U

(i,·)
0 − λαΘ

(i,·)
v

2
. (16)

Proof. if
∥∥∥U (i,·)

0

∥∥∥
2
≤
∥∥λα

2

∥∥
2

then

(
1− λα

2
∥∥∥U(i,·)

0

∥∥∥
2

)

+

= 0 and then U
(i,·)
0 = 0. The in-

equality is then true. Furthermore, there is a Θ
(i,·)
v = U

(i,·)
0 reach the equality (16).

Otherwise, U
(i,·)
1 6= 0 and

U
(i,·)
0 − λαΘ

(i,·)
v

2
= U

(i,·)
0 − λαU

(i,·)
0

2
∥∥∥U (i,·)

0

∥∥∥
2

= U
(i,·)
1

The inequality (15) is true because the equality (16) is reached. In any case the lemma
1 is proved.

From lemma 1 we can infer that in (12)

∥∥∥U (i,·)
1

∥∥∥
2
≤
∥∥∥∥
λ (1− α)

√
pk

2
Θ(i,·)
g

∥∥∥∥
2

and the inequality can be reached as an equality.
We have

∑

i∈Pk

∥∥∥Θ(i,·)
g

∥∥∥
2

2
=
∥∥∥Θ(Pk,·)

g

∥∥∥
2

2

and we have also ∑

i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

2
≤
∥∥∥Θ(Pk,·)

g

∥∥∥
2

2

and the inequality can be reached.

Therefore ∥∥∥Θ(Pk,·)
g

∥∥∥
2

2
≤ 1

stand if and only if ∑

i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

2
≤ 1.

In the end we have U (i,·) = 0 if

∑

i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

2
≤ 1.
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Let’s now consider that U
(Pk,·)
opt 6= 0 or U

(i,·)
opt 6= 0 for at least one i ∈ Pk then

U
(i,·)
opt = U

(i,·)
0 − λα

2
Θ(i,·)
v − λ (1− α)

2

U
(i,·)
opt∥∥∥U (Pk,·)

opt

∥∥∥
F

.

If
∥∥∥U (i,·)

0

∥∥∥
2
≤ λα

2 ‖ then we can set Θ
(i,·)
v such that U

(i,·)
0 − λα

2 Θ
(i,·)
v = 0. Otherwise

U
(i,·)
0 − λα

2 Θ
(i,·)
v = U

(i,·)
0 − λα

2
U(i,·)

‖U(i,·)‖
2

. In both cases we can consider that U
(i,·)
0 −

λα
2 Θ

(i,·)
v = U

(i,·)
1 .

From this point we find successively

U
(i,·)
opt = U

(i,·)
1 − λ (1− α)U

(i,·)
opt

2
∥∥∥U (Pk,·)

opt

∥∥∥
F

,

U
(i,·)
opt


1 +

λ (1− α)

2
∥∥∥U (i,·)

opt

∥∥∥
2


 = U

(i,·)
1

and

U
(i,·)
opt


1 +

λ (1− α)

2
∥∥∥U (i,·)

opt

∥∥∥
2


 = U

(i,·)
1 .

Summing the square for every element of Pk we have

∑
i∈Pk

∥∥∥U (i,·)
opt

∥∥∥
2

2

(
1 + λ(1−α)

2
∥∥∥U(i,·)

opt

∥∥∥
2

)2

=
∑
i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

2
.

and hence
∥∥∥U (i,·)

opt

∥∥∥
2

F

(
1 + λ(1−α)

2
∥∥∥U(i,·)

opt

∥∥∥
2

)2

=
∑
i∈Pk

∥∥∥U (i,·)
1

∥∥∥
2

F
=
∥∥∥U (Pk,·)

1

∥∥∥
2

F
.

After extracting the value of
∥∥U (Pk,·)

∥∥
F

from this equation we finally find that

U
(Pk,·)
opt = U

(Pk,·)
1


1− λ (1− α)

2
∥∥∥U (Pk,·)

1

∥∥∥
F


 .

Corollary 1 The solution to Equation (4) can be seen as a biconvex optimization prob-
lem.

Fixing V , the optimal Uopt for (4) is :

U
(i,·)
opt = U

(i,·)
0


1− λα

2
∥∥∥U (i,·)

0

∥∥∥
2




+

, U
(·,m)
0 = ZmV

(·,m)

and Zm = X(Mm,·)TY (Mm,·)

(17)

Fixing U , the optimal Vopt for (4) is :

V
(·,m)
opt = ZTmU

(·,m) (18)
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Corollary 2 The solution to Equation (5) can be seen as a biconvex optimization prob-
lem is :

Fixing v, the optimal uopt for (5) is

u(Pk) = u
(Pk)
1


1− λ (1− α)

2

√
∑
i∈Pk

∥∥∥u(i)1

∥∥∥
2

2




+

= u
(Pk)
1


1− λ (1− α)

2
∥∥∥u(Pk)

1

∥∥∥
F




+

With u
(i)
1 = u

(i)
0


1− λα

2
∥∥∥u(i)0

∥∥∥
2




+

, u0 = Zv

and Z = XY T .

(19)

Fixing u, the optimal vopt for (5) is

vopt = ZTu. (20)

5 Discussion

Problems 1 to 4 are discussed in this part, but we consider that the following remarks
can be transposed to Problems 5 and 6, Problem 5 and 6 being resp. the equivalents of
Problems 2 and 4 for data with a variable groups structure.

5.1 Size of the data

The larger data (in term of number of observations) are, the better models are
supposed to perform. We can see that Problem 1 and 2 have the merit of performing an
sPLS on data containing n observations whereas Problem 3 and 4 performs M different
sPLS methods on data with resp. Mm observations for m ∈ {1, . . . ,M}. For some
observation set the number of observations can be significantly smaller than the size of
the hole data which can have a negative impact on the result.

5.2 Number of loading elements in the model

Number of loading elements is an important parameter to control. From one side, the
bigger the number is, the more information can be stored by the model, from the other
side having too much loading elements can give results harder to interpret and there is
higher risk of over-fitting. Problems 1 and 2 have only p loadings for u whereas Problems
3 and 4 have M × p ones. For Problem 4 the number of loadings is important but the
number of non-zero variables will vary between 1 and p in the same way than in Problem
1 and Problem 2. The Problem 4 gives readable results while keeping the flexiblity of
a model with higher number of loading elements. For Problem 3 the non-zero variables
can be different from one study to another, we cannot control weather a variable will be
null for all studies and the number of non-zero variable will be significantly higher than
for other problems.
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5.3 Sensibility to batch effect

Batch effect can arise when data provided from different source present a bias. This
effect can happen when observation sets are expected to introduce its intrinsic error.
Therefore the cross-product matrices could be represented by a model like :

Zm = Z + Em for m ∈ {1, . . . ,M}

Where Z follows a given law and Em are Gaussian noise with parameters depending
on m. Under this hypothesis the standardization within studies can bypass this bias.
Therefore Problem 3 to 4 can correct this kind of batch effect.

However, more complex bias can exist. For instance what happens if different ob-
servation sets have different dynamics? Let us consider a variable that is positively
correlated in some observation sets and negatively correlated in others. In Problems 1
and 2 and their overall sPLS, the variable will have a small corresponding loading be-
cause positive and negative effect compensate each other and the variable will be cut
because of the sparsity heuristic. In Problem 3, the distinction between all dynamics will
be highlighted by the model. Finally, Problem 4 will select the same variable because
it has a significant loading on every observation set. In the end, Problem 4 can handle
more cases where the observation sets introduce bias.

5.4 Relation between Problem 4 and classic sgPLS

We can establish also that Problem 4 (sPLS method with a common-Lasso penaliza-
tion) applied to matrices X and Y of size resp. (n, p)and (n, q) can be equivalent to a
classical sgPLS without a standard Lasso on well chosen matrices X̃ and Ỹ of size resp.
(n, p×M) and (n, q×M). Those matrices are constructed by shifting the row blocks of
X and Y : they are diagonal bloc matrices whose blocs are resp. X(Mm,·) and Y (Mm,·)

for m ∈ {1, . . . ,M)}. The corresponding loading vectors of size resp. p ×Mand q ×M
are called here resp. ue and ve. The representation of those objects is shown in Figure
3.

On those basis the formulation of the sgPLS problem searching for optimal ue,opt and
ue,opt would be :

{ue,opt, ve,opt} = argmin
ue,ve

∥∥∥Z̃ − ueveT
∥∥∥
2

F
+ λ (1− α)Pgroup(ue) + λαPvariable(ue)

with Pgroup(ue) =
K∑

k=1

√
pk

∥∥∥ue(Pk)
∥∥∥
2

,

Pvariable(ue) =

p∑

i=1

∥∥∥ue(i)
∥∥∥
2

and Z̃ = X̃T Ỹ

(21)

In this formulation loading vectors ue and ve can be seen as the concatenation of the
rows of resp. U and V in a unique uni-dimensional vector. This notation is interesting
from a theoretical point of view because it ensure that Problem 4 can inherit properties
from sPLS. However this notation is not wise for computational efficiency because the
matrices X̃ and Ỹ are M times bigger than X and Y , where M is the number of
observation set. For implementation, computing directly the solution from equations
(10) and (11) seems wiser.
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Fig. 3 Notation of X̃ (grey rectangle) and Ỹ (red rectangle) to write the sPLS for structured data as
a sgPLS.

6 Application on simulated data

Presented methods are illustrated on simulated data. A first simulation case presents
data where a batch effect exists and a second simulation case presents data where dif-
ferent dynamics exist among different observation sets. For each case different noise
levels are considered. Every simulation is performed 50 times. The code can be found
at https://github.com/camilobroc/sgPLS_for_structured_data.

6.1 Design of the simulated data

In the following, a training data set of 900 observations gathered in 3 observation
sets of 300 observations are generated and then a test data set of 300 observations
gathered in 3 observation sets of 100 observations (for the training data M = 3 and
n1 = n2 = n3 = 300, for the test data n1 = n2 = n3 = 100).

6.1.1 Batch effect cases

In first the simulation case, applications of the methods with data presenting a batch
effect are performed. The simulation are performed with different noise levels. Data have
an observation set structure and a group of variable structure as shown in figure 2.
A batch effect implies that one same physical process is observed but the methods of
measurement vary among the different group of observation. We represent this difference
of measurements by a bias in depending on the observation set.

A matrix X with 1000 variables gathered in 50 groups of 20 variables (K = 50
and p1 = · · · = pK = 20) and a matrix Y with 3 variables (q = 3) are generated. In
order to mimic a batch effect, the generation procedure of the matrices resp. X and Y
has different parameters depending on different sub-matrices of resp. X and Y . Those
matrices are composed of a signal and a noise. The signal corresponds to a PLS model
with one latent variable. For m ∈ {1, . . . ,M}:
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X(Mm,·) = H(Mm)CT︸ ︷︷ ︸
Signal

λX,Bm + µX,Bm 1nm×p︸ ︷︷ ︸
Batch

+E
(Mm,·)
X︸ ︷︷ ︸
Noise

Y (Mm,·) = H(Mm)DT
︸ ︷︷ ︸

Signal

λY,Bm + µY,Bm 1nm×q︸ ︷︷ ︸
Batch

+E
(Mm,·)
Y︸ ︷︷ ︸
Noise

(22)

Signal

The latent variable H is a (n × 1) column vector where each element follows a normal
distribution of mean 0 and standard deviation 1. The loadings associated to this latent
variable are resp. C a p× 1 column vector and D a q × 1 column vector corresponding
resp. to X and Y .

Batch effect

The signal is blurred by a batch effect. The parameters λ
(X,B)
m , µ

(X,B)
m , µ

(Y,B)
m and λ

(Y,B)
m

are real numbers depending on the observation set m. They control the shape of the
batch effect. The notations 1nm,p and 1nm,q correspond to the matrices which elements
are equal to 1 and of respective size nm × p and nm × q.

Noise

The noise is represented by EX , a (n×p) matrix, and EY , a (n× q) matrix. The matrix

EX is constructed by group of variables : for k ∈ {1, . . . ,K}, the rows of E
(·,Pk)
X follow

a multivariate normal distribution Npk(Opk , λ
X,EΣpk,ρ) where ρ and λX,E are real pa-

rameters and Σpk,ρ is a (pk× pk) matrix which diagonal elements are equal to 1−ρ and
non-diagonal elements are equal to ρ. The notations pk stands fro the vector of size pk
and which elements are all equal to 0. The rows of the matrix EY follow a multivariate
normal distribution Nq(1q × 0, λY,EΣq,ρ) where λY,E is a real parameter and Σq,ρ is a
(q × q) matrix which diagonal elements are equal 1 − ρ and non-diagonal elements are
equal to ρ. The notations q to the vector of size q and which elements are all equal to
1. The parameter ρ represent a correlation between variables of a same group and λY,E

and λY,E represent the noise levels.

The non null parameters of C are the 15 first variables of the first 4 group of vari-
ables. Among those elements resp. 15, 30 and 15 are equal to resp. 1, −1, 1.5 and the
values are randomly distributed. Other parameters are given in table 1 and the noise
levels are indicated in table 2.

6.1.2 Effects of different magnitudes among group of observations

This simulation case mimic data presenting different dynamics among observation
sets. The generation process follow the same formulas as the previous one but with
different parameters. The main difference with the previous cases is that the parameters
λX,Bm for m ∈ {1, . . . ,M} can have opposite signs. While in the first case a batch could be
represented by a difference of magnitude, the effects can have here opposite directions.

In this simulation case we are not interested in a bias concerning µ
(X,B)
m or µ

(Y,B)
m , the

parameters are set to zero. The non null parameters of C are the 15 first variables of the
first 4 group of variables. Among those elements resp. 15, 30 and 15 are equal to resp.
1, −1, 1.5 and the values are randomly distributed. Other parameters are given in table
1 and the noise levels are indicated in table 2.
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Table 1 Table of the parameters used in first and second simulation cases.

First simulation case Second simulation case
ρ 0.05 0.05

µX,B
1 2 0

µX,B
2 -1 0

µX,B
3 -1 0

λX,B
1 1 1

λX,B
2 0.8 -0.8

λX,B
3 1.5 1.05

µY,B
1 2 0

µY,B
2 0 0

µY,B
3 -2 0

λY,B
1 0.6 0.6

λY,B
2 1.4 1.4

λY,B
3 1 1
D {1,−1, 1.5} {1,−1, 1.5}

6.2 Compared methods

In the first simulation case , methods corresponding to problems 1, 2 and 5 are
compared whereas in the second simulation case, methods corresponding to problems
1,2, 4 and 6 are compared. For the methods corresponding to problems 1, 2 and 4 the
penalization parameter λ is set such that the number of variables is equal to the true
number of variables having an effect (in this case 60). For the method corresponding
to problems 5 and 6, the penalization parameter λ is set such that the number of
groups of variable is equal to the true one ( in this case 4) while α is chosen from
the set {0.1, . . . , 0.9} by cross validation : the value giving the best Mean Square Error
Prediction is kept.

6.3 results

The performances of the method are measured through the True Positive Rate
(TPR), the Total Discordance (TD) and the Mean Square Error Prediction. The TPR
is defined as :

TPR =
True Positives

True Positive + False Negatives

and TN is defined as :

TD = False Postives + False Negatives

Results of first and second simulation are given in table 2.
In the first simulation case, data present a bias that depends on the observation set.

Different noise levels are generated (λX,E = 2, 20, 30). We can see that when noise is
small (λX,E = 2), MINT and ”sparse group PLS for structured data” can retrieve the
true variables whereas a classic sPLS cannot. We can also see that the MSEP is better
for the ”sparse group PLS for structured data” than for MINT. We can note that ”sparse
group PLS for structured data” misses a few true variables which gives a non null TD.
This is due to the fact that the calibration of the method doesn’t seek for a selection
of the true number of variables, hence, a small number of true variables can be missed.
When noise is greater (λX,E = 20), a difference in terms of detection of true variables is
observed. The classical PLS have a much worse TPR and TD while ”sparse group PLS
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Table 2 Results for first and second simulation case. Results in terms of MSEP, TPR and TD are
presented for each noise level.

Simulation case 1

Noise level λX,E
1 = λX,E

2 = 2 λX,E
1 = λX,E

2 = 20 λX,E
1 = λX,E

2 = 30
MSEP TPR TD MSEP TPR TD MSEP TPR TD

sPLS 3.99 0.5 60 22.85 0.27 87.76 33.35 0.18 98.92
MINT 2.20 1.0 0.0 20.97 0.76 28.88 31.59 0.54 55.00
sgPLS 2.20 1.0 7.4 20.83 0.99 15.44 31.16 0.98 17.88

Simulation case 2

Noise level λX,E
1 = λX,E

2 = 2 λX,E
1 = λX,E

2 = 10 λX,E
1 = λX,E

2 = 20
MSEP TPR TD MSEP TPR TD MSEP TPR TD

sPLS 3.58 0.61 46.84 12.38 0.15 101.68 23.19 0.08 110.08
MINT 3.67 0.88 14.12 12.40 0.17 99.84 23.16 0.08 110.12
sPLS for structured data 2.85 1.00 0.00 11.11 0.79 24.84 21.76 0.43 67.96
sgPLS for structured data 2.85 1.00 5.56 11.06 0.98 13.60 21.39 0.93 20.28

for structured data” is above MINT. When noise is even greater (λX,E = 30), ”sparse
group PLS for structured data” clearly outperforms MINT.

In the second simulation case, data present a magnitude in the latent variables that
depends on the observation set. Different noise levels are generated (λX,E = 2, 10, 20).
We can see that when noise is small (λX,E = 2) we can see that in order to retrieve the
true variables ”s(g)PLS for structured data” is better than MINT which is better than
sPLS. In the same way that in the first simulation case, ”sgPLS for structured data”
miss a few number of the true variables whereas ”sPLS for structured data” do not
because of the specificity of the calibration. We can see at noise level λX,E = 10, that
only the methods calibrated ”for structure data” are able to retrieve the true variables.
At the highest noise level (λX,E = 20) we can see that sgPLS stands clearly above ”sPLS
for structured data”, and those two methods outperform the existing ones.

7 Conclusion

In the end different ways of formulating an sPLS problem on data presenting an
observation set structure have been discussed. The MINT formulation have the merit of
being easy to implement and correct the batch effect. The novel method “sparse PLS
for structured data” can also correct it. Further more it allows to take into account a
lot of different bias, especially when the different observation set don’t have the same
dynamics. Despite its high number of parameters, the common-Lasso penalization en-
sures that the result is readable with a small number of selected variables in the overall
analysis.

This article proved it’s ability to inherit properties of sPLS. It’s adaptation to variable
groups developed in this article, called “sparse group PLS for structured data”, is a
notable example of “ sparse PLS for structured data” benefiting from an extension of
the sPLS. We can note also that it can be applied on either quantitative or qualitative
variables as any sPLS can.

A simulation shows that the new methods can outperform existing methods for
detecting a small signal in a large noise. Because its requirements on the nature of the
data are very general we are confident that the method can be applied to the wide area
of domains where sPLS is competitive.
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Chapter5

Meta-analysis methods applied to

pleiotropy

This chapter tackles the problem of pleiotropy in genetic epidemiology. At �rst, an overview
of the de�nitions covered by the name pleiotropy are presented. Especially, its formulation
as a meta-analysis method is explained. Then the application of the method introduced in
Section 4.4 to pleiotropy studies is presented. The method was applied to a thyroid and
breast cancer study and results have been submitted to BMC bioinformatics journal. The
current version of this paper (draft) is included after this chapter.

5.1 Pleiotropy de�ntions

Pleiotropy de�nes cases in genetic epidemiology with complex relations between genome
and phenotype, especially when one or more genetic traits have an e�ect on several
phenotype traits. It occurs in genetics when a genetic factor in�uences di�erent phenotypes.
The de�nition is quite large and encompasses di�erent statistical approaches [15].
• It can be seen as a multivariate analysis where one genetic trait have an in�uence on
several phenotype traits.
• If phenotypes come from di�erent sources, it can lead to a meta-analysis problem where
several data sets have common genetic predictors but di�erent phenotypes. The goal is to
�nd genetic markers related to several phenotype across di�erent studies.
Pleiotropy enriches our insights into the mechanisms involved in the appearance of the phe-
notypes. Gene set analysis with pleiotropy is expected to improve the chances of revealing
the underlying genetic architecture of complex phenotypes. Highlighting pleiotropy pro-
vides opportunities for understanding the shared genetic underpinnings among associated
diseases.
The scope of application in genetic epidemiology is wide as it can cover a large number of
di�erent traits at the same time. For instance, 42 traits or diseases have been studied in
a single analysis approach recently [116]. In this case, the goal is to search new relations
between diseases. On the opposite side, other pleiotropy analysis can take into account a
fewer number of disease that are already expected to have common biological mechanisms.
For instance, the large-scale Collaborative Oncological Gene-environment Study (COGS)
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studies breast, ovarian and prostate cancers and several cancer showed peliotropy e�ects
[117]. Common mechanisms in psychotic disorder disease has also been investigated [118].
In this dissertation, we are interested in cases with phenotypes coming from di�erent
sources. The motivation comes from oncology where the onset of a disease is rare and
�nding individuals presenting di�erent diseases (type of cancers) can be very hard. Hence,
di�erent data sets with di�erent phenotypes have te be used.
For the rest of the chapter we are interested in pleiotropy tackled as a problem of meta-
analysis where the goal is the identi�cation of predictors common to two or more data
sets.

5.2 Challenges speci�c to pleiotropy

Meta-analysis is often necessary

Genetic epidemiology aims at studying populations presenting given disease, which reduces
the number of individuals available. For pleiotropy, the population of interest must present
several illness traits which constraints even more the population sample and, thus, �nding
patients presenting targeted symptoms of disease may be impossible. In this case, an
alternate is to use patients coming from di�erent studies and each patient having only one
disease.
An example of such issues exist in oncology which is the �eld studying cancer. In oncology
study, patients rarely present several cancer. In general, data related to di�erent cancer
are gather in distinct data bases that are usual analysed separately. To overcome this
limitation, a meta-analysis is needed. This is the main motivation for studying pleiotropy
as a meta-analysis in this dissertation.
Opposite e�ects

Sometimes a variable can have a positive e�ect for one phenotype and a negative one for
another. In this case, some methods can have problems identifying an e�ect because a
mean procedure will compensate the positive and the negative contribution of the model.
This e�ect can be problematic especially in pleiotropy. Indeed, antagnostic pleiotropy has
been observed in some studies, and hypothesis regarding their origins from an evolutionary
point of view has been debated [119]. Hence, statistical methods need to cope with this
aspect.
Interest of sparse group PLS for structured data

Regarding pleiotropy, many meta-analysis statistical tools can be used. So far, this method
was used to investigate candidate genes across di�erent cancer types and allowed to identify
novel regions with pleiotropic e�ects [120]. Although a number of statistical approaches
have been proposed in the literature for identifying the existence of pleiotropy at SNP-level,
few work covers pleiotropy at gene- and pathway-levels. For instance, ASSET does not
take into account a group structure of variables while SKAT only considers homogeneous
e�ect across studies which does not take into account e�ect of opposite directions. The
method proposed aims at �lling this gap.
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5.2.1 Application to thyroid and breast cancer

In this contribution, the method presented in the previous chapter/paper is applied to the
study of thyroid and breast cancer data. The results of the study are included in a paper
that has been submitted to BMC Bioinfomatics.
The developed statistical approaches will be applied for enriching our insights about the
genetic mechanisms of thyroid and breast cancer types. We are interested in exploring gene
level as well as pathway level associations between the individual cancer types as well as
at both cancer types together, as breast and thyroid cancers share common hormonal risk
factors [121]. Both cancers are hormonally mediated and occur more frequently in women
than in men and have been found to be in�uenced by reproductive and hormonal factors.
Breast cancer is the most common form of cancer in women and thyroid cancer is a less
common cancer and was associated with early age at menarche, late menopause, late age at
�rst full-term pregnancy, or low parity. Hormonal treatments, particularly those combining
estrogens and synthetic progestagens can be a cause. Obesity is also a recognized risk
factors for breast cancer in post-menopausal women [122]. On the other hand, thyroid
cancer risk has been associated with late age at menarche and high parity. Conversely,
breastfeeding and oral contraceptive use were associated with a lower risk of thyroid cancer
[99, 123]. Anthropometric factors such as tall height and large body size have been also
consistently associated with risk of thyroid cancer [124]. Regarding breast cancer risk,
established genetic variants currently explain ∼49% of heredity risk, with the 90 variants
identi�ed in GWAS accounting for about 14% [124]. Thyroid cancer has been shown to
be the only cancer for which the contribution of inherited genetic factors exceeds that of
environmental factors [125]. However, recent GWAS have identi�ed a few susceptibility
loci explaining about 4% of familial heredity [126].
Presentation of the data

The data used for this contribution and its expected structure is the one depicted in Chapter
1 and 2, that is, n observations are available with p variables for the genotype (SNP data)
and q variables for the phenotype (traits), and the number of observations, n is inferior
to p (see Figure 2.3). Data has been provided by the INSERM institute. SNP variables can
be organized in groups corresponding either to genes or pathways. We suppose that one
SNP is in exactly one gene and one pathway. Observations can also be gathered by groups
corresponding to di�erent studies.
We use Beluhca data set (see Table 5.1) which includes data from CECILE, a french case-
control study on breast cancer (1 125 cases, 1 172 controls) and from CATHY and Young-thyr,
two french case-control studies on thyroid cancer (463 female cases and 482 female controls).
All these individuals were genotyped using a customized microarray including 8716 genetic
variants from 28 candidate pathways (648 genes) selected from KEGG database and from a
litterature review. After quality controls, we retained 6 677 SNPs available for both type of
cancers.
We went through the following test to pre-process the datasets:

• missing values were imputed using median among case/control and data centered
to µ = 0. Then, we studied the correlation between SNPs to remove those with
a coe�cient equal to 1. This step is necessary because some methods don’t allow
correlated data.
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Cancer SNPs Observations Missing values Pairs of SNPs removed
Breast 6 677 2 297 34 869 42
Thyroid 6 677 945 13 215 20

Table 5.1 – Data from Beluhca data set after pre-processing.

• Couple of extremely correlated SNPs belonging to same genes were eliminated.

• As some methods do not deal with overlapping groups, 10 non-overlapping pathways
were selected and only the 3766 SNPs related to those groups were kept in the �nal
database. After all this steps, the new dataset is composed of 3766 SNPs, grouped in
337 genes and 10 non-overlapping pathways.

After, this pre-processing, data analyzed in this contribution are composed of 3766 SNP
data corresponding to 337 genes that participate in 10 pathways.

5.3 Conclusion

As we have seen, pleiotropy is deals with meta-analysis in genetics and raises statistical
challenges. From our knowledge, statistic methods for meta-analysis tackling both the
opposite e�ect possibility and the group of variable structure hasn’t been quite investigated.
The proposed method joint-sgPLS aims at �lling this gap. It leads to new perspectives for
modeling pleiotropy in genetic epidemiology.
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Abstract

Background
The increasing number of genome-wide association studies (GWAS) have revealed
several loci that are associated to multiple distinct phenotypes, suggesting the
wide existence of pleiotropic effects. Highlighting these cross-phenotype genetic
associations could help to identify and understand common biological mechanisms
underlying some diseases. Common approaches test the association between ge-
netic variants and multiple traits at the SNP-level. In this paper, we propose a novel
gene- and a pathway-level approach in the case where several independent GWAS
on independent traits are available. The method is based on a generalization of the
sparse group Partial Least Squares (sgPLS) to take into account variable groups,
and a Lasso penalization that links all independent data sets. This method, called
joint-sgPLS, is able to convincingly detect signal at the variable level and at the
group level.
Results
Our method has the merit of proposing a global readable model while coping with
the structure of data. It can outperform traditional methods and provides a wider
insight in terms of a priori information. Results are also provided on synthetic data
and on an application to real data. Genetic markers common to breast cancer and
thyroid cancer are investigated in a real data application.
Conclusion
The joint-sgPLS shows interesting properties for detecting a signal. As an exten-
sion of the PLS, the method is suited for data with a large number of variables.
The choice of Lasso penalization copes with structures of variables groups and ob-
servations sets. Furthermore, although the method has been applied to a genetic
study, its formulation is adapted to any data with high number of variables and an
exposed a priori structure in other application fields.

Keywords: Genetic epidemiology; High dimensional data; Lasso Penalization;
Meta-analysis; Oncology; Partial Least Square; Pathway analysis; Pleiotropy;
Sparse methods; Variable selection

Background
Genome-wide association studies (GWAS) have identified numerous genetic markers

linked to multiple phenotypes, suggesting the existence of pleiotropy that occurs

when a single variant or gene can influence several phenotype traits [1, 2, 3, 4].

Highlighting pleiotropy provides opportunities for understanding the shared genetic

underpinnings among associated diseases. As the genetic effects for most complex

traits are small, several methods were proposed to combine results across studies of

different phenotypes in order to improve the power of detecting cross-phenotype or

pleiotropic associations.
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We propose to focus on the case where several GWAS on different traits are avail-

able from different independent sources. One way to analyze pleiotropy is to analyze

each trait separately in each independent datasets. In order to gain statistical power

to detect pleiotropy, we propose a method that can combine the different traits into

a meta-analysis taking into account that effect in opposite directions may exist

across the different traits. We also propose a gene-based approach that combines

the association signals from the single nucleotide polymorphisms (SNP) into a signal

at the gene level or at the pathway-level. Genes will be defined by their coordinates

and pathways are group of genes involved in a common biological mechanism. Inde-

pendent data sets give an observation set structure to the data while the gene and

the pathways give a group of variables structure. The challenge of pleiotropy is then

to take advantage of this structure. In addition, possible biases between observation

sets can be introduced, which is a common problem for meta-analyses, and methods

for pleiotropy must take it into account [5]. Furthermore, such methods must cope

with the case where a genetic variable have a positive effect on one disease and a

negative effect on an other disease. Those opposite effects, may be hard to highlight

statistically.

In this article, an extension of the Partial Least Square (PLS) method suited for

meta-analysis for pleiotropy is proposed. It deals with observation sets and group

of variables information while taking into account the possibility of opposite effects.

PLS is a dimension reduction developed by Wold [6] and that have been widely

used for the analysis of data with large number of variables [7]. Unlike, its cousin

method, the Principal Component Analysis (PCA) [8], the PLS deals with two

blocks of data and is then widely used for genotype-phenotype analyses. Moreover

its sparse extension using Lasso penalization have been successful for providing

readable models[9]. Especially sparse group Partial Least Square can take into ac-

count group of variables as a priori information [10] [11]. For different group of

studies an alternative Lasso penalization has been proposed by Obozinski [12] for

a linear regression to deal with data made of different sets of observations. An

adaptation of the Lasso penalization, the joint-sgPLS, has recently been proposed

for the PLS [13], answering the specific structure of both groups of variables and

sets of observations. In this article, we exploit the same idea to leverage pleiotropy

effects, especially because the method copes with the challenge of detecting small

possible opposite effects. The method is compared to two well established statistical

methods in genetic studies. The first one, ASSET [14] extends standard fixed-effects

meta-analysis to allow for potential opposite directions of the same SNP on different

traits. However the method does not take into account the group level information

such as pathways. The second one metaSKAT [15] permits to carry out gene-based

meta-analysis, but all effects are in the same direction.

The developed statistical approaches will be applied to real dataset for enriching

our insights about the genetic mechanisms of thyroid and breast cancer types. We

are interested into exploring gene level as well as pathway level associations between

the individual cancer types as well as at both cancer types together.

Notations

Data are represented by X ∈ Rn×p and Y ∈ Rn×q, two matrices, representing

n observations of p predictors and q independent variables. The Frobenius norm
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on matrices is denoted ‖ ‖F . We note XT the transpose matrix of X and the

cardinal of a set S is noted #S. The positive value of a real number x is noted

(x)+ = |x|+x
2 and is equal to the number if the number is positive and equal to

zero otherwise. In general, observation sets can represent the fact that different sets

of observations come from different sources and must be analyzed accordingly. For

instance, data coming from different studies may present biases. Variables groups

can represent either a set of variables that is known to be quite correlated or a

group of variables that must be treated together. For instance, in genetics a gene

defines an established group of SNP variables and pathway define established group

of genes. From one side, let us consider M different sets of observations in the data.

Noting, for m ∈ N, Mm a subset of {1, . . . , n}, let M = (Mm)m=1..M be a partition

of {1, ..., n} corresponding to the observation sets. We note #Mm = nm. Row blocks

are defined by this partition. From the other side, let us consider that variables are

gathered in K groups. Let P = (Pk)k=1..K be a partition of {1, ..., p} corresponding

to this variable group structure. We note #Pk = pk. We then we have
∑K

k=1 pk = p.

Column blocks are defined by this partitions. Both observation set structure and

variable group structure can be defined at the same time as shown in Figure 1. For

matrices, the notation · is used to refer to blocks of matrices. For instance X·,Pk
is

the block of matrix of X corresponding the columns of the k-th group of variables

and XMm,· is the block of matrix of X corresponding the columns of the m-th set

of observations.

Figure 1: Illustration of data structured by groups of variables and groups

observations. Observations and variables are assumed to be ordered by resp.

observations sets and variable groups. The notation p represents the number

of variables of matrix X, q the number of variables of matrix Y , n is the

number of observations. n1, · · · , nM are the resp. number of observations of

each observation set. p1, · · · , pK are the resp. number of variables in each group

of variables.



Broc et al. Page 4 of 23

Sparse Partial Least Square for structured data

In the literature, several formulations of the PLS exist [16]. In the scope of this

article, only one of them, the called “PLS1” is considered [17].

PLS finds successively couples of vector {u1, v1}, . . . , {ur, vr} for r < min(p, q)

where the couples are composed of vectors of length resp. p and q, maximizing

Cov(Xui, Y vi) for any i ∈ {1, . . . , r}, under the constraint that the family of vectors

u1, . . . , ur and v1, . . . , . . . , vr are both of them orthogonal families [6]. It can be

solved considering successive maximization problems [18], for h ∈ {1, . . . , r}

max
||uh||2=||vh||2=1

Cov(X(h−1)uh, Y
(h−1)vh), (1)

where X0 = X, Y0 = Y and X(h−1), Y (h−1) are deflated matrices computed from

u(h−1),v(h−1), X(h−2), Y (h−2) for h ∈ {2, . . . , r}. The deflation depends on the PLS

mode that is chosen ([6, 19]). In the following, the notation h is removed in order

to simplify the formulation because we are interested in only one of the r steps of

the PLS.

The sparse PLS (sPLS) propose to add a penalization to the loading vectors u

and v. The following equivalence is used:

argmax
||u||2=||v||2=1,u∈Rp,v∈Rq

Cov(Xu, Y v) = argmin
||u||2=||v||2=1,u∈Rp,v∈Rq

∥∥XTY − uvT
∥∥2
F

(2)

and the proof can be found in [10].

The sPLS [18] can be written as

{uopt, vopt} = argmin
||u||2=||v||2=1,u∈Rp,v∈Rq

∥∥XTY − uvT
∥∥2
F

+ λP (u)︸ ︷︷ ︸
Lasso Penalty term

for sparse PLS

. (3)

The sparse PLS introduces a penalization in this formulation of the problem. The

penalty P (·) forces lowest values of u to be set to zero. The parameter controlling

the degree of sparsity in the model is λ. In the presented formula the sparsity is

applied only to the vector u, but a similar penalization can be define for v. In the

context of this article we treat only the penalization of u but all the results stand

also for a v penalization.

Remark : Before analysis, the X and Y matrices are transformed by subtracting

their column averages. Scaling each column by their mean and standard deviation is

also often recommended [20]. Thus, the cross-product matrix XTY is proportional

to the empirical covariances between X- and Y-variables when the columns of X and

Y are centered. When the columns are standardized, XTY is proportional to the

empirical correlations between X- and Y-variables. In this article the standardiza-

tion is an important step to overcome the issue of the “batch effect” or to aggregate

observations from different studies. The subject has been discussed in [13].
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Extensions of the sparse Partial Least Square

In the following, extension of the sPLS take into account an observation or/and

variable set structure are presented. The last method has been recently developed

[13] and deals with both kind of structures.

In order to cope with the group structure, sgPLS have been proposed [10]:

{uopt, vopt} = argmin
||u||2=||v||2=1,u∈Rp,v∈Rq

∥∥Z − uvT
∥∥2
F

+ λ (1− α)Pgroup(u)+

λαPvariable(u)

with Pgroup(u) =

K∑

k=1

√
pk ‖uPk

‖2 , Pvariable(u) =

p∑

i=1

‖ui‖2

and Z = XTY.

(4)

where the loading vectors u and v is composed of resp. p and q elements. The pe-

nalization Pvariable forces single variables to be set to zero whereas the penalization

Pgroup forces sets of variables to be set to zero. The degree of sparsity in general in

the model is λ whereas the parameter controlling the balance between both kind of

sparsity is α. In this model elements of u corresponding to least relevant variables

and least relevant group of variables are set to zero.

An extension using the joint Lasso penalization from Obozinski [12] has been

proposed. Its formulation for the sgPLS is:

{Uopt, Vopt} = argmin
U∈Rp×Mand V ∈Rq×M

||U·,m||2=||V·,m||2=1 for m∈{1,··· ,M}

M∑

m=1

∥∥∥Z(m) − U·,mV·,mT
∥∥∥
2

F

+λ (1− α)Pgroup(U) + λαPvariable(U)

with Pgroup(U) =
K∑

k=1

√
pk ‖UPk,·‖F , Pvariable(U) =

p∑

i=1

‖Ui,·‖2

and Z(m) = XT
Mm,·YMm,·,

(5)

where the set of loading U is composed of p×m elements (p elements per U·,m).

The set of loading V is composed of q ×m elements (q elements per V·,m). In this

model elements of U corresponding to least relevant variables and least relevant

group of variables are set to zero. In this model the same variables and variable

groups corresponding to least significant variables are set to zero for all U·,m, m ∈
{1, . . . ,M}.

For all sparse methods, parameters driving the penalization (λ and α) must be

chosen. In general, the choice is made through a K-fold cross validation, take an

error in prediction as criteria. An example of the procedure can be found in the

implementation of many extension of the sPLS [10] [21] [22].

Remark : The proposed joint penalization is biconvex, and thus multiple local

minima may exist. In this work we implement an algorithm based on the alternating
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convex search [23]. It is known to be an effective method for biconvex optimisation

and recent work has shown alternating methods for minimisation of biconvex func-

tions converge with high probability to estimates with similar statistical accuracy

to a global optimum [24].

Benchmark methods

Both ASSET and metaSKAT are considered as benchmark methods.

ASSET is a method suited for meta-analysis providing a p-value across studies

[14]. The input of the method are single variables summary statistics which are

combined by the method. ASSET exhaustively explores subsets of studies for the

presence of true association signals that are in either the same direction or possibly

opposite directions. However ASSET does not exploit the group information such

as genes or pathways. Further, the current version of ASSET provides pleiotropy

result for each variant which should be corrected using a FDR correction in order

ro control possible false positive pleiotropy effect.

SKAT is a method to detect association between rare variants in a region and a

phenotype (continuous or binary). It is a supervised test for joint effects of multiple

variants in a region on a phenotype. The metaSKAT method can do the same but

aggregating several studies. This method outputs a p-value corresponding to a set

of variables, for instance a gene or a pathway. The method is based on a weighted

sum of SKAT statistics of the different studies [15].

Results
The code used for running the methods is available on github (https://github.

com/camilobroc/BMC_joint_sgPLS).

Simulation

Presented methods are illustrated on simulated data presenting the structure in

Figure 1. From one side, SNP genotypes are coded as minor allele counting {0, 1, 2}
and a certain correlation is expected within a group of SNP from the same linkage

disequilibrium block. From the other side, phenotype data are binary and have a

true effect from one or more genetic markers. In order to simulate the correlation

between SNPs, for a group of variables Pk, a multivariate normal distribution with

n observations x
(continuous)
k ∼ Npk

(µk,Σk) is simulated where µk is a null vector

of size pk and Σk is a pk × pk matrix with 1 on the diagonal and ρk, coefficients

controlling the correlation between SNPs within a group, outside of the diagonal. A

simulation of this variable gives a matrix which represents simulated observations

for group of variables k. Those blocks are concatenated in a n×p matrix, Xcontinuous

that represents the whole data.

In order to have {0, 1, 2} genotype data, a discretization is performed. For a given

variable j ∈ Pk, we aim at simulating a SNP variable with a Minor Allele Frequency

(MAF), which we note MAFj . This MAF means that:

P (xj = 0) = (1−MAFj)
2

P (xj = 1) = 2MAFj(1−MAFj)

P (xj = 2) = MAF2
j .
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To this aim, for a given MAFj , quantiles q
(j)
1 and q

(j)
2 are chosen such as P (xj ≤

q1) = (1−MAFj)
2 and P (xj ≤ q2) = (1−MAFj)

2 + 2MAFj(1−MAFj)

A discrete genotype, X(discrete), is computed such that

X
(discrete)
i,j =





0 if X
(discrete)
i,j ≤ q(j)1

1 if X
(discrete)
i,j ≤ q(j)2

2 if X
(discrete)
i,j > q

(j)
2 ,

where i ∈ {1, · · · , n} are simulated observations and j ∈ Pk is a variable of the

k-th group of variables.

For each observation i, a binary phenotype yi is simulated with a logit model

logit(πi) = log(
πi

1− πi
) = α+

p∑

j=1

X
(discrete)
i,j βj ,

where πi = P (yi = 1|data), βj for j ∈ {1, · · · , p} is a regression parameter.

Then different simulations of the process can be performed successively in order

to simulated several studies.

In this article, 8 combinations of parameters are considered. Data composed of

two studies. The simulated genotype has 25 groups of 20 variables. The number of

observations, n can be either 200 (cases 1,3,5,7) or 400 (cases 2,4,6,8). The intra-

group correlation parameters ρk are equal to 0.5 and the MAF is equal to 0.3 for

each variable. The first 5 groups have an effect in the model of the simulation. Either

all the SNPs of the group have an effect (cases 1,2,5,6) or half of the SNPs have an

effect (cases 3,4,7,8). For each group, half of the non-null regression parameters are

positives (taken at random) while the other half is negative. In cases 1,2,5 and 6,

the absolute value of those parameters is set to exp(0.1) whereas in cases 3,4,7 and

8, the absolute value of those parameters is set to exp(0.5). Effect are either in the

same direction from one study to another (cases 1,2,3,4) or in opposite direction

(cases 5,6,7,8).

For all methods 50 replications of the data are performed. For the implementation

of the sgPLS and joint-sgPLS, penalisation parameters must be chosen similarly to

[10]. The penalization parameter λ and α are optimized through a K-fold penal-

ization procedure with an error of prediction as criteria. Choosing a parameter λ

is equivalent to set a number of selected groups [10]. In this simulation the grid of

number of selected groups {1, · · · , 25} is used and the grid for α is {0.1, 0.5, 0.9}.
Figures 2 and 3 show the error of prediction performances through a cross-validation

procedure of the sgPLS and joint-sgPLS in a simulation of case 1, for different levels

for α and different levels of group selection. The observed mean and the variance

of the error rate over 50 replication are presented. In the framework of the method

the set of parameters corresponding to the lowest error of prediction rate is kept

for the model.

For ASSET, sgPLS and joint-sgPLS, the variables selected by the models are

compared to the variable having an effect on the true model. For metaSKAT, sgPLS
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Figure 2: Mean and variance of the error of prediction in cross-validation of sgPLS,

for one simulation of case 1 of the simulations. The cross-validation is performed

for α ∈ {0.1, 0.5, 0.9} and for levels of group selection corresponding to {1, · · · , 25}.

and joint-sgPLS, the group of variables selected by the models are compared to the

group of variables having an effect on the true model.

Results of the simulations are presented in tables 1, 2, 3, 4 for sgPLS, joint-sgPLS,

ASSET and metaSKAT. The measures of performance are the True Positives (TP),

False positives (FP), False Negatives (FN) and True Negatives (TN).

n=200
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 46.78 29.24 53.22 370.76 sgPLS 3.54 3.82 1.46 16.18
joint-sgPLS 40.84 27.16 59.16 372.84 joint-sgPLS 3.44 3.78 1.56 16.22
ASSET 29.98 22.14 70.02 377.86 metaSKAT 2.22 1.08 2.78 18.92

n=400
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 75.76 139.34 24.24 260.66 sgPLS 4.74 11.9 0.26 8.1
joint-sgPLS 66.12 76.44 33.88 323.56 joint-sgPLS 4.48 7.62 0.52 12.38
ASSET 47.74 25.4 52.26 374.6 metaSKAT 3.14 1.26 1.86 18.74

Table 1: Perfomances in terms of mean number of TP, FP, FN and TN over 50

replications for methods sgPLS, joint-sgPLS, ASSET and metaSKAT in simulations

cases 1 and 2 (when all SNPs of the 5 groups are involved in the true model and

the effects are in the same directions from one study to another). The number of

observations per study is n.

We can see that at the SNP level sgPLS and joint-sgPLS have a higher TP than

ASSET and have a better TP than metaSKAT at the group level (tables 1, 2, 3 and

4). The number of true positives is high for sgPLS, joint-sgPLS and ASSET however.

We can remark that when effects in the true model are in opposite directions the

joint-sgPLS stands out as its TP is clearly higher than other methods (tables 3 and

4). We can also see that the number of FP for sgPLS and joint-sgPLS are inflated
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Figure 3: Mean and variance of the error of prediction in cross-validation of joint-

sgPLS, for one simulation of case 1 of the simulations. The cross-validation is per-

formed for α ∈ {0.1, 0.5, 0.9} and for levels of group selection corresponding to

{1, · · · , 25}.

when only 10 SNPs per true-groups are involved in the model of simulation (tables 2

and 4). This is probably due to the fact that the method selects too many variables

with a selected group.

Overall, we can see that sgPLS and joint-sgPLS performs better for detecting

effect in the same direction while joint-sgPLS is the method with the best per-

formance for detecting opposite effects. MetaSKAT has a lower true positive rate

than the two previous methods while having less total discordance which means it

is more conservative on this simulation. A good compromise would be considering

joint-sgPLS as both opposite and same direction effects are well selected.

Pleiotropy investigation on breast and thyroid cancer

The developed statistical approaches will be applied for enriching our insights about

the genetic mechanisms of thyroid and breast cancer types. Thyroid and breast can-

cers share a lot of similarities in their biology: both are more frequent in women,

are influenced by hormonal and reproductive factors and are hormonally-mediated.

Moreover, individuals diagnosed with breast cancer are more likely to develop thy-

roid cancer as a secondary malignancy than patient diagnosed with other cancer

types, and vice-versa [25]. Genetic factor contributing to the incidence of breast

cancer have been extensively studied, and it is known that genetic variants explain

approximately 49 percent of the familial risk to develop this disease. Using GWAS,

313 risk variants were identified for breast cancer [26]. On the other hand, GWAS

studies on thyroid cancer have been scarce, due to the lesser incidence of this dis-

ease as well as the lack of data. However, we know that thyroid cancer is the only

cancer for which genetic factors contribute more than environmental factors [27].
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n=200
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 36.58 63.56 13.42 386.44 sgPLS 4.78 4.02 0.22 15.98
joint-sgPLS 31.3 48.04 18.7 401.96 joint-sgPLS 4.5 3.06 0.5 16.94
ASSET 29.46 46.88 20.54 403.12 metaSKAT 3.62 0.96 1.38 19.04

n=400
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 42.68 148.78 7.32 301.22 sgPLS 4.88 11.1 0.12 8.9
joint-sgPLS 40.42 115.96 9.58 334.04 joint-sgPLS 4.92 8.54 0.08 11.46
ASSET 35.26 54.68 14.74 395.32 metaSKAT 4.18 1.02 0.82 18.98

Table 2: Perfomances in terms of mean number of TP, FP, FN and TN over 50

replications for methods sgPLS, joint-sgPLS, ASSET and metaSKAT in simulations

cases 3 and 4 (when 10 SNPs of the 5 groups are involved in the true model and

the effects are in the same directions from one study to another). The number of

observations per study is n.

n=200
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 17.96 36.28 82.04 363.72 sgPLS 1.46 4.32 3.54 15.68
joint-sgPLS 43.44 25.2 56.56 374.8 joint-sgPLS 3.46 3.5 1.54 16.5
ASSET 30.58 22.48 69.42 377.52 metaSKAT 2.2 0.98 2.8 19.02

n=400
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 75.76 139.34 24.24 260.66 sgPLS 4.74 11.9 0.26 8.1
joint-sgPLS 66.12 76.44 33.88 323.56 joint-sgPLS 4.48 7.62 0.52 12.38
ASSET 47.74 25.4 52.26 374.6 metaSKAT 3.14 1.26 1.86 18.74

Table 3: Perfomances in terms of mean number of TP, FP, FN and TN over 50

replications for methods sgPLS, joint-sgPLS, ASSET and metaSKAT in simulations

cases 5 and 6(when all SNPs of the 5 groups are involved in the true model and

the effects are in opposite directions from one study to another). The number of

observations per study is n.

Only 4 loci have been associated with thyroid cancer risk and have been replicated

in other studies [28]. One of them, 2q35, was also previously reported to increase

risk of breast cancer [29]. To date, no study has been conducted to identify common

genetic factors between breast and thyroid cancer. Exploring the genetic relation-

ship between the two cancers would help to elucidate the common mechanisms

between both disease and could permit to improve their diagnostic and therapeutic

management.

We propose to illustrate the methods on real datasets, by investigating the

pleiotropic effect of genetic variants from candidate pathways in breast and thy-

roid cancers.

Beluhca dataset includes data from CECILE, a french case-control study on breast

cancer (1 125 cases, 1 172 controls) and from CATHY a french case-control study on

thyroid cancer (463 female cases and 482 female controls). All these individuals were

genotyped using a customized microarray including 8 716 genetic variants from 28

candidate pathways (648 genes) selected from KEGG database and from a literature

review. After quality controls, we retained 6 677 SNPs available for both type of

cancers. Missing values were imputed using the median among cases or controls and
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n=200
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 13.2 74.96 36.8 375.04 sgPLS 2.04 6.5 2.96 13.5
joint-sgPLS 35.62 94.24 14.38 355.76 joint-sgPLS 4.58 7.02 0.42 12.98
ASSET 29.18 45.5 20.82 404.5 metaSKAT 3.54 0.92 1.46 19.08

n=400
Variable level performances Group level performances

TP FP FN TN TP FP FN TN
sgPLS 14.3 72.28 35.7 377.72 sgPLS 1.88 5.76 3.12 14.24
joint-sgPLS 39.12 99.06 10.88 350.94 joint-sgPLS 4.9 7.18 0.1 12.82
ASSET 34.04 56.14 15.96 393.86 metaSKAT 4.22 0.86 0.78 19.14

Table 4: Perfomances in terms of mean number of TP, FP, FN and TN over 50

replications for methods sgPLS, joint-sgPLS, ASSET and metaSKAT in simulations

cases 7 and 8 (when 10 SNPs of the 5 groups are involved in the true model and

the effects are in the opposite directions from one study to another). The number

of obervations per study is n.

data were centered to µ = 0. When 2 SNPs were correlated at r2 = 1, one of the

SNP was removed and couple of extremely correlated (r2 > 0.98) SNPs belonging

to same genes were eliminated.

As dimension reduction methods such as sgPLS and joint-sgPLS need to be ex-

tended in case of overlapping groups of variables [30], 10 non-overlapping pathways

were selected and only the 3766 SNPs related to those groups were kept in the

final database. After all this steps, the new dataset is composed of 3766 SNPs,

grouped in 337 non-overlapping genes and 10 non-overlapping pathways. The list

of the pathways and there genes is displayed in Tables 6 and 7 in Appendix A.

The methods implemented in this article are : ASSET, metaSKAT, sgPLS

and joint-sgPLS. For metaSKAT, sgPLS and joint-PLS, SNP-level, gene-level and

pathway-level results are given by the methods whereas ASSET gives only SNP-

level results. Hence, in the case of ASSET, genes corresponding to selected SNPs

are considered. For each SNP i, an univariate logistic model for gene-disease asso-

ciation can be considered separately for thyroid data and breast data (thyroid and

breast cancer, Figure 4).

As it has been presented before, for sgPLS and joint-sgPLS, a calibration of the

parameters is generally performed through a cross-validation process. This process

relies on the definition of a measure of performance: the error of prediction of the

model. However, in genetic studies, the effects are small and the prediction perfor-

mances based on genetic units are usually very low. The prediction performance

results of sgPLS and joint-sgPLS shows no significant difference from different sets

of penalization parameters (i.e., numbers of genes and pathways). In order to facil-

itate the interpretation, we present the results for calibration parameters set to 20

genes and 3 pathways and α = 0.5. We explore the stability of the methods using

a bootstrap strategy.

The method sgPLS and joint-sgPLS are computed with those parameters on the

data. A 100 bootstraps procedure is performed on the data. The methods sgPLS and

joint-sgPLS are then implemented on each bootstrap. We are interested in knowing

whether genes selected in the computation on original data are still selected in the

bootstrap. Genes and pathways selected by the methods applied on the original
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data are considered as preselected. Then, the rates of selection of selected genes

and pathways and non selected genes and pathways over the 100 bootstraps are

compared. Figures 5 and 6 present this rate for preselected and non preselected

features. A gene and resp. a pathway is kept in the final selection if and only if it is

preselected and its rate of selection among the bootstraps is higher than any other

gene (resp. pathway) that is not preselected. We can see that for joint-sgPLS less

genes are selected than for other methods (4 against resp. 20 and 18 for metaSKAT

and sgPLS on both data).

Results of the selection are presented in Table 5 where the name of genes and

pathways is presented. “sgPLS single” stand for the use of the sgPLS on thyroid

and breast data separately while “sgPLS both” stands for the use of the method

on a concatenation of both data set standardizing by study.

From one hand we can see that for non meta-analysis methods (SKAT and sgPLS),

except for INSR, genes selected for thyroid cancer are distinct from genes selected for

breast cancer. From the other hand, meta-analysis methods, which are metaSKAT,

sgPLS, joint-sgPLS, select gene and pathways for both data sets.

We can note that LRRN6C is selected for thyroid data with the univariate model,

but the gene is selected only by ASSET and not by the others. A similar remark can

be said about RORA which is selected for breast cancer with the univariate model

and ASSET and not with the other methods. The fact that those genes are selected

only by SNP based methods would mean that only one SNP of the gene has an

effect on the phenotype, but the rest of the gene do not have much effect.Longer

genes has more chance to be selected by these SNP based methods.

The gene MAP2K2 is selected by all methods for thyroid and by joint-sgPLS as

well. The gene seems to be associated with thyroid cancer, but the fact that it is

selected also by sgPLS means it could be a candidate for pleiotropy. The same can

be said for PLA2G6, MTHFD2, ERCC3 that is initally associated to breast cancer

but could be pleiotropic.

We can see that joint-sgPLS selects the pathways of inflammatory response

and obesity and obesity-related phenotypes that are not selected by other meth-

ods.These results are interesting as obesity and inflammation are known to play a

role in both cancers. We can wonder if there is an association at the pathway-level

that is not detected by other methods.

Remark : Results based on different choice of calibration parameters for sgPLS

and joint-sgPLS (50, 100 genes and 5 pathways) showed similar patterns.
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(a) Results for univariate model on thyroid data.

(b) Results for univariate model on breast data.

Figure 4: Score for association of SNPs with the outcome for univariate model.

The score is computed as −log10(p)

where p is the p-value. The red line corresponds to the threshold 0.01.

gene ASSET SKAT metaSKAT sgPLS single sgPLS Both joint-sgPLS

Cell cycle

All pathway thyroid both

EGFR thyroid

MAP2K2 both thyroid thyroid both

PLA2G6 both breast breast both both

PTEN both

Circadian Rythm

All pathway breast

RORA both

DNA repair

All pathway thyroid

ERCC3 both breast both breast both both

ERCC6 breast both breast

ERCC8 both breast breast

FEN1 both

GTF2H1 thyroid both
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gene ASSET SKAT metaSKAT sgPLS single sgPLS Both joint-sgPLS

GTF2H5 thyroid thyroid thyroid

MAPK8 breast

MSH3 both

MUTYH breast both breast both

OGG1 breast breast

POLD2 thyroid

POLE2 breast breast both

RPA2 breast both

SSBP1 thyroid thyroid

Folate metabolism

All pathway breast both both

MTHFD2 breast breast both both

MTHFD2L both breast breast both

Inflammatory response

All pathway breast both

CYP4F11 both

IL13 breast both breast both

IL15 thyroid

IL18RAP both

IL1A breast

IL3 breast breast

MMP25 breast both

Obesity and obesity-related phenotypes

All pathway

DRD2 thyroid

FAIM2 thyroid

GNPDA2 both

INSR both both both both

LRRN6C both

NEGR1 both

NR3C1 both

SEC16B both

Other glycan degradation

All pathway both both

HEXA both

HEXB both

MAN2B2 both both both

NEU2 both both

Precocious or delayed puberty

All pathway both

FGFR1 breast breast

KAL1 breast both
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gene ASSET SKAT metaSKAT sgPLS single sgPLS Both joint-sgPLS

TGFBR3 both both

Nicotinate and nicotinamide metabolism

All pathway

ENPP3 both

NADK breast both

NMNAT2 both

NMNAT3 both

NT5C thyroid thyroid

PNP both

ADH1A thyroid

AKR1A1 breast both breast

AKR1C2 thyroid

ALDH1A3 breast breast both

CYP2C18 both

CYP2C19 both

CYP2E1 thyroid

CYP2F1 both thyroid thyroid

GSTA2 thyroid

MGST1 both both

NAT2 both breast breast both

Table 5: Selected genes and pathways
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(a) Percent of selection of genes for sgPLS on thyroid data, 100 bootstraps

(b) Percent of selection of genes for sgPLS on breast data, 100 bootstraps



Broc et al. Page 17 of 23

(c) Percent of selection of genes for sgPLS on all data, 100 bootstraps

(d) Percent of selection of genes for joint-sgPLS on all data, 100 bootstraps

Figure 5: Percent of selection of genes for sgPLS and joints sgPLS on 100

bootstraps. (a) sgPLS on thyroid data (b) sgPLS on breast data (c) sgPLS on

both data (d) joint-sgPLS. Genes selected on original data (preselected ones)

are in blue while other genes (non preselected ones) are in red.
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(a) Percent of selection of path-
ways for sgPLS on thyroid data,
100 bootstraps

(b) Percent of selection of path-
ways for sgPLS on breast data,
100 bootstraps

(c) Percent of selection of path-
ways for sgPLS on all data, 100
bootstraps

(d) Percent of selection of path-
ways for joint-sgPLS on all data,
100 bootstraps

Figure 6: Percent of selection of pathways for sgPLS and joints sgPLS on 100

bootstraps. (a) sgPLS on thyroid data (b) sgPLS on breast data (c) sgPLS

on both data (d) joint-sgPLS. Pathways selected on original data (preselected

ones) are in blue while other pathways (non preselected ones) are in red.

The pathways are noted: 1) Cell cycle 2) Circadian rhythm 3) Folate metabolism 4) Other
glycan degradation 5) Obesity and obesity-related phenotypes 6) DNA repair 7) Metabolism of

xenobiotics 9) Precocious or delayed puberty 10) Inflammatory response.
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Discussion
In this article, the properties of the joint-sgPLS is presented and is compared to the

classical sgPLS, the ASSET method and metaSKAT. From one hand, joint-sgPLS

and ASSET are design to retrieve effect of opposite direction. From the other hand,

joint-sgPLS, sgPLS and metaSKAT can give results at a gene-level instead of a SNP-

level whereas ASSET can not. We have seen through a simulation that joint-sgPLS

can be competitive against any of the other methods considered. Hence, joint-sgPLS

seems perfectly suited for meta-analysis where effects in opposite directions can exist

which invite us to pursue further investigation with it in complex studies for genetic

epidemiology such as pleiotropy.

Conclusion
We do believe that further investigation can be done on the same subject. In this

article, sgPLS and joint-sgPLS have been applied with one component, but several

components could be considered. This could lead to the selection of variables that

are orthogonal to the selection of the first component but that have still a large

participation to the covariance matrix.

We acknowledge that on the application the stability of the method is an impor-

tant point due to the fact that the cross-validation procedure is not satisfying for

choosing the parameters of penalization. One improvement could consist in exploit-

ing different the criteria of the procedure (the error prediction) with, for instance,

stability measures [31]. Another improvement could consist in adaptating the adap-

tative Lasso [32] for our method which could bypass the stability questions.

In order to advance on the application, this study should be replicated on a larger

data base. Particularly, thyroid cancer has been less studied than breast cancer,

and data for thyroid are still scarce in this application. Other cases of pleiotropy

could be investigated, for instance for the case where the phenotype is multivariate

for each subject. The joint-sgPLS is suitable for any kind of phenotype, continuous

or qualitative. R code is available from the author to reproduce the results and is

available on github (https://github.com/camilobroc/BMC_joint_sgPLS).
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Appendix A: Tables of genes and pathways

1)
gene count

ENPP1 27
NMNAT3 25
AOX1 24
NMNAT2 21
ENPP3 15

BST1 14
CD38 11
NT5M 10
NT5C1A 9
NT5C2 8

PNP 8
NAMPT 7
NNMT 7
NT5C3 7
NADSYN1 6

NNT 6
NT5E 5
NMNAT1 4
NUDT12 4
QPRT 4

NT5C1B 3
NADK 2
NT5C 2

2)
gene count

RORA 282
NPAS2 60
RORB 34
ARNTL 23
CUL1 22

BTRC 13
RORC 13
PER3 12
CLOCK 11
PER2 11

CRY2 9
CSNK1E 9
BHLHE40 8
FBXW11 8
CRY1 7

FBXL3 7
NR1D1 7
TIMELESS 7
PER1 5
SKP1 4

BHLHE41 3
CSNK1D 3
RBX1 2

3)
gene count

MTHFS 19
MTHFD1 11
MTHFR 11
MTHFD2L 9
MTHFD2 1

4)
gene count

GLB1 22
MAN2B2 18
ENGASE 13
HEXB 12
MANBA 9

AGA 8
FUCA2 8
NEU2 5
FUCA1 3
HEXA 3

NEU3 3
GBA 2
MAN2B1 2
NEU1 2
NEU4 1

5)
gene count

LRRN6C 197
FTO 122
NEGR1 93
SCARB1 33
ABCC8 31

SEC16B 25
LEPR 23
MAP2K5 23
NR3C1 18
FAIM2 17

DRD2 16
PPARG 16
SIM1 14
FANCL 12
GHRL 12

ADIPOQ 11
CRHR2 11
GNB3 10
INSR 10
GPRC5B 9

MC3R 9
PCSK1 9
TFAP2B 9
TNF 9
UCP1 9

5)
gene count

CRHR1 8
ETV5 8
IL1RN 8
LDLR 8
HTR2C 7

MCHR1 7
TMEM18 7
BDNF 6
KCTD15 6
UCP2 6

ACE 5
ADRB2 4
IL6 4
LEP 4
MC4R 4

PLIN 4
PTPN11 4
UCP3 4
GNPDA2 3
NR0B2 3

RETN 3
CCL5 2
LEPROTL1 2
SH2B1 1

6)
gene count

RPA3 25
NEIL3 24
XRCC5 21
EXO1 19
MSH3 19

NEIL2 17
RPA1 17
BRCA2 16
RAD23B 16
RFC3 14

PARP4 13
POLD3 12
RFC5 12
CHEK1 11
CHEK2 11

MSH6 11
TERT 10
CASP7 9
MNAT1 9
PARP1 9

RFC1 9
XPC 9
CASP3 8
ERCC5 8
ERCC6 8

6)
gene count

TDG 8
XRCC1 8
DDB2 7
ERCC8 7
MSH2 7

PMS2 7
POLD1 7
POLE 7
RFC4 7
XRCC2 7

XRCC3 7
CDK2 6
GTF2H1 6
LIG1 6
MUTYH 6

PARP2 6
POLD2 6
POLE2 6
TP53 6
XPA 6

BRCA1 5
CDK7 5
CHRNA4 5
CUL4B 5
ERCC3 5

Table 6: First pathways and their corresponding genes. The number of SNPs for each

gene is presented. The pathways are 1) Nicotinate and nicotinamide metabolism 2)

Circadian rhythm 3) Folate metabolism 4) Other glycan degradation 5) Obesity

and obesity-related phenotypes 6) DNA repair
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6)
gene count

GTF2H5 5
LIG3 5
MAPK8 5
NTHL1 5
OGG1 5

RAD50 5
RPA4 5
APEX1 4
CDKN1A 4
ERCC2 4

FEN1 4
GTF2H4 4
MBD4 4
POLE3 4
RAD51 4

RFC2 4
UNG 4
CDKN2D 3
CETN2 3
CUL4A 3

ERCC1 3
MLH1 3
MPG 3
POLB 3
POLE4 3

6)
gene count

POLL 3
RPA2 3
SSBP1 3
CCNH 2
ERCC4 2

GTF2H3 2
HMGB1 2

7)
gene count

UGT1A8 58
UGT2A1 29
MGST2 22
CYP2C8 17
AKR1C2 16

CYP2C9 15
CYP2B6 14
EPHX1 14
MGST3 14
AKR1C4 13

COMT 12
CYP2C19 12
CYP2S1 12
CYP2C18 11
ADH1B 10

ADH7 10
GSTA4 10
GSTZ1 10
MGST1 10
NAT2 10

ADH1C 9
AHR 9
NAT1 9
ADH6 8
AKR1C3 8

7)
gene count

CYP1B1 8
UGT2B4 8
ADH4 7
ADH5 7
AKR1C1 7

ALDH3B1 7
CYP2E1 7
NQO1 7
ALDH1A3 6
CYP2F1 6

DHDH 6
SOD2 6
GSTA2 5
GSTM3 5
GSTO2 5

GSTP1 5
CYP1A1 4
CYP1A2 4
CYP3A43 4
GSTA3 4

GSTM4 4
UGT2B7 4
AKR1A1 3
ALDH3B2 3
CYP2A6 3

7)
gene count

CYP3A4 3
CYP3A7 3
GSTM2 3
GSTM5 3
UGT2A3 3

UGT2B11 3
ADH1A 2
CYP2D6 2

8)
gene count

TGFBR3 77
EBF2 60
BCAT1 51
VDR 34
KAL1 26

TM7SF3 19
CASC1 17
FGFR1OP2 12
FGFR1 11
KRAS2 10

CCR3 8
KISS1 8
PROK2 7
LIF 5
PROKR2 5

PTH1R 4
NKX2-1 2

9)
gene count

TGFB2 22
IL18RAP 13
CYP4F11 12
EPHX2 12
IL7 11

IGFBP1 9
IGFBP3 9
IL17A 9
IL10 8
IGFBP4 7

IL15 7
MMP25 7
IL16 6
IL12A 5
IL13 5

IL18 5
IL19 5
IL2 5
IL9 5
PLA2G4B 5

IL3 4
TGFB1 4
IL1B 3
IL4 3
IL1A 2

IL23A 1

10)
gene count

EGFR 103
CCND3 29
MAPT 19
MAP2K4 15
EGF 11

MAP2K2 11
GSK3B 8
PLA2G6 8
PTEN 8
MAP2K1 6

MYBL2 6
AKT1 5
MAP2K3 5
FGFR3 3
MAP2K7 3

MAPK12 3
TP53I3 3
CCNA2 2
MAPK7 2

Table 7: Last pathways and their corresponding genes. The number of SNPs for each

gene is presented. The pathways are 6) DNA repair 7) Metabolism of xenobiotics

8) Precocious or delayed puberty 9) Inflammatory response 10) Cell cycle.



Conclusions and futur work

Genetic epidemiology aims at understanding better the in�uence of the genome on the
onset of a disease. It has promising perspectives it terms of personalized medicine and for
pharmacology. The rise of high dimensional data in the �eld, which are called genomics,
has raised the stakes even further in our expectations in terms of �ndings. The use of the
term “big data” for this trend must be very cautious. Indeed, genomic data are massive
but are structure in an atypical way compared to other data analysis domains because
the number of variables is extremely high while the number of observations is moderate.
Furthermore, the domain needs to cope carefully with the biological meaning of its models.
The treatment in an appropriate way of groups of variables, groups of observations and
covariates must translate medical knowledge.

5.4 Contributions

This dissertation deals with the development of statistical methods for genomic data where
two genetic problems has been considered.
Both contributions answer a general framework speci�c to genetic studies. The idea
consists in �nding algorithms with mathematical properties which are adapted to the �eld
of application. It leads to the development of methods suited for the study of “ill-posed”
problems. It also leads to treat a group of variables structure as an a priori information.
For this purpose, truncation, sparsity, weighting are di�erent terms referring to distinct
statistical method that follow a general philosophy: concentrate the models on sets of
variables that have the highest contribution to the signal. However it leads generally to the
choice of hyper-parameters to which results are heavily dependent. A proper calibration
needs generally repeated measure and resampling techniques are a common answer to
this. The present dissertation deals with all those aspects at the di�erent levels of the
contributions.
The �rst one, gene-environment interaction, studies the in�uence of a gene on the appear-
ance of a disease. It aims at target speci�c environmental factors for predicting risks in
a population regarding their genome or at determining conditions for the application of
a medical treatment. This work was published in the Journal of the French Society the
implementation is available in the PIGE package for R (in CRAN).
The second one, pleiotropy, studies complex links when several genetic traits and several
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5. Meta-analysis methods applied to pleiotropy

phenotypes are involved in a same biological mechanisms. The goal is, for instance, to
highlight processes implying several diseases. In this thesis, the method has been applied
to oncology data. This method has published in the Arabian Journal of Mathematics and
its application to oncology will be submitted to BMC Bioinformatics. the implementation
is available in the sgPLS package for R (in CRAN).

5.5 Discussion

Some aspects presented in this dissertation leave some open question and provide perspec-
tives for further investigations.
From a statistical point of view, we do believe that the development of statistical methods
that have been done in this thesis can be extended to an even larger number of frameworks.

• The �rst contribution introduces the parametric bootstrap as a resampling method
in the case a framework for interaction studies. The choice of resampling methods
can be overlooked when developing a new method and putting an emphasis in the
choice of the resampling methods, in the same spirit that in this contribution, is an
interesting path of investigation.

• The second contribution introduces an extension of the sgPLS in order to take into
account e�ect in opposite directions in a meta-analysis. Especially, its use with a
group-Lasso is proposed. From our knowledge tackling both opposite e�ects and a
group of variable structure in a same method hasn’t been quite investigated. In the
same spirit, other perpendicular statistical techniques for PLS could be integrated to
the presented framework. For instance, an elastic net can deal with stability of the
results and adaptive Lasso and its oracle properties can solve the choice of hyper-
parameters. Altough, this material hasn’t been discussed in this thesis, it can be a
promising development for future works.

From an epidemiologic point of view, the statistical methods could be applied to a larger
number of biological problems.

• The �rst contribution proposes to investigateG×E interaction while the second one
propose to investigate pleiotropy. The next step would be to study G×E interaction
with pleiotropy. The method could be applied to the data provided by the french
health institute INSERM. From a statistical point of view, the method of the �rst
contribution could be adapted using a meta-analysis framework like presented in
this dissertation. This could open new biological interpretations.

• Diseases studied in this dissertation are mainly cancers. However, pleiotropy can be
related to other kind of diseases. The developed method could be applied to other
�elds than oncology.

• Other �elds of research have data with features similar to genetics. Mainly, chemo-
metrics or neuroscience handle data with a large number of variables compared to
the number of observations and results at a group of variables level can be bene�cial.
For instance in neuroscience, data are collected through probes that captures the
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5.5. Discussion

neurons signal in given areas of the brain overtime. Observations corresponding to
related time frames and related brain areas can be correlated and can be used as an a
priori structure of the variables.
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List of Symbols, Notations and

concepts

Biology and bio-statistics vocabulary

Definition

DNA Molecule in the kernel of human cells. The genetic infor-
mation is the same in each cell of a human.

Gene Identi�ed section of the DNA. A gene can exist in di�er-
ent variations in a population and has an e�ect on the
functioning of a cell.

SNP The single nucleotide polymorphism or SNP is the smallest
measured genetic variations : single base-pair changes in
the DNA sequence that occur with high frequency in the
human genome. Several SNP can generally be found in
one gene.

Variants, Alleles The di�erent versions of a SNP are called variants or alleles.
MAF The Minor Allele Frequency is the proportion of the most

rare variant of a SNP in the population. For instance, a
SNP with a MAF of 0.30 implies that 30% of a population
has the allele versus the more common allele (the major
allele) which is found in 70% of the population.

Rare variant Below 0.5% MAF, the variant is called rare. It can also be
called a mutation.

Low-frequency variant between 0.5% and 5% the allele is called low frequency.
Common variant and above 5% the variant is called common variant.
Locus (pl. loci) A position on a chromosome, either a gene or a SNP.
Pathway A group of gene involved in a same biological process.
Data A set of variables and observations. For each observa-

tion and each variable a value is collected. Data can be
represented in a matrix where the rows represent the ob-
servations and the columns represent the variables.

Predictors,explanatory
variables

Variables that are assumed to have an e�ect on an outcome
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List of Symbols

Outcome,dependent vari-
able, response

The variable that we want to explain.

Covariate Variables that gives an additional information and can be
used.

Statistic A statistic is a value computed with a method that charac-
terize a data set.

p-value A p-value is a value between 0 and 1 associated to a statis-
tic. It indicates weather a statistic is abnormal under a
certain hypothesis. The p-value has classically been at the
center of discussions in statistics. It is considered by many
statisticians as the corner stone of statistics, eventhough
some opposite positions are arising.

Biomarker Measurable indicator on an organisms. They are the vari-
able of interest we look for in bio-statistics. Notably, Genes,
SNPs, loci can be biomarkers.

Mathematical notations

Each notation refer to the example introduced above it.

Object Example Definition

Usual mathemati-
cal sets

R, N R, N represent resp. the set of the real num-
bers and the set of the positive integers.

Element of a set i, j, n, p, q ∈ N ∈ indicates that i,j,n, p, q are elements of a
set.

Subset S,Si,Sj ⊂ R ⊂ indicates a subset of a set.
Vector v ∈ Rp this notation indicates that v is a p-vector of

R, i.e., a �nite ordered list of p elements of R.
Element of a vec-
tors

vi vi is the i-th element of v

Subvector vS vS is the vector made of the elements of a
vector v ∈ Rp with indices corresponding to
a subset S ∈ R

Matrix M ∈ Rp×q M is a matrix of size p × q, i.e. with p rows
and q columns. In general, in the rest of the
document, Matrices are noted in capital let-
ters.

Element of a matrix Mi,j Mi,j is the element ofM ∈ Rp×q correspond-
ing to the i-th row and j-th column.

Submatrix MSi,Sj MSi,Sj is a matrix corresponding to the rows
of M indicated by the subset Si ⊂ {1, · · · , n}
and the columns of M indicated by the subset
Sj ⊂ {, · · · , p}.

Submatrix with
whole column or
line

M·,Si , Mi,· The · notation, as presented, stands for the
whole set of rows or columns.

Transpose MT MT is the transpose matrix of M . MT ∈
Rq×p and Mi,j =MT

i,j .
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Cardinal #S stands for the cardinal of a set S.
1-Norm ‖v‖1 is the 1-norm on vectors
2-Norm ‖v‖2 is the 2-norm on vectors
Frobeius norm ‖M‖F is the Frobenius norm for matrices, i.e.,

‖M‖F =
√
MMT

Positive value (x)+ stands for the positive value of a real x ∈
R. It is equal to the number if the number is
positive and equal to zero otherwise. In other
words (x)+ = |x|+x

2
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