A. A. Abbas, S. Planchon, M. Jobin, and P. Schmitt, Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus, Food Microbiol, vol.42, pp.122-131, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641610

S. T. Abedon, Lysis from without, Bacteriophage, vol.1, issue.1, pp.46-49, 2011.

S. T. Abedon, Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?, FEMS Microbiol. Lett, vol.363, issue.3, p.246, 2016.

H. W. Ackermann, Bacteriophage observations and evolution, Res. Microbiol, vol.154, pp.245-251, 2003.

H. W. Ackermann, Classification of Bacteriophages, The Bacteriophages. Calendar, R, pp.8-16, 2006.

M. R. Adams, M. O. Moss, and . Mcclure-p, Food microbiology, p.546, 2015.

M. Adams, Bacteriophages, 1959.

A. L. Afchain, F. Carlin, C. Nguyen-the, and . Albert-i, Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods, Int. J. Food Microbiol, vol.128, pp.165-173, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01263592

S. Agarwal, K. Sharma, B. G. Swanson, G. U. Yuksel, and . Clark-s, Non starter lactic acid bacteria biofilms and calcium lactate crystals in Cheddar cheese, J. Dairy Sci, vol.89, pp.1452-1466, 2006.

M. Agarwala, T. Barman, D. Gogoi, B. Choudhury, A. R. Pal et al., Highly effective antibiofilm coating of silver-polymer nanocomposite on polymeric medical devices deposited by one step plasma process, J. Biomed. Mater. Res. B. Appl. Biomater, vol.102, issue.6, pp.1223-1235, 2014.

N. Agata, M. Mori, M. Ohta, S. Suwan, I. Ohtani et al., A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells, FEMS Microbiol. Lett, vol.121, pp.31-34, 1994.

N. Agata, M. Ohta, and M. Mori, Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus, Curr. Microbiol, vol.33, issue.1, pp.67-69, 1996.

N. Agata, M. Ohta, M. Mori, and M. Isobe, A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus, FEMS Microbiol. Lett, vol.129, issue.1, pp.17-19, 1995.

N. Agata, M. Ohta, and K. Yokoyama, Production of Bacillus cereus emetic toxin (cereulide) in various foods, Int. J. Food Microbiol, vol.73, issue.1, pp.23-27, 2002.

H. V. Aggelen, R. Kolde, H. Chamarthi, J. Loving, Y. Fan et al., , 2019.

, A core genome approach that enables prospective and dynamic monitoring of infectious outbreaks, Sci Rep, vol.9, issue.1, p.7808

J. Ågren, M. O. Schäfer, and E. Forsgren, Using whole genome sequencing to study American foulbrood epidemiology in honeybees, PLOS ONE, vol.12, issue.11, p.187924, 2017.

O. K. Agwa, C. I. Uzoigwe, and E. C. Wokoma, Incidence and antibiotic sensitivity of Bacillius cereus isolated from ready to eat foods sold in some markets in Portharcourt, Rivers State, Nigeria. Asian journal of microbiology. Biotechnol. Environ. Sci, vol.14, issue.1, pp.13-18, 2012.

M. Y. Akbas, Bacterial biofilms and their new control strategies in food industry. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, pp.383-394, 2015.

E. Aklilu, E. B. Tukimin, N. B. Daud, and T. Kyaw, Enterotoxigenic Bacillus cereus from cooked chicken meat: A potential public health hazard, Malays. J. Microbiol, vol.12, issue.1, pp.112-115, 2016.

H. Aksu, K. Bostan, and O. Ergün, Presence of Bacillus cereus in packaged some spices and herbs sold in Istanbul, Pak. J. Biol. Sci, vol.3, pp.710-712, 2000.

D. G. Allison and I. W. Sutherland, The role of exopolysaccharides in adhesion of fresh water bacteria, J. Gen. Microbiol, vol.133, pp.1319-1327, 1987.

M. Altayar and A. D. Sutherland, Bacillus cereus is common in the environment but emetic toxin producing isolates are rare, J. Appl. Microbiol, vol.100, issue.1, pp.7-14, 2006.

S. F. Altekruse, M. L. Cohen, and D. L. Swerdlow, Emerging foodborne diseases, Emerging Infect. Dis, vol.3, issue.3, pp.285-293, 1997.

S. An, J. Wu, and L. H. Zhang, Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-gmp phosphodiesterase with a putative hypoxiasensing domain, Appl. Environ. Microbiol, vol.76, issue.24, pp.8160-8173, 2010.

A. Andersson, U. Ronner, and P. E. Granum, What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?, Int. J. Food Microbiol, vol.28, pp.145-155, 1995.

M. A. Andersson, E. L. Jääskeläinen, R. Shaheen, T. Pirhonen, L. M. Wijnands et al., Sperm bioassay for rapid detection of cereulideproducing Bacillus cereus in food and related environments, Int. J. Food Microbiol, vol.94, issue.2, pp.175-183, 2004.

M. A. Andersson, R. Mikkola, J. Helin, M. C. Andersson, and M. Salkinoja-salonen, A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores, Appl. Environ. Microbiol, vol.64, pp.1338-1343, 1998.

J. M. Andrews and R. Wise, Susceptibility testing of Bacillus species, J. Antimicrob. Chemother, vol.49, pp.1040-1042, 2002.

C. Ankolekar, T. Rahmati, and R. G. Labbe, Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice, Int. J. Food Microbiol, vol.128, pp.460-466, 2009.

. Anonyme, Épidémiologie des toxi-infections alimentaires collectives en Tunisie, 2010.

. Anonymous, Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs, EFSA J, vol.14, issue.7, p.4524, 2016.

C. Aouadhi, A. Maaroufi, and . Mejri-s, Incidence and characterization of aerobic spore-forming bacteria originating from dairy milk in Tunisia, Int. J. Dairy Technol, vol.67, pp.95-102, 2013.

L. Aoued, S. Benlarabi, and R. Soulaymani-bencheikh, Maladies d'origine alimentaire Définitions, Terminologie, Classifications. Toxicol. Maroc, vol.6, pp.1-16, 2010.

G. Aprea, D. R. Angelo, V. A. Prencipe, and G. Migliorati, Bacteriophage morphological characterization by using transmission electron microscopy, J. Life Sci, vol.9, pp.214-220, 2015.

L. C. Aragon-alegro, G. Palcich, G. Volz-lopes, V. B. Ribeiro, M. Landgraf et al., Enterotoxigenic and Genetic Profiles of Bacillus cereus Strains of Food Origin in Brazil, J. Food Prot, vol.71, issue.10, pp.2115-2118, 2008.

S. Arslan, A. Eyi, and R. Küçüksari, Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream, Anaerobe, vol.25, pp.42-46, 2014.

S. I. Asano, Y. Nukumizu, H. Bando, T. Iizuka, and T. Yamamoto, Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis, Appl. Environ. Microbiol, vol.63, pp.1054-1057, 1997.

C. Ash, J. A. Farrow, M. Dorsch, E. Stackebrandt, and M. D. Collins, Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on thebasis of reverse transcriptase sequencing of 16S rRNA, Int. J. Syst. Bacteriol, vol.41, pp.343-346, 1991.

M. A. Ashraf, S. Ullah, I. Ahmad, A. K. Qureshi, K. S. Balkhair et al., Green biocides, a promising technology: current and future applications to industry and industrial processes, J. Sci. Food Agric, vol.94, pp.388-403, 2014.

R. J. Atterbury, P. L. Connerton, C. E. Dodd, C. E. Rees, and I. F. Connerton, Isolation and characterization of Campylobacter bacteriophages from retail poultry, Appl. Environ. Microbiol, vol.69, pp.4511-4518, 2003.

S. Auger, N. Galleron, E. Bidnenko, S. D. Ehrlich, A. Lapidus et al., The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains, Appl. Environ. Microbiol, vol.74, issue.4, pp.1276-1280, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02889116

D. Bagge, M. Hjelm, C. Johansen, I. Huber, and L. Gram, Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces, Appl. Environ. Microbiol, vol.67, pp.2319-2325, 2001.

D. Bagge-ravn, Y. Ng, M. Hjelm, J. N. Christansen, C. Johansen et al., The microbial ecology of processing equipment in different fish industries-analysis of the microflora during processing and following cleaning and disinfection, Int. J. Food Microbiol, vol.87, pp.239-250, 2003.

N. Bandara, J. Jo, S. Ryu, and K. P. Kim, Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods, Food Microbiol, vol.31, pp.9-16, 2012.

M. Banerjee, G. B. Nair, and T. Ramamurthy, Phenotypic & genetic characterization from the acute diarrhoeal patients, Indian J. Med. Res, vol.133, pp.88-95, 2011.

F. Baron, M. F. Cochet, W. Ablain, N. Grosset, M. N. Madec et al., Rapid and cost-effective method for microorganism enumeration based on miniaturization of the conventional plate-counting technique, Le Lait, vol.86, pp.251-257, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00895582

F. Baron, M. F. Cochet, N. Grosset, M. N. Madec, R. Briandet et al., Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products, J. Food Prot, vol.70, issue.12, pp.2782-2791, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01454033

M. Bartoszewicz, D. K. Bideshi, A. Kraszewska, E. Modzelewska, and I. Swiecicka, Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis, J. Appl. Microbiol, vol.106, issue.6, pp.1967-1975, 2009.

M. Bartoszewicz, B. M. Hansen, and I. Swiecicka, The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk, Food Microbiol, vol.25, issue.4, pp.588-596, 2008.

D. Bassi, F. Colla, S. Gazzola, E. Puglisi, M. Delledonne et al., Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model, Food Microbiol, vol.55, pp.73-85, 2016.

A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol, vol.45, pp.493-496, 1966.

T. Bauer, T. Stark, T. Hofmann, and M. Ehling-schulz, Development of a stable isotope dilution analysis for the quantification of the Bacillus cereus toxin cereulide in foods, J. Agric. Food Chem, vol.58, pp.1420-1428, 2010.

S. K. Bedi, C. S. Sharma, J. P. Gill, R. S. Aulakh, and J. K. Sharma, Incidence of enterotoxigenic B. cereus in milk and milk products, J. Food Sci. Tech, vol.42, pp.272-275, 2005.

D. J. Beecher and J. D. Macmillan, A novel bicomponent hemolysin from Bacillus cereus, Infect. Immun, vol.58, pp.2220-2227, 1990.

D. J. Beecher and J. D. Macmillan, Characterization of the components of hemolysin-bl from Bacillus cereus, Infect. Immun, vol.59, pp.1778-1784, 1991.

D. J. Beecher, T. W. Olsen, E. B. Somers, and A. C. Wong, Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis, Infect. Immun, vol.68, issue.9, pp.5269-5276, 2000.

D. J. Beecher and A. C. Wong, Tripartite Hemolysin BL from Bacillus cereus -Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon, J. Biol. Chem, vol.272, issue.1, pp.233-239, 1997.

M. N. Bellon-fontaine, J. Rault, and C. J. Van-oss, Microbial adhesion to solvents, a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells, Colloid. Surface. B, vol.7, pp.47-53, 1996.

K. Bernhard, H. Schrempf, and W. Goebel, Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis, J. Bacteriol, vol.133, pp.897-903, 1978.

A. Bhunia, Foodborne microbial pathogens: mechanisms and pathogenesis, vol.276, p.pp, 2007.

L. R. Bielke, A. M. Higgins, A. M. Donoghue, D. J. Donoghue, and B. M. Hargis, Salmonella host range of bacteriophages that infect multiple genera, Poult. Sci, vol.86, pp.2536-2540, 2007.

E. G. Biesta-peters, M. W. Reij, R. H. Blaauw, P. H. Veld, A. Rajkovic et al., Quantification of the emetic toxin cereulide in food products by liquid chromatography-mass spectrometry using synthetic cereulide as a standard, Appl. Environ. Microbiol, vol.76, pp.7466-7472, 2010.

A. G. Binetti and J. A. Reinheimer, Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants, J. Food Prot, vol.63, pp.509-515, 2000.

. Biomérieux, Le Point sur Bacillus cereus, 2016.

E. Bonerba, . Di, A. Pinto, L. Novello, F. Montemurro et al., Detection of potentially enterotoxigenic food-related Bacillus cereus by PCR analysis, Int. J. Food Sci. Technol, vol.45, pp.1310-1315, 2010.

E. Borch and P. Arinder, Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures, Meat. Sci, vol.62, pp.381-390, 2002.

E. J. Bottone, Bacillus cereus, a volatile human pathogen, Clin. Microbiol. Rev, vol.23, issue.2, pp.382-398, 2010.

L. Boulange-petermann, C. Jullien, P. E. Dubois, T. Benezech, and C. Faille, Influence of surface chemistry on the hygienic status of industrial stainless steel, Biofouling, vol.20, pp.25-33, 2004.

C. M. Bourgeois and J. P. Larpent, Microbiologie alimentaire tome 2 : aliments fermentés et fermentations alimentaire, 1996.

S. S. Branda, S. Vik, L. Friedman, and R. Kolter, Biofilms: the matrix revisited, Trends Microbiol, vol.13, pp.20-26, 2005.

A. Bravo, S. Likitvivatanavong, S. S. Gill, and M. Soberón, Bacillus thuringiensis: a story of a successful bioinsecticide, Insect Biochem. Mol. Biol, issue.7, pp.423-431, 2011.

P. J. Bremer, S. Fillery, and A. J. Mcquillan, Laboratory scale clean-in-place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms, Int. J. Food Microbiol, vol.106, pp.254-262, 2006.

A. Bridier, R. Briandet, V. Thomas, and F. Dubois-brissonnet, Resistance of bacterial biofilms to disinfectants: a review, Biofouling, vol.27, pp.1017-1032, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001460

A. Bridier, P. Sanchez-vizuete, M. Guilbaud, J. C. Piard, M. Naïtali et al., Biofilm-associated persistence of food-borne pathogens, Food microbiol, vol.45, pp.167-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204463

J. Brillard and D. Lereclus, Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a Bacillus cereus food-poisoning strain, Microbiology, vol.150, pp.2699-2705, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01606555

J. D. Brooks and S. H. Flint, Biofilms in the food industry : problems and potential solutions, Int. J. Food Sci. Technol, vol.43, issue.12, pp.2163-2176, 2008.

G. Brücker, Surveillance des toxi-infections alimentaires collectives. MDO infos n° 5 décembre, 2003.

F. L. Bryan, Diseases transmitted by foods: a classification and summary, p.101, 1982.

S. Cadel-six, M. L. De-buyser, M. L. Vignaud, T. T. Dao, S. Messio et al., Toxi-infections alimentaires collectives à Bacillus cereus: Bilan de la caractérisation des souches de, pp.45-49, 2006.

C. Cadot, S. L. Tran, M. L. Vignaud, M. L. De-buyser, A. B. Kolsto et al., InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains, J. Clin. Microbiol, vol.48, pp.1358-1365, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204233

M. C. Callegan, D. C. Cochran, S. T. Kane, R. T. Ramadan, J. Chodosh et al., Virulence factor profiles and antimicrobial susceptibilities of ocular Bacillus isolates, Curr. Eye Res, vol.31, issue.9, pp.693-702, 2006.

F. Carlin, J. Brillard, V. Broussolle, T. Clavel, C. Duport et al., Adaptation of Bacillus cereus, an ubiquitous world wide distributed foodborne pathogen, to a changing environment, Food res. Int, vol.43, issue.7, pp.1885-1894, 2010.

F. Carlin, M. Fricker, A. Pielaat, S. Heisterkamp, R. Shaheen et al., Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group, Int. J. Food Microbiol, vol.109, pp.132-138, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667224

P. Carling, T. Fung, A. Killion, N. Terrin, and M. Barza, Favorable impact of a multidisciplinary antibiotic management program conducted during 7 years, Infect. Control Hosp. Epidemiol, vol.24, issue.9, pp.699-706, 2003.

C. R. Carlson, D. A. Caugant, and A. B. Kolsto, Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains, Appl. Environ. Microbiol, vol.60, issue.6, pp.1719-1725, 1994.

B. Carpentier and O. Cerf, A review: Biofilms and their consequences with particular reference to hygiene in the food industry, J. Appl. Bacteriol, vol.75, pp.499-511, 1993.

V. Castiaux, L. Laloux, Y. J. Schneider, and J. Mahillon, Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells, Toxins (Basel), vol.8, issue.11, pp.1-20, 2016.

V. Castiaux, X. Liu, L. Delbrassinne, and J. Mahillon, Is Cytotoxin K from Bacillus cereus a bona fide enterotoxin?, Int. J. Food Microbiol, vol.211, pp.79-85, 2015.

O. Cerf, Risques bactériens liés aux produits laitiers. Revue Française des Laboratoires, pp.67-69, 2002.

S. Ceuppens, A. Rajkovic, M. Heyndrickx, V. Tsilia, T. Van-de-wiele et al., Regulation of toxin production by Bacillus cereus and its food safety implications, Crit. Rev. Microbiol, vol.37, issue.3, pp.188-213, 2011.

S. D. Changani, M. T. Belmar-beiny, and P. J. Fryer, Engineering and chemical factors associated with fouling and cleaning in milk processing, Exp. Therm. Fluid Sci, vol.14, pp.392-406, 1997.

W. G. Characklis and . C. Marshall-k, Biofilms, 1990.

J. Q. Chaves, E. S. Pires, and A. M. Vivoni, Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades, Int. J. Food Microbiol, vol.147, pp.12-16, 2011.

G. Chen, Escherichia coli adhesion to abiotic surfaces in the presence of nonionic surfactants, J. Adhes. Sci. Technol, vol.17, pp.2131-2139, 2012.

Y. Chen, H. J. Busscher, . Van-der, H. C. Mei, and W. Norde, Statistical analysis of long-and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy, Appl Environ Microbiol, vol.77, pp.5065-5070, 2011.

Y. Chen, J. Succi, F. C. Tenover, and T. M. Koehler, Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain, J. Bacteriol, vol.185, pp.823-830, 2003.

R. Chmielewski and J. Frank, Biofilm formation and control in food processing facilities, Compr. Rev. Food Sci. Food Saf, vol.2, issue.1, pp.22-32, 2003.

N. C. Choi, S. J. Park, C. G. Lee, J. A. Park, and . B. Kim-s, Influence of surfactants on bacterial adhesion to metal oxide-coated surfaces, Environ. Eng. Res, vol.16, pp.219-225, 2011.

C. Choma and P. E. Granum, The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning, FEMS Microbiol. Lett, vol.217, pp.115-119, 2002.

C. Choma, M. H. Guinebretière, F. Carlin, P. Schmitt, P. Velge et al., Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables, J. App. Microbiol, vol.88, pp.617-625, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02694664

J. W. Chon, J. H. Kim, S. J. Lee, J. Y. Hyeon, and K. H. Seo, Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik, Food Microbiol, vol.32, pp.217-222, 2012.

A. Christiansson, A. S. Naidu, I. Nilsson, T. Wadstrom, and H. E. Pettersson, Toxin production by Bacillus cereus dairy isolates in milk at low temperatures, Appl. Environ. Microbiol, vol.55, pp.2595-2600, 1989.

G. Clair, S. Roussi, J. Armengaud, and C. Duport, Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions, Mol. Cell. Proteomics, vol.9, pp.1486-1498, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666484

A. E. Clark, E. J. Kaleta, A. Arora, and D. M. Wolk, Matrix-assisted laser desorption ionization-time of flight massspectrometry: a fundamental shift in the routine practice of clinical microbiology, Clin. Microbiol. Rev, vol.26, pp.547-603, 2013.

F. E. Clark, The Relation of Bacillus siamensis and Similar Pathogenic Sporeforming Bacteria to Bacillus cereus, J. Bacteriol, vol.33, pp.435-443, 1937.

D. Claus and R. C. Berkeley, The Williams& Wilkins Baltimore, Bergey's Manual of systematic Bacteriology, vol.2, pp.1104-1139, 1986.

D. O. Cliver, R. , and H. , Foodborne diseases, p.424, 2002.

T. E. Cloete and L. Jacobs, Surfactants and the attachment of Pseudomonas aeruginosa to 3CR12 stainless steel and glass, Water SA, vol.27, pp.21-26, 2001.

J. Collado, A. Fernandez, M. Rodrigo, J. Camats, and A. M. Lopez, Kinetics of desactivation of Bacillus cereus spores, Food Microbiol, vol.20, pp.545-548, 2003.

B. D. Corbin, R. J. Mclean, and A. G. , Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm, Can. J. Microbiol, vol.47, pp.680-684, 2001.

D. Corpet, Dangers biologiques des aliments-TIAC. ENVT cours A3-2014. Available at, 2014.

J. W. Costerton and H. M. Lappin-scott, Behavior of bacteria in biofilms, Am. Soc. Microbiol. News, vol.55, pp.650-654, 1989.

P. Cremonesi, L. F. Pisani, C. Lecchi, F. Ceciliani, P. Martino et al., Development of 23 individual TaqMan(R) real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions, Food Microbiol, vol.43, pp.35-40, 2014.

Y. Cui, Y. Liu, X. Liu, X. Xia, S. Ding et al., Evaluation of the toxicity and toxicokinetics of cereulide from an emetic Bacillus cereus strain of milk origin, Toxins (Basel), vol.8, issue.6, 2016.

M. Dalmasso, E. De-haas, H. Neve, R. Strain, F. J. Cousin et al., Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms, PLOS ONE, vol.10, issue.9, p.138651, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02166895

H. Daryaei, . M. Balasubramaniam-v, and J. D. Legan, Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure-heat treatment, J. Food Prot, pp.560-735, 2013.

S. Das, P. K. Surendran, and N. Thampuran, PCR-based detection of enterotoxigenic isolates of Bacillus cereus from tropical seafood, Indian J. Med. Res, vol.129, pp.316-320, 2009.

P. Davey, E. Brown, L. Fenelon, R. Finch, I. Gould et al., Interventions to improve antibiotic prescribing practices for hospital in patients, Cochrane D. B. Syst. Rev, issue.4, p.3543, 2005.

M. L. De-buyser, M. H. Guinebretière, M. Aujames, M. A. Schiaulini, B. Thery-chamard et al., , 2008.

, Investigation d'une TIAC en maison de retraite : un cocktail de Bacillus cereus, ANSES-Bulletin Epidémiologique

P. De-man, B. A. Verhoeven, H. A. Verbrugh, M. C. Vos, and J. N. Van-den-anker, An antibiotic policy to prevent emergence of resistant bacilli, Lancet, vol.355, issue.9208, pp.973-978, 2000.

B. A. Debuono, J. Brondum, J. M. Kramer, R. J. Gilbert, and S. M. Opal, , 1988.

, Plasmid, serotypic, and enterotoxin analysis of Bacillus cereus in an outbreak setting, J. Clin. Microbiol, vol.26, pp.1571-1574

G. Delmas, S. J. Da, N. Pihier, . X. Weill-f, . Vaillant-v et al., Les toxi-infections alimentaires collectives en France entre, Bull. Epidémiol. Hebd, vol.31, pp.344-348, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02047871

D. De-palmenaer, C. Vermeiren, and J. Mahillon, IS231-MIC231 elements from Bacillus cereus sensu lato are modular, Mol. Microbiol, vol.53, pp.457-467, 2004.

G. A. Dequeiroz and D. F. Day, Disinfection of Bacillus subtilis spore-contaminated surface materials with a sodium hypochlorite and a hydrogen peroxide-based sanitizer, Lett. Appl. Microbiol, vol.46, pp.176-180, 2008.

. Di, C. Franco, E. Beccari, T. Santini, G. Pisaneschi et al., Colony shape as a genetic trait in the pattern-forming Bacillus mycoides, BMC Microbiol, vol.2, issue.33, 2002.

K. Dierick, E. Van-coillie, I. Swiecicka, G. Meyfroidt, H. Devlieger et al., Fatal family outbreak of Bacillus cereus-associated food poisoning, J. Clin. Microbiol, vol.43, issue.8, pp.4277-4279, 2005.

R. Dietrich, C. Fella, S. Strich, and E. Märtlbauer, Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus, Appl. Environ. Microbiol, vol.65, pp.4470-4474, 1999.

R. Dietrich, M. Moravek, C. Bürk, P. E. Granum, and E. Märtlbauer, Production and chara terization of antibodies against each of the three subunits of the B. cereus non hemolytic enterotoxin complex, Appl. Environ. Microbiol, vol.71, pp.8214-8220, 2005.

V. M. Doll, M. Ehling-schulz, and R. Vogelmann, Concerted action of sphingomyelinase and nonhemolytic enterotoxin in pathogenic Bacillus cereus, PLOS ONE, vol.8, issue.4, p.61404, 2013.

R. M. Donlan, Preventing biofilms of clinically relevant organisms using bacteriophage, Trends Microbiol, vol.17, pp.66-72, 2009.

F. A. Drobniewski, Bacillus cereus and related species, Clin. Microbiol. Rev, vol.6, pp.324-338, 1993.

E. Dromigny, Bacillus cereus, 2008.

A. Dubouix, E. Bonnet, M. Alvarez, H. Bensafi, M. Archambaud et al., Bacillus cereus infections in traumatology -orthopaedics department : Retrospective investigation and improvement of healthcare practices, J. Infect, vol.50, issue.1, pp.22-30, 2005.

D. H. Duckworth, J. Glenn, and D. J. Mccorquodale, Inhibition of bacteriophage replication by extrachromosomal genetic element, Microbiol. Rev, vol.45, pp.52-71, 1981.

W. M. Dunne, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev, vol.15, pp.155-166, 2002.

C. Duport, S. Thomassin, G. Bourel, and P. Schmitt, Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73, Arch. Microbiol, vol.182, pp.90-95, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681797

Z. Drulis-kawa, G. Majkowska-skrobek, B. Maciejewska, A. S. Delattre, and R. Lavigne, Learning from bacteriophages -advantages and limitations of phage and phage-encoded protein applications, Curr. Protein Pept Sci, vol.13, issue.8, pp.699-722, 2012.

M. Dzieciol, M. Fricker, M. Wagner, I. Hein, and M. Ehling-schulz, A novel diagnostic real-time PCR assay for quantification and differentiation of emetic and nonemetic Bacillus cereus, Food Control, vol.32, pp.176-185, 2013.

. Efsa, The use and mode of action of bacteriophages in food production, EFSA J, vol.7, issue.5, p.1076, 2009.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009, EFSA J, vol.9, 2011.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010, EFSA J, vol.10, p.2597, 2012.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012, EFSA J, vol.12, p.3547, 2014.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013, EFSA J, vol.13, p.3991, 2015.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014, EFSA J, vol.13, p.4329, 2015.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015, EFSA J, vol.14, p.4634, 2016.

, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016, EFSA J, vol.15, p.5077, 2017.

. Efsa, . On, and . Hazards, Bacillus cereus and other Bacillus spp in foodstuffs, EFSA J, vol.175, pp.1-48, 2005.

. Efsa, . On, and . Hazards, Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs, EFSA J, vol.14, pp.4524-4531, 2016.

. Efsa, Scientific report of EFSA and ECDC -The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011, EFSA J, vol.11, p.3129, 2013.

M. Ehling-schulz, M. Fricker, and S. Scherer, Bacillus cereus, the causative agent of an emetic type of food-borne illness, Mol. Nutr. Food Res, vol.48, issue.7, pp.479-487, 2004.

M. Ehling-schulz, M. Fricker, and S. Scherer, Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay, FEMS Microbiol. Lett, vol.232, issue.2, pp.189-195, 2004.

M. Ehling-schulz, M. H. Guinebretière, A. Monthan, O. Berge, M. Fricker et al., Toxin gene profiling of enterotoxic and emetic Bacillus cereus, FEMS Microbiol. Lett, vol.260, pp.232-240, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02661800

M. Ehling-schulz, D. Lereclus, and T. M. Koehler, The Bacillus cereus Group, Bacillus Species with Pathogenic Potential. Microbiol. Spectr, vol.7, issue.3, 2019.
URL : https://hal.archives-ouvertes.fr/halsde-00196368

M. Ehling-schulz and U. Messelhäusser, Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling, 2013.

M. Ehling-schulz, N. Vukov, A. Schulz, R. Shaheen, M. Andersson et al., Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus, Appl. Environ. Microbiol, vol.71, issue.1, pp.105-113, 2005.

T. F. El-arabi, M. W. Griffiths, Y. M. She, A. Villegas, E. J. Lingohr et al., Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group, Virol. J, vol.10, p.48, 2013.

L. Endersen, J. O'mahony, C. Hill, R. P. Ross, O. Mcauliffe et al., Phage therapy in the food industry, Annu. Rev. Food Sci. Technol, vol.5, pp.327-349, 2014.

A. Eneroth, B. Svensson, G. Molin, and A. Christiansson, Contamination of pasteurized milk by Bacillus cereus in the filling machine, J. Dairy Res, vol.68, issue.2, pp.189-196, 2001.

J. Esbelin, J. Armengaud, A. Zigha, and C. Duport, ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: Evidence for multiple modes of binding for ResD and interaction with Fnr, J. Bacteriol, vol.191, pp.4419-4426, 2009.

J. Esbelin, Y. Jouanneau, and C. Duport, Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR, BMC Microbiol, vol.12, p.125, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01063231

A. Fagerlund, T. Lindbäck, A. K. Storset, P. E. Granum, and S. P. Hardy, Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia, Microbiology, vol.154, issue.3, pp.693-704, 2008.

A. Fagerlund, O. Ween, T. Lund, S. P. Hardy, and P. E. Granum, Genetic and functional analysis of the cytK family of genes in Bacillus cereus, Microbiology, vol.150, issue.8, pp.2689-2697, 2004.

C. Faille, T. Benezech, W. Blel, A. Ronse, G. Ronse et al., Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures, Food. Microbiol, vol.33, pp.149-157, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01924315

C. Faille, T. Benezech, G. Midelet-bourdin, Y. Lequette, M. Clarisse et al., Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments, Food Microbiol, vol.40, pp.64-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634204

C. Faille, F. Fontaine, and T. Benezech, Potential occurrence of adhering living Bacillus spores in milk product processing lines, J. Appl. Microbiol, vol.90, pp.892-900, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02670184

C. Faille, C. Jullien, F. Fontaine, M. N. Bellon-fontaine, C. Slomianny et al., Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity, Can. J. Microbiol, vol.48, pp.728-738, 2002.

C. Faille, Y. Sylla, C. Le-gentil, T. Benezech, C. Slomianny et al., Viability and surface properties of spores subjected to a cleaning-in-place procedure: consequences on their ability to contaminate surfaces of equipment, Food Microbiol, vol.27, pp.769-776, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02668201

P. Fatemi and J. F. Frank, Inactivation of Listeria monocytogenes/ Pseudomonas biofilms by peracid sanitizers, J. Food Prot, vol.62, pp.761-765, 1999.

I. Fendri, A. Ben-hassena, N. Grosset, M. Barkallah, L. Khannous et al., Genetic Diversity of Food-Isolated Salmonella Strains through Pulsed Field Gel Electrophoresis (PFGE) and Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR), PLOS ONE, vol.8, p.81315, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209580

M. Fernandes, A. Leite, M. Basto, M. A. Nobre, N. Vieira et al., Non-adherence to antibiotic therapy in patients visiting community pharmacies, Int J Clin Pharm, vol.36, issue.1, pp.86-91, 2014.

I. C. Fernández-no, M. Guarddon, K. Böhme, A. Cepeda, P. Calo-mata et al., Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR, Food Microbiol, vol.28, pp.605-610, 2011.

K. Fiedoruk, T. Daniluk, A. Fiodor, E. Drewicka, K. Buczynska et al., MALDI-TOF MS portrait of emetic and nonemetic Bacillus cereus group members, Electrophoresis, vol.37, pp.2235-2247, 2016.

W. J. Finlay, N. A. Logan, and A. D. Sutherland, Semi automated metabolic staining assay for Bacillus cereus emetic toxin, Appl. Environ. Microbiol, vol.65, pp.1811-1812, 1999.

V. A. Fischetti, Bacteriophage endolysins : a novel anti-infective to control Gram-positive pathogens, Int. J. Med. Microbiol, vol.300, issue.6, pp.357-362, 2010.

V. A. Fischetti, Bacteriophage lysins as effective antibacterials, Curr. Opin. Microbiol, vol.11, pp.393-400, 2008.

H. C. Flemming and J. Wingender, The biofilm matrix, Nat. Rev. Microbiol, vol.8, pp.623-633, 2010.

S. H. Flint, P. J. Bremer, and J. D. Brooks, Biofilms in dairy manufacturing plantdescription, current concerns and methods of control, Biofouling, vol.11, pp.81-97, 1997.

V. Floristean, C. Cretu, and M. Carp-carare, Bacteriological characteristics of Bacillus cereus isolates from poultry, Bulletin USAMV-CN, vol.64, pp.425-430, 2007.

A. C. Fluit, R. V. Maarten, and F. J. Schmitz, Molecular Detection of Antimicrobial Resistance, Clin. Microbiol. Rev, vol.14, pp.836-871, 2001.

B. Fogele, R. Granta, O. Valci?a, and . B?rzi??¸-a, Occurrence and diversity of Bacillus cereus and moulds in spices and herbs, Food Control, vol.83, pp.69-74, 2018.

F. Standards-australia-new and . Zealand, Guidelines for microbiological examination of ready-to-eat foods, 2001.

K. Forminska, A. A. Zasada, and M. Jagielski, Evaluation of multiplex PCR to identify the species of microorganisms from Bacillus cereus group, Medycyna Doswiadczalna i Mikrobiologia, vol.64, pp.101-108, 2012.

D. E. Fouts, D. A. Rasko, R. Z. Cer, L. X. Jiang, N. B. Fedorova et al., Sequencing Bacillus anthracis typing phages gammaand cherry reveals a common ancestry, J. Bacteriol, vol.188, pp.3402-3408, 2006.

K. P. Francis, R. Mayr, . Von, F. Stetten, G. S. Stewart et al., Discrimination of psychotrophic and msophelic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes, Appl. Environ. Microbiol, vol.64, issue.9, pp.3525-3529, 1998.

J. F. Frank and R. A. Koffi, Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactants, sanotizers and heat, J. Food Prot, vol.53, pp.550-554, 1990.

G. C. Frankland and P. F. Frankland, Studies on some new micro-organisms obtained from air, Philos.Trans. R. Soc. Lond. B., Biol. Sci, vol.178, pp.257-287, 1887.

E. Frenzel, T. Letzel, S. Scherer, and M. Ehling-schulz, Inhibition of cereulide toxin synthesis by emetic Bacillus cereus via long-chain polyphosphates, Appl. Environ. Microbiol, vol.77, pp.1475-1482, 2011.

M. Fricker, R. Reissbrodt, and M. Ehling-schulz, Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus, Int. J. Food Microbiol, vol.121, issue.1, pp.27-34, 2008.

R. Fuller, Probiotics in man and animaIs, J. App. Bacteriol, vol.66, issue.5, pp.365-378, 1989.

R. Fuller, Probiotics in Human Medicine, Gut, vol.32, issue.4, pp.434-442, 1991.

K. C. Garcia, I. M. Correa, L. Q. Pereira, T. M. Silva, M. S. Mioni et al., Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses, Poult. Sci, vol.96, issue.9, pp.3392-3398, 2017.

P. Garcia, B. Martinez, J. M. Obeso, and A. Rodriguez, Bacteriophages and their application in food safety, Lett. Appl. Microbiol, vol.47, pp.479-485, 2008.

J. Garcia-calvo, S. Ibeas, E. C. Anton-garcia, T. Torroba, G. Gonzalez-aguilar et al., Potassium-Ion-Selective Fluorescent Sensors To Detect Cereulide, the Emetic Toxin of B. cereus, in Food Samples and HeLa Cells, ChemistryOpen, vol.6, issue.4, pp.562-570, 2017.

P. Garry, S. Christieans, and P. Cartier, Les procédés de biopréservation alimentaire, Sciences des Aliments, vol.28, issue.4, p.327, 2008.

P. Geng, S. Tian, Z. Yuan, and X. Hu, Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus, PLOS ONE, vol.12, p.184572, 2017.

R. J. Gilbert and J. M. Kramer, Bacillus Cereus Food Poisoning, Progress in Food Safety: Proceedings of Symposium. Cliver D. C, pp.85-93, 1986.

A. Gillis and J. Mahillon, Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future, Viruses, vol.6, pp.2623-2672, 2014.

N. Gilois, N. Ramarao, L. Bouillaut, S. Perchat, S. Aymerich et al., Growth-related variations in the B. cereus secretome, Proteomics, vol.7, pp.1719-1728, 2007.

A. Giuseppe, D. Daniela, B. Arianna, C. Philippa, . Connertonian et al., Isolation and Morphological Characterization of New Bacteriophages Active against Campylobacter jejuni, Am. J. Clin. Microbiol. Antimicrob, vol.1, issue.1, p.1004, 2018.

J. Gödeke, K. Paul, J. Lassak, and K. M. Thormann, Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1, ISME J, vol.5, issue.4, pp.613-626, 2011.

M. Gohar, K. Faegri, S. Perchat, S. Ravnum, O. A. Okstad et al., The PlcR virulence regulon of Bacillus cereus, PLOS ONE, vol.3, issue.7, p.2793, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315585

M. Gohar, O. A. Okstad, N. Gilois, V. Sanchis, A. B. Kolsto et al., Twodimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon, Proteomics, vol.2, pp.784-791, 2002.

C. Gong and X. Jiang, Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces, Poult. Sci, vol.96, issue.6, pp.1838-1848, 2017.

P. E. Granum, Bacillus cereus, Food Microbiology: Fundamentals and Frontiers, pp.445-456, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01001005

P. E. Granum, Bacillus cereus and its toxins, Soc. Appl. Bacteriol. Symp. Ser, vol.23, pp.61-66, 1994.

P. E. Granum, Bacillus cereus, Food Microbiology: Fundamentals and Frontiers, pp.373-381, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01001005

P. E. Granum, S. Brynestad, and J. M. Kramer, Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and nongastrointestinal infections, Int. J. Food Microbiol, vol.17, pp.269-279, 1993.

P. E. Granum and T. Lund, Bacillus cereus and its food poisoning toxins, FEMS Microbiol. Lett, vol.157, issue.2, pp.223-228, 1997.

P. E. Granum, K. Sullivan, and T. Lund, The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus, FEMS Microbiol. Lett, vol.177, pp.225-229, 1999.

P. E. Granum, J. M. Tomas, and J. E. Alouf, A survey of bacterial toxins involved in food poisoning: a suggestion for bacterial food poisoning toxin nomenclature, Int. J. Food Microbiol, vol.28, pp.129-144, 1995.

P. Graumann and M. A. Marahiel, Some like it cold : response of microorganisms to cold shock, Arch. Microbiol, vol.166, issue.5, pp.293-300, 1996.

A. Guérin, Comportement de la bactérie pathogène Bacillus cereus dans des aliments prêts à l'emploi -Impact des conditions physico-chimiques, 2016.

A. Guérin, H. T. Rønning, C. Dargaignaratz, T. Clavel, V. Broussolle et al., Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures, Food Microbiol, vol.65, pp.130-135, 2017.

E. Guillemet, C. Cadot, S. L. Tran, M. H. Guinebretière, D. Lereclus et al., The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence, J. Bacteriol, vol.192, pp.286-294, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02658821

M. H. Guinebretière, S. Auger, N. Galleron, M. Contzen, B. De-sarrau et al., Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning, Int. J. Syst. Evol. Microbiol, vol.63, issue.1, pp.31-40, 2013.

M. H. Guinebretière, V. Broussolle, and C. Nguyen-the, Enterotoxigenic profiles of food poisoning and food-borne Bacillus cereus strains, J. Clin. Microbiol, vol.40, pp.3053-3056, 2002.

M. H. Guinebretière, A. Fagerlund, P. E. Granum, and C. Nguyen-the, Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system, FEMS Microbiol. Lett, vol.259, issue.1, pp.74-80, 2006.

M. H. Guinebretière and V. Sanchis, Bulletin de la société Française de Microbiologie, vol.18, pp.95-103, 2003.

M. H. Guinebretière, F. L. Thompson, A. Sorokin, P. Normand, P. Dawynd et al., Ecological diversification in the Bacillus cereus Group, Environ. Microbiol, vol.10, pp.851-865, 2008.

M. H. Guinebretière, P. Velge, O. Couvert, F. Carlin, and M. L. Debuyser, Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation, J. Clin. Microbiol, vol.48, issue.9, pp.3388-3391, 2010.

M. Guinebretiere and C. Nguyen-the, Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentiated by two PCR-based methods, FEMS Microbiol. Ecol, vol.43, pp.207-215, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02679554

D. Gutierrez, L. Rodriguez-rubio, B. Martinez, A. Rodriguez, and P. Garcia, Bacteriophages as weapons against bacterial biofilms in the food industry, Front. Microbiol, vol.7, p.825, 2016.

S. Haeghbaert, F. Le-querrec, P. Bouvet, A. Gallay, E. Espie et al., , 2002.

, Les toxi-infections alimentaires collectives en France en, Bull. Epidemiol. Hebd, vol.50, pp.249-254, 2001.

M. M. Häggblom, C. Apetroaie, M. A. Andersson, and M. S. Salkinoja-salonen, Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions, Appl. Environ. Microbiol, vol.68, issue.5, pp.2479-2483, 2002.

B. M. Hansen and N. B. Hendriksen, Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis, Appl. Environ. Microbiol, vol.67, pp.185-189, 2001.

B. M. Hansen, P. E. Høiby, G. B. Jensen, and N. B. Hendriksen, The Bacillus cereus bceT enterotoxin sequence reappraised, FEMS Microbiol. Lett, vol.223, pp.21-24, 2003.

K. Hantke, Major outer membrane protein of Escherichia coli k12 serve as receptors for the phage T2 (protein 1a) and 434 (protein 1b), Mol. Gen. Genet, vol.164, pp.131-135, 1978.

H. Harbottle, D. G. White, P. F. Mcdermott, R. D. Walker, and S. Zhao, Comparison of multilocus sequence typing, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing for characterization of Salmonella enterica serotype Newport isolates, J. Clin. Microbiol, vol.44, pp.2449-2457, 2006.

S. P. Hardy, T. Lund, and P. E. Granum, CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia, FEMS Microbiol. Lett, vol.197, issue.1, pp.47-51, 2001.

L. J. Harrell, G. L. Andersen, and . H. Wilson-k, Genetic variability of Bacillus anthracis and related species, J. Clin. Microbiol, vol.33, issue.7, pp.1847-1850, 1995.

U. Hariram and R. Labbé, Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices, J. Food Prot, vol.78, issue.3, pp.590-596, 2015.

D. R. Harper, H. M. Parracho, J. Walker, R. Sharp, G. Hughes et al., Bacteriophages and biofilms. Antibiotics, vol.3, issue.3, pp.270-284, 2014.

T. M. Haug, S. L. Sand, O. Sand, D. Phung, P. E. Granum et al., Formation of very large conductance channels by Bacillus cereus Nhe in Vero and GH 4 cells identifies NheA+ B as the inherent pore-forming structure, J. Membr. Biol, vol.237, issue.1, pp.1-11, 2010.

S. Hauge, Food Poisoning caused by Bacillus cereus, Nordisk Hygienisk Tidskrift, vol.6, pp.189-206, 1950.

A. H. Havelaar, J. A. Haagsma, M. J. Mangen, J. M. Kemmeren, L. P. Verhoef et al., Disease burden of foodborne pathogens in the Netherlands, Int. J. Food Microbiol, vol.156, issue.3, pp.231-238, 2009.

H. Hayrapetyan, Bacillus cereus growth and biofilm formation: the impact of substratum, iron sources, and transcriptional regulator Sigma 54, 2017.

J. H. Heinrichs, D. J. Beecher, J. D. Macmillan, and B. A. Zilinskas, Molecular cloning and characterization of the gene encoding the B component of hemolysin BL from Bacillus cereus, J. Bacteriol, vol.175, pp.6760-6766, 1993.

E. Helgason, D. A. Caugant, M. M. Lecadet, Y. Chen, J. Mahillon et al., Genetic diversity of Bacillus cereus/Bacillus thuringiensis isolates from natural sources, Curr. Microbiol, vol.37, pp.80-87, 1998.

E. Helgason, D. A. Caugant, I. Olsen, and A. B. Kolstø, Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections, J. Clin. Microbiol, vol.38, issue.4, pp.1615-1622, 2000.

E. Helgason, O. A. Økstad, D. A. Caugant, H. A. Johansen, A. Fouet et al., Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis -one species on the basis of genetic evidence, Appl. Environ. Microbiol, vol.66, pp.2627-2630, 2000.

E. Helgason, N. J. Tourasse, R. Meisal, D. A. Caugant, and A. B. Koiste, Multilocus sequence typing scheme for bacteria of the Bacillus cereus group, Appl. Environ. Microbiol, vol.70, pp.191-201, 2004.

N. B. Hendriksen, B. M. Hansen, and J. E. Johansen, Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam, Antonie Van Leeuwenhoek, vol.89, issue.2, pp.239-249, 2006.

S. D. Heringa, J. K. Kim, X. Jiang, M. P. Doyle, and M. C. Erickson, Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compost, Appl. Envir. Microbiol, vol.76, pp.5327-5332, 2010.

E. Hernandez, F. Ramisse, T. Cruel, R. Le-vagueresse, and J. D. Cavallo, Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection, FEMS Immunol. Med. Microbiol, vol.24, issue.1, pp.43-47, 1999.

M. Heyndrickx, The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing, Appl. Environ. Soil Sci, issue.11, p.2011, 2011.

A. M. Hibma, S. A. Jassim, and M. W. Griffiths, Infection and removal of Lforms of Listeria monocytogenes with bred bacteriophage, Int. J. Food Microbiol, vol.34, pp.197-207, 1997.

K. K. Hill, L. O. Ticknor, R. T. Okinaka, M. Asay, H. Blair et al., Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates, Appl. Environ. Microbiol, vol.70, pp.1068-1080, 2015.

. C. Hilton-a, J. G. Banks, and C. W. Penn, Random amplification of polymorphic DNA (RAPD) of Salmonella: strain differentiation and characterization of amplified sequences, J. App. Microbiol, vol.81, pp.575-584, 1996.

A. R. Hoffmaster, J. Ravel, D. A. Rasko, G. D. Chapman, M. D. Chute et al., Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax, Proc. Natl. Acad. Sci. USA, vol.101, pp.8449-8454, 2004.

R. Holbrook and J. M. Anderson, An improved selective and diagnostic medium for the isolation and enumeration of Bacillus cereus in foods, Can. J. Microbiol, vol.26, pp.753-759, 1980.

S. Hong and M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. Membrane Sci, vol.132, issue.2, pp.159-181, 1997.

L. M. Hornstra, P. L. Leeuw, R. Moezelaar, E. J. Wolbert, . De et al., Germination of Bacillus cereus spores adhered to stainless steel, Int. J. Food Microbiol, vol.116, pp.367-371, 2007.

F. M. Hoton, L. Andrup, I. Swiecicka, and J. Mahillon, The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne, Microbiology, vol.151, issue.7, pp.2121-2124, 2005.

F. M. Hoton, N. Fornelos, E. N'guessan, X. Hu, I. Swiecicka et al., Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains, Environ. Microbiol. Rep, vol.1, issue.3, pp.177-183, 2009.

A. Houry, R. Briandet, S. Aymerich, and M. Gohar, Involvement of motility and flagella in Bacillus cereus biofilm formation, Microbiology, vol.156, pp.1009-1018, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01605000

. Hpa, Reported outbreaks of Bacillus spp. Health Protection agency, 1992.

F. C. Hsu, Y. S. Shieh, and M. D. Sobsey, Enteric bacteriophages as potential fecal indicators in ground beef and poultry meat, J. Food Prot, vol.65, pp.93-99, 2002.

J. A. Hudson, C. Billington, G. Carey-smith, and G. Greening, , 2005.

, Bacteriophages as biocontrol agents in food, J. Food Prot, vol.68, pp.426-437

C. S. Hulton, . F. Higgins-c, and P. M. Sharp, ERIC sequences: Anovel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria, Mol. Microbiol, vol.5, issue.4, pp.825-834, 1991.

S. M. Hunt, E. M. Werner, B. Huang, M. A. Hamilton, and P. S. Stewart, Hypothesis for the role of nutrient starvation in biofilm detachment, Appl. Environ. Microbiol, vol.70, issue.12, pp.7418-7425, 2004.

I. Huys, J. P. Pirnay, R. Lavigne, S. Jennes, D. De-vos et al., Paving a regulatory pathway for phage therapy, EMBO Rep, vol.14, pp.951-954, 2013.

J. Y. Hwang and J. H. Park, Survival and growth of Bacillus cereus group and presumptive Cronobacter spp. contaminated naturally in rehydrated Sunsik, Food Sci. Biotechnol, vol.19, pp.1683-1687, 2010.

M. Ikeda, Y. Yagihara, K. Tatsuno, M. Okazaki, S. Okugawa et al., Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections, Ann. Clin. Microbiol. Antimicrob, vol.14, issue.43, 2015.

. Invs, Microbiology of food and animal feeding stuffs -horizontal method for the enumeration of presumptive Bacillus cereus-colony count technique at 30 °C, vol.7932, 2004.

N. Ivanova, A. Sorokin, I. Anderson, N. Galleron, B. Candelon et al., , 2003.

, Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis, Nature, vol.423, pp.87-91

E. L. Jääskeläinen, M. M. Häggblom, M. A. Andersson, S. , and M. S. , Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food, Int. J. Food Microbiol, vol.96, issue.1, pp.75-83, 2004.

M. Jamal, T. Hussain, C. R. Das, and S. Andleeb, Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm, J. Med. Microbiol, vol.64, pp.454-462, 2015.

S. Jan, N. Brunet, C. Techer, C. Le-marechal, A. Z. Kone et al., Biodiversity of psychrotrophic bacteria of the Bacillus cereus group collected on farm and in egg product industry, Food Microbiol, vol.28, pp.261-265, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00729270

G. B. Jensen, B. M. Hansen, J. Eilenberg, and J. Mahillon, The hidden lifestyles of Bacillus cereus and relatives, Environ. Microbiol, vol.5, issue.8, pp.631-640, 2003.

N. Jessberger, R. Dietrich, S. Bock, A. Didier, and E. Märtlbauer, Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines, Toxicon, vol.77, pp.49-57, 2014.

N. Jeßberger, V. M. Krey, C. Rademacher, M. E. Böhm, A. K. Mohr et al., From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus, Front. Microbiol, vol.6, issue.560, 2015.

G. Jiménez, M. Urdiain, A. Cifuentes, A. López-lópez, A. R. Blanch et al., Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations, Syst. Appl. Microbiol, vol.36, issue.6, pp.383-391, 2013.

J. John, K. Roediger, W. Schroedl, N. Aldaher, and I. Vervuert, Development of intestinal microflora and occurrence of diarrhoea in sucking foals: effects of Bacillus cereus var. toyoi supplementation, BMC Vet. Res, vol.11, issue.34, 2015.

M. Y. Jung, J. S. Kim, W. K. Paek, J. Lim, H. Lee et al., Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment, J. Microbiol, vol.49, issue.6, pp.1027-1032, 2011.

M. Y. Jung, W. K. Paek, I. S. Park, J. R. Han, Y. Sin et al., Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea, J. Microbiol, vol.48, issue.6, pp.867-871, 2010.

S. Kalyoussef and K. N. Feja, Foodborne illnesses, Adv. Pediatr, vol.61, issue.1, pp.287-312, 2014.

H. Kamiya, T. Ehara, and T. Matsumoto, Inhibitory effects of lactoferrin on biofilm formation in clinical isolates of Pseudomonas aeruginosa, J. Infect. Chemother, vol.18, issue.1, pp.47-52, 2012.

J. B. Kaplan and D. H. Fine, Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria, Appl. Environ. Microbiol, vol.68, issue.10, pp.4943-4950, 2002.

B. Karaca, N. Akcelik, and M. Akcelik, Effects of P22 bacteriophage on Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and eradication, Arch. Biol. Sci, vol.67, issue.4, pp.1361-1367, 2015.

P. Keim, M. Mock, J. Young, and T. M. Koehler, The international Bacillus anthracis, B. cereus, and B. thuringiensis conference,''Bacillus-ACT05, J. Bacteriol, vol.188, pp.3433-3441, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00317348

T. J. Kidd, K. Grimwood, K. A. Ramsay, P. B. Rainey, and S. C. Bell, Comparison of Three Molecular Techniques for Typing Pseudomonas aeruginosa Isolates in Sputum Samples from Patients with Cystic Fibrosis, J. Clin. Microbiol, vol.49, issue.1, pp.263-268, 2011.

J. B. Kim, J. M. Kim, S. Y. Kim, J. H. Kim, Y. B. Park et al., Comparison of Enterotoxin Production and Phenotypic Characteristics Between Emetic and Enterotoxic Bacillus cereus, J. Food Prot, vol.73, pp.1219-1224, 2010.

K. Kim, J. Seo, K. Wheeler, C. Park, D. Kim et al., Rapid genotypic detection of Bacllus anthracis and the Bacillus cereus group by multiplex real time PCR melting curve analysis, FEMS Immunol. Med. Microbiol, vol.43, issue.2, pp.301-310, 2005.

A. M. King, E. Lefkowitz, M. J. Adams, and E. B. Carstens, Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses, p.1327, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01977366

B. Kinley, Prevalence and biological control of Salmonella contamination in rendering plant environments and the finished rendered meals, 2009.

M. Klausen, A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-jørgensen et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Mol. Microbiol, vol.48, issue.6, pp.1511-1524, 2003.

J. Klumpp, R. Calendar, and M. J. Loessner, Complete Nucleotide Sequence and Molecular Characterization of Bacillus Phage TP21 and its Relatedness to Other Phages with the Same Name, Viruses, vol.2, issue.4, pp.961-971, 2010.

J. Klumpp and M. J. Loessner, Listeria phages: Genomes, evolution, and application, vol.3, p.26861, 2013.

W. Kneifel and E. Berger, Microbiological criteria of random samples ofspices and herbs retailed on the Austrian market, J. Food Prot, vol.57, pp.893-901, 1994.

A. B. Kolsto, A. Gronstad, and H. Oppegaard, Physical map of the Bacillus cereus chromosome, J. Bacteriol, vol.172, issue.7, pp.3821-3825, 1990.

A. Kotiranta, K. Lounatmaa, and M. Haapasalo, Epidemiology and pathogenesis of Bacillus cereus infections, Microbes Infect, vol.2, issue.2, pp.189-198, 2000.

J. M. Kramer and R. J. Gilbert, Bacillus cereus and other Bacillus species, Foodborne bacterial pathogens. DOYLE, M.P, vol.816, p.pp, 1989.

N. Krause, M. Moravek, R. Dietrich, E. Wehrle, J. Slaghuis et al., Performance characteristics of the Duopath(R) cereus enterotoxins assay for rapid detection of enterotoxigenic Bacillus cereus strains, Int. J. Food Microbiol, vol.144, pp.322-326, 2010.

A. C. Kreske, J. H. Ryu, and L. R. Beuchat, Evaluation of chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer for effectiveness in killing Bacillus cereus and Bacillus thuringiensis spores in suspensions, on the surface of stainless steel, and on apples, J. Food Prot, vol.69, pp.1892-1903, 2006.

A. C. Kreske, J. H. Ryu, C. A. Pettigrew, and L. R. Beuchat, Lethality of chlorine, chlorine dioxide, and a commercial produce sanitizer to Bacillus cereus and Pseudomonas in a liquid detergent, on stainless steel, and in biofilm, J. Food Prot, vol.69, pp.2621-2634, 2006.

S. Kumari and P. K. Sarkar, In vitro model study for biofilm formation by Bacillus cereus in dairy chillingtanks and optimization of clean-in-place(CIP) regimes using response surface methodology, Food Control, vol.36, pp.153-158, 2014.

S. Kumari and P. K. Sarkar, Bacillus cereus hazard and control in industrial processing environment, Food Control, vol.69, pp.20-29, 2016.

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nat. Rev. Microbiol, vol.8, pp.317-327, 2010.

S. Langsrud, B. Baardsen, and G. Sundheim, Potentiation of the lethal effect of peroxygen on Bacillus cereus spores by alkali and enzyme wash, Int. J. Food Microbiol, vol.56, pp.81-86, 2000.

A. Lapidus, E. Goltsman, S. Auger, N. Galleron, B. Ségurens et al., Extending the Bacillus cereus group genomics to putative foodborne pathogens of different toxicity, Chem. Biol. Interact, vol.171, issue.2, pp.236-249, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01606328

S. Lechner, R. Mayr, K. P. Francis, B. M. Prüß, T. Kaplan et al., Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group, Int. J. Syst. Evol. Microbiol, vol.48, issue.4, pp.1373-1382, 1998.

H. Y. Lee, L. C. Chai, S. Y. Tang, S. Jinap, M. Ghazali et al., Application of MPN-PCR in biosafety of Bacillus cereus s.l. for readyto-eat cereals, Food Control, vol.20, issue.11, pp.1068-1071, 2009.

J. H. Lee, H. Shin, and S. Ryu, Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group, Arch. Virol, vol.159, pp.871-884, 2014.

J. H. Lee, H. Shin, B. Son, S. Heu, and S. Ryu, Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus, Arch. Virol, vol.158, issue.10, pp.2101-2108, 2013.

N. Lee, M. D. Kim, H. J. Chang, S. W. Choi, and H. S. Chun, Genetic diversity, antimicrobial resistance, toxin gene profiles, and toxin production ability of Bacillus cereus isolates from doenjang, a Korean fermented soybean paste, J. Food Saf, vol.37, issue.4, 2017.

N. Lee, J. M. Sun, K. Y. Kwon, H. J. Kim, M. Koo et al., Genetic diversity, antimicrobial resistance, and toxigenic profiles of Bacillus cereus strains isolated from sunsik, J. Food Prot, vol.75, pp.225-230, 2012.

W. J. Lee, C. Billington, J. A. Hudson, and J. A. Heinemann, Isolation and characterization of phages infecting Bacillus cereus, Lett. Appl. Microbiol, vol.52, pp.456-464, 2011.

C. Lelievre, G. Antonini, C. Faille, and T. Benezech, Cleaning-in-place: modelling of cleaning kinetics of pipes soiled by bacillus spores assuming a process combining removal and deposition, Food Bioprod. Process, vol.80, pp.305-311, 2002.

C. Lelievre, C. Faille, and T. Benezech, Removal kinetics of Bacillus cereus spores from stainless steel pipes under CIP procedure: influence of soiling and cleaning conditions, J. Food Process Eng, vol.24, pp.359-379, 2001.

K. Lemon, P. Darren, E. Higgins, and R. Kolter, Flagellar Motility Is Critical for Listeria monocytogenes Biofilm Formation, J. Bacteriol, vol.189, pp.4418-4424, 2007.

M. Lemos, F. Mergulhão, L. Melo, and M. Simöes, The effect of shear stress on the formation and removal of Bacillus cereus biofilms, Food Bioprod. Process, vol.93, pp.242-248, 2015.

P. M. Lepper, E. Grusa, H. Reichl, J. Hogel, and M. Trautmann, Consumption of imipenem correlates with beta-lactam resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.46, issue.9, pp.2920-2925, 2002.

Y. Lequette, G. Boels, M. Clarisse, and C. Faille, Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry, Biofouling, vol.26, pp.421-431, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665945

I. Liaqat, I. A. Saiyed, and J. Nusrat, Biofilm formation and sporulation in Bacillus subtilis, Int. J. Microbiol. Res. Rev, vol.1, pp.61-67, 2013.

T. Lindbäck, A. Fagerlund, M. S. Rodland, and P. E. Granum, Characterization of the Bacillus cereus Nhe enterotoxin, Microbiology, vol.150, pp.3959-3967, 2004.

T. Lindbäck, P. E. Granum, J. Alouf, D. Ladant, and M. Popoff, 29 -Bacillus cereus phospholipases, enterotoxins, and other hemolysins, The Comprehensive Source book of Bacterial Protein Toxins, p.1200, 2015.

T. Lindbäck, S. P. Hardy, R. Dietrich, S. P. Hardy, R. Dietrich et al., Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein com ponents, Infect. Immun, vol.78, pp.3813-3821, 2010.

T. Lindbäck, O. A. Okstad, A. L. Rishovd, and A. B. Kolsto, Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes, Microbiology, vol.145, pp.3139-3146, 1999.

B. Liu, G. H. Liu, G. P. Hu, S. Cetin, N. Q. Lin et al., Bacillus bingmayongensis sp. nov., isolated from the pit soil of Emperor Qin's Terra-cotta warriors in China, Antonie Van Leeuwenhoek, vol.105, issue.3, pp.501-510, 2014.

P. Y. Liu, S. C. Ke, and S. L. Chen, Use of pulsed-field gel electrophoresis to investigate a pseudo-outbreak of Bacillus cereus in a pediatric unit, J. Clin. Microbiol, vol.35, issue.6, pp.1533-1535, 1997.

Y. Liu, Q. Lai, M. Göker, J. P. Meier-kolthoff, M. Wang et al., Genomic insights into the taxonomic status of the Bacillus cereus group, Sci. Rep, vol.5, 2015.

M. J. Loessner, S. K. Maier, H. Daubek-puza, G. Wendlinger, and S. Scherer, , 1997.

, Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli, J. Bacteriol, vol.179, pp.2845-2851

N. A. Logan, Bacillus and relatives in foodborne illness, J. Appl. Microbiol, vol.112, issue.3, pp.417-429, 2012.

N. Logan, P. C. Turnbull, P. R. Murray, E. J. Baron, and J. H. Jorgensen, Bacillus and other aerobic endospore-forming bacteria, In Manual of Clinical Microbiology, pp.445-460, 2003.

A. Lopez, J. Minnaard, P. Perez, and A. Alippi, A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken, Food Microbiol, vol.46, issue.0, pp.195-199, 2015.

G. Lücking, M. Stoeckel, Z. Atamer, J. Hinrichs, and M. Ehling-schulz, Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage, Int. J. Food Microbiol, vol.166, pp.270-279, 2013.

V. A. Luna, D. S. King, J. Gulledge, A. C. Cannons, P. T. Amuso et al., Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre automated microbroth dilution and Etest agar gradient diffusion methods, J. Antimicrob. Chemother, vol.60, pp.555-567, 2007.

T. Lund, M. L. De-buyser, and P. E. Granum, A new cytotoxin from Bacillus cereus that may cause necrotic enteritis, Mol. Microbiol, vol.38, issue.2, pp.254-261, 2000.

T. Lund and P. E. Granum, Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak, FEMS Microbiol. Lett, vol.141, pp.151-156, 1996.

T. Lund and P. E. Granum, Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus, Microbiology, vol.143, pp.3329-3336, 1997.

H. Luu-thi, D. B. Khadka, and C. W. Michiels, Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus, Int. J. Food Microbiol, vol.189, pp.183-188, 2014.

L. Ma, M. Conover, H. Lu, M. R. Parsek, K. Bayles et al., Assembly and development of the Pseudomonas aeruginosa biofilm matrix, PLOS Pathog, vol.5, issue.3, p.1000354, 2009.

M. T. Madigan, J. M. Martinko, and J. Parker, Brock biology of microorganisms, vol.912, p.pp, 1997.

H. Mahler, A. Pasi, J. M. Kramer, P. Schulte, A. C. Scoging et al., Fulminant liver failure in association with the emetic toxin of Bacillus cereus, N. Engl. J. Med, vol.336, issue.16, pp.1142-1148, 1997.

R. Majed, C. Faille, M. Kallassy, G. , and M. , Bacillus cereus biofilms -same, only different, Front. Microbiol, vol.7, 1054.
URL : https://hal.archives-ouvertes.fr/hal-02634447

V. Mantynen and K. Lindström, A rapid PCR based DNA test for enterotoxic Bacillus cereus, Appl. Environ. Microbiol, vol.64, pp.1634-1639, 1998.

S. G. Manuel, C. Ragunath, H. B. Sait, E. A. Izano, J. B. Kaplan et al., Role of active-site residues of dispersin B, a biofilmreleasing ß-hexosaminidase from a periodontal pathogen, in substrate hydrolysis, FEBS J, vol.274, issue.22, pp.5987-5999, 2007.

M. Manzano, C. Giusto, L. Iacumin, C. Cantoni, and G. Comi, Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins, Food Microbiol, vol.26, pp.259-264, 2009.

J. F. Martínez-blanch, G. Sánchez, E. Garay, and R. Aznar, Evaluation of realtime PCR assay for the detection and quantification of Bacillus cereus group spores in food, J. Food Prot, vol.73, issue.8, pp.1480-1485, 2010.

T. Mattila, M. Manninen, and A. L. Kyläsiurola, Effect of cleaning-in-place disinfectants on wild bacterial strains isolated from a milking line, J. Dairy Res, vol.57, pp.33-39, 1990.

B. Mayr, T. Kaplan, S. Lechner, and S. Scherer, Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201, J. Bacteriol, vol.178, issue.10, pp.2916-2925, 1996.

P. S. Mead, L. Slutsker, V. Dietz, L. F. Mccaig, J. S. Bresee et al., Food-related illness and death in the United States, Emerging Infect. Dis, vol.5, issue.5, pp.607-625, 1999.

X. Mei, K. Xu, L. Yang, Z. Yuan, J. Mahillon et al., The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis, BMC Microbiol, vol.14, issue.149, 2014.

G. Meric, L. Mageiros, B. Pascoe, D. J. Woodcock, E. Mourkas et al., Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group, Mol. Ecol, vol.27, pp.1524-1540, 2018.

S. Merzougui, N. Cohen, N. Grosset, M. Gautier, and M. Lkhider, , 2013.

, Enterotoxigenic Profiles of psychrotolerant and mesophilic strains of the Bacillus cereus group isolated from food in Morocco, Int. J. Eng. Res. Appl, vol.3, pp.964-970

S. Merzougui, M. Lkhider, N. Grosset, M. Gautier, and N. Cohen, Prevalence, PFGE typing and antibiotic resistance of Bacillus cereus group isolated from food in Morocco, Foodborne Pathog. Dis, vol.11, pp.145-149, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123397

S. Merzougui, M. Lkhider, N. Grosset, M. Gautier, and N. Cohen, , 2013.

, Differenciation by molecular typing of Bacillus cereus isolates from food in Morocco: PFGE-Eric PCR, J. Food Public Health, vol.3, pp.223-227

K. Messaoudi, T. Clavel, P. Schmitt, and C. Duport, Fnr mediates carbohydratedependent regulation of catabolic and enterotoxin genes in Bacillus cereus F4430/73, Res. Microbiol, vol.161, pp.30-39, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02668377

U. Messelhäusser, E. Frenzel, C. Blöchinger, R. Zucker, P. Kämpf et al., Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria, BioMed Res. Int. Article ID, vol.465603, 2007.

R. Mikkola, N. E. Saris, P. A. Grigoriev, M. A. Andersson, and M. S. Salkinoja-salonen, Ionophoretic properties and mitochondrial effects of cereulide, FEBS J, vol.263, issue.1, pp.112-117, 1999.

R. A. Miller, S. M. Beno, D. J. Kent, L. M. Carroll, N. H. Martin et al., Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments, Int. J. Syst. Evol. Microbiol, vol.66, issue.11, pp.4744-4753, 2016.

R. A. Miller, J. Jian, S. M. Beno, M. Wiedmann, and J. Kovac, Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates, Appl. Environ. Microbiol, vol.84, pp.2479-2496, 2018.

L. Minakhin, E. Semenova, J. Liu, A. Vasilov, E. Severinova et al., Genome sequence and gene expression of Bacillus anthracis bacteriophage Fah, J. Mol. Biol, vol.354, pp.1-15, 2005.

M. W. Mittelman, Structure and functional characteristics of bacterial biofilms in fluid processing operations, J. Dairy sci, vol.81, issue.10, pp.2760-2764, 1998.

. Mmwr, Surveillance for Foodborne Disease Outbreaks -United States, Centers for Disease Control and Prevention. Surveillance Summaries, vol.62, issue.SSO2, pp.1-34, 1998.

M. Mock and A. Fouet, Anthrax. Annu. Rev. Microbiol, vol.55, issue.1, pp.647-671, 2001.

D. Monroe, Looking for Chinks in the Armor of Bacterial Biofilms, PLOS Biol, vol.5, issue.11, p.307, 2007.

M. Moravek, R. Dietrich, C. Buerk, V. Broussolle, M. H. Guinebretière et al., Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses, FEMS Microbiol. Lett, vol.257, pp.293-298, 2006.

M. Moravek, M. Wegscheider, A. Schulz, R. Dietrich, C. Burk et al., Colony immunoblot assay for the detection of hemolysin BL enterotoxin producing Bacillus cereus, FEMS Microbiol Lett, vol.238, issue.1, pp.107-113, 2004.

P. R. Mortimer and G. Mccann, Food-poisoning episodes associated with Bacillus cereus in fried rice, Lancet, vol.303, issue.7865, pp.1043-1045, 1974.

D. A. Mossel, M. J. Koopman, and E. Jongerius, Enumeration of Bacillus cereus in foods, Appl. Microbiol, vol.15, issue.3, pp.650-653, 1967.

F. Mouffok, Situation en matière de TIA en Algérie de 2010 à 2011. 2 ème congrés Maghrébin sur les TIA, 2011.

B. Moumen, C. Nguen-the, and A. Sorokin, Sequence analysis of inducible prophage phIS3501 integrated into the haemolysin IIgene of Bacillus thuringiensis var israelensis ATCC35646, Genet. Res. Int, p.543286, 2012.

R. Muller, A. Eidt, K. A. Hiller, V. Katzur, M. Subat et al., Influences of protein films on antibacterial or bacteriarepellent surface coatings in a model system using silicon wafers, Biomater, vol.30, pp.4921-4929, 2009.

L. K. Nakamura, Bacillus pseudomycoides sp. nov, Int. J. Syst. Evol. Microbiol, vol.48, issue.3, pp.1031-1035, 1998.

L. K. Nakamura and M. A. Jackson, Clarification of the taxonomy of Bacillus mycoides, Int. J. Syst. Evol. Microbiol, vol.45, issue.1, pp.46-49, 1995.

M. Naranjo, S. Denayer, N. Botteldoorn, L. Delbrassinne, J. Veys et al., Sudden death of a young adult associated with Bacillus cereus food poisoning, J. Clin. Microbiol, vol.49, issue.12, pp.4379-4381, 2011.

D. G. Newell, M. Koopmans, L. Verhoef, E. Duizer, A. Aidara-kane et al., Food-borne Diseases-the challenges of 20 years ago still persist while new ones continue to emerge, Int. J. Food Microbiol, vol.139, pp.3-15, 2008.

C. Neyret, J. M. Herry, T. Meylheuc, and F. Dubois-brissonnet, Plant-derived compounds as natural antimicrobials to control paper mill biofilms, J. Ind. Microbiol. Biotechnol, vol.41, pp.87-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204304

A. K. Ngangbam and N. B. Devi, Molecular characterization of Salmonella bacteriophage isolated from natural environment and its potential role in phage therapy, IOSR J. Agric. Vet. Sci, vol.1, pp.7-11, 2012.

S. Niemann, T. Dammann-kalinowski, A. Nagel, and . Selbitschka-w, Genetic basis of enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint pattern in sinorhizobium meliloti and identification of S. meliloti employing PCR primers derived from an ERIC-PCR fragment, Arch. Microbiol, vol.172, issue.1, pp.22-30, 1999.

M. Nitschke and S. G. Costa, Biosurfactants in food industry, Food Sci. Technol, vol.18, pp.225-259, 2007.

A. C. Noller, M. C. Mcellistrem, O. C. Stine, J. G. Morris-jr, D. J. Boxrud et al., Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157: H7 isolates that are distinct by pulsed-field gel electrophoresis, J. Clin. Microbiol, vol.41, issue.2, pp.675-679, 2003.

G. L. Nortje, S. M. Vorster, R. P. Greebe, and P. L. Steyn, Occurrence of Bacillus cereus and Yersinia enterocolitica in South African retail meats, Food Microbiol, vol.16, pp.213-217, 1999.

D. G. Nyachuba, Foodborne illness: is it on the rise?, Nutr. Rev, vol.68, issue.5, pp.257-269, 2010.

H. Ochman, J. G. Lawrence, and E. A. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.

H. Ochman and N. A. Moran, Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis, Science, vol.292, issue.5519, pp.1096-1099, 2001.

H. Oh, D. J. Seo, S. B. Jeon, H. Park, S. Jeong et al., Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil, Food Environ. Virol, vol.9, issue.3, pp.260-269, 2017.

M. H. Oh, J. S. Ham, and J. M. Cox, Diversity and toxigenicity among members of the Bacillus cereus group, Int. J. Food Microbiol, vol.152, issue.1-2, pp.1-8, 2012.

. M. Olive-d and . Bean-p, Principales and applications of methods for DNA-based typing of microbial organisms, J. Clin. Microbiol, vol.37, issue.6, pp.1661-1669, 1999.

, Estimations par l'OMS de la charge mondiale des maladies d'origine alimentaire, OMS, 2015.

, Sécurité sanitaire des aliments, OMS, 2018.

U. S. Oranusi, W. Braide, and G. A. Osigwe, Investigation on the microbial profile of canned foods, J. Biol. Food Sci. Res, vol.1, issue.1, pp.15-18, 2012.

A. Otlewska, E. Oltuszak-walczak, and P. Walczak, Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting, Electrophoresis, vol.00, pp.1-6, 2013.

L. J. Pace, E. Park-rupp, and G. Roger, Biofilms, infection and antimicrobial therapy, 2006.

J. A. Painter, R. M. Hoekstra, T. Ayers, R. V. Tauxe, C. R. Braden et al., Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, Emerging Infect. Dis, vol.19, issue.3, pp.407-415, 1998.

L. Palma, D. Muñoz, C. Berry, J. Murillo, and P. Caballero, Bacillus thuringiensis toxins: an overview of their biocidal activity, Toxins (Basel), vol.6, issue.12, pp.3296-3325, 2014.

A. I. Park, M. A. Daeschel, and Y. Zhao, Functional properties of antimicrobial lysozyme-chitosan composite films, J. Food. Saf, vol.69, pp.215-221, 2004.

J. Park, J. Yun, J. A. Lim, D. H. Kang, and S. Ryu, Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage, FEMS Microbiol. Lett, vol.332, pp.76-83, 2012.

S. H. Park, H. J. Kim, J. H. Kim, T. W. Kim, and H. Y. Kim, Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR, J. Microbiol. Biotechnol, vol.17, pp.1177-1182, 2007.

Y. B. Park, J. B. Kim, S. W. Shin, J. C. Kim, S. H. Cho et al., Prevalence, genetic diversity, and antibiotic susceptibility of Bacillus cereus strains isolated from rice and cereals collected in Korea, J. Food Prot, vol.72, pp.612-617, 2009.

S. G. Parkar, S. H. Flint, and J. D. Brooks, Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel, J. Appl. Microbiol, vol.96, pp.110-116, 2004.

J. S. Peng, W. C. Tsai, and C. C. Chou, Surface characteristics of Bacillus cereus and its adhesion to stainless steel, Int. J. Food Microbiol, vol.65, pp.105-111, 2001.

J. S. Peng, W. C. Tsai, and C. C. Chou, Inactivation and removal of Bacillus cereus by sanitizer and detergent, Int. J. Food Microbiol, vol.77, pp.11-18, 2002.

Q. Peng and Y. Yuan, Characterization of a novel phage infecting the pathogenic multidrug-resistant Bacillus cereus and functional analysis of its endolysin, Appl. Microbiol. Biotechnol, vol.102, issue.18, pp.7901-7912, 2018.

S. Pfrunder, J. Grossmann, P. Hunziker, R. Brunisholz, M. T. Gekenidis et al., Bacillus cereus Group-Type Strain-Specific Diagnostic Peptides, J. Proteome Res, vol.15, pp.3098-3107, 2016.

M. Pignatelli, A. Moya, and J. Tamames, EnvDB, a database for describing the environmental distribution of prokaryotic taxa, Environ. Microbiol. Rep, vol.1, issue.3, pp.191-197, 2009.

M. Pinto, S. Robine-leon, M. D. Appay, M. Redinger, N. Triadou et al., , 1983.

, Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture, Biol. Cell, vol.47, pp.323-330

D. P. Pires, L. D. Melo, D. V. Boas, S. Sillankorva, and J. Azeredo, Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections, Curr. Opin. Microbiol, vol.39, pp.48-56, 2017.

T. Pirhonen, M. Andersson, E. Jääskeläinen, M. Salkinoja-salonen, T. Honkanen-buzalski et al., Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food poisoning, Food Microbiol, vol.22, pp.87-91, 2005.

T. S. Pirttijärvi, M. A. Andersson, A. C. Scoging, and M. S. Salkinoja-salonen, Evaluation of methods for recognising strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants, Syst. Appl. Microbiol, vol.22, issue.1, pp.133-144, 1999.

S. Pitchayawasin, M. Kuse, K. Koga, M. Isobe, N. Agata et al., Complexation of cyclic dodecadepsipeptide, Cereulide with ammonium salts, Bioorg. Med. Chem. Lett, vol.13, pp.3507-3512, 2003.

S. Planchon, C. Dargaignaratz, C. Levy, C. Ginies, V. Broussolle et al., Spores of Bacillus cereus strain KBAB4 produced at 10°C and 30°C display variations in their properties, Food Microbiol, vol.28, issue.2, pp.291-297, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01330257

A. P. Pomerantsev, K. V. Kalnin, M. Osorio, and S. H. Leppla, Phosphatidylcholine specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group, Infect. Immun, vol.71, pp.6591-6606, 2003.

D. M. Pompermayer and C. C. Gaylarde, The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and E. coli to polypropylene, Food microbiol, vol.17, pp.361-365, 2000.

B. L. Portnoy, J. M. Goepfert, and S. M. Harmon, An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable sprouts, Am. J. Epidemiol, vol.103, pp.589-594, 1976.

K. M. Pósfay-barbe, J. Schrenzel, J. Frey, R. Studer, C. Korff et al., Food poisoning as a cause of acute liver failure, Pediatr. Infect. Dis. J, vol.27, issue.9, pp.846-847, 2008.

L. V. Poulsen, Microbial Biofilm in Food Processing, LWT -Food Sci. Technol, vol.32, pp.321-326, 1999.

F. G. Priest, M. Barker, L. W. Baillie, E. C. Holmes, and M. C. Maiden, Population structure and evolution of the Bacillus cereus group, J. Bacteriol, vol.186, pp.7959-7970, 2004.

F. G. Priest, D. A. Kaji, Y. B. Rosata, and V. P. Canhos, Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms, Microbiology, vol.140, pp.1015-1022, 1994.

B. M. Prüss, R. Dietrich, B. Nibler, E. Märtlbauer, and S. Scherer, The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group, Appl. Environ. Microbiol, vol.65, pp.5436-5442, 1999.

. Public-health and . England, Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market, 2009.

N. Qureshi, S. Chawla, S. Likitvivatanavong, H. L. Lee, and S. S. Gill, The cry toxin operon of Clostridium bifermentans subsp. malaysia is highly toxic to Aedes Larval Mosquitoes, Appl. Environ. Microbiol, vol.80, pp.5689-5697, 2014.

L. Radnedge, P. G. Agron, K. K. Hill, P. J. Jackson, L. O. Ticknor et al., Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis, Appl. Environ. Microbiol, vol.69, pp.2755-2764, 2003.

E. Rahimi, F. Abdos, H. Momtaz, Z. T. Baghbadorani, and M. Jalali, Bacillus cereus in Infant Foods: Prevalence Study and Distribution of Enterotoxigenic Virulence Factors in Isfahan Province, Iran. Sci. World J. Article, vol.292571, 2013.

T. Rahmati and R. Labbe, Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood, J. Food Prot, vol.71, issue.6, pp.1178-1185, 2008.

A. Rajkovic, M. Uyttendaele, K. Dierick, S. Samapundo, N. Botteldoorn et al., Risk profile of the Bacillus cereus group implicated in food poisoning. Report for the Superior Health Council Belgium. CSS-HGR 8316 public health implications of Bacillus cereus in food, vol.80, p.pp, 2008.

A. Rajkovic, M. Uyttendaele, A. Vermeulen, M. Andjelkovic, I. Fitz-james et al., Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol, vol.46, issue.5, pp.536-541, 2008.

N. Ramarao and D. Lereclus, The InhA1 metalloprotease allows spores of the Bcereus group to escape macrophages, Cell. Microbiol, vol.7, pp.1357-1364, 2005.

N. Ramarao and D. Lereclus, Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect, vol.8, pp.1483-1491, 2006.

N. Ramarao and V. Sanchis, The pore-forming haemolysins of Bacillus cereus: a review, Toxins (Basel), vol.5, issue.6, pp.1119-1139, 2013.

V. Ramisse, G. Patra, H. Garrigue, J. L. Guesdon, and M. Mock, Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA, FEMS Microbiol. Lett, vol.145, issue.1, pp.9-16, 1996.

V. S. Rao, R. N. Kumar, L. Kashinath, V. Bhaskar, and K. Polasa, Microbiological hazard identification and exposure assessment of poultry products sold in various localities of Hyderabad, India. Sci World J, p.736040, 2012.

D. A. Rasko, M. R. Altherr, C. S. Han, and J. Ravel, Genomics of the Bacillus cereus group of organisms, FEMS Microbiol. Rev, vol.29, pp.303-329, 2005.

M. A. Rather, R. S. Aulakh, J. P. Gill, A. Q. Mir, and M. N. Hassan, Detection and sequencing of plasmid encoded tetracycline resistance determinants (tetA and tetB) from food-borne, Bacillus cereus isolates. Asian Pac. J. Trop. Dis, vol.5, pp.709-712, 2012.

L. Reiter, A. B. Kolstø, and A. P. Piehler, Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle, J. Microbiol. Methods, vol.86, pp.210-217, 2011.

, Situation épidémiologique de l'année 2009 sur la base des cas déclarées l', Relevés Épidémiologiques mensuels, pp.1-22, 1999.

A. Resch, B. Fehrenbacher, K. Eisele, M. Schaller, and G. Friedrich, Phage release from biofilm and planktonic Staphylococcus aureus cells, FEMS Microbiol. Lett, vol.252, pp.89-96, 2005.

T. Revazishvili, M. Kotetishvili, O. C. Stine, A. S. Kreger, J. G. Morris-jr et al., Comparative analysis of multilocus sequence typing and pulsed-field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources, J. Clin. Microbiol, vol.42, issue.1, pp.276-285, 2004.

A. M. Rivera, P. E. Granum, and F. G. Priest, Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis, FEMS Microbiol. Lett, vol.190, pp.151-155, 2000.

H. Rosenquist, L. Smidt, S. R. Andersen, G. B. Jensen, and A. Wilcks, Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food, FEMS Microbiol. Lett, vol.250, issue.1, pp.129-136, 2005.

R. Rosmaninho, O. Santos, T. Nylander, M. Paulsson, H. Muller-steinhagen et al., Modified stainless steel surfaces targeted to reduce foulingevaluation of fouling by milk components, J. Food. Eng, vol.80, pp.1176-1187, 2007.

R. A. Moktan, B. Sarkar, and P. K. , Characteristics of Bacillus cereus isolates from legume-based Indian fermented foods, Food control, vol.18, pp.1555-1564, 2007.

R. E. Ruhfel, N. J. Robillard, and C. B. Thorne, Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis, J. Bacteriol, vol.157, pp.708-711, 1984.

P. A. Ryan, J. D. Macmillan, and B. A. Zilinskas, Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus, J. Bacteriol, vol.179, issue.8, pp.2551-2556, 1997.

J. H. Ryu and L. R. Beuchat, Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer, J. Food Prot, vol.68, pp.2614-2622, 2005.

M. Sadekuzzaman, M. F. Mizan, S. Yang, H. S. Kim, and S. D. Ha, Application of bacteriophages for the inactivation of Salmonella spp. in biofilms, Food Sci. Technol. Int, vol.24, issue.5, pp.424-433, 2018.

J. L. Sagripanti and A. Bonifacino, Bacterial Spores Survive Treatment with Commercial Sterilants and Disinfectant, Appl. Environ. Microbiol, vol.65, pp.4255-4260, 1999.

E. Saile and T. M. Koehler, Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants, Appl. Environ. Microbiol, vol.72, pp.3168-3174, 2006.

V. C. Salustiano, N. J. Andrade, N. F. Soares, J. C. Lima, P. C. Bernardes et al., Contamination of milk with Bacillus cereus by postpasteurization surface exposure as evaluated by automated ribotyping, Food Control, vol.20, issue.4, pp.439-442, 2009.

S. Samapundo, H. Everaert, J. N. Wandutu, A. Rajkovic, M. Uyttendaele et al., The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products, Food Microbiol, vol.28, issue.2, pp.298-304, 2011.

S. Samapundo, M. Heyndrickx, R. Xhaferi, and F. Devlieghere, Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium, Int. J. Food Microbiol, vol.150, pp.34-41, 2011.

J. Sambrook and D. Russell, Molecular Cloning: A Laboratory Manual, 2001.

J. E. Samson, A. H. Magadan, M. Sabri, and S. Moineau, Revenge of the phages: Defeating bacterial defences, Nat. Rev. Microbiol, vol.11, pp.675-687, 2013.

J. Schlegelova, V. Babak, M. Holasova, L. Konstantinova, L. Necidova et al., Microbial contamination after sanitation of food contact surfaces in dairy and meat processing plants, Czech J. Food Sci, vol.28, pp.450-461, 2010.

M. Schmelcher and M. J. Loessner, Application of bacteriophages for detection of foodborne pathogens, Bacteriophage, vol.4, issue.2, p.28137, 2014.

E. Schnepf, N. V. Crickmore, J. Van-rie, D. Lereclus, J. Baum et al., Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol, Mol. Biol. Rev, vol.62, issue.3, pp.775-806, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02696151

J. L. Schoeni and A. C. Lee-wong, Bacillus cereus food poisoning and its toxins, J. Food Prot, vol.68, issue.3, pp.636-648, 2005.

S. Schooling, U. Charaf, D. Allison, and P. Gilbert, A role for rhamnolipid in biofilm dispersion, Biofilms, vol.1, issue.2, pp.91-99, 2004.

R. Schuch and V. A. Fischetti, Detailed genomic analysis of the Wbeta and gamma phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance, J. Bacteriol, vol.188, issue.8, pp.3037-3051, 2006.

J. M. Schupp, A. M. Klevytska, G. Zinser, L. B. Price, and P. Keim, vrrB, a hypervariable open reading frame in Bacillus anthracis, J. Bacteriol, vol.182, pp.3989-3997, 2000.

D. C. Schwartz and C. R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell, vol.37, issue.1, pp.67-75, 1984.

T. Seki, C. K. Chung, H. Mikami, and Y. Oshima, Deoxyribonucleic acid homology and taxonomy of the genus Bacillus, Int. J. Syst. Bacteriol, vol.28, issue.2, pp.182-189, 1978.

S. Senesi and E. Ghelardi, Production, secretion and biological activity of Bacillus cereus enterotoxins, Toxins (Basel), vol.2, issue.7, pp.1690-1703, 2010.

R. C. Shah, B. J. Wadher, and G. L. Bhoosreddy, Incidence and characteristics of Bacillus cereus isolated from Indian foods, J. Food Sci. Tech, vol.33, issue.3, pp.249-250, 1996.

R. Shaheen, B. Svensson, M. A. Andersson, A. Christiansson, and M. Salkinjova-salonen, Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks, Food Microbiol, vol.27, issue.3, pp.347-55, 2009.

Y. H. Shangkuan, J. F. Yang, H. C. Lin, and M. F. Shaio, Comparaison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains, J. Appl. Microbiol, vol.89, issue.3, pp.452-462, 2000.

Y. H. Shangkuan, Y. H. Chang, J. F. Yang, H. C. Lin, and M. F. Shaio, Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD, Lett. Appl. Microbiol, vol.32, issue.3, pp.139-145, 2001.

M. Sharma and S. K. Anand, Biofilms evaluation as an essential component of HACCP for food/dairy industry : A case, Food Control, vol.13, pp.469-477, 2002.

M. Sharma, J. H. Ryu, and . R. Beuchat-l, Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage, J. Appl. Microbiol, vol.99, pp.449-459, 2005.

A. Sharma and T. Satyanarayana, Comparative genomics of Bacillus species and its relevance in industrial microbiology, Genomics Insights, vol.6, pp.25-36, 2013.

H. Shin, N. Bandara, E. Shin, S. Ryu, and K. Kim, Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901, Res. Microbiol, vol.162, pp.791-797, 2011.

H. Shin, J. H. Lee, J. Park, S. Heu, and S. Ryu, Characterization and genome analysis of the Bacillus cereus-infecting bacteriophages BPS10C and BPS13, Arch. Virol, vol.159, issue.8, pp.2171-2175, 2014.

K. Shinagawa, Y. Ueno, D. L. Hu, S. Ueda, and S. Sugii, Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning, J. Vet. Med. Sci, vol.58, pp.1027-1029, 1996.

M. M. Shivu, B. C. Rajeeva, S. K. Girisha, I. Karunasagar, G. Krohne et al., Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India, Environ. Microbiol, vol.9, pp.322-331, 2007.

S. Sillankorva, P. Neubauer, and J. Azeredo, Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A, BMC Biotechnol, vol.8, issue.79, 2008.

P. Simmonds, B. L. Mossel, T. Intaraphan, and H. C. Deeth, Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity, J. food prot, vol.66, pp.2070-2075, 2003.

M. Simöes, . C. Simöes-l, and M. J. Vieira, A review of current and emergent biofilm control strategies, LWT -Food Sci. Technol, vol.43, pp.573-583, 2010.

M. Simöes, R. N. Bennett, and E. A. Rosa, Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms, Nat. Prod. Rep, vol.26, pp.746-757, 2009.

M. Simöes, L. C. Simöes, I. Machado, M. O. Pereira, and M. J. Vieira, Control of flow-generated biofilms using surfactants: evidence of resistance and recovery, Food Bioprod. Process, vol.84, pp.338-345, 2006.

M. Simöes and M. J. Vieira, Persister cells in Pseudomonas fluorescens biofilms treated with a biocide, Proceedings of the international conference processes in biofilms: Fundamentals to applications, pp.58-62, 2009.

P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, A component of innate immunity prevents bacterial biofilm development, Nature, vol.417, pp.552-555, 2002.

J. P. Smelt, A. P. Bos, R. Kort, and S. Brul, Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells, Int. J. Food Microbiol, vol.128, pp.34-40, 2008.

E. B. Somers and A. C. Wong, Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat-meat residue, J. Food Prot, vol.67, pp.2218-2229, 2004.

P. Sommer, C. Martin-rouas, and . Mettler-e, Influence of the adherent population level on biofilm population, structure and resistance to chlorination, Food microbiol, vol.16, pp.503-515, 1999.

B. Son, J. Yun, J. A. Lim, H. Shin, S. Heu et al., Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4, BMC Microbiol, vol.12, issue.33, 2012.

K. A. Soni and R. Nannapaneni, Removal of Listeria monocytogenes Biofilms with Bacteriophage P100, J. Food Prot, vol.73, issue.8, pp.1519-1524, 2010.

B. Soufiane and J. C. Cote, Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses, Antonie Van Leeuwenhoek, vol.95, issue.1, pp.33-45, 2009.

S. Srey, I. K. Jahid, and S. D. Ha, Biofilm formation in food industries: A food safety concern, Food control, vol.31, pp.572-585, 2013.

L. P. Stenfors-arnesen, A. Fagerlund, and P. E. Granum, From soil to gut: Bacillus cereus and its food poisoning toxins, FEMS Microbiol. Rev, vol.32, issue.4, pp.579-606, 2008.

L. P. Stenfors and P. E. Granum, Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis, FEMS Microbiol. Lett, vol.197, issue.2, pp.223-228, 2001.

L. P. Stenfors, R. Mayr, S. Scherer, and P. E. Granum, Pathogenic potential of fifty Bacillus weihenstephanensis strains, FEMS Microbiol. Lett, vol.215, issue.1, pp.47-51, 2002.

C. R. Stewart, S. R. Casjens, S. G. Cresawn, J. M. Houtz, A. L. Smith et al., The genome of Bacillus subtilis bacteriophage SPO1, J. Mol. Biol, vol.388, issue.1, pp.48-70, 2009.

J. C. Stewart and D. A. Seiberling, The secrets out: clean in place, Chem. Eng, vol.103, pp.72-79, 1996.

E. Storgårds, K. Tapani, P. Hartwall, R. Saleva, and M. L. Suihko, Microbial attachment and biofilm formation in brewery bottling plants, J. Am. Soc. Brew. Chem, vol.64, issue.1, pp.8-15, 2006.

I. S. Surekhamol, G. D. Deepa, S. Somnath-pai, B. Sreelakshmi, S. Varghese et al., Isolation and characterization of broad spectrum bacteriophages lytic to Vibrio harveyi from shrimp farms of Kerala, India. Lett. Appl. Microbiol, vol.58, pp.197-204, 2013.

M. M. Swanson, B. Reavy, K. S. Makarova, P. J. Cock, D. W. Hopkins et al., Novel bacteriophages containing a genome of another bacteriophage within their genomes, PLOS ONE, vol.7, p.40683, 2012.

R. Tatara, T. Nagai, M. Suzuki, I. Oh, S. Fujiwara et al., Sepsis and meningoencephalitis caused by Bacillus cereus in a patient with myelodysplastic syndrome, Intern. Med, vol.52, pp.1987-1990, 2013.

G. Tauveron, C. Slomianny, C. Henry, and C. Faille, Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment, Int. J. Food Microbiol, vol.110, pp.254-262, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02658765

C. Techer, F. Baron, L. Delbrassinne, R. Belaid, N. Brunet et al., Global overview of the risk linked to the Bacillus cereus group in the egg product industry : identification of food safety and food spoilage markers, J. Appl. Microbiol, vol.116, issue.5, pp.1344-1358, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209645

F. Teng, K. V. Singh, A. Bourgogne, J. Zeng, and B. E. Murray, Further Characterization of the epa Gene Cluster and Epa Polysaccharides of Enterococcus faecalis, Infect. Immun, vol.77, pp.3759-3767, 2009.

F. C. Tenover, R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray et al., Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing, J. Clin. Microbiol, vol.33, pp.2233-2239, 1995.

V. V. Teplova, R. Mikkola, A. A. Tonshin, N. E. Saris, and M. S. Salkinoja-salonen, The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration, Toxicol. Appl. Pharmacol, vol.210, issue.1-2, pp.39-46, 2006.

A. Tewari and S. Abdullah, Bacillus cereus food poisoning: international and Indian perspective, J. Food. Sci. Technol, vol.52, issue.5, pp.2500-2511, 2015.

A. Tewari, S. P. Singh, and R. Singh, Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol, vol.52, issue.3, pp.1796-1801, 2015.

B. Thallinger, E. N. Prasetyo, G. S. Nyanhongo, and G. M. Guebitz, Antimicrobial enzymes : an emerging strategy to fight microbes and microbial biofilms, Biotechnol. J, vol.8, issue.1, pp.97-109, 2013.

D. J. Thomas, J. A. Morgan, J. M. Whipps, and J. R. Saunders, Plasmid transfer between the Bacillus thuringiensis subspecies kurstaki and tenebrionis in laboratory culture and soil and in lepidopteran and coleopteran larvae, Appl. Environ. Microbiol, vol.66, pp.118-124, 2000.

L. Thorsen, B. B. Budde, L. Henrichsen, T. Martinussen, and M. Jakobsen, Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on preincubation conditions, Int. J. Food Microbiol, vol.134, issue.1-2, pp.133-139, 2009.

L. Thorsen, B. M. Hansen, K. F. Nielsen, N. B. Hendriksen, R. K. Phipps et al., Characterization of emetic Bacillus weihenstephanensis, a new cereulideproducing bacterium, Appl. Environ. Microbiol, vol.72, issue.7, pp.5118-5121, 2006.

L. Thorsen, C. K. Kando, H. Sawadogo, N. Larsen, B. Diawara et al., Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment, Int. J. Food Microbiol, vol.196, pp.70-78, 2015.

L. O. Ticknor, A. B. Kolsto, K. K. Hill, P. Keim, M. T. Laker et al., Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensissoil isolates, Appl. Environ. Microbiol, vol.67, issue.10, pp.4863-4873, 2001.

M. Tournay, Evaluation du potentiel du phage Deep-Blue pour le biocontrôle des souches émétiques du groupe Bacillus cereus dans la filière agro-alimentaire. Faculté des bioingénieurs, 2018.

N. J. Tourasse and A. B. Kolsto, Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution, Nucleic Acids Res, vol.36, pp.4529-4548, 2008.

P. C. Turnbull, N. M. Sirianni, C. L. Lebron, M. N. Samaan, F. N. Sutton et al., MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, 68 Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by Etest, J. Clin. Microbiol, vol.42, pp.3626-3634, 2004.

S. Ulrich, C. Gottschalk, R. Dietrich, E. Märtlbauer, and M. Gareis, Identification of cereulide producing Bacillus cereus by MALDI-TOF MS, Food Microbiol, vol.82, pp.75-81, 2019.

. Us-fda/cfsan, Bad bug book: handbookof foodborne pathogenic microorganisms and natural toxins, 2006.

V. Vachon, R. Laprade, and J. L. Schwartz, Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review, J. Invertebr. Pathol, vol.111, issue.1, pp.1-12, 2012.

V. Vaillant, H. De-valk, and C. Saura, Systèmes de surveillance des maladies d'origine alimentaire : sources, méthodes, apports, limites, 2012.

O. M. Väisänen, J. Mentu, and M. S. Salkinoja-salonen, Bacteria in food packaging paper and board, J. Appl. Microbiol, vol.71, pp.130-133, 1991.

M. Valero, L. A. Hernandez-herrero, P. S. Fernandez, and M. C. Salmeron, Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests, Food Microbiol, vol.19, pp.491-499, 2002.

S. Valjevac, V. Hilaire, O. Lisanti, F. Ramisse, E. Hernandez et al., Comparison of minisatellite polymorphisms in the Bacillus cereus complex: a simple assay for large-scale screening and identification of strains most closely related to Bacillus anthracis, Appl. Environ. Microbiol, vol.71, pp.6613-6623, 2005.

D. Van-cauteren, Y. Le-strat, C. Sommen, M. Bruyand, M. Tourdjman et al., , 2017.

, Estimated Annual Numbers of Foodborne Pathogen-Associated Illnesses, Hospitalizations, and Deaths, Emerg. Infect. Dis, vol.23, issue.9, pp.1486-1492, 2008.

G. Van-der-auwera and J. Mahillon, TnXO1, a germination-associated class II transposon from Bacillus anthracis, Plasmid, vol.53, pp.251-257, 2005.

G. Van-der-auwera, S. Timmery, F. Hoton, and J. Mahillon, Plasmid exchanges among members of the Bacillus cereus group in foodstuffs, Int. J. food microbiol, vol.113, issue.2, pp.164-172, 2007.

. Van-der, M. Voort, O. P. Kuipers, G. Buist, W. M. De-vos et al., Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579, BMC Microbiol, vol.8, p.62, 2008.

W. C. Van-der-zwet, G. A. Parlevliet, P. H. Savelkoul, J. Stoof, A. M. Kaiser et al., Outbreak of Bacillus cereus infections in a neonatal intensive care unit traced to balloons used in manual ventilation, J. Clin. Microbiol, vol.38, issue.11, pp.4131-4136, 2000.

C. J. Van-oss, Acid-base interfacial interaction Forces in Aqueous Media, Colloid. Surface. A, vol.78, pp.1-49, 1993.

C. J. Van-oss, Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions, J. Mol. Recognit, vol.16, issue.4, pp.177-90, 2003.

R. Vangoitsenhoven, M. Maris, L. Overbergh, J. Van-loco, C. Mathieu et al., Cereulide food toxin, beta cell function and diabetes: Facts and hypotheses, Diabetes Res. Clin. Pract, vol.109, issue.1, pp.1-5, 2015.

E. Vanhaecke, J. P. Remon, and M. Moors, Kinetics of Pseudomonas aeruginosa Adhesion to 304 and 316-L Stainless Steel: Role of Cell Surface Hydrophobicity, Appl. Environ. Microbiol, vol.56, pp.788-795, 1990.

C. Verheust, N. Fornelos, and J. Mahillon, The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity, FEMS Microbiol. Lett, vol.237, pp.289-295, 2004.

C. Verheust, K. Pauwels, J. Mahillon, D. Helinski, and P. Herman, Contained use of bacteriophages: Risk assessment and biosafety recommendations, App. Biosaf, vol.15, pp.32-44, 2010.

J. Versalovic, T. Koeuth, and J. R. Lupskil, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, Nucleic Acids Res, vol.19, pp.6823-6831, 1991.

N. Verstraeten, K. Braeken, B. Debkumari, M. Fauvart, J. Fransaer et al., Living on a Surface : swarming and biofilm formation, Trends Microbiol, vol.16, pp.496-506, 2008.

G. I. Viboud, M. M. Mcconnell, A. Helander, and A. M. Svennerholm, Binding of enterotoxigenic Escherichia coli expressing different colonization factors to tissuecultured Caco-2 cells and to isolated human enterocytes, Microbiol. Pathogen, vol.21, pp.139-147, 1996.

M. J. Vieira, L. Melo, and M. M. Pinheiro, Biofilm formation: hydrodynamic effects on internal diffusion and structure, Biofouling, vol.7, pp.67-80, 1993.

G. Vilas-boas, A. Peruca, and O. Arantes, Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis, Can. J. Microbiol, vol.53, issue.6, pp.673-687, 2007.

G. Vilas-boas, V. Sanchis, D. Lereclus, M. V. Lemos, and D. Bourguet, Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis, Appl. Environ. Microbiol, vol.68, issue.3, pp.1414-1424, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02675714

L. A. Vilas-boas, G. F. Vilas-boas, H. O. Saridakis, M. V. Lemos, D. Lereclus et al., Survival and conjugation of Bacillus thuringiensis in a soil microcosm, FEMS Microbiol. Ecol, vol.31, pp.255-259, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02693951

. Von, F. Stetten, K. P. Francis, S. Lechner, K. Neuhaus et al., Rapid discrimination of psychrotolerant and mesophilic strains of the bacillus group by PCR trageting of 16S r DNA, J. Microbiol. Meth, vol.34, pp.99-106, 1998.

. Von, F. Stetten, R. Mayr, and S. Scherer, Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil, Environ. Microbiol, vol.1, pp.503-515, 1999.

P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. Van-de-lee et al., AFLP : A new technique for DNA fingerprinting, Nucleic Acids Res, vol.23, issue.21, pp.4407-4414, 1995.

P. S. Walsh, D. A. Metzger, and R. Higuchi, Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, Bio Techniques, vol.10, pp.506-513, 1991.

A. Wang and G. J. Ash, Whole genome phylogeny of Bacillus by Feature Frequency Profiles (FFP) Sci Rep, 2015.

D. J. Weber, S. M. Saviteer, W. A. Rutala, and C. A. Thomann, In vitro susceptibility of Bacillus spp. to selected antimicrobial agents, Antimicrob. Agents Chemothe, vol.32, pp.642-645, 1988.

E. Wehrle, A. Didier, M. Moravek, R. Dietrich, and E. Märtlbauer, Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR Green I, Mol. Cell. Probes, vol.24, pp.124-130, 2010.

E. Wehrle, M. Moravek, R. Dietrich, C. Bürk, A. Didier et al., Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxigenic Bacillus cereus, J. Microbiol. Meth, vol.78, pp.265-270, 2009.

M. H. Wells-bennik, R. T. Eijlander, . Den, H. M. Besten, E. M. Berendsen et al., Bacterial spores in food: survival, emergence, and outgrowth, Annu. Rev. Food Sci. Technol, vol.7, pp.457-482, 2016.

Y. M. Weng, M. J. Chen, and W. Chen, Antimicrobial food packing materials from poly (ethylene-co-methacrylic acid), LWT -Food. Sci. Technol, vol.32, pp.191-195, 1999.

K. A. Whitehead, J. S. Collingon, and J. Verran, The production of surfaces of defined topography and chemistry for microbial retention studies, using ion beam sputtering technology, Inter. Biodeterior. Biodegrad, vol.54, pp.143-151, 2004.

P. A. Whitman and R. T. Marshall, Isolation of psychrophilic bacteriophage-host systems from refrigerated food products, Appl. Microbiol, vol.22, pp.220-223, 1971.

, WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiologyreference group, Geneva. Available at, 2007.

, Stage 1: investigating foodborne disease outbreaks in Strengthening surveillance of and response to foodborne d seases: a practical manual, Geneva. Available, 2017.

K. M. Wiencek, N. A. Klapes, and P. M. Foegeding, Hydrophobicity of Bacillus and Clostridium Spores, Appl. Environ. Microbiol, vol.56, issue.9, pp.2600-2605, 1990.

J. Wijman, P. De-leeuw, R. Moezelaar, M. Zwietering, and T. Abee, Air-liquid interface biofilms of Bacillus cereus: formation, sporulation and dispersion, Appl. Environ. Microbiol, vol.73, pp.1481-1488, 2007.

L. M. Wijnands, J. B. Dufrenne, F. M. Rombouts, P. H. Veld, and F. M. Van-leusden, Prevalence of potentially pathogenic Bacillus cereus in food commodities in the Netherlands, J. Food Prot, vol.69, issue.11, pp.2587-2594, 2006.

J. G. Williams, . R. Kubelik-a, . J. Livak-k, J. A. Rafalski, and S. V. Tingey, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res, vol.18, issue.22, pp.6531-6535, 1990.

K. E. Wommack, K. E. Williamson, R. R. Helton, S. R. Bench, and D. M. Winget, Methods for the isolation of viruses from environmental samples, Bacteriophages, vol.1, pp.3-14, 2009.

A. C. Wong, Biofilms in food processing environments, J. Dairy Sci, vol.81, issue.10, pp.2765-2770, 1998.

C. E. Woteki and B. D. Kineman, Challenges and approaches to reducing foodborne illness, Annu. Rev. Nutr, vol.23, issue.1, pp.315-344, 2003.

I. C. Yang, D. Y. Shih, T. P. Huang, Y. P. Huang, J. Y. Wang et al., Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group, J. Food Prot, vol.68, pp.2123-2130, 2005.

Y. Yang, H. Gu, X. Yu, L. Zhan, J. Chen et al., Genotypic heterogeneity of emetic toxin producing Bacillus cereus isolates from China, FEMS Microbiol. Lett, vol.364, issue.1, 2017.

A. Yibar, F. Çetinkaya, E. Soyutemiz, and G. Yaman, Prevalence, enterotoxin production and antibiotic resistance of Bacillus cereus isolated from milk and cheese, Kafkas Univ. Vet. Fak. Der, vol.23, issue.4, pp.635-642, 2017.

Y. Yuan, M. Gao, Q. Peng, D. Wu, P. Liu et al., Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain, J. Gen. Virol, vol.95, pp.751-761, 2014.

Y. Yuan, M. Gao, D. Wu, P. Liu, and Y. Wu, , 2012.

, Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus, PLOS ONE, vol.7, issue.5, p.37557

A. Zeraik, E. Nitschke, and M. , Biosurfactants as agents to reduce adhesion of pathogeni bacteria to polystyrene surfaces: effect of temperature and hydrophobicity, Curr. Microbiol, vol.61, pp.554-559, 2010.

J. Zhang, T. C. Hodgman, L. Krieger, W. Schnetter, and H. U. Schairer, Cloning and analysis of the first cry gene from Bacillus popilliae, J. Bacteriol, vol.179, pp.4336-4341, 1997.

Z. Zhang, L. Feng, H. Xu, C. Liu, N. P. Shah et al., Detection of viable enterotoxin-producing Bacillus cereus and analysis of toxigenicity from ready to-eat foods and infant formula milk powder by multiplex PCR, J. Dairy Sci, vol.99, pp.1047-1055, 2015.

Y. Zhang and Z. Hu, Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine, Biotechnol. Bioeng, vol.110, issue.1, pp.286-295, 2013.

J. Zheng, Q. Gao, L. Liu, H. Liu, Y. Wang et al., Comparative genomics of Bacillus thuringiensis reveals a path to specialized exploitation of multiple invertebrate hosts, MBio, vol.8, issue.4, p.822, 2017.

G. Zhou, D. Zheng, L. Dou, Q. Cai, and Z. Yuan, Occurrence of psychrotolerant Bacillus cereus group strains in ice creams, Int. J. Food Microbiol, vol.137, pp.143-146, 2010.

A. Zigha, E. Rosenfeld, P. Schmitt, and C. Duport, Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression, Arch. Microbiol, vol.185, pp.222-233, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02665305

A. Zigha, E. Rosenfeld, P. Schmitt, and C. Duport, The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73, J. Bacteriol, vol.189, pp.2813-2824, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02659498

A. E. Zottola and K. C. Sasahara, Microbial biofilms in the food processing industry -Should they be a concern?, Int. J. Food Microbiol, vol.23, pp.125-148, 1994.

M. E. Zwick, S. J. Joseph, X. Didelot, P. E. Chen, K. A. Bishop-lilly et al., Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis, Genome Res, vol.22, issue.8, pp.1512-1524, 2012.