. Abkarian, Swinging of red blood cells under shear flow, Physical review letters, vol.98, issue.18, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01870703

. Abkarian, M. Viallat-;-abkarian, and A. Viallat, Vesicles and red blood cells in shear flow, Soft Matter, vol.4, p.52, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00321718

[. Bagchi, . Kalluri, P. Bagchi, and R. M. Kalluri, Rheology of a dilute suspension of liquid-filled elastic capsules, Phys. Rev. E, 2010.

[. Bagchi, P. Murthy-;-bagchi, and K. R. Murthy, Dynamics of nonspherical capsules in shear flow, Phys. Rev. E, vol.80, pp.16307-16339, 2009.

[. Barabino, Sickle cell biomechanics, Annu. Rev. Biomed. Eng, vol.12, issue.11, pp.345-367, 2010.

D. Barthès-biesel-;-barthès-biesel, Microhydrodynamics and complex fluids, p.21, 2012.

D. Barthes-biesel and A. Acrivos, Deformation and burst of a liquid droplet freely suspended in a linear shear field, J. Fluid Mech, vol.61, issue.01, pp.1-22, 1973.

[. Baskurt, Red blood cell aggregation, p.84, 2011.

O. K. Baskurt and H. J. Meiselman, Blood rheology and hemodynamics, Seminars in thrombosis and hemostasis, vol.29, p.9, 2003.

[. Baskurt, Red blood cell aggregation in experimental sepsis, Translational Research, vol.130, issue.2, p.183, 1997.

G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech, vol.41, issue.3, p.74, 1970.

[. Beaucourt, Optimal lift force on vesicles near a compressible substrate, Europhys. Lett, vol.67, issue.4, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00003435

[. Beaucourt, Steady to unsteady dynamics of a vesicle in a flow, Phys. Rev. E, vol.69, p.46, 2004.

[. Benzi, Cooperativity flows and shear-bandings: a statistical field theory approach, Soft Matter, vol.12, issue.2, pp.514-530, 2016.

[. Benzi, Direct evidence of plastic events and dynamic heterogeneities in soft-glasses, Soft Matter, vol.10, issue.26, pp.4615-4624, 2014.

[. Biben, Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Phys. Rev. E, vol.83, issue.3, p.64, 2011.

[. Bodnár, On the shearthinning and viscoelastic effects of blood flow under various flow rates, Applied Mathematics and Computation, vol.217, issue.11, pp.5055-5067, 2011.

[. Boedec, 3d vesicle dynamics simulations with a linearly triangulated surface, Journal of Computational Physics, vol.230, issue.4, pp.1020-1034, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00717365

[. Boedec, Isogeometric fem-bem simulations of drop, capsule and vesicle dynamics in stokes flow, Journal of Computational Physics, vol.342, pp.117-138, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01590257

L. ;. Bookchin, R. M. Bookchin, and V. L. Lew, Pathophysiology of sickle cell anemia, Hematology/oncology clinics of North America, vol.10, issue.6, pp.1241-1253, 1996.

[. Bow, A microfabricated deformability-based flow cytometer with application to malaria, Lab Chip, vol.11, issue.6, pp.1065-1073, 2011.

[. Brooks, Interactions among erythrocytes under shear, Journal of Applied Physiology, vol.28, issue.2, pp.172-177, 1970.

[. Brust, The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00951792

I. Cantat and C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow, Phys. Rev. Lett, vol.83, issue.4, p.73, 1999.

S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity, Science, vol.168, issue.3934, pp.977-979, 1970.

S. Chien, Biophysical behavior of red cells in suspensions. The red blood cell, vol.2, p.5, 1975.

[. Chien, Abnormal rheology of oxygenated blood in sickle cell anemia, J. Clin. Invest, vol.49, issue.4, pp.623-634, 1970.

[. Chien, Blood viscosity: influence of erythrocyte deformation, Science, vol.157, issue.3790, p.35, 1967.

[. Chien, Blood viscosity: influence of erythrocyte aggregation, Science, vol.157, issue.3790, pp.829-831, 1967.

[. Cokelet, The rheology of human blood-measurement near and at zero shear rate, Transactions of the Society of Rheology, vol.7, issue.1, pp.303-317, 1963.

[. Copley, Rheogoniometric studies of whole human blood at shear rates from 1000 to 0.0009 sec-1, Biorheology, vol.10, issue.1, pp.17-22, 1973.

[. Coupier, , 2008.

, Noninertial lateral migration of vesicles in bounded poiseuille flow, Phys. Fluids, vol.20, issue.11, p.73

, REFERENCES 105

[. Danker, Dynamics and rheology of a dilute suspension of vesicles: Higher-order theory, Phys. Rev. E, vol.76, issue.4, p.74, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00197591

M. Danker, G. Danker, and C. Misbah, Rheology of a dilute suspension of vesicles, Phys. Rev. Lett, vol.98, p.40, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00197591

M. Danker, G. Danker, and C. Misbah, Rheology of a dilute suspension of vesicles, Phys. Rev. Lett, vol.98, pp.88104-74, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00197591

. Das, Stratified multiphase model for blood flow in a venular bifurcation, Annals of biomedical engineering, vol.25, issue.1, pp.135-153, 1997.

Y. Davit and P. Peyla, Intriguing viscosity effects in confined suspensions: A numerical study, EPL, vol.83, issue.6, pp.64001-64010, 2008.

,. De-gennes and P. Gennes, Scaling concepts in polymer physics, p.51, 1979.

L. Dintenfass, Internal viscosity of the red cell and a blood viscosity equation, Nature, vol.219, issue.5157, pp.956-958, 1968.

L. Dintenfass, Molecular Rheology of Human Blood: Its Role in Health and Disease (to Day and to Morrow ?), p.11, 1980.

. Doddi, S. K. Bagchi-;-doddi, and P. Bagchi, Three-dimensional computational modeling of multiple deformable cells flowing in microvessels, Phys. Rev. E, 2009.

M. Doi and S. F. Edwards, The theory of polymer dynamics, vol.73, p.51, 1988.

[. Dollet, Twodimensional plastic flow of foams and emulsions in a channel: experiments and lattice boltzmann simulations, Journal of Fluid Mechanics, vol.766, pp.556-589, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115882

[. Dupire, Full dynamics of a red blood cell in shear flow, Proceedings of the National Academy of Sciences, vol.109, issue.51, pp.20808-20813, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01957799

A. Einstein, Eine neue bestimmung der moleküldimensionen, Ann. Phys, vol.324, issue.2, pp.289-306, 1906.

[. Embury, Sickle cell disease: basic principles and clinical practice, 1994.

E. Errill, Rheology of blood, Physiological reviews, vol.49, issue.4, pp.863-888, 1969.

L. Fåhraeus, R. Fåhraeus, and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, Am. J. Physiol, vol.96, issue.3, p.85, 1931.

. Farutin, Analytical progress in the theory of vesicles under linear flow, Phys. Rev. E, vol.81, issue.6, 2010.

. Farutin, 3D numerical simulations of vesicle and inextensible capsule dynamics, J. Comput. Phys, vol.275, pp.539-568, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00841996

. Farutin, A. Misbah-;-farutin, and C. Misbah, Squaring, parity breaking, and s tumbling of vesicles under shear flow, Physical review letters, vol.109, issue.24, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00881101

[. Fedosov, Blood flow and cell-free layer in microvessels, Microcirculation, vol.17, issue.8, pp.615-628, 2010.

[. Fedosov, Multiscale modeling of blood flow: from single cells to blood rheology, Biomech. Model. Mechan, vol.13, issue.2, pp.239-258, 2014.

[. Fischer, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, issue.4370, pp.894-896, 1978.

C. Fisher and J. S. Rossmann, Effect of nonnewtonian behavior on hemodynamics of cerebral aneurysms, Journal of biomechanical engineering, vol.131, issue.9, 2009.

[. Fornari, Rheology of confined non-brownian suspensions, Phys. Rev. Lett, vol.116, issue.1, 2016.

[. Forsyth, Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release, Proc. Natl. Acad. Sci. U.S.A, vol.108, issue.27, p.35, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630755

[. Franceschini, Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms, The Journal of the Acoustical Society of America, vol.127, issue.2, pp.1104-1115, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477021

[. Freund, J. B. Orescanin-;-freund, and M. Orescanin, Cellular flow in a small blood vessel, Journal of Fluid Mechanics, vol.671, pp.466-490, 2011.

Y. Fung, Biomechanics: circulation, p.51, 2013.

[. Ghigliotti, Rheology of a dilute two-dimensional suspension of vesicles, J. Fluid Mech, vol.653, p.74, 2010.

[. Ghigliotti, Dynamics and rheology of highly deflated vesicles. Esaim: Proc, vol.28, pp.212-227, 2009.

[. Gijsen, The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, Journal of biomechanics, vol.32, issue.6, pp.601-608, 1999.

[. Goldsmith, , 1972.

, Flow behaviour of erythrocytes-i. rotation and deformation in dilute suspensions, Proc. R. Soc. Lond. B, vol.182, issue.2, pp.351-384, 1068.

[. Goyon, How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity, Soft Matter, vol.6, issue.12, pp.2668-2678, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539783

[. Goyon, Spatial cooperativity in soft glassy flows, Nature, vol.85, issue.7200, p.88, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01980476

[. Grandchamp, Lift and down-gradient shear-induced diffusion in red blood cell suspensions, Phys. Rev. Lett, vol.110, issue.10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809337

[. Guckenberger, A. Gekle-;-guckenberger, and S. Gekle, Theory and algorithms to compute Helfrich bending forces: A review, J. Phys. Condens. Matter, vol.29, issue.20, pp.203001-203017, 2017.

[. Guckenberger, A. Gekle-;-guckenberger, and S. Gekle, A boundary integral method with volume-changing objects for ultrasound-triggered margination of microbubbles, J. Fluid Mech, vol.836, p.69, 2018.

[. Guckenberger, Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel, Soft Matter, vol.14, issue.11, pp.2032-2043, 2018.

[. Guckenberger, On the bending algorithms for soft objects in flows, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314722

, Comput. Phys. Commun, vol.207, pp.1-23

D. S. Hariprasad and T. W. Secomb, Prediction of noninertial focusing of red blood cells in poiseuille flow, Phys. Rev. E, 2015.

[. Imai, Modeling of hemodynamics arising from malaria infection, J. biomech, vol.43, issue.7, pp.1386-1393, 2010.

[. Kalluri, R. Bagchi-;-kalluri, and P. Bagchi, Rheology of a dense capsule suspension, APS Meeting Abstracts, vol.1, pp.25010-25042, 2011.

. Kantsler, V. Steinberg-;-kantsler, and V. Steinberg, Orientation and dynamics of a vesicle in tank-treading motion in shear flow, Phys. Rev. Lett, vol.95, pp.258101-258133, 2005.

[. Kaoui, Why do red blood cells have asymmetric shapes even in a symmetric flow?, Phys. Rev. Lett, vol.103, pp.188101-52, 2009.

[. Kaoui, Vesicles under simple shear flow: Elucidating the role of relevant control parameters, Phys. Rev. E, vol.80, p.64, 2009.

[. Kaoui, B. Harting-;-kaoui, and J. Harting, Two-dimensional lattice boltzmann simulations of vesicles with viscosity contrast, Rheologica Acta, vol.55, issue.6, pp.465-475, 2016.

[. Kaoui, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Phys. Rev. E, vol.83, issue.6, 2011.

[. Kaoui, Interplay between microdynamics and macrorheology in vesicle suspensions, Soft Matter, vol.10, issue.26, p.73, 2014.

[. Kaoui, Lateral migration of a two-dimensional vesicle in unbounded poiseuille flow, Phys. Rev. E, vol.77, issue.2, p.73, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674499

S. Keller, S. R. Keller, and R. Skalak, Motion of a tanktreading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics, vol.120, pp.27-47, 1982.

. Kennedy, Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow, Comput. & Fluids, vol.23, issue.2, pp.251-278, 1994.

[. Kim, Multiphase non-newtonian effects on pulsatile hemodynamics in a coronary artery. International journal for numerical methods in fluids, vol.58, pp.803-825, 2008.

[. Kraus, Fluid vesicles in shear flow, Physical review letters, vol.77, issue.17, pp.3685-3688, 1996.

D. Krieger, I. M. Krieger, and T. J. Dougherty, A mechanism for non-newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol, vol.3, issue.1, p.110, 1959.

[. Krüger, , 2013.

, Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells, Soft Matter, vol.9, issue.37, pp.9008-9015

H. Lamb, A. Lamura, and G. Gompper, Dynamics and rheology of vesicle suspensions in wall-bounded shear flow, Europhys. Lett, vol.102, issue.23, p.73, 1993.

G. Lamura, A. Lamura, and G. Gompper, Rheological properties of sheared vesicle and cell suspensions, Proc. IUTAM, vol.16, pp.3-11, 2015.

[. Lanotte, Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proceedings of the National Academy of Sciences, vol.113, issue.47, p.35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435953

R. G. Larson, The structure and rheology of complex fluids, vol.33, p.51, 1999.

[. Lebedev, Dynamics of nearly spherical vesicles in an external flow, Phys. Rev. Lett, vol.99, p.64, 2007.

[. Lee, Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models, Korea-Australia Rheology Journal, vol.23, issue.1, pp.1-7, 2011.

[. Li, Continuumand particle-based modeling of shapes and dynamics of red blood cells in health and disease, Soft Matter, vol.9, issue.1, pp.28-37, 2013.

H. H. Lipowsky, Microvascular rheology and hemodynamics, vol.12, pp.5-15, 2005.

S. Lipowsky, R. Lipowsky, and E. Sackmann, Structure and dynamics of membranes: I. from cells to vesicles/II. generic and specific interactions, vol.1, p.15, 1995.

. Maeda, N. Shiga-;-maeda, and T. Shiga, Inhibition and acceleration of erythrocyte aggregation induced by small macromolecules, Biochimica et Biophysica Acta (BBA)-General Subjects, vol.843, issue.1-2, pp.128-136, 1985.

V. Mansard and A. Colin, Local and non local rheology of concentrated particles, Soft Matter, vol.8, issue.15, pp.4025-4043, 2012.

. Marcinkowska-gapi?ska, Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients, Medical & biological engineering & computing, vol.45, issue.9, pp.837-844, 2007.

[. Matsunaga, A full gpu implementation of a numerical method for simulating capsule suspensions, J. Biomech. Sci. Eng, vol.9, issue.3, 2014.

[. Matsunaga, Rheology of a dense suspension of spherical capsules under simple shear flow, J. Fluid Mech, vol.786, pp.110-127, 2016.

[. Mauer, Flow-induced transitions of red blood cell shapes under shear, Physical review letters, vol.121, issue.11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898170

[. Merrill, Rheology of human blood, near and at zero flow, Biophysical Journal, vol.3, issue.3, pp.199-213, 1963.

[. Merrill, Yield stress of normal human blood as a function of endogenous fibrinogen, Journal of Applied Physiology, vol.26, issue.1, pp.1-3, 1969.

C. Misbah, Vacillating breathing and tumbling of vesicles under shear flow, Phys. Rev. Lett, vol.96, p.40, 2006.

C. Misbah, Complex Dynamics and Morphogenesis, p.62, 2017.

M. Misra, J. Misra, and S. Maiti, Peristaltic pumping of blood through small vessels of varying cross-section, Journal of Applied Mechanics, vol.79, issue.6, 2012.

P. ;. Molla, M. M. Molla, and M. Paul, Les of non-newtonian physiological blood flow in a model of arterial stenosis, Medical engineering & physics, vol.34, issue.8, pp.1079-1087, 2012.

. Morris, A new method for measuring the yield stress in thin layers of sedimenting blood, Biophysical journal, vol.52, issue.2, p.7, 1987.

. Nait-ouhra, Lateral vesicle migration in a bounded shear flow: Viscosity contrast leads to off-centered solutions, Phys. Rev. Fluids, vol.74, p.75, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02001227

. Narsimhan, Coarsegrained theory to predict the concentration distribution of red blood cells in wallbounded couette flow at zero reynolds number, Physics of Fluids, vol.25, issue.6, p.89, 2013.

P. Olla, The lift on a tank-treading ellipsoidal cell in a shear flow, J. Phys. II France, vol.7, issue.10, p.73, 1997.
URL : https://hal.archives-ouvertes.fr/jpa-00248531

P. Olla, The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow, J. Phys. A: Math. Gene, vol.30, issue.1, p.73, 1997.

P. Olla, Simplified model for red cell dynamics in small blood vessels, Phys. Rev. Lett, vol.82, issue.2, p.73, 1999.

P. Olla, The behavior of closed inextensible membranes in linear and quadratic shear flows, Physica A, vol.278, issue.1, p.73, 2000.

[. Pauling, Sickle cell anemia, a molecular disease, Science, vol.110, issue.10, pp.543-548, 1949.

P. Peyla and C. Verdier, New confinement effects on the viscosity of suspensions, EPL, vol.94, issue.4, pp.44001-44010, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00567009

[. Picart, , 1998.

, Human blood shear yield stress and its hematocrit dependence, Journal of Rheology, vol.42, issue.1, pp.1-12

G. Pontrelli, Pulsatile blood flow in a pipe, REFERENCES 113, vol.27, pp.367-380, 1998.

G. Pontrelli, Blood flow through a circular pipe with an impulsive pressure gradient, Mathematical Models and Methods in Applied Sciences, vol.10, issue.02, pp.187-202, 2000.

J. ;. Popel, A. S. Popel, and P. C. Johnson, Microcirculation and hemorheology, Annu. Rev. Fluid Mech, vol.37, pp.43-69, 2005.

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, vol.25, p.26, 1992.

[. Pries, Blood viscosity in tube flow: dependence on diameter and hematocrit, Am. J. Physiol. Heart Circ. Physiol, vol.263, issue.6, p.85, 1992.

[. Pries, Biophysical aspects of blood flow in the microvasculature, Cardiovascular research, vol.32, issue.4, pp.654-667, 1996.

Q. M. Qi and E. S. Shaqfeh, Theory to predict particle migration and margination in the pressure-driven channel flow of blood, Phys. Rev. Fluids, vol.85, p.89, 2017.

. Qi, Q. M. Shaqfeh-;-qi, and E. S. Shaqfeh, Time-dependent particle migration and margination in the pressure-driven channel flow of blood, Phys. Rev. Fluids, 2018.

. [rahimian, Dynamic simulation of locally inextensible vesicles suspended in an arbitrary twodimensional domain, a boundary integral method, J. Comp. Physics, vol.229, issue.18, p.74, 2010.

[. Reasor, Rheological characterization of cellular blood in shear, J. Fluid Mech, vol.726, pp.497-516, 2013.

[. Robertson, , 2008.

. Hemorheology, hemodynamical flows. modeling, analysis and simulation, oberwolfach seminars, vol.37

[. Robertson, , 2009.

, Rheological models for blood, Cardiovascular mathematics, pp.211-241

. Springer, , vol.7

[. Saadat, Simulation of red blood cell migration in small arterioles: Effect of cytoplasmic viscosity. bioRxiv, p.85, 2019.

R. W. Samsel and A. S. Perelson, Kinetics of rouleau formation. i. a mass action approach with geometric features, Biophysical Journal, vol.37, issue.2, pp.493-514, 1982.

[. Sangani, Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low reynolds numbers, Phys. Fluids, vol.23, issue.8, pp.83302-83311, 2011.

[. Sbragaglia, The emergence of supramolecular forces from lattice kinetic models of non-ideal fluids: applications to the rheology of soft glassy materials, Soft Matter, vol.8, issue.41, pp.10773-10782, 2012.

H. Schmid-schonbein, H. Schmid-schönbein, and R. Wells, Erythrocyte rheology and the optimization of mass transport in the microcirculation, Blood Cells, vol.1, issue.1, p.285, 1969.

H. Schmid-schönbein and R. Wells, Science, vol.165, issue.3890, pp.288-291, 1971.

, Rheological properties of human erythrocytes and their influence upon the "anomalous" viscosity of blood, In Ergebnisse der Physiologie Reviews of Physiology, vol.63, p.10

. Schmid-schönbein, Influence of deformability of human red cells upon blood viscosity. Circ. REFERENCES 115, Annu. Rev. Fluid Mech, vol.49, issue.1, pp.443-461, 1969.

U. Seifert, Hydrodynamic lift on bound vesicles, Phys. Rev. Lett, vol.83, issue.4, p.73, 1999.

[. Shen, Inversion of hematocrit partition at microfluidic bifurcations, Microvascular research, vol.105, pp.40-46, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01254460

[. Shen, Interaction and rheology of vesicle suspensions in confined shear flow, Phys. Rev. Fluids, vol.2, issue.10, p.52, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930097

[. Shen, Blood crystal: emergent order of red blood cells under wall-confined shear flow, Phys. Rev. Lett, vol.120, issue.26, p.81, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930107

S. Sukumaran and U. Seifert, Influence of shear flow on vesicles near a wall: a numerical study, Phys. Rev. E, vol.64, issue.1, p.73, 2001.

S. Suresh, Mechanical response of human red blood cells in health and disease: some structure-property-function relationships, J. Mater. Res, vol.21, issue.8, pp.1871-1877, 2006.

G. I. Taylor, The viscosity of a fluid containing small drops of another fluid, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.138, issue.834, pp.41-48, 1932.

M. Thiébaud, M. Thiébaud, and C. Misbah, Rheology of a vesicle suspension with finite concentration: A numerical study, Phys. Rev. E, vol.88, p.74, 2013.

[. Thiébaud, Prediction of anomalous blood viscosity in confined shear flow, Phys. Rev. Lett, vol.112, issue.23, p.82, 2014.

G. B. Thurston and G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biophysical journal, vol.12, issue.9, pp.1205-1217, 1972.

[. Trozzo, , 2015.

, Axisymmetric boundary element method for vesicles in a capillary, Journal of Computational Physics, vol.289, p.16

A. Viallat and M. Abkarian, Red blood cell: from its mechanics to its motion in shear flow, International journal of laboratory hematology, vol.36, issue.3, pp.237-243, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01957833

[. Vitkova, Erythrocyte dynamics in flow affects blood rheology, Journal of Physics: Conference Series, vol.398, p.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909449

[. Vitkova, Micro-macro link in rheology of erythrocyte and vesicle suspensions, Biophys. J, vol.95, p.74, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00381579

G. ;. Vlahovska, P. M. Vlahovska, and R. S. Gracia, Dynamics of a viscous vesicle in linear flows, Phys. Rev. E, vol.75, issue.1, 2007.

. Wang, C. Wang, and A. S. Popel, Effect of red blood cell shape on oxygen transport in capillaries, Mathematical biosciences, vol.116, issue.1, pp.89-110, 1993.

K. Xu, Z. Xu, and C. Kleinstreuer, Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue, Biomechanics and modeling in mechanobiology, vol.18, issue.1, pp.99-110, 2019.

[. Zhao, H. Shaqfeh-;-zhao, and E. S. Shaqfeh, The dynamics of a vesicle in simple shear flow, Journal of Fluid Mechanics, vol.674, issue.3, pp.578-604, 2011.

[. Zhao, H. Shaqfeh-;-zhao, and E. S. Shaqfeh, The dynamics of a non-dilute vesicle suspension in a simple shear flow, J. Fluid Mech, vol.725, p.74, 2013.

. Zhong-can, O. Helfrich-;-zhong-can, and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, vol.39, issue.10, p.16, 1989.