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1. Background  

France is one of the wealthiest countries in Europe and is water-independent as far as water 

access is concerned (Richard et al. 2010). However, there are topics, pertaining to water 

resources, which are of significant concern in France. Despite the large supply of water, 

shortage periods regularly occur during summer, especially in southern France, due to 

exceeding exploitation (Richard et al. 2010). A large part of this exploitation is tied to energy 

production and irrigation, fluctuating depending on the needs (Colon et al. 2018). Natural 

hazards represent another variable source of concern (Richard et al. 2010).For instance, 

France has experienced significant drought and flood episodes during the last 20 years. The 

1999 windstorms and floods caused 140 deaths over France, southern Germany, Switzerland  

and Italy, while the 2003 heatwaves, accompanied by severe droughts,  caused the deaths of 

14802 people (Boccard 2018). In the above mentioned example, the natural variability of the 

hydroclimate system proved to be unpredictable, so that management policies could not 

anticipate the fore coming issues, which had severe consequences, both on people and 

economy. A complete understanding of hydroclimate variability is indeed challenging. The 

hydrosphere is an integral part of the climate system and is in constant interaction with the 

atmosphere, lithosphere, cryosphere and biosphere (Gettelman and Rood 2016). Figure I.1a-b 

illustrates the different components impacting hydrological system, as well as their spatial and 

temporal scales. Any change in one of the compartment may affect the others (Kingston et al. 

2020).  
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Figure I.1. The spatial and time scales of the Hydroclimate system. a) The different 

components of the hydroclimate system and their interactions; b) The spatial and temporal 

scales of hydroclimate variability. (IPCC 2007;Kingston et al. 2020) 

 

a) 

b) 
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This results in high degrees of non-linearity, as well as non-stationarity, amplified by human 

activities, such as changes in  land-use, demographic explosion, as well as rising temperature 

at the global scale in response to an increasing greenhouse release in the atmosphere (IPCC 

2007). Even though an increasing number of studies focus on describing non-stationarity, 

very few link it to non-linearity, which leads to partial understanding of the complex 

hydroclimate dynamics (Blöschl et al. 2019). In addition, studies examining hydroclimate 

variability have been scarce in France, and often localized in time scale or space (Sauquet et 

al. 2008; Boé 2013; Boé and Habets 2014; Caillouet et al. 2016; Dieppois et al. 2016a). This 

leaves many questions as to how the non-linearity and non-stationarity shapes the temporal 

and spatial scales of hydrological variability (Blöschl et al. 2019). 

2. Literature review 

2.1. Hydrological variability in France 

At the seasonal scale, discharge variability in France is spatially dependent on the rainfall 

and/or snowfall type defining the hydrological regime. North-western watersheds are driven 

by rainfall, with discharge peaking in winter while low discharge occurs in summer. Eastern 

and South-eastern watersheds are driven by snowfall (or by both rainfall and snowfall), with 

discharge peaking in spring (due to snow melt; Pardé 1933; Sauquet et al. 2008). Discharge in 

northern France have also been associated with significant annual, inter-annual (5-8 years’ 

time scales) and decadal variability (Massei et al. 2010; Fritier et al. 2012; Dieppois et al. 

2016). Long-term variability, e.g. at decadal scales, in discharge have been shown to be a very 

important in trends detection over France. For instance, positive trends were initially found in 

northern France regions, i.e. in rainfall-driven regions, while negative trends were identified 

in the southern and eastern regions, i.e. regions where discharge is at least partially impacted 

by snowmelt (Stahl et al. 2010). However, using multi-temporal trend analysis, Hannaford et 

al. (2013) demonstrated that these spatial dissimilarities were artefact results from decadal 
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variability. Accounting for decadal variability, Hannaford et al. (2013) identified positive 

trends in southern and eastern regions, while no significant trends were found in the northern 

regions.  

The spatial homogeneity in discharge variability has been investigated at several time scales, 

on average, and in high- (flood) and low- (drought) flows. Results from previous studies vary 

greatly depending on the timescales. For instance, twelve regions were found by Sauquet et al. 

(2008) for monthly runoff, while, at decadal timescales, Hannaford et al. (2013) found five 

regions across Europe, where the stations in France represented only one region (Central 

west). According to Gudmundsson et al. (2011a), high, mean and low discharge also 

influences the spatial coherence. For instance, at spatial scales lower than 400 km, high-flows 

were found to be more homogeneous spatially than mean- and low-flows (Gudmundsson et al. 

2011a). Reversely, when considering larger spatial scales, greater than 800 kilometres, low 

flows regions tend to become more homogeneously spatially distributed (Gudmundsson et al. 

2011a). The possible reason behind this distinction is the different processes associated with 

high- and low-flows (Gudmundsson et al. 2011a): high-flow being tied to water input, while 

low-flows is tied to depletion of storage. Thus, focusing on flood event distribution, Mediero 

et al. (2015) found five homogenous regions across Europe, with France being characterized 

by three regions. 

2.2 Drivers of discharge variability in France 

Discharge is primarily impacted both by watershed characteristics, precipitation and 

evapotranspiration (mostly driven by temperature; Gudmundsson et al. 2011). While rainfall 

originated from large-scale climate/weather system beyond the catchment scale, effective 

precipitation, i.e. precipitation minus evapotranspiration, is then modulated by watershed 

characteristics, hence creating a complex, feedback driven, climate-to-discharge system (Boé 

2013). 
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2.2.1 Watershed characteristics 

Morphology of the catchment, soil types, evapotranspiration, land-use and groundwater 

support are examples of watershed characteristics, commonly associated with driving 

discharge variability. Three types of ground water support, with decreasing transfer types, are 

found in France, respectively named as: matrix, fractured matrix, and karstic. Depending on 

the location, either or both three types can be found, and this is deeply affecting how the 

precipitation input is transferred to discharge via groundwater support. For instance, in the 

Seine river watershed (northern France), karstic network communication with the fractured 

matrix have been shown to induce two flow regimes one as a conduit, and other as a storage, 

while their behavior was being controlled by the hydraulic gradient inside the matrix (El 

Janyani et al. 2012). According to Labat et al. (2000), the dynamics of the watershed 

groundwater support is thus catchment specific, non-linear and non-stationary. Such 

watershed properties were taken into account in previous classification of discharge 

variability in France by Sauquet et al. (2008). Through complex processes of surface 

saturation, soil properties variability also impacts the discharge variability in a non-linear 

way. This was, for instance, demonstrated in regions vulnerable to flash floods, where soil 

properties control the discharge until surface saturation occurs, after which rainfall becomes 

the primary driver (Anquetin et al. 2010). 

2.2.2 Precipitation-watershed characteristics feedback 

Soil moisture in France has been found to have significant impact on local precipitation (Boé 

2013; Laaha et al. 2017). However, such feedback depends on the related large-scale climate 

pattern. As illustrated in Boé (2013), a negative feedback was observed during a negative 

North Atlantic Oscillation (NAO), while a positive feedback was observed during Atlantic 

Low conditions. With a higher- than-global temperature increase over France for the last 40 
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years, the relationship between precipitation, soil moisture and evapotranspiration is thus 

becoming crucial (OECD 2013).  

 

 

Figure I.2. Position of the polar and subtropical jet streams. The high altitude jets blow 

eastward and delimit the zone (orange) of westerlies. (Taken from www.3bmeteo.com/). 

2.2.3 Large-scale climate 

The large-scale atmospheric circulation, modulating precipitation and temperature, can be 

investigated through atmospheric pressure patterns. Under the geostrophic approximation, 

winds indeed flow parallel to isobar lines, with increasing velocity proportional to the 

gradient between isobar lines.  

 

 

http://www.3bmeteo.com/
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Figure I.3. Formation of the Rossby waves inside the polar jet stream. 1) The jet stream 

forms around the zone of maximum pressure gradient between the cold polar air, and the 

warm tropical air. As warm air is less dense than cold air at the same atmospheric pressure, 

temperature differences starts to form along isobaric lines, i.e. baroclinic situations develops, 

triggering deviation of the jet from a pure zonal motion. 2) Because the absolute vorticity is 

conserved, any poleward motion of the jet increases the planetary vorticity, while the relative 

vorticity decreases, yielding a southward motion. When the jet has reached a certain 

equatorward position, the situation reverses, relative vorticity increases, planetary vorticity 

decreases, and the jet has now a northward direction. This process is then repeated, yielding 

the Rossby waves. 3) Because of the alternate northward and southward motions, troughs 

become associated with cyclonic conditions, and ridges with anticyclonic conditions. 4) At 

one point, the wave structure breaks and some troughs get disconnected from the wave train, 

becoming storms. Source: www.abc.net.au 

http://www.abc.net.au/
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2.2.3.1 North Atlantic atmospheric circulation 

The North Atlantic is a major source of precipitation and temperature variability, due to the 

strong westerlies, carrying moisture and heat towards Europe (Ghil and Lucarini 2019).Those 

westerlies flowing from the high altitude at high speed are associated with the mid-latitude jet 

streams, mainly (Figure I.2). There is however another jet in the subtropical regions (Figure 

I.2), which is particularly important for the Mediterranean regions (Lionello et al. 2006). Both 

jets are due to the Coriolis force. The equator-pole differential heating induces an advection of 

heat from the equator to the poles, however, due to the Coriolis force (also called the 

planetary vorticity), this advection is progressively deviated clockwise in the Northern 

Hemisphere, yielding eastward winds.  

The mid-latitude jet, which affects Europe climate the most (Ghil and Lucarini 2019) , arises 

from the high pressure gradient between the cold air from the pole encountering warm air 

coming from the equator (Ghil and Lucarini 2019), It has a wave-like structure in response to 

the strong zonal temperature gradients, which prompts deviation from a pure zonal advection 

(in addition to orography effects in some regions; Ghil and Lucarini 2019). As the absolute 

vorticity is preserved, there is a balance between the relative and planetary vorticities, leading 

to a wave-like pattern. These waves developing inside the jet stream are called Rossby waves 

(Figure I.3; Ghil and Lucarini 2019). Those waves propagate eastward with the jet stream, but 

may become stationary or stalled, yielding persistent weather conditions in regions below 

ridges or troughs (Ghil and Lucarini 2019; Mann 2019). Troughs of the Rossby wave 

eventually lump apart forming storms, that progress eastward too (Ghil and Lucarini 2019). 

2.2.3.2 Weather patterns 

Depending on the shape of the mid-latitude jet stream, i.e. the development and evolution of 

Rossby wave trains, three types of North Atlantic atmospheric patterns are commonly found 
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(Mo and Ghil 1987) zonal, blocking and wave train. Zonal patterns involve isobaric lines 

being orientated East/West leading to westerlies following a straight-line (Figure I.2). 

Blocking patterns are associated with a high pressure system blocking the jet stream, forcing 

it to deviate, forming a ridge and inducing dry conditions south of the ridge (Figure I.5). 

Wave train patterns are associated with successions of troughs and ridges, forming meridional 

winds (i.e. winds with significant poleward components), and yielding to persistent dry/wet 

weather when this system is stable, or to fast changing weather if the wave train is not stabled 

(Petoukhov et al. 2013). Depending on the time scales, those patterns may be observed 

directly (short term), or as anomalies (longer term; Cassou 2004; Hauser et al. 2015). 

The NAO, and its positive and negative phases, have been observed since the early 20th 

century (Figure I.4a-b, I.5; Visbeck et al. 2001; Cassou et al. 2004; Hurrell and Deser 2014). 

The positive phase of the NAO triggers a zonal atmospheric circulation (Figure I.5). The 

negative phase however creates a blocking situation, responsible for the difference in weather 

found in France (Figure I.4). The dipole structure is not zonally symmetric, in the positive 

phase, the dipole is titled toward the East, and reversely for the negative phase (Figure I.4a-b;  

Visbeck et al. 2001; Cassou et al. 2004; Hurrell and Deser 2014). 
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Figure I.4. Statistical weather patterns: a-d) Pressure anomalies (in mgp) contours, 

isolines and frequency of occurrence (in %) associated with each statistical weather patterns; 

e-h) the number of days of occurrence per year (histogram) of each statistical weather 

patterns, compared to the NAO index (top panels, orange curves).(Cassou 2010) 
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Figure I.5. Positive and negative phases of the North Atlantic Oscillation Encyclopaedia 

Britannica (2012). The structure of the North Atlantic Oscillation is the Icelandic low and 

the Azores high dipole. In the positive phase (lower map), the Icelandic low is strong (i.e. very 

low pressure), while the Azores high is strong as well (i.e. very high pressure), the jet stream 

is channeled in between the dipole, resulting in warm and wet winters in Northern Europe, 

and cool and dry winters in Southern Europe. In the negative phase, the Icelandic low and 

Azores high are weak, so that overall the dipole disappears, creating a blocking condition in 

Mid North-Atlantic. The jet stream has to go around that blocking, triggering Rossby waves, 

and advection of warm air on the American side, and advection of cold air on the European 

side. In Northern Europe, the winters are cold and dry, in Southern Europe, they are warm 

and wet 

The link between the NAO and European hydroclimate is clearer in winter (Hurrell et al. 

2003), but the NAO has an impact on European hydroclimate even in summer (Mares et al. 
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2002; Folland and Knight 2009; Bladé et al. 2011; Giuntoli et al. 2013). The relationship 

between the NAO and hydroclimate over France has been found at multiple timescale from 

seasonal to multi-decadal time scales (Fritier et al. 2012; Massei and Fournier 2012; Boé 

2013; Boé and Habets 2014; Ullmann et al. 2014; Hermida et al. 2015; Dieppois et al. 2016a). 

This relationship also appears to be modulated by soil moisture (Bladé et al. 2012). The 

positive phase of the NAO has been dominant from the 1960s to the mid-1990s (Figure I.4f), 

and has been associated with higher than normal streamflow anomalies (Massei et al. 2010). It 

has also been to a North-eastward shift in storm tracks near Iceland and the Norwegian Sea 

(Hurrell and Van Loon 1997), and an increase of river flow in the North, and a decrease in the 

South of Europe (Shorthouse and Arnell 1997; Ullmann et al. 2014). We also note that the 

decadal and multi-decadal NAO variability has been increasing since the mid-19th century 

(Goodkin et al. 2008; Sun et al. 2015) with an associated increased variability of precipitation 

and streamflow over France  (Dieppois et al. 2016a).  

The relationship between NAO and hydroclimate depends greatly on the region and the time 

scale. For instance, even in Northern France, where significant links were found at decadal 

time scales (Massei and Fournier 2012), the links between hydroclimate variability and NAO, 

depends on the location (Dieppois et al. 2013). In the Mediterranean, clear links between 

hydroclimate and the NAO occur at the quasi-decadal time scales (Feliks et al. 2010), but at 

the monthly time scales, different rainfall patterns are linked to either phase of the NAO, or 

other weather patterns (Ullmann et al. 2014). 

In addition to the NAO, two blocking patterns are also frequently associated with weather in 

Europe (Cassou 2004). The Atlantic ridge (AR) is characterized by a high pressure system 

over North Atlantic, just south of Greenland (Figure I.4c). AR patterns are associated with 

cold, but rainier weather over France, especially in the North (Boé 2013). Since 2001, there 

has been an increase of the frequency of blocking patterns, which are becoming prominent 
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compared to the NAO regimes (Hurrell and Deser 2009; Hauser et al. 2015; Hanna et al. 

2016). The Scandinavian blocking (SBL) is a large high pressure centre over Scandinavia 

(Figure I.4d), which brings cold air over Central Europe, and can potentially migrates 

westward towards France (Cassou 2010; van der Wiel et al. 2019).  

2.2.4 Ocean-hydroclimate variability interactions 

The North Atlantic atmospheric circulation variability has been shown to significantly interact 

with North Atlantic sea surface temperature (SST) from monthly to multi-decadal time scales. 

At monthly timescale, the preferred direction of the interactions is from the atmosphere to the 

SST. A positive NAO is followed by positive SST anomalies in the western subtropical North 

Atlantic and negative SST anomalies in the subpolar gyre and off the eastern coast of North 

Africa, referred to as the SST ‘‘tripole’’, and reversely during a negative NAO (Kushnir et al. 

2002)However, In early winter, the NAO also responds to slightly different tripolar SST 

anomalies, amplifying the NAO and acting as a positive feedback (Czaja and Frankignoul 

1999, 2002; Gastineau and Frankignoul 2014). Whether such active ocean–atmosphere 

coupling has a significant influence on decadal climate variability has been mostly 

investigated using climate models. Two-way ocean–atmosphere interactions in the North 

Atlantic can be the dominant players, as suggested in Timmermann et al. (1998). In winter, 

Gastineau and Frankignoul 2012 showed that AMOC intensification and the associated 

subpolar warming lead to a negative NAO in winter in six climate models. Meanwhile, a gulf 

stream like SST front keeps the jet stream stationary, and modifies its shape at different 

pressure levels (Feliks et al. 2016). In summer, the largest atmospheric response to SST 

resembles the EA pattern and results from a combination of subpolar and tropical forcing 

(Gastineau and Frankignoul 2014).  
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At decadal to multi-decadal time scales, the North SST variability is dominated by the 

Atlantic Multi-decadal Oscillation (AMO; Gastineau and Frankignoul 2014), which has been 

found to be linked to the AMOC (Gastineau and Frankignoul 2014). A warm AMO leads to 

atmospheric warming in summer, but a negative NAO in winter (Gastineau and Frankignoul 

2014).  

The impact of the SST variability on rainfall and river flows has received significant attention, 

especially for decadal time scales and higher. For instance, the AMO has been found linked to 

changes in the frequency of occurrence of extremes events in both North America and 

western Europe (Sutton and Hodson 2005; Sutton and Dong 2012). In particular, a shift in the 

AMO during the 1960s may have resulted in a cooler US and European climate, before 

another shift led to a warming phase (Sutton and Hodson 2005; Sutton and Dong 2012). The 

relationship between SST and extreme events is not limited to the North Atlantic, as evidence 

shows that the Mediterranean basin experiences the same type of relationships, a warmer 

(cooler) Mediterranean Sea leading to changes in the rainfall weather patterns over the 

Mediterranean regions (Polo and Schiemann 2013). The relationship between AMO and 

rainfall in northern France has only been observed at the 30-60yr’ time scales, while the 

relationship between AMO and temperature has been observed at all inter-decadal to multi-

decadal time scales (i.e. 16 year to 80 year' time scales; Dieppois et al. 2013b). The 

relationship between SST and temperature has been established for the European drought in 

2015, with negative SST anomalies in the central North Atlantic ocean, and positive ones in 

the Mediterranean (Ionita et al. 2017). 

2.2.5 Atmospheric circulation dynamics 

The atmospheric circulation variability, i.e. the trajectory in the system’s phase space, 

displays multiple equilibria, i.e. stationary states, identified physically at monthly time scales, 
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and statistically at annual time scales, as zonal and blocking patterns (Hauser et al. 2015; Ghil 

et al. 2018). While the zonal states are identified with the eastward mid-latitude jet stream 

circulation, the blocking patterns have been tied to slowly moving Rossby waves, although 

the controlling factors of their persistence is still up to debate (Ghil et al. 2018). According to 

Ghil et al. (2018, and references therein), Stephenson et al. (2004) explains the slow moving 

Rossby waves by the interference between slowing Rossby waves, while Hannachi et al. 

(2017) evokes the creation of topographic Rossby waves of different wavenumber that enter 

in resonance. An alternative view, is that of energy leaks through a waveguide’s boundaries, 

associated with resonant dynamics, the so called “quasi-resonant amplification” (Mann et al. 

2018). This difficulty in understanding the cause of persistent blocking patterns lies in the fact 

that the mechanisms governing the dynamics of Rossby waves, especially the nature of the 

restoring force, are still under debate (Cai and Huang 2013). The dynamics about those 

equilibria are also complex, with known bifurcations, stable and unstable transitions (Michael 

Ghil and Childress 1987). The approaches about those transitions are either considered non-

linear deterministic or linear stochastic  (Ghil 2019; Ghil and Lucarini 2019). 

The combination of atmospheric models, coupled with topography has allowed to describe, at 

least at the daily to monthly time scales, that zonal patterns had two-way transitions from/to 

wave train patterns, and one-way transitions to blocking patterns (Michael Ghil and Childress 

1987). Using more realistic topography, the NAO and Atlantic Oscillation phases were found 

as stationary states, with direct transitions from each other states possible, except from AO+ 

to AO- and reversely (Kondrashov et al. 2004). At inter-annual scales, only statistical work 

has been done. The NAO and scandinavian blocking-like phases have been found as 

stationary states (Hauser et al. 2015). Yet their transitions were only established along a time 

series, and not from a phase space point of view (Hauser et al. 2015). 
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3. Research objectives and methods 

This thesis aims at better understanding the non-linearity and non-stationarity of hydroclimate 

variability. Particularly, we aim at studying how the complex interactions between 

hydrological, local and large-scale climate variables shape the spatiotemporal hydroclimate 

variability in France.  

The main research objectives of this thesis are as follows: 

 Determine regions of homogeneous hydroclimate variability in France, based on non-

stationary spectral characteristics; 

 Study non-linear interactions between the different timescales of hydroclimate 

variability to unravel their possible causal relationships; 

 Study the non-stationary spectral characteristics of the watershed modulation of the 

local climate input; 

 Discover non-linear, non-stationary, statistical and spectral spatiotemporal links 

between local and large-scale hydroclimate variables; 

 Unravel stationary, stable or unstable states of the atmospheric circulation as well as 

their transitions. 

Figure I.6 displays the datasets and methods used throughout this dissertation. The emphasis 

is given to methods allowing accounting for interactions between components of the 

hydroclimate system (non-linearity), and abrupt changes in the dynamics of the system (non-

stationarity). 
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Figure I.6. Datasets and methods used for this thesis. Red dots show gauging stations. The 

total atmospheric spatial extent is called the Euro-Atlantic area. 

4. Thesis outline 

The Introduction provided a general introduction and a review of the current understanding 

of hydroclimate variability in France. In Part I, hydroclimate regions in France of 

homogeneous spectral variability are computed, then, interaction between their characteristic 

time scales are investigated. In Part II, spectral characteristics of both discharge and local 

climate variables (i.e. precipitation and temperature) are studied to identify potential 

modulations by the watershed properties on the climate input. Then, spectral characteristics of 

large-scale climate over the Euro-Atlantic area are compared to those of discharge. In Part 

III, after a theoretical reflection, we study the dynamics of the North Altantic climate 
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variability using the geometrics-physics correspondence, enabling to decouple the classical 

vision that associate one pattern with one and only one type of dynamics. Finally, the 

significance of these findings, their limitations and potential areas of further developments are 

discussed in the Conclusion. 
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PART I: SPATIOTEMPORAL 

SCALES OF HYDROCLIMATE 

VARIABILITY IN FRANCE 
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Introduction 

Hydroclimate variability represents the spatiotemporal evolution of climate variables (e.g. 

precipitation and temperature), which are directly impacting hydrological variability (e.g. 

streamflow, groundwater). Studying how hydrological variables react to climate variability 

and changes is a major challenge for society, in particular for water resource management and 

flood and drought mitigation planning (IPCC 2007, 2014).  

Hydrological variability fluctuates at multiple timescales (Labat 2006; Schaefli et al. 2007; 

Massei et al. 2017), which are still poorly characterised and understood in term of driving-

mechanisms. As suggested in Blöschl et al., (2019), understanding the spatiotemporal scaling, 

i.e. how the general dynamics driving hydrological variability change at spatial and temporal 

scales, represent a major challenge (Gentine et al. 2012). The objective is to identify critical 

scales, i.e. the maximum spatiotemporal scale at which the dynamics remain unchanged, also 

commonly called scaling invariance (Hubert 2001). Critical scales are characteristic of non-

linear systems (Hubert 2001). In non-linear system, a slight change in a system parameters 

can results in large changes in the observed dynamics, as a result of complex interactions 

between system components, as demonstrated by Lorenz (1963).  

Hydrological variability is by definition non-linear (Labat 2000; Lavers et al. 2010; McGregor 

2017), as it results from complex interactions between atmospheric dynamics and catchment 

properties (e.g. soil, water table, karstic systems, vegetation; Gudmundsson et al., 2011; 

Sidibe et al., 2019). However, very little work has hitherto been done to understand how the 

different drivers of hydrological systems vary at multiple temporal and spatial scales. As 

suggested in Anishchenko et al. (2014), nonlinearity in physical processes is even more likely 

when time or spatial distance increases. This results in difficulties characterizing the 

hydrological variability at different spatiotemporal scales (Gentine et al. 2012; Blöschl et al. 

2019). Consistently with Blöschl et al. (2019), Clark et al. (2017) describe scaling, i.e. the 
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transfer of dynamics from small to large scales, and closure, i.e. the different couplings 

between components of a system, as the most important challenges in modelling hydrological 

variability. However, while different time scales have been identified in hydrological 

variability at both global and regional scales (Coulibaly and Burn, 2004; Labat, 2006; 

Dieppois et al. 2016; Massei et al., 2017), very little has been done to explore how coherent 

are those time scales in space, and therefore in identifying critical scales in which all ranges of 

variability remain unchanged.  

Studying 231 steam gauges throughout the world, Labat (2006) highlighted different time 

scales of streamflow variability over the different continents. At the regional scale, Smith et 

al. (1998) established a clustering of 91 US stream gauges based on their global wavelet 

spectra, i.e. dominant time scales, and found five homogeneous regions. Similarly, Anctil & 

Coulibaly (2004), and Coulibaly & Burn (2004) for Canada, established a clustering of 

southern Québec streamflow, based on the timing of both the 2-3 and 3-6 year time scales, 

distinguishing the northern and southern regions. In Europe, Gudmundsson et al. (2011) 

identified different regions according to their low-frequency fluctuations (defined  by the 

authors as timescale of variability greater than 10 years). In France, such clustering based 

time-frequency patterns of streamflow variability, as well as its relation to climate variability 

(e.g. precipitation and temperature), has not yet been explored. In addition, all the studies 

mentioned above either isolate different time scales or average the variability across time 

scales (e.g. global wavelet spectra), which is equivalent to a linearization of the system 

(Hubert et al., 1989). In this study, we propose to combine wavelet analysis and a new fuzzy-

clustering algorithm to understand the spatial coherence of precipitation, temperature and 

streamflow variability over France in fully non-linear approach accounting for both time and 

frequency domains. 
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The work is divided into the following parts. Data and methods are introduced in Section 1. In 

Section 2, we cluster precipitation, temperature and discharge variability based on their scale-

time patterns. Couplings between the different time scales of variability are then explored in 

Section 3. Finally conclusion and discussion of the main results are provided in Section 4. 

a) b) 

  

 

Figure 1.1. Research area. a) Location of stream gauges (red dots) and their respective 

hydrographic networks (blue lines); b) Orography over France, and delineation of mountain 

ranges. 

1. Data and Methods 

1.1 Hydrological and Climate Data 

Discharge time series were extracted from the observation dataset introduced by Bourgin et 

al. (2010a, b). This data set is composed of 4496 watersheds, their main river daily time series 

and their hydrologic descriptions. This data set was initially subset to low anthropogenic 

influenced and low groundwater support watershed, comprising 662 stations. We further 
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reduced the data to 152 stream gauges, by keeping only continuous time series from January 

1968 to December 2008 (Figure 1.1).  

 

Figure 1.2. Workflow of this study.  a.) 152 monthly precipitation, temperature and 

discharge time series are extracted from IRSTEA’s watershed database. The following steps 

are applied to each variable; b.) The continuous wavelet spectrum for each watershed is 

computed; c.) A distance matrix between wavelet spectra is then established; d.) A fuzzy 

clustering algorithm is used to build a classification map of the watersheds based on their 

wavelet spectra.  

Precipitation and temperature data have been estimated from the SAFRAN reanalysis data set 

(''Systeme d'Analyses Fournissant des Renseignements Adaptes a la Nivologie''; Vidal et al. 

2010). The data is formatted as a regular rectangular grid of 8 kilometers’ spaced nodes that 

c. 
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covers metropolitan France. Data start in August 1958, and are regularly updated. For this 

study, the precipitation and temperature have been averaged over each watershed. 

1.2 Methods 

Figure 1.2 sums up the different steps of this study. First we compute the non-stationary 

spectral characteristics of each watershed precipitation, temperature and discharge, using 

continuous wavelet transforms (Figure 1.2, (a)). Then we use cluster the wavelet transforms 

of each watershed’s variable, using IEDC and fuzzy clustering techniques, which gives the 

spatial critical scales of homogeneous variability (Figure 2, (b)). We finally study the non-

linear interactions taking place between the different time scales of each homogeneous region 

(Figure 1.2, (c)). 

1.2.1 Continuous wavelet transforms 

Scale-Time patterns have first been extracted for each watershed, and each variable, using 

continuous wavelet transform (cf. Figure 1.2, (a)). For any finite energy signal 𝑥, it is possible 

to obtain a scale-time representation by mapping it to a series of subspaces spawned by a 

generating function, the mother wavelet, and its scaled versions (Torrence and Compo 1998; 

Grinsted et al. 2004). The time series is then represented in terms of a given scale and time 

location. The first subspace is generated by a mother wavelet at scale 1 and its time 

translations. Then, other subspaces are generated by scaling the mother wavelet up, referring 

to daughter wavelets, and time translating it. For each scale, one subspace is constructed. 

Daughter wavelets are usually calculated as: 
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𝜓𝑎,𝑏 =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) 

(1) 

The left hand side (LHS) term is the daughter wavelet of scale 𝑎 and time translation 𝑏 at time 

𝑡. The first right hand side (RHS) term is the scaling of the mother wavelet 𝜓 and the last one 

is the time translation. 

 

The projection of the signal onto each scale 𝑎 subspace is of the form: 

 

𝑊𝑇𝜓{𝑥}(𝑎, 𝑏) = < 𝑥. 𝜓𝑎,𝑏 > =  ∫ 𝑥(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡

 

𝑅

 
(2) 

LHS term contains the wavelet coefficients, i.e. the coordinates of the signal in each subspace. 

If the mother wavelet (and hence the daughter wavelets as well) is complex, wavelet 

coefficient are complex as well. Wavelet coefficients represent the inner product of the signal 

and daughter wavelet of scale 𝑎 and time translation 𝑏 (Centre Hand Side). The norm of their 

square is called the wavelet power and represents the amplitude of the oscillation of signal 𝑥 

at scale 𝑎 and centred on time 𝑡. As it is impossible to capture the best resolution in both and 

time at the same time, here, we used a Morlet mother wavelet (order 6), which offers a good 

compromise between detection of scales and localisation of the oscillations in time (Torrence 

and Compo 1998). 

1.2.2 Image Euclidean Distance Clustering 

As shown in Figure 1.2(b), the similarities between wavelet spectra of each watershed, and, 

separately, on each variable, have been estimated. Distances between 2-dimensional data, 

such as maps or wavelet spectra, are commonly estimated using Euclidean distance between 

pairwise points (pED; i.e computing 𝑓2(𝑥1, 𝑦1) − 𝑓1(𝑥1, 𝑦1)). However, such a procedure has 



 

28 

no neighborhood notion, making it impossible to account for globally similar shapes (cf. 

definition of global and local similarity in Wang et al. 2005).  

To avoid this issue, Wang et al. (2005) developed the Image Euclidean distance calculation 

method (hereinafter IEDC). The IEDC method modifies the pED equation in two ways (Wang 

et al. 2005): i) the distance between pixels values is computed not only pairwise, but for all 

indices; ii) a Gaussian filter, function of the spatial distance between pixels, is applied. The 

Gaussian filter then applies less weight to the computed distance between very close and far 

apart pixels, while emphasizing on medium spaced ones (Wang et al. 2005). 

1.2.3 Fuzzy clustering 

Fuzzy clustering has then been used to cluster the different watershed based on their 

similarities (Figure 1.2, (b)). Fuzzy clustering is a soft clustering method (Dunn 1973). While 

soft clustering spreads membership over all clusters but with varying probability, hard 

clustering attributes each station one and only one cluster membership. Soft clustering is 

therefore better-suited when the spatial variability, originating from different stations’ 

characteristics, is smooth, such as in hydroclimatic data.  

For instance, precipitation and temperature patterns are unlikely to change suddenly from one 

station to a neighboring one, and in turn, markedly different from the next neighbor (Moron et 

al., 2007; Lloyd-Hughes et al., 2009; Rahiz & New, 2012). As such, several stations tend to 

show transitional or hybrid patterns, and can potentially be member of different clusters, 

limiting the robustness of hard clustering procedure (Liu and Graham 2018). In this study, we 

used the FANNY algorithm (Kaufman & Rousseeuw, 1990). Fuzzy clustering performance is 

determined by the ability of the algorithms to recognize hybrid stations (i.e. stations 

incorporating multiple features from different patterns observed in other coherent regions), 

while allowing for a clear determination of the membership of stations with unique features 

(Kaufman & Rousseeuw, 1990). Fanny clustering has been shown to be flexible with the 
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modification of its exponent 𝑟, offering the possibility to adapt the clustering to the data, and 

to enhance performance (Liu and Graham 2018). A critical part is however the selection of 

the optimal number of clusters. Rather than setting the number arbitrarily, we use an 

estimation of the optimum number of clusters by first computing a hard clustering method: 

the consensus clustering (Monti et al. 2003). Thus, the number of clusters providing the best 

stability (i.e. the minimal changes of membership when new individuals are added) is 

considered optimal as recommended in Şenbabaoǧlu et al. (2014). The different clusters’ 

memberships are then mapped to discuss the spatial coherency of each hydroclimate variable 

(cf. Figure 1.2). 

1.2.4 Cross scales interactions   

For each variable and each cluster, cross-scale interactions have also been explored (Figure 

1.2, (c)). Cross-scale interactions refer to phase-phase and phase-amplitude couplings between 

time scales of a given time series (Paluš, 2014; hereinafter PS14). Here, coupling means that 

the state (either phase or amplitude) of a signal 𝑦 is dependent on the state of a signal 𝑥. Such 

couplings are non-linear, and, therefore, if the amplitude of 𝑦 varies with the phase of 𝑥, the 

reverse is not necessarily true. Thus, in the classical setting, for any directional coupling 

(e.g. 𝑥 → 𝑦), there must be a lag in the relationship between 𝑥 and 𝑦 . When both oscillations 

are synchronized, changes in 𝑥 affect 𝑦 in the same way changes in 𝑦 affect 𝑥, and a 

symmetry takes place. In that case, the 𝑥 → 𝑦 relationship may either have a lag shorter than 

the time series time step or be part of a larger system (Pikovsky et al., 2001). The different 

couplings describe causality relationship, such as described in (Granger 1969), referring to 

information transfer from one part of the signal to another. Granger causality is the potential 

for improving the prediction of the future of 𝑦 knowing information about the past of 𝑥. 

Following PS14 and Jajcay et al. (2018), who compares the most used methods when 
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studying causality, we choose the conditional mutual information (CMI) surrogates method, 

combined with wavelet transforms.  

First, using a Morlet mother wavelet, the instantaneous phase and amplitude at time 𝑡 and 

scale 𝑠 of the signal are obtained. Next, the conditional mutual information, 𝐼(𝜙𝑥(𝑡); 𝜙𝑦(𝑡 +

𝜏) − 𝜙𝑦(𝑡)|𝜙𝑦(𝑡)) for the phase and 𝐼(𝜙𝑥(𝑡); 𝐴𝑦(𝑡 + 𝜏)|𝐴𝑦(𝑡)), 𝐴𝑦(𝑡 − 𝜂)), 𝐴𝑦(𝑡 − 2𝜂)) for 

amplitude is computed. In the case of the phase-phase, the CMI measures how much the 

present phase of 𝑥 contains information about the future phase of 𝑦 knowing the present value 

of 𝑦. For the amplitude, CMI measures how much the present phase of 𝑥 contains information 

of the future amplitude of 𝑦 knowing the present and past values of 𝑦. The statistical 

significance of the CMI measure is assessed using 5000 phase-randomized surrogates, having 

the same Fourier spectrum, mean and standard deviation as the original time series, as in 

Ebisuzaki (1997). 

2. Spatiotemporal clustering of hydrological variability 

The wavelet transforms of each station have been computed and checked for similarities using 

IEDC fuzzy clustering to identify homogeneous regions and characterize critical scales of 

hydroclimate variability over France. Cross scale couplings were then investigated for each 

homogeneous region. 

2.1. Precipitation 

2.1.1. Scale-time patterns 

Seven regions with homogeneous scale-time patterns are identified (Figure 1.3a): North-

western (#CL1-Pr, green), North-eastern (#CL2-Pr, blue), Centre-north (#CL3-Pr, red), 

Centre-western (#CL4-Pr, pink), Centre-eastern (#CL5-Pr, black), South-western (#CL6-Pr, 

. 
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yellow) and South-eastern (#CL7-Pr, dark green). According to the global wavelet spectra 

(Figure 1.3b), precipitation is fluctuating at different time scales, ranging from seasonal to 

inter-annual (i.e. 2-8 years). The wavelet spectra (Figure 1.3c) show that those different time 

scales are non-stationary, with temporal changes in terms of amplitude discriminating the 

regions. 

 

Figure 1.3. Clustering of precipitation scale-time variability in France. a.) 

Classification map of the watersheds. Pie charts slices show the three highest probability 

a) 

b) 

c) 
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memberships; b.) Global wavelet spectra for each cluster; c.) Statistically significant 

wavelet spectra for each cluster. 

For instance, while other watersheds show sparsely significant annual variability, south-

western watersheds are characterized by quasi-continuous annual variability until the late 

1980s (Figure 1.3c). Similarly, although there is significant inter-annual variability in all 

watersheds from the late 1980s on the monthly wavelet spectrum, there is no significant inter-

annual variability over the south-western and south-eastern watersheds (Figure 1.3c). 

Focusing on inter-annual time scales, however, significant fluctuations at ~4 and 8 years 

appear for those watersheds, yet, over shorter periods of time (Figure 1.4a-b). 

In summary, different regions, coherent in precipitation variability, have been identified, and 

describe critical scales. The critical scales of homogeneous precipitation variability are 

significantly different depending on the region, for instance, Centre-eastern region (#CL4-Pr, 

black) covers 134km², while the Centre-western region covers more than 29000km² (Figure 

1.1a). Interestingly, most regions seem delineated by orography (cf. Figure 1.1b), except for 

north-western watersheds. 

2.1.2. Cross-scale interactions 

Figure 1.5 shows cross-scale interactions for each cluster of precipitation variability identified 

in section 2.1.1. 

As described in Figure 1.5a, north-western watersheds display bi-directional (i.e. feedback) 

phase-phase causality between 5-6yr and 6-7yr time scales variability. This suggests different 

physical processes at play within the 5-8yr variability, as displayed in Figure1. 3-4b. North-

eastern watersheds display phase-phase causality from 4-7.5yr to 2-4yr time scales, as well as 

3-5yr to 7-8yr time scales (Figure 1.5a). This suggests that the scale extent of the significant 

patch of inter-annual variability shown in Figure 1.3b-4b is resulting from several interacting  
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Figure 1.4. Inter-annual precipitation scale-time variability in France. a.) Global wavelet 

spectra for each cluster; b.) Statistically significant wavelet spectra for each cluster. 

dynamics. Centre-northern watersheds show phase-phase causality from 2-3 to 3-4yr time 

scales, explaining the 2-4yr patch in Figure 1.3b. Two additional interactions take place, first 

from 6-7yr to 4.5-5yr, and from 7-8yr to 5.5-6yr time scales (Figure 1.5a), resulting in the 4-

8yr inter-annual patch displayed in Figure 1.4b. Centre-eastern watersheds show phase-phase 

causality from 4yr to 6.5yr and from 7.5-8yr to 6.5-7yr time scales, resulting in the scale  

a) 

b) 
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Figure 1.5. Precipitation cross-scale interactions. The driving scale is on the horizontal 

axis, the driven on the vertical axis. a.) Phase-phase causality; b.) Phase-amplitude causality. 

extent of the inter-annual patch in Figure 1.4b. South-western watersheds display phase-phase 

causality from 3.5yr to 1.5yr time scales (Figure 1.5a). Cascade phase-phase causality, i.e. 

sequential driving/driven relationships from higher (lower) to lower (higher) time scales, are 

observed in South-eastern watersheds. The phase-phase causality appears from 5-8yr to 4-5yr 

time scales over the same region (Figure 1.5a). Meanwhile, there is no phase-phase coupling 

in centre-western watersheds (Figure 1.5a).  

a) 

b) 
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Looking at phase-amplitude causality, north-western watersheds display interactions from 2-

3yr to 1yr, from 6yr to 2yr, and from 8yr to 3yr time scales (Figure 1.5b). Thus, over this 

region, there is a link between higher time scales’ phases and lower time scales’ amplitude, 

resulting in significant patches in Figures 1.3b, 4a. North-western watersheds show phase-

amplitude causality from 3-4yr to 7-8yr timescales (Figure 1.5b). Centre-northern watersheds  

display phase-amplitude causality from 2-3yr to 4yr, from 6-8yr to 3-5yr, and from 4yr to 

7.5yr time scales (Figure 1.5b). South-western watersheds show isolated phase-amplitude 

causality from 6yr to 2yr time scales (Figure 1.5b). Centre-eastern watersheds show phase-

amplitude causality from 8yr to 6yr time scales (Figure 1.5b). Centre-western regions show 

phase-amplitude causality from 5-6 to 2-4 years (Figure 1.5b). Meanwhile, there is no phase-

amplitude coupling in centre-eastern watersheds (Figure 1.5a). 

The precipitation cross-scale interactions can be phase-phase, phase-amplitude, uni- or bi-

directional, from lower to higher time scales and vice versa. However, such cross-scale 

interactions are different in all regions, suggesting different internal dynamics.  

2.2. Temperature 

2.2.1. Scale-time patterns 

In temperature, nine regions with homogeneous scale-time patterns are identified (Figure 

1.6a): North-western-high (#CL1-Tp, pink), North-western-low (#CL2-Tp, black), North-

eastern (#CL3-Tp, blue), Centre-eastern (#CL4-Tp, red), Centre-western (#CL5-Tp, green), 

South-eastern-high (#CL6-Tp, yellow), South-eastern-low (#CL7-Tp, brown), South-western-

high (#CL8-Tp, dark green) and South-western-low (#CL9-Tp, purple). Using monthly data, 

temperature is fluctuating only at the annual time scale with very similar amplitudes for all 

clusters, as shown on the global wavelet spectra (Figure 1.6b). Similarly, continuous wavelet 
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spectra show significant annual fluctuations throughout the time series in all regions (Figure 

1.6c).  

 

Figure 1.6. Clustering of temperature scale-time variability in France.  a.) Classification 

map of the watersheds. Pie charts slices show the three highest probability memberships; b.) 

Global wavelet spectra for each cluster; c.) Statistically significant wavelet spectra for each 

cluster. 

 

a) 

b) 

c) 
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Focusing on inter-annual time scales, significant fluctuations occur at both 2-4yr and 5-8yr 

time scales, and lead to discrepancies between the different clusters (Figure 1.7a-b). For 

instance, South-eastern-low watersheds show variability at ~3yr time scale, while other 

clusters are centred on ~2yr (Figure 1.7a). 3yr variability in South-eastern-low watershed is 

more pronounced than in other clusters at ~2yr time scale (Figure 1.7a). The South-western-

low watersheds’ wavelet spectra also display different timing for the ~3yr time scales than 

other clusters, with variability in the mid 1980’s and mid 1990’s, only (Figure 1.7b).  

In summary, different coherent regions in temperature variability have been identified, and 

describe critical scales. At the annual time scale, only amplitudes seem to differentiate 

regions. At the inter-annual scales, however, differences in time scales and their timings 

emerge. Critical scales of temperature are less variable than for precipitation, still, there is a 

factor of ten between the size of South-eastern-high region (#CL6-Tp, yellow,1500km²), and 

the one of Centre-eastern region (#CL4-Tp, red, 15000km², Figure 1.6a). As in precipitation, 

topography still seems to be a delineator, but critical scales are smaller, with different clusters 

detected over the same mountain range. 

2.2.2 Cross-scale interactions 

Figure 1.8 shows cross-scale interactions for each cluster of temperature variability identified 

in section 2.2.1. 

As shown in Figure 1.8a, north-western-low and north-western-high watersheds show phase-

phase causality of the 2-3yr on the 1yr scales, and of the 4yr on 6yr scales. In addition, north-

western-high watersheds show 2.5yr on 6yr scales, and 3yr on 7.5yr time scales, phase-phase 

causality (Figure 1.8a). North-eastern and centre-eastern watersheds display similar phase-

phase causality of the 4-5yr on both 6.5-7yr and 7.5-8yr time scales (Figure 1.8a). This 

suggests that the scale extent of the significant patches of inter-annual variability, as shown in 
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Figure 1.6b-7b, is resulting from several interacting dynamics. Centre-western watersheds 

show different phase-phase causality interactions: 0.5yr  5.5yr , 2.5yr  4yr, and 1.5yr  

1yr time scales (Figure 1.8a). The phase-phase interactions for centre-western watersheds are 

thus driven by smaller time scales. South-eastern-high watersheds only show phase-phase 

causality of the 4yr on 7yr time scales (Figure 1.8a). South-eastern-low watersheds display bi-

directional phase-phase causality between 3.5yr and 4.5yr time scales. Thus, this suggests that 

a complex feedback is at play at those scales, and may explain the specificity of south-

western-low watersheds’ wavelet spectra in Figure 1.7b. In South-eastern-low regions, phase-

phase interaction of the 5yr on 2.5yr time scales is also identified (Figure 1.8a). South-

western-high watersheds show phase-phase causality of the 7yr on 6yr time scales, and of the 

6 on 7-8 (Figure 1.8a), thus partly bi-directional. South-western-low watersheds show phase-

phase causality of the 8yr on 3yr time scales, and of the 8yr on 5.5yr scales (Figure 1.8a).  

Looking at phase-amplitude causality, north-western-high watersheds show an interaction 

between the phase and amplitude of ~3yr time scale (Figure 1.8b). According to the definition 

of phase-amplitude causality, such an interaction between the phase and amplitude at a single 

time scale cannot be explained by a single process, and thus suggests that at least two 

processes are interacting at this time scale. North-western-low watersheds show phase-

amplitude causality of the 7yr on 4yr time scales (Figure 1.8b). While, the 4yr time scale have 

low amplitude (cf. Figure 1.7a), its variability is partly driven by the phase of the 7yr time 

scales (Figure 1.8b). Centre-eastern cluster show phase-amplitude causality of ~4yr scale on 

itself, as well as 3yr on ~4yr time scales (Figure 1.8b), suggesting very complex interactions. 

Centre-western watersheds show bi-directional phase-amplitude causality between 6.5-7yr 

and 2.5-3yr time scales (Figure 1.8b). South-eastern-high cluster show self-interaction of ~4yr 

time scales (Figure 1.8b). South-eastern-low watersheds show several phase-amplitude  



 

39 

 

Figure 1.7. Inter-annual temperature scale-time variability in France. a.) Global wavelet 

spectra for each cluster; b.) Statistically significant wavelet spectra for each cluster. 

interactions, which can be split into three types (Figure 1.8b). First, quasi-self-interactions 

occur between 2-3yr and 2yr time scales (Figure 1.8b). Second, phase-amplitude causality of 

larger time scales on smaller time scales (Figure 1.8b): 5yr  3.5yr, 5.5yr  1.5yr, and 8yr 

2yr. Third, phase-amplitude causality of smaller time scales on larger time scales, as 

between 2.5 and 6.5 years scales (Figure 1.8b). The complexity of the phase-phase and phase-

a) 

b) 
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amplitude interactions for the south-eastern-low watersheds may explain the peculiarity of 

their wavelet spectra (Figure 1.7a-b).  

 

Figure 1.8. Temperature cross-scale interactions. The driving scale is on the horizontal 

axis, the driven on the vertical axis. a.) Phase-phase causality; b.) Phase-amplitude causality. 

South-western-high watersheds are characterized by a quasi-bi-directional interaction between 

6yr and 7-8yr time scales (Figure 1.8b). South-western-low region is also characterized by 

different cross-scale interactions (Figure 1.8b): i) ~4yr time scales amplitude being partly 

a) 

b) 
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driven by the 2yr and 5-8yr time scales; ii) Self-interactions of the phase and amplitude of the 

5yr time; iii) the 5-6yr time scale phase modulating the amplitude of the ~3-4yr time scales.  

The temperature cross-scale interactions can be phase-phase, phase-amplitude, uni- or bi-

directional, from lower to higher time scales, and vice versa. There are also significant self-

interactions (i.e. interaction of one time scale on itself), suggesting more than one processes at 

play at the same time scale. However, such cross-scale interactions are different in all regions, 

suggesting different internal dynamics.  

2.3. Discharge 

2.3.1. Scale-time patterns 

Six regions with homogeneous scale-time patterns are identified (Figure 1.9a): North-western 

(#CL1-Q, black), North-eastern (#CL2-Q, blue), North-centre (#CL3-Q, red), Centre-western 

(#CL4-Q, green), South-eastern (#CL5-Q, yellow) and South-western (#CL6-Q, pink). Using 

monthly data, discharge is mainly fluctuating at annual time scales, as determined through the 

global wavelet spectra (Figure 1.9b). One cluster, i.e. the South-eastern regions, however, 

shows significant intra-seasonal variability (Figure 1.9b).  

Continuous wavelet spectra show that both annual and intra-seasonal variability can be non-

stationary, with temporal changes in terms of amplitude discriminating the regions (Figure 

1.9c). For instance, while other watersheds show almost continuous significant annual 

variability, annual variability is only significant for specific periods in South-eastern 

watersheds (Figure 1.9c). Similarly, South-eastern region, intra-seasonal variability sparsely 

appears significant from the 1980’s (Figure 1.9b).  

 



 

42 

 

Figure 1.9. Clustering of discharge scale-time variability in France.  a.) Classification 

map of the watersheds. Pie charts slices show the three highest probability memberships; b.) 

Global wavelet spectra for each cluster; c.) Statistically significant wavelet spectra for each 

cluster. 

 

a) 

b) 

c) 
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Figure 1.10. inter-annual discharge scale-time variability in France. a.) Global wavelet 

spectra for each cluster; b.) Statistically significant wavelet spectra for each cluster. 

Focusing on inter-annual scales, north-eastern watersheds stand out having continuous 

significant inter-annual variability throughout the time series, with 4-5yr variability before the 

1990’s, and 5-8yr variability after (Figure 1.10b). South-eastern and -western clusters also 

stand out, showing 2-4yr variability at the beginning and end the time series (Figure 1.10b). In 

addition, South-eastern regions do not show significant variability at time scale greater than 

4yr (Figure 1.10a-b).  

a) 

b) 



 

44 

In summary, different regions, coherent in discharge variability, have been identified, and 

describe critical scales. Critical scales of homogeneous discharge variability have 

considerably different spatial extension, for instance South-eastern region (#CL5-Q, yellow) 

covers only 726km² of catchment, while Centre-western region (#CL4-Q, green), covers more 

than 25000km² (Figure 1.9a). As in precipitation and temperature, most regions seem 

delineated by orography (cf. Figure 1.1b), except for north-western watersheds. 

2.3.2 Cross-scale interactions 

Figure 1.11 shows cross-scale interactions for each cluster of discharge variability identified 

in section 2.1.1. 

As shown in Figure 1.11a, North-western watersheds are characterized by a quasi-self-

interaction between 6.5-7yr and 6yr time scales (Figure 1.11a). North-eastern watersheds 

show phase-phase causality of the 4-7yr on the 2-4yr time scales, and of the 3-5yr on 7-8yr 

time scales (Figure 1.11a), similarly than in precipitation (Figure 1.5a). Bi-direction 

interaction also occurs between 6-7.5yr and 8yr time scale in the North-eastern regions 

(Figure 1.11a). The specificity of the north-eastern watersheds’ wavelet spectra (cf. Figure 

1.10a-b) probably result from the complex phase interactions between the different time 

scales. Centre-western watersheds displays phase-phase causality of the 4-5yr scale on the 

2yr, 3.5yr and 5yr time scales (Figure 1.11a). As in precipitation (Figure 1.5a), south-eastern 

regions show phase-phase causality of the 2, 4 and 5-8yr scales on the 4-5yr time scale 

(Figure 1.11a). South-western watersheds show phase-phase causality of the 4yr on the 7-8yr 

time scales. Meanwhile, north-centre watersheds do not show any phase-phase causality 

(Figure 1.11a). 
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Figure 1.11. Discharge cross-scale interactions. The driving scale is on the horizontal axis, 

the driven on the vertical axis. a.) Phase-phase causality; b.) Phase-amplitude causality. 

Interestingly, discharge does not show any phase-amplitude causality, even at lower 

significance level (Figure 1.11b). The reason why this happens should be further investigated 

in future studies, but could not be fully addressed here. Nevertheless, as watershed 

characteristics modulate the incoming climate signal (i.e. precipitation and temperature), one 

could think of a “decoupling” between input precipitation and discharge. However, 

comparison between Figures 1.8a and 1.11a shows that several phase-phase interactions are 

a) 

b) 
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transferred from precipitation to discharge (e.g. north-western and south-eastern watersheds). 

As a consequence, it seems that the selected watersheds, which have very low groundwater 

support, only modulate the incoming climate signal in amplitude. This modulation will also be 

different from one time scale to another and, thus, for cross-scale interactions. 

The cross-scale interactions are only of phase-phase nature in discharge. Those interactions 

can be uni- or bi-directional. In addition, as in precipitation and temperature, such cross-scale 

interactions are different in all regions, suggesting different internal dynamics.  

3. Discussion and Conclusion 

As recommended in Blöschl et al. (2019), studying spatial, temporal scales and their 

interactions is one of the most important challenges in hydrology to date. In this study, we 

unravelled the critical spatial scales of homogeneous non-stationary and non-linear 

hydroclimate variability in France. We ran a clustering analysis of precipitation, temperature 

and discharge variability over 152 watersheds in France. The clustering analysis is based on 

scale-time patterns of each watershed aggregated time series, for each variable. We then 

studied the spatiotemporal characteristics of each homogeneous region, including an in-depth 

exploration of the internal dynamic of the system using study cross-scale causality 

interactions (i.e. phase-phase and phase-amplitude couplings).  

Our study reveals different critical scales of coherent regions in precipitation, temperature and 

discharge variability: Precipitation and discharge homogeneous regions’ total area are very 

variable, ranging from the less than a thousand square kilometres, to all most thirty thousand. 

Temperature on the other hand is more uniform, with scales ranging from a thousand five 

hundred, to ten thousand five hundred. Overall, discharge variability displays intra-seasonal 

(<1yr), annual (~1yr) and inter-annual (2-4yr and 5-8yr) timescales, which is consistent with 
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the study by Labat (2006) over the world’s major rivers. Those coherent regions are 

homogeneously distributed over France in precipitation and discharge, but show large 

discrepancies in term of spatial extension in temperature. This result contrasts with previous 

clustering of hydroclimate variability over France, showing more heterogeneous regions in 

Southern France than in the North (Champeaux and Tamburini 1996; Sauquet et al. 2008; 

Snelder et al. 2009; Joly et al. 2010). In addition, we show that both the amplitude and timings 

of the different time scales of variability differentiate clusters. This is thus highlighting the 

importance of accounting for changes in both amplitude and timing of all time scale when 

characterising hydroclimate variability. 

Looking at the internal dynamic of each coherent region, based on phase-phase and phase-

amplitude causality, complex interactions have been identified. Those interactions can be 

orientated from larger (smaller) to smaller (larger) time scales, uni- or bi-directional (implying 

feedbacks) and even on themselves. In addition, we have shown that, for very similar scale-

time patterns, the cross-scale interactions were very different, implying different internal 

dynamic.  

Interestingly, discharge variability does not show any phase-amplitude causality, while such 

interactions were significant in precipitation and temperature. In contrast, phase-phase 

interactions, which were found in precipitation, are identified in discharge. Phase-amplitude 

couplings are highly dependent on the topology of the different physical components, and is 

enhanced by indirect connections between those components and other cross-scale 

interactions (Sotero 2016). Thus, a potential explanation, in the context of our watersheds 

(with low groundwater support), would be that spatial interactions (here referring to indirect 

connections) existing in precipitation are either modified or destroyed by the watershed 

characteristics. This should be further explored in future studies, as it could be crucial for 
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precipitation-discharge forecasting system. The results from this study are thus directed to 

both hydrologists and climatologists, focusing on climate change impact on water resources.  
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PART II: SPATIOTEMPORAL 

SCALES OF LARGE SCALE 

HYDROCLIMATE VARIABILITY 
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Introduction 

Human activities are tied to water resources in many sectors (e.g. industrial, energy and food 

production, natural hazards, recreational). In the context of climate change, it is crucial to 

understand the driver of hydrological variability at local (e.g. precipitation and temperature 

over the watershed area) and large scales (e.g. ocean-atmospheric dynamics), to improve 

future water management scenarios (IPCC 2007, 2014).  

Previous studies have shown that hydrological variability fluctuates at different spatial and 

temporal scales (Coulibaly and Burn 2004; Kingston and Hannah 2006; Labat 2006; Fritier et 

al. 2012). However, local and large-scale climate processes linked to that variability are not 

well understood (Kavvada et al. 2013; Dieppois et al. 2015, 2019). Because of the complex 

modulation of the climate input by the catchment properties, the spectral links between 

precipitation, temperature and discharge have been shown to be both imprinted with non-

linearity and non-stationarity (Labat 2006; Massei et al. 2007; Slimani et al. 2009; El Janyani 

et al. 2012). Nevertheless, in Europe, Gudmundsson et al. (2011) studied the long-term 

variability of streamflow at time scales (> 1 year), and found consistent links to large-scale 

atmospheric processes in discharge, precipitation and temperature, but not between fractions 

of variance expressed in these three variables. Studying southern Africa, Dieppois et al., 

(2016) show that rainfall fluctuates at three different time scales in response to variations in 

large-scale sea-surface temperature. In France, Boé and Habets (2014) highlighted multi-

decadal variability of river flows linked to climate patterns such as the Atlantic Multidecadal 

Oscillation, in particular in spring. Those multidecadal fluctuations in River flows, in France, 

have also been shown to significantly modulate climate change impacts (Boé and Habets 

2014; Dieppois et al. 2016a), consistently with the regional impact of internal climate 

variability (Hawkins and Sutton 2009; Deser et al. 2012; Wills et al. 2018). Similar results 

were found all over Europe in (Hannaford et al. 2013). In addition, Massei et al. (2017), using 
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empirical statistical downscaling technique (Benestad et al. 2002) on the Seine River flow, 

demonstrated better prediction skills when tracking predictors at multiple time scales. Massei 

et al. (2017) thus highlighted that different time scales in hydrological variability were 

associated with different atmospheric circulation patterns. Building upon Massei et al. (2017), 

we aim at further understanding both local and large-scale drivers of the critical scales 

associated with coherent regions of hydrological variability in France (cf. Part I), as well as 

how those links are investigated. This study explores non-linear and non-stationary linkages 

between hydrological and climate variability.  

After presenting the data and methods used in this study in section 1, in section 2, we study 

the links between discharge and local precipitation and temperature over six spatiotemporally 

coherent regions. In section 3, we identify atmospheric circulation associated with discharge 

variability at different time scales, using composite analysis. Using a new spatial spectral 

similarity and coherence analysis, we then explored whether the composite atmospheric 

patterns were consistent with the regions of greatest spectral similarity, and with the regions 

of greatest correlations, i.e. potential greater predictability skills, at different time scales in 

sections 4 and 5. 

1. Data and methods 

1.1. Hydrological Data 

Discharge time series come from the observation dataset introduced by Bourgin et al. (2010a; 

2010b). This data set is composed of 4496 watersheds and their main river daily time series 

and is accompanied with hydrologic descriptions of each watershed. This data set was subset 

to low anthropogenic influenced and low groundwater support watershed which accounts for 

662 stations. We further reduce the data by keeping only continuous time series from January 
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1968 to December 2008. This results in 152 watershed stations. Figure 2.1a shows the 

locations for the 152 stations with their respective river.  

Six regions of homogeneous scale-time variability were identified (Figure 2.1b; cf. Part I, 

Figure 1.9). We took the average time series of each region as the base data set for this study. 

The six regions are identified as follows: North-western (#CL1-Q, black), North-eastern 

(#CL2-Q, blue), North-centre (#CL3-Q, red), Centre-western (#CL4-Q, green), South-eastern 

(#CL5-Q, yellow) and South-western (#CL6-Q, pink). 

a) b) 

 

 

Figure 2.1. Research area and regions of homogenous discharge variability. a) Location 

of stream gauges (red dots) and their respective networks (blue lines) stations location; b) 

Regions of homogeneous discharge variability as defined in Part I, Figure 1.9. 

1.2. Climate Data 

Local climate data, i.e. precipitation and temperature, were extracted from the SAFRAN 

reanalysis data set (''Systeme d'Analyses Fournissant des Renseignements Adaptes à la 

Nivologie''; Vidal et al. 2010). This data set is formatted as a regular grid of 8 kilometers 

spaced nodes that covers metropolitan France. Data start in August 1958, and are updated as 
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new data are available. For this study, we averaged the monthly to annual data, subset to the 

1968-2008 period and spatially average within each watershed of the six homogeneous 

regions (cf. Part I). 

Large-scale climate data is inferred using annual geopotential height at 500hPa (z500), which 

were derived from NOAA’s 20CR v2c reanalysis ensemble (Compo et al. 2011). Under the 

geostrophic approximation, winds are parallel to the iso-geopotential height lines, and this is 

particularly relevant at 500hPa (Norbury and Roulstone 2002).  Data are subset to the 1968-

2008 period for consistency with the hydrological data set, and to the Euro-North Atlantic 

regions (100°W-40°E and 5°S- 80°N; Figure 2.1c).  The 20CR v2c reanalysis ensemble 

contains 56 members, which allow for quantifying the model induced dispersion. Prior to this 

study, we ran a dispersion analysis showing that from 1950’s, taking the average member is 

robust, as the member dispersion greatly decreases from this decade (not shown) While this 

may not be sufficient to guarantee low model internal variability, it at least guarantees no 

averaging effects that would lead to biased variability (Hingray et al. 2019).  

1.3. Methods 

Figure 2.2 shows the generic workflow of our analysis. First, we study the non-stationary 

spectral correlation between discharge and its local climate drivers, i.e. precipitation and 

temperature, which gives an indication spectral modulation the catchment characteristics 

exerts on the local climate input (Figure 2.2, (a-b)).We then study discharge and large-scale 

climate links. First, we reconstruct both precipitation, discharge and large-scale climate data 

at 2-4, and 5-8 years’ time scales, using multiresolution analysis (Figure 2.2, (c)), then, we 

study what are the climate patterns associated with dry and wet periods of precipitation and 

discharge (Figure 2.2, (d));  
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Figure 2.2. Workflow of this study.  a.) The non-stationary spectral correlation between 

precipitation and discharge is computed; b.) Same as a), but between temperature and 

discharge; c.) Hydroclimate data is reconstructed at 2-4, and 5-8 years’ time scales; d.) The 

composite analysis of precipitation and discharge, shows the patterns of z500 that are 

associated with large variations in either precipitation or discharge; e) Location of the z500 

showing similar spectral characteristics than precipitation and discharge are computed; f) 

The non-stationary correlation between z500 patterns and precipitation and discharge are 

computed. 
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Using the non-decomposed precipitation and discharge time series, we search in the large-

scale climate data, pattern that present similar spectral characteristics to precipitation and 

discharge’s ones (Figure 2.2, (e)). Finally, we study the, large-scale climate, coordinate 

dependent, non-stationary spectral correlation between precipitation, discharge, and large-

scale climate data (Figure 2.2, (f)). 

1.3.1. Continuous Wavelet Transforms and Wavelet coherence 

Continuous wavelet transforms, and wavelet coherence, are used to compute the scale-time 

correlation between discharge and local climate variables (Figure 2.2,(a-b), (e-f)). Both 

wavelet analyses are also applied to each grid-point of z500.  The theory behind continuous 

wavelet transform has been presented in Part I, section 1.2.1. Wavelet coherence can be 

interpreted as a scale-time location correlation coefficient between two wavelet spectra 

(Torrence and Compo 1998; Labat et al. 2000).  

1.3.2. Multiresolution analysis 

Multiresolution analysis is used as a first step in the discharge-z500 composite analysis, to 

reconstruct the discharge and z500 data at selected time scales (Figure 2.2, (c)). 

Multiresolution analysis is the combination of a discrete wavelet transform analysis (i.e. 

decomposition of the signal into discrete wavelet coefficients) and a synthesis (i.e. 

reconstruction of the signal at each time scale; Percival and Walden 2000). Discrete wavelet 

transforms are based on Equation 1 (cf. Part I-1.2.1.), with a slightly different algorithm. The 

signal is not decomposed by convolution, but by a series of orthogonal filter banks in dyadic 

time scales that represent the wavelets (Percival and Walden 2000). Increasing the scales, the 

signal is downsampled by a factor of two, to prevent shift overlap. The downsampling can 

however lead to a loss of shift invariance. Since translated filters are placed at scale spaced 

locations (to prevent overlap), oscillations from the signal may not be aligned with each filter 
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location, leading to under or overestimate the variability (Percival and Walden 2000). For this 

reason, we decided to use the Maximum Overlap Discrete Wavelet Transform (MODWT), 

with a base wavelet ‘sym4’ (Percival and Walden 2000). The main difference is that the 

signal is not downsampled as the scales increase, so the initial time step of the signal is used 

for all scales. Naturally, the shift independence is lost, but shift invariance is preserved.  

1.3.3. Image Euclidean Distance Calculation 

Image Euclidean Distance Calculation (IEDC) is used to compute the similarity between 

discharge scale-time patterns, and those of z500 (Figure 2.2, (e)). It has been detailed in Part I, 

section 1.2.2. 

1.3.4. Composite analysis 

The composite analyses are used to construct mean-state of the North Atlantic atmospheric 

circulation associated with streamflow variability (Figure 2.2, (d)), as in (Dieppois et al. 

2016b,  2019; Massei et al. 2017; Sidibe et al. 2019). Two sets of z500 are produced for each 

timescale (i.e. 2-4 and 5-8 years), where streamflow fluctuations exceed ± 0.8 standard 

deviation (i.e. wet and dry conditions); the resulting composites thus describe the difference in 

z500 between hydrological wet and dry conditions. Statistical significance has been estimated 

by testing the difference in mean between wet and dry z500 conditions using a two-sided 

Student’s t test at p = 0.05. However, we elected to remove the significance contours of plots, 

due to energy biases in statistical significance tests when the signal has been reconstructed by 

wavelets (Maraun et al. 2007). For readability, we will talk of in-phase (anti-phase) 

composite, when positive (negative) z500 are associated with wet hydrological conditions.  
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Figure 2.3. Precipitation-discharge wavelet coherence. a) Global wavelet coherence 

spectra for each region shows the energy associated with each time scales’ correlation; b) 

Wavelet coherence spectra for each regions, iso-lines colours are those of regions. 

 

 

 

 

a) 

b) 
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2. Links between discharge and local climate variables 

Wavelet coherence of discharge with precipitation and temperature has been computed for 

each region, as defined in Figure 2.1b. 

2.1. Discharge-precipitation 

Global discharge-precipitation wavelet coherence spectra show significant relationships over 

time scales ranging from intra-seasonal to inter-annual (6 months to >2yrs; Figure 2.3a). 

While all clusters display significant correlation from ~2 to 8yr time scales (5-8yr time scale 

in North-western regions), large differences emerge at shorter time scales in terms of 

amplitude and timing (Figure 2.3a). For instance, while for most regions coherence is sparse 

at the annual time scale, north-western watersheds show continuous significant relationship 

between discharge and precipitation (Figure 2.3b). South-eastern watersheds are characterized 

by almost continuous and strong correlation at intra-seasonal scale (Figure 2.2a). Impact of 

precipitation on streamflow variability thus appears homogeneous for all regions at inter-

annual scale. At shorter time scales, however, links between discharge and precipitation are 

region-dependant. 

2.2. Discharge-temperature 

Global discharge-temperature wavelet coherence spectra are displayed in Figure 2.4a. 

Correlations span intra-seasonal to inter-annual time scales (Figure 2.4a). Clusters however 

differ both by the occurrence of significant correlation at certain time scales, and certain 

periods of time (Figure 2.4b). For instance, at the annual time scale, while continuous 

significant links are found in north-eastern, north-western and centre-eastern regions, no 

significant correlations are identified in the mid 1990’s over the centre-western, south-eastern 

and south-western watersheds (Figure 2.4b).  
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Figure 2.4. Same as Figure 2.3 but for temperature-discharge. 

North-eastern and south-eastern regions do not show significant correlation at inter-annual 

scale (Figure 2.4b). North-western and Centre-western watersheds show significant 

correlation to temperature at the 2-4yr’ time scales at the end of the time series, while 

correlation at the same time scale only occur in North-centre regions, but at the beginning of 

the time series (Figure 2.4b). Significant correlations are also found at 5-8yr’ time scales 

between the 1980’s and 1990’s, over the North-centre, Centre-western, South-Western 

regions (Figure 2.4a).  

a) 

b) 
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In summary, differences in the links between discharge and temperature are identified at 

annual and inter-annual time scales. Those discrepancies also split the country in two areas: 

North-South at annual time scales, and E-W at inter-annual time scales. Comparing both the 

discharge relationship with precipitation and temperature, the more important contribution of 

precipitation variability to inter-annual fluctuations in discharge over France, at least at 

certain period of time, is suggested. 

3. Links with large-scale climate variability 

Section 3 shows the composite states of z500 associated with precipitation and then with 

discharge variability at both 2-4yr and 5-8yr time scales. For each scale, we computed the 

composite maps of each cluster with geopotential height.  

The mean North Atlantic atmospheric circulation is largely influenced by the interface 

between poleward warm air and equatorward cold air, about the eastward mid-latitude jet. 

This place of exchanges, as well as the influence of baroclinic conditions, and topography, 

shapes the anomalous patterns that can be observed at time scales, ranging from daily to 

millennia (Ghil and Lucarini 2019). Some types of patterns seem more stationary than other 

(more details in Part III), among them, two types: zonal and blocking. Zonal patterns describe 

westerly winds patterns with limited waviness in the path of the mild-latitude jet, while 

blocking refers to zone of high pressure that forces the jet to turn around. The most common 

examples of zonal and blocking patterns are the positive phase of the North Atlantic 

Oscillation, and the Atlantic ridge, respectively (Cassou et al. 2004). 

3.1. Z500 composite at 2-4yr time scale 

Figure 2.5 shows z500 composite maps associated with precipitation variability at the 2-4yr 

time scales. Except for South-eastern watersheds, 2-4yr precipitation variability is associated 

with four centres of actions (Figure 2.5): two in-phase centres South of Greenland and over 
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Figure 2.5. 2-4yr’ time scales composite precipitation analysis. Colours show how much 

z500 patterns differ between wet and dry precipitation periods. 
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the Mediterranean Sea, and two out-of-phase centres off North American east coast and over 

northern Europe. This atmospheric pattern describes eastward shift of the Icelandic Low and 

the Azores High, as well as an enhancement in the meridional atmospheric pressure gradient 

over Europe (Figure 2.5), which is consistent with a northward shift and an enhancement of 

the westerlies favouring wet conditions there. This enhanced meridional atmospheric pressure 

gradient is however more (less) pronounced in the Northern (Southern regions; Figure 2.5). In 

the South-East cluster, weaker meridional atmospheric pressure gradients are detected 

between northern Europe and the Mediterranean (Figure 2.5). Weaker meridional z500 

gradients are consistent with a southward shift of the westerly track, favouring wet conditions 

in southern Europe (Hurrell 1995; Cassou et al. 2004; Deser et al. 2017).  

Very similar atmospheric circulation patterns are associated with discharge variability (Figure 

2.6), suggesting than both precipitation and discharge variability at 2-4yr time scale derive 

from the same large-scale atmospheric processes. Some modulations of the intensity of the 

different centre of actions are however identified (Figure 2.6), and highlight watershed 

characteristics to filter some part of the incoming climate signal. North-centre region shows 

more modulation between precipitation and discharge, than other regions (Figure 2.5, 2.7, 

#CL3-Q, red). 

3.2.Z500 composite at 5-8yr time scale 

Figure 2.7 displays z500 composite maps associated with precipitation variability at the 5-8yr 

time scales. Four centres of actions are also associated with 5-8yr precipitation variability in 

North-centre clusters (Figure 2.7), and describe an eastward shift of the Icelandic Low and the 

Azores High, as well as an enhancement in the meridional pressure gradient over Europe. The 

centre of action centred on the Mediterranean Sea is much weaker in the North-eastern 

regions, and disappears in North-western, Centre-western and South Western clusters (Figure 
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2.7). A weakening of the atmospheric pressure gradient over the western North Atlantic is 

then associated with eastward shift of the Icelandic Low clusters (Figure 2.7), promoting low 

pressure and wet conditions over those regions. In the South-East cluster, weaker meridional 

atmospheric pressure gradients are detected over the entire Euro-North Atlantic region (Figure 

2.5), in accordance with a southward shift of the westerly track, and wet conditions in 

southern Europe (Hurrell 1995; Cassou et al. 2004; Deser et al. 2017). 

In discharge, very similar atmospheric circulation patterns are identified (Figure 2.8), 

suggesting than both precipitation and discharge variability at 5-8yr time scale derive from the 

same large-scale atmospheric processes.  

Interestingly, these atmospheric circulation patterns are slightly different at 5-8yr time scale 

than at 2-4yr time scale (Figures 2.5-8). For instance, in most clusters, the impact of the 

Mediterranean centre of action is much less pronounced at the 5-8yr than at the 2-4yr scales. 

The weakening of the North Atlantic meridional pressure gradient is also more important at 

the 5-8yr than at the 2-4yr scales Figures 2.5-8). Compared to 2-4yr’ time scales, there is no 

significant modulation between precipitation and discharge’ composites.  
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Figure 2.6. Composite analysis. Same as Figure 2.5 but for discharge. 
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Figure 2.7. Composite analysis. Same as Figure 2. 5 but for 5-8yr’ time scales. 
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Figure 2.8. Composite analysis. Same as Figure 2.7 but for discharge. 
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4. Precipitation-Discharge spectral similarity with z500  

In this section, we aim at identifying the regions in which atmospheric circulation show 

similar spectral characteristics (i.e. variance, timing at different time scales) to precipitation 

and discharge variability over the different coherent regions (cf. Figure 2.1b). Similar spectral 

characteristics in z500 could then be interpreted as potential source of precipitation or 

discharge variability at all time scales, with quasi-linear relationship. Meanwhile dissimilar 

spectral characteristics in z500 would relate to non-linear interactions: i) relationship 

restricted to a single time scale; or ii) non-linear interactions across time scale. 

Figure 2.9 shows z500 spectral similarity maps associated with precipitation variability. 

Precipitation variability in the North-western, North-eastern, North-centre and Centre-western 

shows strong spectral similarity in z500 over the North Sea, off North America east coast and 

the great Lakes region (Figure 2.8). Spectral similarity between precipitation and z500 are 

however more pronounced over the North Sea for the North-centre and -eastern clusters 

(Figure 2.9). This is consistent with the low pressure centred on the North Sea, favouring wet 

conditions over those regions (Figures 2.5-8). Precipitation-z500 spectral similarities tend to 

span over a larger area, including the North Atlantic Ocean, for North-western regions (Figure 

2.9). In this region, precipitation-z500 spectral similarities are consistent with the low 

pressure areas identified over the North Seas and off North America east coast, but not over 

the Great Lakes, the Atlantic Ocean, the Mediterranean Sea (Figures 2.5-9). Spectral 

similarity patterns are different in the southern Clusters (South-western and –eastern 

watersheds), which are particularly pronounced between the sub-tropical North Atlantic and 

Western Europe regions (Figure 2.9). South-western watersheds also show strong spectral 

similarities with z500 South of Greenland, while strong spectral similarities are found over 

Greenland for South-eastern watersheds (Figure 2.9). In South-western regions, precipitation-

z500 spectral similarities are consistent with the low pressure located over the sub-tropical 
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North Atlantic and Western Europe, as well as with the high pressure area identified South of 

Greenland (Figures 2.5-9). There are however no clear consistency between the z500-

precipitation spectral similarity and the associated composite circulation pattern for South-

eastern patterns (Figures 2.5-9), suggesting more complex relationships over this region. 

 

Figure 2.9. Precipitation-z500 spectral similarity. Patterns’ colours show how similar each 

z500 coordinate’s wavelet spectrum, is to each regions’ precipitation one.  
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As illustrated on Figure 2.10, z500 spectral similarity patterns are very similar in discharge, 

but with modulations in amplitude differing from one region to another. For instance, in 

North-western watersheds z500, spectral similarities are more pronounced in discharge than 

in precipitation (Figures 2.9-10). In South-eastern regions, z500 spectral similarities are less 

pronounced in discharge than in precipitation over the entire area (Figures 2.9-10). 

 

Figure 2.10. Spectral Similarity. Same as Figure 2.9, but for discharge. 
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 Similarly, South-western regions display a decrease (increase) in z500 spectral similarity 

over Europe (sub-tropical North Atlantic). North-centre and -eastern regions however do not 

show any modulations (Figures 2.9-10), suggesting weaker impact of the watershed 

properties.  

In summary, hydroclimate variability in northern regions (North-centre and -east) is 

potentially associated with smaller-scale source of variability than southern and western 

regions (North-west, Centre-east, south-west and -east). In addition, the impact of watershed 

properties in modulating the climate signal seem to be greater in North-western and southern 

regions. 

5. Precipitation-discharge wavelet coherence with z500 

To further explore the links between hydroclimate and the Euro-North Atlantic circulation, 

this section identifies the region of highest correlation, as well as the contribution of both 2-

4yr and 5-8yr time scales. It is also an opportunity to quantitatively identify how much the 

climate signal is modulated by the watershed properties at both time scales. 

Figure 2.11 displays precipitation-z500 wavelet coherence maps. North-centre, North-eastern 

regions show strong correlation over the North, Norwegian and Mediterranean Seas, and 

especially over the Atlantic around 50°N (Figure 2.10). These correlations result from both 

time scales equally in North-centre regions, but are dominant at 5-8yr time scale in North-

eastern regions (Figure 2.11). Compared to the composite circulation patterns (Figures 2.5-8), 

high-correlation areas appear located over the centre of action centred over northern and 

southern Europe, and in the regions of greatest meridional atmospheric pressure gradient 

between North America and Europe. Therefore, while spectral similarity patterns suggested 

smaller-scale source of variability in northern regions, this does not appear to be true in 

spatial wavelet coherences, which seem to capture the westerly tracks (Hurrell 1995; Cassou 
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et al. 2004; Deser et al. 2017). Similar patterns are identified for North-western and Centre-

western, but with smaller amplitude over the Atlantic (Figure 2.11).  

 

Figure 2.11. Precipitation-z500 wavelet coherence. Pie charts show the fraction of 2-4 

(blue) and 5-8 (red) years’ time scales wavelet coherence with each region’s precipitation. 

As in the previous section, patterns of discharge-z500 wavelet coherence are very similar than 

for precipitation (Figures 2.11-12). However, clear modulations of dominant time scales 
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driving the correlations between the different watersheds and the North Atlantic atmospheric 

circulation (Figures 2.11-12).  

 

Figure 2.12. Wavelet Coherence. Same as Figure 2.11 but for discharge. 
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In Southern Clusters, strong correlations are detected, as well as between the sub-tropical 

Atlantic and North Africa (but slightly further North for the South-eastern than South-western 

clusters; Figure 2.11). These correlations between Greenland and the British Isles are 

dominant at 2-4yr time scale for both Southern regions (Figure 2.11), consistently with the 

regions of greatest meridional atmospheric pressure gradient in the area (Figures 2.5-8). 

Correlations identified over North Africa are clearly dominant at 5-8yr time scale in South-

eastern regions, where significant signal was detected in the composite analysis (Figures 2.5-

8), but this is unclear for South-western regions (Figure 2.11). 

These modulations are heterogeneous on the different regions of the Euro-North Atlantic 

atmospheric circulation, and across the watersheds (Figures 2.11-12). In Northern watersheds, 

z500-discharge correlation shifts toward dominant 5-8yr time scales over the North Atlantic 

around 50°N (Figures 2.11-12). In Southern regions, z500-discharge correlation shifts 

towards 2-4yr time scales from 20°N to 50°N (Figures 2.11-12). Compared to precipitation, 

there are no modulations north of 60°N in northern regions (North-centre and east; Figures 

2.11-12). 

6. Conclusion 

We studied the links between hydrological variability (i.e. discharge) and climate at local (i.e. 

precipitation and temperature) and large scales (i.e. North Atlantic atmospheric circulation), 

using non-linear and non-stationary statistical methods.  

At the local scale, temperature is the main driver of discharge annual variability (~1yr), while 

inter-annual discharge variability (>2 yr) is primarily linked to precipitation. Linkages 

between precipitation and discharge are therefore more stable at inter-annual scale than at 

annual and intra-seasonal scales (<1yr), and reversely for temperature. Especially, at inter-

annual scale, the relationship between precipitation and discharge shows significant 
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correlations, which are particularly strong at 2-4yr (except for North-western regions) and 5-

8yr time scale. Thus, over France, even if the proportions of inter-annual variance between 

precipitation, temperature and discharge are not correlated, as proposed over Europe in 

(Gudmundsson et al. 2011b), the fluctuations themselves are. This is consistent with 

Szolgayova et al. (2014) who suggested that long-term hydrological variability was primarily 

linked to precipitation over the Danube River watershed. This is also complementing similar 

results suggested in Massei et al. (2017) over the Seine River watershed, which was over 

removed from this study due to its large dependence to groundwater support and human 

activities.  

This led us to investigate how the North Atlantic atmospheric circulation (here infered 

through z500) was linked to precipitation and discharge. According to Gudmundsson et al. 

(2011), large-scale atmospheric circulation associated with precipitation and discharge 

variability were similar at 2-4yr and 5-8yr time scales. These linkages between France 

hydroclimate and large-scale atmospheric patterns however are complex, and differ from one 

region to another. In the South-East cluster, at both time scales, weaker meridional 

atmospheric pressure gradients are detected between northern Europe and the Mediterranean 

Sea, consistently with a southward shift of the westerly track and wet conditions there 

(Hurrell 1995; Cassou et al. 2004; Deser et al. 2017). In all other regions, atmospheric pattern 

associated with precipitation and discharge variability are different at both time scales.  At 2-

4yr’ time scales, atmospheric patterns relate to eastward shifts of the Icelandic Low and the 

Azores High, as well as an enhancement in the meridional atmospheric pressure gradient over 

Europe, favouring wet conditions there in response to a northward shift and an increase of the 

westerlies (Hurrell 1995; Cassou et al. 2004; Deser et al. 2017). At 5-8yr time scale, we found 

a weakening of the atmospheric pressure gradient over the western North Atlantic associated 

with eastward shift of the Icelandic Low, promoting low pressure and wet conditions over 
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those regions. Similar results were found in Massei et al. (2017), but over the Seine River 

watershed.  

We then further explored the potential source of precipitation and discharge variability using 

spectral similarity and wavelet coherence with the North Atlantic z500. Looking at spectral 

similarity between atmospheric circulation and hydrological variability, we show that, in 

northern regions, only selected areas, such as the North Sea, show similar scale-time patterns, 

which, at first, suggested potential smaller-scale source of variability. Wavelet coherence 

analysis however demonstrates that correlations between z500 and precipitation/discharge 

could be found at larger spatial scale, but resulting from varying contributions between 2-4 

and 5-8yr time scales to the total correlations along the regions of greatest meridional 

atmospheric pressure gradient between North America and Europe. In southern regions, 

precipitation/discharge-z500 spectral similarities are found at large spatial scales, consistently 

with the composite atmospheric patterns. However, for the same regions, using wavelet 

coherence analysis, regions of greatest correlations at both time scales do not perfectly match. 

This therefore demonstrates that identifying spectral similarity between discharge, 

precipitation and large scale climate does not always lead to links between those variables. 

Similarly, this study also highlights that while composite analysis can help understanding the 

atmospheric dynamics associated with multiple time scales of variability in precipitation and 

discharge, greater correlations, i.e. predictability skills, are not systematically centred on the 

centres of actions identified in the composite analysis. 

In addition, when comparing results for precipitation and discharge, clear modulations of the 

climate signals have been identified, and can explain why proportions of inter-annual variance 

between precipitation, temperature and discharge are not correlated (Gudmundsson et al. 

2011b). Such watershed modulations of the climate signals have already been suggested to be 

linked to the size of the catchment area over Europe (Szolgayova et al. 2014a), and to the 
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morpho-structual characteristic (shape, geological formation, groundwater support) of the 

watersheds over the Seine River watershed (El Janyani et al. 2012), and over West and central 

Africa (Sidibe et al. 2019). These modulations are however heterogeneous on the different 

regions of the Euro-North Atlantic atmospheric circulation, and across the watersheds. 
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PART III: DYNAMICS OF THE 

NORTH ATLANTIC 

ATMOSPHERIC CIRCULATION, 

AND HYDROCLIMATE 

VARIABILITY 
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Foreword 

In previous sections, we have seen that non-linearity could lead to non-unicity of a problem’s 

solution, i.e. the same outcome can have different causes. For instance, in Part I, we have 

shown that while several clusters had similar scale-time patterns, their cross-scale interactions 

were markedly different. Similarly, in Part II, we have shown that while precipitation, 

discharge and local climate drivers’ scale-time patterns were sometimes similar between 

clusters, the timing and amplitudes of their correlation were different. The present part will 

extend that idea by showing that similar North Atlantic atmospheric circulation patterns (so-

called “weather patterns”), can result from different dynamics.  

In the following, we refer to “dynamics” as the time evolution of a system, the latter being, 

for the purpose of our study, being defined as a set of 𝑁 independent generic particles. The 

evolution in time of the system is described by its equations of motion, which are composed 

of parameters (dependent on time or not), coordinates, and can have various forms, such as 

linear or non-linear, first order or higher, ordinary differential or partial differential and so on. 

The evolution in time of the 𝑑-dimensional coordinates of the system’s particles is 

represented in a configuration space, a 𝑑𝑁-dimensional manifold. The phase space adds to the 

configuration space, the velocities associated with each particle at each point in the 

configuration space. Thus, the evolution in time of the system, its dynamics, can be 

represented by a function (a trajectory) function of position, velocity, and, implicitly, time. 

Under this formalism, the equations of motion are described in a purely geometric way, and a 

bridge between physical laws and geometrical objects is created, a bridge pioneered by the 
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works of Noether (1971). In a 𝑁 particles system, the degrees of freedom equals the number 

of particles, i.e. there are 𝑁 degrees of freedom, which makes description of the dynamics 

very complex, with the necessity to resort to statistical techniques to describe them. However, 

if 𝑚 constraints are applied on the equations of motion, the number of degrees of freedom is 

reduced to 𝑁 − 𝑚 degrees of freedom. A powerful constraint applied on dynamics is that of 

conserved quantities such as total energy, momentum, angular momentum and so on. When 

such constraint is enforced on the equation of motion, we get conservation laws. In the 

geometrical setting, conservation laws are analogue to geometrical symmetries, i.e. 

geometrical transformations that leave a geometrical object invariant (up to some parameter). 

 

Figure i3.1. Trajectories (solutions) of the Lorenz model for different values of 𝝆. 

Altering only one parameter out of three changes drastically the dynamics of the system, from 

stable (top left), to unstable with chaotic behaviour (bottom right). (Adapted from Wikipedia, 

retrieved 2020-01-20) 
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The consequence is that when the equations of motion are conservations laws, the dynamics 

are invariant, i.e. they do not change in time. 

However, proving the existence of conservations laws in complex systems such as the 

atmospheric circulation is a challenge. The system’s configuration and phase spaces are 

complex, and many fundamental properties such as the number of stationary points, the 

stability of the system away from those points, the probability of visiting a region of the 

system’s phase space, can be dramatically altered by a slight change in the equations of 

motion’ parameters or initial conditions (Figure i3.1, 2).   

The Lorenz model is a simple example of the complexity of the atmospheric circulation. It 

represents the motion of an unique air particle in the context of ocean-atmosphere interactions 

as a function of convection, temperature difference between up and downward currents and 

non-linearity of the vertical temperature gradient (Lorenz 1963). The model is a system of 

three differential equations with 𝑥, 𝑦, 𝑧 as the unknowns and three parameters 𝜌, 𝛽, 𝜎  fixing 

the couplings between the unknown variables. Altering the coupling parameters will change 

the dynamics, transitioning from stable, to unstable (Figure i3.1).  

Similarly, changing the initial conditions can lead to dramatic divergence in two different 

trajectories (Figure i3.2). Applying such model to 𝑁 particles with 𝑁 ≫ 1 is intractable unless 

some heavy constraint is imposed of the equation of motions. 

In this study, we apply a global constraint of the dynamics, that of extremal length invariance 

(Lars V. ahlfors 1973). This conformal invariant is a measure of shortest distance between 

two boundaries of a 𝑑 −dimensional smooth manifold that is constant under conformal 

transformations. Conformal transformations have been shown, in some specified setting, to 

preserve dynamics. Thus, systems showing a constant (through time) extremal length, have 

constant dynamics, and thus, are characterized by conservation laws.   
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So far, we are not aware of any study exploiting the extremal length constraint on dynamics, 

even less on atmospheric circulation’s. 

 

Figure i3.2. Sensitivity to initial conditions. Two trajectories with the same parameters 

(blue and yellow), start with points only 10−5 apart in the phase space. Initially (t=1), the two 

trajectories are superimposed, but they soon start to diverge considerably after some time 

(t=2). (Adapted from Wikipedia, retrieved 2020-01-20) 

In this Part III, we first undertake some theoretical work, presented in supplementary work, to 

characterize this extremal length constraint on dynamics, then, we will apply our theoretical 

results to the North Atlantic atmospheric circulation variability, to unravel its possible 

symmetry breaking, that is, when conservation laws do not hold anymore, and dynamics 

change. 
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NB: This study relies on a theoretical section (see supplementary material S1-S3), which 

demonstrates the different dynamical consequences of the constraints imposed by the extremal 

length. This reasoning represents a base of discussion and should not be considered as an 

attempted demonstration. Reading this theoretical section is not needed to understand the 

following chapter, however, we strongly encourage the readers to delve into the theoretical 

reasoning behind the advocated properties of the conformal structure presented below. 

Introduction 

A striking characteristic about mid-latitudes atmospheric circulation is that fundamental 

characteristics of its dynamics, such as the number of equilibria, the stationary and transition 

states, and the stability/instability of those states, are still debated (Ghil 2019). Several 

approaches have been tried to model the mid-latitudes atmospheric circulation: linear, 

nonlinear, deterministic, stochastic, or combined models, however, so far, any of those 

models only partially matches with observations (Ghil et al. 2018). In any of those approaches 

however, the combined role of Rossby waves and westerly Jet streams is omnipresent (Shutts 

1983; Michael Ghil and Childress 1987; Nakamura et al. 1997; Ghil and Lucarini 2019). An 

interesting feature of non-linear dynamics is the bifurcation in the state-space of a system, i.e. 

when a small variation in the control parameters leads to abrupt, often reverse, effects in the 

response of the system; when such a bifurcation exists, the system hosts several equilibria (c.f. 

Fig 1 in Ghil et al. 2019). Bifurcation in mid-latitude atmospheric circulation, giving rise to 

the so-called zonal and blocking equilibria, has long been studied (Lorenz 1963; Charney and 

DeVore 1979; Benzi et al. 1986; Mo and Ghil 1987), and been observed as solutions for 

simple, barotropic models on rotating annuli (Legras and Ghil 1985; Weeks et al. 1997). The 

statistical studies also provided evidence for those two stationary states (Cassou et al. 2004; 

Hauser et al. 2015; Table 1 in Ghil et al. 2018). The transitions between those regimes being 

of prime importance, it is natural that numerous studies are devoted to the topic (Robertson 



 

83 

and Vitart 2019, and refrences therein). While most studies focus on intra-seasonal time 

scales, there is an increasing focus on bimodality (and hence, transitions between regimes) at 

time scales greater than the synoptic scale (Hannachi et al. 2017). The literature on the topic is 

therefore rich; however, there still is a possibility for fresh approaches. For instance, 

dynamical models bring the possibility of quantifying the dynamics, but the very nature of 

those is still dependent on the underlying assumptions of the models (e.g. deterministic, 

stochastic, linear, non-linear, faithful representation of topography, topology of the subspace 

for computations and so on.). Statistical analyses are less dependent on assumptions, but 

provide little dynamical picture. 

In this study, we offer a different approach based on the correspondence between dynamics, 

differential geometry, and complex analysis. We use the Lagrangian formalism in the phase 

space to demonstrate that the non-vanishing time derivative of a conformal invariant, the 

extremal length (Lars V. ahlfors 1973), represents a change in dynamics in the phase space of 

atmospheric circulation, trading momentum for thermal energy. We also show that the 

extremal length conditions the possible shapes of the atmospheric circulation patterns. Our 

methodology is significantly different from those highlighted above. The usual dynamical 

model framework is to try and find stationary solutions (in our context, stationary patterns) 

within certain dynamics. In our study, we do not make assumptions on the dynamics, but a 

range of them and how they transition to each other. In a way, our approach is study the non-

stationarity of the North Atlantic atmospheric circulation dynamics. We think the topic of 

geometrical physics, as seen through the extremal length paradigm, is of significant interest in 

the study of atmospheric circulation dynamics because of its weak assumptions, and 

connection with fundamental characteristics such as space-time and energy density. The 

present work focuses on inter-annual (2 to 8 years’ time scales) Euro-North Atlantic 

atmospheric circulation variability. 
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This study relies on a theoretical reflection on the dynamical properties of extremal length, as 

well as a conjecture by Kenneth Stephenson on random geometric triangulations, which led to 

the development of a new method to compute the extremal length of a hypersurface. 

Theoretical works and supporting experiments are available in supplementary material S1-3. 

In Section 1, we introduce the data and methodology, as well as the notion of extremal length, 

and we summarize the theoretical results obtained in supplementary material S1-3. Different 

North Atlantic atmospheric patterns are extracted using fuzzy clustering, and their statistical 

transitions are presented, in Section 2. In Section 3, we first compare how the time-evolution 

of those atmospheric patterns links to temporal changes in extremal length. In Section 4, we 

further examine the extremal length dynamics using phase-space reconstruction and 

probability density functions, and how they link to the weather patterns. We explore links 

between the phase space of North Atlantic circulation’s extremal length and precipitation over 

France in Section 6. Finally, we discuss our main result and their wider implications in 

Section 7. 

1. Data and methodology 

1.1. Climate Data 

The North Atlantic atmospheric circulation is here inferred using annual geopotential height  

at 500hPa (z500), which were derived from NOAA’s 20CR v2c reanalysis ensemble (Compo 

et al. 2011). Under the geostrophic approximation, winds are parallel to the iso-geopotential 

height lines, and this is particularly relevant at 500hPa (Norbury and Roulstone 2002).  Data 

are subset to the 1968-2008 period for consistency with the hydrological data set, and to the 

Euro-North Atlantic regions (100°W-40°E and 5°S-80°N; Figure 3.1c). The 20CR v2c 

reanalysis ensemble contains 56 members, which allow for quantifying the model induced 

dispersion. Prior to this study, we ran a dispersion analysis showing that from 1950’s, taking 
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the average member is robust, as the member dispersion greatly decreases from this decade 

(not shown), indicating that the results should not be driven by the model over this period.  

a) b) 

 

 

Figure 3.1. Research area and regions of homogenous discharge variability. a) Location 

of stream gauges (red dots) and their respective networks (blue lines) stations location; b) 

Regions of homogeneous discharge variability as defined in Part I, Figure 1.9. 

1.2. Hydrological Data 

In Part I, we identified six regions of homogeneous scale-time discharge variability. For this 

study, we compared the extremal length phase space with periods of wet and dry precipitation 

averaged over the North-eastern cluster (blue region, Figure 3.1b). 

Precipitation data was extracted from the SAFRAN reanalysis data set (''Systeme d'Analyses 

Fournissant des Renseignements Adaptes a la Nivologie''; Vidal et al. 2010). This data set is 

formatted as a regular grid of 8 kilometers spaced nodes that covers metropolitan France. Data 

start in August 1958, and is updated as new data are available. For this study, we averaged the 

monthly data to annual, subset to the 1968-2008 period, and spatially average within each 

watershed of the six homogeneous regions (cf. Part I). 
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Figure 3.2. Workflow of this study.  a.)Precipitation and z500 data are reconstructed at 2-

4, 5-8 years, and climatological time scales (i.e. anomalies); b.)Weather patterns are 

computed through fuzzy clustering; c.) Transitions between patterns are studied; d.) 

Dynamical properties of extremal length are researched; e) The changes in z500 conservation 

laws are explored through extremal length’s phase space; f) The statistically extracted 

weather patterns are compared to each dynamical state in extremal length’s phase space; 

g)Wet and dry precipitation periods are associated with extremal length phase space’s states. 
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1.3. Methodology 

As preliminary step, we reconstruct both precipitation and large-scale climate data at 2-4, 5-8 

years, and climatological time scales, using multiresolution analysis (Figure 3.2, (a)). The 

methodology is split into two approaches, which are compared. The first one is the statistical 

approach the dynamics of the climate data. We use Fuzzy clustering (See 1.3.1) to infer 

stationary regimes Figure 3.2, (b)), and then their transitions by projecting each type of 

pattern on an RGB colour space (Figure 3.2, (c)). This approach is based on the occurrences, 

and transitions, of patterns identified by their shape. The second approach is based on using 

the dynamical properties of extremal length, explored in supplementary material S1-3 (Figure 

3.2, (d)), to investigate the change of dynamics in the large scale climate data (Figure 3.2, 

(e)). Within this approach, the changes in dynamics are tied to changes in extremal length 

with time, and not tied to precise shapes but to a conformal equivalence class of shapes. Thus, 

exploring the extremal length phase-space gives important information about the stability and 

stationarity of the climate data’s dynamics. We bridge both approaches by comparing the 

phase-space of extremal length and the weather patterns extracted by the statistical techniques 

(Figure 3.2 (f)). Finally, we compare the phase-space of extremal length with dry and wet 

periods of precipitation over North-eastern France (Figure 3.1, blue), to investigate possible 

links between the climate data dynamics (i.e. stationarity, stability) and precipitation over 

(Figure 3.2, (g)). 

1.3.1. Extracting North Atlantic circulation patterns using statistical techniques 

Fuzzy clustering (Dunn 1973) is used to cluster the different North Atlantic circulation 

patterns based on their similarities, the representative patterns of each cluster are called 

weather patterns (Figure 3.2, (b)). The procedure is broken into two steps. First we compute 

the distance between each pattern using Image Euclidean distance calculation (IEDC), which 
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emphasizes more on global than local similarities (Wang et al. 2005). Then, we cluster 

atmospheric patterns that are similar, using FANNY clustering, which allows for a flexible 

clustering of hybrid patterns, i.e. patterns sharing multiple features with others (Kaufman & 

Rousseeuw, 1990). For more information about this procedure, see Chapter 1. 

We visually classify weather patterns as either of zonal, blocking or wave train type, with 

colors red, green and blue respectively. We then compute the transitions between clusters by 

projecting each time step on a chromaticity diagram (Figure 3.2, (c)). Each time step 

coordinates (i.e. color) is computed as: 

     𝑟𝑔𝑏𝑡𝑗
= ∑ 𝑝𝑐𝑖

(𝑡𝑗) ∗ 𝑟𝑔𝑏𝑐𝑖

𝑐𝑁
𝑐1

  (1) 

Where 𝑟𝑔𝑏𝑡𝑗
 is the color at time step𝑡𝑗, 𝑐𝑖..𝑁 is the cluster 𝑖 identified by the fuzzy clustering, 

𝑝𝑐𝑖
(𝑡𝑗) is the probability of membership to cluster 𝑐𝑖 of the time step 𝑡𝑗, and 𝑟𝑔𝑏𝑐𝑖

 is the color 

of the cluster 𝑐𝑖, with the color being either red, green or blue, depending on the type of the 

weather pattern (i.e. zonal, blocking or wave train). 

The color of each time step’s pattern is then projected into the RGB gamut, the coordinates 

(RGB) determining where the pattern lies compared the three types of weather patterns. 

 

1.3.2. Extracting the dynamics of the North Atlantic atmospheric circulation 

1.3.2.1 Representation of a system’s dynamics 

The phase-space of a dynamical system is the space of all its possible parametrized 

configurations (Figure 3.2, (e)). A path, or trajectory, in the phase-space represents the 

successive configurations taken by the system along time. Phase-space analysis is critical in 

non-linear system dynamics, as it enables the description of attractors and bifurcations (see 

for instance, Michael Ghil and Childress (1987)). However, phase-space representation needs 
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an underlying model so that the space is spanned by the parameters of the model. When the 

data is a time series, i.e. when the model is unknown, owing to Taken’s theorem (in Rand and 

Young 1980), the dynamics of a system can be topologically reconstructed by embedding the 

time series in a space, of embedding dimension 𝐷𝑒𝑚𝑏 , whose basis vectors are the time 

series’ value at a time 𝑡 and time 𝑡 − 𝑛𝜏 (where 𝜏 is a time lag). The dimension 𝐷𝑒𝑚𝑏 is 

chosen using a false nearest neighbour algorithm (Kennel et al. 1992), and the lag is 2𝑗−1, 

with 𝑗 being the discrete wavelet dyadic time scale at which the time series is reconstructed. 

Instead of plotting the trajectory of the extremal length, we estimate the kernel density of the 

trajectory, (i.e. the probability of the system to visit some regions of the phase-space), which 

allows for more easily identifying stationary points and bifurcations. The kernel density is 

estimated using diffusion (Botev et al. 2010). It can be argued that the number of data points 

in our study (41) is too low for a correct estimation of the kernel density of the system. 

However, we note that our phase-space is that of extremal length, which is, in itself, a marker 

of dynamics change. Thus, even if the kernel density estimation is too biased by our sample, 

we argue it still is a valid representation of the dynamics. Our results are presented with a 4-

view phase space reconstruction of extremal length (cf. Figure 3.6a). The diagonals represent 

coordinates where the 𝜏 order derivatives of the extremal length vanish, i.e. where the 

dynamics are constant. The probability density function (PDF) estimation for each visited 

region of the phase space is shown by the iso-surfaces, and high PDF represent basins of 

attraction. Because the centres of those basins represent constant dynamics, we consider them 

as critical points of our phase space. In order to compare with the statistical clustering, the 

statistically extracted patterns are plotted against the extremal length phase space. We 

associate to each pattern, a unit-vector showing the direction it is headed into at the next time 

step; the vectors are coloured from blue to red as a function of time (i.e. vectors in blue are 

associated to early patterns, vectors in red, to later patterns). If, as time goes to infinity, the 
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vectors point toward the critical point, then the system is said to asymptotically stable, 

otherwise it is unstable. A special case is that of periodic trajectories, which are considered 

stable, but not asymptotically. We also use the information provided by recurrence plots 

(Eckmann et al. 1987). The plot takes the form of a an almost symmetric matrix with indices 

times 𝑖, 𝑗. The distance between the position of the trajectory at time 𝑖 and at time 𝑗 is 

computed. If the distance is small, then the trajectory at time 𝑗 is located close to the position 

it was at time 𝑖, and reversely. The general shape of a recurrence plot thus allows for an 

estimation of the divergence of the trajectory, that is, if it tends to move away from its initial 

values or, to the contrary, always stays within a certain region of the phase-space. The 

topology of recurrence plots can be complex, however, as a rule of thumb, ridges (high 

distance coordinates) materialize non-stationarity or abrupt local changes, and troughs are 

associated with cyclicity (Yang 2011). 

In table 1, we provide a general rule of thumb for the interpretation of recurrence plots 

depending on the texture, the general shape, of the plot. 

1.3.2.2 The notion of Extremal length and its approximation 

This study relies on the theoretical works presented in supplementary material S1-3 (Figure 

3.2, (d)). For more detail, see supplementary material. 

The notion of extremal length follows the pioneering works by Ahlfors (1973). Extremal 

length is the minimum length of a family of curves that go from one point to another. This 

definition seems similar to that of a geodesic. However, extremal length is conformal 

invariant, which means that under global conformal transformations, extremal length is 

constant. This generalizes the idea of geodesic to conformal transformations. 
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Observation Interpretation 

Homogeneity (uniformly distributed red and blue points) the process is  stationary 

More ridges to the upper left and lower right corners nonstationarity; the process contains a trend or drift 

Disruptions (ridges bands) occur 

nonstationarity; some states are rare or far from the normal; 

transitions may have occurred 

Periodic/ quasi-periodic patterns 

cyclicities in the process; the time distance between periodic 

patterns (e.g. lines) corresponds to the period; long diagonal 

lines with different distances to each other reveal a quasi-

periodic process 

Single isolated points 

heavy fluctuation in the process; if only single isolated 

points occur, the process may be an uncorrelated random or 

even anti-correlated process 

Diagonal lines (parallel to the line of interest) 

the evolution of states is similar at different times; the 

process could be deterministic; if these diagonal lines occur 

beside single isolated points, the process could be chaotic (if 

these diagonal lines are periodic, unstable periodic orbits 

can be retrieved) 

Diagonal lines (orthogonal to the line of interest) 

the evolution of states is similar at different times but with 

reverse time; sometimes this is a sign for an insufficient 

embedding 

Vertical and horizontal lines/clusters 

some states do not change or change slowly for some time; 

indication for laminar states 

Long bowed line structures 

the evolution of states is similar at different epochs but with 

different velocity; the dynamics of the system could be 

changing (but note: this is not fully valid for short bowed 

line structures) 

 

Table 1. Recurrence plot interpretation overview. (http://www.recurrence-

plot.tk/glance.php)  

In two-dimensions, there are possibly infinitely many local conformal transformations 

between surfaces, however, only finitely many surfaces may be globally transformed, and 
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those must have the same extremal length. In addition, this extremal length corresponds to 

specific geometrical characteristics, which all surfaces in the equivalency class (i.e. with the 

same extremal length) share. Those characteristics determine how those surfaces can 

transform into another of the equivalency class. Using the geometry-physics equivalence 

(Noether 1971), we conjecture that two surfaces, of constant extremal length share the same 

dynamics,, and that any change in extremal length is attributed to loss of conservation for 

either thermal energy of momentum.  

In addition to the changes in dynamics associated with extremal length, we summarize the 

results of theoretical study, in terms of North Atlantic atmospheric circulation characteristics 

associated with and increase or decrease in extremal length: 

- For both the geostrophic tendency and geostrophic wind equations’ solutions to be 

stationary, the first order derivative of extremal length should vanish (S1, Proposition 

1). 

- With respect to the map boundary’s corners, which are fixed points, the deformation 

of the interior, that is, of geopotential height iso-lines, is proportional to extremal 

length. Decreasing extremal length will tend to zonal patterns, increasing extremal 

lengths to Rossby waves with high wave numbers (Proposition 2). 

- Increasing extremal length is associated with momentum loss to the profit of thermal 

energy. This induces slow or stalled Rossby waves, blocking patterns for geopotential 

height tendency solutions, and low momentum, high curl geostrophic wind equation 

solutions. (Propositions 3-6)  

- The computation of extremal length is explained in detail in S1 (Section 6). Briefly, 

the computation relies on the conjecture that if a surface is triangulated randomly, and 

that 𝑁 random triangulations are performed, the conformal structure of the surface will 

emerge as 𝑁 → ∞. The extremal length is then computed by projecting this conformal 
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structure to a rectangle, the conformal rectangle. The extremal length a conformal 

rectangle is simply its width divided by its height (Stephenson 2007).  

1.3.3. Testing time-scale dependency 

To test the time-scale dependency of the North Atlantic atmospheric dynamics and its links to 

hydrological variability, multiresolution analysis has been used to reconstruct climate and 

hydrological variability at two selected time scales (Figure 3.2, (a)): 2-4 and 5-8 years’ time 

scale. Multiresolution analysis is the combination of a discrete wavelet transform analysis (i.e. 

decomposition of the signal into discrete wavelet coefficients) and a synthesis (i.e. 

reconstruction of the signal at each time scale; Percival and Walden 2000). The signal is 

decomposed by a series of orthogonal filter banks in dyadic time scales that represent the 

wavelets (Percival and Walden 2000).  

Here, we use the Maximum Overlap Discrete Wavelet Transform (MODWT), with a base 

wavelet ‘sym4’ (Percival and Walden 2000). The main difference compared to other methods, 

such as the Discrete Wavelet Transform, is that the signal is not downsampled as the scales 

increase, so the initial time step of the signal is used for all scales. Naturally, the translation 

independence is lost, but shift invariance is preserved. More information about the wavelet 

decompositions and reconstructions are available in Chapters 1 and 2. 

3. Statistically-extracted North Atlantic circulation patterns 

North Atlantic circulation weather patterns have been statistically extracted using fuzzy 

clustering, at two different timescales, and using the raw z500 climatological anomalies. For 

ease of description, we categorized the weather patterns as either zonal, blocking or wave 

train, as described in, Mo and Ghil (1988); Cassou et al. (2004); Hauser et al. (2015); Park et 

al. (2014). Note that, because of the subjectivity in classifying each weather pattern into a 
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category, our definition of zonal, blocking and wave train patterns may slightly differ from 

previous authors. The criteria for each type are as follows: 

- Zonal weather pattern: Two centres, one ridge and one trough, are parallel to each 

other and the iso-height lines are aligned along the west-east direction. There are very 

little North-South geostrophic winds. Westerlies arising from the Positive phase of the 

North Atlantic Oscillation are an example of zonal flows. 

- Blocking: A centre of action, usually a ridge, forces the geostrophic wind to locally 

adopt a North-South direction, thus blocking the West-east direction of the flow. Two 

types of blocking are recognized, the Rex block, when one ridge is to the north of one 

trough, and the Omega block, when a ridge to the north stands in between two troughs 

to the south, upstream and downstream of the ridge, respectively. Blocking systems 

are associated with persistent weather, as the eastward progression of the centres is 

greatly slowed down. The Atlantic ridge and the Scandinavian blocking are two 

examples of blocking weather patterns. 

- Wave train: A highly meridional flow, with a fast succession of trough and ridges, 

triggered by Rossby waves. Storm tracks are typically the result of wave trains. 

The blocking weather pattern is the most difficult to characterize because, when using 

anomalies as data, one can find patterns that have the spatial characteristics of a blocking 

pattern, but with opposite phases (i.e. the low pressure centre is to the north, the high pressure 

to the south). We rather classify a blocking pattern depending on the deformation of the iso-

lines, and by elimination with wave trains, that is, if the geopotential height lines are highly 

deformed at one location but that the pattern is not coherent with a wave train one, then, it is a 

blocking pattern.  
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Figure 3.3. Statistically extracted weather patterns of z500. a) Climatological time scales; 

b) 2-4yr’ time scales; c) 5-8yr’ time scales. Boxes’ edges colours represent the type of 

weather pattern. 

3.1. Climatological patterns of z500 

Figure 3.3a shows the weather patterns at the climatological time scales computed by fuzzy 

clustering. Six weather patterns are identified. Weather patterns 3 and 4 are of the zonal type; 

a) b) c) 
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patterns 1, 2, 5 and 6 are of the blocking type. There is no wave train pattern identified 

(Figure 3.3a). Pattern 2 (blocking) is the most recurrent pattern with probability 20%, while 

pattern 8 (blocking) is the least recurrent, with probability 8%. Blocking patterns are 

dominant with 57% of occurrence, followed by zonal patterns with 43%, leaving only 7% of 

the patterns not clearly identified with one weather pattern. Figure 3.4a shows that transitions 

between zonal and blocking patterns occur in both ways, but no hybrid pattern persists, i.e. 

zonal patterns quickly transition to blocking and reversely (Figure 3.4a). 

3.2. 2-4 years’ time scales 

Figure 3.3b displays the 2-4yr’ time scales pattern extracted from the fuzzy clustering. Eight 

weather patterns can be identified. Patterns 1 and 3 are of the zonal type, patterns 5-8 are of 

the blocking type, and patterns 2, and 4 are of the wave train type (Figure 3.3b). Patterns 4 

(zonal) and 7 (blocking) are the most recurrent (12%), while patterns 5 and 8, only occur with 

probability 7%. Blocking patterns are dominant (37%), followed by zonal (23%), then wave 

train weather patterns (20%), leaving 20% of the patterns not clearly identified with one 

weather pattern. 

3.2. 5-8 years’ time scales 

Figure 3.3c displays the 5-8yr’ time scales pattern extracted from the fuzzy clustering. Eight 

weather patterns are identified. Patterns 2, 3, 4 and 8 are of the zonal type, patterns 1 and 6 are 

of the blocking type, and patterns 5 and 7 are of the wave train type (Figure 3.3c). The highest 

occurring weather pattern is pattern 2 (zonal, 17%), and the lowest are patterns 1, 5 and 8 

(blocking, wave train, and zonal respectively, 7%). Zonal weather patterns are dominant 

(51%), followed by wave trains (22%), with blocking patterns occurring with probability 

17%, leaving 10% of patterns not clearly associated to a single weather pattern (Figure 3.3c). 

Figure 3.4c shows that zonal patterns transition into wave trains, and blocking patterns also 

transition to such type, but blocking and zonal transitions are two-way (Figure 3.3c). 
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Figure 3.4. Transitions between weather patterns. Each time step’s pattern is attributed a 

coordinate in RGB colour space, based on its weighed membership to zonal (red), blocking 

(green), and wave train(blue) weather patterns. This allows discovering the transitions 

between patterns. a) Climatological time scales; b) 2-4yr’ time scales; c) 5-8yr’ time scales. 

Figure 3.4b shows that such mixed patterns are frequent, and that transitions occur between 

two weather patterns, but also between weather patterns and mixed patterns. Preferred 

directions of transition are from blocking to zonal, blocking to wave train and zonal-blocking-

wave train hybrid patterns to any of the weather patterns (Figure 3.4b).  

3.3 short summary 

We have computed the fuzzy clustering of weather patterns for the North Atlantic 

atmospheric circulation, at climatological, 2-4yr and 5-8yr’ time scales. For climatological 

time scales, only zonal and blocking weather patterns appear, however, at 2-4 and 5-8yr’ time 

scales, wave train patterns are added to the classification. The number of different weather 

patterns is time scale dependent, as at climatological time scales, six weather patterns are 

a) b) 

c) 
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extracted, while eight patterns are found for both 2-4yr and 5-8yr’ time scales (Figure 3.3). At 

climatological, and 2-4yr’ time scales, blocking patterns are dominant, while it is the zonal 

type of weather patterns that dominates the 5-8yr’ time scales (Figure 3.3). Transitions are 

also time scale dependent. At climatological time scales, the transitions between zonal and 

blocking patterns is two way, while, at other time scales, the transitions show preferred 

directions. For instance, at 2-4yr’ time scales, blocking patterns mainly evolve into either 

zonal or wave train patterns, while at 5-8yr’ time scales, zonal to wave train, and blocking to 

wave train are the preferred directions (Figure 3.4). At 2-4yr’ time scales, several patterns are 

of a hybrid type, and transition to/from them occur (Figure 3.4b). This section has shown that, 

the type of weather patterns, their stationarity, and transitions are time scale dependent. It has 

also shown that the type of weather pattern, rather than the patterns themselves, is more 

important in terms of dynamics of the North Atlantic atmospheric circulation. In the next 

section, we will extend this class of patterns reasoning, to a more general setting. 

4. The dynamics of the North Atlantic atmospheric circulation 

In the previous section, we identified, statistically, weather patterns and their transitions at 

both climatological, 2-4yr and 5-8yr’ time scales. The paradigm behind that identification is 

that a weather pattern represents a certain point in the phase space of the North Atlantic 

atmospheric circulation’s dynamics, and that, locally, this point can only be visited by 

trajectories initiated by the same initial conditions or, with the same set of parameters. This is 

also equivalent to saying that the number of degrees of freedom of the z500 is sufficiently 

high so that only a specific set of control parameters can lead to that pattern. While we do not 

have a definite answer to that question, we decided to tackle the problem differently by stating 

that only the local geometry, a proxy of the stress energy tensor, spread homogeneously over 

the total z500 surface, can be a unique identifier of similar dynamics, i.e. only if two surfaces 
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have the same local geometry, extended to their total area, then they are the result of the same 

dynamics. 

The object used to assess that local geometry, extended to the whole surface, is the extremal 

length (Lars V. ahlfors 1973). We computed the extremal length of each z500 surface of the 

time series, then reconstructed the phase space of extremal length to assert the stable and 

transitional states of the z500, this time, under an energy point of view, thus, not tied a type of 

weather pattern.  

We compare this approach to that of statistical extraction by analysing to which dynamical 

state, weather patterns map to. 

4.1. Climatological dynamics 

Figure 3.5a shows the time series of climatological extremal length, with each weather pattern 

superimposed. The time series has one maximum in 1978, of blocking type, and one 

minimum in 1988, of zonal type (Figure 3.5a). The 1988 dip roughly divide the time series in 

two parts: the first one has more abrupt changes than the second. The weather patterns are not 

tied to extremal length, which can be explained by the difficulty of the statistical clustering to 

clearly identify patterns with weather patterns. That difficulty arises because patterns rarely 

show a complete similarity to the weather pattern(s) they are assigned to. In Figure 3.6a, 

climatological extremal length’s phase space shows a large basin of attraction, crossed by all 

zero derivative lines in the 4-view of Figure 3.6a, which induces that, the dynamics at those 

time scales, for the most part, are constant (Figure 3.6a). Because the extremal length’s 

derivative represents a set of solutions, for the atmospheric circulation phase space, that are 

constant (i.e. 
𝑑

𝑑𝑡
𝑥 = 0), we can consider the basin of attraction lying on the zero derivative 

line as critical point of the extremal length’s phase space. We can see, in any of the four 
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views, that the vector field around that point, mostly converges to it, as red vectors point 

toward the critical point, suggesting that the climatological are mostly stable (Figure 3.6a).  

 

Figure 3.5: Extremal length (lines) and weather patterns (colours). (a) Climatological 

time scales; (b) 2-4yr’ time scales; (c) 5-8yr’ time scales. 

Three other small basins of attraction exist, two of them concerned with blocking patterns, the 

other being composed of two zonal patterns (Figure 3.6a). With respect to the main basin of 

attraction, those small basins are all of lower extremal length, suggesting an influx of 

momentum when those states arose (Figure 3.6a). For all of them, the vectors point toward the 

main basin of attraction, which may indicate, that, while they represent changes of 

atmospheric circulation dynamics (as they are outside of the zero-derivative lines) some 

control parameter brings them back to the main basin of attraction (Figure 3.6a). Figure 3.6a 

shows that around the stable basin of the phase space, different weather patterns are identified 

with one location and one type of weather pattern can be at several locations. According to 

our extremal length hypotheses (cf. 1.3.2.2), a weather pattern is not necessarily 

representative of one dynamics i.e. different controls parameters can lead to the same weather 

pattern, and the same dynamics can lead to different weather patterns. 

a) 

b) 

c) 
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In Figure 3.7a, we explore the recurrence of trajectories in the phase space of extremal length. 

The succession of troughs and ridges in Figure 3.7a, both horizontally and vertically, in the 

recurrence plot indicates that the trajectory is trapped in different states, but highly non 

stationary until data point 21 (1988), before the trajectory starts to converge towards a point, 

being stationary (homogeneous recurrence, Figure 3.7a). 

 

Figure 3.6a. 4-view phase space of climatological time scales’ extremal length, and its 

relation to weather patterns. (a) Top, (b) Front, (c) Side, (d) Isometric; Probability of an 

area of the phase space to be visited is represented by isosurfaces (from blue to yellow). 

Arrows point to the next time step, their colours represent their position in the time series 

(blue for early time steps towards red for late time steps), colors represent the weather 

pattern type, each time step belongs to. 

4.2. 2-4 years’ time scales’ dynamics 

Figure 3.5b shows the time series of 2-4yr’ time scales’ extremal length, with each weather 

pattern superimposed. The time series has one maximum in 1972 (of wave train type), and 

one minimum in 1988, of a mixed blocking-zonal type (Figure 3.5b). We note that, as for 

climatological time scales, both 1975 and 1978 years are also among the highest extremal 

a) b) 

c) d) 
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length values, and 1988 is also a common minimum (Figure 3.5b). The 1988 dip roughly 

divide the time series in two parts: the first one has more variance than the second.  

 

Figure 3.6b. 4-view phase space of 2-4yr’ time scales’ extremal length, and its relation to 

weather patterns.  

Compared to climatological time scales, because of the higher degree of weather pattern 

blending, the correspondence between weather types and extremal length is harder to 

establish. Figure 3.6b shows the 4-view phase space reconstruction of 2-4 time scales of 

extremal length. Three main basins of attraction have been computed, each of them being on 

the zero derivative line of either top, front or side planes, and the two others, are symmetric 

about each plane zero-derivative line (Figure 3.6b). While both zonal and blocking patterns 

reside in the two of the basins, the third one is mainly populated by wave train patterns, those 

being the most constant at first order, i.e. they reside on the top plane’s zero derivative line 

(Figure 3.6b). This basin, is associated with higher extremal length than the two others, 

suggesting that the 1𝜏-stable state of the atmospheric circulation is associated with heat 

release (Figure 3.6a). The vector field seems to point at constant exchanges between the three 

nodes, which indicate that each basin is unstable, even if, globally, the trajectories seem 

a) b) 

c) d) 
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periodic, which means they are stable (but no asymptotically stable, Figure 3.6b). Outlier 

basins can be found on the boundaries of the phase space domain, being either attracted to 

another outlier or one of the main basins of attraction (Figure 3.6b). The 2-4yr’ time scales 

recurrence plot in Figure 3.7b, shows that the system is highly disrupted, thus non stationary, 

until data point 22 (1989), after which, it converges, as for the climatological scales. 

 

Figure 3.6c. 4-view phase space of 5-8yr’ time scales’ extremal length, and its relation to 

weather patterns.  

4.3. 5-8 years’ time scales’ dynamics 

Figure 3.5c shows the time series of 5-8yr’ time scales’ extremal length, with each weather 

pattern superimposed. The time series has two maxima in 1991 (of wave train type), and 2006 

(mixed wave train-blocking type), and a minimum in 1988, of zonal type (Figure 3.5c). The 

1988 dip roughly divides the time series in two parts: in contrary to both climatological and 2-

4yr’ time scales, the first part is the one with the lowest variability, while the second is 

especially variable (Figure 3.5c). Figure 3.6c shows the 4-view phase space reconstruction of 

5-8yr’ time scales of extremal length. A large cluster of basins of attraction appears along 

each plane zero-derivatives lines, however, the basin with the highest pdf is constant only in 

a) b) 

c) d) 
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second-order dynamics (front plane, Figure 3.6c). Wave train patterns are mostly confined 

around first (top), second (front) order, and lagged (side) constant dynamics, while zonal 

patterns show more variability (Figure 3.6b). Overall, the extremal length associated with 

most basins is fairly high, hinting at a system dominated by (relatively) higher heat release 

(Figure 3.6). The vector field displays trajectories that can wander far from constant states, 

and red arrows do not necessarily point towards the zero-derivative lines, indicating that the 

system is globally unstable (Figure 3.6c).Compared to previous time scales, the 5-8yr’ time 

scales recurrence plot in Figure 3.7b, shows an even more disrupted phase-space, with very 

little convergence, that happens at data point 29(1996), 8 years after  data point 22 (1989). 

 

Figure 3.7. Recurrence plot of extremal length. Weather Patterns are noted by the colours 

of the time indices (a) Climatological; (b) 2-4 years; (c) 5-8 years. 

4.4. Short summary 

We reconstructed the phase space of extremal length at climatological, 2-4, and 5-8yr’ time 

scales, and superimposed the statically extracted weather patterns. We have shown that at 

climatological time scales, the dynamics are mostly stable and globally constant (especially 

after 1989) and stable (Figure 3.6a), yet locally non-stationary (Figure 3.7a). No weather 

a) b) 

c) 
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pattern is tied to the constant basin of attraction, but outliers basins are tied to either zonal or 

blocking patterns (Figure 3.6a). At 2-4yr’ time scales, the dynamics are shown to be split 

between three basins of attraction, one being of either first, second or lagged constant 

dynamics and the others being symmetrical to the zero-derivative lines (Figure 3.6b). Wave 

train patterns seem to be tied a particular type of dynamics, and to first-order, the most 

constant types (Figure 3.6b). Constant exchanges take place between the three basins, but 

overall, the system seems to be periodic, thus stable, but not asymptotically (Figure 3.6). As 

for the climatological time scales, the 2-4yr’ time scales dynamics are highly disrupted until 

1989, after which, they being to converge, which indicates that the dynamics become 

stationary (Figure 3.7c). At 5-8yr time scales, the dynamics are distributed over several 

basins, that are not necessarily close to the zero-derivative lines, i.e. not constant, however 

wave train patterns are the most constant, while zonal patterns show the highest deviation 

from the stationary state. In addition, the vector field points outward of each basin, indicating 

that the system is possibly unstable (Figure 3.6c). The recurrence plot shows that the system is 

disturbed throughout the time series, and only after 1996, does the intermittency decreases, 

but still stays very significant, compared to other time scales (Figure 3.7c). The 5-8 years’ 

time scales dynamics seem to be mostly associated to heat release of the research area, 

yielding and atmospheric circulation with lesser momentum (Figure 3.6). 

4. Links between the dynamics of North Atlantic atmospheric circulation and 

precipitation over France 

In this section, we investigate the relationships between extremal length’s phase space and 

precipitation over France, as characterized in Part I. For the sake of simplicity we only 

showcase the relationship between extremal length and the North-Eastern region, defined as 

the blue stations in Figure 3.1b. We compared the climatological, at 2-4yr and 5-8yr’ time 

scales, the extremal length’s phase spaces with dry and wet precipitation periods of 



 

106 

precipitation. The wet and dry data points are selected in the precipitation time series as points 

𝑚𝑒𝑎𝑛(𝑋) ± 0.8𝑠𝑑(𝑋), that is points below (wet) or above (dry) 80% of the standard 

deviation to the mean. 

 

 

Figure 3.8. Extremal length (lines) and dry (red), mean(black), wet(blue) precipitation 

years. (a) Climatological; (b) 2-4 years; (c) 5-8 years. 

5.1. Climatological extremal length and precipitation 

Figure 3.8a displays the climatological extremal length time series, with dry and wet periods 

superimposed. Neither dry nor wet periods are associated with a specific value of extremal 

length, and the maxima and minimum of extremal length are associated to mean precipitation 

values. Figure 3.9a shows the 4-view of climatological extremal length’s phase space and the 

superimposed wet and dry periods. While first-order (top) plane does not show any 

discriminating characteristic for dry and wet periods, both second-order (front) and lagged 

(side) planes display dry and wet periods as being separated by the zero-derivative lines 

(Figure 3.9). Taking both second order and lagged plane, we have a second-order difference 

equation solution space, and we can deduce that dry period are associated with positive 

a) 

b) 

c) 
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(forward) curvature of the extremal length variability, while wet periods are associated with 

decreased  (forward) curvature of the extremal length variability (Figure 3.9). 

 

 

 

Figure 3.9a. 4-view phase space of the climatological time scales’ extremal length in 

relation to precipitation in the North-eastern region. (a) Top, (b) Front, (c) Side, (d) 

isometric; Probability of an area of the phase space to be visited is represented by the iso-

surfaces (from blue to red). Numbers represent the time steps, colours represent wet (blue) 

and dry (red) precipitation years. 

5.2. 2-4 years extremal length and precipitation 

As for climatological time scales, there is no clear association between extremal length values 

and either dry or wet periods (Figure 3.8b). Figure 3.9b shows the 4-view of 2-4yr’ time 

scales extremal length’s phase space and the superimposed wet and dry periods. Each of the 

three basin of attraction is associated with both wet and dry periods, however, in the second-

order (front) plane, dry precipitation is absent from the basin of attraction concerned with 

increases in extremal length, at the 2𝜏 scale, from a medium value (Figure 3.9b). It thus can 

a) b) 

c) d) 
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be concluded that each of the basin of attraction, that is, each set of dynamics, can produce 

wet or dry precipitation periods. 

 

 

Figure 3.9b. Phase space of extremal length. Same as Figure 3.9a, but for 2-4yr’ time 

scales. 

5.3. 5-8 years extremal length and precipitation 

Figure 3.8c shows that, dry precipitation periods are associated with a positive curvature of 

the extremal length, however, that pattern is not exclusive to dry periods as both mean and 

wet periods may be identified with that characteristic. In the extremal length’s phase space, 

the distribution of both dry and wet periods is variable, however, each basin of attraction 

seems to contain mainly either dry or wet data points (Figure 3.9c). In the first-order plane, 

dry periods are closer to the zero derivative line than wet periods, which suggest that dry 

periods are associated with more constant dynamics, and wet periods to large changes (Figure 

3.9c).  

 

5.4. Short summary 

a) b) 

c) d) 
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We compared the climatological, 2-4, and 5-8yr time scales’ extremal length’s phase space, 

and dry and wet periods of precipitation for the North-eastern region (cf. Figure 3.1b, blue 

stations). At climatological time scales, dry periods are associated with positive (forward) 

curvature of extremal length variability, while wet periods are associated with a decrease in 

the (forward) curvature of extremal length variability (Figure 3.9a). At the 2-4yr’ time scales, 

no definite relation could be established between extremal length and precipitation, except 

that each basin of attraction can be produce both dry and wet periods (Figure 3.9b). At the 5-

8yr’ time scales, each basin of attraction is associated with either dry or wet periods, and dry 

periods are more associated with basins that are close to the first-order zero-derivative line 

(Figure 3.9c). 

 

Figure 3.9c. Phase space of extremal length. Same as Figure 3.9a, but for 5-8yr’ time 

scales. 

 

 

5. Discussion 

a) b) 

c) d) 
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In this study, we investigated the dynamics of the North Atlantic atmospheric circulation, at 

different time scales, using both statistical and geometry-physics equivalence methodologies. 

Conformal geometry theory was explored to derive the dynamical properties of a conformal 

invariant, the extremal length (Lars V. ahlfors 1973), and the phase space of this invariant was 

studied to understand the stationarity, stability and equilibrium states of the North Atlantic 

atmospheric circulation, and how they related to statistically extracted weather patterns and 

their transitions. Additionally, we compared the extremal length phase space with dry and wet 

periods over a region of homogeneous precipitation variability, in France. 

The theoretical investigation led to interesting results. First, relating extremal length to 

dynamics evolution, we found that a vanishing time derivative of extremal length implies 

conserved dynamics. Next, characterizing the solution space for dynamics, it appears an 

increase in extremal length is associated with a higher deformation of the physical domain 

with respect to its fixed boundary points, integral lines points towards the transversal 

boundaries, lower elastic energy, and the interior momentum being lost to thermal energy. 

Conversely, a decrease in the extremal length is associated with less deformation of the 

interior, integral lines going through the two boundaries considered for the definition of the 

extremal length, higher elastic energy, and an increase in the momentum to the expense of 

heat release. Thus, the extremal length represents the difference between the resting and 

unloaded length of a rubber band, translating into the resistance to displacement of elementary 

points, i.e. shear (as in an electrical network). In the context of point mechanics, we also 

found that an increasing extremal length meant an increase in the momentum needed to move 

the point a certain distance in a given time, or, equivalently, the total energy spent moving a 

point over that distance. Applied to the context of North Atlantic circulation, an increase in 

extremal length induces higher meridional flow, low zonal advection (possibly stalled) wave 

trains, with persistent ridges and troughs. 
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In the applied section, we found that for both statistical and extremal length methodologies, 

the atmospheric circulation dynamics are time scale dependent. At climatological time scales, 

only blocking and zonal patterns were statistically extracted, blocking weather patterns being 

the most recurrent, with two-way transitions between the two types of weather patterns. The 

climatological dynamics are mostly stable and constant, but no specific weather pattern is 

associated with constant dynamics. However, deviations from the stable state leads to basins 

of attractions associated with either zonal or blocking patterns. The wet and dry periods of 

climatological precipitation have been found to be tied to a decrease/increase in forward 

curvature of the extremal length variability. At the 2-4 years’ time scales, blocking, wave train 

and zonal weather patterns were extracted, and blocking patterns were found to be the most 

recurrent type of weather patterns. The transitions between them show preferred directions, 

such as blocking patterns evolving into either zonal or wave train patterns, and hybrid patterns 

of those three types. The wave train weather patterns seem to be tied a particular type of 

dynamics, and to first-order, the most constant types. The stability of the system seems to be 

periodic, hence stable, but not asymptotically. Both dry and wet periods can be produced by 

either basin of attraction at those time scales, so no definite association between the type of 

period and a given basin of attraction have been found. At 5-8 years’ time scales, zonal 

weather patterns are dominant, and zonal to wave train, blocking to wave train are the 

preferred directions of transitions. At 5-8yr time scales, the system is non-stationary, and 

unstable, however, wave train patterns were found to be the most stationary, with zonal being 

associated with large changes of dynamics. Wet and dry periods are associated with each 

basin of attraction of the extremal length’ phase space, but no spatial segmentation appears. 

Our statistical results are in good agreement with the generally accepted most recurrent 

weather patterns, that is, zonal, wave train and blocking such as Mo and Ghil (1988); Cassou 

et al. (2004); Hauser et al. (2015); Park et al. (2014). The computed transitions between are 
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however different than those highlighted in Ghil (1987). The authors focused on the atomic 

time scales of transition, that is, the minimum time scales for transitioning between patterns. 

On the one hand, our study, being yearly, may depict discrete transitions rather than 

continuous. Focusing on inter-annual time scales, Hauser et al. (2015), computed a fuzzy 

clustering over the same region as ours, and computed the dominant winter (djf) weather 

patterns (clusters). The fuzzy clustering of the authors has extracted two blocking and two 

zonal, but no wave train patterns.  The authors considered inter-annual time scales as a whole, 

while we separated climatological, 2-4 and 5-8 years, additionally, we argue that, at least one 

blocking pattern, G+ (Figure 11 in Hauser et al. (2015)), may be interpreted as a wave train. 

The time series of dominant winter weather patterns (Figure 19 in Hauser et al. (2015)) is only 

partially in agreement with ours. The numerous differences in both methodologies, such as no 

inter-annual dependence, only winter months being selected, or the number of clusters, make 

pinpointing the reasons for this discrepancy difficult. 

The study of the North Atlantic atmospheric circulation through the extremal length has 

produced very interesting results. We outlined that, for every time scale, stationary or non-

stationary, stable or unstable dynamics, can yield either blocking, zonal or wave train weather 

patterns. Thus, our study has shown that a weather pattern can be the solution of different 

dynamics, and its stability, stationarity are not exclusive to some dynamics (some initial 

conditions). The dynamics of North Atlantic circulation are usually stable, except for the 5-8 

years’ time scales. We however must mention that the sample size, at that time scale, is low, 

since we only have 8 oscillations at a maximum, over the period of 41 years. It is thus 

debatable if the instability of the dynamics is real or not. Nevertheless, we have shown that 

when dynamics change, some specific types of weather patterns appear. We also have shown 

that weather patterns may be linked with up to second-order differences in the extremal length 
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variability, so that, even if weather patterns are not tied to one specific dynamics, they are 

influenced by the, up to second order, changes in dynamics. 

Finally, our study has shown that dry and wet periods of precipitation in France, may be tied 

to those changes in dynamics, which is a departure from the traditional paradigm of 

associating a weather pattern to some precipitation (see Part II, and Fritier et al. 2012; Massei 

et al. 2017). 

More work is needed to fully develop our methodology; yet, we think that with this first try, 

we already produced results that may be of interest for atmospheric sciences and hydrology as 

well. 
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PART IV: GENERAL 

DISCUSSIONS 
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The objective of this thesis was to provide a better understanding of non-linear and non-

stationary characteristics in hydrological variability over France, and its relation to local and 

large-scale climate input. In particular, this dissertation aims at further understanding how 

complex interactions, within the climate system, shape the hydrological variability in France. 

Statistical, spectral and dynamical, approaches were used conjointly to provide a 

comprehensive spatiotemporal picture of the hydroclimate variability in the Euro-North 

Atlantic area. The key results and perspectives for further research are here discussed.. 

1. Spatiotemporal scales of hydroclimate variability in France 

In the present context, water quantity and quality are stressed by climate change and diverse 

socioeconomical issues (IPCC 2014). In France, the OECD (2013) has noted that warming 

temperature are higher than the world-average, hence enhancing the stress on hydrological 

variability through different mechanisms at different scales (Gettelman and Rood 2016). 

Numerous studies therefore investigated the link between hydrological variability and large-

scale climate (Kingston et al. 2006, 2007; Massei et al. 2007, 2017; Hannah et al. 2011; 

Massei and Fournier 2012; Lavers et al. 2013; Dieppois et al. 2014, 2015, 2016a; Lavers and 

Villarini 2015; Ionita et al. 2017; Laaha et al. 2017), highlighting the scale dependence of 

such a relationship in both time and space. However, those studies focused on identifying 

either spatial or temporal scales, and did not account for possible causal relationship between 

scales. These issues has been addressed in Part I “Spatiotemporal scales of hydrological 

variability in France” through developing a new clustering strategy accounting for temporal 

changes in the spectral characteristics (i.e. various frequencies, or timescales, defining a 

signal variability, and their relative magnitude), which was applied to different hydroclimate 

variable (precipitation, temperature and discharge) over 152 watersheds. For each 

homogenous regions of temporal variability, we then also examine causal relationship 
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between the timescales defining the signal using conditional mutual information based 

algorithm (Paluš 2014; Paluš et al. 2018).  

Our results indicate that, in France, hydroclimate variability occurs at selected time scales 

from seasonal to interannual, consistently with the world’s largest rivers (Labat 2006, 2008). 

We found that those time scales are seasonal, annual, 2-4 and 5-8 years respectively.  

Compared to previous studies (Champeaux and Tamburini 1996; Sauquet et al. 2008; Snelder 

et al. 2009; Joly et al. 2010), we have shown that Northern France, does not exhibit larger 

critical scales than southern France, i.e. northern France is not more homogenous than 

southern France in its hydroclimate variability. In addition, discharge variability was found 

much homogeneous over northern France. Importantly, examining cross-scales causal 

relationships, we also show that while regions share partly similar spectral patterns, causal 

interactions defining the spectral patterns are markedly different and complex. The phase-

phase and phase-amplitude relationships between time scales can be of any direction (i.e. 

from smaller to larger timescale, and vice-versa), either uni-, bi-directional or self-interacting. 

Such a complexity was already found in El Nino Southern Oscillation (Jajcay et al. 2018), for 

instance, but has ever been explored on hydrological systems. Interestingly, while phase-

phase relationships are transferred from precipitation and temperature to discharge, phase-

amplitude relationships are not. We have hypothesized, that, similarly to recent works in 

neurosciences (Sotero 2016), this absence of phase-amplitude relationship in discharge 

variability results from heterogeneous filtering of the climatic signal (i.e. precipitation and 

temperature) amplitude by the watershed properties, breaking indirect spatial connections. 

We then studied the links between discharge and climate variables at local- (e.g. precipitation 

and temperature) and large-scale (e.g. North Atlantic atmospheric circulation). There has been 

a very large amount of studies on the links between both local- and large-scale climate with 

hydrological variables in the Euro-Atlantic area (Labat 2006; Massei et al. 2007; Slimani et 
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al. 2009; Gudmundsson et al. 2011b; Boé and Habets 2014; Dieppois et al. 2016a). Recently, 

however, Massei et al. (2017) highlighted the need for multi-timescale approaches, as North 

Atlantic atmospheric circulation patterns linked to hydroclimate variability differ from one 

timescale to another over the Seine watershed (North-Western France). In Part II 

“Spatiotemporal scales of large scale hydroclimate variability”, we built on Massei et al. 

(2017) by studying the timescale dependence of statistical links between discharge and 

climate over all the homogeneous regions. Using spectral coherence analysis, we first 

highlighted that discharge variability is primarily linked to precipitation at inter-annual scales, 

and to temperature at annual time scales for all regions. Second, looking at the composite 

patterns of the North Atlantic circulation associated with precipitation and discharge 

variability, we highlighted differences depending on the timescale and on the region. For 

instance, south-eastern watersheds are linked to similar atmospheric circulation patterns at 

both 2-4 and 5-8 years’ timescales, while for other regions atmospheric patterns differ largely 

according to the timescale. Southern watersheds are correlated with weaker meridional 

pressure gradients, and southward-shifted atmospheric circulation, compared to northern 

watersheds. At 2-4 years’ time scales, northern regions’ discharge is linked to a symmetric 

eastward shift of the Iceland low and Azores high, while, at 5-8 years’ time scales, a similar 

eastward shift is only noted on the Iceland low. Using wavelet similarity and wavelet 

coherence, we further explored the relationships between discharge and large-scale climate 

variables. We found that discharge variability in the northern regions show similar spectral 

pattern than geopotential height at 500 hPa over very specific regions of the North Atlantic, 

such as the North Sea, but that the common scales of variability extended at much larger 

spatial scales. Southern watersheds show similar spectral patterns signature over much larger 

spatial scales, matching much better with the atmospheric circulation patterns identified on 

the composite analysis. We found that, for any given region, composite, spectral similarity, 
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and wavelet coherence z500 patterns do not necessarily match, showing the added 

information associated with each method.  

It also highlights clear modulations of the large-scale climate variability by the watershed 

properties, as atmospheric patterns differ when considering either precipitation or discharge. 

Such modulations were already suggested by several studies focusing on different part of the 

world (Gudmundsson 2011; El Janyani et al. 2012; Szolgayova et al. 2014a; Sidibe et al. 

2019), however, our study uncovered part of the spatiotemporal dependence of the watershed 

filter.  

2. North Atlantic atmospheric circulation dynamics 

Most hydroclimate studies focus on establishing links between the atmospheric circulation 

and hydrological variables, and assume that this link will be linear and stationary, i.e. a given 

atmospheric pattern will have the same impact on hydrological variability in a given location. 

For instance, it is generally accepted that the NAO phases are associated with either dry/wet 

winters over Western Europe. However, this has been put in doubt by studies that do not find 

any clear and significant relationship between the NAO and hydrological variability (e.g. 

Shorthouse and Arnell 1997; Massei and Fournier 2012; López et al. 2013; Woollings et al. 

2015). In Part III “Dynamics of the North Atlantic circulation, and hydroclimate 

variability” we argued that these conflicting results could be due to relatively different 

dynamics (i.e. what happened before and after) associated with similar atmospheric 

circulation patterns (which would be considered as single patterns using most clustering 

techniques, for instance), leading to different impact on the continent. An important question, 

in atmospheric circulation dynamics, is to find the equilibrium points of a system’s dynamics, 

as well as the properties of this system (e.g. stability or bifurcations) away from those 

equilibrium points (Hannachi et al. 2017; Ghil 2019). For the past decades, a large body of 

studies have been devoted to the topic, and early studies demonstrated that atmospheric 
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circulation have two equilibrium points(Michael Ghil and Childress 1987; Mo and Ghil 1988; 

Vautard 1990): zonal circulation and blocking circulation. However, the real number of 

equilibrium states in the North Atlantic atmospheric circulation, their characteristics, and how 

they transition from on to another still is not fully-understood, especially in the context of 

climate change (Ghil and Lucarini 2019; Mann 2019).  

While many studies focus on the equilibria within prescribed dynamics, in Part III 

“Dynamics of the North Atlantic circulation, and hydroclimate variability”, we adopted a 

different approach through considering the equilibria and transitions of the system’s dynamics 

themselves. We used the powerful theory of conformal geometry to investigate what 

conformal invariance in the evolution of atmospheric circulation patterns meant in terms of 

dynamics. A theoretical reflection yielded the hypothesis that the vanishing moments of a 

conformal invariant, i.e. the extremal length (Ahlfors 1973), led to conservation of the 

dynamics of a system. We also qualitatively characterized the dynamical properties of an 

atmospheric circulation pattern, under a change of extremal length, in terms of elastic energy 

and harmonic functions. We applied our theoretical results to the North Atlantic atmospheric 

circulation climatological anomalies, and to anomalies at 2-4 and 5-8 years’ time scales, and 

we compared it to recurrent atmospheric patterns identified via statistical clustering. Three 

types of patterns, from which we then studied the potential transitions, were found: zonal, 

blocking and wave train. Our results indicate that using climatological anomalies, only 

blocking and zonal patterns occur, and transitions a two-way directions. At 2-4  and 5-8 years’ 

timescale, zonal, blocking and wave train patterns were found. In addition, while blocking 

patterns are transitioning to wave train and especially to zonal patterns at 2-4years’ timescale, 

blocking are primarily transitioning to wave train at 5-8 years’s timescale. Similarly, at 5-8 

years’ timescale, zonal patterns preferentially transition toward wave train patterns. We then 

computed the extremal length time series for the North Atlantic atmospheric circulation, and 
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reconstructed the phase-space of extremal length to analyse the changes in the North Atlantic 

atmospheric circulation, and how they relate to recurrent climate patterns. In the North 

Atlantic regions, the climatological atmospheric dynamics appears quite stationary, with some 

intermittency however, and stable. The North Atlantic atmospheric dynamics are 

characterized by both zonal and blocking patterns forming a stationary basin of attraction, but 

short-term deviations from these stationary states, describing non-stationary states, are found 

even during the occurrence of both patterns as well. This suggests that statistical 

climatological recurrent patterns can result from different dynamics. At 2-4 years’ timescales, 

three dynamical states were found: one being stationary and corresponding to wave train 

patterns, and two others being symmetrical about the stationary axis describing zonal and 

blocking patterns. At 2-4 years’ timescales, the system of the North Atlantic atmospheric 

dynamics was found not to be asymptotically stable (i.e. not evolving towards stability, but 

being overall stable). Meanwhile, at 5-8 years’ time scales, the same system dynamics are 

markedly different, and are essentially non-stationary, heavily intermittent and unstable. This 

might be due to a smaller sample size, affecting the stability of our results. 

Finally, we investigated how the extremal length of the North Atlantic atmospheric circulation 

could relate to dry and wet periods in precipitation over the north-eastern France. The results 

indicate that, at climatological scales, the shift between dry and wet periods is, at least partly, 

associated with changes in the forward curvature of extremal length variability, which refers 

to sudden increases in extremal length. While, at 2-4 years’ timescale, no obvious 

relationships were found, at 5-8 years’ timescale, wet and dry periods both appear associated 

with one of the several basins of attraction of the extremal length phase-space. This suggests 

that rainfall variability is associated to certain states of the atmospheric circulation. 
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3. Conclusions and perspectives 

 

Based on our study of hydroclimate variability over France and its link to the Euro-North 

Atlantic atmospheric variability, at multiple spatiotemporal scales, the following conclusions 

can be made: 

 Both hydrological and climate variability, as well as the links between them, show 

combined spatial and timescale dependence, in their statistical, spectral and dynamical 

properties. This is just highlighting a high-degree of non-linearity and non-stationarity 

in these systems. 

 Between 1968 and 2008, the main modes of variability are seasonal, annual, 2-4 years 

and 5-8 years’ time scales. However, longer timescales were identified in Massei et al. 

(2007) and Dieppois et al. (2016a). 

 Discharge in France is mainly driven by temperature at seasonal time scale, and by 

precipitation at longer time scales. 

 Without groundwater support, the watershed properties modulate the inter-annual 

climate signal in amplitude, only.  

 Six regions of homogeneous variability were identified in discharge, each one being 

characterized by different non-linear local and large-scale climate forcing.  

 The North Atlantic atmospheric circulation is characterized by zonal, blocking and 

wave train patterns, which can however result from different dynamics, impacting 

precipitation over France. 

 Further understanding the atmospheric dynamics is crucial to better understand the 

historical and future evolution of water resources (hydrological variability).   

This study has this demonstrated the importance of accounting for non-linearity and non-

stationarity using statistical, spectral or dynamical analysis. The results produced shed some 
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light on how this non-linearity/stationarity takes its roots in climate and is transferred to 

discharge. Nevertheless, several areas could be further explored to improve our understanding 

of the complex relationships between components of the Earth system. A non-exhaustive list 

of points that appeared as significant limitations during this study is summarized as follows: 

 The length of the time series (41 years) was constrained by the need of consistency and 

good quality data, i.e. without missing values, for both local and large scale 

hydroclimate variables. For instance, this prevented us to look at decadal time scales. 

However, long-term hydrological reconstructions introduce their own bias (Caillouet et 

al. 2016) and hindcast models fail to reproduce several non-linear interactions (Meehl 

et al. 2014; Bellucci et al. 2015; Bracegirdle et al. 2016). Multi-disciplinary works 

reconciling climate model evaluation and hydrological reconstruction thus appear 

crucial to create long-term hydrological data sets and fill this gap. 

 The spatial scale selected to study the atmospheric dynamic was sufficient for a 

climate-impact study, here on France hydrological variability. However, to better 

understand the climate dynamics at the global scale, this should be extended, as the 

climate dynamics are heavily constrained by shape, topology and rotation of the Earth. 

 We tested several causality analyses (from the same theory as cross-scale interactions) 

in order to go past commonly used simple correlations, from which physical 

interpretations have to be done with caution. We think those causal methods 

demonstrated an important potential, for the characterization of both hydrological and 

climate analysis. 

 The theory of extremal length, and more generally the geometry-physics equivalence, 

also demonstrated a great potential. Further works, both theoretically and analytically, 

are however needed to confirm the main results presented here. For instance, 

integrating constrains imposed by extremal length on the atmospheric dynamics into a 
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non-linear model could help better characterizing and predicting dynamical changes. 

Similarly, non-stationary behaviour of both climate and hydrological dynamics could 

be studied via critical phenomena, i.e. phase transitions, analysis, in order to 

understand when and how dynamics shift. 

 This dissertation was strictly using observational or reanalysed datasets, using the 

various new methodologies we developed, future studies should however aim at 

assessing the performance of global climate models, such as currently provided via the 

Coupled Model Intercomparison Project, which is now entering in Phase 6 (CMIP6; 

Eyring et al. 2016), or via the COordinated Regional Downscaling Experiment 

(CORDEX; Vautard et al. 2013). 

 

This thesis thus presents robust methodologies allowing studying complex interactions in both 

space and time at the interface between large-scale climate and hydrological systems. The 

results provided here are thus addressed to climate and hydrological scientists, which 

routinely look at complex interactions between different components of the Earth System. Our 

methodologies could also be systematically applied scientists from diverse background 

looking at complex interactions between different systems, or different component of a given 

system.  
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S1: Theoretical reflexion on extremal length and dynamics 

of a physical system 

Introduction 

Emmy Noether (1971) in her pioneering works has shown that the conservation laws of physics 

are analogue to geometrical symmetries. Since the Lagrangian and Hamiltonian formalisms allow 

for the representation of a system’s dynamics under a purely geometrical point of view, by the 

configuration and phase spaces of the system, it is possible, from geometry, to gather some 

insight into the equations of motions of the system. The comes in handy when one wants to 

decreases the number of degrees of freedom of the system, but applying constraints on the 

equations of motion, or equivalently, forcing some symmetries in the geometrical setting. 

Conformal constraints have led to the development of Conformal Field Theories, which are of 

great importance for quantum gravitation, string theory or critical phenomena. Except for 

Conformal Field Theories, most of the conformal constraints considered in those fields concern 

infinitesimal conformal transformations, and thus, do not force the conformal symmetry to be 

global. In this study, we use a global conformal invariant, the extremal length. 

The extremal length concept has been introduced in the continuous setting by [2], and is the 

extension of the concept of length invariance in  𝑆𝑂(3) to the angle-preserving conformal group 

(𝐶𝑜𝑛𝑓(3)). The theory was later expanded to the discrete setting by [3]. The correspondence of 

the extremal length with physical laws have been investigated in potential theory [4], critical 

phenomena [5], knot theory or hydrodynamics [6]. In fluid mechanics, extremal length in the 

context of conformal, quasi-conformal mappings is used to simplify computations. The physical 

domain is mapped into a conformal domain (disk or rectangle), and the extremal length becomes 

a parameter of the equations of motions in the canonical domain [7]. Outside of physics, the 

conformal invariance of extremal length has been used for registration in medical sciences [8], 
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[9]. The works of [2] have allowed to give the extremal length, a physical analogue: electrical 

resistivity. The latter analogy is often quoted in studies using extremal length to give it a more 

intuitive interpretation.  However, there have been very few studies that take the extremal length 

concept [2] and associate it with the spatiotemporal dynamics of a physical system. A large body 

of studies in statistical physics has linked the extremal length to Brownian motion at criticality 

[10]–[12]. Those studies concentrate on critical phenomena, i.e. dynamics of a physical system 

between phase’s transitions.  In the present study, we present, for the lack of rigorous 

demonstration, a set of theoretical reflections, on how the extremal length constraint can be 

enforced on the dynamics of a system, and what are the consequences of those constraints. This 

part will be organized as follows. In section 1, we will present the concept of extremal length. In 

section 2, we present our reflections on the link between extremal length and a system’s 

dynamics, i.e. its equations of motion. We then present what are the spatial and dynamical 

changes corresponding to some extremal length levels, in Section 3. In section 4, we discuss the 

consequences of the constraints imposed by extremal length on the quasi-geostrophic equation for 

atmospheric circulation. Section 5 presents the algorithm for approximating the extremal length 

of a discrete surface, as well as the conjecture by Kenneth Stephenson, on which the algorithm is 

based. 

1. The notion of extremal length 

Ahlfors (1973) introduced a number of conformal invariants, that is, measures which do not 

change under a conformal map.  Any surface in ℝ3 whose local angles are independent of the 

local coordinate system (called a chart) chosen is said to be equipped with a conformal structure. 

If one create two different charts of the same region of a surface with a conformal structure, the 

angle of two curves intersecting at one point will be measured the same. A surface with a 

conformal structure embedded in 𝑅3is called a Riemannian surface (Figure S1.1). 
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Figure S1.1. Two charts covering a subset of a surface equipped with a conformal 

structure. Two charts 𝝓 and 𝜳 give two different coordinates for the same region of the 

surface. However, the angle measured at the intersection of the two lines is equal in both 

charts albeit the orientation and length of the curves is not necessarily the same. (Courtesy of 

Kenneth Stephenson) 

A surface with a conformal structure can be transformed by a map that will preserve, locally, 

the orientation of the angles. A conformal map 𝑓: 𝑆 → 𝑆′ from a surface 𝑆 to a surface 𝑆′ is a 

local angle preserving map. By local we mean that at a point 𝑥 ∈ 𝑆 and a point 𝑥′ ∈ 𝑆′ any 

two curves intersecting at 𝑥 will have the same angle at 𝑥′. Thus “local” here means the 

𝑆𝑛 ball around 𝑥 (resp. 𝑥′) .In the discrete setting, this neighbourhood is limited to the angles 

of edges that are connected to 𝑥 (resp. 𝑥′); neighbouring points are not part of that 

neighbourhood.  As a consequence, there is no restriction to keep the length of edges or 

angles between nodes invariant under such map.  Thus, two surfaces 𝑆 and 𝑆′ may have very 

different global shapes, yet have identical local structure. In that case we say that 𝑆 and 𝑆′ are 

conformal equivalent.  
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Each geopotential height time step is a Riemannian surface. The Uniformization theorem 

[14], [15] states any two Riemannian surfaces of the same genus can be locally conformally 

mapped onto each other. This means that any Riemannian surface is a conformal equivalent of 

another. An global constraint is thus needed to restrict the number of conformal equivalent 

surfaces within our time series. The “extremal length” [13] is such a constraint that brings 

additional information about the global structure of a Riemannian surface. The extremal 

length is a conformal invariant, i.e. if 𝑓: 𝑆 → 𝑆′ is a conformal map then 𝑒𝑙(𝑆) = 𝑒𝑙(𝑆′). 

Thus, two surfaces having the same extremal length are also conformal equivalent (globally). 

The following presentation of the extremal length is based on [13]. 

Definition 1.1 Let 𝑄 be a topological quadrilateral with its four ordered corners 

{𝑞1, 𝑞2, 𝑞3, 𝑞4} identified (Figure S1.2). Let {𝑞1, 𝑞4} and {𝑞2, 𝑞3} be the opposite edges 𝐿, 𝑅 

respectively. By exclusion, this defines 𝑇, 𝐵 as the orthogonal edges to L and R respectively. 

Let Γ: {𝛾1 … 𝛾2} be a collection of curves joining sides L and R. We are interested in finding 

curves whose length will not change under a conformal map. The Euclidean length is not 

invariant under conformal maps so another length must be found. In order to find such length 

we search for conformal metrics that are conformal equivalent to the Euclidean one i.e. 

𝑑𝑠 = 𝜌|𝑑𝑧|, 𝑑𝑠 is the conformal metric, |𝑑𝑧| the absolute value of the Euclidean metric 

(which is 𝛿𝑗
𝑖) and 𝜌 the conformal factor. A metric tensor, or “metric” is a function that take 

two vectors as inputs and outputs a scalar. The metric generalizes the notion of scalar product 

and allows the computation of angles and distances on any surface that admits such a metric. 

The easiest and most common one is the Euclidean metric. For a 2-dimensional space with 

coordinates 𝑥, 𝑦, the metric is of the form 𝑔 = [
1 0
0 1

]. The length of a curve is then 𝐿 =

∫ √𝑑𝑥2 + 𝑑𝑦2𝑏

𝑎
. We are searching for the family of metrics that are conformal to 𝑔 that is, 

metrics that do not change the measure of angles (i.e. doesn’t change the [𝑥, 𝑦] = [𝑦, 𝑥]; 𝑥 ≠
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𝑦 that is, the symmetry of the Euclidean metric). The only possible change is the conformal 

factor 𝜌.  

We define the following quantities: 

The 𝜌-length of curve 𝛾𝑖: 𝐿(𝛾, 𝜌) = ∫ 𝜌|𝑑𝑧|
 

𝛾   

The 𝜌-area of 𝑄: 𝐴(𝑄, 𝜌) = ∬ 𝜌𝑑𝑥𝑑𝑦
 

𝑄
 

The 𝜌-minimum length 𝐿(Γ, 𝜌) = 𝑖𝑛𝑓. 𝐿(𝛾, 𝜌) 

The extremal length between 𝐿 and 𝑅 (hereinafter: extremal length) of a topological 

quadrilateral is defined as: 

    𝜆(𝑄) =
𝑠𝑢𝑝.{𝜌}𝐿(Γ,ρ)

𝐴(𝑄,𝜌)
 (1.1) 

The numerator means that one select the 𝜌 that give the largest minimum length 𝐿(Γ, 𝜌). The 

denominator is simply the area in the selected 𝜌. 

 

Figure S1.2. The conformal mapping 𝒇({𝑸, 𝒒𝟏, 𝒒𝟐, 𝒒𝟑, 𝒒𝟒}): 𝑸 → 𝑸′ . The conformal map 

𝒇: 𝑸 → 𝑸′conserves the extremal length of 𝑸. The curves 𝜸𝒊..𝒏 are straight lines from 𝑳 to 𝑹. 

The extremal length in 𝑸′ is 𝑾𝝆/𝑯𝝆. (Adapted from Cannon et al. (1996)) 

Let’s note that  𝜆(𝐿, 𝑅) =
1

𝜆(𝑇,𝐵)
. The extremal length between 𝑇, 𝐵 is thus the inverse of the 

one between 𝐿, 𝑅. The former is referenced to as “conformal modulus” in the literature and 

𝑓 

 

𝑞1 

 

𝑞2 

 

𝑞3 

 
𝑞4 

 

𝑄′ 

 

𝛾1 

𝛾2 

𝛾𝑛 
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several important properties about extremal length were discovered studying either the 

extremal length or the conformal modulus. 

2. Extremal length constraints on the dynamics of a system 

2.1.Geometric and complex analysis generalities 

We briefly introduce the objects used in this section as well as their notations. We denote by 𝑆 a 

surface, which here correspond to a z500 snapshot. A surface is a manifold 𝑀 that is orientable, 

2-dimensional, and on which a metric can be defined. 𝑆 is the image of a 2-dimensional scalar 

field function Φ(𝑥, 𝑦) = 𝑧500𝑥,𝑦 where 𝑥, 𝑦 are latitude on longitude, respectively. This makes 

𝑆, a surface embedded in the three dimensional space ℝ3. We also call 𝑆 a hypersurface. The 

local geometry of a point 𝑥 ∈ 𝑆, is included into an ℝ3 ball of radius 𝑟 centred on  𝑥. The radius 𝑟 

is made as small as possible and we call the volume contained in the ball, the neighbourhood of 

𝑥. If 𝑥 is surrounded by 𝑛 other identified points 𝑥𝑖..𝑛
′ , the neighbourhood usually excludes those 

points and thus, the study of the neighbourhood of 𝑥 is that of the transition between 𝑥 and the 

surrounding points. Because a hypersurface can have local curvature, the Euclidean metric may 

locally fail to compute angles and distances in the neighbourhood of 𝑥. In order to deal with that 

limitation, we project 𝑥 and its neighbourhood to a flat vector space 𝑇𝑆𝑥 tangent to 𝑥. Being a 

vector space, the Euclidean metric is admissible, as well as all linear algebra operations 

associated with any vector space, so that computation of angles and distances is possible. To each 

point 𝑥𝑖..𝑁 ∈ 𝑆, is associated a tangent vector space 𝑇𝑆𝑥𝑖
. For example, on the unit disk, the 

tangent vector spaces to each point are simply the tangents to those points.A local, (conformal) 

transformation at point 𝑥 ∈ 𝑆 is a transformation of its neighbourhood. The point 𝑥 itself is not 

transformed, and we say that this point is the identity 𝐼𝑑. For example, in the set of natural 

numbers ℕ, the number 1 is identity because, for any number 𝑎 ∈ ℕ → 𝑎 ∗ 1 = 𝑎. Many 

transformations share similar characteristics. For example, rigid motion transformation keep 
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angles and distance unchanged and are composed of rotations and translations only. Conformal 

transformations are those that keep angles unchanged. Thus, instead of speaking a precise 

transformation, we usually regroup all transformations that share the same characteristics into a 

group 𝐺. That group 𝐺 “acts” on 𝑆 by transforming the neighbourhood of either a part of all 

points of 𝑥𝑖…𝑁  ∈ 𝑆. The group 𝐺 is composed of mathematical objects that actually transform the 

coordinates of the neighbourhood. For conformal transformations on hypersurfaces, 𝐺 is 

composed of 𝑛 ∗ 𝑛 matrices. The group of conformal transformations is called the conformal 

group and has several notations, one of them being 𝐶𝑜𝑛𝑓(2). The number 2 is for the number of 

independent dimensions the group is acting on. The group 𝐺 is a manifold in its own right, thus, 

the same problem as with 𝑆 arises: Computing angles and distance in the neighbourhood of a 

transformation matrix may not be possible and so a map to a tangent vector space (just as the 

vector space 𝑇𝑆𝑥) at a point 𝑞 ∈ 𝐺 is needed. The tangent vector space at 𝑞 is called the Lie 

algebra of 𝐺 at 𝑞 and denoted 𝖌(𝑞). Each basis vector 𝒒𝑖..𝑑 ∈ 𝖌(𝑞); 𝑑 = 1,2 represents a 

fundamental transformation, that is, a transformation that cannot be composed of others. We call 

those fundamental transformations, the generator of 𝐺(𝑞). Thus, each transformation matrix at a 

point 𝑞 ∈ 𝐺is represented by a linear combination of the generators. For example, in the 

conformal group 𝑐𝑜𝑛𝑓(2), the generators are those of translations, dilations, rotations and special 

conformal transformations. At each point in the neighbourhood of 𝖌(𝑞) is associated a vector, 

being a linear combination of the basis vectors 𝒒. This collection of vectors is called the vector 

field 𝑽𝑞. Since a point 𝑞 ∈ 𝐺 acts on the point 𝑥 ∈ 𝑆, thus the vector field 𝑽𝑞can be seen as a map 

𝑽𝑞(𝑥): 𝑥 ∈ 𝑆 ↦ 𝐺𝑞(𝑥), 𝑞 ∈ 𝐺 that transforms the neighbourhood of 𝑥 ∈ 𝑆. 

For the sake of simplicity, let’s say the map 𝑽𝑞(𝑥) acts directly on 𝑥 and results in a single 

vector instead of a vector field. Then, all 𝑽 maps form a vector field on 𝑆. The collection of 

all possible maps {𝑽} is called the tangent bundle 𝑇𝑆  of 𝑆. A set of Mobius transformations 
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occurring at all points of 𝑆 can be seen as one realization of the tangent bundle 𝑇𝑆𝐺. We call 

that realization a bundle section. 

Any vector space 𝑉 can be described equally by its dual 𝑉 ∗. A dual is the space of vector-

valued functions that output a scalar. An intuitive way of seeing a dual space is by visualizing 

a vector that goes through surface orthogonal to 𝑉 basis. The number of surfaces that the 

vector goes through is the output of the vector-valued function on the dual space 𝑉 ∗. The 

vector space generalizes the idea of the derivative, while its dual generalizes the idea of 

differential (i.e.the gradient of a vector). The dual of a vector space is the co-vector space and 

that of a tangent bundle, a co-tangent bundle. 

While the coordinates of any point on the hypersurface 𝑆 can be identified by its scalar field 

function Φ(𝑥, 𝑦), the local coordinates of a tangent space 𝑇𝑆𝑥 cannot be compared to those of 

a tangent space 𝑇𝑆𝑥′ without properly defining a map between them, that is, a derivative and 

the associated differential. This is because tangent spaces may not be parallel to each other 

(think about the unit disk example, the tangents are not parallel to each other). If there is 

curvature, then the usual derivative 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
; ℎ → 0 is not possible, and a more 

sophisticated derivative is needed. The covariant derivative ∇𝒖𝑽𝑞takes the vector field 𝑽𝑞 

along the vector 𝒖 (i.e. along a direction and distance) but satisfying some requirements that 

the tangent vector field 𝑽𝑞   always stays parallel to 𝒖. 

We end up this short introduction by speaking of complex analysis. The tangent spaces of our 

surface 𝑆 will be treated as complex spaces, in two flavours: The most recurrent, will be the 

upper half plane ℂ+ where the coordinates of a point are of the form 𝑧 = 𝑥 + 𝑖𝑦; The latter 

will be the extended complex plane; The is the complex plane ℂ with a point at infinity added. 

The latter is important for conformal transformations that need to be defined relative to more 

than one fixed point (hence the addition of a point to infinity). It can be pictured as the 

Riemann sphere (the 𝕊2 sphere) where the poles are either 0 or ∞. 
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The study of (conformal) transformations is akin to the study of (conformal) maps. 

We recall that maps can be broken down in both functions and morphisms. Morphisms are 

usually seen as a more general type of maps, while functions usually have their codomain (the 

domain of their image) as a set of numbers (c.f. ℝ, ℂ). We will use both functions and 

morphisms as maps through the following sections.  The maps have to satisfy certain 

requirements, most notably concerning their differentiability. We give some examples of 

(complex) maps and their properties.  

A holomorphic function is a complex-valued function that is, at every point of its domain, 

continuously complex differentiable. A meromorphic function is an holomorphic function 

except at some isolated points, which are called the poles of the functions. The poles of a 

function are the inverses of its zeros. A Harmonic function, is a twice differentiable function 

satisfying at every point of the domain, the Laplace equation, i.e.Δ𝑓 = 0 with Δ =
𝜕2𝑓

𝜕𝑥1
2 +

𝜕2𝑓

𝜕𝑥2
2 … +

𝜕2𝑓

𝜕𝑥𝑑
2, or equivalently, the Euler-Lagrange equation 𝐿𝑞 −

𝑑

𝑑𝑡
𝐿�̇� = 0, 𝐿: 𝐿(𝑡, 𝑞, �̇�) being 

the Lagrangian, with 𝐿 = 𝑇 − 𝑉; 𝑇 the total kinetic energy of the system, and 𝑉, the potential 

energy of the system. 

A homorphism is a map between two identical structures (such as vector spaces, groups, and 

so on…) that preserve the structures. Several types of morphisms exist such as isomorphisms, 

which are smooth maps between manifolds both in the direct and inverse directions, or 

automorphisms which are isomorphisms with the added property that the target domain of the 

map is the same as the domain of the source. 
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2.2. Conformal transformations and dynamics 

 2.2.1. Definition of dynamics and their change 

In the following, we refer to “dynamics” as the time evolution of a system, the latter being, 

for the purpose of our study, being defined as a set of 𝑁 independent generic particles. The 

evolution in time of the system is described by its equations of motion, which are composed 

of parameters (dependent on time or not), coordinates, and can have various forms, such as 

linear or non-linear, first order or higher, ordinary differential or partial differential and so on. 

The evolution in time of the 𝑑-dimensional coordinates of the system’s particles is 

represented in a configuration space, a 𝑑𝑁-dimensional manifold. The phase space adds to the 

configuration space, the velocities associated with each particle at each point in the 

configuration space. Thus, the evolution in time of the system, its dynamics, can be 

represented by a function (a trajectory) function of position, velocity, and, implicitly, time. 

Under this formalism, the equations of motion are described in a purely geometric way, and a 

bridge between physical laws and geometrical objects is created, a bridge pioneered by the 

works of Noether (1971). In a 𝑁 particles system, the degrees of freedom equals the number 

of particles, i.e. there are 𝑁 degrees of freedom, which makes description of the dynamics 

very complex, with the necessity to resort to statistical techniques to describe them. However, 

if 𝑚 constraints are applied on the equations of motion, the number of degrees of freedom is 

reduced to 𝑁 − 𝑚 degrees of freedom. A powerful constraint applied on dynamics is that of 

conserved quantities such as total energy, momentum, angular momentum and so on. When 

such constraint is enforced on the equation of motion, we get conservation laws. In the 

geometrical setting, conservation laws are analogue to geometrical symmetries, i.e. 

geometrical transformations that leave a geometrical object invariant (up to some parameter). 

The consequence is that when the equations of motion are conservations laws, the dynamics 

are invariant, i.e. they do not change in time. The term “change of dynamics” is usually 
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employed ambiguously, so a clarification is needed. We may distinguish “dynamics of 

change” and “change in dynamics”, both are of relevance in our context. The phase-space of a 

system enables to identify each expression with a precise characteristic [17]. The dynamics of 

change refer to the successive positions, in the phase space, of observation points. For 

instance, the observation of student’s marks over the years may reveal that average marks 

decrease as years have passed. Change in dynamics refers to the evolution of marks’ 

distribution between matters as years have passed. For instance, science related matters may 

have had the highest marks at the beginning of the observations, but later, social sciences may 

become the ones with the highest marks. In this case, the mechanisms of control, i.e. the 

equations of “motion”, have changed, in their parameters. 

Both measures are interesting, because studying dynamics of change may allow for prediction 

of future changes, while changes in dynamics indicate a major change in the relative 

contribution of each variable in the equations of motion. 

We will use the Lagrangian formalism to explore dynamics and their links with extremal 

length. Note that since the extended Lagrangian allows for the existence of conservation laws 

in non-conservative systems, we will not distinguish between conservative and non-

conservative dynamical systems.  

Namely, we wish to show that the successive configurations 𝑆𝑡 = 𝑧500(𝑥, 𝑦), with 𝑥, 𝑦, 𝑡 the 

longitude, latitude and time, respectively, are coordinates of the phase space of the 

atmospheric circulation dynamics. The following reflection aims at showing that when the 

extremal length of a surface 𝑆𝑡 → 𝑆𝑡+1 doesn’t change, the action is conserved, the total 

energy spent in the transformation is conserved as well and the equations of motion behind 

the change 𝑆𝑡 → 𝑆𝑡+1 are conservation laws. In short, when the extremal length doesn’t 

change, the dynamics are the same. 
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The following reflection is based on [3], [13], [18]–[20],[21], [22]. 

 2.2.2. Conformal invariants, dynamics of change and change of dynamics. 

Let 𝑢: (Ω, g) → (Ω′, ℎ) be a smooth map from Ω ∈ ℝ2 to the space of Ω′ ∈ ℝ2. The energy 

associated with the transformation, is called the Dirichlet energy and is defined as:  

𝐸(𝑢) = ∫ 𝑒(𝑢) 𝑑𝑥𝑑𝑦 =
Ω

∫ ||∇𝑢||
2 

Ω
𝑑𝑥𝑑𝑦 = ∫

1

2
|𝑑𝑢|2𝑑𝑥𝑑𝑦

Ω
= ∫ |

𝜕𝑢

𝜕𝑥
|

2

+ |
𝜕𝑢

𝜕𝑦
|

2

𝑑𝑥𝑑𝑦
Ω

 (2.1) 

The Dirichlet energy 𝐸(𝑢) is the integral of the energy density 𝑒(𝑢) over the domain Ω. The 

Dirichlet energy can be thought as the potential elastic energy built when someone takes a 

rubber band, and stretches it over a rigid material, over some length. When the rubber is 

allowed to go back to its, possibly new, resting length, the potential energy will be converted 

into kinetic energy. The potential elastic energy is proportional to the Dirichlet energy.  

The energy formulation of the transformation 𝑢 can be related to the local metric 𝑔(𝑥) for 

each point 𝑥 ∈ Ω by introducing the stress-energy tensor 𝑆.  

𝑆𝛼𝛽 =
1

2
|𝑑𝑢|2𝑔𝛼𝛽 − 〈

𝜕𝑢

𝜕𝑥𝛼 ,
𝜕𝑢

𝜕𝑥𝛽
〉 =

1

2
𝑔𝑖𝑗 〈

𝜕𝑢

𝜕𝑥𝑖 ,
𝜕𝑢

𝜕𝑥𝑗
〉 𝑔𝛼𝛽 − 〈

𝜕𝑢

𝜕𝑥𝛼 ,
𝜕𝑢

𝜕𝑥𝛽
〉 = 𝑒(𝑢)𝑔 − 𝑢∗ℎ𝑖𝑗 (2.2) 

With 𝑆𝛼𝛽 , 𝑔𝑖𝑗 and 𝑔𝛼𝛽 the coefficients of the stress-energy and metric tensors respectively. 

The lower and upper indices are the covariant (lower) and contra-variant (upper) coordinates. 

〈 , 〉 denotes the inner product, 𝑢∗ℎ is the pull-back (inverse image) of the coefficients of the 

metric ℎ by 𝑢. 

(2.2) shows that the energy density 𝑒(𝑢) depends on the metric coefficients 𝑔𝑖𝑗 and that the 

stress energy tensor 𝑆 depends on the energy density. 

For any transformation 𝑢, we can define the action functional 

    𝐴 = ∫ 𝐿(𝑥, 𝑢(𝑥), 𝑑𝑢(𝑥))𝑑𝑥𝑑𝑦
Ω

 (2.3) 

With, the Lagrangian 𝐿, defined as: 
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   𝐿(𝑥, 𝑢(𝑥), 𝑑𝑢(𝑥)) =
1

2
𝑔𝑖𝑗 〈

𝜕𝑢

𝜕𝑥𝑖
,

𝜕𝑢

𝜕𝑥𝑗
〉 = 𝑒(𝑢)(𝑥) = 𝑆𝛼𝛽 + 𝑢∗ℎ𝑖𝑗 (2.4) 

Hence,  

     𝐴 = 𝐸(𝑢) (2.5) 

We now have the well-known result that, if 𝑢 is harmonic and 𝑋 is a vector field acting on Ω 

for every 𝑡 = 1 … 𝑇 then  

     𝐸(𝑡𝑢𝑋) = 𝐸(𝑢) (2.6) 

Which results in 

     𝛿𝐸 = 𝛿𝐴 = 0 (2.7) 

And we also have 

     ∇𝑆𝛼𝛽 = 0 (2.8) 

Proposition 1: From (2.3-8), we get that both the Dirichlet Energy 𝐸(𝑢), and the action 𝐴 are 

invariant under harmonic transformations, and the stress-energy tensor 𝑆 is divergence free, 

i.e. it is covariant with the metric 𝑔. 

Since for 𝑚 = 2, all harmonic functions are conformal, then we get that any conformal 

transformation leaves the action invariant, and thus, preserves the equations of motion (in the 

harmonic case, the Euler-Lagrange equations). 

We want to stress that, for 𝑚 = 2, all local transformations can be harmonic and thus 

conformal. However, globally, the transformation of a domain Ω into another Ω′ is not always 

conformal. This allows tracking changes of dynamics. 

 2.2.3. Extremal length and dynamics 

Proposition 2: We have the remarkable result from Ahlfors that the extremal length is simply 

the reciprocal of the Dirichlet energy. The present results naturally follow: 
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- If the Dirichlet energy is the potential elastic energy, then the extremal length is the 

difference between the initial resting length, and the unloaded resting length of the rubber 

band due to heat loss. 

- If the total energy of the system on the path 𝑎𝑏 (i.e. the action 𝐴) is proportional to the 

Dirichlet energy, it is inversely proportional to extremal length. 

- For the dynamics to hold, both Dirichlet energy and Extremal length time derivatives should 

vanish. 

3. Dependence of conformal transformations on extremal length 

In this section, we aim at characterizing what are the geometrical characteristics of a 

conformal transformation constrained by a given extremal length. We want to investigate if 

the extremal length of a class of surfaces induces a specific topology or geometrical shape, 

and if it has specific dynamical properties. We first study how the integral lines of a 

conformal transformation are constrained by the extremal length, i.e. if any class of shapes is 

associated with a given extremal length. Then, we study the meaning of extremal length from 

a dynamical point of view, which will eventually help us giving physical dimensions to the 

concept.  

3.1. Mobius transformations 

Any tangent space of Riemann surface 𝑇𝑆𝑥 (all hypersurfaces in ℝ3 are Riemannian) is 

equipped with the Euclidean metric 𝒈 . A metric generalizes the inner product on a vector 

space and allows for computation of distance and angles. The conformal structure of the 

surface is expressed in local coordinates as 𝒈 = 𝑒2(𝑑𝑥2 + 𝑑𝑦2). Those coordinates can be 

parameterized to give the, so called, isothermal complex coordinates 𝑧 = 𝑥 + 𝑖𝑦. The 

conformal group 𝐺 is the group of angle preserving transformations. The group must satisfy 

the so-called group axioms: closure, associativity, identity and invertibility. Closure requires 

that the product of two members of the group must also be a member of the group, i.e. for 
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𝑎, 𝑏 ∈ 𝐺, 𝑎 ⋅ 𝑏 ∈ 𝐺. Associativity refers to the classical term i.e. for 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎 ⋅ (𝑏 ⋅ 𝑐) =

(𝑎 ⋅ 𝑏) ⋅ 𝑐. Identity is the requirement that there exists one member𝑒 ∈ 𝐺 that maps a member 

of the group to itself, i.e. 𝑎 ⋅ 𝑒 = 𝑎 ⋅ 𝑒 = 𝑎. Finally, invertibility is the requirement that there 

exists a member 𝑎−1 ∈ 𝐺 such that 𝑎 ⋅ 𝑎−1 = 𝑒. In other words, if 𝑎(𝑒) maps 𝑒 to 𝑒 + 𝑑𝑒, 

then 𝑎−1(𝑒 + 𝑑𝑒) maps it back to 𝑒.  An important note is that 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 does not 

always holds, which means the order of the transformations matters.   

When a group satisfies the group axioms, it is said to be defined. In two dimensions, as in our 

context, the conformal group (and its associated Lie algebra) is infinite dimensional (i.e. any 

arbitrary holomorphic function on 𝑆 is a conformal transformation and thus every surface is 

locally conformally equivalent to another). However, there is no guarantee that a collection of 

locally conformal transformations yields a global conformal one. Additionally, depending on 

its generating set, the infinite-dimensional group may not be defined at every point of a 

surface. In our study, the generating set of the conformal transformations is ℝ2, which makes 

only translations, rotations, dilations and inversions defined globally. This subgroup of 

conformal transformations is finite-dimensional, and thus restricts the number of surfaces that 

can be conformally equivalent.  

In two dimensions, at a point 𝑥 ∈ 𝑆, with the tangent space 𝑇𝑆𝑥 parameterized with 

isothermal coordinates, a conformal transformation of the neighbourhood of 𝑥 is a coordinate 

transformation 𝑓 defined as: 

    𝑓(𝑧) =  
𝑎𝑧+𝑏

𝑐𝑧+𝑑
  (3.1) 

With 𝑎, 𝑏, 𝑐, 𝑑 complex numbers that satisfy 𝑎𝑑 − 𝑏𝑐 = 1. 

The subgroup of such conformal transformations is called the extended Mobius group 𝑨𝒖𝒕 �̂�. 

We thus have the following transformations (3.2) 
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Translation : 𝑓(𝑧) = 𝑧 + 𝑏; 𝑎 = 0, 𝑐 = 0, 𝑑 = 0 

Rotation : 𝑓(𝑧) = 𝑎𝑧; |𝑎| = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1 

Dilation: 𝑓(𝑧) = 𝑎𝑧; 𝑎 ∈ ℝ, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1 

Inversion : 𝑓(𝑧) =
1

𝑧
; 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0 

Mobius transformations in (3.2) can be classified in four groups depending on their multiplier 

𝜇. 

Let 𝑓(𝑧) in (2.9) be expressed in matrix form:  

     𝑀𝑓 =
1

√𝑎𝑑−𝑏𝑐
(

𝑎 𝑏
𝑐 𝑑

) (2.11) 

[23]: A Mobius transformation 𝑓 has one and  only one conjugate matrix 𝑔 if there exists a 

continuous bijection ℎ such that 𝑔 = ℎ−1𝑓ℎ, 𝑖. 𝑒.  if the diagram of those three functions 

commutes.  

Then, 𝑔 is equal to: 

   𝜇𝑧; (𝜇 ≠ {0,1}) or 𝑧 + 1; (𝜇 = 1) (3.3) 

Where 𝜇 is called the multiplier of the Mobius transformation. The first case when 𝜇 ≠ {0,1} 

is when there are two fixed points, i.e. for rotations and dilations. The case with 𝜇 = 1 is for 

translations, with only one fixed point. 

Multipliers are defined at the fixed points of the Mobius transformation and can be computed 

as follows: 

   𝜇𝑖 = {
𝑓′(𝑧𝑖); (𝑧𝑖 ≠ ∞)

lim𝑧𝑖→∞ (
1

𝑓′(𝑧𝑖)
) ; (𝑧𝑖

 = ∞)  
𝑖 = 1,2 (3.4) 

Computing the singular value decomposition of 𝑀𝑔, we find the eigenvalues of 𝑀𝑓 to be √𝜇 

and −√𝜇 
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For a Mobius transformation 𝑀𝑓 in Ω, the multipliers 𝜇 will generate level lines, i.e. lines 

where 𝑓 = 𝑐𝑜𝑛𝑠𝑡, i.e. the coefficients of the Mobius transformation are constant (see Figure 

S1.3). The four groups of Mobius transformations are defined by the type of level lines, 

depending on the multiplier value. 

 

Figure S1.3: The four canonical Mobius Transformations and their associated level lines on 

the extended complex plane. 

- If the multiplier 𝜇 is complex but of absolute value 1, then the transformation is 

elliptic, and points move along a rotation. (Figure S1.3a) 

- If the multiplier 𝜇 is real, then the transformation is hyperbolic: points are moved 

radially (i.e. it a dilation), repelled from 0 and attracted by ∞ if 𝜇 > 1, or reversely if 

𝜇 < 1. (Figure S1.3b) 

- If the multiplier 𝜇 is a general complex number (without restriction on its absolute 

value), then the transformation is loxodromic: points move in a combination of 

rotation and dilations. (Figure S1.3c) 

- If the 𝜇 = 1 but the 𝑀𝑔 is not diagonal, that is, of the form (
1 𝑎
0 1

), then the 

transformation is parabolic and corresponds to a translation of the form 𝑧 = 𝑧 + 𝑎. 

(Figure S1.3d). 

3.2. Integral lines of a Mobius transformation constrained by extremal length 
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Let’s define Ω  be a section of the tangent bundle 𝑇𝑆 and 𝑓 is a set of Mobius transformations 

on Ω . The metric �̅� over a tangent bundle 𝑇𝑆 is said to be natural if it can be represented as 

projection over some basis vector fields (c.f. horizontal and vertical lifts of the vector fields of 

𝑇𝑆) of the Euclidean metric of the surface 𝑆. That is to say that at a point 𝑥 ∈ 𝑆, the metric of 

𝑆 has a smooth correspondence with that of 𝑇𝑆 at the same point. Unfortunately, for 

hypersurfaces, this often not the case [24]. For conformal transformations however, it has 

been shown that conformal metrics of the tangent bundle 𝑇𝑆 are smoothly related to that of 

the surface 𝑆 by homeomorphisms [25]. 

We will thus identify Ω, a section of the tangent bundle 𝑇𝑆, with the complex plane ℂ. 

Note that since we are dealing with conformal transformations, the domain Ω is defined up to 

conformal morphisms. 

The Dirichlet energy of a transformation from the open set Ω ∈ ℂ to ℝ2, 𝑓: Ω → ℝ ,  is 

defined as follows:  

   𝐸(𝑓) =
1

2
∫  

Ω
‖∇𝑓‖2𝑑𝑥𝑑𝑦 = ∫  

Ω
𝑒(𝑓)𝑑𝑥𝑑𝑦 (3.5) 

𝑒(𝑓) =
1

2
‖∇𝑓‖2 is the energy density, ∇ is the covariant derivate on Ω. 

The Dirichlet energy measures how smooth the function 𝑓 is over the set Ω. 

We aim at characterizing the type of Mobius transformations that are allowed in a domain Ω 

of a given extremal length. 

The domain Ω being a section of the tangent bundle 𝑇𝑆, there is a vector associated with each 

point in Ω and thus, Ω is a vector field. 

The domain ∈ ℂ is bounded and a vector field is defined on both the interior Ω and its 

boundary 𝜕Ω. The vector field gives rise to line integrals, that is, imaginary paths a particle 

submitted to the action of each vector would follow from a starting point 𝐴 to its ending point 
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𝐵. Because they are harmonic (i.e. they satisfy Laplace’s equation), knowing how they 

behave on the boundary Ω is sufficient to know how they behave inside Ω  [13]. 

In particular, let’s define a harmonic measure 𝑢(𝑧) on Ω ∪ 𝜕Ω as the length (normalized to be 

a probability) of line integrals, resulting from Mobius transformations on Ω, starting from 

edge 𝐿 and ending to edge 𝑅. The function 𝑢 satisfies the following properties: 

- It is harmonic and bounded 

- 𝑢(𝐿) = 0; 𝑢(𝑅) = 1 

- The derivative 
𝜕𝑢

𝜕𝑛
 on 𝜕Ω vanishes. 

Definition 2.1 [13]: The Dirichlet energy of 𝑢 is the reciprocal of the extremal distance 

between 𝐿 and 𝑅: 

     E(u)=𝜆(𝐿, 𝑅)−1 (3.6) 

Let level lines 𝜇𝑖 be lines of 𝑢 = 𝑐𝑠𝑡, each level line starts somewhere on the boundary 𝜕Ω 

and ends at another point on this same boundary. Now, by the reflection argument, 𝑢 has an 

harmonic conjugate 𝑣, and the level lines 𝜂𝑖 of 𝑣 cross those of 𝑢 at right angle. Figure S1.4 

shows an example of level lines for both 𝑢 and 𝑣 . 

Definition 2.2 [13]: An increase 𝜂𝑖 → 𝜂𝑖+1 on a portion of the boundary 𝜕Ω is equivalent to 

the gradient of 𝑢 along the outer normal vector 𝒏. If that portion is noted 𝐸1, then : 

    𝑑𝑣 = ∫
𝜕𝑢

𝜕𝑛
|𝑑𝑧|

𝐸1
 (3.7) 

And by Green’s theorem, i.e. ∫
𝜕𝑢

𝜕𝑛
= 0

𝜕Ω
, we get : 

   ∫ 𝑢𝑑𝑣|𝑑𝑧| = 𝐸(𝑢)
𝜕Ω

= ∫ (𝑢𝑥
2 + 𝑢𝑦

2)
Ω

𝑑𝑥𝑑𝑦 (3.8) 

With 𝑢𝑥
2, 𝑢𝑦

2  being the square of the derivatives of 𝑢 in the 𝑥 and 𝑦 directions respectively. 
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Figure S1.4: Example of level lines of a harmonic function 𝑢 (blue) and level lines from its 

conjugate 𝑣 (red). The two sets of lines intersect at right angles. 

 

Equation (3.8) means that the Dirichlet energy of a transformation 𝑢 in the interior Ω is equal 

to the sum of those transformations on the boundary. The latter measures how much 𝑢is 

“outflowing” of 𝜕Ω. Because the boundary is counted counter-clockwise, the outflowing is 

through𝑅. The more the line integrals are flowing through 𝑅, the higher the “outflow”. 

Note that in the following, when talking about “high” and “low” extremal length, we mean 

“higher” and “lower”, that is, a map which increases or decreases the extremal length. 

Proposition 3 Following (3.6) and (3.8), we see that line integrals producing a net outward 

flux will be associated with high Dirichlet energy and, consequently, low extremal length. 

Due to Green’s theorem, this means that in Ω (i.e. the interior of the domain), the line 
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integrals will have tendency to be parallel and oriented towards 𝑅. The converse is true for 

high extremal length: the line integrals will diverge, so that if one project them onto 

horizontal lines, only few line integrals will reach 𝑅. In our context, we are dealing with 

hypersurfaces, i.e. surface embedded in ℝ3, so any lift of some point and its neighbourhood 

will increase the divergence and thus induce and increase in extremal length. We can here 

make reference of [3] electrical analogy. The author noted that if Ω is an electrical network 

under a potential difference at 𝐿 and 𝑅, where 𝑢 is the electrical current flowing from 𝐿 to 𝑅 , 

low extremal length was associated with numerous and shorter wires, and conversely for high 

extremal length. This makes our divergence criteria compatible with results from [3]. 

In the next section, we follow the ideas of Thurston (2019). 

2.3.3 The dynamical concept of extremal length 

The previous section highlighted that a class of deformations is associated with each value of 

extremal length. We now want to explore if there is some intrinsic characteristic of the 

medium were the transformation occurs associated with extremal length. One way to 

investigate this question is the use of elastic graphs [20]. 

Definition 2.3 Let’s define a marked graph as a pair (Γ, 𝑀)with Γ a graph, and 𝑀 ∈ Γ a set of 

market points. If 𝑓: (Γ1, 𝑀1) ↦ Γ2, 𝑀2), any marked point maps to a marked point (i.e. 

𝑓(𝑀1) ∈ 𝑀2).  

A 𝑙𝑒𝑛𝑔𝑡ℎ 𝑔𝑟𝑎𝑝ℎ K(Γ, ℓ) is a graph Γ where each edge 𝑒 has a fixed, positive length ℓ. 

An elastic graph 𝐺(Γ, 𝛼)is a graph Γ where each edge 𝑒 is given an elastic measure 𝛼 akin to 

the inverse of the spring constant 𝑘 in Hooke’s Law. 

The marked graph can be thought as the triangulation of our surface 𝑆.Each of the vertices 

represents our data points, and edges represent the shortest path between them. The market 

points of our graph lie on the boundary of 𝑆. Since the base of our surface 𝑆 is a rectangle, the 
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typical market points would be its four corners. The length graph 𝐾 will thus represent the 

lengths between each vertex. The elastic graph 𝐺 will represent the potential elastic energy of 

a vertex 𝑣𝑖 if it was stretched to the vertex 𝑣𝑖+1 along the edge 𝑒 with elastic weight 𝛼𝑒. The 

elastic weight, 𝛼𝑒, is analogue to the spring constant in Hooke’s energy law. One way to think 

about the length graph is a network of pipes (pipes being the edges), and the elastic graph as a 

rubber band network (the rubber band being the edges). 

 

Figure S1.5: The diagram of the association of a norm to a curve 𝑪: We want to give a curve 

in the complex plane a norm. The curve 𝑪 is first mapped to an elastic graph 𝑮(𝜞, 𝜶), then 

mapped to a length graph 𝑲(𝜞, 𝓵). The notations above the arrows are the different energies 

associated with each map: 𝑬𝑳 is the extremal length;𝑬𝒎𝒃, the embedding energy;𝑫𝒊𝒓, the 

Dirichlet energy;𝑳𝒊𝒑𝟐 the Lipschitz energy;𝓵𝟐 is the squared norm. Straight arrows as well 

as the large curved arrow, denote maps from one space to another. Loops denote maps from 

one space to itself (e.g. a map from an elastic graph to another). [26] 

We are interested in the energies involved when the rubber band are stretched to the pipes, 

that is, when 𝐺 ↦ 𝐾 and how those energies evolve when going from one rubber band 

network 𝐺1 to another 𝐺2. 
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The diagram in Figure S1.5 sums the process of taking a curve 𝐶 in the complex plane, 

mapping if to an elastic graph 𝐺(Γ, 𝛼), then mapping the elastic graph to the length graph 

𝐾(Γ, ℓ).   

The elastic graph 𝐺 is considered a spine for 𝑆 with the marked points 𝑎1, 𝑎2, 𝑎3, 𝑎4 (the four 

corners of our surface boundary) if any deformation of 𝑆 with respect to its marked points, 

snaps back to 𝐺 under the inverse of the map that deforms 𝑆. Since extremal length is the 

energy of the map from the curve 𝐶 to the elastic graph 𝐺 it is evident that extremal length 

will determine the elasticity of the curve 𝐶. Basically, the first part of the diagram in Figure 

S1.5, is a projection of the curve 𝐶 onto the elastic graph 𝐺.  

On 𝐺, the extremal length is determined as  

    𝐸𝐿𝛼[𝐺] = ∑ 𝑛𝑐(𝑒)𝛼(𝑒)𝑒𝑖..𝑛  (3.9) 

Where 𝑛𝑐(𝑒) is the number of times the curve 𝐶 crosses the edge 𝑒, and 𝛼 is the spring 

constant of the edge 𝑒. 

Proposition 4 It follows immediately from (3.9) than a high extremal length is associated 

with either a large number of crossing of the edge 𝑒 or high 𝛼 for that edge.  

Let 𝜙: 𝐺1 ↦ 𝐺2, 𝑓: 𝐺1 ↦ 𝐾1, 𝑓′: 𝐺2 ↦ 𝐾2, and 𝐶 ∈ 𝐺1we have: 

   𝑆𝐹[𝜙] = sup  
𝐸𝐿[𝜙𝐶]

𝐸𝐿[𝐶]
= sup  

𝐷𝑖𝑟[𝜙𝜊𝑓′]

𝐷𝑖𝑟[𝑓]
 (3.10) 

With 𝑆𝐹 being the stretch factor of 𝜙, 𝐷𝑖𝑟[. . ] the minimizer of the Dirichlet energy for the 

map. 

If 𝑆𝐹[𝜙] < 1, we have 𝐺1 looser (i.e. with less potential elastic energy) than 𝐺2. We also have 

the relationship between extremal length and the minimizer of Dirichlet energy: 

    ℓ[𝑓, 𝐶]2 ≤ 𝐷𝑖𝑟[𝑓]𝐸𝐿[𝐺] (3.11) 
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Using (3.9-11), we can say that extremal length is the analogue of the potential energy lost 

during the stretch of the rubber band, due to heat build-up and loss, and that loss is directly 

proportional to extremal length, which is akin to a resistance. 

2.3.4 Extremal length in point mechanics 

Friedman and Scarr (2019) have shown that the action 𝐴 as defined in our context is 

equivalent to Newton’s second law. Using the analogy between extremal length and electrical 

resistance in an electrical network [3], we can give physical units to extremal length.  

Definition 2.4 [3]: The linear form of Ohm’s law,between two nodes 𝑎, 𝑏 is defined as: 

    𝜆 = 𝜌 =  ∑ 𝑟𝑗𝑤𝑗  2𝑛
1 = 𝐸𝐼 (3.12) 

With 𝜌 the electrical resistance, 𝑟𝑗 the specific resistivity on the sub-arc 𝑗 and 𝑤𝑗 the current 

density vector on that same sub-arc. 𝐸 is the electromotive force resulting from the potential 

𝑈 between nodes 𝑎, 𝑏 and 𝐼 the strength of the flow 𝑊. 

Definition 2.5 [28]: Consider the electrical charge as a wave amplitude, then, Coulomb units 

are analogue to distance. Then, due to wave interference property, those units can be added 

and subtracted. It follows that Ohm’s Law can be expressed with the following 𝑈′, 𝑅′, 𝐼′ 

(respectively potential, resistance and current), whose dimensions are : 

𝑈′ =
𝑘𝑔𝑚

𝑠2
= 𝑁𝑒𝑤𝑡𝑜𝑛𝑠 

𝑅′ =
𝑘𝑔

𝑠
= 𝑀𝑎𝑠𝑠 𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 

𝐼 =
𝑚

𝑠
= 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

It follows 

    𝑚𝑎 = −∇U = 𝑚
𝑑2𝑥

𝑑𝑡2 = −∇𝑈′ = 𝑅′𝐼′. (3.13) 
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Proposition 5: From (3.13), the extremal length between two sides of a topological 

quadrilateral has units of [𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚]. [𝑡𝑖𝑚𝑒]−1 or [𝑒𝑛𝑒𝑟𝑔𝑦]. [𝑙𝑒𝑛𝑔𝑡ℎ]−1. It can be 

understood as total energy spent in moving the particle along its trajectory or the total 

momentum needed to cover a certain length in a given time. 

4. Extremal length and conserved quantities 

We have shown in previous sections that the invariance of extremal length meant conserved 

dynamics. Thus, this implies the existence of conservation laws, that is, conserved quantities. 

Both in the case of conservative and non-conservative systems of 𝑁 particles, conserved 

dynamics admit 𝑁  independent quadratic conservation laws. In the conservative case, the 

conservation of mechanical energy is the linear combination of all independent conservation 

laws. In the case of non-conservative, conservation laws equate to a constant, thus the linear 

combination of them represents the total mechanical energy, up to a constant.  

Following Proposition 5, it is easy to see that changes in extremal length will represent non-

conservative shifts in the conservation laws, with loss of total momentum to the profit of 

thermal energy for increasing extremal length, and the opposite for decreasing extremal 

length. 
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S2: Extremal length and geopotential height 
 

We now make the connection with dynamics, i.e.  the equations of motion. There are two kind 

of equations of motion that are of interest to us. First, we have the dynamics of the 

geopotential themselves, that is how they evolve in time. But we are also interested is linking 

extremal length to the geostrophic winds. Hopefully, because of the geostrophic 

approximation, i.e. the forces derive from potential energy, applying Newton’s second law of 

motion should be possible (we will nevertheless show that it is compatible with extremal 

length). 

1. Extremal length in the quasi-geostrophic tendency equation 

The geopotential tendency equation, gives the evolution of geopotential height under the 

shallow layer and quasi-geostrophic approximations. 

The geopotential tendency equation can be stated in its simplified form as: 

    𝜒 ∝ 𝐺𝑣 + 𝑇𝑝𝑣 + 𝐾 + 𝑄 (1.1) 

With 𝜒 the geopotential height, 𝐺𝑣 the geostrophic vorticity advection, 𝑇𝑝𝑣 the potential 

temperature advection, 𝐾 the friction resulting from advection of air parcels, and 𝑄 diabatic 

warming of the air parcel at the given pressure level resulting in different thicknesses of the 

air parcel at a given pressure level. 

Since we are assuming the geostrophic condition, 𝐾 = 0. At mid altitude (i.e. around 

500hPa), 𝑇𝑝𝑣 is small and hence will be neglected thus becomes: 

     𝜒 ∝ 𝐺𝑣 + 𝑄 (1.2) 



 

2 

The geostrophic vorticity advection term is responsible for the horizontal transport of absolute 

vorticity, while the diabatic heating is responsible for the amplification high/low pressure 

systems. 

Since vorticity advection 𝐺𝑣 is a kinetic term, and diabatic heating 𝑄 a source of potential 

energy, we can write eq. 14 in the Hamiltonian formalism: 

     
𝑑𝜒

𝑑𝑡
=

𝜕𝜒

𝜕𝑥

𝜕𝐻

𝜕𝑝
−

𝜕𝜒

𝜕𝑝

𝜕𝐻

𝜕𝑥
 (1.3) 

with 

      𝐻 =
((∇×𝑝).𝑣)2

2𝑚
+ 𝑉(𝑥) (1.4)  

the Hamiltonian, 𝐺𝑣 = (∇ × 𝑝). 𝑣, 𝑝 the linear momentum of the air parcel, and 𝑉(𝑥), the 

potential energy of the air parcel at 𝑥 due to diabatic heating 𝑄.  

Proposition 6 Following Propositions 2-4 and (1.3-1.4), extremal length has an inverse 

relation with momentum 𝑝, thus, high extremal length geopotential height are characterized 

by slow (or even stalled) horizontal advection of vorticity, and high curl.  

2. Extremal length and the geostrophic winds. 

The correspondence between extremal length, outflow, vorticity, momentum, and resistance 

makes prediction of geostrophic winds in the North Atlantic area intuitive. High extremal 

length geopotential height will lead to deformed westerlies, with geopotential height 

gradients. On the other hand, low extremal length geopotential with be represented by zonal 

winds, with centres of pressure parallel to each other. 
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Figure S2.1. z500 snapshots and their corresponding climatological extremal length. 

3. Experiments 

We ran two experiments in order to compare the predictions of our theoretical reflexions on 

extremal length, to actual cases. First, we computed the extremal length for the yearly 500hPa 

geopotential height from 1968 to 2008 and discuss how each computed extremal length 

matches the shape of the z500. Next, we computed the extremal length of meridional wind 

and 300hPa geopotential height for four heat waves events, June 1997, August 2003, July 

2010 and July 2011. We discuss the links between extremal length and the theory of Quasi-
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resonant amplification, which has been thought as being one major driver of those heat waves 

[1], [2]. 

3.1. Extremal length of 500hPa geopotential height 

Figure S2.1 shows the time series of 500hPa geopotential height over the North Atlantic area. 

According to the predictions, the range of extremal length will be differentiated by how the 

surface is deformed relative to the four corners of the boundary. For instance, low extremal 

length geopotential height should feature deviations from flatness with Eigen vectors aligned 

on the West-East direction, i.e. centres of pressure should have a West-East extension, be 

parallel to each other, placed in a mirror position with respect to each other, and have the 

largest West-East extension. On the other hand, high extremal length z500 should have 

several poles not parallel to each other; each having different direction of extension, with 

small West-East extension, and the geostrophic winds should describe a wave-like trajectory. 

The examination of the time series in Figure 1 shows that our predictions are well matched 

with observations. For instance, the largest extremal lengths are associated blocking patterns, 

while low extremal lengths are associated with mostly zonal patterns (e.g. 2003 versus 1988 

for high and low extremal lengths). The West-East extension is well matched with extremal 

length, lower extremal length z500 have centres of pressure that are spread from West-East, 

while higher extremal length z500 have their centres of pressure with low West-East 

extension (e.g.1968 versus 1969). The parallelism and symmetry of the different centres of 

pressure is also are good criteria when the sinuosity of the patterns fails to discriminate 

between surfaces. For instance, 1998 and 1999 years are very similar, however, 1999 has 

centres of pressure that are less parallel and not placed in face of each other, but more like a 

succession from West to East. As a consequence 1999 has higher extremal length than 1998. 

Those features match with Propositions 2-3, which predict that surfaces of high extremal 

length have been deformed by forces whose integral lines’ net outflux is small and conversely 
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for low extremal length surfaces. Proposition 4 hints that z500 with high extremal length have 

been associated with “thermal” losses during the bending of the iso-height, that is, when 

relaxed, they may not come back to their original state, unless a new, opposite, force acts onto 

them. 

3.2.Quasi-resonant amplification and extremal length 

We wanted to confront our theoretical results to an emergent field of research in climate 

science, that is, quasi-resonant amplification of Rossby waves (QRA, [29]). This phenomenon 

is a particular state of the atmosphere at mid-latitudes, and has been presented as one of the 

main driver of large heat waves during the last decades, possibly due to anthropogenic 

warming [3]. The principle derives from quantum physics and can be described this way (for 

an illustration, we refer the reader to [30]): At mid-latitudes in the Northern Hemisphere, 

Rossby waves flow from West to East together with the sub-polar jet-stream. Between each 

ridge and trough of those waves, low and high pressure systems develop. As the Rossby 

waves travel, so do those systems. Additionally, the energy of those Rossby waves is 

progressively lost North and Southward when those interact with both polar and tropical 

masses so that Rossby waves and their accompanying pressure systems weaken as one 

progresses North/Southward. However, in summer, the jet stream usually split in those 

“veins”. The Rossby waves get trapped between those veins that become a waveguide. In 

classical mechanics, this waveguide would be like two impenetrable walls, and air particles 

within the Rossby waves would reflect on the walls and interfere with each other. In the 

quantum paradigm, there is some probability that the particles leak out of the walls, even if 

very low, so there is no interference. Instead, if the Rossby waves stall, that is, they stop their 

progression towards the East, they become stationary and amplification occurs, even though 

the modality is still unclear ([1], [2]). This happens when the jet stream is anomalously bent, 

with ridges and troughs extending North/Southwardly more than usual. Severe heat waves, 
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over Europe and United states, have been associated with those stalled Rossby waves and 

their complicated mechanism [3], [4]. The trigger for the waveguide development is a reduced 

temperature gradient between polar and tropical air masses. 

 

Figure S2.2. Meridional wind for each QRA events. Blue meridional winds flow 

southward, red meridional winds flow northward. Next to the data is the extremal length 

associated with the pattern. 

Because those events represent clear shifts in dynamics, and are related to the local geometry 

of the atmosphere, comparison with our extremal length theoretical hypothesis can be 
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interesting. We thus study four heat waves events, June 1997, August 2003, July 2010 and 

2011, as depicted in [29] and [30], under the umbrella of extremal length. Figure S2.2 shows 

the situation for each event, in terms of meridional wind. 

The two most severe events were those of 2003 (Major heat wave over Europe), and 2011 

(Major heat wave over the United States). Both feature the most severe extremal length of the 

four events. The event of July 2011 is especially representative of the high extremal length 

surfaces: wave like structure, with several pressure centres blocking each other. Note that the 

stalled state of the Rossby waves is predicted by the extremal length as it is the momentum 

needed to move a particle over a distance, hence, high extremal length induce more likeliness 

for stalled situations and thus permanent pressure systems. 

Figure S2.3 shows the time series of extremal length of summer meridional winds (JJA) from 

1995 to 2012.  

 

Figure S2.3. Extremal length time series of summer meridional winds. Dashed line show 

the location of each event. 
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Apart from July 2011, not all events’ months match with the highest extremal lengths. 

However, each events’ year does, and, as a matter of fact, all high extremal length peaks 

match with recorded heat waves over the North Atlantic area [5].This suggests that there is a 

link between extremal length, QRA and the heat waves over the North Atlantic area. This 

relationship will be treated in future work.   
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S3: Approximating the extremal length of a surface 

 
The theory described above lies in the continuous setting. For a discrete setting, the extremal 

length has similar properties that were demonstrated by [1]. The curves in the continuum are 

replaced by path along edges connecting nodes. 

Finding 𝜌 that satisfies the supremum condition in (S1, 1.1) on an arbitrarily Riemannian 

surface is sometimes impossible for the lack of any explicit solution. However, one can 

exploit the conformal invariance of the extremal length. Any conformal equivalent 

topological space will give the same extremal length if the corners of the Riemannian surface 

are identified. This reduces the number of possible conformal maps from 𝑄 as only the maps 

𝑓(𝜆𝑄): 𝑄 → 𝑄′ are allowed. It follows from [2] that the Euclidean rectangle is one candidate 

for such a map. If one can map 𝑄 to 𝑄′ with the latter being a conformal rectangle then all 

extremal curves are straight lines going from 𝐿 to 𝑅 and thus the extremal length is just the 

width/height ratio of the rectangle. Figure S1.2 illustrates the idea. 

The computation of the extremal length once mapped to a conformal rectangle is trivial. 

However, the conformal map preserving the conformal structure of 𝑄 is much more difficult. 

The reason is that it is impossible to flatten a curve in the discrete setting. Thus a conformal 

map will always be approximately conformal with some distortion. This distortion is usually 

located at some points, most notably the corners {𝑞1, 𝑞2, 𝑞3, 𝑞4}. There is an additional source 

of distortion which is purely computational. Since a conformal map preserves local angles, it 

is needed to have a discrete measure of those angles. Delaunay triangulations [3] are 

commonly used for their conditions are easily satisfied for a variety of surfaces. However, 

when the surface lives in 𝑅3 (i.e. has {𝑥, 𝑦, 𝑧} coordinates), the triangulation is based on the 

{x,y} base only. The vertices of the triangles are then lifted orthogonally to their respective 𝑧 
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coordinates. During this process, the angles of the triangulation are not preserved and thus the 

conformal structure degraded. Figure S3.1 shows an example with a snapshot of geopotential 

height represented in {𝑥, 𝑦, 𝑧} coordinates.  

Figure S3.1 The Delaunay triangulation of a surface in 𝑹𝟑: The triangulation is based on 

the {𝒙, 𝒚} subspace then lifted to the 𝒛 coordinate. The angles are thus not preserved and the 

conformal structure is then distorted.  
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Figure S3.2 Approximation of the extremal length of a torus with increasing 𝑵: As N is 

increased the extremal length approximation converges towards the theoretical value 

(2.0616) and the variance of trials (upper plot and right column) is reduced. 

While it is impossible to flatten a curve in one map, a theoretical conjecture brought forward 

by Kenneth Stephenson from University of Tennessee [4] argues that by triangulating the 

surface randomly a sufficiently high number of times, the conformal structure will emerge 

from the average triangulation. More specifically, if the surface in 𝑅3 is randomly triangulated 

𝑁 times as 𝑁 → ∞ , the surface is mapped to the conformal rectangle whose extremal length 

is computed for each 𝑛; 𝑛 = 1. . 𝑁, then the average of the 𝑁 extremal lengths will converge to 
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the theoretical continuous case extremal length. Figure S3.2 shows how the computation of 

extremal length of a torus converges toward the theoretical value as 𝑁 is increased.  

At the time of writing this manuscript, results have only been published in conferences, we 

refer the reader to the presentation made by [4]. In order to correct the lifting distortion, edge 

flipping is used. For the conformal structure being conserved during the lifting, the angles of 

the faces around a node must sum up to 𝑛2𝜋. If that condition is not met, flipping and edge to 

its dual can correct the problem. For example if 𝐾: {𝑣1, 𝑣2, 𝑣3, 𝑣4; 𝑤12, 𝑤13, 𝑤24, 𝑤23, 𝑤34} is 

a polyhedron with faces 𝐹: {(𝑣1, 𝑣2, 𝑣3); (𝑣2, 𝑣3, 𝑣4)} does not satisfy the 𝑛2𝜋 condition, 

then flipping edge 𝑤23 → 𝑤14 will make the new edge a geodesic (thus not contributing to the 

angle sum) and the surface will stay unchanged. In the present algorithm, the edge flipping is 

done randomly. For more information on edge flipping we refer the reader to Fisher et al., 

(2005). 

After the random triangulation process is done, we use the circle packing algorithm [6]–[8] to 

conformally map our surface to the conformal rectangle. Figure S3.3 illustrates the circle 

packing algorithm. The main principle is the following: If circles of radius 𝑟𝑖; 𝑖 ∈ 𝑉: {𝑣1. . 𝑣𝑛} 

centered on vertex 𝑣𝑖, with tangency to circles centred on the leaf of 𝑣𝑖 (i.e. the vertices 

connected to 𝑣𝑖 by edges), and that the flower of 𝑣𝑖 (the triangles that have as common vertex 

𝑣𝑖) sums up to 2𝑛𝜋, then there exists a unique collection of radiuses 𝑅: {𝑟𝑖. . 𝑟𝑛} up to 

conformal mapping. Thus, by finding a map that preserves 𝑅, one can conformal map a 

Riemannian surface to the conformal rectangle. 

In order to assess the performance of our random triangulations→circle packing extremal 

length approximation, we tested the performance of 3 algorithms on surfaces whose exact 

extremal length can be computed. The following steps are used for each: 

1) Random triangulations → Edge flipping → Circle Packing 
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2) Regular triangulation → Edge Flipping → Circle Packing 

3) Regular triangulation → Edge Flipping → Discrete Natural Conformal Map → Schwarz-

Christoffel map. 

 

Figure S3.3 The circle packing algorithm: If a collection of circles of radiuses 

𝑹: {𝒓𝒊. . 𝒓𝒏}; 𝒊 ∈ 𝑽: {𝒗𝟏. . 𝒗𝒏}, centred on each vertex of the triangulation satisfies that (1) each 

circle is tangent with circles of neighbouring vertices, (2) the sum of the triangles having a 

common vertices is 𝟐𝒏𝝅, then the collection of circles is unique to conformal mapping. A 

function 𝒇, 𝒈 is a conformal map if it preserves the collection 𝑹. 

The Discrete Natural Conformal Map [9] is variational conformal map from 𝑆 ∈ 𝑅3 → 𝑆′ ∈

𝑅2 that tries to minimize distortion by minimizing the Dirichlet energy necessary to flatten the 

surface. The resulting 𝑆′ is of free boundary save for two points whose coordinates in 𝑆′ are 
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predetermined prior to the mapping. In order to map 𝑆′ to the conformal rectangle, we use the 

Schwarz-Christoffel map [10] that maps the boundary of 𝑆′ to the conformal rectangle. 

 

Figure S3.4 Synthetic surfaces used for the performance test of conformal maps: The 

theoretical extremal length is displayed on top of each subplot. From top-left to right bottom: 

(1) Reference surface (RS);(2) RS scaled up;(3) RS scaled down;(4)RS rotated 𝟏𝟖𝟎°;(5)Flat 

surface;(6) Flat surface rotated;(7) RS cropped right;(8) RS cropped left;(9) RS inverted. 

The surfaces tested all have their 𝑧 coordinates constant along the 𝑦 dimension. The extremal 

length of such surfaces is then 𝜆(𝑆) =
∫ 𝑑𝑠

𝑅
𝐿

𝑇−𝐵
 with 𝑑𝑠 the arc length along 𝑥 and 𝐿, 𝑅, 𝑇, 𝐵 as in 

S1 Figure S3.2. The surfaces are built according to the following: A reference surface has 

been generated from a sinusoidal function restricted to a single hump. Then several 

transformations corresponding to conformal automorphisms (i.e. transformations that preserve 
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the conformal structure) and other that are not conformal are applied and each transformation 

constitutes a new surface. Figure S3.4 shows the corresponding surfaces. 

Global rotations, translations, reflections preserve the extremal length. Figure S3.5 shows the 

results of the comparative test between the three methods. The figure highlights that only the 

combination of random triangulations and circle packing gives a correct approximation of the 

theoretical value for the extremal length of each surface. 

 

Figure S3.5 Ratio of the synthetic surfaces extremal length approximation using the 

three methods: The red curve (our method) is the only one to approximate correctly the 

theoretical value of extremal length for each surface (i.e. 
𝝀𝒂𝒑𝒑𝒓𝒐𝒙

𝝀𝒕𝒉𝒆𝒐
~𝟏) 

5. Spatial and temporal filtering of the geopotential height field and extremal length 

Climate variability happens on different time and spatial scales. It is common to filter either 

the time or spatial dimensions to isolate the desired scales. Numerous filtering techniques 

exist for singling out both spatial and temporal scales (e.g. Lancoz, Fourier, EMD, wavelets 

and so on). Imagine one can decompose the geopotential height time series into two sub time 
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series: one has only variability from monthly to annual scales, the other has multi annual to 

decadal scales. If one sums those two time series, it recovers the original one. A natural 

question related to extremal length then arises: for each snapshot of both the original and sub 

time series, does the sum of the sub snapshots extremal length equals the extremal length of 

the original snapshot?  

Question 1 For a surface 𝑆1 = ∑ 𝑆𝑛
𝑁
1 , is 𝜆𝑆1 = ∑ 𝜆𝑛

𝑁
1  true? 

Lemma 4 : the composition principle [2] For a quadrilateral Ω and Ω1. . Ω𝑁 ∈ Ω, 𝜆Ω ≥

∑ 𝜆Ω𝑛
𝑁
1 . Figure S3.6 shows two domains Ω′, Ω′′ forming the larger Ω ∪ E with Ω′ ≔

{𝑤𝐸′; 𝑤𝐸}, Ω′′ ≔ {𝑤𝐸; 𝑤𝐸′′}, 𝑤𝑖 representing the opposite boundary arcs containing 𝑖. The 

family of curves Γ𝐸′𝐸 , Γ𝐸𝐸′′ ∈ Γ𝐸′𝐸′′, hence  

     𝜆Ω ≥ ∑ 𝜆Ω𝑛
𝑁=2
1  (1.1) 

In order to show whether (1.1) holds, we need to show the proof of the composition principle. 

Lemma 5 [2] Choose 𝜌 = 𝜌1 ∈ Ω′, 𝜌 = 𝜌2 ∈ Ω′′, 𝜌 = 𝜌 ∈ Ω ∪ 𝐸. Since Ω ∪ 𝐸 − Ω′ − Ω′′ =

∅, then 𝜌1 − 𝜌2 − 𝜌 = 0. If in (1.1) we normalize 𝐿(Γi, 𝜌𝑖) = 𝐴(Ω𝑖, 𝜌𝑖); 𝑖 = 1. .2, then 

𝐿(Γ , 𝜌 ) ≥  𝐿(Γ1, 𝜌1) + 𝐿(Γ2, 𝜌2) and 𝐴(Ω , 𝜌 ) = 𝐴(Ω1, 𝜌1) + 𝐴(Ω2, 𝜌2) = 𝐿(Γ1, 𝜌1) +

𝐿(Γ2, 𝜌2) hence 𝜆Ω ≥  𝐿(Γ1, 𝜌1) + 𝐿(Γ2, 𝜌2) and then  

     𝜆Ω ≥ λΩ′ + 𝜆Ω′′ (1.2) 

Lemma 6 It follows from (1.2) that the necessary condition for (1.1) to possibly hold is 

that 𝜌1 − 𝜌2 − 𝜌 = 0. In the context of the decomposition of a time series (with or without 

spatial extension), it means all dimensions must be decomposed, the subspaces must be 

disjoint sets, and their sum must be strictly equal to the original time series. This condition 

holds for 1-dimensional time series. If a time series of extremal lengths is decomposed into 

orthogonal time series then, the sum of their extremal length will be equal to the extremal 

length of the original time series. However, we then time series has a spatial extension, this is 
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almost never the case. In the context of climate sciences, the spatial time series are 

decomposed only on the time dimension, the other staying unchanged. Even when 

decomposing all dimensions, the spatial dimensions usually stay the same, that is, parts of the 

surface that show no variability are affected a zero value. This breaks the condition that 

𝜌1 − 𝜌2 − 𝜌 = 0. 

 

Figure S3.6 The composition principle: The two domains 𝛀′, 𝛀′′ ∈ 𝛀 ∪ 𝑬 and disjoint sets. 

The family of curves in 𝜴′,𝜞𝜴′ = 𝜞𝑬′𝑬 is necessarily contained in the family of curves in 

𝜴 ∪ 𝑬,𝜞𝜴 = 𝜞𝑬′𝑬′′. The same is true for 𝜞𝜴′′. In this context the composition principle states 

that 𝝀𝜴 ≥ 𝝀𝜴′ + 𝝀𝜴′′. 

Proposition 7 The computation of the extremal length of an original time series followed by a 

time decomposition will tell how the dynamics of the original time series change with respect 

to a given time scale.  
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Proposition 8 The computation of the extremal length of a time decomposed time series will 

tell how the decomposed time series dynamics change with respect to that decomposed time 

series. 
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