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1. Introduction

1.1 A very brief history of random graphs

When told by mathematicians, the history of random graphs usually goes like this:
one of their first notable use is due to Paul Erdős who, in 1947, used a strikingly
simple method to provide a lower bound on Ramsey numbers [9]. In the following
decade, several other papers related to random graphs were published. In particular,
in 1959 Edgar Gilbert formally introduced the Erdős-Rényi random graph for the
first time [13] and Erdős again used random graphs to prove graph-theoretic results
that have nothing to do with randomness [10].

Finally, the theory was really born when, around 1960, Erdős and Alfred Rényi
published a series of papers in which they did a comprehensive study of the model
that now bears their name, and proved many of the classic and celebrated results of
the theory [8, 11, 12]. That such a simple model could display a rich behavior was
stunning, and the mathematical community was quick to recognize the potential of
the underlying theory.

According to this account, random graphs were thus invented by mathematicians,
for mathematicians.

While this is largely true, this obscures the fact that things were also happening
outside of mathematics around the same period, and that the study of networks
has been an interdisciplinary science from the beginning. For instance, physicists
were already working on percolation theory in the late 1950s [3]. More strikingly,
the Erdős-Rényi random graph had been introduced and studied as an interesting
object on its own by the psychologist and mathematical biologist Anatol Rapoport,
nearly a decade before the seminal papers of Erdős and Rényi [25]. In fact, in their
1951 paper Solomonoff and Rapoport had already correctly identified the phase
transition for the giant component or the Erdős-Rényi random graph (it has to be
said, though, that the comprehensiveness and rigour of their study was nowhere near
that of Erdős and Rényi).

While Rapoport’s ideas do not seem to have percolated to the mathematical
community, they had a profound impact on social studies, explaining in part the
pioneering role that they played in the development of network science.

Over the second half of the 20th century, random graph theory and network
science developed at a steady pace, for the most part independently of each other.
Things then took an interesting turn in the late 1990s, when better computers and
the democratization of the Internet made it possible to study social and informa-
tion networks on an unprecedented scale. Instead of simply describing the structure
of networks, scientists started devising models to understand how networks were
formed and evolved. Two major milestones in that respect were the introduction of
small-world models by Watts and Strogatz in 1998 [27] and of preferential attach-
ment models by Barabási and Albert in 1999 [1]. Since then, network science has
been booming and random graphs have become an established part of the modeler’s
toolbox, finding applications in countless disciplines. Biology is no exception, and
random graphs are now routinely used to study topics ranging from gene regulation
to the wiring of the brain.

The historical account given in this section is based on [21] and [2]
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1.2. A need for tractable random graphs in evolution

1.2 A need for tractable random graphs in evolution

In the study of evolution, random graphs are used for a variety of purposes and at
every level of description of evolutionary processes.

At the level of the gene, we now know that in many cases the effect of a gene
cannot be considered independently of its interaction with others genes. A major
challenge is thus to understand how gene regulatory networks are evolved – and how
they affect the dynamics of evolution in return [15].

At the level of individuals and populations, the intra and inter-specific inter-
actions of individuals have a crucial effect or their survival and reproduction. In
particular, a substantial part of the literature on the evolution of social behavior is
concerned with games on graphs that represent the structure of the population [22].
Other contexts in which random graphs are used include the evolution of food webs
[17, 23, 24] and the study of the effect of population structure on gene flow and
speciation [7].

At the level of species, random graphs have long played a central role in phy-
logeny, in the form of random trees used to model phylogenies [26, 16]. More recently,
with the advent of DNA sequencing, evidence of the importance of horizontal gene
transfers and hybridization on speciation has been accumulating rapidly. This has
led several authors to call for a major change of paradigm in the way we think about
phylogenies and to advocate the replacement of phylogenetic trees by phylogenetic
networks [14].

Despite the great diversity of contexts in which random graphs are used in evo-
lution, at least one general rule seems to have emerged: tractable models are rare.
In fact, the majority of models of random graphs that are introduced are only stud-
ied through simulations or heuristics; and when in need of analytical tractability,
authors often have no choice but to turn to the Erdős-Rényi random graph – which
is often unsatisfying from a biological point of view, since this amounts to assuming
the absence of any structure specific to the problem at hand.

In phylogeny and population genetics, the need for tractable model is perhaps
even more palpable, as researchers have become accustomed to the benefits of work-
ing with highly tractable models such as the Kingman’s coalescent or Markov branch-
ing models [16].

In this context, the aim of this thesis is to identify and study models of random
graph that:

1. Emerge naturally from questions related to evolution.

2. Are highly tractable while retaining some mathematical interest.

The challenge of course is that there is a delicate trade-off for the second point:
models that exhibit rich behavior tend to be intractable, while tractable models
tend to be dull. Some models, such as the Erdős-Rényi random graph, manage to
fall perfectly between these two extremes. But these are the exception rather than
the rule.

The models that are introduced in this thesis are all highly tractable. I hope the
reader will not find them dull.
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1. Introduction

1.3 Outline of the thesis

This thesis is structured in independent chapters, each corresponding to a different
research project.

The aim of Chapter 2 is to give a mechanistic yet tractable model of speciation –
or, more generally, a model to describe the structure and dynamics of interbreeding-
potential networks. Indeed, it is a widely held view that species should be defined
based on the capacity of individuals to interbreed, namely as clusters of populations
with high interbreeding potential [5]. However, there are currently no data nor
theoretical models to tell us what we should expect these clusters to look like, let
alone how they should evolve through time. We thus introduce one such model,
in the form of a dynamic random graph whose vertices represent populations and
whose edges indicate interbreeding potential. In its definition, this random graph is
reminiscent of classic models of protein interaction networks, but it turns out to be
much more tractable and to have a very different behavior. In particular, this model
produces dense clusters that are poorly connected to each other, in agreement with
the biological intuition behind the definition of species and in contrast to most of
the classic models of random graphs.

In Chapter 3, we introduce a very natural model of random forest. Although the
idea for this model came from very specific biological questions, its interest lies in
the simplicity of its definition and its connections to other random objects such as
the Moran model [19], uniform random recursive trees [6] and uniform rooted labeled
trees. Indeed, one of the main features of this random forest is that it can be built
either from a graph-valued Markov chain, from a uniform attachment procedure, or
from a uniform rooted labeled tree.

Chapter 4 is devoted to a specific model of phylogenetic networks. Tree-child
networks form a class of phylogenetic networks that has gained traction among
combinatorists and phylogeneticists in recent years [4, 18, 28, 28]. Unfortunately,
they are not very tractable: for instance, it is not even known how to count them.
By adding some appropriate structure to tree-child networks, we introduce a very
tractable class of phylogenetic networks that are easy to count, sample and study
analytically. These new phylogenetic networks also have the advantage of being more
relevant from a biological point of view: indeed, their additional structure ensures
that they could have resulted from evolutionary processes – unlike general tree-child
networks, the majority of which could not have been produced by time-embedded
processes compatible with evolution.

The result discussed in Chapter 5 is not tied to any particular biological setting
and is a general property of randomly oriented graphs – namely, the positive asso-
ciation of the oriented percolation cluster. This generalizes and simplifies the main
result of [20]. This technical result can be useful in applications, and to illustrate
this a toy model of percolation is studied in detail.

Finally, the last chapter is a bit of an intruder. During my undergraduate studies,
I became interested in structured populations and the various measures of generation
time. I kept this interest during my PhD and this led to the work presented in
Chapter 6, in which I point out serious problems associated with one of the most
widely used measures of the mean age at reproduction and suggest an alternative
way to quantify it. While this work is not directly related to random graphs and
involves more biology than mathematics, I chose to include it in this thesis for two
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1.3. Outline of the thesis

reasons: (1) it was made possible by some basic knowledge about Poisson point
processes which, having been trained as a biologist, I lacked before starting this
PhD and learned as a beneficial side effect of my work on random graphs; and (2)
it is representative of my research interests and of the fact that in addition to doing
mathematics I want to keep working with biologists.
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2. The split-and-drift random graph

This chapter is joint work with Florence Débarre and Amaury Lambert. It
started during the research internship that preceded my thesis. At this time,
Amaury was very interested in the biological species concept and in the geome-
try of interbreeding-potential networks (which phenomena such as ring species [10]).
He therefore suggested I look for a biologically relevant model of random graph that
would produce clusters.

After comparing several candidates through computer simulations, the model
presented in this chapter seemed to stand out as the best compromise between
simplicity and richness of behaviour.

Publication: This chapter has been published in Stochastic Processes and their
Applications under the title “The split-and-drift random graph, a null model for
speciation” [2].
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2.1. Introduction

2.1 Introduction
In this chapter, we introduce a random graph derived from a minimalistic model
of speciation. This random graph bears superficial resemblance to classic models of
protein interaction networks [5, 11, 20, 23] in that the events shaping the graph are
the duplication of vertices and the loss of edges. However, our model is obtained as
the steady state of a Markov process (rather than by repeatedly adding vertices),
and has the crucial feature that the duplication of vertices is independent from the
loss of edges. These differences result in a very different behavior of the model.

Before describing the model formally in Section 2.1.2, let us briefly explain the
motivation behind its introduction.

2.1.1 Biological context

Although it is often presented as central to biology, there is no consensus about how
the concept of species should be defined. A widely held view is that it should be
based on the capacity of individuals to interbreed. This is the so-called “biological
species concept”, wherein a species is defined as a group of potentially interbreeding
populations that cannot interbreed with populations outside the group.

This view, whose origins can be traced back to the beginning of the 20th cen-
tury [18], was most famously promoted by Ernst Mayr [16] and has been most
influential in biology [6]. However, it remains quite imprecise: indeed, groups of
populations such that (1) all pairs of populations can interbreed and (2) no popula-
tion can interbreed with a population outside the group are probably not common
in nature – and, at any rate, do not correspond to what is considered a species in
practice. Therefore, some leniency is required when applying conditions (1) and (2).
But once we allow for this, there are several ways to formalize the biological species
concept, as illustrated in Figure 2.1. Thus, it seems arbitrary to favor one over the
others in the absence of a mechanism to explain why some kind of groups should be
more relevant (e.g., arise more frequently) than others.

Figure 2.1: The vertices of the graph represent populations and its edges denote inter-
breeding potential (that is, individuals from two linked populations could interbreed, if
given the chance). Even with such perfect information, it is not obvious how to delineate
“groups of potentially interbreeding populations that cannot interbreed with populations
outside the group”: should these correspond to connected components (on the left, in
green), maximal complete subgraphs (on the right, in red), or be based on some other
clustering method (middle, in blue)?

Our aim is to build a minimal model of speciation that would make predictions
about the structure and dynamics of the interbreeding network and allow one to
recover species as an emergent property. To do so, we model speciation at the
level of populations. Thus, we consider a set of n populations and we track the
interbreeding ability for every pair of populations. All this information is encoded in
a graph whose vertices correspond to populations and whose edges indicate potential
interbreeding, i.e., two vertices are linked if and only if the corresponding populations
can interbreed.
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2. The split-and-drift random graph

Speciation will result from the interplay between two mechanisms. First, pop-
ulations can sometimes “split” into two initially identical populations which then
behave as independent entities; this could happen as a result of the fragmentation
of the habitat or of the colonization of a new patch. Second, because they behave as
independent units, two initially identical populations will diverge (e.g., as a result
of genetic drift) until they can no longer interbreed.

2.1.2 Formal description of the model

Start from any graph with vertex set V = {1, . . . , n}, and let it evolve according to
the following rules:

1. Vertex duplication: each vertex “duplicates” at rate 1; when a vertex dupli-
cates, it chooses another vertex uniformly at random among the other vertices
and replaces it with a copy of itself. The replacement of j by a copy of i means
that j loses its incident edges and is then linked to i and to all of its neighbors,
as depicted in Figure 2.2.

Figure 2.2: An illustration of vertex duplication. Here, i duplicates
and replaces j. After the duplication, j is linked to i and to each of
its neighbors.

2. Edge removal: each edge disappears at constant rate ρ.

This procedure defines a continuous-time Markov chain (Gn(t))t>0 on the finite
state space of all graphs whose vertices are the integers 1, . . . , n. It is easy to see that
this Markov chain is irreducible. Indeed, to go from any graph G(1) to any graph
G(2), one can consider the following sequence of events: first, a vertex is duplicated
repeatedly in order to obtain the complete graph of order n (e.g., ∀k ∈ {2, . . . , n},
vertex k is replaced by a copy of vertex 1); then, all the edges that are not in G(2)

are removed.

Because the Markov chain (Gn(t))t>0 is irreducible, it has a unique stationary
probability distribution µn,ρ. This probability distribution on the set of graphs of
order n defines a random graph that is the object of study of this chapter.

2.1.3 Notation

To study the asymptotic behavior of our model as n→ +∞, we can let ρ, the ratio
of the edge removal rate to the vertex duplication rate, be a function of n. As will
become evident, it is more convenient to parametrize the model by

rn := n−1
2 ρn .

Thus, we write Gn,rn to refer to a random graph whose law is µn, 2rn
n−1

.
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2.1. Introduction

Although some of our results hold for any (n, r), in many cases we will be inter-
ested in asymptotic properties that are going to depend on the asymptotics of rn.
To quantify these, we will use the Bachmann–Landau notation, which for positive
sequences rn and f(n) can be summarized as:
• rn ∼ f(n) when rn/f(n)→ 1.

• rn = o(f(n)) when rn/f(n)→ 0.

• rn = Θ(f(n)) when there exists positive constants α and β such that, asymp-
totically, αf(n) 6 rn 6 βf(n).

• rn = ω(f(n)) when rn/f(n)→ +∞.
These notations also have stochastic counterparts, whose meaning will be recalled
when we use them. Finally, we occasionally use the expression asymptotically almost
surely (abbreviated as a.a.s.) to indicate that a property holds with probability that
goes to 1 as n tends to infinity:

Qn a.a.s. ⇐⇒ P(Qn) −−−−−→
n→+∞

1 .

2.1.4 Statement of results
Table 2.1 lists the first moments of several graph invariants obtained in Section 2.3.1.
These are then used to identify different regimes, depending on the asymptotic
behavior of the parameter rn, as stated in Theorem 2.3.10.

Variable Expectation Variance Covariance

1{i↔j}
1

1+r
r

(1+r)2
r

(1+r)2(3+2r) if vertex in common,
2 r

(1+r)2(3+r)(3+2r) otherwise.

D
(i)
n

n−1
1+r

r(n−1)(1+2r+n)
(1+r)2 (3+2r)

r
(1+r)2

(
1 + 3(n−2)

3+2r + 2(n−2)(n−3)
(3+r)(3+2r)

)
|En| n(n−1)

2(1+r)
rn(n−1)(n2+2r2+2nr+n+5r+3)

2 (1+r)2(3+r) (3+2r) —

Xn,k

(n
k

)( 1
1+r

)k−1
unknown —

Table 2.1: First and second moments of several graph invariants of Gn,r: 1{i↔j} is the variable indicating
that {ij} is an edge, D(i)

n the degree of vertex i, |En| the number of edges andXn,k the number of complete
subgraphs of order k. The covariance of the indicator variables of two edges depends on whether these
edges share a common end, hence the two expressions. All expressions hold for every value of n and r.

Theorem 2.3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the limit
as n → +∞, depending on the asymptotics of rn we have the following behaviors
for Gn,rn

(i) Complete graph: when rn = o(1/n), P(Gn,rn is complete) goes to 1, while when
rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this probability is bounded away
from 0 and from 1.

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.

(iv) Empty graph: when rn = o
(
n2), P(Gn,rn is empty) goes to 0 while when

rn = ω
(
n2) it goes to 1; when rn = Θ

(
n2), this probability is bounded away

from 0 and from 1.
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2. The split-and-drift random graph

In Section 2.4, we derive an explicit expression for the degree distribution, which
holds for every value of n and rn. We then show that, under appropriate rescaling,
this degree converges to classical distributions.

Theorem 2.4.1. Let Dn be the degree of a fixed vertex of Gn,rn. Then, for each
k ∈ {0, . . . , n− 1},

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏
i=1

n− i
n− i+ 2 rn − 1 ,

where the empty product is 1.

Theorem 2.4.2.

(i) If rn → r > 0, then Dn
n converges in distribution to a Beta(2, 2 r) random

variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

Asymptotic bounds for the number of connected components are obtained in
Section 2.5, where the following theorem is proved.

Theorem 2.5.1. Let #CCn be the number of connected components of Gn,rn. If rn
is both ω(1) and o(n), then

rn
2 + op(rn) 6 #CCn 6 2 rn logn+ op(rn logn)

where, for a positive sequence (un), op(un) denotes a sequence of random variables
(Xn) such that Xn/un → 0 in probability.

Because the method used to obtain the upper bound in Theorem 2.5.1 is rather
crude, we formulate the following conjecture, which is well supported by simulations.

Conjecture 2.5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞

1.

Finally, in Section 2.6 we use the Stein–Chen method to show that the number
of edges is Poissonian in the sparse regime, as shown by Theorem 2.6.1.

Theorem 2.6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn . If in
addition rn = o

(
n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,

where N (0, 1) denotes the standard normal distribution.

These results are summarized in Figure 2.3.
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2.2. Coalescent constructions of Gn,rn

Figure 2.3: A graphical summary of the main results; Dn is the degree of a fixed vertex, |En| the number of edges,
#CCn the number of connected components, and κn the clique number. All equalities and inequalities are to be
understood “asymptotically almost surely” (i.e. hold with probability that goes to 1 as n tends to infinity).

2.2 Coalescent constructions of Gn,rn

In this section, we detail coalescent constructions of Gn,rn that will be used through-
out the rest of the chapter. Let us start by recalling some results about the Moran
model.

2.2.1 The standard Moran process

The Moran model [17] is a classic model of population genetics. It consists in a
set of n particles governed by the following dynamics: after an exponential waiting
time with parameter

(n
2
)
, a pair of particles is sampled uniformly at random. One of

these particles is then removed (death) and replaced by a copy of the other (birth),
and we iterate the procedure.

In this chapter, we will use the Poissonian representation of the Moran process
detailed in the next definition.

Definition 2.2.1. The driving measure of a standard Moran process on V is a
collection M = (M(ij))(ij)∈V 2 of i.i.d. Poisson point processes with rate 1/2 on R.

We think of the elements of V as sites, each occupied by a single particle. In
forward time, each atom t ∈M(ij) indicates the replacement, at time t, of the particle
in i by a copy of the particle in j.

For any given time α ∈ R, M defines a genealogy of V on ]−∞, α]. Taking α = 0
and working in backward time, i.e. writing t > 0 to refer to the absolute time −t,
this genealogy is described by a collection of ancestor functions at, t ∈ [0,+∞[,
at : V → V , defined as follows: (at)t>0 is the piecewise constant process such that

(i) a0 is the identity on V .

(ii) If t ∈M(ij) then

• For all k such that at−(k) = i, at(k) = j.
• For all k such that at−(k) 6= i, at(k) = at−(k).

(iii) If for all (ij) ∈ V 2, M(ij) ∩ [s, t] = O6 , then at = as.

We refer to at(i) as the ancestor of i at time t before the present – or, more
simply, as the ancestor of i at time t. �
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2. The split-and-drift random graph

The standard Moran process is closely related to the Kingman coalescent [12].
Indeed, let Rt denote the equivalence relation on V defined by

iRt j ⇐⇒ at(i) = at(j) ,

and let Kt = V/Rt be the partition of V induced by Rt. Then, (Kt)t>0 is a Kingman
coalescent on V . In particular, we will frequently use the next lemma.

Lemma 2.2.2. Let (at)t>0 be the ancestor functions of a standard Moran process
on V . For any i 6= j, let

T{ij} = inf{t > 0 : at(i) = at(j)}

be the coalescence time of i and j and, for any S ⊂ V , let

TS = inf{T{ij} : i, j ∈ S, i 6= j} .

Then, for all t > 0, conditional on {TS > t}, (TS− t) is an exponential variable with
parameter

(|S|
2
)
.

For a more general introduction to Kingman’s coalescent and Moran’s model,
one can refer to e.g. [7] or [9].

2.2.2 Backward construction
We now turn to the description of the coalescent framework on which our study
relies. The crucial observation is that, for t large enough, every edge of Gn(t) can
ultimately be traced back to an initial edge that was inserted between a duplicating
vertex and its copy. To find out whether two vertices i and j are linked in Gn(t),
we can trace back the ancestry of the potential link between them and see whether
the corresponding initial edge and its subsequent copies survived up to time t. The
first part of this procedure depends only on the vertex duplication process and,
conditional on the sequence of ancestors of {ij}, the second one depends only on the
edge removal process, making the whole procedure tractable. The next proposition
formalizes these ideas.

Proposition 2.2.3. Let V = {1, . . . , n} and let V (2) be the set of unordered pairs
of elements of V . Let M be the driving measure of a standard Moran process on
V , and (at)t>0 the associated ancestor functions (that is, for each i in V , at(i) is
the ancestor of i at time t). Let P = (P{ij}){ij}∈V (2) be a collection of i.i.d. Poisson
point processes with rate rn on [0,+∞[ such that M and P are independent. For
every pair {ij} ∈ V (2), define

P ?{ij} =
{
t > 0 : t ∈ P{at(i)at(j)}

}
,

with the convention that, ∀k ∈ V , P{k} = O6 . Finally, let G = (V,E) be the graph
defined by

E =
{
{ij} ∈ V (2) : P ?{ij} = O6

}
.

Then, G ∼ Gn,rn.

Throughout the rest of this chapter, we will write Gn,rn for the graph obtained
by the procedure of Proposition 2.2.3.
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2.2. Coalescent constructions of Gn,rn

Proof of Proposition 2.2.3. First, consider the two-sided extension of (Gn(t))t>0, i.e.
the corresponding stationary process on R (see, e.g., Section 7.1 of [8]), which by
a slight abuse of notation we note (Gn(t))t∈R. Next, let (Ḡn(t))t∈R be the time-
rescaled process defined by

Ḡn(t) = Gn(t(n− 1)/2) .

This time-rescaled process has the same stationary distribution as (Gn(t))t∈R and
so, in particular, Ḡn(0) ∼ Gn,rn .

In the time-rescaled process, each vertex duplicates at rate (n − 1)/2 and each
edge disappears at rate rn = (n−1)ρn/2. All these events being independent, we see
that the vertex duplications correspond to the atoms of a standard Moran process
on V = {1, . . . , n}, and the edge removals to the atoms of

(n
2
)
i.i.d. Poisson point

processes with rate rn on R, that are also independent of the Moran process. Thus,
there exists (M̄ , P̄ ) with the same law as (M , P ) from the proposition and such that,
for t > 0,

• If t ∈ M̄(ij), then j duplicates and replaces i in Ḡn(−t).

• If t ∈ P̄{ij}, then if there is an edge between i and j in Ḡn(−t), it is removed.

Since (M̄ , P̄ ) has the same law as (M , P ), if we show that

{ij} ∈ Ḡn(0) ⇐⇒ P̄ ?{ij} = O6 ,

where
P̄ ?{ij} =

{
t > 0 : t ∈ P̄{āt(i)āt(j)}

}
is the same deterministic function of (M̄ , P̄ ) as P ?{ij} of (M , P ), then we will have
proved that Ḡn(0) has the same law as the graph G from the proposition.

Now to see why the edges of Ḡn(0) are exactly the pairs {ij} such that P̄{ij}
is empty, note that, in the absence of edge-removal events, Ḡn(0) is the complete
graph and the ancestor the edge {ij} at time t is {at(i) at(j)}. Conversely, deleting
the edge {k`} from Ḡn(−t) will remove all of its subsequent copies from Ḡn(0), i.e.
all edges {ij} such that {at(i) at(j)} = {k`}. Thus, the edges of Ḡn(0) are exactly
the edges that have no edge-removal events on their ancestral lineage – i.e, such that
P̄ ?{ij} = O6 .

Proposition 2.2.3 shows that Gn,rn can be obtained as a deterministic function of
the genealogy (at)t>0 of a Moran process and of independent Poisson point processes.
Our next result shows that, in this construction, (at)t>0 can be replaced by a more
coarse-grained process – namely, a Kingman coalescent (note that the Kingman
coalescent contains less information because it only keeps track of blocks, not of
which ancestor corresponds to which block at a given time t). This will be useful
to give a forward construction of Gn,rn in Section 2.2.3. The proof of this result is
straightforward and can be found in Section 2.A of the Appendix.
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2. The split-and-drift random graph

Proposition 2.2.4. Let (Kt)t>0 be a Kingman coalescent on V = {1, . . . , n}, and
let πt(i) denote the block containing i in the corresponding partition at time t. Let
the associated genealogy of pairs be the set

G =
{(
t, {πt(i)πt(j)}

)
: {ij} ∈ V (2), t ∈ [0, T{ij}[

}
,

where T{ij} = inf{t > 0 : πt(i) = πt(j)}. Denote by

L{ij} =
{(
t, {πt(i)πt(j)}

)
: t ∈ [0, T{ij}[

}
the lineage of {ij} in this genealogy. Finally, let P • be a Poisson point process with
constant intensity rn on G and let G = (V,E), where

E =
{
{ij} ∈ V (2) : P • ∩ L{ij} = O6

}
.

Then, G ∼ Gn,rn.

We finish this section with a technical lemma that will be useful in the calcu-
lations of Section 2.3.1. Again, the proof of this result has no interest in itself and
can be found in Section 2.A of the Appendix.

Lemma 2.2.5. Let S be a subset of V (2). Conditional on the measure M , for any
interval I ⊂ [0,+∞[ such that

(i) For all {ij} ∈ S, ∀t ∈ I, at(i) 6= at(j).

(ii) For all {k`} 6= {ij} in S, ∀t ∈ I, {at(i) at(j)} 6= {at(k) at(`)},

we have that (P ?{ij} ∩ I, {ij} ∈ S), are independent Poisson point processes with
rate rn on I. Moreover, for any disjoint intervals I and J , (P ?{ij} ∩ I, {ij} ∈ S) is
independent of (P ?{ij} ∩ J, {ij} ∈ S).

Before closing this section, let us sum up our results in words: if we think of
{at(i) at(j)} as being the ancestor of {ij} at time t, then the genealogy of vertices
induces a genealogy of pairs of vertices, as illustrated by Figure 2.4. Edge-removal
events occur at constant rate rn along the branches of this genealogy and the events
affecting disjoint sections of branches are independent, so that we can think of
(P ?{ij}, {ij} ∈ V

(2)), as a single Poisson point process P ? on the lineages of pairs of
vertices. A pair of vertices is an edge of Gn,rn if and only if there is no atom of P ?
on its lineage.

Figure 2.4: On the left, a genealogy on {i, j, k, `} and on the right the corre-
sponding genealogy of the pairs. Edge removal events occur at constant rate
along the lineages of pairs of vertices, and a pair of vertices is an edge of Gn,rn

if and only if there is no atom on its lineage.
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2.2. Coalescent constructions of Gn,rn

2.2.3 Forward construction

We now give a forward version of the coalescent construction presented in the pre-
vious section. Here, unlike in the previous section, the graph Gn,r is built by adding
vertices one at a time. This construction will be useful in proofs and provides a
computationally efficient way to sample Gn,r.

Consider the Markov process (G†r(t))t>0 defined by

(i) G†r(0) = ({1, 2}, {{1, 2}}) is the complete graph of order 2.

(ii) Conditional on Vt = {1, . . . , n}, where Vt is the set of vertices of G†r(t): at rate(n
2
)
, a vertex is sampled uniformly in Vt and duplicated without replacement –

that is, we copy the vertex and all incident edges, and label the new vertex n+1,
resulting in a graph with vertex set {1, . . . , n+ 1}.

(iii) During the whole process, each edge disappears at constant rate r.

Next, for every integer n > 2, let G?r(n) = G†r(tn−), where

tn = sup
{
t > 0 : G†r(t) has n vertices

}
.

Finally, let Φn(G?r(n)) denote the graph obtained by shuffling the labels of the ver-
tices of G?r(n) uniformly at random, i.e. let Φn be picked uniformly at random among
all the permutations of {1, . . . , n} and, by a slight abuse of notation, let

Φn(G?r(n)) =
(
{1, . . . , n},

{
{Φn(i) Φn(j)} : {ij} ∈ G?r(n)

})

Proposition 2.2.6. For any r > 0, for any integer n > 2,

Φn(G?r(n)) ∼ Gn,r .

Going from a backward construction such as Proposition 2.2.4 to a forward
construction such as Proposition 2.2.6 is common in coalescent theory. The proofs,
though straightforward, are somewhat tedious. They can be found in Section 2.A
of the Appendix, and we save the rest of this section to comment on the forward
construction.

Proposition 2.2.6 shows that, for any given sequence (rn), for any n > 2,
Φn(G?rn(n)) ∼ Gn,rn . Note however that this is not a compatible construction of
a sequence (Gn,rn)n>2. In particular, all elements of a sequence (Φn(G?r(n)))n>2
are associated to the same value of r, while each term of a sequence (Gn,rn)n>2
corresponds to a different value of rn.

Finally, it is necessary to relabel the vertices of G?r(n) in Proposition 2.2.6,
as failing to do so would condition on {k, k − 1} being the (n− k + 1)-th pair of
vertices to coalesce in the genealogy of Gn,r (in particular, the edges of G?r(n) are
not exchangeable: “old” edges such as {1, 2} are least likely to be present than more
recent ones such as {n−1, n}). However, since G?r(n) and Φn(G?r(n)) are isomorphic,
when studying properties that are invariant under graph isomorphism (such as the
number of connected components in Section 2.5 or the positive association of the
edges in Section 2.6), we can work directly on G?r(n).
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2. The split-and-drift random graph

2.3 First and second moment methods
In this section, we apply Proposition 2.2.3 and Lemma 2.2.5 to obtain the expressions
presented in Table 2.1. These are then used to identify different regimes for Gn,rn ,
depending on the asymptotic behavior of the parameter rn.

In order to be able to use Lemma 2.2.5, we will always reason conditionally on
the genealogy of the vertices (i.e. on the vertex duplication process M ) and then
integrate against its law.

2.3.1 First moments of graph invariants
Degree and number of edges

Proposition 2.3.1. For any fixed vertices i and j, i 6= j, the probability that i and
j are linked in Gn,rn is

P(i↔ j) = 1
1 + rn

.

Corollary 2.3.2. Let Dn be the degree of a fixed vertex of Gn,rn, and |En| be the
number of edges of Gn,rn. Then,

E(Dn) = n− 1
1 + rn

and E(|En|) =
(
n

2

)
1

1 + rn
.

Proof. By Proposition 2.2.3,

{i↔ j} ⇐⇒ P ?{ij} ∩ [0, T{ij}[ = O6 .

Reasoning conditionally on T{ij} and applying Lemma 2.2.5 to S = {{ij}} and
I = [0, T{ij}[, we see that P ?{ij} is a Poisson point process with rate rn on I. Since
T{ij} ∼ Exp(1),

P(i↔ j) = P
(
e1 > T{ij}

)
,

where e1 = inf P ?{ij} is an exponential variable with rate rn that is independent
of T{ij}. This concludes the proof of the proposition.

The corollary follows directly from the fact that the degree of a vertex v can be
written as

D(v)
n =

∑
i 6=v

1{i↔v}

and that the number of edges of Gn,rn is

|En| =
∑

{ij}∈V (2)

1{i↔j} .

Proposition 2.3.3. Let i, j and k be three distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2

Corollary 2.3.4. Let Dn be the degree of a fixed vertex of Gn,rn. We have

Var(Dn) = rn(n− 1)(1 + 2 rn + n)
(1 + rn)2 (3 + 2 rn)
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2.3. First and second moment methods

Proof. For all t > 0, let St = {at(i), at(j), at(k)}. Let τ1 = inf{t > 0 : |St| = 2}
and τ2 = inf{t > τ1 : |St| = 1}. Recall from Lemma 2.2.2 that τ1 and τ2 − τ1 are
independent exponential variables with parameter 3 and 1, respectively. Finally, let
{u, v} = Sτ1 .

By Proposition 2.2.3, {ij} and {ik} are edges ofGn,rn if and only if P ?{ij}∩[0, T{ij}[
and P ?{ik} ∩ [0, T{ik}[ are empty, which can also be written

(
P ?{ij} ∩ [0, τ1[

)
∪
(
P ?{ik} ∩ [0, τ1[

)
∪
(
P ?{uv} ∩ [τ1, τ2[

)
= O6

Conditionally on τ1 and τ2, by Lemma 2.2.5, (P ?{ij}∩ [0, τ1[)∪ (P ?{ik}∩ [0, τ1[) is inde-
pendent of P ?{uv} ∩ [τ1, τ2[, P ?{ij} and P

?
{ik} are independent Poisson point processes

with rate rn on [0, τ1[, and P ?{uv} is a Poisson point process with rate rn on [τ1, τ2[.
Therefore,

P(i↔ j, i↔ k) = P(e1 > τ1)P(e2 > τ2 − τ1) ,

where e1 = inf(P ?{ij} ∪ P
?
{ik}) ∼ Exp(2 rn) is independent of τ1 and e2 = inf(P ?{uv} ∩

[τ1,+∞[) ∼ Exp(rn) is independent of τ2 − τ1. As a result,

P(i↔ j, i↔ k) = 3
3 + 2 rn

× 1
1 + rn

.

A short calculation shows that

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2 ,

proving the proposition.

As before, the corollary follows from writing the degree of v asD(v)
n =

∑
i 6=v 1{i↔v},

which gives

Var
(
D(v)
n

)
= (n− 1) Var

(
1{i↔v}

)
+ (n− 1)(n− 2) Cov

(
1{i↔v},1{j↔v}

)
.

Substituting Var(1{i↔v}) = rn/(1 + rn)2 and Cov(1{i↔v},1{j↔v}) yields the desired
expression.

Proposition 2.3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 2.3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed vertices i
and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D(j)

n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
and

Var(|En|) = rn n (n− 1)(n2 + 2 r2
n + 2n rn + n+ 5 rn + 3)

2 (1 + rn)2 (3 + rn) (3 + 2 rn)

The proof of Proposition 2.3.5 and its corollary are conceptually identical to the
proofs of Propositions 2.3.1 and 2.3.3 and their corollaries, but the calculations are
more tedious and so they have been relegated to Section 2.B of the Appendix.
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2. The split-and-drift random graph

Complete subgraphs

From a biological perspective, complete subgraphs are interesting because they are
related to how fine the partition of the set of populations into species can be. Indeed,
the vertices of a complete subgraph – and especially of a large one – should be
considered as part of the same species. A complementary point of view will be
brought by connected components in Section 2.5.

In this section we establish the following results.

Proposition 2.3.7. Let Xn,k be the number of complete subgraphs of order k in
Gn,rn. Then,

E(Xn,k) =
(
n

k

)( 1
1 + rn

)k−1
.

Corollary 2.3.8. Let κn be the clique number of Gn,rn, i.e. the maximal number of
vertices in a complete subgraph of Gn,rn. If (kn) is such that(

n

kn

)( 1
1 + rn

)kn−1
−−−−→
n→∞

0 ,

then kn is asymptotically almost surely an upper bound on κn, i.e. P(κn 6 kn)→ 1
as n→ +∞. In particular, when rn → +∞,

(i) If rn = o(n), then κn 6 log(rn)n/rn a.a.s.

(ii) If rn = O(n/ log(n)), κn = Op(n/rn), i.e.

∀ε > 0, ∃M > 0, ∃N s.t. ∀n > N, P(κn > Mn/rn) < ε .

Proof of Proposition 2.3.7. The number of complete subgraphs of order k of Gn,rn
is

Xn,k =
∑

S∈V (k)

1{Gn,rn [S] is complete}

where the elements of V (k) are the k-subsets of V = {1, . . . , n}, and Gn,rn [S] is the
subgraph of Gn,rn induced by S. By exchangeability,

E(Xn,k) =
(
n

k

)
P
(
Gn,rn [S] is complete

)
,

where S is any fixed set of k vertices. Using the notation of Proposition 2.2.3,

Gn,rn [S] is complete ⇐⇒ ∀{ij} ∈ S, P ?{ij} = O6 .

For all t > 0, let At = {at(i) : i ∈ S} be the set of ancestors of S at t. Let τ0 = 0
and for each ` = 1, . . . , k − 1 let τ` be the time of the `-th coalescence between two
lineages of S, i.e.

τ` = inf
{
t > τ`−1 : |At| = |Aτ`−1 | − 1

}
Finally, let Ã` = Aτ` and I` = [τ`, τ`+1[. With this notation,

{
∀{ij} ∈ S, P ?{ij} = O6

}
=

k−2⋂
`=0

B` ,
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where
B` =

⋂
{ij}∈Ã(2)

`

{P ?{ij} ∩ I` = O6 }

and Ã
(2)
` denotes the (unordered) pairs of Ã`. Since for ` 6= m, I` ∩ Im = O6 ,

Lemma 2.2.5 shows that conditionally on I0, . . . , Ik−1, the events B0, . . . , Bk−2 are
independent. By construction, for all {ij} 6= {uv} in Ã(2)

` ,

∀t ∈ I`, {at(i), at(j)} 6= {at(u), at(v)} 6= O6

and so it follows from Lemma 2.2.5 that, conditional on I`, (P ?{ij} ∩ I`), {ij} ∈ Ã
(2)
` ,

are i.i.d. Poisson point processes with rate rn on I`. Therefore,

P(B`) = P
(
min

{
e

(`)
{ij} : {ij} ∈ Ã(2)

`

}
> |I`|

)
,

where e(`)
{ij}, {ij} ∈ Ã

(2)
` , are

(k−`
2
)
i.i.d. exponential variables with parameter rn that

are also independent of |I`|. Since |I`| ∼ Exp
((k−`

2
))
,

P(B`) = 1
1 + rn

and Proposition 2.3.7 follows.

Proof of Corollary 2.3.8. The first part of the corollary is a direct consequence of
Proposition 2.3.7. First, note that

Xn,kn = 0 ⇐⇒ κn < kn

that a complete subgraph of order k contains complete subgraphs of order ` for all
` < k. As a result, any kn such that P(Xn,kn = 0) → 1 is asymptotically almost
surely an upper bound on the clique number κn. Now, observe that since Xn,kn is a
non-negative integer, Xn,kn > 1{Xn,kn 6=0} and therefore

E(Xn,kn) > P(Xn,kn 6= 0) .

Finally, Xn,k being integer-valued, P(Xn,kn 6= 0)→ 0 implies P(Xn,kn = 0)→ 1.

To prove the second part of the corollary, using Stirling’s formula we find that
whenever rn and kn are o(n) and go to +∞ as n→ +∞,(

n

kn

)( 1
1 + rn

)kn−1
∼ C√

kn

nn

kknn (n− kn)n−kn

( 1
1 + rn

)kn−1
,

where C =
√

2π. The right-hand side goes to zero if and only if its logarithm goes
to −∞, i.e. if and only if

An := kn log
(

n− kn
kn(1 + rn)

)
− n log

(
1− kn

n

)
+ log

(1 + rn√
kn

)
goes to −∞. Now let kn = ngn/rn, where gn → +∞ and is o(rn), so that kn = o(n).
Then,

kn log
(

n− kn
kn(1 + rn)

)
∼ −kn log(gn)
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and
−n log

(
1− kn

n

)
∼ kn .

Moreover, as long as it does not go to zero,

log
(1 + rn√

kn

)
∼ 3

2 log(rn)− 1
2 log(ngn) .

Putting the pieces together, we find that An is asymptotically equivalent to

−ngn
rn

log(gn) + 3
2 log(rn)− 1

2 log(ngn) .

Taking gn = log(rn), this expression goes to −∞ as n → +∞, yielding (i). If
rn = O(n/ log(n)), then it goes to −∞ for any gn → +∞, which proves (ii). Indeed,
if there exists ε > 0 such that

∀M > 0, ∀N, ∃n > N s.t. P(κn > Mn/rn) > ε ,

then considering successively M = 1, 2, . . ., we can find n1 < n2 < · · · such that

∀k ∈ N, P(κnk > knk/rnk) > ε .

Defining (gn) by
∀n ∈ {nk, . . . , nk+1 − 1}, gn = k ,

we obtain a sequence (gn) that goes to infinity and yet is such that for all N there
exists n := min{nk : nk > N} such that P(κn > gnn/rn) > ε.

A natural pendant to Proposition 2.3.7 and Corollary 2.3.8 would be to use the
variance of Xn,k to find a lower bound on the clique number. Indeed, it follows from
Chebychev’s inequality that

P(Xn,k = 0) 6 Var(Xn,k)
E(Xn,k)2 .

However, computing Var(Xn,k) requires being able to compute the probability that
two subsets of k vertices S and S′ both induce a complete subgraph, which we have
not managed to do. Using the probability that Gn,rn [S] is complete as an upper
bound for this quantity, we have the very crude inequality

Var(Xn,k) 6
(
n

k

)2

p (1− p) ,

where p = 1/(1 + rn)k−1. This shows that when rn → 0 and kn = o(1/rn),
P(Xn,kn = 0) tends to zero, proving that κn is at least Θ(1/rn).

Finally, because we expect our model to form dense connected components,
whose number we conjecture to be on the order of rn in the intermediate regime
(see Theorem 2.5.1 and Conjecture 2.5.4), and since the degree of a typical vertex
is approximately n/rn in that regime, it seems reasonable to conjecture

Conjecture 2.3.9. In the intermediate regime, i.e. when rn → +∞ and rn = o(n),

∃α, β > 0 s.t. P(αn/rn 6 κn 6 βn/rn) −−−−−→
n→+∞

1. �
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2.3.2 Identification of different regimes
We now use the results of the previous section to identify different regimes for the
behavior of Gn,rn . The proof of our next theorem relies in part on results proved
later in the chapter (namely, Theorems 2.4.1 and 2.6.1), but no subsequent result
depends on it, avoiding cyclic dependencies. While this section could have been
placed at the end of the chapter, it makes more sense to present it here because it
relies mostly on Section 2.3.1 and because it helps structure the rest of the chapter.

Theorem 2.3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the limit
as n → +∞, depending on the asymptotics of rn we have the following behaviors
for Gn,rn

(i) Transition for the complete graph: when rn = o(1/n), P(Gn,rn is complete)
goes to 1, while when rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this proba-
bility is bounded away from 0 and from 1.

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.

(iv) Transition for the empty graph: when rn = o
(
n2), P(Gn,rn is empty) goes to 0

while when rn = ω
(
n2) it goes to 1; when rn = Θ

(
n2), this probability is bounded

away from 0 and from 1.

Proof. (i) is a direct consequence of Proposition 2.3.7 which, applied to k = n, yields

P(Gn,rn is complete) =
( 1

1 + rn

)n−1
.

(ii) is intuitive since E(Dn) = (n−1)/(1+rn); but because it takes rn = o
(
1/n2)

for Var(Dn) to go to zero, a second moment method is not sufficient to prove it.
However, using Theorem 2.4.1, we see that P(Dn = n− 1) can be written as

P(Dn = n− 1) = Γ(2 + 2 rn)Γ(n+ 1)
Γ(n+ 1 + 2 rn) ,

where Γ is the gamma function. The results follows by letting rn go to zero and
using the continuity of Γ.

(iii) follows from the same argument as in the proof of Corollary 2.3.8, by which,
Dn being a non-negative integer, P(Dn 6= 0) 6 E(Dn) = n−1

1+rn .

In (iv), the fact that Gn,rn is empty when rn = ω(n2) is yet another application of
this argument, but this time using the expected number of edges, E(|En|) = n(n−1)

2(1+rn) ,
in conjunction with the fact that Gn,rn is empty if and only if |En| = 0; to see why
the graph cannot be empty when rn = o(n2), consider the edge that was created
between the duplicated vertex and its copy in the most recent duplication. Clearly,
if this edge has not disappeared yet then Gn,rn cannot be empty. But the probability
that this edge has disappeared is just

rn(n
2
)

+ rn
,

which goes to zero when rn = o(n2). Finally, the fact that P(Gn,rn is empty) is
bounded away from 0 and from 1 when rn = Θ(n2) is a consequence of Theo-
rem 2.6.1, which shows that the number of edges is Poissonian when rn = ω(n). As
a result, P(|En| = 0) ∼ e−E(|En|).
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2. The split-and-drift random graph

Remark 2.3.11. Note that when rn = o(1), Var(Dn) ∼ rnn
2/3 can go to infinity

even thoughDn = n−1 with probability that goes to 1. Similarly, when rn = o(1/n),
Var(|En|) ∼ rnn

4/18 and |En| =
(n

2
)
a.a.s. Notably, Dn = (n − 1) −Dn converges

to 0 in probability while Var
(
Dn

)
goes to infinity. �

2.4 The degree distribution
The degree distribution is one of the most widely studied graph invariants in network
science. Our model makes it possible to obtain an exact expression for its probability
distribution:

Theorem 2.4.1 (degree distribution). Let Dn be the degree of a fixed vertex of
Gn,rn. Then, for each k ∈ {0, . . . , n− 1},

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏
i=1

n− i
n− i+ 2 rn − 1 ,

where the empty product is 1.

The expression above holds for any positive sequence (rn) and any n; but as
n → +∞ it becomes much simpler and, under appropriate rescaling, the degree
converges to classical distributions:

Theorem 2.4.2 (convergence of the rescaled degree).

(i) If rn → r > 0, then Dn
n converges in distribution to a Beta(2, 2 r) random

variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

In this section we prove Theorem 2.4.1 by coupling the degree to the number
of individuals descended from a founder in a branching process with immigration.
Theorem 2.4.2 is then easily deduced by a standard study that has been relegated
to Section 2.C of the Appendix.

2.4.1 Ideas of the proof of Theorem 2.4.1

Before jumping to the formal proof of Theorem 2.4.1, we give a verbal account of
the main ideas of the proof.

In order to find the degree of a fixed vertex v, we have to consider all pairs {iv}
and look at their ancestry to assess the absence/presence of atoms in the correspond-
ing Poisson point processes. To do so, we can restrict our attention to the genealogy
of the vertices, and consider that edge-removal events occur along the lineages of
this genealogy: a point that falls on the lineage of vertex i at time t means that
t ∈ P ?{iv}. In this setting, edge-removal events occur at constant rate rn on every
lineage different from that of v.
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2.4. The degree distribution

Next, the closed neighborhood of v (i.e. the set of vertices that are linked to v,
plus v itself) can be obtained through the following procedure: we trace the ge-
nealogy of vertices, backwards in time; if we encounter an edge-removal event on
lineage i at time t, then we mark all vertices that descend from this lineage, i.e. all
vertices whose ancestor at time t is i; only the lineages of unmarked vertices are
considered after t. We stop when there is only one lineage left in the genealogy. The
unmarked vertices are then exactly the neighbors of v (plus v itself). The procedure
is illustrated in Figure 2.5.

Figure 2.5: Illustration of the procedure used to find the neighborhood of v. On the left, the
genealogy of the vertices. The dashed blue line represents the lineage of the focal vertex v, and a
dot on lineage k corresponds to a point in P{kat(v)}. In the middle, we uncover the genealogy and
edge-removal events in backward time, as described in the main text. On the right, the forest that
we get when the procedure is complete. The non-colored (black) branches are exactly the neighbors
of v.

This vertex marking process is not convenient to describe in backward time
because we typically mark several vertices simultaneously. By contrast, the forest
that results from the completed process seems much easier to describe in forward
time. Indeed, the arrival of a new lineage corresponds either to the addition of a
new unmarked vertex or to the addition of a marked one, depending on whether the
new lineage belongs to the same tree as v or not.

Moreover, in forward time, the process is reminiscent of a branching process with
immigration: new lineages are either grafted to existing ones (branching) or sprout
spontaneously (immigration). Let us try to find what the branching and immigration
rates should be. In backward time, when there are k+ 1 lineages then a coalescence
occurs at rate

(k+1
2
)
, while an edge-removal event occurs at rate k rn. Reversing

time, these events occur at the same rates. As a result, when going from k to k + 1
lineages, the probability that the next event is a branching is (k+ 1)/(k+ 1 + 2 rn).

Next, we have to find the probability that each lineage has to branch, given that
the next event is a branching. Here, a spinal decomposition [3, 14] suggests that
every lineage branches at rate 1, except for the lineage of v, which branches at rate 2.
To see why, observe that this is coherent with the fact that, in backward time, when
going from k+ 1 to k lineages there are k pairs out of

(k+1
2
)
that involve the lineage

of v, so that the probability that the lineage of v is involved in the next coalescence
is 2/(k + 1).

If this heuristic is correct, then in forward time it is easy to track the number of
branches of the tree of v versus the number of branches of other trees: when there
are p branches in the tree of v and q branches in the other trees, the probability
that the next branch is added to the tree of v is just (p + 1)/(p + 1 + q + 2 rn).
Moreover, when the total number of branches reaches n, the number of branches
in the tree of v is also the number of unmarked vertices at the end of the vertex
marking procedure, which is itself D(v)

n + 1, the degree of v plus one.
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2.4.2 Formal proof of Theorem 2.4.1
The ideas and outline of the proof parallels the account given in the previous section:
first, given a realization of the vertex-duplication process M and of the edge-removal
process P , we describe a deterministic procedure that gives the closed neighborhood
of any vertex v,

NG[v] =
{
i ∈ V : {iv} ∈ E

}
∪
{
v
}
,

where G = (V,E) is the graph associated to M and P ; then, we identify the law of
the process (Ft)t>0 corresponding to this procedure, and recognize it as the law of
a branching process with immigration.

Definition 2.4.3. A rooted forest with marked vertices is a triple F = (V ◦, V •, ~E)
such that

(i) V ◦ ∩ V • = O6 .

(ii) Letting V = V ◦∪V •, (V, ~E) is an acyclic digraph with the property that ∀i ∈ V ,
deg+(i) ∈ {0, 1}, where deg+(i) is the out-degree of vertex i.

The marked vertices are the elements of V •; the roots of F are the vertices with
out-degree 0 (that is, edges are oriented towards the root), whose set we denote
by R(F ); finally, the trees of F are its connected components (in the weak sense,
i.e. considering the underlying undirected graph), and we write TF (i) for the tree
containing i in F . �

The vertex-marking process

We now define the backward-time process (Ft)t>0 that corresponds to the procedure
described informally in Section 2.4.1. Recall the notation of Proposition 2.2.3. For a
given realization of M and P , and for any fixed vertex v, let (Ft)t>0 be the piecewise
constant process defined deterministically by

• F0 = (V,O6 ,O6 ).

• If t ∈M(ij), then ∀k, ` ∈ R(Ft−) ∩ V ◦t− such that (at−(k), at−(`)) = (i, j),

~Et = ~Et− ∪
{
(k, `)

}
.

• If t ∈ P{iat(v)}, then letting dt(i) = {j ∈ V : at(j) = i} be the set of descendants
of i born after time t, {

V ◦t = V ◦t− \ dt(i)
V •t = V •t− ∪ dt(i) .

What makes (Ft)t>0 interesting is that

NG[v] = V ◦∞ .

Indeed, by construction,

i ∈ V ◦t ⇐⇒
⋃

s∈[0,t]

 ⋃
j:i∈ds(j)

P{jas(v)}

 = O6 ,

and since for every s the unique j such that i ∈ ds(j) is as(i), we have

V ◦t =
{
i ∈ V : P ?{iv} ∩ [0, t] = O6

}
.
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The Poissonian construction given above shows that (Ft, at)t>0 is a Markov pro-
cess. Now, observe that conditional on at

(i) M(ij) ∩ ]t,+∞[ ∼ M(at(i)at(j)) ∩ ]t,+∞[ and is independent of (Fs, as)s6t

(ii) P{iat(v)} ∩ ]t,+∞[ ∼ P{at(i)at(v)} ∩ ]t,+∞[ and is independent of (Fs, as)s6t

(iii) j ∈ dt(i) ⇐⇒ i ∈ R(Ft) and j ∈ TFt(i)

As a consequence, (Ft)t>0 is also a Markov process, whose law is characterized by

• F0 = (V,O6 ,O6 ).

• Ft goes from (V ◦t , V •t , ~Et) to

–
(
V ◦t , V

•
t , ~Et ∪ {(i, j)}

)
at rate 1/2, for all i, j in R(Ft)

–
(
V ◦t \ TFt(i), V •t ∪ TFt(i), ~Et

)
at rate rn, for all i in R(Ft).

Let (F̃k)k∈{1,...,n} be the chain embedded in (Ft)t>0, i.e. defined by

F̃k = Ftk , where tk = inf
{
t > 0 : |R(Ft)| = n− k + 1

}
.

The rooted forests with marked vertices that correspond to realizations of F̃n are ex-
actly the fn = (V ◦, V •, ~E) that have n vertices and are such that V ◦ = Tfn(v). More-
over, for each of these there exists a unique trajectory (f1, . . . , fn) of (F̃1, . . . , F̃n)
such that F̃n = fn and it follows from the transition rates of (Ft)t>0 that

P
(
F̃n = fn

)
= (1/2)n−|R(fn)| r

|R(fn)|−1
n

n∏
k=2

(k(k − 1)/2 + (k − 1)rn)

= 1
(n− 1)! ×

(2 rn)|R(fn)|−1

n∏
k=2

(k + 2 rn)
(2.1)

Finally, note that Ṽ ◦n = V ◦∞ is the closed neighborhood of v in our graph.

The branching process

The process with which we will couple the vertex-marking process described in the
previous section is a simple random function of the trajectories of a branching process
with immigration (Zt)t>0. In this branching process, immigration occurs at rate 2 rn
and each particle gives birth to a new particle at rate 1 – except for one particle,
which carries a special item that enables it to give birth at rate 2; when this lineage
reproduces, it keeps the item with probability 1/2, and passes it to its offspring with
probability 1/2.
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Formally, we consider the Markov process on the set of rooted forests with
marked vertices (augmented with an indication of the carrier of the item), defined
by Z0 = ({1},O6 ,O6 , 1) and by the following transition rates:

(Zt)t>0 goes from (W ◦, W •, ~E, c) to

—
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈W ◦

—
(
W ◦, W • ∪ {N}, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈W •

—
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, c)}, N

)
at rate 1

—
(
W ◦, W • ∪ {N}, ~E, c

)
at rate 2 rn

where N = |W ◦ ∪W •|+ 1 is the label of the new particle. The fourth coordinate of
(Zt)t>0 tracks the carrier of the item.

As previously, the Markov chain (Z̃k)k∈N∗ embedded in (Zt)t>0 is defined by

Z̃k = Ztk , where tk = inf
{
t > 0 : |W ◦t ∪W •t | = k

}
.

The realizations of Z̃n are exactly the (W ◦n ,W •n , ~En, cn) such that fn = (W ◦n ,W •n , ~En)
is a rooted forest with marked vertices on {1, . . . , n} and W ◦n = Tfn(1) = Tfn(cn).
For these, it follows from the transition rates of (Zt)t>0 that

P
(
Z̃n = (W ◦n ,W •n , ~En, cn)

)
= (2 rn)|R(fn)|−1

n−1∏
k=1

(k + 1 + 2 rn)
. (2.2)

Finally, note that (Xk)k∈N∗ =
(
|W̃ ◦k |, |W̃ •k |

)
k∈N∗ , which counts the number of

descendants of the first particle and the number of descendants of immigrants, is a
Markov chain whose law is characterized by X1 = (1, 0) and Xk goes from (p, q) to

• (p+ 1, q) with probability p+1
p+1+q+2rn

• (p, q + 1) with probability q+2r
p+1+q+2rn .

Relabeling and end of proof

The last step before finishing the proof of Theorem 2.4.1 is to shuffle the vertices of
the forest associated to Z̃n appropriately. For any fixed n, v and c in {1, . . . , n}, let
Φ(c,v) be uniformly and independently of anything else picked among the permuta-
tions of {1, . . . , n} that map c to v; define Φv(Z̃n) by

Φv

(
W̃ ◦n , W̃

•
n , Ẽn, c̃n

)
=
(
Φ(c̃n,v)(W̃ ◦n), Φ(c̃n,v)(W̃ •n), Φ(c̃n,v)(Ẽn)

)
where Φ(c̃n,v)(Ẽn) is to be understood as

{(
Φ(c̃n,v)(i),Φ(c̃n,v)(j)

)
: (i, j) ∈ Ẽn

}
.

With all these elements, the proof of Theorem 2.4.1 goes as follows. First, from
equations (2.1) and (2.2) and the definition of Φv, we see that for all rooted forest
with marked vertices fn,

P
(
F̃n = fn

)
= P

(
Φv(Z̃n) = fn

)
.
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In particular, Ṽ ◦n , the set of unmarked vertices in the vertex-marking process, and
Φ(c̃n,v)(W̃ ◦n), the relabeled set of descendants of the first particle in the branching
process, have the same law. Now, on the one hand we have∣∣∣Ṽ ◦n ∣∣∣ =

∣∣NG[v]
∣∣ = D(v)

n + 1 ,

and on the other hand we have∣∣∣Φ(c̃n,v)(W̃ ◦n)
∣∣∣ =

∣∣∣W̃ ◦n ∣∣∣ .
Since

∣∣∣W̃ ◦n ∣∣∣ is the first coordinate of the Markov chain (Xk)k∈N∗ introduced in
the previous section, it follows directly from the transition probabilities of (Xk)k∈N∗
that

P
(
Xn = (k + 1, n− k − 1)

)
=
(
n− 1
k

) k∏
p=1

(p+ 1)
n−k−2∏
q=0

(q + 2 rn)

n−1∏
(p+q)=1

(
(p+q) + 1 + 2 rn

) ,

from which the expression of Theorem 2.4.1 can be deduced through elementary
calculations.

2.5 Connected components in the intermediate regime
From a biological perspective, connected components are good candidates to define
species, and have frequently been used to that end. Moreover, among the possible
definitions of species, they play a special role because they indicate how coarse the
partition of the set of populations into species can be; indeed, it would not make
sense biologically for distinct connected components to be part of the same species.
As a result, connected components are in a sense the “loosest” possible definition of
species. This complements the perspective brought by complete subgraphs, which
inform us on how fine the species partition can be (see Section 2.3.1). For a discussion
of the definition of species in a context where traits and ancestral relationships
between individuals are known, see [15].

The aim of this section is to prove the following theorem.

Theorem 2.5.1. Let #CCn be the number of connected components of Gn,rn. If rn
is both ω(1) and o(n), then

rn
2 + op(rn) 6 #CCn 6 2 rn logn+ op(rn logn)

where, for a positive sequence (un), op(un) denotes a sequence of random variables
(Xn) such that Xn/un → 0 in probability.

2.5.1 Lower bound on the number of connected components
The proof of the lower bound on the number of connected components uses the for-
ward construction introduced in Section 2.2.2 and the associated notation. It relies
on the simple observation that, letting #CC(G) denote the number of connected
components of a graph G, #CC(G?rn(k)) is a nondecreasing function of k. Indeed,
in the sequence of events defining (G?rn(k))k>2, vertex duplications do not change
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2. The split-and-drift random graph

the number of connected components – because a new vertex is always linked to
an existing vertex (its ‘mother’) and her neighbors – and edge removals can only
increase it. Thus, if mn 6 n and `n are such that P

(
#CC(G?rn(mn) > `n

)
→ 1 as

n → ∞, then `n is asymptotically almost surely a lower bound on the number of
connected components of G?rn(n) — and therefore of Gn,rn .

To find such a pair (mn, `n), note that, for every graph G of order m,

#CC(G) > m−#edges(G) .

Moreover, since for any fixed n, G?rn(mn) has the same law as Gmn,rn , the exact
expressions for the expectation and the variance of |E?mn |, the number of edges of
G?rn(mn), are given in Table 2.1. We see that, if rn and mn are both ω(1) and o(n),

E
(
|E?mn |

)
∼ m2

n

2 rn
and Var

(
|E?mn |

)
∼ m2

n

4 r3
n

(
m2
n + 2 r2

n

)
.

By Chebychev’s inequality,

P
( ∣∣ |E?mn | − E(|E?mn |)∣∣ > m1−ε

n

)
6

Var
(
|E?mn |

)
m2−2ε
n

.

When mn = Θ(rn), since rn = ω(1) the right-hand side of this inequality goes to 0
as n→ +∞, for all ε < 1/2. It follows that

|E?mn | = E
(
|E?mn |

)
+ op(rn) .

Taking mn := bα rnc, we find that

#CC(G?rn(mn)) > mn − |E?mn | = α
(
1− α

2
)
rn + op(rn) .

The right-hand side is maximal for α = 1 and is then rn/2 + op(rn).

2.5.2 Upper bound on the number of connected components
Our strategy to get an upper bound on the number of connected components is to
find a spanning subgraph whose number of connected components we can estimate.
A natural idea is to look for a spanning forest, because forests have the property
that their number of connected components is their number of vertices minus their
number of edges.

Definition 2.5.2. A pair of vertices {ij} is said to be a founder if it has no ancestor
other than itself, i.e., letting T{ij} = sup{t > 0 : at(i) 6= at(j)} be the coalescence
time of i and j, {ij} is a founder if and only if ∀t < T{ij}, {at(i) at(j)} = {ij}. �

Let F be the set of founders of Gn,rn = (V,E), and let Tn = (V,F ). Note that
#F = n−1 and that Tn is a tree. Therefore, letting Fn = (V,F ∩E) be the spanning
forest of Gn,rn induced by Tn, we have

#CCn 6 n−#edges(Fn) .

Let us estimate the number of edges of Fn. Recall Proposition 2.2.3. By construc-
tion, ∀{ij} ∈ F , P ?{ij} = P{ij} ∩ [0, T{ij}]. It follows that

#edges(Fn) =
∑
{ij}∈F

1{P{ij}∩[0,T{ij}]=O6 }
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and, as a consequence,

#CCn 6 1 +
∑
{ij}∈F

1{P{ij}∩[0,T{ij}] 6=O6 } .

Now, 1{P{ij}∩[0,T{ij}] 6=O6 } 6 #(P{ij} ∩ [0, T{ij}]), and since (P{ij}){ij}∈F are i.i.d.
Poisson point processes with intensity rn that are also independent of (T{ij}){ij}∈F ,∑

{ij}∈F

#(P{ij} ∩ [0, T{ij}]) 6 #(P ∩ [0, Ln]) ,

where P is a Poisson point process on ]0,+∞] with intensity rn and Ln = TMRCA +∑
{ij}∈F T{ij} is the total branch length of the genealogy of the vertices. Putting the

pieces together,
#CCn 6 1 + #(P ∩ [0, Ln]) .

Conditional on Ln, #(P ∩[0, Ln]) is a Poisson random variable with parameter rnLn.
Moreover, it is known [22] that

E(Ln) = 2
n−1∑
i=1

1
i

and Var(Ln) = 4
n−1∑
i=1

1
i2

As a result,
E
(
#(P ∩ [0, Ln])

)
= rnE(Ln) ∼ 2 rn logn

and
Var

(
#(P ∩ [0, Ln])

)
= rnE(Ln) + Var(rnLn) ∼ 2 rn logn+ α r2

n ,

with α = 2π2/3. Using Chebychev’s inequality, we find that for all ε > 0,

P
(
|#(P ∩ [0, Ln])− 2 rn logn| > ε rn logn

)
= O

( 2
ε2 rn log(n) + α

ε2 log(n)2

)
.

The right-hand side goes to 0 as n → +∞, which shows that #(P ∩ [0, Ln]) −
2 rn logn = op(rn logn) and finishes the proof.

Remark 2.5.3. Using #(P∩[0, Ln]) as an upper bound for
∑
{ij}∈F 1{P{ij}∩[0,T{ij}]6=O6 }

turns out not to be a great source of imprecision, because most of the total branch
length of a Kingman coalescent comes from very short branches. As a result, when
rn = o(n), only a negligible proportion of the P{ij}∩ [0, T{ij}]’s, {ij} ∈ F , have more
than one point.

By contrast, using n −#edges(Fn) as an upper bound on #CCn is very crude.
This leads us to formulate the following conjecture. �

Conjecture 2.5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞

1. �

Remark 2.5.5. After this work was published, the following argument supporting
Conjecture 2.5.4 was given to me by Gustave Emprin: let |CC(v)| denote the size
of the connected component containing vertex v. Then we have

#CCn =
∑
v

1
|CC(v)| 6

∑
v

1
D

(v)
n + 1

∼ 2rn

where the asymptotic equivalent follows from point (ii) of Theorem 2.4.1 �
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2.6 Number of edges in the sparse regime
From the expressions obtained in section 2.3.1 and recapitulated in Table 2.1, we
see that when rn = ω(n),

E(|En|) ∼ Var(|En|) ∼
n2

2 rn
.

This suggests that the number of edges is Poissonian in the sparse regime, and this
is what the next theorem states.

Theorem 2.6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn . If in
addition rn = o

(
n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,

where N (0, 1) denotes the standard normal distribution.

The proof of Theorem 2.6.1 is a standard application of the Stein–Chen method
[21, 4]. A reference on the topic is [1], and another excellent survey is given in [19].
Let us state briefly the results that we will need.

Definition A. The Bernoulli variables X1, . . . , XN are said to be positively related
if for each i = 1, . . . , N there exists (X(i)

1 , . . . , X
(i)
N ), built on the same space as

(X1, . . . , XN ), such that

(i)
(
X

(i)
1 , . . . , X

(i)
N

)
∼ (X1, . . . , XN ) | Xi = 1.

(ii) For all j = 1, . . . N , X(i)
j > Xj .

Note that there are other equivalent definitions of positive relation (see e.g.
Lemma 4.27 in [19]). Finally, we will need the following classic theorem, which
appears, e.g., as Theorem 4.20 in [19].

Theorem A. Let X1, . . . , XN be positively related Bernoulli variables with
P(Xi = 1) = pi. Let W =

∑N
i=1Xi and λ = E(W ). Then,

dTV(W,Poisson(λ)) 6 min{1, λ−1}
(

Var(W )− λ+ 2
N∑
i=1

p2
i

)
.

2.6.1 Proof of the positive relation between the edges

It is intuitive that the variables indicating the presence of edges in our graph are pos-
itively related, because the only way through which these variables depend on each
other is through the fact that the edges share ancestors. Our proof is nevertheless
technical.
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Preliminary lemmas

In this section we isolate the proof of two useful results that are not tied to the
particular setting of our model.

Lemma 2.6.2. Let X = (X1, . . . , XN ) be a vector of Bernoulli variables. The
distribution of X is uniquely characterized by the quantities

E

(∏
i∈I

Xi

)
, I ⊂ {1, . . . , N}, I 6= O6

Proof. For all I ⊂ {1, . . . , N}, I 6= O6 , let

pI = E

(∏
i∈I

Xi

)
and qI = E

∏
i∈I

Xi

∏
j∈Ic

(1−Xj)


where the empty product is understood to be 1.

Clearly, the distribution of X is fully specified by (qI). Now observe that, by the
inclusion-exclusion principle,

qI =
∑
J⊃I

(−1)|J |−|I| pJ ,

which terminates the proof.

Lemma 2.6.3. Let X1, . . . , XN be independent random nondecreasing functions
from [0,+∞[ to {0, 1} such that

∀i ∈ {1, . . . , N}, inf{t > 0 : Xi(t) = 1} < +∞ almost surely.

Let T be a non-negative random variable that is independent of (X1, . . . , XN ). Then,
X1(T ), . . . , XN (T ) are positively related.

Proof. Pick i ∈ {1, . . . , N}. Now, let τi = inf{t > 0 : Xi(t) = 1}. Assume without
loss of generality that Xi is left-continuous, so that {Xi(T ) = 1} = {T > τi}. Next,
note that,

∀x, t > 0, P(T > x, T > t) > P(T > x)P(T > t) .

Integrating in t against the law of τi, we find that

∀x > 0, P(T > x | T > τi) > P(T > x) .

This shows that T is stochastically dominated by T (i), where T (i) has the law of
T conditioned on {T > τi}. As a result, there exists S, built on the same space
as X1, . . . , XN and independent of (Xj)j 6=i, such that S ∼ T (i) and S > T . For all
j 6= i, let X(i)

j = Xj(S). Since Xj is nondecreasing, X(i)
j > Xj(T ), and since (Xj)j 6=i

and (T, τi) are independent, (X(i)
j )j 6=i ∼ ((Xj(T ))j 6=i | Xi(T ) = 1). This shows that

X1(T ), . . . , XN (T ) are positively related.

Remark 2.6.4. Lemma 2.6.3 and its proof are easily adapted to the case where
X1, . . . , XN are nonincreasing and such that inf{t > 0 : Xi(t) = 0} < +∞ almost
surely. �
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Stein–Chen coupling

Proposition 2.6.5. For any n > 2 and r > 0, the random variables 1{i↔j} for
{ij} ∈ V (2), which indicate the presence of edges in Gn,r, are positively related.

Proof. We use the forward construction described in Section 2.2.3 and proceed by
induction. To keep the notation light, throughout the rest of the proof we index the
pairs of vertices of G?r(n) = ({1, . . . , n}, E?n) by the integers from 1 to N =

(n
2
)
and,

for i ∈ {1, . . . , N}, we let Xi = 1{i∈E?n}. We also make consistent use of bold letters
to denote vectors, i.e., given any family of random variables Z1, . . . , Zp, we write Z
for (Z1, . . . , Zp).

For n = 2, the family Xi for i ∈ {1, . . . , n} consists of a single variable X1, so it
is trivially positively related.

Now assume that X1, . . . , XN are positively related in G?r(n), i.e.

∀i 6 N, ∃Y(i) =
(
Y

(i)
1 , . . . , Y

(i)
N

)
such that

(i) Y(i) ∼ (X | Xi = 1) (2.3)

(ii) ∀k 6 N, Y (i)
k > Xk

Remember thatG?r(n+1) is obtained by (1) adding a vertex toG?r(n) (which, without
loss of generality, we label n + 1) and linking it to a uniformly chosen vertex un of
G?r(n) as well as to the neighbors of un; and (2) waiting for an exponential time T
with parameter

(n
2
)
while removing each edge at constant rate r.

Formally, ∀k 6 N + n, define the “mother” of k, Mk ∈ {1, . . . , N} ∪ {O6 }, by

• If k 6 N (i.e., if k is the label of {u, v}, with 1 6 u < v 6 n), then Mk = k.

• If k > N is the label of {v, n + 1}, with 1 6 v 6 n, then Mk = `, where ` is
the label of {un, v}.

• If k > N is the label of {un, n+ 1}, then Mk = O6 .

Letting X ′k = 1{k∈E?n+1}, we then have

X ′k =
{
Ak if Mk = O6
XMk

Ak otherwise

with Ak = 1{ek>T}, where we recall that T ∼ Exp(N) and, e1, . . . , eN+n are i.i.d.
exponential variables with parameter r that are also independent of everything else.

Note that the random functions Ãk : t 7→ 1{ek>t}, k ∈ {1, . . . N + n} are nonin-
creasing and such that inf{t > 0 : Ãk(t) = 0} < +∞ almost surely. By Lemma 2.6.3
(see also Remark 2.6.4), it follows that A1, . . . , AN+n are positively related.

We now pick any i 6
(n+1

2
)

= N + n and build a vector Y′(i) that has the same
law as (X′ | Xi = 1) and satisfies Y′(i) > X′.

Assume that Mi 6= O6 . In that case,

1. By the induction hypothesis, there exists Y(Mi) that satisfies (2.3).

2. Since by A1, . . . , AN+n are positively related, ∃B(i) ∼ (A | Ai = 1) such that
B(i) > A.
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Note that A, B(i), X and Y(Mi) are all built on the same space. Therefore, omitting
the (Mi) and (i) superscripts to keep the notation light, we can set Y ′i = 1 and, for
k 6= i,

Y ′k =
{
Bk if Mk = O6
YMk

Bk otherwise.

With this definition, ∀J ⊂ {1, . . . , N + n},

E

∏
j∈J

Y ′j

 = E

∏
j∈J̃

Yj

E
∏
j∈J

Bj

 ,
where J̃ = {Mj : j ∈ J,Mj 6= O6 }. By hypothesis,

E

∏
j∈J̃

Yj

 = E

∏
j∈J̃

Xj

∣∣∣∣∣∣∣XMi = 1

 = E
(
XMi

∏
j∈J̃

Xj

) /
E
(
XMi

)

Similarly,

E

∏
j∈J

Bj

 = E

Ai ∏
j∈J

Aj

/ E(Ai) .
As a result,

E

∏
j∈J

Y ′j

 =
E
(
XMi

∏
j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)
E(XMi)E(Ai)

=
E
(
XMiAi

∏
j∈J X

′
j

)
E(XMiAi)

= E

∏
j∈J

X ′j

∣∣∣∣∣∣X ′i = 1


By Lemma 2.6.2, this shows that Y′ ∼ (X′ | X ′i = 1).

If Mi = O6 , we can no longer choose Y(Mi). However, in that case, X ′i depends
only on Ai. Therefore, we set Y ′i = 1 and, for k 6= i,

Y ′k = XMk
Bk .

Remembering that X ′i = Ai, we then check that

E

∏
j∈J

Y ′j

 =
E
(∏

j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)
E(Ai)

= E

∏
j∈J

X ′j

∣∣∣∣∣∣X ′i = 1

 .
Finally, it is clear that, with both constructions of Y(i), Y′(i)k > X′k.
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2.6.2 Proof of Theorem 2.6.1
Applying Theorem A to |En| =

∑
{ij} 1{i↔j} and using the expressions in Table 2.1,

we get
dTV

(
|En|,Poisson(λn)

)
6 min

{
1, λ−1

n

}
Cn ,

with λn = n(n−1)
2(rn+1) and

Cn = n(n− 1)(n2rn + 2nr2
n + nrn − 2r2

n + 3rn + 9)
2 (2 rn + 3)(rn + 3)(rn + 1)2 .

When rn = ω(n),

Cn = Θ
(
n4

r3
n

+ n3

r2
n

)
.

Now, if rn > n(n−1)
2 − 1, so that min{1, λ−1

n } = 1, we see that Cn = Θ
(
n3/r2

n

)
. If

by contrast rn 6 n(n−1)
2 − 1 then λ−1

n Cn = Θ(n/rn). In both cases, min{1, λ−1
n }Cn

goes to zero as n→ +∞, proving the first part of Theorem 2.6.1.

The convergence of |En|−λn√
λn

to the standard normal distribution is a classic con-
sequence of the conjunction of dTV(|En|,Poisson(λn)) → 0 with λn → +∞. See,
e.g., [1], page 17, where this is recovered as a consequence of inequality (1.39).
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Appendices to Chapter 2

2.A Proofs of Propositions 2.2.4 and 2.2.6 and of Lemma 2.2.5

2.A.1 Proof of Propositions 2.2.4 and 2.2.6

Proposition 2.2.4. Let (Kt)t>0 be a Kingman coalescent on V = {1, . . . , n}, and
let πt(i) denote the block containing i in the corresponding partition at time t. Let
the associated genealogy of pairs be the set

G =
{(
t, {πt(i)πt(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T{ij}

[}
,

where T{ij} = inf{t > 0 : πt(i) = πt(j)}. Denote by

L{ij} =
{(
t, {πt(i)πt(j)}

)
: t ∈

[
0, T{ij}

[}
the lineage of {ij} in this genealogy. Finally, let P • be a Poisson point process with
constant intensity rn on G and let G = (V,E), where

E =
{
{ij} ∈ V (2) : P • ∩ L{ij} = O6

}
.

Then, G ∼ Gn,rn.

Proof. Let (at)t>0 and P ? be as in Proposition 2.2.3, and let

G? =
{(
t, {at(i) at(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T ?{ij}

[}
,

where T ?{ij} = inf{t > 0 : at(i) = at(j)}. Being essentially a finite union of intervals,
G? can be endowed with the Lebesgue measure.

As already suggested, conditional on (at)t>0, P ? can be seen as a Poisson point
process P ? with constant intensity rn on G?. More specifically,

P ? =
{(
t, {at(i) at(j)}

)
: {ij} ∈ V (2), t ∈ P ?{ij}

}
.

With this formalism, writing

L?{ij} =
{(
t, {at(i) at(j)}

)
: t ∈

[
0, T ?{ij}

[}
for the lineage of {ij} in this genealogy, we see that P ?{ij} is isomorphic to P ?∩L?{ij}.
In particular,

P ?{ij} = O6 ⇐⇒ P ? ∩ L?{ij} = O6 .

42



2.A. Proofs of Propositions 2.2.4 and 2.2.6 and of Lemma 2.2.5

Now let (π̄t)t>0 be defined by

∀i ∈ V, π̄t(i) = {j ∈ V : at(j) = at(i)} .

Then, ψ : (t, {at(i) at(j)}) 7→ (t, {π̄t(i) π̄t(j)}) is a measure-preserving bijection from
G? to ψ(G?). Therefore, ψ(P ?) is a Poisson point process with constant intensity
rn on ψ(G?). Since (π̄t)t>0 has the same law as (πt)t>0 from the proposition, we
conclude that (

ψ(G?), ψ(P ?)
)
∼ (G, P •)

which terminates the proof.

Proposition 2.2.6. For any r > 0, for any integer n > 2,

Φn(G?r(n)) ∼ Gn,r .

Proof. First, let us give a Poissonian construction of (G†r(t))t>0. The edge-removal
events can be recovered from a collection P † =

(
P †{ij}

)
{ij}∈V (2) of i.i.d. Poisson point

processes with rate r on R such that, if t ∈ P{ij} and there is an edge between i and
j in G†r(t−), it is removed at time t. The duplication events induce a genealogy on
the vertices of G?r(n) that is independent of P †. Using a backward-time notation,
let a†t(i) denote the ancestor of i at time (tn − t), i.e. t time-units before we reach
G?r(n). Observe that, by construction of G?r(n),

{ij} ∈ G?r(n) ⇐⇒
{
t > 0 : t ∈ P †

{a†t (i) a
†
t (j)}

}
= O6 .

Taking the relabeling of vertices into account, the genealogy on the vertices of
G?r(n) translates into a genealogy on the vertices of Φn(G?r(n)), where the ancestor
āt function is given by āt = Φn ◦ a†t ◦ Φ−1

n . To keep only the relevant information
about this genealogy, define

π̄t(i) = {j ∈ V : āt(j) = āt(i)}

and let
Ḡ =

{(
t, {π̄t(i) π̄t(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T{ij}

[}
,

where T{ij} = inf{t > 0 : π̄t(i) = π̄t(j)}. As before, let us denote by

L̄{ij} =
{(
t, {π̄t(i) π̄t(j)}

)
: t ∈

[
0, T{ij}

[}
the lineage of {ij} in this genealogy. Finally, define

P̄ =
{(
t, {π̄t(i) π̄t(j)}

)
: {ij} ∈ V (2), t ∈ P †

{a†t (Φ
−1
n (i)) a†t (Φ

−1
n (j))}

}
.

Then, conditional on Ḡ, P̄ is a Poisson point process with constant intensity rn on
Ḡ. Moreover,

{ij} ∈ Φn(G?r(n)) ⇐⇒ {Φ−1
n (i) Φ−1

n (j)} ∈ G?r(n)

⇐⇒
{
t > 0 : t ∈ P †

{a†t (Φ
−1
n (i)) a†t (Φ

−1
n (j))}

}
= O6

⇐⇒ P̄ ∩ L̄{ij} = O6 .
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2. The split-and-drift random graph

Therefore, by Proposition 2.2.4, to conclude the proof it is sufficient to show that
(π̄t)t>0 has the same law as the corresponding process for a Kingman coalescent.
By construction, the time to go from k to k − 1 blocks in (π̄t)t>0 is an exponential
variable with parameter

(k
2
)
and thus it only remains to prove that the tree encoded

by (π̄t)t>0 has the same topology as the Kingman coalescent tree. This follows
directly from the standard fact that the shape of a Yule tree with n tips labeled
uniformly at random with the integers from 1 to n is the same as that of the shape
of a Kingman n-coalescent tree – namely, the uniform law on the set of ranked tree
shapes with n tips labeled by {1, . . . , n} (see e.g. [13]).

Alternatively, we can finish the proof as follows: working in backward time,
for i = 1, . . . , n − 1, consider the i-th coalescence and let Ui denote the mother
in the corresponding duplication in the construction of G?r(n). Note that Ui ∼
Uniform({1, . . . , n− i}), and that the coalescing blocks are then the block that con-
tains Φn(Ui) and the block that contains Φn(n−i+1). Let us record the information
about the i first coalescences in the variable Λi defined by Λ0 = O6 and, for i > 1,

Λi =
(
Φn(n− k + 1), Φn(Uk)

)
k=1,...,i .

Thus, we have to show that, conditional on Λi−1, the block containing Φn(n− i+ 1)
and the block containing Φn(Ui) are uniformly chosen. We proceed by induction.
For i = 1, this is trivial. Now, for i > 1, observe that, conditional on Λi−1, the
restriction of Φn to

Ii = {1, . . . , n} \ {Φn(n), . . . ,Φn(n− i)}

is a uniform permutation on Ii. As a result, {Φn(n− i+ 1), Φn(Ui)} is a uniformly
chosen pair of elements of Ii (note that the fact that Ui is uniformly distributed on
{1, . . . , n− i} is not necessary for this, but is needed to ensure that the restriction
of Φn to Ii+1 remains uniform when conditioning on Λi in the next step of the
induction). Since each block contains exactly one element of Ii, this terminates the
proof.

2.A.2 Proof of Lemma 2.2.5

Lemma 2.2.5. Let S be a subset of V (2). Conditional on the measure M , for any
interval I ⊂ [0,+∞[ such that

(i) For all {ij} ∈ S, ∀t ∈ I, at(i) 6= at(j).

(ii) For all {k`} 6= {ij} in S, ∀t ∈ I, {at(i), at(j)} 6= {at(k), at(`)},

we have that (P ?{ij} ∩ I, {ij} ∈ S), are independent Poisson point processes with
rate rn on I. Moreover, for any disjoint intervals I and J , (P ?{ij} ∩ I, {ij} ∈ S) is
independent of (P ?{ij} ∩ J, {ij} ∈ S).

Proof. For all t > 0, define St by

St = {{at(i), at(j)} : {ij} ∈ S} .

Set t0 = inf I and let t1, . . . , tm−1 be the jump times of (St)t>0 on I, i.e.

tp = inf
{
t > tp−1 : St 6= Stp−1

}
, p = 1, . . . ,m− 1.

44



2.B. Proofs of Proposition 2.3.5 and Corollary 2.3.6

Finally, set tm = sup I and, for p = 0, . . . ,m − 1, let Ip = [tp, tp+1[ and ãp = atp ,
so that (ãp)p∈{0,...,m} is the embedded chain of (at)t∈I . With this notation, for all
{ij} ∈ S,

P ?{ij} ∩ I =
m−1⋃
p=0

(
P{ãp(i), ãp(j)} ∩ Ip

)
,

where for p 6= q, Ip ∩ Iq = O6 , and P{uv}, {uv} ∈ V (2), are i.i.d. Poisson point
processes on [0,+∞[ with rate rn. By assumption, for all p = 0, . . . ,m − 1, for all
{ij} 6= {k`} in S, ãp(i) 6= ãp(j), ãp(k) 6= ãp(`) and {ãp(i), ãp(j)} 6= {ãp(k), ãp(`)}.
This shows that (P{ãp(i),ãp(j)} ∩ Ip), {ij} ∈ S and p = 0, . . . ,m− 1, are i.i.d. Poisson
point processes with rate rn on the corresponding intervals, proving the first part of
the lemma.

The second assertion is proved similarly. Adapting the previous notation to work
with two disjoint intervals I and J , i.e. letting (ãIp)p∈{0,...,mI} be the embedded chain
of (at)t∈I and (ãJp )p∈{0,...,mJ} that of (at)t∈J , for all {ij} ∈ S we write

P ?{ij} ∩ I =
mI−1⋃
p=0

(
P{ãIp(i), ãIp(j)} ∩ Ip

)
,

and

P ?{ij} ∩ J =
mJ−1⋃
p=0

(
P{ãJp (i), ãJp (j)} ∩ Jp

)
.

We conclude the proof by noting that the families(
P{ãIp(i), ãIp(j)} ∩ Ip, {ij} ∈ S, p ∈ {0, . . . ,mI}

)
and (

P{ãJp (i), ãJp (j)} ∩ Jp, {ij} ∈ S, p ∈ {0, . . . ,mJ}
)

are independent, because the elements of these families are either deterministic (if,
e.g, ãIp(i) = ãIp(j), in which case P{ãIp(i), ãIp(j)} = O6 ) or Poisson point processes on
intervals that are disjoint from each of the intervals involved in the definition of the
other family.

2.B Proofs of Proposition 2.3.5 and Corollary 2.3.6
Proposition 2.3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 2.3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed vertices i
and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D(j)

n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
and

Var(|En|) = rn n (n− 1)(n2 + 2 r2
n + 2n rn + n+ 5 rn + 3)

2 (1 + rn)2 (3 + rn) (3 + 2 rn) .
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2. The split-and-drift random graph

2.B.1 Proof of Proposition 2.3.5
The proof of Proposition 2.3.5 parallels that of Proposition 2.3.3, but this time the
topology of the genealogy of the pairs of vertices has to be taken into account.
Indeed, define

St = {at(i), at(j), at(k), at(`)}
and let τ1 < τ2 < τ3 be the times of coalescence in the genealogy of {i, j, k, `}, i.e.

τp = inf{t > 0 : |St| = 4− p}, p = 1, 2, 3 .

Write I1 = [0, τ1[, I2 = [τ1, τ2[ and I3 = [τ2, τ3[. Finally, for m = 1, 2, let

A
(m)
{uv} = {aτm−(u) 6= aτm−(v)} ∩ {aτm(u) = aτm(v)}

be the event that the m-th coalescence in the genealogy of {i, j, k, `} involved the
lineages of u and v (note that the third coalescence is uniquely determined by the
first and the second, so we do not need A(3)

{uv}).

On A(1)
{ij} ∩A

(2)
{k`}, {i↔ j, k ↔ `} is equivalent to(

P ?{ij} ∩ I1
)
∪
(
P ?{k`} ∩ I1

)
∪
(
P ?{k`} ∩ I2

)
= O6

so that, conditionally on I1 and I2, by Lemma 2.2.5,

P
(
i↔ j, k ↔ `

∣∣∣A(1)
{ij} ∩A

(2)
{k`}

)
= P

(
(P ?{ij} ∪ P

?
{k`}) ∩ I1 = O6

)
× P

(
P ?{k`} ∩ I2 = O6

)
= 6

6 + 2 rn
× 3

3 + rn
.

By contrast, on A(1)
{ij} ∩A

(2)
{ik}, {i↔ j, k ↔ `} is(

P ?{ij} ∩ I1
)
∪
(
P ?{k`} ∩ I1

)
∪
(
P ?{k`} ∩ I2

)
∪
(
P ?{k`} ∩ I3

)
= O6

and thus

P
(
i↔ j, k ↔ `

∣∣∣A(1)
{ij} ∩A

(2)
{ik}

)
= 6

6 + 2 rn
× 3

3 + rn
× 1

1 + rn
.

Given a realization of the topology of the genealogy in the form A
(1)
{u1v1}∩A

(2)
{u2v2},

we can always express {i↔ j, k ↔ `} as a union of intersections of P ?{ij} and P
?
{k`}

with I1, I2 and I3. In total, there are
(4
2
)
×
(3
2
)

= 18 possible events A(1)
{u1v1}∩A

(2)
{u2v2},

each having probability 1/18. This enables us to compute P(i↔ j, k ↔ `), but in
fact the calculations can be simplified by exploiting symmetries, such as the fact
that {ij} and {k`} are interchangeable. In the end, it suffices to consider four cases,
as depicted in Figure 2.6.

Putting the pieces together, we find that

P(i↔ k, j ↔ `) = 6
9 ×

1
1 + rn

× 3
3 + 2r ×

6
6 + 2 rn

+ 2
9 ×

1
1 + rn

× 3
3 + rn

× 6
6 + 2 rn

+ 1
9 ×

3
3 + rn

× 6
6 + 2 rn

= 9 + 2 rn
(1 + rn)(3 + rn)(3 + 2 rn) .
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2.B. Proofs of Proposition 2.3.5 and Corollary 2.3.6

and Proposition 2.3.5 follows, since

P(i↔ j)P(k ↔ `) =
( 1

1 + rn

)2
.

Figure 2.6: The four cases that we consider to compute P(i↔ j, k ↔ `). Top, the “aggregated”
genealogies of vertices and their probability. Each of these correspond to several genealogies on
{i, j, k, `}, which are obtained by labeling symbols in such a way that a pair of matching symbols has
to correspond to either {ij} or {k`}. For instance, C = (A(1)

{ij}∩A
(2)
{k`})∪(A(1)

{k`}∩A
(2)
{ij}) and therefore

P(C) = 2/18. Similarly, A = (A(1)
{ij}∩A

(2)
{ik})∪ (A(1)

{ij}∩A
(2)
{i`})∪ (A(1)

{k`}∩A
(2)
{ik})∪ (A(1)

{k`}∩A
(2)
{jk}) and

P(A) = 4/18, etc. Bottom, the associated genealogy of the pairs and the corresponding conditional
probability of {i↔ j, k ↔ `} ⇔ {�↔ �,•↔ •}.

2.B.2 Proof of Corollary 2.3.6
Corollary 2.3.6 is proved by standard calculations. First,

Cov
(
D(i)
n , D(j)

n

)
= Cov

∑
k 6=i
1{i↔k},

∑
`6=j
1{j↔`}


= Var

(
1{i↔j}

)
+ 3(n− 2) Cov

(
1{i↔k},1{j↔k}

)
+ (n− 2)(n− 3) Cov

(
1{i↔k},1{j↔`}

)
Remembering from Proposition 2.3.1 that Var(1{i↔j}) = rn/(1 + rn)2 and from
Proposition 2.3.3 that Cov(1{i↔k},1{j↔k}) = rn

(1+rn)2(3+2 rn , and using Proposi-
tion 2.3.5, we find that

Cov
(
D(i)
n , D(j)

n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
.
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2. The split-and-drift random graph

Finally, to compute Var(|En|), we could do a similar calculation. However, it is
easier to note that

|En| =
1
2

n∑
i=1

D(i)
n .

As a result,

Var(|En|) = 1
4
(
nVar

(
D(i)
n

)
+ n(n− 1) Cov

(
D(i)
n , D(j)

n

))
= rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2(1 + rn)2(3 + rn)(3 + 2 rn) .

2.C Proof of Theorem 2.4.2
In this section, we prove Theorem 2.4.2.

Theorem 2.4.2 (convergence of the rescaled degree).

(i) If rn → r > 0, then Dn
n converges in distribution to a Beta(2, 2 r) random

variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

First, note that the proof of (iii) is immediate: indeed, by Theorem 2.4.1,

P(Dn + 1 = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) k

k−1∏
i=1

n− i
n− i+ 2 rn − 1 .

If 2 rn/n→ ρ, then for any fixed k this goes to k
(

ρ
1+ρ

)2( 1
1+ρ

)k−1
as n→ +∞.

Let us now focus on the proof of (i) and (ii).

2.C.1 Outline of the proof

To prove (i) and (ii), we show the pointwise convergence of the cumulative distribu-
tion function Fn of the rescaled degree. To do so, in both cases,

1. We show that, for any ε > 0, for n large enough,

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx

for some function fn to be introduced later.

2. We identify the limit of fn as a classical probability density f , and use domi-
nated convergence to conclude that

∀y > 0,
∫ y

0
fn(x) dx→

∫ y

0
f(x) dx .
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2.C. Proof of Theorem 2.4.2

In order to factorize as much of the reasoning as possible, we introduce the
rescaling factor Nn:

• When rn → r, i.e. when we want to prove (i), Nn = n.

• When rn is both ω(1) and o(n), i.e. when we want to prove (ii), Nn = n/rn.

Thus, in both cases the rescaled degree is Dn/Nn and its cumulative distribution
function is

Fn(y) =
bNnyc∑
k=0

P(Dn = k) .

2.C.2 Step 1

For all x > 0, let
fn(x) = NnP(Dn = bNnxc),

so that

∀k ∈ N, P(Dn = k) =
∫ (k+1)/Nn

k/Nn
fn(x) dx .

If follows that

Fn(y) =
∫ (bNnyc+1)/Nn

0
fn(x) dx .

Finally, since y 6 bNnyc+1
Nn

6 y + 1
Nn

and fn is non-negative, for any ε > 0, for n
large enough,

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx ,

and the rank after which these inequalities hold is uniform in y, because the conver-
gence of (bNnyc+ 1)/Nn to y is.

2.C.3 Step 2

To identify the limit of fn, we reexpress it in terms of the gamma function. Using
that Γ(z) = zΓ(z), by induction,

k∏
i=1

(n− i) = Γ(n)
Γ(n− k) and

k∏
i=1

(n− i+ 2 rn − 1) = Γ(n+ 2 rn − 1)
Γ(n− k + 2 rn − 1) .

Therefore, fn(x) can also be written

fn(x) = Nn 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)

(
bNnxc+ 1

)
× Pn(x) , (2.4)

where

Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)
Γ(n− bNnxc) Γ(n+ 2 rn − 1) . (2.5)

We now turn to the specificities of the proofs of (i) and (ii).
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2. The split-and-drift random graph

Proof of (i)

In this subsection, rn → r > 0 and Nn = n.

Limit of fn Recall that

∀α ∈ R, Γ(n+ α)
Γ(n) ∼ nα .

Using this in (2.5), we see that, for all x ∈ [0, 1[,

Pn(x)→ (1− x)2r−1 .

Therefore, for all x ∈ [0, 1[,

fn(x)→ 2r(2r + 1)x (1− x)2r−1 .

Noting that 2r(2r + 1) = 1/B(2, 2r), where B denotes the beta function, we can
write f = limn fn as

f : x 7→ x(1− x)2r−1

B(2, 2r) 1[0,1[(x)

and we recognize the probability density function of the Beta(2, 2r) distribution.

Domination of (fn) First note that, for all x ∈ [0, 1[,

1
n− 1 + 2 rn

bnxc∏
i=1

n− i
n− i+ 2 rn − 1 = 1

n− bnxc+ 2 rn − 1

bnxc∏
i=1

n− i
n− i+ 2 rn

,

where the empty product is understood to be 1. Since 2 rn > 0, this enables us to
write that, for all x ∈ [0, 1[,

fn(x) = n 2r (2r + 1)
n+ 2r︸ ︷︷ ︸
6(2r+1)2

× bnxc+ 1
n− 1 + 2r ×

1
n− bnxc+ 2r − 1︸ ︷︷ ︸

6 1
2r

×
bnxc∏
i=1

n− i
n− i+ 2r︸ ︷︷ ︸
61

.

where, to avoid cluttering the expression, the n index of rn has been dropped. Since

bnxc+ 1
n− 1 + 2 rn

6
(n− 1)x+ x+ 1

n− 1 6 x+ 2
n− 1

uniformly−−−−−−−→
n→+∞

x ,

there exists c such that, for all x ∈ [0, 1[ and n large enough,

fn(x) 6 c x

Since fn is zero outside of [0, 1[, this shows that (fn) is dominated by g : x 7→
c x1[0,1[(x).

Proof of (ii)

In this subsection, rn is both ω(1) and o(n), and Nn = n/rn. For brevity, we will
write kn for bnx/rnc. It should be noted that

• kn is both ω(1) and o(n).

• knrn/n→ x uniformly in x on [0,+∞[.
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2.C. Proof of Theorem 2.4.2

Limit of fn In this paragraph, we will need Stirling’s formula for the asymptotics
of Γ:

Γ(t+ 1) ∼
√

2πt t
t

et
.

Using this in Equation (2.5),

Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)
Γ(n− bNnxc) Γ(n+ 2 rn − 1)

∼
√

(n− 1)(n− 2− kn + 2 rn)
(n− 1− kn)(n− 2 + 2 rn)︸ ︷︷ ︸

∼1

× e
n−1−kn en−2+2rn

en−1 en−2−kn+2rn︸ ︷︷ ︸
=1

×Qn

where
Qn = (n− 1)n−1 (n− 2− kn + 2 rn)n−2−kn+2rn

(n− 1− kn)n−1−kn (n− 2 + 2 rn)n−2+2rn .

Let us show that Qn → e−2x:

logQn = (n− 1) log(n− 1)
+ (n− a+ b) log(n− a+ b)
− (n− a) log(n− a)
− (n− 1 + b) log(n− 1 + b)

where, to avoid cluttering the text, we have written a for kn + 1 and b for 2 rn − 1.
Factorizing, we get

logQn = n log
((n− 1)(n− a+ b)

(n− a)(n− 1 + b)

)
−a log

(
n− a+ b

n− a

)
+b log

(
n− a+ b

n− 1 + b

)
−log

(
n− 1

n− 1 + b

)
.

Now,
(n− 1)(n− a+ b)
(n− a)(n− 1 + b) = 1 + (a− 1)b

n2 − n+ nb− na+ a− ab︸ ︷︷ ︸
∼ 2knrn

n2 = o(1)

so that
n log

((n− 1)(n− a+ b)
(n− a)(n− 1 + b)

)
∼ 2knrn

n
→ 2x

Similarly,

−a log
(
n− a+ b

n− a

)
= −a log

(
1 + b

n− a

)
∼ −ab

n
→ −2x

b log
(
n− a+ b

n− 1 + b

)
= b log

(
1 + 1− a

n− 1 + b

)
∼ −ab

n
→ −2x

and, finally, − log
(

n−1
n−1+b

)
→ 0. Putting the pieces together,

logQn → −2x .

Having done that, we note that

2n(2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)(kn + 1) → 4x .
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2. The split-and-drift random graph

Plugging these results in Equation (2.4), we see that

∀x ∈ R, fn(x) → 4x e−2x 1[0,+∞[(x)

and we recognize the probability density function of a size-biased exponential dis-
tribution with parameter 2.

Domination of (fn) Recall that, since Nn = n/rn, for all x ∈ [0, 1[,

fn(x) = 2n (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (kn + 1)

kn∏
i=1

n− i
n− i+ 2 rn − 1 .

Next, note that, for all i,

n− i
n− i+ 2 rn − 1 = 1− 2 rn − 1

n− i+ 2 rn − 1 6 exp
(
− 2 rn − 1
n− i+ 2 rn − 1

)
so that

kn∏
i=1

n− i
n− i+ 2 rn − 1 6 exp

− kn∑
i=1

2 rn − 1
n− i+ 2 rn − 1

 ,

with
kn∑
i=1

2 rn − 1
n− i+ 2 rn − 1 > kn

2 rn − 1
n− 1 + 2 rn − 1 .

Because rn = ω(1), for all ε > 0, 2 rn− 1 > (1− ε)2 rn for n large enough. Similarly,
since rn = o(n), 1

n+2 rn >
1

(1+ε)n . As a result, there exists c > 0 such that

kn
2 rn − 1

n− 1 + 2 rn − 1 > c kn
2 rn
n

uniformly−−−−−−→ 2cx .

We conclude that

∀x > 0,
kn∏
i=1

n− i
n− i+ 2 rn − 1 6 exp(−2cx)

for n large enough. Finally,

2× n

n+ 2 rn︸ ︷︷ ︸
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× (2 rn + 1)(kn + 1)
(n− 1 + 2 rn)︸ ︷︷ ︸
→2x, uniformly

6 4cx

and so (fn) is dominated by g : x 7→ 4c x e−2cx 1[0,+∞[(x).
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3. The Moran forest

The model presented in this chapter arose in two very different contexts: the first
one was when talking with Guilhem Doulcier about the phenomenon of snowflake
yeasts, where a daughter cell remains glued to its mother after mitosis [18]. The
Moran forest provides a very natural way to model this situation, but because none
of us had any real incentive to start a project on snowflake yeasts, we did not go
any further than running a few simulations.

The second occasion in which this model came up was when Amaury Lambert,
Félix Foutel-Rodier and I tried to think of a dynamic, forward-in-time model of
population structure that would make it possible to track the movements of genes
backwards in time. Even though the Moran forest turned out to be of no use for
this, it was a very natural candidate so Félix and I started thinking about it. After
realizing that the forward-in-time version of the coalescent construction of the model
was so simple and elegant, we decided to start working on it and were quickly joined
by Jean-Jil Duchamps.

So what exactly is the Moran forest? According to the Internet1,

The Moran Forest is a thick forest filled with magic that no
human could pass easily [...]. It has even come to be called by
humans as the “Forest of Illusion” due to its magical nature.

While I would agree that there is some magic in this forest, I am clearly biased in
that regard and the paragraph above seems a bit excessive. In particular, it is hard
to argue that it is “thick” when it mostly consists of very small trees, the largest of
which is of size ∝ logn.

Publication: This chapter has been submitted for publication in Random Struc-
tures and Algorithms under the title “The Moran forest”.
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3.1. Introduction

3.1 Introduction

3.1.1 The model

Consider a Markov chain on the space of graphs on {1, . . . , n} whose transition
probabilities are defined as follows: at each time-step,

1. Choose an ordered pair of distinct vertices (u, v) uniformly at random.

2. Disconnect v from all of its neighbors, then connect it to u.

Note that if u is the only neighbor of v at time t, then the graph is unchanged
at time t + 1. A simple example illustrating the dynamics of this Markov chain is
depicted in Figure 3.1.

Figure 3.1: Example of four successive transitions of the Markov chain. Starting from the left-most
graph, transitions are represented by dashed arrows decorated with the pair (u, v) which is chosen
uniformly at each step.

This Markov chain has a stationary distribution whose support is the set of
non-empty forests on {1, . . . , n}. Indeed,

• The graph cannot be empty because there is always an edge between the two
vertices involved in the last transition.

• Starting from any graph, the chain will eventually reach a forest (for instance,
the sequence of transitions (1, 2), (1, 3), . . . , (1, n) will at some point turn the
graph into the star graph centered on vertex 1).

• The chain cannot leave the set of non-empty forests because its transitions
cannot create cycles.

• Any non-empty forest is accessible from any other graph (if not clear, this will
become apparent in Section 3.2).

• The chain is aperiodic because it can stay in the same state.

The stationary distribution of this chain is the random forest model that we
study in this paper. We denote it by Fn and call it the Moran forest, in reference
to the Moran model of population genetics, where at each time step two distinct
individuals are sampled uniformly at random, and the second one is replaced by a
copy of the first [17, 9, 11].

3.1.2 Main results

Our first result, which we detail in Section 3.2, is that there is a simple way to
sample Fn. This construction enables us to study several of its statistics, such
as its number of trees (Section 3.3.1), its degree distribution (Section 3.4.1), and
the typical size of its trees (Section 3.5.2). Some of these results are presented in
Table 3.1.
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3. The Moran forest

Notation Variable Distribution

Nn Number of trees
n∑
`=1

I`, where I` ∼ Ber
(

`
n−1

)
D Asymptotic degree Ber(1− U) + Poisson(U),

distribution where U ∼ Unif([0, 1])

TU Asymptotic size of Geometric(e−X),
a uniform tree where X ∼ 2xdx on [0, 1]

Table 3.1: Some statistics of the Moran forest, for fixed n in the case of the
number of trees, and as n→∞ for the degree and the size of a uniform tree.
Note that the degree also has a simple, explicit distribution for fixed n (see
Proposition 3.4.1). The Bernoulli variables I` used to describe the distribution
of Nn are independent and, conditional on U , so are the Bernoulli and Poisson
variables used for the distribution of D.

In Section 3.3.2, we show that the Moran forest is closely linked to uniform
rooted labeled trees. Specifically, we prove the following theorem.

Theorem 3.3.4. Let T be a uniform rooted tree on {1, . . . , n− 1}. From this tree,
build a forest F on {1, . . . , n} according to the following procedure:

1. Remove all decreasing edges from T (that is, edges ~uv pointing away from the
root such that u > v).

2. Add a vertex labeled n and connect it to a uniformly chosen vertex of T

3. Relabel vertices according to a uniform permutation of {1, . . . , n}.

Then, the resulting forest F has the law of the Moran forest Fn.

Finally, we study the asymptotic concentration of the largest degree and of the
size of the largest tree of Fn. The following theorems are proved in Sections 3.4.2
and 3.5.3, respectively.

Theorem 3.4.5. Let Dmax
n denote the largest degree of Fn. Then,

Dmax
n = logn

log logn +
(
1 + op(1)

) logn log log logn
(log logn)2 ,

where op(1) denotes a sequence of random variables that goes to 0 in probability.

Theorem 3.5.8. Let Tmax
n denote the size of the largest tree of Fn. Then,

Tmax
n = α

(
logn− (1 + op(1)) log logn

)
,

where α = (1− log(e− 1))−1 ≈ 2.18019.
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3.2. Sampling of the stationary distribution

3.2 Sampling of the stationary distribution

3.2.1 Backward construction
Consider an i.i.d. sequence ((Vt,Wt), t ∈ Z), where (Vt,Wt) is uniformly distributed
on the set of ordered pairs of distinct elements of {1, . . . , n}. These variables are
meant to encode the transitions of the chain: Wt represents the vertex that is discon-
nected at step t, and Vt the vertex to which Wt is then connected. We now explain
how to construct a chain (Fn(t), t ∈ Z) of forests from the sequence ((Vt,Wt), t ∈ Z),
by looking at it backwards in time.

Fix a focal time t ∈ Z. For each vertex v, let us denote by

τt(v) := max{s 6 t : Ws = v}

the last time before t when v was chosen to be disconnected, and define

mt(v) := Vτt(v)

to be the vertex to which it was then reconnected. We refer to the time τt(v) as
the birth time of v, and to the vertex mt(v) as its mother. Note that the variables
(τ(v), 1 6 v 6 n) are independent of (m(v), 1 6 v 6 n).

Now, for each s 6 t, let the vertices be in one of two states, active or inactive, as
follows: vertex v is active at times s such that τt(v) 6 s 6 t, and inactive at times
s < τt(v). Finally, let Fn(t) be the forest obtained by connecting each vertex v to
its mother if the mother is active at the time of birth of v, that is,

v is connected to mt(v) ⇐⇒ τt(mt(v)) < τt(v).

This procedure is illustrated in Figure 3.2.

Figure 3.2: Illustration of the backward construction. Each vertex corresponds to a vertical line.
A pair (Vt,Wt) is represented by an arrow Vt → Wt. The line representing a vertex is solid black
when that vertex is active, and dashed grey when it is inactive. Arrows pointing to inactive vertices
are represented in dashed grey because they have no impact on the state of the graph at the focal
time: their effect has been erased by subsequent arrows.

Let us show that the chain (Fn(t), t ∈ Z) has the same transitions as the chain
described in the introduction. First, note that for v 6= Wt we have τt(v) = τt−1(v),
and thus mt(v) = mt−1(v). As a result, edges that do not involve Wt are the same
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3. The Moran forest

in Fn(t) and in Fn(t−1). Now, τt(Wt) = t, so thatWt is always inactive as a mother
in the construction of Fn(t), and mt(Wt) = Vt with τt(Vt) < t, so that Wt is linked
to Vt in Fn(t). In other words, Fn(t) is obtained from Fn(t−1) by disconnecting Wt

from its neighbors, and then connecting it to Vt. This corresponds to the transitions
of the chain described in the introduction.

Finally, (Fn(t), t ∈ Z) is stationary by construction, and thus Fn(t) is distributed
as the Moran forest for all time t ∈ Z.

3.2.2 Uniform attachment construction

We now give a forward-in-time variant of the construction described in the previous
section. This forward-in-time procedure, which we call the uniform attachment
construction (UA construction for short), is our main tool to study Fn and will be
used throughout the rest of the paper.

Let (Un(`), 1 6 ` 6 n) be a vector of independent variables such that Un(`)
is uniformly distributed on {1, . . . , n} \ {`}. Consider the forest F∗n on {1, . . . , n}
obtained by setting

k is connected to `, with k < ` ⇐⇒ Un(`) = k.

We will show that, after relabeling the vertices of F∗n according to a uniform per-
mutation of {1, . . . , n}, we obtain the Moran forest. Before this let us make a few
remarks.

First, it will be helpful to think of the construction of F∗n as a sequential process
where, starting from a single vertex labeled 1, for ` = 2, . . . , n we add a new vertex
labeled ` and connect it to Un(`) if Un(`) < `. See Figure 3.3. This will make the
link with some well-known stochastic processes more intuitive. This also explains
that we speak of the `-th vertex in the UA construction to refer to vertex ` in F∗n .

Figure 3.3: Illustration of the uniform attachment construction for n = 7 and the vector
(Un(1), . . . , Un(n)) = (5, 4, 2, 1, 2, 7, 2). The `-th vertical line from the left corresponds to ver-
tex σ(`) (i.e, in the sequential vision, to the `-th vertex that is added). Un(`) is represented by the
arrow pointing from the Un(`)-th line to the `-th one at time `. Compare this with Figure 3.2: the
vertical lines corresponding to the vertices have been reordered in increasing order of their birth
time, and the grey arrow that left no trace on the graph at the focal time has been removed.

Second, the edges of F∗n are by construction increasing, in the sense that if we
root every tree of F∗n by letting the root of a tree be its smallest vertex, then each
edge ~uv pointing away from the root of its tree is such that u < v.
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3.2. Sampling of the stationary distribution

Rooted trees that have only increasing edges are known as recursive trees [8],
and forests of recursive trees have been called recursive forests [4]. Recursive trees
have been studied extensively [5, 16, 15]. In particular, the uniform attachment tree,
which corresponds to the uniform distribution over the set of recursive trees, has
received much attention, see [8] for an overview. However, the random forest F∗n
does not seem to correspond to any previously studied model of random recursive
forest (in particular, it is not uniformly distributed over the set of recursive forests).

Proposition 3.2.1. The random forest obtained by relabeling the vertices of F∗n
according to a uniform permutation of {1, . . . , n} is distributed as the Moran forest.

Proof. Consider the forest Fn(0) built from the variables ((Vt,Wt), t ∈ Z) in the
previous section. To ease notation, we will omit the subscript in τ0 and m0.

Let us relabel the vertices in increasing order of their birth time: since the
variables (τ(v), 1 6 v 6 n) are all distinct, there exists a unique permutation σ of
{1, . . . , n} such that

τ(σ(1)) < · · · < τ(σ(n)).

In words, σ(`) is the `-th vertex that was born in the construction of Fn(0). Using
the new labeling, let us denote its birth time by τ∗(`) = τ(σ(`)) and its mother by
m∗(`) = σ−1(m(σ(`))).

Now, for every vertex v = σ(`),

v is connected to m(v) in Fn(0) ⇐⇒ τ(m(v)) < τ(v)
⇐⇒ τ∗(m∗(`)) < τ∗(`)
⇐⇒ m∗(`) < ` .

Thus, if we set Un(`) = m∗(`) in the construction of F∗n then ` is connected to m∗(`)
if and only if v = σ(`) is connected to m(v) = σ(m∗(`)) in Fn(0). Therefore, to
finish the proof we have to show that:

(i) The variables (m∗(`), 1 6 ` 6 n) are independent and such that m∗(`) is
uniformly distributed on {1, . . . , n} \ {`}.

(ii) The permutation σ is uniform and independent of (m∗(`), 1 6 ` 6 n).

First, note that by construction the variables (m(v), 1 6 v 6 n) clearly sat-
isfy the analog of the first point above, i.e. that those variables are independent
and that for each v, m(v) is uniformly distributed on {1, . . . , n} \ {v}. Since the
permutation σ depends only on the variables (τ(v), 1 6 v 6 n), which are inde-
pendent of (m(v), 1 6 v 6 n), we see that σ is independent of (m(v), 1 6 v 6 n).
Moreover, the variables (τ(v), 1 6 v 6 n) are exchangeable so the permutation
σ is uniform. Now, for any fixed permutation π of {1, . . . n} and any fixed map
f : {1, . . . , n} → {1, . . . , n} such that f(`) 6= ` for all `,

P(σ = π, m∗ = f) = P
(
σ = π, m = π ◦ f ◦ π−1

)
= 1

n!
1

(n− 1)n ,

concluding the proof.
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3. The Moran forest

3.3 Number of trees

3.3.1 Law of the number of trees

In the UA construction, let I` = 1{Un(`)<`} be the indicator variable of the event
“the `-th vertex was linked to a previously added vertex”. The variables (I1, . . . , In)
are thus independent Bernoulli variables such that

I` ∼ Bernoulli
(
`−1
n−1

)
.

With this notation, the number of edges |En| and the number of trees Nn are

|En| =
n∑
`=1

I` and Nn =
n∑
`=1

(1− I`) .

Moreover, since I`
d= 1− In−`+1, we see that

P(Nn = k) = P(Nn = n− k) = P(|En| = k) ,

that is, the number of trees and the number of edges have the same, symmetric
distribution. In consequence, from now on we only use the notation Nn and refer to
it as the number of trees of Fn when stating our results—even though we sometimes
work with the number of edges in the proofs.

From the representation of Nn as a sum of independent Bernoulli variables, we
immediately get the following result.

Proposition 3.3.1. Let Nn denote the number of trees of Fn.

(i) E(Nn) = n

2

(ii) Var(Nn) = n(n− 2)
6(n− 1) .

(iii) GNn(z) := E
(
zNn

)
=

n−1∏
k=1

(
1 + k

n−1(z − 1)
)
.

The representation of Nn as a sum of independent Bernoulli variables also makes
it straightforward to get the following central limit theorem.

Proposition 3.3.2. Let Nn denote the number of trees of Fn. Then,

Nn − n/2√
n/6

d−−−−→
n→∞

N (0, 1) .

Proof. This is an immediate consequence of the Lyapunov CLT for triangular arrays
of independent random variables. Indeed, E

(
|I` − E(I`)|3

)
6 1. Therefore,

1
n3/2

n∑
`=1
E
(
|I` − E(I`)|3

)
6

1√
n
−−−−→
n→∞

0 ,

and the result follows, e.g., from Corollary 11.1.4 in [3].
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3.3. Number of trees

3.3.2 Link with uniform labeled trees
As announced in the introduction, there is a strong connection between the Moran
forest and uniform labeled trees. Our starting point is the following observation
about the probability generating function of Nn. First,

∑
k>0

P(Nn = k) zk =
n−1∏
k=1

(
1 + k

n−1(z − 1)
)

= z

(n− 1)n−2

n−2∏
k=1

(
n− 1− k + kz

)

=
n−2∑
k=0

a(n− 1, k)
(n− 1)n−2 z

k+1,

where
n−2∑
k=0

a(n− 1, k) zk =
n−2∏
k=1

(
n− 1− k + kz

)
.

Second, the coefficients of this polynomial have a simple combinatorial interpreta-
tion: a(n − 1, k) is the number of rooted trees on {1, . . . , n− 1} with k increasing
edges, where an edge ~uv pointing away from the root is said to be increasing if
u < v. This fact is known in the literature as a consequence of the more general
Theorem 1.1 of [10] (see also Example 1.7.2 in [7] and Theorem 9.1 in [12]).

This simple observation already gives us the following proposition.

Proposition 3.3.3. The probability mass function of the number of trees of Fn is

P(Nn = k) = a(n− 1, k − 1)
(n− 1)n−2 ,

where a(n, k) is the number of rooted trees on {1, . . . n} with k increasing edges
(sequence A067948 of the On-Line Encyclopedia of Integer Sequences [1]).

Looking for a bijective proof of Proposition 3.3.3 naturally leads to the following
more general result about the link between the Moran forest and uniform rooted
labeled trees.

Theorem 3.3.4. Let T be a uniform rooted tree on {1, . . . , n− 1}. From this tree,
build a forest F on {1, . . . , n} according to the following procedure:

1. Remove all decreasing edges from T (that is, edges ~uv pointing away from the
root such that u > v).

2. Add a vertex labeled n and connect it to a uniformly chosen vertex of T

3. Relabel vertices according to a uniform permutation of {1, . . . , n}.

Then, the resulting forest F has the law of the Moran forest Fn.

Proof. In the UA construction, let F n−1 denote the forest obtained after the ad-
dition of n − 1 vertices, before their relabeling. After this, the n-th vertex will be
linked to a uniformly chosen vertex of F n−1. As a result, to prove the theorem
it suffices to show that F n−1 has the same law as the forest obtained from T by
removing its decreasing edges.
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3. The Moran forest

To do so, we couple F n−1 and T in such a way that the edges of F n−1 are
exactly the increasing edges of T . Formally, F n−1 is a deterministic function of the
random vector U = (Un(2), . . . , Un(n− 1)). Moreover, U is uniform on the set

S?
n−1 =

{
u ∈ {1, . . . , n}{2,...,n−1} : u` 6= `

}
.

Thus, to end the proof it is sufficient to find a bijection Φ from S?
n−1 to the set of

rooted trees on {1, . . . , n− 1} and such that

k` ∈ F n−1(u) ⇐⇒ k` is an increasing edge of Φ(u) .

First, let
Sn−1 = {1, . . . , n− 1}{2,...,n−1}

and consider the bijection Θ : S?
n−1 → Sn−1 defined by

Θu : ` 7→ u` − 1{u`>`} .

Importantly, note that Θ does not modify the entries of u that correspond to edges
of F n−1(u), that is, for all k < `,

k` ∈ F n−1(u) ⇐⇒ u` = k ⇐⇒ (Θu)(`) = k .

As a result, it remains to find a bijection Ψ from Sn−1 to the set of rooted trees on
{1, . . . , n− 1} such that

u` < ` ⇐⇒ u` and ` are linked by an increasing edge in Ψ(u) .

This bijection will essentially be that used in [10], which can itself be seen as a
variant of Joyal’s bijection [14, 2].

Let Gu be the directed graph on {1, . . . , n− 1} obtained by putting a directed
edge going from u` to ` for all ` > 2.

If Gu has no cycle or self-loop, then it is a tree. Moreover, the orientation of its
edges uniquely identify vertex 1 as its root. Thus we set Ψ(u) = Gu.

If Gu is not a tree, set C0 = {1} and let C1, . . . , Ck denote the cycles of Gu,
taken in increasing order of their largest element and treating self-loops as cycles of
length 1. Note that because each vertex has exactly one incoming edge, except for
vertex 1 which has none, these cycles are vertex-disjoint and directed.

To turn Gu into a tree, set s0 = 1 and for i > 1 let mi denote the largest element
of Ci and ~misi its out-going edge in Ci. With this notation, for i = 1, . . . , k remove
the edge ~misi from Gu and replace it by ~misi−1. Note that

• This turns C0 t · · · t Ck into a directed path P going from sk to 1.

• Because mi = max Ci and that 1 < m1 < · · · < mk, every edge ~misi was
non-increasing and has been replaced by the decreasing edge ~misi−1.

Therefore, this procedure turns Gu into a tree Ψ(u) rooted in sk, without modifying
its increasing edges. Consequently, the increasing edges of Ψ(u) are exactly the pairs
k` for which k = u` < `.

To see that Ψ is a bijection, it suffices to note that the cycles C0, . . . , Cm can be
recovered unambiguously from the path P going from the root to vertex 1. Indeed,
writing this path as the word 1m1 · · · s1m2 · · · sk, the mi are exactly the left-to-right
maxima of that word.

Setting Φ = Ψ◦Θ thus gives us the bijection that we were looking for, concluding
the proof.
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Figure 3.4: Example of construction of Φ(u), for u = (7, 8, 1, 13, 11, 6, 7, 7, 9, 12, 5). Applying Θ
yields u′ = Θu = (6, 7, 1, 12, 10, 6, 7, 7, 9, 11, 5). The directed graph Gu′ encoding u′ is represented
on top. Its cycles are C1 = (10, 6, 7, 9), C2 = (11) and C3 = (12, 5), and we set C0 = (1). The edges
~misi are dashed. Rewiring them as described in the main text turns Gu′ into the rooted tree Ψ(u′)

represented on bottom. No information is lost when turning the cycles (1)(10, 6, 7, 9)(11)(12, 5) into
the path going from 5 to 1 encoded by the word (1, 10, 6, 7, 9, 11, 12, 5), because the left-to-right
maxima of that word—here 1, 10, 11 and 12—each mark the start of a new cycle.

3.4 Degrees

3.4.1 Degree of a fixed vertex

Using the UA construction and the notation from Section 3.2.2, let us denote by

• I` = 1{Un(`)<`} the indicator variable of the event “the `-th vertex is linked to
a previously added vertex”.

• X(v)
` = 1{Un(`)=σ−1(v)} the indicator variable of the event “the `-th vertex is

linked to vertex v”.

• Bv = σ−1(v) the step of the construction at which vertex v is added.

With this notation, the degree of vertex v is

D(v)
n = IBv +

n∑
`=Bv+1

X
(v)
` .

Moreover, conditional on {Bv = b}, (X(v)
b+1, . . . , X

(v)
n ) are i.i.d. Bernoulli variables

with parameter 1/(n− 1) and Ib is a Bernoulli variable with parameter b−1
n−1 that is

independent of (X(v)
b+1, . . . , X

(v)
n ). As a result, conditional on Bv and writing Lv for

n−Bv,
D(v)
n

d= Ber
(
1− Lv

n−1

)
+ Bin

(
Lv,

1
n−1

)
,

where the Bernoulli and the binomial variables are independent conditional on Lv.
Using that Lv is uniformly distributed on {0, . . . , n− 1}, the mean, variance and
probability generating function of D(v)

n are obtained by routine calculations.
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Proposition 3.4.1. Let Dn be the degree of a fixed vertex of Fn. Then,

(i) E(Dn) = 1.

(ii) Var(Dn) = 2(n− 2)
3(n− 1) .

(iii) GDn(z) := E(zDn) = 1
n

n−1∑
`=0

(
1 + (1− `

n−1)(z − 1)
)(

1 + 1
n−1(z − 1)

)`
.

(iii’) GDn(z) = 2
(

1− 1
n

)(1 + z−1
n−1

)n
− 1

z − 1 − 1.

Remark 3.4.2. Note that we also have E(D(v)
n | Lv) = 1, that is, the average

degree of a vertex is independent of the step at which it was added in the UA
construction. �

Proposition 3.4.3. The degree Dn of a fixed vertex of Fn converges in distribution
to the variable D satisfying:

(i) D ∼ Ber(1− U) + Poisson(U), where U is uniform on [0, 1] and the Bernoulli
and Poisson variables are independent conditional on U .

(ii) GD(z) := E
(
zD
)

=
∫ 1

0

(
1 + (1− x)(z − 1)

)
ex(z−1)dx = 2 e

z−1 − 1
z − 1 − 1.

(iii) For all p > 1, E
(
D(D − 1) · · · (D − p+ 1)

)
= 2
p+ 1 .

(iv) P(D = 0) = 1− 2/e and, for k > 1,

P(D = k) = 2
e

∑
j>k

1
j! .

Proof. First, for all z ∈ C \ {1},

GDn(z) = 2
(

1− 1
n

)(1 + z−1
n−1

)n
− 1

z − 1 − 1 −−−−→
n→∞

2 e
z−1 − 1
z − 1 − 1.

This pointwise convergence of the probability generating function of Dn proves con-
vergence in distribution of Dn to a random variable D satisfying (ii). Point (i) then
follows immediately from the integral expression of GD.

To compute the factorial moments of D, note that

GD(z) = 2
∑
k>0

(z − 1)k

(k + 1)! − 1.

As a result, for p > 1 the p-th derivative of GD is

G
(p)
D (z) = 2

∑
k>0

(z − 1)k

(k + 1 + p)k! ,

and, in particular, E(D(D − 1) · · · (D − p+ 1)) = G
(p)
D (1) = 2

p+1 , proving (iii).
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Finally, to prove (iv), using (i) we see that

P(D = 0) =
∫ 1

0
xe−x dx = 1− 2

e

and that, for k > 1,

P(D = k) = 1
k!

∫ 1

0

(
kxk−1 − kxk + xk+1

)
e−x dx.

Noting that
(
kxk−1 − kxk + xk+1)e−x = 2xke−x + d

dx

(
(xk − xk+1)e−x

)
, one gets

P(D = k) = 2
k!

∫ 1

0
xke−x dx,

and an easy integration by parts yields

P(D = k + 1) = P(D = k) − 2
e(k + 1)! ,

from which (iv) follows by induction.

Before closing this section, let us give an asymptotic equivalent of the tail of Dn.
We will need it in the proof of Theorem 3.4.5 on the largest degree.

Proposition 3.4.4. Let Dn be the degree of a fixed vertex of Fn and let D have the
asymptotic distribution of Dn.

(i) For all k > 1,

2/e
(k + 1)! 6 P(D > k) 6

(
1 + 1

k

)2 2/e
(k + 1)! .

(ii) For all Kn = o(
√
n), there exists εn = o(1) such that, for all k 6 Kn,

|P(Dn > k)− P(D > k)| 6 εnP(D > k) .

(iii) For all kn → +∞ and Kn > kn such that Kn = o(
√
n),

P(Dn > k) ∼ 2/e
(k + 1)! ,

uniformly in k such that kn 6 k 6 Kn.

Proof. First, observe that

1
(`+ 1)! 6

1
` · `! −

1
(`+ 1) · (`+ 1)! ,

so that ∑
`>i

1
`! 6

1
i · i! =

(
1 + 1

i

) 1
(i+ 1)! .

Recalling from Proposition 3.4.3 that

P(D > k) = 2
e

∑
i>k

∑
`>i

1
`! ,
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point (i) follows readily.

The proof of (ii) is somewhat technical so we only outline it here and refer the
reader to Section 3.A of the Appendix for the detailed calculations.

Consider the function

∆n(z) =
∑
i>0

(
P(D > i)− P(Dn > i)

)
zi.

With this function, (ii) can be re-expressed as

∆(k)
n (0) = εn

k + 1 for all k 6 Kn = o(
√
n),

where ∆(k)
n denotes the k-th derivative of ∆n. But ∆n can be expressed in terms of

the generating functions of D and Dn, namely as

∆n(z) =
(

1 + 1
z − 1

)(
GD(z)−GDn(z)

)
.

The expressions of GD and GDn obtained in Propositions 3.4.1 and 3.4.3 thus make
it straightforward to obtain a power series expansion of ∆n at z = 1, and this
expansion can be used to bound ∆(k)

n (0) and conclude the proof.

Finally, (iii) is a direct consequence of (i) and (ii).

3.4.2 Largest degree
The aim of this section is to prove the following result.

Theorem 3.4.5. Let Dmax
n = maxvD(v)

n denote the largest degree of Fn. Then,

Dmax
n = logn

log logn +
(
1 + op(1)

) logn log log logn
(log logn)2 ,

where op(1) denotes a sequence of random variables that goes to 0 in probability.

Our proof uses a first and second moment method which will also be used in
the proof of Theorem 3.5.8 concerning the size of the largest tree. In order to avoid
repeating ourselves, we isolate this classic part of our reasoning as a lemma, whose
proof we recall for the sake of completeness.

Lemma 3.4.6. For all integers n, let (X(1)
n , . . . , X

(n)
n ) be a vector of exchangeable

random variables and

Xmax
n = max

{
X(i)
n : i = 1, . . . , n

}
.

Write pn(k) for P(X(i)
n > k), and suppose that there exists a sequence (mn) and a

constant β such that, for all ε > 0, as n→∞,

(i) npn((β + ε)mn)→ 0.

(ii) npn((β − ε)mn)→ +∞.

(iii) P
(
X

(1)
n > (β − ε)mn, X

(2)
n > (β − ε)mn

)
∼ pn((β − ε)mn)2.
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Then for all ε > 0,

P
(
Xmax
n > (β + ε)mn

)
→ 0 and P

(
Xmax
n > (β − ε)mn

)
→ 1,

which can also be written

Xmax
n =

(
β + op(1)

)
mn,

where op(1) denotes a sequence of random variables that goes to 0 in probability.

Proof. First,

P
(
Xmax
n > (β + ε)mn

)
= P

(
n⋃
i=1

{
X(i)
n > (β + ε)mn

})
6 npn

(
(β + ε)mn

)
,

which goes to zero by (i). Now, denote by

Zn =
n∑
i=1
1{X(i)

n > (β−ε)mn}

the number of variables X(i)
n that are greater than or equal to (β − ε)mn. By the

Cauchy–Schwartz inequality,

P
(
Xmax
n > (β − ε)mn

)
= P(Zn > 0) > E(Zn)2

E(Z2
n) .

Moreover,

E
(
Z2
n

)
= npn

(
(β − ε)mn

)
+ n(n− 1)P

(
X(1)
n > (β − ε)mn, X

(2)
n > (β − ε)mn

)
,

and so, by (ii) and (iii), E(Zn)2/E
(
Z2
n

)
→ 1 as n→∞.

Remark 3.4.7. Note that under assumption (ii) of this lemma, for any ε > 0,
letting n→∞ in E(Zn)2/E

(
Z2
n

)
6 1 shows that

pn((β − ε)mn)2 6 P
(
X(1)
n > (β − ε)mn, X

(2)
n > (β − ε)mn

)
(1 + o(1)).

Therefore, to prove (iii) it suffices to show

(iii’) P
(
X(1)
n > (β − ε)mn, X

(2)
n > (β − ε)mn

)
6 pn((β − ε)mn)2(1 + o(1)). �

We now turn to the proof of Theorem 3.4.5.

Proof of Theorem 3.4.5. Instead of proving the theorem directly for the variables
(D(1)

n , . . . , D
(n)
n ), we prove it for some auxiliary variables (D̃(1)

n , . . . , D̃
(n)
n ) whose

maximum has the same asymptotic behavior as Dmax
n . The point in doing this

is that the tails of the variables D̃(v)
n are less correlated than those of the variables

D
(v)
n , which makes it easier to study their maximum by the first and second moment

method.
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Remember from Section 3.4.1 that, in the UA construction,

D(v)
n = IBv +

n∑
`=Bv+1

X
(v)
` ,

where Bv is the step at which vertex v was added, X(v)
` is the indicator of “the `-th

vertex is linked to vertex v”, and I` is the indicator of “the `-th vertex is linked to
a previously added vertex”. With this notation, set

D̃(v)
n =

n∑
`=Bv+1

X
(v)
`

and D̃max
n = max{D̃(v)

n : v = 1, . . . , n}. Since D̃max
n and Dmax

n differ by at most 1,
for any mn → +∞,

Dmax
n − D̃max

n = op(mn) ,

i.e. (Dmax
n − D̃max

n )/mn goes to 0 in probability. Thus, to prove the theorem we
apply Lemma 3.4.6 to the variables(

D̃(1)
n −

logn
log logn, . . . , D̃

(n)
n −

logn
log logn

)
,

with mn = (logn)(log log logn)/(log logn)2 and β = 1.

Using Proposition 3.4.4 and Stirling’s formula, we see that for any kn = o(
√
n),

log
(
P(Dn > kn)

)
= −kn log kn + kn + O(log kn) .

Writing D̃n to refer to the common distribution of the the variables D̃(v)
n , since

P
(
Dn > kn + 1

)
6 P

(
D̃n > kn

)
6 P

(
Dn > kn

)
,

we also have

log
(
P
(
D̃n > kn

))
= −kn log kn + kn + O(log kn) .

In particular, for kn = (logn)/(log logn) + γ mn with

mn = logn log log logn
(log logn)2 ,

this gives

log
(
P
(
D̃n > kn

))
= − logn −

(
γ − 1

) logn log log logn
log logn + O

( logn
log logn

)
(3.1)

As a result, for all ε > 0,

(i) nP
(
D̃n −

logn
log logn > (1 + ε)mn

)
→ 0.

(ii) nP
(
D̃n −

logn
log logn > (1− ε)mn

)
→ +∞.
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Thus, to apply Lemma 3.4.6 and finish the proof it suffices to show that

P
(
D̃(1)
n > kn, D̃

(2)
n > kn

)
∼ P

(
D̃n > kn

)2

whenever kn = (logn)/(log logn) + (1 − ε)mn. More precisely, using Remark 3.4.7
it is sufficient to show that

P
(
D̃(1)
n > kn, D̃

(2)
n > kn

)
6 P

(
D̃n > kn

)2
+ o

(
P
(
D̃n > kn

)2)
First let us fix b1 6= b2 ∈ {1, . . . , n}. Conditional on {B1 = b1, B2 = b2}, recall
that the variables (X(2)

` , b2 + 1 6 ` 6 n) are independent Bernoulli variables with
parameter 1/(n−1). By further conditioning on the variablesX(1)

` , the independence
of (X(2)

` , b2 +1 6 ` 6 n) still holds but their distribution is changed. Indeed, choose
(x`, ` 6= b1) ∈ {0, 1}n−1 and consider the event

A := {B1 = b1, B2 = b2, ∀` 6= b1, X
(1)
` = x`}.

Then by construction, for all ` /∈ {b1, b2}, we have

P
(
X

(2)
` = 1

∣∣∣A) =
{

0 if x` = 1
1

n−2 if x` = 0.

Consequently X(2)
` is always stochastically dominated by a Bernoulli( 1

n−2) random
variable, and so we bound the distribution of D̃(2)

n =
∑
`>b2 X

(2)
` conditional on A

by (
D̃(2)
n

∣∣ A) d
6 Binomial

(
n− b2,

1
n− 2

)
.

To get a bound on the distribution of D̃(2)
n conditional on D̃(1)

n = i for some i, first
note that summing over all configurations b1, b2, (x`, ` 6= b1) such that

∑
`>b1 x` = i

gives

(
D̃(2)
n

∣∣ B1 = b1, B2 = b2, D̃
(1)
n = i

) d
6 Binomial

(
n− b2,

1
n− 2

)
.

Let us now write for conciseness L1 = n−B1 and L2 = n−B2. Note that L2 is not
independent of {D̃(1)

n = i} because they are linked by L1. Indeed, L1 is positively
correlated to D̃

(1)
n and we always have L2 6= L1. Nevertheless, since conditional

on L1, L2 is independent of D̃(1)
n and uniform on {0, . . . , n− 1} \ L1, we have the

following stochastic ordering:

(
L2
∣∣ B1 = b1, D̃

(1)
n = i

) d
6 L2 ,

where L2 is uniformly distributed on {1, . . . , n− 1}. Summing over b1 and b2, one
thus get (

D̃(2)
n

∣∣ D̃(1)
n = i

) d
6 Binomial

(
L2,

1
n− 2

)
.

Let us define a random variable Mn ∼ Bin
(
L2,

1
n−2

)
. As the previous bound is

uniform in i, we have

P
(
D̃(2)
n > kn

∣∣∣ D̃(1)
n > kn

)
6 P(Mn > kn).
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To conclude, it is sufficient to show that P(Mn > kn) ∼ P
(
D̃n > kn

)
since this

would imply

P
(
D̃(1)
n > kn, D̃

(2)
n > kn

)
6 P

(
D̃n > kn

)
P(Mn > kn) ∼ P

(
D̃n > kn

)2
.

For this, define on the same probability space as the variables L2 andMn the variable

L2 := L21{L26n−2}.

L2 is then uniformly distributed on {0, . . . , n− 2}, and we have the equality in
distribution

Mn1{L26n−2}
d= D̃n−1 ∼ Binomial

(
L2,

1
n− 2

)
.

As the two variables Mn and Mn1{L26n−2} differ on an event of probability no
greater than 1/(n− 1), we have

P(Mn > kn) = P
(
D̃n−1 > kn

)
+O

( 1
n

)
,

and finally (3.1) with γ = (1−ε) allows us to conclude that this expression is indeed
equivalent to P

(
D̃n > kn

)
.

3.5 Tree sizes
In this section, we study the size of the trees composing the Moran forest. Sec-
tion 3.5.2 is concerned with the typical size of these trees, while Section 3.5.3 focuses
on the asymptotics of the size of the largest tree. But before going any further we
need to introduce a process that will play a central role throughout the rest of this
paper.

3.5.1 A discrete-time Yule process
Let Υn = (Υn(`), ` > 0) be the Markov chain defined by Υn(0) = 1 and the following
transition probabilities:

P
(
Υn(`+ 1) = j

∣∣Υn(`) = i
)

=
{

i
n−1 if j = i+ 1
1− i

n−1 if j = i,

and stopped when reaching n.

The reason why this process will play an important role when studying the trees
of Fn is the following: let T

(v)
n denote the tree containing v, and T̃

(v)
n the subtree

descending from v in the UA construction—that is, letting m(v) denote the mother
of v and T

(v)
n \ {vm(v)} the forest obtained by removing the edge between v and

m(v) from T
(v)
n (if that edge existed), T̃

(v)
n is the tree of T

(v)
n \ {vm(v)} containing

v. Recalling that Lv denotes the number of steps after vertex v was added in the
UA construction and letting T̃ (v)

n = |T̃(v)
n | be the size of T̃

(v)
n , we have

T̃ (v)
n

d= Υn(Lv) ,

where Υn is independent of Lv. In particular, the size of a tree created at step n− h
of the UA construction is distributed as Υn(h).

In the rest of this section, we list a few basic properties of Υn that will be used
in subsequent proofs.
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Lemma 3.5.1. For all 0 6 ` 6 n− 1,

E(Υn(`)) =
(

1 + 1
n− 1

)`
.

Proof. For 0 6 ` < n− 1, we have Υn(`) < n almost surely, therefore we can write

E
(
Υn(`+ 1)

∣∣Υn(`)
)

= Υn(`)
n− 1

(
Υn(`) + 1

)
+
(

1− Υn(`)
n− 1

)
Υn(`)

= Υn(`)
(

1 + 1
n− 1

)
,

and the result follows by induction.

We now compare the discrete-time process Υn to the Yule process. By Yule
process, we refer to the continuous-time Markov chain (Y (t), t > 0) that jumps
from i to i+ 1 at rate i (see e.g. [19], Section 5.3).

Lemma 3.5.2. As n→∞,(
Υn(btnc), t > 0

)
=⇒

(
Y (t), t > 0

)
,

where “ =⇒ ” denotes convergence in distribution in the Skorokhod space [6], and
(Y (t), t > 0) is a Yule process.

Proof. Since both processes only have jumps of size 1, it suffices to prove that the
sequence of jump times of (Υn(btnc), t > 0) converges in distribution to that of the
Yule process. For 1 6 i 6 n, let

tn(i) = inf
{
` > 0 : Υn(`) = i

}
be the jump times of the chain Υn. By the strong Markov property, the vari-
ables (tn(i + 1) − tn(i), 1 6 i 6 n − 1) are independent, and tn(i + 1) − tn(i) ∼
Geometric( i

n−1). Therefore,(
1
n

(
tn(i+ 1)− tn(i)

)
, 1 6 i 6 n− 1

)
d−−−−→

n→∞
(E(i), i > 1),

where the variables (E(i), i > 1) are independent and E(i) ∼ Exponential(i). This
concludes the proof.

Lemma 3.5.3. For all integers 0 6 k 6 ` 6 n− 1,

P
(
Y
(
`−k+1
n−1

)
> k

)
6 P(Υn(`) > k) 6 P

(
Y
(
λn(k) `

n−1
)
> k

)
,

where
λn(k) = −n− 1

k
log
(

1− k

n− 1

)
.

Proof. Let us start with the upper bound, and write λ := λn(k) for simplicity. Note
that, for all t > 0 and i > 1,

P
(
Y
(
t+ λ

n−1
)

= i
∣∣∣ Y (t) = i

)
= e−

iλ
n−1 ,
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and that we have chosen λ such that if i 6 k then

e−
iλ
n−1 6 1− i

n− 1 = P
(
Υn(`+ 1) = i

∣∣Υn(`) = i
)
.

Thus, until it reaches k+ 1 individuals, the process Υn is dominated by the Markov
chain (Y ( λ`

n−1), 0 6 ` 6 n− 1). This shows that

P(Υn(`) > k) 6 P
(
Y
(
λ`
n−1

)
> k

)
,

proving the second inequality of the lemma.

To prove the first inequality, we couple Υn with a “censored” Yule process Yc.
Intuitively, this censoring consists in ignoring births that occur less than 1/(n− 1)
unit of time after another birth.

Formally, we define Yc by specifying the sequence t0 = 0 < t1 < t2 < . . . of
times corresponding to births in the population. Let (Ei, i > 1) be an independent
sequence of exponential random variables where Ei ∼ Exponential(i). Set t0 = 0
and, for each i > 1,

ti := E1 +
i∑

j=2

( 1
n− 1 + Ei

)
= i− 1

n− 1 +
i∑

j=1
Ei. (3.2)

We now define, for all t > 0,

Yc(t) := 1 +
∑
i>1
1{ti6t} =

∑
i>1

i1{ti−16t<ti}.

The censoring of the Yule process after birth events implies that for any time
t > 0, the random variable Yc(t+ 1

n−1)− Yc(t) takes values in {0, 1}. Furthermore,
for any i ∈ N,

P
(
Yc(t+ 1

n−1) = i+ 1
∣∣ Yc(t) = i

)
6 1− e−

i
n−1 6

i

n− 1 .

Therefore, we can couple (Υn(`), 0 6 ` 6 n − 1) and (Yc(t), t > 0) in such a way
that, for all 0 6 ` 6 n− 1,

Yc
(

`
n−1

)
6 Υn(`).

Now, by construction, the sequence (ti − i−1
n−1 , i > 1) has the distribution of the

sequence of jump times of a Yule process. Therefore,

P(Υn(`) > k) > P
(
Yc
(

`
n−1

)
> k

)
= P

(
tk 6

`
n−1

)
= P

(
tk − k−1

n−1 6
`−k+1
n−1

)
= P

(
Y
(
`−k+1
n−1

)
> k

)
,

which yields the lower bound of the lemma.
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3.5.2 Size of some random trees
In this section, we study the size of some typical trees of Fn. In particular, we study
the asymptotics of size T (1)

n of the tree containing vertex 1 and of the size TUn of a
tree sampled uniformly at random among the trees composing Fn. Our main result
is the following theorem.

Theorem 3.5.4.

(i) Let TUn be the size of a uniform tree of Fn. Then,

P
(
TUn = k

)
−−−−→
n→∞

2
∫ 1

0
xe−x(1− e−x)k−1dx,

that is, TUn
d−→ TU where TU ∼ Geometric(e−X), and X ∼ 2xdx on [0, 1].

(ii) Let T (1)
n be the size of the tree containing vertex 1 in Fn. Then,

P
(
T (1)
n = k

)
−−−−→
n→∞

k

∫ 1

0
xe−x(1− e−x)k−1dx,

that is, T (1)
n converges in distribution to the size-biasing of TU .

Remark 3.5.5. Note that even though the limit distribution of T (1)
n is the size-

biased limit distribution of TUn , for finite n the distribution of T (1)
n is not the size-

biased distribution of TUn . �

We start by giving the distribution of T (1)
n in terms of the process Υn defined

in Section 3.5.1. For this, we first need to introduce some notation. Let T
(v)
n be

the tree containing vertex v in Fn. We denote by H(v)
n the number of steps after

the root of T
(v)
n was added in the UA construction. Recalling the notation from

Section 3.2.2, where σ−1(v) ∈ {1, . . . , n} denotes the step of the UA construction at
which vertex v was added, we thus have

H(v)
n = n−min

{
σ−1(u) : u ∈T(v)

n

}
.

Proposition 3.5.6. Let T (1)
n be the size of the tree containing vertex 1 in Fn, and

denote by H(1)
n the number of steps after the root of that tree was added in the UA

construction. Then,

(i) For 0 6 h 6 n− 1, P(H(1)
n = h) = h

n(n− 1)

(
1 + 1

n− 1

)h
.

(ii) Conditional on {H(1)
n = h}, T (1)

n is distributed as the size-biasing of Υn(h).

Remark 3.5.7. The size-biasing of Υn(h) can be easily represented as follows.
Consider the Markov chain Υ∗n = (Υ∗n(`), 0 6 ` 6 n− 1) defined by Υ∗n(0) = 1 and
the following transition probabilities:

P
(
Υ∗n(`+ 1) = j

∣∣Υ∗n(`) = i
)

=
{
i+1
n if j = i+ 1

1− i+1
n if j = i.

A straightforward induction on ` shows that Υ∗n(`) is distributed as the size-biasing
of Υn(`). �
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3. The Moran forest

Proof. First, note that H(1)
n = h if and only if a new tree is created at step n− h,

and vertex 1 belongs to this tree. Now, the probability that a new tree is created at
step n−h is h

n−1 , and the size of this tree is then distributed as Υn(h). Moreover, at
the end of the UA construction, the labels are assigned to the vertices uniformly. As
a result, conditional on a tree having size i, the probability that it contains vertex 1
is i/n. We thus have

P
(
H(1)
n = h, T (1)

n = i
)

= h

n− 1 ·
i

n
P(Υn(h) = i).

Summing over i and using Lemma 3.5.1 yields

P
(
H(1)
n = h

)
= h

n(n− 1)

(
1 + 1

n− 1

)h
.

Finally,

P
(
T (1)
n = i

∣∣∣H(1)
n = h

)
= iP

(
Υn(h) = i

)(
1 + 1

n− 1

)−h
,

which concludes the proof.

We can now turn to the proof of our main result.

Proof of Theorem 3.5.4. (i) First recall the notation of the UA construction and
Section 3.4, and note that conditional on the event

{In−h = 0} = {a new tree is created at step n− h of the UA construction},

the total number of trees has distribution

(Nn | In−h = 0) d= 1 +
n∑
`=1

`6=n−h

(1− I`),

where I` ∼ Ber( `−1
n−1) are independent random variables. From this, it is clear that

uniformly in h,
E(Nn | In−h = 0) ∼ n

2 . (3.3)

On the event {In−h = 0}, let us denote by Tn,h the size of the tree created at
step n− h. Note that the marginal distribution of Tn,h is simply Υn(h). Let us now
compute

P
(
TUn = k, HU

n = h
)

= h

n− 1P
(
Tn,h = k, HU

n = h
∣∣∣ In−h = 0

)
= h

n− 1E
( 1
Nn
1{Tn,h=k}

∣∣∣∣ In−h = 0
)
,

and note that
n

2 E
( 1
Nn
1{Tn,h=k}

∣∣∣∣ In−h = 0
)

= P(Υn(h) = k)

+ E

((n/2
Nn
− 1

)
1{Tn,h=k}

∣∣∣∣ In−h = 0
)
.

(3.4)

The last term in this display goes to zero as n → ∞, uniformly in h. Indeed,
using (3.3) and applying Hoeffding’s inequality [13] to Nn, which is a sum of n
independent Bernoulli random variables, we get, for ε > 0 and uniformly in h,

P
(∣∣∣ Nnn/2 − 1

∣∣∣ > ε
∣∣∣ In−h = 0

)
6 2e−Cn,
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3.5. Tree sizes

where C is a positive constant that depends only on ε. Using that for any 0 < ε < 1/2
and positive x, we have

∣∣∣ 1x − 1
∣∣∣ > 2ε =⇒ |x− 1| > ε, we may bound

E
(∣∣∣n/2Nn

− 1
∣∣∣ ∣∣∣ In−h = 0

)
6 2ε + n

2P
(∣∣∣n/2Nn

− 1
∣∣∣ > 2ε

∣∣∣ In−h = 0
)

6 2ε + n

2P
(∣∣∣ Nnn/2 − 1

∣∣∣ > ε
∣∣∣ In−h = 0

)
6 2ε + ne−Cn.

This shows that the last term in (3.4) goes to zero uniformly in h. We thus get

P
(
TUn = k, HU

n = h
)

= 2h
n2
(
P(Υn(h) = k) + o(1)

)
,

and so using Lemma 3.5.2, summing over h yields

P
(
TUn = k

)
= 2

n

n−1∑
h=0

h

n
P(Υn(h) = k) + o(1)

−−−−→
n→∞

2
∫ 1

0
xP(Y (x) = k) dx.

Recalling the well-known fact that Y (x) has a Geometric(e−x) distribution (see for
instance Section 5.3 in [19]) proves the first point.

(ii) We know from Proposition 3.5.6 that

P
(
T (1)
n = k

)
= 1
n

n−1∑
h=0

h

n− 1E
(
Υn(h)1{Υn(h)=k}

)

= k

n

n−1∑
h=0

h

n− 1P(Υn(h) = k).

Again, using Lemma 3.5.2 and dominated convergence, we have

k

n

n−1∑
h=0

h

n− 1P(Υn(h) = k) −−−−→
n→∞

k

∫ 1

0
xP(Y (x) = k)dx,

which yields the result.

3.5.3 Size of the largest tree

The goal of this section is to derive asymptotics for Tmax
n := maxv T (v)

n , the size of
the largest tree in the Moran forest on n vertices, when n→∞.

Theorem 3.5.8. Let Tmax
n denote the size of the largest tree in Fn. Then

Tmax
n = α

(
logn− (1 + op(1)) log logn

)
,

where α = (1 − log(e − 1))−1 ≈ 2.18019 and op(1) denotes a sequence of random
variables that goes to 0 in probability.

As in Section 3.5.1, for any vertex v let us define T̃
(v)
n ⊂ T

(v)
n as the subtree

descending from v in the UA construction. For our purpose, it will be sufficient

75



3. The Moran forest

to study the size T̃ (v)
n := |T̃(v)

n | of those subtrees instead of that of the trees T
(v)
n .

Indeed, observe that
Tmax
n = max

v
T̃ (v)
n ,

so that applying Lemma 3.4.6 withmn = α log logn and β = −1 to the exchangeable
variables (T̃ (1)

n − α logn, . . . , T̃ (n)
n − α logn) will prove the theorem. Again, we omit

the superscript and denote by T̃n a random variable with distribution equal to that
of T̃ (1)

n .

For the rest of the section, we thus study the tail probabilities of the variable
T̃n. Recall from the UA construction that the number L of steps after a fixed vertex
was added is uniformly distributed on {0, . . . , n− 1}, and from Section 3.5.1 that,
conditional on {L = `},

T̃n
d= Υn(`) .

Proposition 3.5.9. For any sequence of integers kn →∞ with kn = o(
√
n),

P
(
T̃n > kn

)
∼ e

kn
(1− e−1)kn+1.

Proof. Using the upper bound in Lemma 3.5.3 and the fact that L is uniform on
{0, . . . , n− 1}, we have

P
(
T̃n > kn

)
6

1
n

n−1∑
`=0

P
(
Y
(
λn(k) `

n−1
)
> kn

)
= n− 1

n

∫ 1

0
P
(
Y
(
λn(kn) bx(n−1)c

n−1
)
> kn

)
dx+ 1

n
P(Y (λn(kn)) > kn)

6
∫ 1

0
P(Y (λn(kn)x) > kn) dx+ 1

n
(1− e−λn(kn))kn

=
∫ 1

0

(
1− e−λn(kn)x)kn dx+ 1

n
(1− e−λn(kn))kn .

Now recall that λn(kn) = −n−1
kn

log
(
1− kn

n−1
)

= 1+O(knn ), so uniformly in x ∈ [0, 1],

e−λn(kn)x = e−x +O
(kn
n

)
.

Since kn = o(
√
n), we have kn/n = o(1/kn) and thus Lemma 3.B.1 from the Ap-

pendix gives ∫ 1

0

(
1− e−λn(kn)x)kn dx ∼ e

kn
(1− e−1)kn+1.

Elementary calculations also show that when kn = o(
√
n), we have

1
n

(1− e−λn(kn))kn ∼ 1
n

(1− e−1)kn = o
((1− e−1)kn

kn

)
.

It remains to examine the lower bound in Lemma 3.5.3. As above, we get an integral

P
(
T̃n > kn

)
>

1
n

n−1∑
`=0

P
(
Y
( `−kn+1

n−1
)
> kn

)
>
n− 1
n

∫ 1

0
P
(
Y
( dx(n−1)e−kn

n−1
)
> kn

)
dx

>
n− 1
n

∫ 1

0
P
(
Y
(
x− kn

n−1
)
> kn

)
dx.
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Since

P
(
Y
(
x− kn

n−1
)
> kn

)
=
(
1− exp(−x+ kn

n−1)
)kn =

(
1− e−x +O(kn/n)

)kn ,
using Lemma 3.B.1 again, we get

P
(
T̃n > kn

)
>
n− 1
n

∫ 1

0
P
(
Y
(
x− kn

n−1
)
> kn

)
dx ∼ e

kn
(1− e−1)kn+1,

which completes the proof.

Note that if kn is not integer-valued, then

P
(
T̃n > kn

)
= P

(
T̃n > bknc

)
∼ e

kn
(1− e−1)bknc+1,

which is not necessarily equivalent to e
kn

(1− e−1)kn+1 since kn − bknc may oscillate
between 0 and 1. However, we do have P(T̃n > kn) = Θ((1− e−1)kn/kn), where the
Bachmann–Landau notation un = Θ(vn) indicates that there exist positive constants
c, C such that c vn 6 un 6 Cvn for n large enough. This approximation is sufficient
for our purpose.

We may now prove Theorem 3.5.8 using the first and second moment method
that we already used for the largest degree.

Proof of Theorem 3.5.8. We apply Lemma 3.4.6 to the exchangeable variables

(X(1)
n , . . . , X(n)

n ) = (T̃ (1)
n − α logn, . . . , T̃ (n)

n − α logn) ,

with mn = α log logn and β = −1. The first two points of the lemma are readily
checked, since Proposition 3.5.9 tells us that for α = (1− log(e− 1))−1 = −(log(1−
e−1))−1 and any γ > 0, we have for kn := α(logn− γ log logn)

P
(
T̃n − α logn > −γα log logn

)
= P

(
T̃n > kn

)
= Θ

((logn)γ−1

n

)
.

Thus, for all ε > 0,

(i) nP
(
T̃n − α logn > (−1 + ε)α log logn

)
−→ 0.

(ii) nP
(
T̃n − α logn > (−1− ε)α log logn

)
−→ +∞.

All that remains to check is the third point of the lemma. From now we fix
kn = α(logn − (1 + ε) log logn) for some ε > 0, and for the sake of readability, we
set Rn := P

(
T̃n > kn

)
. With this notation, given Remark 3.4.7 we need to show

that
P
(
T̃ (1)
n > kn, T̃

(2)
n > kn

)
6 R2

n + o(R2
n). (3.5)

Since this is rather technical, we defer the complete proof to Lemma 3.B.2 in Ap-
pendix 3.B, and only outline the main ideas of the proof here. As in the study of
the largest degree, we prove this by showing that the law of T̃ (2)

n conditional on
{T̃ (1)

n > kn} is close to its unconditional law. We first prove that

P
(
An, T̃

(1)
n > kn, T̃

(2)
n > kn

)
= o(R2

n),
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where An := {T̃(2)
n ⊂ T̃

(1)
n }t{T̃(1)

n ⊂ T̃
(2)
n } is the event that one of the two vertices 1

and 2 is an ancestor of the other in the UA construction. We then show that

P
(
Ac
n, T̃

(1)
n > kn, T̃

(2)
n > kn

)
6 R2

n + o(R2
n) ,

where Ac
n denotes the complement of An. This is done by showing that, conditional

on {T̃ (1)
n = i}, on the event Ac

n the process counting the number of vertices of the tree
T

(2)
n in the UA construction behaves as a modified Υn process, which we essentially

bound from above by Υn−i. Therefore, T̃ (2)
n can be compared with an independent

variable with distribution T̃n−i. Finally, we show that∑
i>kn

P
(
T̃ (1)
n = i

)
P
(
T̃n−i > kn

)
6 R2

n + o(R2
n),

thereby proving (3.5) and concluding the proof of Theorem 3.5.8.
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Appendices to Chapter 3

3.A Proof of point (ii) of Proposition 3.4.4

We want to prove that, for all Kn = o(
√
n), there exists εn = o(1) such that, for all

k 6 Kn,
|P(Dn > k)− P(D > k)| 6 εnP(D > k) .

Doing this directly from the expressions of Dn and D involves unappealing calcula-
tions. To somewhat circumvent this, we make use of the simple expressions of the
probability generating functions GDn and GD. For this, let

∆n(z) :=
∑
i>0

(
P(D > i)− P(Dn > i)

)
zi,

so that the k-th derivative of ∆n evaluated at z = 0 is

∆(k)
n (0) = k!

(
P(D > k)− P(Dn > k)

)
.

Since P(D > k) > 2/e
(k+1)! , we have to show that for any given sequence Kn = o(

√
n),

∆(k)
n (0) = εn

k + 1

for some εn → 0 and all k 6 Kn. Now, since for any non-negative integer-valued
random variable X,

∑
i>0
P(X > i) zi =

zE
(
zX
)
− 1

z − 1 ,

we can express ∆n in terms of the generating functions of D and Dn, that is,

∆n(z) =
(

1 + 1
z − 1

)(
GD(z)−GDn(z)

)
.

Moreover, we know from Proposition 3.4.3 that

GD(z) = 2 e
z−1 − 1
z − 1 − 1 = 2

∑
i>0

(z − 1)i

(i+ 1)! − 1
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and from Proposition 3.4.1 that

GDn(z) = 2
(

1− 1
n

)(1 + z−1
n−1

)n
− 1

z − 1 − 1

= 2
(

1− 1
n

) n−1∑
i=0

(
n

i+ 1

)( 1
n− 1

)i+1
(z − 1)i − 1

= 2
n−1∑
i=0

(
i∏

`=1

n− `
n− 1

)
(z − 1)i

(i+ 1)! − 1 ,

where the empty product is 1. Therefore,

GD(z)−GDn(z) =
∑
i>0

A(n, i)(z − 1)i

(i+ 1)! ,

where

A(n, i) = 2
[
1−

(
i∏

`=1

n− `
n− 1

)
1{i6n−1}

]
.

Using that A(n, 0) = A(n, 1) = 0 and rearranging a bit, we obtain the following
expansion of ∆n at z = 1:

∆n(z) =
∑
i>1

(
A(n, i) + A(n, i+ 1)

i+ 2

)(z − 1)i

(i+ 1)! ,

from which we get

∆(k)
n (0) =

∑
i>k

(
A(n, i) + A(n, i+ 1)

i+ 2

) (−1)i−k

(i− k)! (i+ 1) .

Now, pick any Jn = o(
√
n) such that Kn = o(Jn). For all i < Jn,∣∣∣∣A(n, i) + A(n, i+ 1)

i+ 2

∣∣∣∣ 6 4
(

1−
Jn∏
`=1

n− `
n− 1

)
= εn ,

with εn → 0, since
Jn∏
`=1

n− `
n− 1 >

(
n− Jn
n− 1

)Jn
= exp

(
−J2

n
n + o

(
J2
n
n

))
.

For i > Jn, we have ∣∣∣∣A(n, i) + A(n, i+ 1)
i+ 2

∣∣∣∣ 6 4 .

Combining these two upper bounds, we get∣∣∣∆(k)
n (0)

∣∣∣ 6 Jn−1∑
i=k

εn
(i− k)! (i+ 1) +

∑
i>Jn

4
(i− k)! (i+ 1)

6
εnC1

(k + 1) + C2
(Jn + 1) .

Finally, since Kn = o(Jn), we have for all k 6 Kn,
1

Jn + 1 6
1

k + 1 ·
Kn + 1
Jn + 1 ,

with (Kn + 1)/(Jn + 1) = o(1). This concludes the proof.

Note that although we have been quite crude in that we have used the triangle
inequality on an alternating series, a more careful analysis would show that the
o(
√
n) requirement on Kn is in fact optimal.
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3.B Technical lemmas used in the proof of Theorem 3.5.8
Lemma 3.B.1. For any sequence kn → ∞ and any sequence of measurable maps
fn : [0, 1]→ R such that for all x ∈ [0, 1], (1− e−x + fn(x)) > 0 and supx|fn(x)| =
o(1/kn), we have ∫ 1

0

(
1− e−x + fn(x)

)kn dx ∼ e

kn
(1− e−1)kn+1.

Proof. Let us compute∫ 1

0

(1− e−x + fn(x))kn
(1− e−1)kn kn dx =

∫ 1

0

(
1− e1−x − 1

e− 1 + e

e− 1fn(x)
)kn

kn dx

=
∫ kn

0

(
1− y

kn
+ gn(y)

)kn e− 1
1 + (e− 1) y

kn

dy,

where we used the change of variable y = kn(e1−x − 1)(e − 1)−1, and defined the
map gn as

gn(y) = e

e− 1fn
(

1− log
(
1 + y

kn
(e− 1)

))
,

Now since (1− y
kn

+gn(y))kn 6 exp(−y+ e
e−1kn supx fn(x)), it follows from dominated

convergence that∫ 1

0

(1− e−x + fn(x))kn
(1− e−1)kn kn dx −−−−→

n→∞

∫ ∞
0

e−y(e− 1) dy = e− 1,

concluding the proof.

Lemma 3.B.2. Let T̃ (v)
n denote the size of the subtree descending from v in the

UA construction of Fn. Then, for α = −1/ log(1 − e−1) and any ε > 0, letting
kn = α(logn− (1 + ε) log logn) and Rn = P

(
T̃n > kn

)
,

P
(
T̃ (1)
n > kn, T̃

(2)
n > kn

)
6 R2

n + o(R2
n).

Proof. We have Rn = Θ
( (logn)ε

n

)
.

Let us denote by An := {T̃(2)
n ⊂ T̃

(1)
n } t {T̃(1)

n ⊂ T̃
(2)
n } the event that one of the

vertices 1 and 2 is an ancestor of the other. We start by showing that

P
(
An, T̃

(1)
n > kn, T̃

(2)
n > kn

)
= o(R2

n). (3.6)

By exchangeability, we have

P
(
An, T̃

(1)
n > kn, T̃

(2)
n > kn

)
= 2P

(
T̃(2)
n ⊂ T̃(1)

n , T̃ (1)
n > kn, T̃

(2)
n > kn

)
=
∑
i>kn

P
(
T̃(2)
n ⊂ T̃(1)

n , T̃ (2)
n > kn

∣∣ T̃ (1)
n = i

)
P
(
T̃n = i

)
.

Let us call the height of a vertex the number of steps after it was added in the
UA construction. Conditional on {T̃ (1)

n = i} and on the heights of the vertices
of T̃

(1)
n being `1 > . . . > `i, the height L2 of vertex 2 is uniformly distributed on

{0, . . . n− 1} \ {`1}. Moreover, in order to have

{T̃(2)
n ⊂ T̃(1)

n , T̃ (2)
n > kn} ,
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the height of vertex 2 must belong to {`2, . . . , `i−(kn−1)}, which happens with prob-
ability i−kn

n−1 . Therefore,

P
(
An, T̃

(1)
n > kn, T̃

(2)
n > kn

)
6
∑
i>kn

P
(
T̃n = i

) i− kn
n− 1

= 1
n− 1

∑
i>kn

P
(
T̃n > i

)
.

To show that this is small enough, we letKn := kn+α(logn)δ with 0 < δ < min(1, ε),
and K ′n := 2α logn, and crudely bound∑

i>kn

P
(
T̃n > i

)
6 (Kn − kn)P

(
T̃n > kn

)
+K ′nP

(
T̃n > Kn

)
+ nP

(
T̃n > K

′
n

)
.

Now let us show that these three terms are negligible compared to nR2
n. Recalling

that Rn = Θ
( (logn)ε

n

)
, we have nR2

n = Θ((logn)2ε/n) and therefore

• (Kn − kn)P
(
T̃n > kn

)
∼ α(logn)δRn = Θ

((logn)δ+ε

n

)
= o(nR2

n).

• K ′nP
(
T̃n > Kn

)
= Θ

(
lognRne−(logn)δ) = o(Rn) = o(nR2

n).

• nP
(
T̃n > K

′
n

)
= Θ

(
n
n−2

logn
)

= o(1/n) = o(nR2
n).

Therefore (3.6) is proven, and it remains to show that

P
(
Ac
n, T̃

(1)
n > kn, T̃

(2)
n > kn

)
6 R2

n + o(R2
n),

where Ac
n denotes the complement of An. We now fix n > 1, i > kn, and a finite

sequence n− 1 > `1 > . . . > `i > 0. Let us write B for the event that T̃
(1)
n contains

exactly the vertices with heights `1 > . . . > `i. Conditional on B, let us examine the
distribution of T̃

(2)
n . Recall that the height L2 of vertex 2 is uniformly distributed

on {0, . . . n− 1} \ {`1}. Now in the UA construction, define T as the tree obtained
by starting from a root arrived at height L2 and allowing the attachment of a vertex
with height ` to T only if ` /∈ {`1, . . . `i}. Then, on the event Ac

n, this tree must
coincide with T

(2)
n , and so

P
(
Ac
n, T̃

(2)
n > kn

∣∣B) = P
(
Ac
n, |T| > kn

∣∣B).
From the UA construction, for any ` /∈ {`1, . . . , `i}, conditional on B ∩{L2 = `}, we
can describe |T| using a modified process Υn, which we denote by (Υ̃`(m), 0 6 m 6 `),
and define by

• Υ̃`(0) = 1.

• For all 0 < m 6 `, Υ̃`(m)−Υ̃`(m−1) ∈ {0, 1} and, conditional on Υ̃`(m− 1) = j,
Υ̃`(m) = j + 1 with probability

j

n− 1− Jm
if `−m /∈ {`1, . . . , `i}

0 if `−m ∈ {`1, . . . , `i},
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3. The Moran forest

where
Jm = |{`1, . . . , `i} ∩ {`−m, . . . , n}|

is the number of vertices of T̃ (1)
n with height greater than ` − m in the UA

construction.

With this definition, for any ` /∈ {`1, . . . , `i}, conditional on B ∩ {L2 = `}, we have
by construction |T| d= Υ̃`(`). Now, note that the probability of increasing is always
bounded by j/(n− 1− i). Therefore the modified process Υ̃` can be coupled with
Υn−i in such a way that, for all 0 6 m 6 ` < n− i,

Υ̃`(m) 6 Υn−i(m).

For ` > n − i, we use instead the crude bound P(Υ̃`(`) > kn) 6 E(Υ̃`(`))/kn
in that case. Using the same the same reasoning as in Lemma 3.5.1, note that
E(Υ̃`(`)) 6 (1 + 1

n−i−1)n−i−1 6 e . We thus get

P
(
Ac
n, |T| > kn

∣∣B) 6 P
(
L2 /∈ {`1, . . . , `i}, |T| > kn

∣∣B) (3.7)

= 1
n− 1

n−1∑
`=0

`/∈{`1,...`i}

P
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)
,

6
ei

kn(n− 1) + 1
n− 1
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P(Υn−i(`) > kn) (3.8)

= ei

kn(n− 1) + n− i
n− 1P

(
T̃n−i > kn

)
. (3.9)

As this bound depends on the set {`1, . . . , `i} only via its cardinality i, one can
integrate with respect to the distribution of T

(1)
n to get

P
(
Acn, |T| > kn

∣∣ T̃ (1)
n = i

)
6

ei

kn(n− 1) + n− i
n− 1P

(
T̃n−i > kn

)
,

Finally, because Υn−(i+1)(`)
d
> Υn−i(`), the expression (3.8) (and therefore (3.9)) is

nondecreasing in i, and we have

P
(
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n, T̃

(1)
n > kn, T̃

(2)
n > kn

)
6
∑
i>kn

P
(
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)( ei
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6
Kn∑
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P
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)( eKn
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n− 1 P
(
T̃n−Kn > kn
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(3.10)

+
∑
i>Kn

P
(
T̃n = i

)( ei

kn(n− 1) + n− i
n− 1P

(
T̃n−i > kn

))
, (3.11)

for any sequence Kn > kn. Letting Kn := α(logn)1+ε/2, we then show that (3.10)
is asymptotically no greater than R2

n, and that (3.11) is negligible compared to R2
n.

Indeed, (3.10) is bounded from above by

Rn

(
eKn

kn(n− 1) + n−Kn

n− 1 P
(
T̃n−Kn > kn

))
.
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3.B. Technical lemmas used in the proof of Theorem 3.5.8

Now note that eKn
kn(n−1) = O( (logn)ε/2

n ) = o(Rn), and that since n−Kn ∼ n, we have
kn = o(

√
n−Kn). Therefore, by Proposition 3.5.9, P

(
T̃n−Kn > kn

)
∼ Rn. Finally,

up to a multiplicative constant, (3.11) is bounded from above by

P
(
T̃n > Kn

)
= Θ

(n−(logn)ε/2

Kn

)
= o(n−2) = o(R2

n).

Putting everything together, we have proved that

P
(
T̃ (1)
n > kn, T̃

(2)
n > kn

)
6 R2

n + o(R2
n),

which concludes the proof.
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Chapter 4
Ranked tree-child networks
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This project originated when Mike Steel and Charles Semple met with Amaury
Lambert and told him about the difficulties posed by the enumeration of a class
of phylogenetic networks known as tree-child networks. Amaury had the idea to
rank the internal nodes of these networks in order to make them easier to study and
generate via time-embedded processes, as is done for ranked trees. Nevertheless, the
ranking that he used was in a way too “flexible” and the objects he studied remained
quite complex.

I started working on the subject after meeting Mike with Amaury. I reused
Amaury’s idea to rank tree-child networks in order to make them more tractable,
but used a different – more constraining yet biologically natural – notion of ranking.
This made the resulting “ranked tree-child networks” more different from regular
ones, but in a way more biologically relevant. This also made them much more
tractable, to the point that I feared they might fall on the dull end of the spectrum.
Fortunately, this also created connections with other combinatorial objects and some
interesting questions remained. Mike gave me the opportunity to work on them with
him in the University of Canterbury.

As of today, we are working on Conjecture 4.6.6 with Amaury and Mike to
complete this project.
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4. Ranked tree-child networks

4.1 Introduction
Tree-child networks are a class of directed acyclic graphs (DAGs) introduced by [4] as
a way to model reticulated phylogenies (that is, phylogenies that take into account
the possibility of hybridization or horizontal gene transfer). In addition to being
biologically relevant, tree-child networks are mathematically interesting combinato-
rial structures and have thus gained attention recently to become one of the most
studied classes of phylogenetic networks. However, they are also notoriously hard to
study. For instance, their enumeration is still an open problem [10, 7] and there is
no known algorithm to sample them uniformly (although a recursive procedure to
enumerate them has recently been introduced [3]). As a result, very little is known
about the properties of “typical” tree-child networks.

In this paper, we introduce a new class of phylogenetic networks that we term
ranked tree-child networks, or RTCNs for short. These networks correspond to a
subclass of tree-child networks that are endowed with an additional structure en-
suring that they could have resulted from a time-embedded evolutionary process,
something that is not required of tree-child networks.

Besides being arguably more biologically relevant than tree-child networks, one
of the main advantages of RTCNs is that they are much easier to study. For in-
stance, there are explicit formulas for the number of leaf-labeled RTCNs as well
as simple procedures to sample them uniformly at random (or even uniformly at
random subject to some natural constraints such as containing a fixed number of
reticulations, or displaying a given tree). These make it possible to get some insight
into the structure of uniform RTCNs.

4.1.1 Preliminaries
Let us start by recalling the definition of tree-child networks and introducing some
vocabulary.

Definition 4.1.1. A binary phylogenetic network is a directed acyclic graph where
each vertex has either

• in-degree 0 and out-degree 2 (the root)

• in-degree 1 and out-degree 0 (the leaves)

• in-degree 1 and out-degree 2 (tree vertices)

• in-degree 2 and out-degree 1 (reticulation vertices) �

If V is the vertex set of a binary phylogenetic network, we write ∂V for the set
of its leaves. The vertices that are not leaves are called internal vertices and we
denote their set by V ◦.

We refer to the elements of the set Γin(v) = {u : u→ v} as the parents of v and
to that of the set Γout(v) = {u : v → u} as the children of v. Two vertices are said
to be siblings if they share a parent and step-siblings if they share a sibling.

Finally, an edge ~uv is called a reticulation edge if v is a reticulation vertex and
a tree edge if v is a tree vertex or a leaf.

Definition 4.1.2. A tree-child network is a binary phylogenetic network such that
every internal vertex has at least one child that is a tree vertex or a leaf. �
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4.1. Introduction

Note that there are other simple characterizations of tree-child networks. Con-
sider for instance the following equivalent definition (see Lemma 2 in [4]).

Definition 4.1.3. A binary phylogenetic network is tree-child if and only if for
every vertex v there exists a leaf such that every path going from the root to that
leaf goes through v. �

4.1.2 Ranked tree-child networks

First, note that every DAG – and thus every tree-child network – is endowed with
a partial order, which we refer to as the genealogical order, defined by

u v ⇐⇒ there exists a directed path from u to v.

Let us now introduce the notion of events of a tree-child network.

Definition 4.1.4. Let N be a tree-child network. Define an equivalence relation R
on the set of V ◦ of internal vertices of N by

uR v ⇐⇒ u and v are linked by a reticulation edge .

The equivalence classes of R are called the events of N . Moreover, writing ū for the
equivalence class of a vertex u,

• either ū = {u}, in which case ū is called a branching event;

• or ū = {u, v, w}, and ū is called a reticulation event. �

Definition 4.1.5. A ranked tree-child network is an ordered pair (N,≺) where

• N is a tree-child network.

• The chronological order ≺ is a strict total order on the set of events of N that
is compatible with the genealogical order – that is, for every internal vertices
u and v,

u v =⇒ ū ≺ v̄ or ū = v̄. �

Observe that in the case where N is a tree, Definition 4.1.5 agrees with the
classical notion of the ranking of a tree: indeed, in that case every internal vertex is
its own equivalence class and so the chronological order can be seen as a total strict
order on V ◦.

Note that this ranking is very natural from a biological point of view. Indeed,
real-world phylogenies are the end result of a time-embedded evolutionary process
where lineages speciate and hybridize. In a tree-child network corresponding to a
real-world phylogeny, each internal vertex can therefore be associated to one of these
punctual evolutionary events. Now if to that vertex we associate a time-stamp t
corresponding to the time at which the event occurred, then, under the assumption
that no two events can occur simultaneously 1, by defining

ū = v̄ ⇐⇒ t(u) = t(v) and ū ≺ v̄ ⇐⇒ t(u) < t(v)
1 This means that the time-stamps of events are distinct; but the three vertices that form a

reticulation will share the same time-stamp.
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4. Ranked tree-child networks

we obtain a valid partition into events and a valid ranking. Of course, this can only
work if the tree-child network had been produced by a time-embedded process to
start with; we will come back to this in a moment.

In other words, RTCNs are simply the combinatorial description of dated phylo-
genies, discarding the specifics of the times at which the events occurred but keeping
the information about their relative order of occurrence.

Figure 4.1: Graphical representation of a RTCN. Each “⊥” corresponds to a tree
vertex (or the root), each “>” to a reticulation vertex, and the tip of each dangling
vertical line to a leaf. The vertical lines represent tree edges, and the horizontal ones
events. Note that a ≺ b if and only if the horizontal line representing b is below that
of a.

The notion of ranking raises two questions:

1. Can all tree-child networks be ranked?

2. How many rankings are there for a given tree-child network?

It is not hard to see that the answer to the first question is no. In fact, we will
prove in the next section that almost no tree-child network can be ranked. While
this rules out the possibility of using RTCNs to gain insight into the structure of
tree-child networks, this does not make RTCNs irrelevant, because the tree-child
networks that we can expect to see in nature should be rankable 2. Thus, from a
strictly biological point of view, rankable tree-child networks might be more relevant
than tree-child networks.

Regarding the second question, Knuth proved in [8] that the number of ways to
rank a tree is

2κ−s (`− 1)!∏
v∈V ◦(λ(v)− 1) ,

where ` is the number of leaves of the tree, κ the number of cherries, s the number
of symmetric vertices and λ(v) the number of leaves subtended by v – that is,
λ(v) = #{u ∈ ∂V : v  u}. See e.g. Section 1.2.2 of [9]. However, the proof of
this results relies on the recursive structure of trees, which tree-child networks lack.
Thus, counting the number of ways to rank a given tree-child network remains an
open question.

2 This is not necessarily the case if some extinct lineages are not observed. But if we assume
that the only possible evolutionary events are binary branchings and reticulations, then we can
always assume that there exists an underlying ranked tree-child network.

90



4.1. Introduction

4.1.3 Relation to other types of phylogenetic networks

Let us start by recalling the definition of temporal networks.

Definition 4.1.6. A binary phylogenetic network N = (V, ~E) is temporal if it is
possible to assign a time-stamp t to each vertex in such a way that

(i) If ~uv is a reticulation edge then t(u) = t(v).

(ii) If ~uv is a tree edge then t(u) < t(v). �

Every RTCN is a temporal network, because to get a valid temporal labeling t
one can assign to every internal vertex the rank of the corresponding event (that
is, t(u) = k where ū is the k-th event, and t(ρ) = 0 for the root). However, not all
temporal tree-child networks are RTCNs because there is no requirement that the
time-stamps of vertices that belong to different events be distinct in Definition 4.1.6.

Let us now recall the notion of normal network, as introduced by [16].

Definition 4.1.7. An edge ~uv is said to be redundant (or a shortcut) if there exists a
directed path from u to v that does not contain ~uv. A normal network is a tree-child
network that has no redundant edges. �

It is well-known and not too hard to see that every temporal tree-child network
is a normal network (see e.g. Proposition 10.12 in [13]). As a result, rankable tree-
child networks are normal networks, in the sense that if (N,≺) is a RTCN then N is
a normal network. Since by Theorem 1.4 in [10] the fraction of tree-child networks
(leaf-labeled or vertex-labeled alike) that are also normal networks goes to zero as
their number of vertices goes to infinity, this proves the next proposition.

Proposition 4.1.8. The fraction of rankable tree-child networks with ` labeled leaves
and the fraction of rankable tree-child networks with n labeled vertices both go to 0
as ` and n go to infinity.

4.1.4 Main results

All the results presented in this paper are about leaf-labeled RTCNs.

In Section 4.2, we give two constructions of RTCNs: one in backward time and
one in forward time. Each of these constructions yields a proof of the following result.
Note that the number of reticulations of a RTCN with ` leaves and b branchings is
r = `− b− 1.

Theorem 4.2.3. The number of ranked tree-child networks with ` labeled leaves and
b branchings is

C`,b =
[
`− 1
b

]
T` ,

where T` = `! (`−1)!/ 2`−1 is the number of ranked trees with ` labeled leaves and
[`−1
b

]
is the number of permutations of {1, . . . , `− 1} with b cycles (these quantities are
known as the unsigned Stirling numbers of the first kind).
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The backward-time and forward-time constructions also provide simple proce-
dures to sample leaf-labeled RTCNs, be it:

• uniformly at random;

• uniformly at random conditional on their total number of reticulations;

• uniformly at random conditional on which events are reticulations.

The rest of our study focuses on the properties of uniform leaf-labeled RTCNs.
One of their interesting characteristics is their intimate relation to uniform leaf-
labeled trees. This is detailed in Section 4.3, where we also explain how to sample
a uniform RTCN conditional on displaying a given tree.

Two of the most basic statistics of binary phylogenetic networks are their number
of cherries and of reticulated cherries. While almost nothing is known about them in
uniform tree-child networks, they prove very tractable in uniform RTCNs. Explicit
expressions for their mean and variance are given in Section 4.4, where we also prove
the following theorem.

Theorem 4.4.2. Let κ` be the number of cherries of a uniform RTCN with ` labeled
leaves and χ` be its number of reticulated cherries. Then, as `→∞,

(i) κ`
d−−→ Poisson

(1
4
)
.

(ii) χ` / `
P−−→ 1

7 .

Sections 4.5 and 4.6 contain our most informative results about the structure of
uniform RTCNs: in Section 4.5 we study the length of some typical paths joining
the root to the leaf set of uniform RTCNs and prove the following theorem.

Theorem 4.5.3. Let ν be a uniform RTCN with ` labeled leaves and let

• γ↓ be the path taken by a random walk going from the root of ν to its leaves,
respecting the direction of the edges.

• γ↑ be the path taken by a random walk going from a uniformly chosen leaf of
ν to its root, following the edges in reverse direction.

Then, letting length( · ) denote the length of these paths, not counting reticulation
edges, there exist two constants c↓ and c↑ such that, as `→∞,

(i) length(γ↓) ≈ Poisson(2 log `+ c↓)

(ii) length(γ↑) ≈ Poisson(3 log `+ c↑)

in the sense that the total variation distance between these distributions goes to 0.

Remark 4.1.9. Compare Theorem 4.5.3 with the analogous for uniform ranked
trees, in which length(γ↓) ≈ log ` and length(γ↑) ≈ 2 log `. �

Finally, in Section 4.6 we study the number of lineages in the ancestry of a leaf,
i.e. in the subgraph consisting of all paths joining this leaf to the root, as illustrated
in Figure 4.2. Starting from the leaves and going towards the root, one event of the
RTCN after the other, this number of lineages will on average start by increasing but
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will eventually decrease as we get nearer the root and the total number of lineages
of the RTCN itself decreases.

Let X(`) = (X(`)
k , 0 6 k 6 ` − 2) denote the process counting these lineages.

What can we say about the behavior of X(`) as ` goes to infinity? As it turns out,
X

(`)
k remains quite small as long as k = bx`c with 0 < x < 1. However, when

we reach the regime k = b`− x
√
`c, X(`)

k starts to increase substantially, until a
point where it will decrease suddenly. Moreover, even though the properly rescaled
trajectories of X(`) seem to become smooth as ` → ∞, they do not become deter-
ministic. In fact, simulations presented in Section 4.6.2 suggest that they behave
has a deterministic process with a random initial condition.

1

1

1

2

2

2

2

Figure 4.2: In red, the ancestry of a leaf and
on the right the process counting the number
of lineages in this ancestry.

Another natural way to study the asymptotics of X(`), instead of restricting
ourselves to an appropriate time-window, is to consider the embedded process X̃(`),
that is, to ignore the steps in which X(`) does not change. As illustrated in Fig-
ure 4.3, simulations suggest that that the scaling-limit of X̃(`) is a remarkably regular
deterministic process with a random initial condition.

Figure 4.3: 500 superimposed trajectories of the process X̃(`), rescaled so that their domain is [0, 1]
and that the total area under each curve is equal to 1.

This part of our study is still work in progress, so our discussion will rely mostly
on simulations and heuristics. Below are some of our results and conjectures so far.

Proposition 4.6.5. For all ` > 2 and k such that 0 6 k 6 `− 2,

`

`− k + 1

(
1− 2k

(`− k)(`− k − 1)

)
6 E

(
X

(`)
k

)
6

`

`− k
.
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As a result, for M > 2 and all ` large enough, for all ε > 0,

(1− ε) 1
M2

(
1− 2

M2

)
6 E

(
1√
`
X

(`)
b`−M

√
`c

)
6

1
M2 ,

so that the sequence of random variables 1
M
√
`
X

(`)
b`−M

√
`c is tight and bounded away

from 0 in L1.

Conjecture 4.6.6.
1

M
√
`
X

(`)
b`−M

√
`c

d−−−−→
`→∞

WM > 0 (�)

Proposition 4.6.7. If Conjecture 4.6.6 holds, then for all ε such that 0 < ε < 1,
as `→∞,(

1
M
√
`
X

(`)
b`−M

√
`(1−t)c, t ∈ [0, 1− ε]

)
=⇒

(
y(t,WM ), t ∈ [0, 1− ε]

)
where =⇒ denotes convergence in distribution in the Skorokhod space and

y(t,WM ) = 1− t
CM · (1− t)2 + 1

where CM = W−1
M − 1.

4.2 Counting and generating RTCNs

4.2.1 Backward-time construction of RTCNs

Let us start by recalling that there is a simple way to label the internal vertices of
any leaf-labeled tree-child network (or any leaf-labeled DAG), namely by labeling
each internal vertex with the set of labels of its children.

Definition 4.2.1. Given a tree-child network with leaf set ∂V = {1, . . . , `}, the
associated canonical labeling is the function ξ such that

(i) ∀v ∈ ∂V , ξ(v) = v.

(ii) ∀v ∈ V ◦, ξ(v) = {ξ(u) : v → u}. �

While the canonical labeling of a tree-child network encodes it unambiguously
(the whole network can be recovered from the label of the root), this is not the case
for RTCNs because the information about the order of the events is missing. One
way to retain this information is to encode RTCNs using the process (Pk, 1 6 k 6 `)
defined as follows.

First, given a set P = {ξ1, . . . , ξm} of labels of vertices of (N,≺), define the two
operations:

• coal(P, {ξi, ξj}) =
(
P \ {ξi, ξj}

)
∪
{
{ξi, ξj}

}
• ret(P, ξi, {ξj , ξk}) =

(
P \ {ξi, ξj , ξk}

)
∪
{
{{ξi}, ξj}, {{ξi}, ξk}

}
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Now, let U1 ≺ · · · ≺ U`−1 denote the events of (N,≺). Then, starting from
P1 = {1, . . . , `} and going backwards in time, for k = 1 to `− 1:

• If U`−k is the coalescence of v and w, i.e. if there exists u such that U`−k = {u}
and Γout(u) = {v, w}, then let Pk+1 = coal(Pk, {ξ(v), ξ(w)}).

• If U`−k is the reticulation of u and v with the hybrid h, i.e. if U`−k =
{u′, h′, v′} with Γout(u′) = {u, h′}, Γout(v′) = {v, h′} and Γout(h′) = {h}, then
let Pk+1 = ret(Pk, ξ(h), {ξ(u), ξ(v)}).

The result of procedure is illustrated in Figure 4.4. Note that the RTCN that
produced a process (Pk, 1 6 k 6 `) can unambiguously be recovered from that
process.

Figure 4.4: A RTCN with its canonical labeling and the associated process (Pk, 1 6 k 6 `).

In order to count RTCNs based on their number of reticulations (or, equivalently,
branchings, since both are linked by r+ b = `− 1), we need to introduce the notion
of profile of a RTCN.

Definition 4.2.2. Let ν be a RTCN and U1 ≺ · · · ≺ U`−1 its events. The profile
of ν is the vector q = (q1, . . . , q`−1) defined by

qk =
{

1 if Uk is a branching,
0 otherwise .

�

We are now in position to prove our main result concerning the enumeration of
RTCNs.

Theorem 4.2.3. The number of RTCNs with profile q is

F (q) =
`−1∏
k=1

(
qk + (k − 1)(1− qk)

)
T` ,

where T` = `! (`− 1)! /2`−1. As a result, the number of RTCNs with ` labeled leaves
and b branchings is

C`,b =
[
`− 1
b

]
T` ,

where the bracket denotes the unsigned Stirling numbers of the first kind.

95



4. Ranked tree-child networks

Proof. Let us count the processes (Pk, 1 6 k 6 `) with profile q. When going from
k + 1 to k lineages, i.e. when considering event Uk, there are:

•
(k+1

2
)
possible coalescence events;

• (k − 1)
(k+1

2
)
possible reticulation events.

Therefore,

F (q) =
`−1∏
k=1

((k+1
2
)
qk + (k − 1)

(k+1
2
)
(1− qk)

)
.

Factoring out the binomial coefficients, we get the first part of the theorem. Then,
summing over all profiles with b branchings,

C`,b =

∑
|q|=b

`−1∏
k=1

(
qk + (k − 1)(1− qk)

)× T` .
The first factor can be seen to be the coefficient of degree b of the polynomial
P (X) = (X + 0)(X + 1) · · · (X + `− 2). Since by definition of the unsigned Stirling
numbers of the first kind,

P (X) =
`−1∑
b=0

[
`− 1
b

]
Xb ,

this concludes the proof.

Theorem 4.2.3 and its proof have several immediate corollaries. Let us start by
pointing out the following procedure to sample uniform RTCNs conditional on a
profile.

Corollary 4.2.4. The following procedure yields a uniform RTCN with profile q.
Starting from ` labeled lineages, for k = `− 1 down to 1:

• If qk = 1: let two lineages coalesce, uniformly at random
among all

(k+1
2
)
possibilities.

• If qk = 0: let three lineages reticulate, uniformly at random
among all (k − 1)

(k+1
2
)
possibilities.

Second, let us lift the restriction on the number of reticulations.

Proposition 4.2.5. For ` > 2, the number of RTCNs with ` labeled leaves is

C` = `! (`− 1)! 2

2`−1 .

Proposition 4.2.6. Starting from ` labeled lineages, let pairs of lineages and triplets
of lineages reticulate, choosing what to do uniformly among all possibilities at each
step and stopping when there is only one lineage left. Then, the resulting RTCN has
the uniform distribution on the set of RTCNs with ` labeled leaves.

Proofs. Proposition 4.2.5 is obtained by recalling that
∑`−1
b=0

[`−1
b

]
= (` − 1)! and

Proposition 4.2.6 by noting the realizations of the procedure correspond to those of
the process (Pk, 1 6 k 6 `), which uniquely encodes every leaf-labeled RTCN.
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Finally, let us point out the following fact about the profile and the number of
branchings of uniform RTCNs.

Corollary 4.2.7. Let q be the profile of a uniform RTCN with ` labeled leaves.
Then,

q ∼ (X1, . . . , X`−1) ,
where (X1, . . . , X`−1) are independent Bernoulli variables such that

P(Xk = 1) = 1
k
.

As a result, the number B` of branchings of a uniform RTCN with ` leaves, which
is distributed as the number of cycles of a uniform permutation of {1, . . . , `− 1},
satisfies

(i) E(B`) = H`−1, where H`−1 =
∑`−1
k=1 1/k is the (`− 1)-th harmonic number.

(ii) As `→∞, dTV
(
B`, Poisson(H`−1)

)
→ 0. In particular, B`−log `√

log `
d−−→ N (0, 1).

Proof. The first part of the proposition follows from the fact that the steps of the
algorithm described in Proposition 4.2.6 are independent and that, when going from
k + 1 to k lineages there are (k − 1)

(k+1
2
)
possible reticulations and

(k+1
2
)
possible

coalescences, so that choosing uniformly among those the probability of picking a
coalescence is 1/k.

Points (i) and (ii) for B` are classic properties of the distribution of the number
of cycles in a uniform permutation – see for instance Section 3.1 of [11] – that follow
easily from its representation as a sum of independent Bernoulli variables. Indeed,
(i) is immediate and for (ii) we can use the Stein-Chen bound on the total variation
distance between a sum of independent Bernoulli variables and the corresponding
Poisson distribution (recalled as Theorem B in Section 4.5) to get

dTV
(
B`, Poisson(H`−1)

)
6 min{1, 1/H`−1}

`−1∑
k=1

1
k2 = O

(
(log `)−1

)
,

from which the central limit theorem follows readily (see e.g. [2], page 17).

Finally, let us close this section by pointing out an unexpected connection be-
tween RTCNs and a combinatorial structure known as river-crossings.

Remark 4.2.8. The number of RTCNs with ` labeled leaves is also the number of
river-crossings using a two-person boat. It is recorded as sequence A167484 in the
Online Encyclopedia of Integer Sequences [1], where it is described as follows:

For ` people on one side of a river, the number of ways they can all travel
to the opposite side following the pattern of 2 sent, 1 returns, 2 sent, 1
returns, ..., 2 sent.

However, there does not seem to be any natural bijection between river-crossings
and RTCNs. Indeed,

1. RTCNs have a recursive structure that river-crossings lack.

2. For ` = 3, the C3 = 6 river-crossings are completely equivalent up to permuta-
tion of the labels, while the 6 RTCNs are not: 3 of them contain a reticulation
while 3 of them don’t. �
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4.2.2 Forward-time construction of RTCNs
In this section, we give a forwards-in-time construction of RTCNs that will yield a
second proof of Theorem 4.2.3. This proof is more combinatorial than the one we
have already given, and will provide a different intuition as to why Stirling numbers
arise in the enumeration of RTCNs.

The following notion of decorated RTCN will be useful.

Definition 4.2.9. A decorated RTCN is a pair (ν, θ), where

(i) ν is a RTCN with vertex set V and root ρ.

(ii) The decoration is a function θ : V \ {ρ} → {0, 1} such that
• If v is a reticulation vertex or the child of a reticulation vertex, θ(v) = 0.
• If u and v are siblings or step-siblings and none of them is a reticulation
vertex, then θ(u) = 1− θ(v). �

Note that this formal definition is just a way to say that:
• For every tree vertex v, we distinguish one of the outgoing edges by assigning
a “1” to one of the children of v.

• For every reticulation vertex v, we distinguish one of the incoming edges by
assigning a “1” to one of the siblings of v (this unambiguously determines their
common parent u and therefore the incoming edge ~uv).

The notion of decorated RTCN is similar in spirit to that ordered ranked tree,
where an ordering is specified for the children of each vertex, and indeed both notions
are equivalent for trees. However, when working with RTCNs it is not useful to
order the children of every vertex, in part because reticulated vertices already play
a special role.

Figure 4.5: An example of decorated RTCN with its simplified representation on the right. For
branchings, the decorated lineage is distinguished by drawing it to the right. For reticulations,
it is distinguished by a white dot (but note that this white dot corresponds to which of the
outgoing edges of the reticulation points to a 1 – not which vertex of the reticulation (if any)
bears one.

An important characteristic of decorated RTCNs is that, unlike their undecorated
counterparts, they are intrinsically labeled. Indeed, it is possible to assign a unique
label to every vertex of a decorated RTCN (ν, θ) as follows: first, remove every
reticulation edge distinguished by the decoration. This yields a tree ν̃. Then, assign
to each vertex v the label θ(u) · · · θ(v), where (ρ, u, . . . , v) is the unique path going
from the root ρ to v in ν̃. A consequence of this unique labeling of internal vertices
is that there are `! ways to label the leaves of a decorated RTCN with ` leaves.
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Before describing the forward-time construction of decorated RTCNs, let us in-
troduce one last combinatorial object.

Definition 4.2.10. A subexcedant sequence of length n is an integer-valued sequence
s = (s1, . . . , sn) such that, for all k, 1 6 sk 6 k. For any two subexcedant sequences
s and s′, the number of encounters of s and s′ is defined as

enc(s, s′) = #
{
k > 1 : sk = s′k

}
�

Lemma 4.2.11. For any subsexcedant sequence s of length n, there are
[n
k

]
subex-

cedant sequences s′ of length n such that enc(s, s′) = k.

A combinatorial proof of this classic result is recalled in Section 4.A of the Ap-
pendix. However, it also follows immediately by considering a uniform subexcedant
sequence s′ and noting that its number of encounters with s is distributed as the
sum for k = 1 to n of independent Bernoulli variables with parameters 1/k.

Let us now describe how to encode decorated RTCNs using subexcedant se-
quences. Let s◦ and s• be two subexcedant sequences of length `− 1. Start from a
single lineage indexed “1” and, for k = 1 to `− 1:
• If s◦k = s•k, then let lineage s◦k branch to create lineage k + 1.

• If s◦k 6= s•k, then let lineages s◦k and s•k hybridize to form lineage k + 1.
At each step of this procedure, decorate the lineage s◦k with a white dot. This
construction is illustrated in Figure 4.6.

Figure 4.6: Graphical representation of the forward-time construction of RTCNs. On the
left, the black and white dots represent the subexcedant sequences s• and s◦, respectively,
and on the right the corresponding RTCN. At each step, the new lineage (marked by a
cross) is linked to the black dot and the white dot. It these two dots fall on the same
lineage, we get a branching.

Observe that in this construction every pair of subexcedant sequences (s•, s◦)
will yield a different decorated RTCN ν◦, and that given a decorated RTCN ν◦ it is
possible to unequivocally recover the subexcedant sequences (s•, s◦) that produced
it. Thus, letting S̀−1 denote the set of subexcedant of length ` − 1 and C◦` that
of decorated RTCNs with ` unlabeled leaves, this constructions gives a bijection
between S̀−1 × S̀−1 and C◦` .

Also note that if at every step of the procedure we only link lineage k + 1 to
lineage s◦k and decorate the latter with a white dot, we get a bijection between S̀−1
and the set T◦` of decorated ranked trees with ` unlabeled leaves.
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4. Ranked tree-child networks

From this forward-time encoding of decorated RTCNs and Lemma 4.2.11, we
immediately get the following proposition.

Proposition 4.2.12. There are
[`−1
b

]
(` − 1)! decorated RTCNs with ` unlabeled

leaves and b branchings.

To recover Theorem 4.2.3 from Proposition 4.2.12, it suffices to recall that there
are `! ways to label the leaves of a decorated RTCN and to note that there are 2`−1

ways to decorate a RTCN.

Finally, let us close this section by pointing out that the following simple stochas-
tic process generates uniform RTCNs.

Proposition 4.2.13. Starting from a single lineage representing the root, let ev-
ery lineage branch at rate 1 and every ordered pair of lineages hybridize at rate 1,
decorating a lineage when it branches and decorating the first vertex of an ordered
pair of lineages when it hybridizes. The RTCN obtained by stopping upon reaching `
lineages is uniform on the set of decorated RTCN with ` leaves. Relabeling its leaves
uniformly at random and discarding its decoration yields a uniform RTCN with `
labeled leaves.

4.3 RTCNs and ranked trees
The forward-time construction of the previous section gave us a way to encode a
decorated RTCN using a decorated ranked tree and a subexcedant sequence. In
fact, Theorem 4.2.3 shows that it is also possible to encode an undecorated leaf-
labeled RTCN using a leaf-labeled ranked tree and, e.g., a subexcedant sequence or
a permutation – even though we were unable to find any meaningful such encoding.

In this section, we specialize the results of the previous section in order to explain
how to obtain RTCNs from ranked trees using simple graph operations, without
having to explicitly manipulate subexcedant sequences. In particular, we give a
simple way to sample a uniform RTCN conditional on displaying a given ranked
tree. Readers who are more interested in the structural properties or RTCNs than
in how to sample them can jump to the next section.

4.3.1 Reticulation, unreticulation and base trees
Let us recall that the classic graph operation known as the vertex identification
of u and v consists in replacing u and v by a new vertex w whose neighbors (in-
neighbors and out-neighbors, respectively) are exactly the neighbors of u and those
of v (without introducing a self-loop in the case where u and v were neighbors).
Conversely, the cleaving of ~uv consists in introducing an intermediate vertex w
between u and v, that is: adding w to the graph, removing ~uv and adding ~uw
and ~wv.

Definition 4.3.1. The unreticulation of a reticulation edge ~uv is the graph operation
consisting in

1. Removing ~uv.

2. Identifying u and its (now only) child.

3. Identifying v and its child.
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Conversely, the reticulation of a tree edge e1 into a tree edge e2 consists in

1. Cleaving e1 and e2.

2. Adding an edge from the vertex introduced in the middle of e1 to that intro-
duced in the middle of e2.

These operations are illustrated in Figure 4.7. �

Figure 4.7: The operations of unreticulation and reticulation.

Unreticulating edges of a tree-child network N yields a tree N ′ with the same
number of leaves as N as well as a partition into events and a genealogical order
that are compatible with those of N . This justifies the following definition.

Definition 4.3.2. A ranked tree τ is a called a base tree of a RTCN ν if is possible
to obtain it by unreticulating edges of ν. In that case, we write τ @ ν and say that
ν displays τ . �

Note that since each reticulation vertex has two incoming reticulating edges and
that unreticulating each of these yields different RTCNs, every leaf-labeled RTCN
with r reticulations displays exactly 2r ranked trees.

4.3.2 Uniform base trees of a uniform RTCN

Proposition 4.3.3. The ranked tree obtained by unreticulating one the of two in-
coming edges of each reticulation vertex of a uniform RTCN with ` labeled leaves,
each with probability 1/2, has the uniform distribution on the set of ranked trees with
` labeled leaves.

Proof. Let ν be a uniform leaf-labeled RTCN. The procedure described in the propo-
sition amounts to:

1. Decorating ν uniformly at random to obtain a decorated leaf-labeled RTCN ν◦.

2. Unreticulating each of the undecorated reticulation edges of ν◦ to produce a
decorated leaf-labeled tree τ◦.

3. Discarding the decoration of τ◦.

In the forward-time encoding, ν◦ corresponds to a unique triplet ν◦ ' (s•, s◦, σ),
where the permutation σ represents the leaf labeling. Now, since ν◦ is uniform on
the set of decorated leaf-labeled RTCNs, (s◦, σ) is also uniform and as a result so
is τ◦ ' (s◦, σ). Finally, the tree obtained by forgetting the decoration of a uniform
decorated leaf-labeled ranked tree is uniform on the set of leaf-labeled ranked trees,
concluding the proof.
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4.3.3 Sampling RTCNs conditional on displaying a tree

To obtain a RTCN from a ranked tree, we need to pay attention to the constraints
imposed by the chronological order. Indeed, it is not possible to reticulate any tree
edge of a RTCN into any other tree edge and obtain a RTCN. To formulate this
restriction, we need to introduce the notion of contemporary edges.

Definition 4.3.4. Let us write ū 4 v̄ to indicate that ū ≺ v̄ or ū = v̄, and convene
that if u is a leaf then ū = ∂V and v̄ ≺ ū for any internal vertex v.

The edge ~uv is said to be alive between two events U ≺ U ′ if

(i) It is a tree edge.

(ii) ū 4 U and U ′ 4 v̄.

Two edges are said to be contemporary if there exist two events such that they
are both alive between these events. �

As for events, these definitions become very intuitive when using the graphical
representation of RTCNs. Recall that, in this representation, we think of the vertical
axis as time, and that tree edges correspond to vertical lines while events correspond
to horizontal ones. An edge is alive between two events if a portion of it is located
in the horizontal strip of the plane delimited by the two events. Two edges are
contemporary if they overlap when projected on the vertical axis. This is illustrated
in Figure 4.8.

Note that if we let U1 ≺ . . . ≺ U`−1 denote the events of a RTCN with ` leaves,
with the convention that U` = ∂V , then there are exactly k+ 1 edges alive between
Uk and Uk+1.

Figure 4.8: A RTCN with its events numbered in increasing order
(and with the convention that U7 = ∂V ). The red edges are the four
edges that are alive between events U3 and U4.
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Recall the Definition 4.2.2 of a profile.

Proposition 4.3.5. Let τ be a ranked tree with ` labeled leaves and let q be a profile.
Letting U1 ≺ . . . ≺ U`−1 denote the branchings of τ , for k = 1 to `− 1:

• If qk = 1, do nothing.

• If qk = 0, letting u denote the vertex such that Uk = {u}:

1. Pick an edge e uniformly at random among the two outgoing edges of u.
2. Pick an edge e′ uniformly at random among the k − 1 edges that are

contemporary with e and do not contain u.
3. Reticulate e′ into e.

Then, resulting RTCN ν has the uniform distribution on the set of RTCNs with
profile q displaying τ . Moreover, if τ is uniform then ν is uniform on the set of
RTCNs with profile q. If in addition q is distributed as the profile of a uniform
RTCN (see Corollary 4.2.7), then the resulting RTCN is uniform on the set of
RTCNs with ` labeled leaves.

Figure 4.9: Example of the random construction of a RTCN from a ranked tree
described in Proposition 4.3.5. Here, nothing happens for U1 and U3. For U2 and
U4, the black dot represents the edge e and the white one the edge e′. Note that
the modifications of branching events can be performed in any order, but that they
have to be performed sequentially, so that contemporary edges remain well-defined
at every step of the procedure.

Proof. The first part of the proposition follows from the fact (1) that for every fixed
ranked tree θ and for every RTCN µ displaying θ there is exactly one sequence
of modifications of θ that yields µ, and (2) that each possible realization of the
procedure described in the proposition has the same probability, namely

α(q) =
`−1∏
k=1

(
qk + 2(k − 1)(1− qk)

)−1
,

although the exact value of this probability does not matter here. Thus, letting
Q(µ) denote the profile of µ,

P(ν = µ | τ = θ) = α(q)1{Q(µ)=q, θ@µ} .

Now let us assume that τ is uniform. We have to show that for any RTCN µ,

P(ν = µ) = 1
F (q)1{Q(µ)=q} ,
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where F (q) is the number of RTCNs with profile q, whose exact value does not
matter here. Since P(τ = θ) = 1/T` for all fixed ranked tree θ,

P(ν = µ) =
∑
θ@µ

α(q) · 1
T`
· 1{Q(µ)=q} .

Now let r =
∑`−1
k=1(1− qk) denote the number of reticulations of the profile q. Since

every RTCN with profile q displays exactly 2r ranked trees, we have

P(ν = µ) = 2rα(q)
T`

· 1{Q(µ)=q} ,

which concludes the proof since the factor 2rα(q)/T` does not depend on µ.

To close this section, note that to generate all RTCNs displaying a ranked tree it
suffices to apply the procedure above without the restrictions of the profile, and that
there are then 2(k− 1) + 1 possible actions at step k of the procedure. This gives us
the following proposition counting the number of RTCNs displaying a ranked tree.

Proposition 4.3.6. The number of RTCNs displaying any ranked tree τ is

#{ν : τ @ ν} =
`−1∏
k=1

(2k − 1) = (2`− 3)!!

Remark 4.3.7. Surprisingly, this is also the number of rooted unranked binary
trees with ` labeled leaves – see e.g. [9] or [13]. While it is possible to give a bijective
proof of this, we have not found a simple and visual bijection that would make this
intuitive. �

4.4 Cherries and reticulated cherries
Cherries and reticulated cherries are among the most basic statistics of tree-child
networks. In biological terms, a cherry is a pair of non-hybrid sibling species and a
reticulated cherry is a group of three extant species such that one of these species was
produced by the hybridization of the two others. These notions can be formalized
as follows.

Definition 4.4.1. An event is said to be external when⋃
u∈U

Γout(u) ⊂ ∂V ,

where Γout(u) denotes the set of children of vertex u and ∂V is the leaf set of N .

• A cherry is an external branching event.

• A reticulated cherry is an external reticulation event.

These notions are illustrated in Figure 4.10 �
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Figure 4.10: A RTCN with its only cherry (in
blue) and its two reticulated cherries (in red).

4.4.1 Number of cherries

In this section, we prove the first part of what was announced in the introduction
as Theorem 4.4.2.

Theorem 4.4.2 (Point (i)). Let κ` be the number of cherries of a uniform RTCN
with ` labeled leaves. Then,

κ`
d−−−−→

`→∞
Poisson

(
1
4

)
.

The proof consists in coupling κ` with a Markov chain to show that the factorial
moments of κ`, that is, mn

` := E(κ`(κ` − 1) · · · (κ` − n+ 1)), satisfy the recursion

mn
`+1 =

(
`− 2n
`

)2
mn
` + n(`− 2n+ 2)

`2
mn−1
` ,

and then using this recursion to prove that mn
` → 1/4 as ` → ∞ for all n. We

separate each of these steps into different propositions.

Proposition 4.4.3. Let (X`)`>2 be the Markov chain defined by

(i) X2 = 1

(ii) For ` > 2, conditional on X` = k,

X`+1 =



k − 2 with probability 2k(2k − 2)
`2

k − 1 //
2k + 4k(`− 2k)

`2

k //
(`− 2k)(`− 2k − 1) + 2k

`2

k + 1 //
`− 2k
`2

Then, for all ` > 2, X` is distributed as the number κ` of cherries of a uniform
RTCN with ` labeled leaves.
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Proof. Let us use the forward-time construction to build a nested sequence (ν◦` )`>2
of uniform decorated RTCNs. Recall from Section 4.2.2 that to go from ν◦` to ν◦`+1,
we choose an ordered pair (u, v) of lineages ν◦` uniformly at random. If u = v, we
let the lineage branch; otherwise we let u and v hybridize.

Now, assume that ν◦` has k cherries, so that there are 2k lineages that belong to
cherries (which we refer to as C-leaves) and ` − 2k lineages that do not (F-leaves).
Let us list all possible choices of (u, v) and see their effect on the number of cherries.

1. If the next event is a branching:

(i) If a C-leaf is chosen, the number cherries does not change. This happens
with probability 2k/`2.

(ii) If a F-leaf is chosen, one cherry is created (probability: (`− 2k)/`2).

2. If the next event is a hybridization:

(i) If the two leaves of a same cherry are chosen, that cherry is destroyed
(probability: 2k/`2).

(ii) If two leaves of two different cherries are chosen, these two cherries are
destroyed (probability: 2k(2k − 2)/`2).

(iii) If a C-leaf and a F-leaf are chosen, one cherry is destroyed (probability:
4k(`− 2k)/`2).

(iv) If two F-leaves are chosen, the number of cherries does not change (prob-
ability: (`− 2k)(`− 2k − 1)/`2).

Doing the book-keeping and observing that a RTCN with 2 leaves has one cherry
concludes the proof.

Notation 4.4.4. We denote by xn =
∏n−1
k=0(x−k) the n-th falling factorial of x. �

Proposition 4.4.5. Let (X`)`>2 be the Markov chain defined in Proposition 4.4.3
and let mn

` = E
(
X
n
`

)
denote the n-th factorial moment of X`. Then,

mn
`+1 =

(
`− 2n
`

)2
mn
` + n(`− 2n+ 2)

`2
mn−1
` .

Proof. Let p(−2), p(−1), p(+0) and p(+1) denote the transition probabilities of X`, con-
ditional on X` = k. Then,

E
(
X
n
`+1

∣∣∣X` = k
)

= (k − 2)n p(−2) + (k − 1)n p(−1) + kn p(+0) + (k + 1)n p(+1)

= kn
((k − n)(k − n− 1)

k(k − 1) p(−2) + k − n
k

p(−1) + p(+0) + k + 1
k − n+ 1p(+1)

)

= kn

`2

(
4(k − n)(k − n− 1) + 2(k − n)(1 + 2(`− 2k))

+ (`− 2k)(`− 2k − 1) + 2k + (k + 1)(`− 2k)
k − n+ 1

)
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After a little algebra to rearrange this last expression, we get

E
(
X
n
`+1

∣∣∣X` = k
)

= kn
(
`− 2n
`

)2
+ kn−1 n(`+ 2− 2n)

`2

and the proposition follows by integrating in k.

Proposition 4.4.6.

(i) For all ` > 2, E(κ`) = (3`−5)`
12(`−1)(`−2) .

(ii) For all n > 1, E
(
κ
n
`

)
→ 1/4 as `→∞. As a result, κ`

d−−−−→
`→∞

Poisson(1/4).

Proof. The expression for E(κ`) given in (i) follows from Lemma 4.B.1 and routine
calculations. To prove (ii), we proceed by induction on n. First, we see from the
expression in (i) that m1

` → 1/4 as ` → ∞. Now pick n > 2 and assume that
mn−1
` → 1/4n as `→∞. By Proposition 4.4.5,

mn
`+1 = a`m

n
` + b` ,

where
a` =

(
`− 2n
`

)2
and b` = n(`− 2n+ 2)

`2
mn−1
` .

Since a` 6= 0 for all ` > 2n+ 1, and that

k∏
j=2n+1

(
j − 2n
j

)2
= 1( k

2n
)2 ,

using Lemma 4.B.1 we get

mn
` =

mn
2n+1 +

`−1∑
k=2n+1

n(k − 2n+ 2)
k2

(
k

2n

)2

mn−1
k

 / (`− 1
2n

)2

Now, as k →∞,
( k
2n
)
∼ k2n/(2n)! and, by the induction hypothesis, mn−1

k ∼ 1/4n−1.
As a result,

n(k − 2n+ 2)
k2

(
k

2n

)2

mn−1
k ∼ n/4n

(2n)! 2 k
4n−1 .

Using Lemma 4.B.2 to get an asymptotic equivalent of the sum of these terms,

mn
` ∼

n/4n−1

(2n)! 2 ·
`4n

4n ·
((2n)!
`2n

)2
= 1/4n .

The convergence in distribution of X` to a Poisson distribution with mean 1/4 is
then a classic result (see e.g. Theorem 2.4 in [15]).

4.4.2 Number of reticulated cherries
In this section, we prove the second part of Theorem 4.4.2.

Theorem 4.4.2 (Point (ii)). Let χ` be the number of reticulated cherries of a uni-
form RTCN with ` labeled leaves. Then,

χ`
`

P−−−−→
`→∞

1
7 .
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The proof is quite similar to that used in the previous section to study the number
κ` of cherries – namely, we couple χ` with a Markov chain in order to compute its
moments. The difference is that the moments of χ` are not as tractable as those
of κ`. As a result, we only compute the first two moments explicitly and then use
Chebyshev’s inequality to prove the convergence in probability.

Proposition 4.4.7. Let (X`)`>2 be the Markov chain defined by

(i) X2 = 0

(ii) For ` > 2, conditional on X` = k,

X`+1 =



k − 1 with probability 3k (3k − 2)
`2

k // 1− 3k (3k − 2) + (`− 3k)(`− 3k − 1)
`2

k + 1 //
(`− 3k)(`− 3k − 1)

`2

Then, for all ` > 1, X` has the distribution of the number of reticulated cherries of
a uniform RTCN with ` leaves.

Proof. As in the proof of Proposition 4.4.3, let us consider a nested sequence of
uniform decorated RTCNs (ν◦` )`>2 produced by the forward-time construction, and
see how the number of reticulated cherries is affected when we go from ν◦` to ν◦`+1.

Assuming that there are k reticulated cherries in χ`, there are 3k leaves associated
with reticulated cherries (RC-leaves) and `− 3k other leaves (F-leaves). Now

1. If the next event is a branching:

(i) If a F-leaf is chosen, the number of reticulated cherries does not change.
This happens with probability (`− 3k)/`2.

(ii) If a RC-leaf is chosen, the corresponding reticulated cherry is destroyed
(probability: 3k/`2).

2. If the next event is a reticulation:

(i) If two F-leaves are chosen, one reticulated cherry is created (probability:
(`− 3k)(`− 3k − 1)/`2).

(ii) If a F-leaf and a C-leaf are chosen, one reticulated cherry is destroyed and
one is created (probability: 6k(`− 3k)).

(iii) If two RC-leaves are chosen:
a. If they do not belong to two different reticulated cherries, these

are destroyed and a new reticulated cherry is created (probability:
3k(3k − 3)/`2).

b. If they belong to the same reticulated cherry, this reticulated cherry
is destroyed and another one is created (probability: 6k/`2).

Doing the book-keeping and observing that a RTCN with 2 leaves has 0 reticulated
cherries yields the proposition.
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Proposition 4.4.8. The expected number µ` = E(χ`) of reticulated cherries of a
uniform RTCN with ` leaves µ` satisfies the recursion

µ`+1 =
(
`− 3
`

)2
µ` + `− 1

`
.

As a result, we have µ2 = 0, µ3 = 1/2, µ4 = 2/3 and, for ` > 4,

µ` = (15 `3 − 85 `2 + 144 `− 71) `
105 (`− 1)(`− 2)(`− 3) .

Proof. Using the Markov chain of Proposition 4.4.7, we have

E(X`+1 |X` = k) = k + P(X`+1 = k + 1 |X` = k)− P(X`+1 = k − 1 |X` = k)

= k

(
`− 3
`

)2
+ `− 1

`
,

and the recursion follows by integrating against the law of X`.

The expression of µ` then follows from Lemma 4.B.1 and calculations that are
better performed by a symbolic computation software such as [14].

Proposition 4.4.9. The variance of the number of reticulated cherries of a uniform
RTCN with ` leaves is

Var(χ`) = 24
637 ` + 1

21 + o(1) .

The proof of this proposition is exactly the same as that of Proposition 4.4.8 but
involves more complex expressions that can be found in Section 4.C of the Appendix.

Finally, the convergence in probability of χ`/` to 1/7 follows readily from Cheby-
shev’s inequality and the fact that E(χ`) ∼ `/7 and Var(χ`) = O(`).

4.5 Random paths between the roots and the leaves
In this section, we study the length of two random paths going from the root to the
leaf set:

1. A path obtained by starting from the root and going “down” towards the
leaves, choosing each outgoing edge with equal probability whenever we reach
a tree vertex.

2. A path obtained by starting from a uniformly chosen leaf and going “up”
towards the root, choosing each incoming edge with equal probability whenever
we reach a reticulation vertex.

Definition 4.5.1. The length of a path γ is its number of tree edges. �

The reason why we do not count reticulation edges when calculating the length
of a path is that, from a biological point of view, reticulation edges are supposed to
correspond to “instantaneous” hybridization events.

Before starting with the proofs, let us introduce some notation.
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Notation 4.5.2. We denote by

H(m)
n =

n∑
k=1

1
km

the n-th generalized harmonic number of order m. We also use the notation G =
limnH

(1)
n − logn for the Euler-Mascheroni constant. �

Finally, let us recall a classic bound on the total variation distance between a
sum of independent Bernoulli variables and the corresponding Poisson distribution.

Theorem B. Let X1, . . . , Xn be independent Bernoulli variables with parameters
P(Xi = 1) = pi, and let λn =

∑n
i=1 pi. Then,

dTV

(
n∑
i=1

Xi, Poisson(λn)
)
6 min(1, 1/λn)

n∑
i=1

p2
i ,

where dTV denotes the total variation distance.

This inequality is a consequence of the Stein-Chen method and can be found,
e.g. as Theorem 4.6 in [12].

4.5.1 Length of a random walk from the root to a leaf

In this section, we prove the first part of what was announced as Theorem 4.5.3 in
the introduction.

Theorem 4.5.3 (Point (i)). Let ν be a uniform RTCN with ` leaves, and let γ↓
be a random path obtained by starting from the root and following the edges of ν,
choosing each of the two out-going edges of a tree vertex with equal probability and
stopping when we reach a leaf. Then,

length(γ↓) =
`−1∑
k=1

Ik ,

where I1, . . . , I`−1 are independent Bernoulli variables with parameter

P(Ik = 1) = 2k − 1
k2 .

In particular, letting c↓ = 2G− π2/6, where G is the Euler-Mascheroni constant,

(i) E
(
length(γ↓)

)
= 2 log `+ c↓ + o(1).

(ii) Var
(
length(γ↓)

)
= 2 log `+O(1).

(iii) dTV
(
length(γ↓), Poisson(2 log `+ c↓)

)
→ 0.

Proof. The idea of the proof is to use the forward-time construction to build jointly
a nested sequence (ν◦` )`>2 of uniform decorated RTCNs and the random path γ↓.
With the convention that ν◦1 consists of a single lineage, for k > 2 let (uk, vk) denote
the pair of lineages that was chosen to turn ν◦k−1 into ν◦k (recall that if uk = vk then
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the next event is a branching) and let xk record the position of the random walk
among the leaves of ν◦k−1. With this notation, the length of γ↓ in ν◦` is

length(γ↓) =
`−1∑
k=1

1{xk∈{uk,vk}} ,

where the variables 1{xk∈{uk,vk}} are independent because (xk−1, xk) is independent
of (uk, vk). Moreover, since (uk, vk) is chosen uniformly among the pairs of lineages
of ν◦k−1 and independently of xk,

P(xk ∈ {uk, vk}) = 2k − 1
k2 ,

which proves the first part of the proposition.

The rest of the proposition follows immediately from Theorem B since, letting
pk = (2k − 1)/k2,

• E
(
length(γ↓)

)
=
∑`−1
k=1 pk = 2H(1)

`−1 −H
(2)
`−1.

• Var
(
length(γ↓)

)
=
∑`−1
k=1 pk(1− pk) = 2H(1)

`−1 − 5H(2)
`−1 + 4H(3)

`−1 −H
(4)
`−1.

•
∑`−1
k=1 p

2
k = 4H(2)

`−1 − 4H(3)
`−1 +H

(4)
`−1.

4.5.2 Length of a random walk from a leaf to the root

In this section, we prove the second part of Theorem 4.5.3.

Theorem 4.5.3 (Point (ii)). Let ν be a uniform RTCN with ` leaves, and let γ↑
be a random path obtained by starting from a uniformly chosen leaf and following
the edges of ν in reverse direction, choosing each of the two incoming edges of a
reticulation vertex with equal probability and stopping when we reach the root. Then,

length(γ↑) =
∑̀
k=2

Jk ,

where J2, . . . , J` are independent Bernoulli variables with parameter

P(Jk = 1) = 3k − 4
k(k − 1) .

In particular, letting c↑ = 3G− 4, where G is the Euler-Mascheroni constant,

(i) E
(
length(γ↑)

)
= 3 log `+ c↑ + o(1).

(ii) Var
(
length(γ↑)

)
= 3 log `+O(1).

(iii) dTV
(
length(γ↑), Poisson(3 log `+ c↑)

)
→ 0.

Remark 4.5.4. Note that the random path γ↑ is not uniformly chosen among all
the paths going from the focal leaf to the root. �
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Proof. The proof is similar to that of the previous section, but this time the idea is
to use the backward-time construction to jointly build the RTCN ν and the random
path γ↑. Recall that, in the backward-time construction, for k = ` down to 2, we
go from k to k − 1 lineages by choosing an event uniformly at random among the
k(k− 1)/2 possible coalescences and k(k− 1)(k− 2)/2 possible reticulations. Out of
these, k−1 coalescences and (k−1)(k−2)(k−3)/2 reticulations involve the lineage
through which γ↑ goes, and the choice is independent of the position of γ↑. As a
result, the probability that the lineage containing γ↑ is involved in the event that is
chosen is

k − 1 + 3(k − 1)(k − 2)/2
k(k − 1)/2 + k(k − 1)(k − 2)/2 = 3k − 4

k(k − 1) ,

proving the first part of the proposition. The rest of the proposition then follows
Theorem B and from the fact that, letting pk = 3k−4

k(k−1) ,

• E
(
length(γ↑)

)
=
∑`
k=2 pk = 3H(1)

` − 4 + 3/`.

• Var
(
length(γ↑)

)
=
∑`
k=2 pk(1− pk) = 3H(1)

` + 20− 17H(2)
` − 7/`+ 1/`2.

•
∑`
k=2 p

2
k = −17H(2)

` + 24− 10/`+ 1/`2.

4.5.3 An alternative proof of Theorem 4.5.3

In this section, we give another proof of Theorem 4.5.3. This proof is less direct
than the previous one, but it will give another intuition as to where the Poisson
distribution, the log ` order of magnitude and the factors 2 and 3 come from.

Because writing down this proof formally would require introducing additional
notation, and because we already have a formal proof, we allow ourselves to present
it as a heuristic.

Let us start with γ↓. Slowing-down time in Proposition 4.2.13, consider the
uniform decorated RTCN with ` leaves ν◦ obtained by:

1. Starting from one lineage.

2. Conditional on there being k lineages, letting:

• each lineage branch at rate 1/k;

• each ordered pair of lineages hybridize at rate 1/k.

3. Stopping upon reaching ` lineages.

Note that in this construction a branching event is viewed as the production of
a new particle by another, rather than as the splitting of a particle into two new
particles. Thus, we can consider the path γ̃↓ obtained by always following the edge
corresponding to the lineage of the first particle, as illustrated in Figure 4.11.

From the forward-time joint construction of ν◦ and γ↓, we see that the distri-
bution of γ↓ does not depend on which lineage it chooses to follow, as long as this
choice only depends on the past of the process. As a result,

length(γ↓) d= length(γ̃↓) .
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31 24 5 67 31 24 5 67

Figure 4.11: On the left, the path γ↓ and on the
right the path γ̃↓ corresponding to the lineage of
the first particle.

Now, length(γ̃↓) is simply the number of events affecting the lineage of the first
particle, and the rate at which each given lineage is affected by events is (k−1) 2

k+ 1
k ≈

2. Therefore, conditional on the time T it takes for the process to reach ` lineages,

length(γ̃↓) ≈ Poisson(2T ) .

Finally, the total number of lineages increases by 1 at rate k · 1
k + k(k − 1) · 1

k = k
and therefore follows a Yule process (Y (t) t > 0). Since as t → ∞, Y (t)e−t → W
almost surely, where W is a random variable (namely, an exponential variable with
parameter 1), we see that the random time T it takes for the process to reach `
lineages is asymptotically

T ≈ log `− logW .

Putting the pieces together, we see that length(γ↓) ≈ Poisson(2 log `).

Let us now give a similar, forward-in-time construction of γ↑ where it can be
identified with the lineage of the first particle. For this, we need to “straighten” γ↑
thanks to a set of deterministic rules telling us how to fix each bend, as illustrated
in Figure 4.12. This yields a ν̃◦ = f(ν◦, γ↑) in which γ̃↑, the image of γ↑, is the
lineage of the first particle.

31 24 5 67 31 24 5 67
31 2 312

1 2 1 2

Figure 4.12: Illustration of the deterministic procedure used to “straighten” the path γ↑ in order
to make it coincide with the lineage of the first particle. Left, the local modifications that are
made each time a branching or a reticulation is encountered : these essentially consist in swapping
lineages. Right, an example of application of the procedure to a RTCN.

Having done this, length(γ↑) = length(γ̃↑) and, conditional on ν̃◦, the length
of γ̃↑ is the number of events affecting the lineage of the first particle.
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Now, ν̃◦ has the same distribution as the decorated RTCN ν̂◦ generated by the
following continuous-time Markov chain.

• Each lineage branches at rate 1/k, except for that of the first particle, which
branches at rate 2/k.

• Each ordered pair of lineages hybridizes at rate 1/k, except for pairs involving
the lineage of the first particle, which hybridize at rate 3/(2k).

This is proved by writing down explicitly the laws ν̃◦ and ν̂◦, exactly as we did in
Section 2.4 of Chapter 2 – something that requires introducing notation to give a
formal description of ν̃◦. However, to see where the factors 2 and 3/2 for the lineage
of the first particle come from in the construction of ν̂◦, it suffices to note that when
going from k−1 to k lineages the probability that the next event involves the lineage
of the first particle is

3(k − 2) + 2
3(k − 2) + 2 + (k − 2)(k − 3) + (k − 2) = 3k − 4

k(k − 1) ,

and so is indeed the same as the probability the lineage containing γ↑ is involved
when going from k to k − 1 lineages in the joint backward-time construction of ν◦
and γ↑ given in Section 4.5.2.

In the construction of ν̂◦, conditional on there being k lineages, events affect the
lineage of the first particle at rate 2(k− 1) · 3

2k + 2
k ≈ 3 so that letting T̂ denote the

random time it takes for the process to reach ` lineages, length(γ↑) ≈ Poisson(3T̂ ).
Finally, since the total number of lineages increases by 1 at rate k+1 when there are
k lineages, the total number of lineages is distributed as Ŷ (t)−1, where (Ŷ (t), t > 0)
is a Yule process started from 2, so that Ŷ (t)e−t → W +W ′, where W and W ′ are
independent exponential variables with parameter 1. Therefore, T̂ ≈ log ` and we
recover length(γ↑) ≈ Poisson(3 log `).

4.6 Number of lineages in the ancestry of a leaf
Let us start by giving a formal definition of the process counting the number of
lineages in the ancestry of a leaf that was described in Section 4.1.4.

4.6.1 Definition and characterization of X(`)

Definition 4.6.1. The ancestry of a vertex u of a RTCN ν is the subgraph ν u

consisting of all paths going from the root of ν to u. �

Definition 4.6.2. The number of lineages of a subgraph µ of a RTCN ν is the
process (Xk, 0 6 k 6 `− 2) defined by

Xk = #
{
e ∈ µ : the edge e is alive between Uk and Uk+1

}
,

where U1 � · · · � U`−1 are the events of ν, taken in inverse chronological order, with
the same convention as in Definition 4.3.4 that U0 = ∂V . �

In the rest of this section, we study the number of lineages in the ancestry of
a uniformly chosen leaf of a uniform RTCN with ` labeled leaves, and denote it by
X(`). See Figure 4.2 in Section 4.1.4 for an illustration. We also study the embedded
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process X̃(`) defined by X̃i = Xki , where k0 = 0 and, for i > 1, ki = inf{k > ki−1 :
Xk 6= Xki−1}.

Let us start by characterizing the law of X(`).

Proposition 4.6.3. The process X(`)
k is the Markov chain characterized by X(`)

0 = 1
and the transition probabilities:

• P
(
X

(`)
k+1 = x+ 1

∣∣∣X(`)
k = x

)
= x(`− k − x)(`− k − x− 1)

(`− k)(`− k − 1)2

• P
(
X

(`)
k+1 = x− 1

∣∣∣X(`)
k = x

)
= x(x− 1)2

(`− k)(`− k − 1)2

• P
(
X

(`)
k+1 = x

∣∣∣X(`)
k = x

)
= 1− P

(
Xk+1 = x± 1

∣∣∣X(`)
k = x

)

Proof. The proof relies on the backward construction of a uniform RTCN and a bit
of book-keeping to see how the (k + 1)-th event, which takes us from `− k lineages
to `− k − 1 lineages, affects the number of lineages in the ancestry of a leaf. Recall
that in the backward construction there are (` − k)(` − k − 1)2/2 possibilities for
the (k + 1)-th event. Let us refer to the lineages in the ancestry of the focal leaf as
marked lineages. Conditional on X(`)

k = x, there are x marked lineages and `−k−x
unmarked lineages and thus there are:

• x(x− 1)/2 possible coalescences between marked lineages. These decrease the
number of lineages by 1.

• x(x − 1)(x − 2)/2 reticulations involving only marked lineages. These also
decrease the number of lineages by 1.

• x(`−k−x)(`−k−x−1)/2 possible reticulations where the hybrid is a marked
lineage and the other two lineages are unmarked. These increase the number
of marked lineages by 1.

Other types of events (coalescences between two unmarked lineages, coalescences
between a marked and an unmarked lineage, etc...) leave the number of marked
lineages unchanged, as illustrated in Figure 4.13.

-1 0 +1
Figure 4.13: List of all the possible types of events and their effect on the number of
marked lineages.

Since the event is chosen uniformly among all possibilities, this concludes the
proof.
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4.6.2 Simulations
In this section, we present simulations supporting the conjectures about X(`) and
X̃(`) made in Section 4.1.4 and outline some ideas to approach these conjectures. Let
us start by looking at some individual trajectories of these processes, for increasing
values of `. As can be seen in Figure 4.14.A, most of the interesting behavior of X(`)

seems to happen very close to the root so that to obtain a non-degenerate scaling-
limit, we need to focus on a small window of time, for instance by considering X(`)

k

for k = b`−M
√
`(1− t)c and t ∈ [0, 1].
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Figure 4.14: Individual trajectories of the processes described in the main text, for
different values of `. A, the process X(`), B the process t 7→ 1√

`
X

(`)
b`M
√
`(1−t)c

and C,
the process X̃(`).

Even though the trajectories represented in Figure 4.14 seem to become smooth
as `→∞, they do not become deterministic, as made apparent by Figure 4.15, where
the distributions of some statistics of X(`) are given. In particular, these simulations
suggest that the relevant scaling limit forX` is indeed 1√

`
X

(`)
b`−M

√
`(1−t)c, and support

Conjecture 4.6.6.

Our current idea to approach the study of the process X(`) is to separate it into
two phases:

1. A slow, stochastic phase, where up to time k = b` −M
√
`c the process X(`)

k

remains relatively small and highly stochastic

2. A fast, deterministic phase, during which the internal dynamics of the rescaled
process become deterministic, but retain a trace of the stochasticity of the first
phase in the form of random initial conditions.
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Figure 4.15: Distribution of some statistics of X(`) for M = 10 and 500 trajectories.
A, 1√

`
max{X(`)

k : 0 6 k 6 ` − 2}; B, 1√
`

(
`− argmax{X(`)

k : 0 6 k 6 `− 2}
)

and C,
1√
`
X

(`)
b`−M

√
`c

4.6.3 The stochastic phase
In this section, to avoid clutter we will sometimes drop the superscript in X(`).

Let us start by considering the process Z = (Zk, 0 6 k 6 `− 2) characterized by
Z0 = 1, Zk+1 − Zk ∈ {0, 1} and

P(Zk+1 = z + 1 | Zk = z) = z

`− k − 1 .

Comparing the transition probabilities of Z with those of X, we see that we can
couple these two processes in such a way that Xk 6 Zk for all k. Let us now compute
the first moments of Z.

Proposition 4.6.4.

(i) E(Zk) = `

`− k

(ii) E
(
Z2
k

)
= `(`+ k + 1)

(`− k)(`− k + 1)

Proof. We have
E(Zk+1) =

(
1 + 1

`− k − 1

)
E(Zk) .

Using that E(Z0) = 1, we get

E(Zk) =
k−1∏
i=0

(
1 + 1

`− i− 1

)
= `

`− k
,

proving (i). For (ii), we note that

E
(
Z2
k+1

∣∣∣ Zk) = Zk
`− k − 1 +

( 2
`− k − 1 + 1

)
Z2
k .
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Taking expectation and substituting E(Zk) by `/(`− k), we get

E
(
Z2
k+1

)
= `

(`− k)(`− k − 1) + `− k + 1
`− k − 1 E

(
Z2
k

)
.

Multiplying both sides by (`− k)(`− k − 1),

(`− k)(`− (k + 1))E
(
Z2
k+1

)
= ` + (`− (k − 1))(`− k)E

(
Z2
k

)
and therefore

E
(
Z2
k

)
= `(`+ k + 1)

(`− k)(`− k + 1) ,

concluding the proof.

Proposition 4.6.5. For all ` > 2 and k such that 0 6 k 6 `− 2,

`

`− k + 1

(
1− 2k

(`− k)(`− k − 1)

)
6 E(Xk) 6

`

`− k
.

As a result, for M > 2 and all ` large enough, for all ε > 0,

(1− ε) 1
M

(
1− 2

M2

)
6 E

(
1√
`
X

(`)
b`−M

√
`c

)
6

1
M

,

so that the sequence of random variables 1√
`
X

(`)
b`−M

√
`c is tight and bounded away

from 0 in L1.

Proof. The upper bound on E(Xk) follows immediately from Xk > Zk and Propo-
sition 4.6.4. For the lower bound, let us denote by Fk = σ(X0, . . . , Xk;Z0, . . . , Zk)
the filtration generated by Z and X. Then,

E(Xk+1 | Fk) = Xk + Xk(`− k −Xk)(`− k −Xk − 1)
(`− k)(`− k − 1)2 − Xk(Xk − 1)2

(`− k)(`− k − 1)2

= Xk

(
1 + (`− k)(`− k − 1)− 1

(`− k)(`− k − 1)2 − 2(`− k)− 3
(`− k)(`− k − 1)2 Xk

)

> Xk

(
1 + 1

`− k

)
− 2Z2

k

(`− k − 1)2

Taking expectations,

E(Xk+1) >
(

1 + 1
`− k

)
E(Xk)−

2
(`− k − 1)2E

(
Z2
k

)
,

and using Proposition 4.6.4 we get

E(Xk+1) >
(

1 + 1
`− k

)
E(Xk)−

2 `(`+ k + 1)
(`− k + 1)(`− k)(`− k − 1)2 .

Multiplying both side of the inequality by (`− k), we get

(`− k)E(Xk+1) > (`− (k − 1))E(Xk)−
2 `(`+ k + 1)

(`− k + 1)(`− k − 1)2 .

and as a result,

(`− (k − 1))E(Xk) > `+ 1− 2`
k−1∑
i=0

`+ i+ 1
(`− i+ 1)(`− i− 1)2 .
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Using the fact that

`+ i+ 1
(`− i+ 1)(`− i− 1)2 6

`+ i

(`− i)(`− i− 1)(`− i− 2)

and that
k−1∑
i=0

`+ i

(`− i)(`− i− 1)(`− i− 2) = k

(`− k)(`− k − 1) ,

we get
E(Xk) >

`

`− k + 1

(
1− 2k

(`− k)(`− k − 1)

)
.

Finally, to taking k = b`−M
√
`c in these inequalities we get

`√
`(M
√
`+ 2)

(
1− 2(`−M

√
`)

M
√
`(M
√
`− 1)

)
6

1√
`
E
(
Xb`−M

√
`c

)
6

1
M

where the term on the left-hand side of the inequality goes to 1
M (1− 2

M2 ) as `→∞.
Finally, the tightness follows from Markov’s inequality.

Proposition 4.6.5 makes the following conjecture seem likely to hold.

Conjecture 4.6.6. The sequence of random variables 1√
`
X

(`)
b`−M

√
`c converges in

distribution to a positive random variable WM . �

However, we have so far been unable to prove it. The problem is that as soon as
we get in the regime k = b`−M

√
`(1− t)c, Z(`) and X(`) start to differ significantly

and therefore the coupling is not so useful.

A very natural idea would be to use the backward-time construction to couple
X(`) and X

(`+1)
k , but a difficulty with this approach is that this coupling lacks

continuity in the sense that, with probability Θ(`), X(`)
k and X(`+1) will differ by a

factor Θ(`) for k = b`−M
√
`c.

The approach we are currently investigating consists in finding another tractable
process than Z(`) with which to couple X(`).

4.6.4 The deterministic phase

Proposition 4.6.7. If Conjecture 4.6.6 holds, that is, if

1√
M`
X

(`)
b`−M

√
`c

d−−−−→
`→∞

WM > 0

then, for all ε such that 0 < ε < 1, as `→∞,(
1

M
√
`
X

(`)
b`−M

√
`(1−t)c, t ∈ [0, 1− ε]

)
=⇒

(
y(t,WM ), t ∈ [0, 1− ε]

)
where =⇒ denotes convergence in distribution in the Skorokhod space and

y(t,WM ) = (1− t)M
CM · (1− t)2 + 1

where CM = W−1
M − 1.
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Proof. Let us write for convenience M` := M
√
` and

T` = 1
M`

{
0, . . . , `− 2− b`−M`c

}
.

Define the Markov chain (Y (`)
t , t ∈T`) taking values in 1

M`
N by

Y
(`)
t = 1

M`
X

(`)
b`−M`c+tM`

.

The Markov chain Y (`) has infinitesimal mean

b(`)(y, t) = M`E
(
Y

(`)
t+1/M`

− y
∣∣∣ Y (`)

t = y
)

= E
(
X

(`)
b`−M`c+tM`+1 − yM`

∣∣∣X(`)
b`−M`c+tM`

= yM`

)
= yM`(`− k − yM`)(`− k − yM` − 1)

(`− k)(`− k − 1)2 − yM`(yM` − 1)2

(`− k)(`− k − 1)2

where k = b`−M`c+ tM`. Let us show that, for any R > 0 and any ε > 0,

b(`)(y, t) −−−−→
`→∞

y(1− t− y)2

(1− t)3 − y3

(1− t)3 ,

uniformly in (y, t) ∈ [0, R]× [0, 1− ε]. Let us write
b
(`)
+ (y, t) = yM`(`− k − yM`)(`− k − yM` − 1)

(`− k)(`− k − 1)2

b
(`)
− (y, t) = yM`(yM` − 1)2

(`− k)(`− k − 1)2

Using that `−M` 6 k 6 `−M` + 1, we get

y(1− t− y − 2/M`)2

(1− t)3 6 b
(`)
+ (y, t) 6 y(1− t− y)2

(1− t− 2/M`)3

As a result,

b
(`)
+ (y, t)− y(1− t− y)2

(1− t)3 >
y

(1− t)3

(
− 4
M`

(1− t− y) + 4
M2
`

)

> − 4R
ε3M`

+O
(
1/M2

`

)
Similarly,

b
(`)
+ (y, t)− y(1− t− y)2

(1− t)3 6
y(1− t− y)2

(1− t)3(1− t− 2/M`)3

(
(1− t)3 − (1− t− 2/M`)3

)
6

R(1 +R)2

ε3(ε− 2/M`)3

( 6
M`

+O
(
1/M2

`

))
.

This proves the uniform convergence of b(`)+ (y, t). The uniform convergence of
b
(`)
− (y, t) is treated similarly.

Now, Y (`) has infinitesimal variance

a(`)(y, t) = M`E

((
Y

(`)
t+1/M`

− y
)2
∣∣∣∣ Y (`)

t = y

)
= 1

M`

(
b
(`)
+ (y, t) + b

(`)
− (y, t)

)
,
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which goes to zero uniformly in (y, t) ∈ [0, R]× [0, 1− ε]. Assuming that

1
M`
X

(`)
b`−M`c

d−−−−→
`→∞

WM ,

the convergence of the piecewise constant interpolation of Y (`) to the solution of the
Cauchy problem 

dy

dt
= y(1− t− y)2

(1− t)3 − y3

(1− t)3

y(0) = WM

follows from Corollary 4.2 of [6] (see for instance Chapter 8.7 of [5] for a more
practical introduction). Note that in these references, the results are stated for time-
homogeneous Markov chains. However, they are easily adapted to time-inhomogeneous
ones by extending the state space with time in order to obtain a time-homogeneous
process.

Finally, the function given in the Proposition is then readily checked to be the
unique solution of that Cauchy problem, concluding the proof.

To close this section, let us mention briefly that an idea to study the embedded
process X̃(`) is to introduce the process S(`) that counts the jumps of X(`). Indeed,
with this process,

X̃
(`)
i = X

(`)
(S(`))−1(i) .

As a result, if we can study the convergence

1
M`

(
X

(`)
b`−M`c+tM`

, S
(`)
b`−M`c+tM`

)
=⇒ (y(t), s(t)) ,

this would show that
1
M`
X̃

(`)
b`−M`(1−t)c =⇒ x(s−1(t)) ,

and we might be able to take M →∞ to study the convergence of 1√
`
X̃

(`)
b`tc. For the

moment however these are just ideas.
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Appendices to Chapter 4

4.A Permutations and subexcedant sequences
In this section, we recall a few classic combinatorial results that can be used to
obtain a bijective proof Lemma 4.2.11 concerning the cycles of permutations and
encounters of subexcedant sequences. While these results are not essential to our
study, they are interesting in their own right and help get a better intuition as to
why Stirling numbers emerge in our results.

Let us start by recalling the definition of subexcedant sequences and introducing
some notation.

Definition 4.2.10. A subexcedant sequence of length n is an integer-valued sequence
s = (s1, . . . , sn) such that, for all k, 1 6 sk 6 k. We denote by

Sn =
n∏
k=1
{1, . . . , k}

the set of subexcedant sequences of length n. For any two s and s′ ∈ Sn, the number
of encounters of s and s′ is defined as

enc(s, s′) = #
{
k > 1 : sk = s′k

}
. �

Remark 4.A.1. In the literature, subexcedant sequences frequently refer to integer
sequences (sn)n>1 such that 0 6 sn 6 n − 1. They are also known as inversion
sequences. �

Notation 4.A.2. We denote by Sn the set of permutations of {1, . . . , n}. �

Let us now describe a bijection L : Sn → Sn known as the Lehmer code. It is
based on a simple idea: to describe a permutation σ = σ1σ2 · · ·σn, it suffices to
know that:
• σ1 is the i1-th element of {1, . . . , n}

• σ2 is the i2-th element of {1, . . . , n} \ {σ1}
...

• σk is the ik-th element of {1, . . . , n} \ {σ1, σ2, . . . , σk−1}
...

• σn is the in-th element of {1, . . . , n} \ {σ1, σ2, . . . , σn−1}
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The sequence s = inin−1 · · · i2 i1 constitutes the Lehmer code L(σ) ∈ Sn of σ. Let
us give a slightly more compact and formal definition.

Definition 4.A.3. The Lehmer code L(σ) of a permutation σ is the sequence
s1s2 · · · sn given by

sk = #{j 6 k : σj 6 σk} . �

Note that, by definition of the Lehmer code, if s = L(σ) then

sk = k ⇐⇒ ∀j < k, σj < σk .

that is, sk = k if and only if σ has a left-to-right maximum at k. As a result, get
the following lemma.

Lemma 4.A.4. Let s? = 1 2 · · · n ∈ Sn. For all i,

#{s ∈ Sn : enc(s, s?) = i} = #{σ ∈ Sn : σ has i left-to-right maxima} .

Let us now recall briefly why the number of permutations of {1, . . . , n} with i
left-to-right maxima is the same as the number of permutations of {1, . . . , n} with i
cycles. Observe that by:
(1) Writing permutations in canonical cycle notation, (that is, making cycles start

by their largest element and ordering them in increasing order of their largest
element).

(2) Dropping the parentheses delimiting cycles.

we obtain a bijection F : Sn → Sn – a result known as Foata’s transition lemma.
Moreover, the largest element of each cycle of σ correspond to a left-to-right maxi-
mum of F (σ) and vice-versa. This proves the following lemma.

Lemma 4.A.5. For all i,

#{σ ∈ Sn : σ has i left-to-right maxima} = #{σ ∈ Sn : σ has i cycles}.

Finally, to obtain a proof of Lemma 4.2.11 it suffices to note that the number of
subexcedant sequences that have i encounters with a fixed subexcedant sequence s?
does not depend on s?.

Lemma 4.A.6. For any two s? and s ∈ Sn, for all i,

#
{
s′ ∈ Sn : enc(s′, s?) = i

}
= #

{
s′ ∈ Sn : enc(s′, s) = i

}
Proof. For any fixed pair of subexcedant sequences s? and s, let Φ(s′) := s′′, where
for all k

s′′k := s′k − s?k + sk mod {1, . . . , k} ,
with i mod {1, . . . , k} denoting the unique j ∈ {1, . . . , k} such that j = i + mk for
some m ∈ Z. This yields a bijection Φ : Sn → Sn such if Φ(s′) = s′′ then for all k,
s′k = s?k if and only if s′′k = sk.

Combining all of these results proves Lemma 4.2.11:

Lemma 4.2.11. For all s ∈ Sn, for all i,

#
{
s′ ∈ Sn : enc(s, s′) = i

}
= #{σ ∈ Sn : σ has i cycles}
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4.B Lemmas used in Section 4.4
In this section, we recall the proof of two elementary lemmas that were used to study
the number of cherries and of reticulated cherries in Section 4.4.

Lemma 4.B.1. Let (u`) be a sequence satisfying the recursion

u`+1 = a` u` + b`

and let i be such that ∀` > i, a` 6= 0. Then,

∀` > i, u` =
(
ui +

`−1∑
k=i

bk∏k
j=i aj

)
`−1∏
k=i

ak

Proof. For k > i, since ak 6= 0 we have

uk+1∏k
j=i aj

− uk∏k−1
j=i aj

= bk∏k
j=i aj

,

where the empty product is one. As a result, for all ` > i,

u`∏`−1
j=i aj

− ui =
`−1∑
k=i

(
uk+1∏k
j=i aj

− uk∏k−1
j=i aj

)
=

`−1∑
k=i

bk∏k
j=i aj

,

and the proof is over.

Lemma 4.B.2. Let (v`) be such that v` ∼ α ` p, where p > 0 and α 6= 0. Then,

`−1∑
k=i

vk ∼
α

p+ 1`
p+1 .

Proof. Let ε` → 0 be such that v` = α ` p + ε` `
p. Then,

`−1∑
k=i

vk = α
`−1∑
k=i

k p +
`−1∑
k=i

εk k
p

Comparison with an integral shows that
∑`−1
k=i k

p ∼ ` p+1/(p + 1), so to finish the
proof we simply have to show that

∑`−1
k=i εk k

p = o(` p+1). Since ε` → 0, for all η > 0
there exists jη such that ∀k > jη, |εk| < η. Therefore,

∣∣∣∣∣
`−1∑
k=i

εk k
p

∣∣∣∣∣ <
jη−1∑
k=i
|εk k p| + η

`−1∑
k=jη

k p

For fixed η, the first of these sums has a fixed number of terms and thus is bounded.
The second one is asymptotically equivalent to η `p+1/(p + 1). Thus, for all η > 0,
for ` large enough, ∣∣∣∣∣

∑`−1
k=i εk k

p

` p+1

∣∣∣∣∣ < η

and the proof is over.

125



4. Ranked tree-child networks

4.C Variance of χ`
In this section, we prove Proposition 4.4.9 by obtaining an explicit expression for the
variance of the number χ` or reticulated cherries of a uniform RTCN with ` labeled
leaves.

Consider the Markov chain (X`)`>2 defined in Proposition 4.4.7, and let s` =
E
(
X2
`

)
. From the transition probabilities of X`, we get

E
(
X2
`+1

∣∣∣X` = k
)

=
(
`− 6
`

)2
k2 + 2`2 − `− 3

`2
k + `− 1

`
.

Integrating in k, this yields

s`+1 =
(
`− 6
`

)2
s` + 2`2 − 8`− 3

`2
µ` + `− 1

`

where, for ` > 4, we can substitute the expression of µ` given in Proposition 4.4.8.
Rearranging a bit get that for all ` > 4,

s`+1 =
(
`− 6
`

)2
s` + 30 `5 − 185 `4 + 188 `3 + 746 `2 − 1649 `+ 843

105 (`− 1)(`− 2)(`− 3)`

Using Lemma 4.B.1 and a symbolic computation software, we get an explicit expres-
sion for s`, and, from there,

Var(χ`) =
(
59400 `9 − 1618650 `8 +O(`7)

)
`

1576575 (`− 1)2(`− 2)2(`− 3)2(`− 4)(`− 5)(`− 6)

from which Proposition 4.4.9 follows.
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Chapter 5
Oriented percolation in randomly

oriented graphs
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5. Oriented percolation in randomly oriented graphs

This chapter was initially supposed to be about first passage oriented percolation
on the Bernoulli site percolation cluster of the hypercube. This idea came from
Amaury Lambert, who saw it as way to model the exploration by mutants of a
“holey” genotypic landscape, where some genotypes are unviable. His idea was that
we might be able to adapt and simplify classic results of Fill and Pemantle [5], and
perhaps even a more recent results of Martinsson [8].

Unfortunately, I have so far been unable to get any significant results and this
project is still in its early stages – which is why it has not been included in this thesis.
Nevertheless, while working on these questions I started reading about oriented
percolation. In particular, I found about an article recently published in Probability,
Combinatorics and Computing by Narayanan [9], in which he proves that for any
graph whoses edges have been randomly and independently oriented, for any set of
vertices S, writing {S  i} to indicate that there is an oriented path going from a
vertex s ∈ S to vertex i, the events {S  i} and {S  j} are positively correlated
for any fixed pair of vertices i and j.

The surprising thing about Narayanan’s paper, which he pointed out, was that
his proof was unexpectedly complex. In particular, he had not been able to find
a proof that did not use the Ahlswede-Daykin inequality (also known as the four
functions theorem). I therefore tried to find a more elegant coupling proof, and even
though I was unable to find one I eventually realized that it was possible to prove
a much stronger result than the pairwise positive correlation of the events {S  i},
without resorting to the Ahlswede-Daykin inequality.

Having recently learned about the Stein-Chen method during my work on the
split-and-drift random graph (see Chapter 2), I tried to find a simple example of
randomly oriented graph in which I could use positive association to show that the
number of vertices in the oriented percolation cluster was Poissonian. If anything,
this made me experience first-hand the trade-off between dullness and intractability
that was mentioned in Section 1.2: all the models that I could conceive proved either
trivially simple, or too hard for me to study. As a testimony to my endeavours, I
have included one of these models in Section 5.3 of this chapter. While this model
clearly tends to fall on the “dull” side of the spectrum, it is not entirely trivial and
has a few interesting properties (see in particular Proposition 5.3.9).

Publication: Sections 5.1 and 5.2 of this chapter have been accepted for publica-
tion in Probability, Combinatorics and Computing under the title “Positive associa-
tion of the oriented percolation cluster in randomly oriented graphs”.
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5.1. Introduction

5.1 Introduction
Oriented percolation is the study of connectivity in a random oriented graph. In
most settings, one starts from a graph with a fixed orientation and then keeps each
edge with a given probability. Classical such models include the north-east lattice [3]
and the hypercube [5].

Another broad and natural class of random oriented graphs is obtained by start-
ing from a fixed graph and then orienting each edge, independently of the orienta-
tions of other edges. Note that, in the general case, the orientations of the edges
need not be unbiased: some edges can be allowed to have a higher probability to
point towards one of their ends than towards the other. Percolation on such ran-
domly oriented graphs has been studied, e.g. in [7], and more recently in [9], which
motivated this chapter.

In [9], Narayanan showed that if the edges of any fixed graph are randomly and
independently oriented, then writing {S  i} to indicate that there is an oriented
path going from a vertex s ∈ S to vertex i, we have

P(S  i, S  j) > P(S  i)P(S  j) .

The aim of this chapter is to strengthen and simplify the proof of this result. More
specifically, let V be the vertex set of the graph. We prove that the events {S  i},
i ∈ V , are positively associated, without resorting to advanced results such as the
Ahlswede–Daykin inequality [1].

5.1.1 Positive association and related notions
There are many ways to formalize the idea of a positive dependence between the
random variables of a family X = (Xi)i∈I . A straightforward, weak one is to ask
that these variables be pairwise positively correlated, i.e.

∀i, j ∈ I, E(XiXj) > E(Xi)E(Xj) .

A much stronger condition, due to [4], is known as positive association. In the
following definition and throughout the rest of this note, we use bold letters to
denote vectors, as in X = (Xi)i∈I , and we write X 6 X′ to say that Xi 6 X ′i for
all i. Finally, a function f : RI → R is said to be increasing when X 6 X′ =⇒
f(X) 6 f(X′).

Definition 5.1.1. The random vector X = (Xi)i∈I is said to be positively associated
when, for all increasing functions f and g,

E(f(X)g(X)) > E(f(X))E(g(X))

whenever these expectations exist. �

Without further mention, we only consider test functions f and g for which
E(f(X)), E(g(X)) and E(f(X)g(X)) exist.

We say that the eventsAi, i ∈ I, are positively associated when the corresponding
vector of indicator variables (1Ai)i∈I is positively associated. Similarly, a random
subset R of the fixed set I can be seen as the vector

R =
(
1{i∈R}

)
i∈I ,
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5. Oriented percolation in randomly oriented graphs

so that R is said to be positively associated when the events {i ∈ R}, i ∈ I, are.
This is equivalent to saying that for any increasing functions f and g from the power
set of I to R,

E(f(R)g(R)) > E(f(R))E(g(R)) ,

where f being increasing is understood to mean that r′ ⊂ r =⇒ f(r′) 6 f(r).

Positive association is famous for the FKG theorem, which states that it is
implied by a lattice condition that can sometimes be very easy to check [6]. Another
reason why it is so useful is that it implies weaker positive dependence notions that
have to be checked in applications. One example of this is the existence of increasing
couplings and the corresponding notion of positive relation used in the Stein–Chen
method – see e.g, [2] and [10].

5.1.2 Notation

Let us fix some notation to be used throughout the rest of this chapter.

We study the simple graph G = (V,E). Unless explicitly specified otherwise, V
is assumed to be finite and we denote by |V | its cardinality. The edges of G have
a random orientation that is independent of the orientations of other edges and we
write {i→ j} to indicate that the edge {ij} is oriented towards j. Formally, we are
thus given a family of events ({i→ j}, {ij} ∈ E) such that {i→ j} = {j → i}c and
for all {ij}, {i→ j} ⊥⊥ ({k → `}, {k`} 6= {ij}).

Finally, for every pair of vertices i and j, we write {i j} for the event that
there exists an oriented path going from i to j. Similarly, for every source set S we
let {S  i} =

⋃
j∈S{j  i} be the event that there is an oriented path from S to i,

and for every target set T we let {i T} =
⋃
j∈T {i j} be the event that there

is an oriented path from i to T . If there is an ambiguity regarding which graph is
considered for these events, we will specify it with the notation {i G

 j}.

5.2 Positive association of the percolation cluster

5.2.1 Preliminary lemma

Lemma 5.2.1. Let Γ be a finite set and let R be a positively associated random
subset of Γ. Let Xr

i , r ⊂ Γ and i ∈ V , be a family of events on the same probability
space as R with the property that

(i) r′ ⊂ r =⇒ Xr′
i ⊂ Xr

i , ∀i ∈ V .

(ii) For all r ⊂ Γ, (Xr
i )i∈V is positively associated and independent of R.

For all i ∈ V , define XR
i by

XR
i :=

⋃
r⊂Γ
{R = r} ∩Xr

i .

Then, the events XR
i , i ∈ V , are positively associated.
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5.2. Positive association of the percolation cluster

Proof. Let f and g be two increasing functions. We have

E
(
f(XR)g(XR)

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)1{R=r}

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)

)
P(R = r)

>
∑
r⊂Γ

E(f(Xr))E(g(Xr))P(R = r) ,

because Xr ⊥⊥ R and Xr is positively associated. Now, let u : r 7→ E(f(Xr)) and
v : r 7→ E(g(Xr)), so that the last sum is E(u(R)v(R)). Note that u and v are
increasing, since f and g are and, by hypothesis, r′ ⊂ r =⇒ Xr′ 6 Xr. Therefore,
by the positive association of R,

E
(
u(R)v(R)

)
> E(u(R))E(v(R)) .

Finally, using again the independence of Xr and R, we have E(u(R)) = E(f(XR))
and E(v(R)) = E(g(XR)), which concludes the proof.

5.2.2 Main result

Theorem 5.2.2. Let G be a finite graph with vertex set V , whose edges have
been randomly and independently oriented. Then, for any source set S, the events
{S  i}, i ∈ V , are positively associated, i.e., for all increasing functions f and g
and writing X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Our proof uses the same induction on the number of vertices as Narayanan’s.
The difference is that we use Lemma 5.2.1 rather than the Ahlswede–Daykin in-
equality to propagate the positive dependence.

The theorem is trivial for the graph consisting of a single vertex (a family of a
single variable being always positively associated) so let us assume that it holds for
every graph with strictly less than |V | vertices. Let Γ be the neighborhood of S, i.e.

Γ =
{
v ∈ V \ S : ∃s ∈ S s.t. {vs} ∈ E

}
.

Then, let R be the random subset of Γ defined by
R =

{
v ∈ Γ : ∃s ∈ S s.t. s→ v

}
.

Observe that the events {i ∈ R}, i ∈ Γ are independent, so that the set R is positively
associated.

Next, let H be the subgraph of G induced by V \S. Note that, for all i ∈ V \S,{
S

G
 i

}
=
{
R

H
 i

}
.

For every fixed r ⊂ Γ, the family {r H
 i} for i ∈ V \ S is independent of R

because it depends only on the orientations of the edges of H, while R depends
only on the orientations of the edges of G that go from S to Γ – and these two sets
of edges are disjoint. Moreover, by the induction hypothesis, the events {r H

 i},
i ∈ V \ S, are positively associated. Since for fixed sets r and r′ such that r′ ⊂ r,
{r′  i} =⇒ {r  i} for all vertices, we can apply Lemma 5.2.1 to conclude that
the events {R i}, i ∈ V \ S, are positively associated.

To conclude the proof, note that the events {S  i} are certain for i ∈ S and
that the union of a family of positively associated events and of a family of certain
events is still positively related.
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5.2.3 Corollaries

Corollary 5.2.3. Let G be a finite graph with independently oriented edges. For
any target set T , the events {i T}, i ∈ V , are positively associated.

Proof. Consider the randomly oriented graph H obtained by reversing the orienta-
tion of the edges of G, i.e. such that {i H→ j} = {j G→ i}. Then for all i ∈ V ,

{i G
 T} = {T H

 i} ,

and we already know from Theorem 5.2.2 that the events {T H
 i}, i ∈ V , are

positively associated.

Corollary 5.2.4. Let G be an infinite graph with independently oriented edges.
Let f and g be increasing, non-negative functions on RV that depend only on a
finite number of coordinates (i.e. such that there exists a finite set U ⊂ V and
f̃ : RU → [0,+∞[ such that f = f̃ ◦ ϕ, where ϕ is the canonical surjection from RV

to RU ). Then, for any source set S, letting X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Let Gn be an increasing sequence of finite graphs such that G =
⋃
nGn, and

for all i ∈ V , let
X

(n)
i =

{
S
Gn i

}
,

so thatX(n)
i ⊂ X(n+1)

i andXi =
⋃
nX

(n)
i . Since the functions f and g are increasing,

so are the sequences f(X(n)) and g(X(n)). Thus, using Theorem 5.2.2 and monotone
convergence,

E
(
lim
n
f
(
X(n))g(X(n))) > E

(
lim
n
f
(
X(n)))E(lim

n
g
(
X(n))) .

Finally, if f and g depend on a finite number of events Xi, then for every realization
of X we have limn f(X(n)) = f(X) and limn g(X(n)) = g(X).

Corollary 5.2.5 (Narayanan, 2016). For any (possibly infinite) graph with inde-
pendently oriented edges, for any source set S and for any two vertices i and j,

P(S  i, S  j) > P(S  i)P(S  j)

Proof. Take f : (xk)k∈V 7→ xi and g : (xk)k∈V 7→ xj in Corollary 5.2.4.

Corollary 5.2.6. Let G be a finite graph with independently oriented edges and
vertex set V . For any source set S, let

N =
∑
i∈V \S

1{S i}

denote the size of the oriented percolation cluster of G, and set λ = E(N). Then,

dTV
(
N, Poisson(λ)

)
6 min(1, λ−1)

Var(N)− λ+ 2
∑
i∈V \S

P(S  i)2

 ,

where dTV denotes the total variation distance.
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5.3. Percolation from the leaves of a binary tree

Proof. This is a direct application of the Stein–Chen method to the positively related
variables 1{S i}, i ∈ V \S – see e.g. Theorem 4.20 in [10] (this theorem can be found
as Theorem A in Chapter 2).

The interest of Corollary 5.2.6 is that one only needs a suitable upper bound
on Cov(1{S i}, 1{S j}) to show that the size of the oriented percolation cluster is
Poissonian, as illustrated in the next section.

5.3 Percolation from the leaves of a binary tree
In this section, we study percolation on the randomly oriented complete binary tree
of height n. We start by introducing this graph and some notation.

5.3.1 Setting and notation

The binary tree Tn

Let Vn be the set of words of length at most n on the alphabet {0, 1}, i.e.

Vn =
n⋃
k=0
{0, 1}k ,

where {0, 1}0 is understood to represent the empty word.

A word v is said to be a successor of u when v = us, with s ∈ {0, 1}. Thus, every
word of length less than n has two successors in Vn. Similarly, every non-empty word
of Vn has exactly one predecessor. With this terminology, let

En =
{
{u, v} : (u, v) ∈ V 2

n , v is a successor of u
}
.

What we call the complete binary tree of height n is the graph Tn = (Vn, En). Let
us fix some vocabulary and notation for working with Tn.

The leaves of Tn are the vertices of degree 1, and its root is the only vertex of
degree 2. The root will always be denoted by r.

The level of a vertex is its distance from the leaf set. Thus, the leaves are the
level-0 vertices, and the root is the only vertex of level n. We will write `(v) for the
level of vertex v.

The unique path between two vertices u and v will be denoted by [u, v]. Some-
times, we will need to remove one of its ends from [u, v], in which case we will write
]u, v] for [u, v] \ {u} and [u, v[ for [u, v] \ {v}.

Finally, there is a natural order 4 on the vertices of Tn, defined, e.g, by

u 4 v ⇐⇒ v ∈ [u, r]

Thus ordered, (Vn,4) is a join-semilattice, i.e. we can define the join of any u and
v, denoted by u ∨ v, as

u ∨ v = inf
(
[u, r] ∩ [v, r]

)
= sup [u, v]

These definitions are illustrated in Figure 1A.

133



5. Oriented percolation in randomly oriented graphs

Figure 5.1: A, the complete binary tree T3. The black vertices are the leaves of the tree, and r is
the root. The numbers on the right indicate the levels of the vertices. The path [u, v] between u
and v has been highlighted and u ∨ v, the join of u and v, can be seen to be the unique vertex of
maximum level in [u, v]. B, percolation and downwards percolation on T4. Water starts from the
leaves and then flows downwards through black edges and upwards through dotted edges. It does
not reach the grayed-out portions of the tree. The percolation cluster Cn consists of both black
vertices and white vertices, while the downwards percolation cluster C↓n consists of black vertices
only. Note that the leaves are excluded from both percolation clusters.

Percolation and downwards percolation on Tn

Let every edge of Tn be oriented towards the root with probability p and towards
the leaf set with probability 1− p, independently of the other edges.

In this application, the source set L will be the leaf set of Tn. In other words,
we pump water into the leaves of Tn and let it flow through those edges whose
orientation matches that of the flow, as depicted in Figure 1B. For any vertex v,
write

Xv = {L v} ,

for the event that the water reaches v, and

π
(n)
k = P(Xv), where k = `(v)

for the probability of this event. In the special case where v = r is the root, we use
the notation

ρn = π(n)
n = P(Xr) .

Finally, let
Cn = {v ∈ Vn \ L : Xv}

denote the percolation cluster.

As will become clear, this percolation model is closely related to a simpler one
where, in addition to respecting the orientation of edges, water is constrained to
flow towards increasing levels of the tree. If we think of the root of Tn as its bottom
and of the leaves as its top, then water runs down from the leaves, traveling through
downwards-oriented edges; hence we refer to this second model as downwards per-
colation. Again, this is represented in Figure 1B.

Let us write Yv for the event that that vertex v gets wet in downwards percolation,
and let

C↓n = {v ∈ Vn \ L : Yv}

be the downwards-percolation cluster.

134



5.3. Percolation from the leaves of a binary tree

How are percolation and downwards percolation related? First, it follows directly
from the definition that Yv ⊂ Xv. Second, note that

Yr = Xr

because every path from the leaf set to r is downwards-oriented. Furthermore,
letting T (4v)

n denote the subtree of Tn induced by v and the vertices that are above
it, then the randomly oriented trees T (4v)

n and T`(v) have the same law. As a result,
for all v ∈ Vn,

P(Yv) = ρ`(v) ,

from which the next proposition follows.

Proposition 5.3.1. Let |C↓n| be the number of wet vertices (not counting the leaves)
in the downwards-percolation model on Tn. We have

E
(
|C↓n|

)
=

n∑
k=1

2n−kρk .

5.3.2 General results
Percolation threshold

If the probability p that an edge is oriented towards the root is sufficiently small,
the probability ρn of the root getting wet will go to zero as n goes to infinity. Define
the percolation threshold as

θc = sup {p : ρn → 0} .

Proposition 5.3.2. The probability ρn of the root of Tn getting wet in either per-
colation model satisfies the following recurrence:

ρn+1 = 2pρn − (pρn)2 , with ρ0 = 1.

The percolation threshold is therefore θc = 1/2 and
(i) p 6 θc =⇒ ρn → 0.

(ii) p > θc =⇒ ρn → (2p− 1)/p2 > 0.

Proof. First, note that

Yr = (Y0 ∩ {0→ r}) ∪ (Y1 ∩ {1→ r}) ,

where 1 and 0 are the two successors of the root r. These four events are independent
and we have P(0→ r) = P(1→ r) = p and P(Y0) = P(Y1) = ρn−1, whence the
recurrence relation.

Now, let fp : x 7→ 2px − (px)2, so that ρn+1 = fp(ρn). For p 6 1/2, the only
solution to the equation fp(x) = x in [0, 1] is x = 0, and fp(x) < x for all 0 < x 6 1.
This proves (i). For p > 1/2, the equation fp(x) = x has a non-zero solution
α = (2p − 1)/p2 in [0, 1]. Finally, fp(x) > x for 0 < x < α and fp(x) < x for
α < x < 1, proving (ii).

Remark 5.3.3. Another way to obtain Proposition 5.3.2 is to note that the ex-
istence of an open path from the leaf set of Tn to its root is equivalent to the
existence of a path of length n starting from the root of a Galton–Watson tree with
Binomial(2, p) offspring distribution, i.e. to its non-extinction after n generations. In
the limit as n→∞, the probability of non-extinction is strictly positive if and only
if the expected number of offspring is greater than 1 – i.e., in our case, 2p > 1. �
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Expected size of the percolation cluster

Let us clarify the relation between percolation and downwards percolation by ex-
pressing the probability π(n)

k that a vertex gets wet in (bidirectional) percolation as
a function of ρk, . . . , ρn.

Proposition 5.3.4. Let π(n)
k = P(Xv), where `(v) = k. We have

π
(n)
k = ρk + (1− ρk)α

(n)
k ,

where

α
(n)
k = (1− p) p

n−1−k∑
i=0

(1− p)iρk+i

i−1∏
j=0

(1− pρk+j)

is the probability that water reaches v “from below” and ρk is the probability that it
reaches it “from above”.

Remark 5.3.5. To make sense of the expression of α(n)
k , it can also be written as

α
(n)
k =

n−k∑
i=1

P(M = k + i) , with P(M = k + i) = (1− p)ipρk+i−1

i−2∏
j=0

(1− pρk+j).

In this expression, M is the level of the highest (that is, minimal with respect to 4)
vertex u ∈ ]v, r] such that Yu∩{u v} (withM = +∞ if there is no such vertex). �

Proof. Water can reach v from above (i.e. coming from one of its successors) or from
below (coming from its predecessor). These two events are independent, because
they depend on what happens in disjoint regions of Tn.

Water reaches v from above if and only if v gets wet in downwards percolation.
To reach v from below, water had to travel through a portion of the path [v, r] from
v to the root. To enter this portion of the path, it had to reach at least one vertex,
say u, from above. Let ϕ(u) be the successor of u that does not belong to [v, r]. The
water had to get to ϕ(u) from above, flow to u, and from here to v.

This reasoning, which is illustrated in Figure 2A, leads us to rewrite Xv as

Xv = Yv ∪
⋃

u∈]v,r]

(
Yϕ(u) ∩ {ϕ(u)→ u} ∩ {u v}

)
In order to compute the probability of this event, we rewrite it as the disjoint union

Xv = Yv ∪
⋃

u∈]v,r]

Yvc ∩
( ⋂
w∈]v,u[̃

Y c
w

)
∩ Ỹu ∩ {u v}

,
where

Ỹx = Yϕ(x) ∩ {ϕ(x)→ x} .

Next, we note that the factors of each term of the union over u ∈ ]v, r] are inde-
pendent, because they are determined by the orientations of disjoint sets of edges:
Yv depends only on the orientations of the edges of T (4v)

n ; each Ỹx of those of the
edges of T (4ϕ(x))

n and of {x, ϕ(x)}; and {u v} of the edges of [u, v]. Using that
P(Yv) = ρ`(v), P

(
Ỹx
)

= pρ`(x)−1 and P(u v) = (1−p)d(u,v) and replacing the sum
on the vertices of ]v, r] by a sum on their levels, we get the desired expression.
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Figure 5.2: A, the notations used in the proof of Proposition 5.3.4. Water can reach
v from above, i.e. traveling through T (4v)

n , or from below, coming from some vertex
u ∈ ]v, r]. B, the notations used in the proof of Proposition 5.3.8. The arrows
represent possible entry points for the water, and the Ỹx the associated events, i.e.,
Ỹx is the event that x receives water from the corresponding arrow.

From Proposition 5.3.4, we get the following expression for the expected size of
the percolation cluster:

Proposition 5.3.6. Let |Cn| be the number of wet vertices, not counting the leaves,
in the (bidirectional) percolation model on Tn. Then,

E
(
|Cn|

)
=

n∑
k=1

2n−k
(
ρk + (1− ρk)α

(n)
k

)
,

where α(n)
k is defined in Proposition 5.3.4.

Using a similar reasoning, it is also possible to express P(XuXv) – and from
there Var(|Cn|) – as a function of p and ρ1, . . . , ρn only. However, the resulting
expression is rather complicated, and thus of little interest. We will therefore only
give the asymptotic estimates that are needed to apply Theorem 5.2.2.

5.3.3 Badly-subcritical regime
In this section, we focus on what happens when p = pn is allowed to depend on n and
made to go to zero as n goes to infinity. We are therefore in a “badly-subcritical”
regime, where only a negligible fraction of the vertices are going to get wet.

Note that the results of the previous sections still hold, provided that ρk is
understood to depend on n as the solution of

ρk+1 = 2pnρk − (pnρk)2 , ρ0 = 1.

To avoid clutter, the dependence in n will remain implicit and we will keep the
notation ρk.

Asymptotic cluster size and maximum depth

Proposition 5.3.7. When pn → 0, then as n→∞,

ρk ∼ (2pn)k ,

where the convergence is uniform in k.
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Proof. Clearly,
ρk 6 (2pn)k .

Plugging this first inequality into the recurrence relation for ρk, we get

ρk+1 >
(
2pn − p2

n(2pn)k
)
ρk ,

from which it follows that

ρk > (2pn)k
k−1∏
i=0

(
1− pn

2 (2pn)i
)

> (2pn)k
k∏
i=1

(
1− (2pn)i

)
.

Let us show that

P (k)
n =

k∏
i=1

(
1− (2pn)i

)
has a lower bound that goes to 1 uniformly in k as n→∞. For all k > 1,

log
(
P (k)
n

)
>

∞∑
i=1

log
(
1− (2pn)i

)
.

Now,
∞∑
i=1

log
(
1− (2pn)i

)
= −

∞∑
i=1

∞∑
j=1

1
j (2pn)ij > −

∞∑
i=1

∞∑
j=1

(2pn)ij

and

−
∞∑
i=1

∞∑
j=1

(2pn)ij = −
∞∑
i=1

(2pn)i

1− (2pn)i > −
∞∑
i=1

(2pn)i

1− 2pn
= − 2pn

(1− 2pn)2 ,

so that P (k)
n > exp

(
−2pn/(1− 2pn)2). Putting the pieces together,

e
− 2pn

(1−2pn)2 (2pn)k 6 ρk 6 (2pn)k ,

which terminates the proof.

Proposition 5.3.8. When pn → 0, then as n→∞,

E
(
|Cn|

)
∼ E

(
|C↓n|

)
∼ 2n pn .

Proof. From the expression of α(n)
k given in Proposition 5.3.4,

α
(n)
k 6 pn

n−1−k∑
i=0

ρk+i .

But since ρk+i 6 (2pn)iρk,
α

(n)
k 6

pn ρk
1− 2pn

.

Using this in Propositions 5.3.1 and 5.3.6, we see that for n large enough,

E
(
|Cn|

)
6
(

1 + pn
1− 2pn

)
E
(
|C↓n|

)
,
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5.3. Percolation from the leaves of a binary tree

Next, using again that ρk 6 (2pn)k−1ρ1,

2n−1ρ1 6
n∑
k=1

2n−kρk 6 2n−1ρ1

n∑
k=1

pk−1
n .

Since the sum in right-hand side is bounded above by 1/(1−pn) and since ρ1 ∼ 2pn,
this finishes the proof.

Proposition 5.3.8 shows that, in the badly-subcritical regime, the overwhelming
majority of wet vertices are level-1 vertices. It is therefore natural to wonder: how
deep does water go?

Proposition 5.3.9. Let `(n)
max be the maximum level reached by water, and let

κn = log(2)n
log(1/pn) .

If pn → 0, then letting bxe = bx+ 1/2c denote the nearest integer to x,

P
(
`(n)
max = bκne − 1 or bκne

)
→ 1

as n→∞. In particular,

• If pn = n−α, then κn = cn/ log(n), with c = log(2)/α.

• If pn = γ−n, 1 < γ 6 2, then κn = log(2)
log(γ) .

Proposition 5.3.9 shows that the maximum level reached by water is remarkably
deterministic in the limit as n goes to infinity, independently of the speed of conver-
gence of pn to zero. It also shows that, even in the badly-subcritical regime, water
can go infinitely deep – even though these depths will always represent a negligible
fraction of the total height of Tn.

Before jumping to the proof, let us give a simple heuristic. Let

B
(n)
k = Card

{
v ∈ C↓n : `(v) = k

}
be the number of level-k vertices that get wet in downwards-percolation. Using
Proposition 5.3.7, we see that

E
(
B

(n)
k

)
= ρk 2n−k ∼ (pn)k 2n .

If k is such that this expectation goes to zero, then the probability that this level will
be reached by water will go to zero and k will be a lower bound on `(n)

max. Conversely,
if this expectation goes to infinity then it seems reasonable to expect that B(n)

k > 1
with high probability, in which case we would have `(n)

max > k.

Proof. Let Lk be the set of level-k vertices. The event that water does not reach
level k is {

`(n)
max < k

}
=

⋂
v∈Lk

Yv
c .

Since each Yv depends only on T (4v)
n , these events are independent and we have

P
(
`(n)
max < k

)
= (1− ρk)2n−k .

139
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Whether this expression goes to 0 or to 1 is determined by whether ρk2n−k goes
to +∞ or to 0, respectively. Now let k = kn depend on n. By Proposition 5.3.7, we
have

ρkn2n−kn ∼ (pn)kn 2n .

Again, whether this quantity goes to +∞ or to 0 depends on whether

wn = log(pn) kn + log(2)n

goes to +∞ or to −∞, respectively. Setting κn = log(2)n
log(1/pn) , we see that:

(i) If there exists η > 0 such that kn < κn − η for all n, then wn → +∞ and as a
result P

(
`
(n)
max > k

)
→ 1.

(ii) If there exists η > 0 such that kn > κn + η for all n, then wn → −∞ and as a
result P

(
`
(n)
max < k

)
→ 1.

Finally, we note that

• bκne − 1 6 κn − 1/2. By (i), this shows that P
(
`
(n)
max > bκne − 1

)
→ 1.

• bκne+ 1 > κn + 1/2. By (ii), this shows that P
(
`
(n)
max < bκne+ 1

)
→ 1.

As a result,
P
(
bκne − 1 6 `(n)

max 6 bκne
)
→ 1 ,

and the proof is complete.

Second moments and main result

We have seen in the previous section that level-1 vertices account for a fraction 1
of the expected size of both percolation clusters. But do they also account for a
fraction 1 of the variances?

For downwards percolation, it is not hard to convince oneself that it is. Indeed,
the number B(n)

1 of wet vertices of level 1 is a binomial variable with parameters ρ1
and 2n−1. From here, if we neglect “collision” events, where a vertex receives water
from both vertices immediately above it, then the downwards percolation cluster
resembles B(n)

1 independent paths with geometric lengths, that is,

|C↓n| ≈
B

(n)
1∑
i=1

τi, where τi ∼ Geometric(1− pn) .

Since Var(τi) ∼ pn, by a simple application of the law of total variance we find that

Var
(
|C↓n|

)
≈ Var

(
B

(n)
1

)
∼ pn 2n .

For bidirectional percolation however, things are not so obvious because there
is a very strong feedback from higher-level vertices to lower-level ones: if vertex v
gets wet, water will flow up from it to most vertices of T (4v)

n that are not already
wet. Thus, every rare event where water reaches a vertex of level k will results in
approximately 2k additional vertices getting wet – which it seems could increase the
variance of |Cn|. However we will see that this is not the case.
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5.3. Percolation from the leaves of a binary tree

Proposition 5.3.10. In the regime pn → 0,

(i) If u 4 v then Cov(Xu, Xv) 6 π(n)
`(v).

(ii) Otherwise, Cov(Xu, Xv) 6 d(u, v)ρ`(u ∨ v).

As a result, Var(|Cn|) ∼ 2n pn and Var(|Cn|)− E(|Cn|) = O(2n p2
n).

Proof. Point (i) is clear, since

Cov(Xu, Xv) 6 P(Xu ∩Xv) 6 min{P(Xu),P(Xv)} = π
(n)
`(v) .

As a side note, this upper bound on P(Xu ∩Xv) is not as crude as it may seem.
Indeed, Xv ∩ {v  u} ⊂ Xu ∩Xv and is it not hard to check that P(Xv ∩ {v  u})
is greater than (1− pn)d(u,v)ρ`(v)/2 ∼ π

(n)
`(v)/2.

To prove (ii), let us show that

P(Xu ∩Xv) 6 π(n)
u π(n)

v + d(u, v)ρ`(u ∨ v) .

As in the proof of Proposition 5.3.4, we start by re-expressing Xu. For every w ∈
]u, v[, let ϕ(w) be the successor of w that does not belong to [u, v], and for every
z ∈ ]u ∨ v, r], let ψ(z) be the successor of z that does not belong to [u ∨ v, r]. Then,
for every w ∈ [u, v], define Ỹw by

Ỹw =


Yw if w = u or w = v.⋃
z∈]u ∨ v, r]

Yψ(z) ∩ {ψ(z)→ z} ∩ {z  u ∨ v} if w = u ∨ v.

Yϕ(w) ∩ {ϕ(w)→ w} otherwise.

These definitions are illustrated in Figure 2B. Note that Ỹu ∨ v is simply the event
that u ∨ v receives water “from below”. Thus, using the notation of Proposition 5.3.4,
we have

P
(
Ỹu ∨ v

)
= α

(n)
`(u ∨ v).

For both s = u and s = v we have

Xs =
⋃

w∈[u,v]
Ỹw ∩ {w  s} .

Again, we rewrite this as the disjoint union

Xs =
⋃

w∈[u,v]
Zsw ,

where
Zsw =

( ⋂
z∈[s,w[̃

Y c
z

)
∩ Ỹw ∩ {w  s} .

Next, we note that for any vertices x and y in [u, v],

• If [u, x] ∩ [y, v] = O6 , then Zux ⊥⊥ Zvy .

• If [u, x] ∩ [y, v] = {w}, then Zux ∩ Zvy = Ỹw ∩ {w  u} ∩ {w  v}.

• Otherwise, Zux ∩ Zvy = O6 .
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5. Oriented percolation in randomly oriented graphs

As a result,

Xu ∩Xv =
⋃

x∈[u,v]

⋃
y∈[u,v]

Zux ∩ Zvy

=
⋃

x∈[u,v]

(⋃
y∈]x,v]

Zux ∩ Zvy
)
∪ (Zux ∩ Zvx)


It follows that

P(Xu, Xv) =
∑

x∈[u,v]

∑
y∈]x,v]

P(Zux )P(Zvy ) + P
(
Ỹx, x u, x v

)
.

To bound this sum, first note that∑
x∈[u,v]

∑
y∈]x,v]

P(Zux )P(Zvy ) 6
∑

x∈[u,v]

∑
y∈[u,v]

P(Zux )P(Zvy ) = π(n)
u π(n)

v .

Next, Ỹx and {x u, x v} are independent and, writing m(x) = d(x, u ∨ v) for
the number of downwards-oriented edges in the unique configuration of the edges of
[u, v] such that {x u, x v},

P(x u, x v) = pm(x)
n (1− pn)d(u,v)−m(x)

while

P
(
Ỹx
)

=


α

(n)
`(u ∨ v) if x = u ∨ v

ρ`(x) if x = u or x = v

pn ρ`(x)−1 otherwise.

Since for x ∈ [u, v], `(x) = `(u ∨ v)−m(x), and that

ρ`(u ∨ v)−k ∼ (2pn)−kρ`(u ∨ v) 6 p−kn ρ`(u ∨ v) ,

we see that for every x ∈ [u, v], x 6= u ∨ v,

P
(
Ỹx, x u, x v

)
6 ρ`(u ∨ v) ,

while for x = u ∨ v we already know from Proposition 5.3.8 and its proof that

α
(n)
`(u ∨ v) 6 pn ρ`(u ∨ v) .

Discarding this negligible last contribution and summing these inequalities over the
d(u, v) vertices of [u, v] \ {u ∨ v}, we find that∑

x∈[u,v]
P
(
Ỹx, x u, x v

)
6 d(u, v) ρ`(u ∨ v) ,

which complete the proof of (ii).

Now let us show that Var(|Cn|) 6 E(|Cn|) + O(2np2
n). For w ∈ ]v, r], let ϕ(w)

denote the successor of w that does not belong to [v, r]. We decompose Var(|Cn|)
into

Var(|Cn|) =
∑
v∈Tn

∑
u∈T (4v)

n

Cov(Xv, Xu) +
∑

w∈]v,r]

(
Cov(Xv, Xw) +

∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx)
)
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5.3. Percolation from the leaves of a binary tree

where it is understood that the sums exclude leaves. Using (i), we see that∑
u∈T (4v)

n

Cov(Xv, Xu) 6 (2`(v) − 1)π(n)
`(v) .

Similarly, using (ii) we have∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx) 6
∑
x∈T (4ϕ(w))

n

(
d(v, w) + d(w, x)

)
ρ`(w)

6 (2`(w)−1 − 1)
(
d(v, w) + `(w)− 1

)
ρ`(w) .

Since Cov(Xv, Xw) 6 π(n)
`(w), which is asymptotically equivalent to ρ`(w), we have

Cov(Xv, Xw) +
∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx) 6
(
`(w) + d(v, w)

)
2`(w)ρ`(w)

Replacing the sum on w by a sum on its level and letting k denote the level of v, we
get, for every ε > 0,

∑
w∈]v,r]

(
Cov(Xv, Xw) +

∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx)
)
6

n−k∑
i=1

(k + 2i) 2k+iρk+i

6 2kρk

(
k
n−k∑
i=1

(4pn)i + 2
n−k∑
i=1

i(4pn)i
)

6 (1 + ε) pn (k + 2) 2k+2ρk

Putting the pieces together, we find that

Var(|Cn|) 6
n∑
k=1

2n−k(2k − 1)π(n)
k + (1 + ε) pn

n∑
k=1

2n+2(k + 2) ρk .

The first sum is
n∑
k=1

2n−k(2k − 1)π(n)
k = E(|Cn|) +

n∑
k=1

2n−(k−1)(2k−1 − 1)π(n)
k

where
n∑
k=1

2n−(k−1)(2k−1 − 1)π(n)
k 6 2n

n∑
k=2

π
(n)
k = O(2np2

n) ,

since π(n)
k 6 (1 + ε)ρk and ρk 6 (2pn)k. Finally, the second sum is also clearly

O(2n p2
n), and the proof is complete.

With Proposition 5.3.10, Theorem 5.2.2 makes the following result immediate.

Proposition 5.3.11. In the regime pn → 0, we have

dTV
(
|Cn|, Poisson(2npn)

)
= O(pn)

where dTV denotes the total variation distance.

Proof. The proposition is a direct application of the Stein–Chen method to the
positively related variables Xv, v ∈ Tn.
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6. The equivocal “mean age of parents at birth”

As mentioned in Section 1.3, this Chapter is not related to random graphs, and
was not originally meant to be part of this thesis. It began after I met Mauricio
González-Forero to talk about his work on the definition of species [13] and talk
about the split-and-drift random graph presented in Chapter 2.

Because we both shared an interest in structured populations, we also discussed
Mauricio’s current work on the subject and he showed me some of his calculations.
Intriguingly, the “mean age at reproduction” he had computed also corresponded
to the mean age at death in the population. However, the problem did not come
from Mauricio’s calculations, but from the formula he had used. This was very
surprising, because this well-known formula has been the standard for decades. So
even though the problem with the formula itself was simple enough – it approximates
the expectation of a ratio by the ratio of expectations – the fact that it could lead
to incoherencies in practice was somewhat worrying.

I therefore derived formulas for a measure of the mean age at reproduction that
was more conform to the intuition and compared this measure with the classic one,
both on theoretical examples and in real-world models. The results were quite sur-
prising, as the margin by which the classic measure was off was more often significant
than not.

From a mathematical point of view, this work consists mostly of straightforward
calculations involving Poisson point processes and is admittedly not very exciting.
Its interest comes from the fact that it sheds a new light on one of the most ba-
sic measures used by biologists in a variety of concrete applications, ranging from
conservation studies to the theoretical study of evolution.

Publication: This chapter has been published, in a slightly different format, in
The American Naturalist under the title “The equivocal mean age of parents in a
cohort” [1].
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6.1. Introduction

6.1 Introduction
The mean age at reproduction is a central notion in the study of the evolution of
reproductive timing and of the slow-fast continuum. It also plays an important role
in demography. However, as with many descriptors of populations, it is not clear
how it should be defined – let alone quantified in practice. A standard measure of it
is the mean age of parents of offspring produced by a cohort, also frequently referred
to as the cohort generation time. To obtain it, consider all offspring produced by a
cohort of newborns over its lifetime; for each of these offspring, record the age that
their parents (mother, in the case of a female-based model) had when the offspring
was born; finally, take the average of these ages.

It is straightforward to compute this quantity from complete census data. In
practice however, it is usually estimated from life-tables using the following formula:

µ1 =
∫+∞

0 tm(t) `(t) dt∫+∞
0 m(t) `(t) dt

. (6.1)

In this expression, the survivorship function ` gives the probability that an individual
of the chosen cohort reaches age t, and the age-specific fertility m represents its rate
of offspring production in such a way that, assuming the individual remains alive
between ages a and b, the expected number of offspring it will produce in that
interval of time is

∫ b
a m(t) dt. There is also a discrete-time version of formula (6.1):

µ1 =
∑+∞
t=1 t `tmt∑+∞
t=1 `tmt

, (6.2)

where `t is the probability that an individual survives to age t andmt is the expected
number of offspring produced at age t by individuals who reach that age.

Formulas (6.1) and (6.2) go back a long way and are ubiquitous in the literature.
They have been popularized by classic references such as [16] and [4] in demography,
and [3] and [2] in biology. They can also be found in more recent works of reference,
including [15], [21] and [18].

A consensus interpretation of µ1 is that it represents the mean age at which
a typical parent produces offspring. The aim of this chapter is to show that this
interpretation is inaccurate and can be problematic in practice. To do so, I introduce
a more direct measure of the mean age at reproduction of a typical parent. Consider
a typical parent, and compute the average of the ages at which it gives birth to its
offspring. The expected value of this average is what we term the mean age at
reproduction. Under standard assumptions, it is given by

τ = 1
c

∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

(
1− e−

∫ t
0 m(s) ds

)
f(t) dt , (6.3)

where f denotes the probability density function of the lifespan of an individual and
the constant

c =
∫ +∞

0

(
1− e−

∫ t
0 m(s) ds

)
f(t) dt (6.4)

is the fraction of individuals that produce offspring during their lifetime. As with
µ1, there is a discrete-time formula for τ :

τ = 1
c

∑
t>1

∑t
s=1 sms∑t
s=1ms

(
1−

t∏
s=1

e−ms

)
pt , (6.5)
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where pt = `t − `t+1 is the probability mass function of the lifespans of individuals
and

c =
∑
t>1

(
1−

t∏
s=1

e−ms

)
pt . (6.6)

Using the expressions of µ1 and of τ , we show that these two quantities can
differ greatly, even in the most simple models. We also prove that µ1 is always
greater than τ , and that the difference between the two can be arbitrarily large.
Finally, comparing the two measures numerically for 3871 real-world models from
the Compadre and Comadre databases [7, 6], we obtain an average discrepancy
of 20.6% and find than in one model out of four they differ by more than 30%.

6.2 Derivation and interpretation of the expressions of µ1 and τ
In this section, we give a rigorous interpretation of the quantities µ1 and τ . Our
first step will be to lay out our assumptions about the dynamics of the population.
This is rarely done formally in the sources presenting µ1, which might explain why
there has been some confusion about its interpretation.

6.2.1 An explicit model for the population

The setting that we use is that of a Crump-Mode-Jagers process [8, 9, 14], where
the population consists of a discrete set of individuals such that:

(i) Each individual i has a random lifespan Ti with distribution ν and which is
independent of everything else.

(ii) Individual i produces a new offspring at age t for every point of Pi at t such
that t 6 Ti, where Pi is a point process with intensity m on [0,+∞[ that is
independent of everything else.

Note that the point processes Pi are not homogeneous (m is a function of the age of
individuals) and that they do not have to be simple (an individual can give birth to
several offspring simultaneously). For mathematical tractability however, it is often
convenient to work with Poisson point processes (a brief introduction to Poisson
point process can be found in Section 6.A of the Appendix). While the assumption
that Pi are Poisson point processes is not needed in the study of µ1, it will be
required to derive explicit formulas for τ .

In this setting, the definition and interpretation of the survivorship function and
of the age-specific fertility are straightforward. The survivorship is defined by 1

`(t) = P(Ti > t) = ν
(
[t,+∞[

)
.

Working with the measure ν is convenient because it makes it possible to treat the
case where Ti is a continuous random variable and the case where it is a discrete
random variable simultaneously. However, in many applications Ti will have a den-
sity f . Thus, we will do most of our calculations with ν but express our final results
in terms of f or `, as in formulas (6.1) and (6.3).

1 In probability theory and statistics, the survival function almost invariably refers to the com-
plementary cumulative distribution function of Ti, t 7→ P(Ti > t). Here, however, we will stick to
the convention used in biology.
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The age-specific fertility is the function m. If we denote by Mi(a, b) the integer-
valued random variable corresponding to the number of offspring produced by i
between ages a and b, then assuming that b 6 Ti we have, as expected,

E(Mi(a, b)) =
∫ b

a
m(t) dt ,

Obviously, the framework of Crump-Mode-Jagers processes has some serious
restrictions. For instance, it assumes that individuals are independent and thus
excludes any kind of density dependence. Similarly, the (optional) assumption that
individuals reproduce at rate m is constraining, and in particular implies that they
cannot produce several offspring simultaneously. Nevertheless, this framework is
close to the minimal setting containing all the ingredients needed to define most
descriptors of populations, whilst being simple enough to remain tractable and make
it possible to derive explicit formulas for these descriptors. Moreover, the hypotheses
above correspond quite well to the assumptions that are made, typically implicitly,
to obtain the classic expressions of many of descriptors of populations.

Finally, to obtain discrete-time equivalents of formulas (6.1) and (6.3) we will
need to consider the following version of the model, which allows simultaneous births:
we keep assumption (i) under the extra hypothesis that the lifespan Ti is an integer-
valued random variable, and we replace (ii) by the assumption that at each age
t = 1, . . . , Ti, individual i gives birth to M (i)

t new individuals. Again, this corre-
sponds quite well to the usual hypotheses on which many classic formulas rely.

6.2.2 The mean age of parents of offspring produced by a cohort
We now give a rigorous interpretation of the quantity µ1 given by formulas (6.1)
and (6.2). As we will see, this interpretation is more subtle than what is usually
assumed. This is because µ1 does not correspond to the expected value of the average
of the ages of the parents of the offspring produced by a cohort, but only to the limit
of this average when the size of this cohort goes to infinity.

Let C denote a cohort, that is, a set of n individuals considered from the time of
their birth to the time of their death. Let Ti be the lifespan of individual i, and Pi be
the set of ages at which it produces offspring. Note that in our setting, conditional
on Ti, Pi is a point process with intensity m on [0, Ti].

The average of the ages of the parents of the offspring produced by the cohort
over its lifetime is

ZC =
∑
i∈C
∑
t∈Pi t∑

i∈C
∑
t∈Pi 1 =

∑
i∈C Si∑
i∈C Ni

,

where Ni =
∑
t∈Pi 1 is the number of offspring produced by individual i, and Si =∑

t∈Pi t is the sum of the ages at which it produces them. Note that ZC is well-
defined only when

∑
i∈C Ni > 0, but that this happens with probability arbitrarily

close to one for a large enough cohort.

As we have already seen, the expected number of offspring produced by an
individual i whose lifespan is Ti = t is∫ t

0
m(s) ds .

This quantity can be thought of as “E(Ni | Ti = t)”, even though this interpretation
is subject to some caution. At any rate, it follows that

E(Ni) =
∫ +∞

0

(∫ t

0
m(s) ds

)
dν(t) .
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Moreover, using Fubini’s theorem,∫ +∞

0

(∫ t

0
m(s) ds

)
dν(t) =

∫ +∞

0
m(s)

(∫ +∞

s
dν(t)

)
ds .

Using that
∫+∞
s dν(t) = `(s), we get the well-known expression for R0, the mean

number of offspring produced by an individual during its lifetime:

R0 = E(Ni) =
∫ +∞

0
m(t) `(t) dt

Using Campbell’s formula (equation (6.11) in Appendix 6.A) and the exact same
reasoning, we can express the mean sum of the ages at which an individual produces
offspring as

E(Si) =
∫ +∞

0
tm(t) `(t) dt

Now let N (resp. S) denote a random variable that has the common distribution
of the variables Ni (resp. Si). Then, as pointed out in most sources presenting the
measure µ1, we have

µ1 = E(S)
E(N) .

This however does not establish a link between µ1 and ZC , the average age of the
parents of offspring produced by the cohort. To see how these two quantities are
related, observe that since the variables Ni (resp. Si) are independent, if we denote
by n = Card(C) the size of the cohort then by the law of large numbers, as n→ +∞,

1
n

∑
i∈C

Ni
a.s.−−−−−→

n→+∞
E(N) and 1

n

∑
i∈C

Si
a.s.−−−−−→

n→+∞
E(S) .

As a result,

ZC =
1
n

∑
i∈C Si

1
n

∑
i∈C Ni

a.s.−−−−−→
n→+∞

µ1 .

Importantly, note that µ1 is not the expected value of Si/Ni or of ZC . In fact, the
expected value of Si/Ni (conditional on this variable being well-defined) is precisely
what we call the mean age at reproduction. We explain how to compute it in the
next section.

6.2.3 The mean age at reproduction
Recall that we would like the mean age at reproduction τ to represent the mean age
at which a typical parent produces offspring. Formally, assuming that individual i
has some offspring, the average age at which it produces them is

X̄i = 1
Ni

∑
t∈Pi

t ,

where, as before, Ni is the total number of offspring produced by i and Pi is the set
of ages at which it produces them. We thus define the mean age at reproduction as

τ = E
(
X̄i

∣∣∣Ni > 0
)
,

which, given our assumptions, does not depend on i or on the composition of the
population.
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Note that if I is a “typical parent”, i.e. is sampled uniformly among the individ-
uals that produce offspring during their lifetime, we have

E
(
X̄i

∣∣∣Ni > 0
)

= E
(
X̄I

)
.

Moreover, letting T̃ denote the lifespan of I, X̄I is the average of a point process
with intensity m on [0, T̃ ]. As explained in Section 6.A of the Appendix, in the case
of a Poisson point process, the expected value of this average is simply the expected
value of a random point of [0, T̃ ] with density t 7→ m(t)/

∫ T̃
0 m(s) ds. The remarkable

fact that it does not depend on the value of Ni is a consequence of the absence of
internal structure of Poisson point processes. From this, we get

E
(
X̄I

∣∣∣ T̃) =
∫ T̃

0 sm(s) ds∫ T̃
0 m(s) ds

.

As a result,

τ =
∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

dν̃(t) ,

where ν̃ is the law of the lifespan T̃ of I. Note that it is different from ν, the
lifespan of a fixed individual, because conditioning on the fact that an individual
produces offspring biases its lifespan; for instance, if – as frequently the case in real
applications – there exists an age α such that m(t) = 0 for t < α, then individuals
that produce offspring all live longer than α, whereas it is not necessarily the case
for other individuals.

The last thing that we need to do in order to get an explicit formula for τ is thus
to determine ν̃. For this, note that

P
(
T̃ 6 t

)
= P(Ti 6 t |Ni > 0)

= P(Ti 6 t,Ni > 0)
P(Ni > 0) .

Conditioning on Ti, using the void probabilities of Poisson point processes for the
probability that an individual with lifetime s produces some offspring, and finally
integrating against ν, we get

P(Ti 6 t,Ni > 0) =
∫ t

0

(
1− e−

∫ s
0 m(r) dr

)
dν(s) .

As a result,

dν̃(t) = 1
c

(
1− e−

∫ t
0 m(s) ds

)
dν(t) ,

where the constant c = P(Ni > 0) is given by

c =
∫ +∞

0

(
1− e−

∫ t
0 m(s) ds

)
dν(t) .

Note that, by integrating by parts and using that `(t)→ 0 as t→ +∞, we can also
express c directly in terms of ` and m as

c =
∫ +∞

0
e−
∫ t

0 m(s) dsm(t) `(t) dt .
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Putting the pieces together in the case where Ti has a density f , we get formula (6.3):

τ = 1
c

∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

(
1− e−

∫ t
0 m(s) ds

)
f(t) dt .

Note that neither the biological interpretation of τ nor the derivation of its expression
depend on the assumption that individuals are independent.

Sometimes, especially when studying evolution, one is interested in the average
of a function z of the ages at which a parent produces offspring, rather than in the
average of the ages themselves.2 In that case, letting A be uniformly chosen among
the ages at which a typical parent produces offspring, for every function z,

E
(
z(A)

)
= 1

c

∫ +∞

0

∫ t
0 z(s)m(s) ds∫ t

0 m(s) ds

(
1− e−

∫ t
0 m(s) ds

)
f(t) dt ,

with the constant c given in equation (6.4). This is proved by working with

W̄i = 1
Ni

∑
t∈Pi

z(t)

instead of X̄i, and using equation (6.10) instead of equation (6.9) to get

E
(
W̄I

∣∣∣ T̃) =
∫ T̃

0 z(s)m(s) ds∫ T̃
0 m(s) ds

.

Finally, the justification of the expression of τ for discrete age structures can
be found in Section 6.B of the Appendix. It essentially consists in approaching
the discrete-time model with the continuous-time one by choosing appropriate age-
specific fertilities, and relies on the assumption that the number of offspring pro-
duced each year by each individual follows a Poisson distribution. It should also
be pointed out that, because in the discrete-time setting individuals can produce
several offspring simultaneously, there are two possibilities to define the average age
at offspring production: counting all births equally, or weighting them by the num-
ber of offspring produced. Formula (6.5) is obtained by weighting the ages by the
number of offspring produced when averaging them.

6.2.4 Computing τ in matrix population models
Matrix population models are widely used quantitative models of structured pop-
ulation dynamics. Their mathematical tractability and ease of use in real-world
applications makes them a tool of choice for many biologists and demographers.
The framework of matrix population models is the following: consider a population
structured in discrete classes i = 1, . . . ,m and assume that the the per-capita con-
tribution of individuals in class j at time t to the composition of class i at time t+ 1
is aij . Then, letting ni(t) denote the number of individuals in class i at time t, the
dynamics of the population are governed by the equation

n(t+ 1) = An(t) ,

where n(t) = (ni(t)) is called the population vector and A = (aij) the population
projection matrix.

2 This was pointed out by Mauricio González-Forero.
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What makes these models interesting from a mathematical point of view is
their connection to the theory of nonnegative matrices (and especially the Perron-
Frobenius theorem) and their connection to multitype branching processes. For a
presentation of matrix population models, see e.g. [2].

An expression of µ1 is available for matrix population models: if we let S be the
survival matrix and F be the fertility matrix (i.e. if we decompose the projection
matrix A into A = S+F to separate survival probabilities from fertilities) and denote
by w the stable distribution of the population (the dominant right-eigenvector of A)
and e = (1, . . . , 1) the row vector consisting only of ones, then we have the following
modern version of the classic formula of [5], which can be found in [11]:

µ1 = eF(I− S)−2Fw
eF(I− S)−1Fw . (6.7)

Note that (I − S)−1 =
∑
t>1 St−1 and that (I − S)−2 =

∑
t>1 tSt−1, so that this

expression closely parallels (6.2). The entries of e represent the weight given to each
type of offspring when computing the average age of the parents. Should we wish to
give more importance to some offspring type, any vector with positive entries could
be used in place of e – in fact [5] suggest using the reproductive values as weights.
See [11] for more on this.

To obtain an equivalent of formula (6.5) giving τ in the contex of matrix pop-
ulation models, one would need to (1) find the law of the conditional trajectory of
an individual in the life cycle given that it produces offspring and (2) integrate the
average of the ages at which it produces offspring against this law. While the first
of these steps is feasible 3, it is unclear whether the second is – and whether the
resulting expression, if it could be obtained, would be simple enough to be useful.

Nevertheless, the definition of τ as the mean age at which a typical parent
produces offspring can easily be transposed to the framework of matrix population
models, making it straightforward to estimate it via individual-based simulations.
This is detailed in Appendix 6.E

6.3 Examples
In order to get a sense about how the measures µ1 and τ differ, let us compare them
on some examples, using both theoretical and real-world models. More general
mathematical results, such as the fact that τ 6 µ1 that was announced in the
introduction, will be proved in the Appendix.

6.3.1 Theoretical examples
Let us start with a simple but fundamental example, where individuals reproduce
at constant rate m. In that case,

µ1 =
E
(∫ T

0 msds
)

E
(∫ T

0 mds
) = 1

2
E
(
T 2)

E(T )

and

τ = E

∫ T̃0 msds∫ T̃
0 mds

 = 1
2 E

(
T̃
)
.

3 This was explained to me by Stephen Ellner – see e.g. Chapter 3 of [12].
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The expression of τ is unsurprising: when birth events are uniformly distributed on
the lifetime of individuals, on average they occur in the middle of their life. Also,
since

E
(
T̃
)

=
E
(
T
(
1− e−mT

))
E(1− e−mT ) ,

and that for all t > 0, 1− e−mt increases to 1 as m goes to infinity, it follows from
the monotone convergence theorem that

E
(
T̃
)
→ E(T ) as m→ +∞ .

By a similar argument (see Appendix 6.C), we also have

E
(
T̃
)
→ E

(
T 2)

E(T ) as m→ 0 .

Furthermore, since E(T̃ ) is a decreasing function of m, we conclude that when
individuals reproduce at a constant rate,

1
2E(T ) 6 τ 6 µ1 .

In fact, the inequality τ 6 µ1 holds for general age-specific fertility functions: see
Proposition 6.D.2 in Appendix 6.D.

To make this example more concrete, let us further assume that individuals die
at constant rate η, so that T is an exponential variable and that `(t) = e−ηt. In that
case, we get

µ1 = 1
η

and τ = 1
2 η

(
1 + 1

1 +m/η

)
. (6.8)

Note that here µ1 is also equal to the expected lifespan in the population. Inter-
preting it as the mean age at which parents reproduce would therefore lead to a
contradiction, because – in the case where the fertility m is large enough, so that
most individuals get to reproduce during their lifetime and that the lifespan of a
typical parent is not very different from that of a typical individual – this would
imply that, on average, the age at which an individual reproduces is the same as the
age at which it dies. This is absurd, because unless individuals reproduce exactly
when they die, the former has to be smaller than the latter.

From (6.8), we also see that for m/η large enough, µ1 ≈ 2τ . For m = η, which
corresponds to the minimum ratio m/η for a viable population, the difference is
already 25% of the value of µ1. The relative difference between µ1 and τ as a
function of m/η is plotted in Figure 6.1.

Now consider the closely related discrete-time model where individuals survive
from one year to the other with probability p and produce Poisson(m) offspring at
each age t > 1, so that

pt = (1− p) pt and `t = pt ,

After straightforward calculations, we find that the numerator in formula (6.2),
which corresponds to the mean sum of the ages at childbirth, is mp/(1 − p)2 and
that the denominator is mp/(1− p). As a result,

µ1 = 1
1− p .
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Figure 6.1: Relative difference between µ1 and τ as a function of the parameters of the models
considered. Left, the continuous-time model in which individuals give birth at constant rate m and
die at constant rate η. Right, the discrete-time model in which they survive from one year to the
other with probability p and give birth to Poisson(m) offspring each year. Dashed lines indicate
values of the parameters for which the population is not viable in the long term.

Note that this model can also be seen as a 1 × 1 matrix population model with
survival matrix S = (p) and fertility matrix F = (m), so formula (6.7) can also be
used and gives the same result.

Because E(T ) = p/(1− p), we see that

µ1 = E(T ) + 1 ,

which also corresponds to the expected lifespan of individuals that reach age 1. For
the same reason as before, this implies that µ1 is not credible as an estimate of the
mean age at which a typical parent produces offspring.

Finally, after routine calculations we find that

τ = 1
2

( 1
1− p + 1

1− p e−m
)
.

As previously, 1
2µ1 6 τ 6 µ1, but the difference between µ1 and τ can be quite high,

even for very reasonable values of p and m: for instance, with p = 0.5 and m = 2
both measures differ by 23% of the value of µ1; for p = 0.9 and m = 2, by 44%.
Again, this is illustrated in Figure 6.1.

6.3.2 Real-world examples
The examples of the previous section show that µ1 and τ can be very different,
even in the most simple models. But do they differ significantly in practice? To
answer this question, µ1 and τ were calculated for every model of the Compadre
Plant Matrix Database [7] and Comadre Animal Matrix Database [6] for which
this could be done. Because there is no formula for τ in matrix population models,
it was estimated numerically in such a way that, for each estimated value, the width
of the 95% confidence interval was less than 2% of the estimated value itself (see
Section 6.E of the Appendix for details). Figure 6.2 gives the distribution of the
relative difference between the two quantities, computed as ∆% = 100(µ1 − τ)/µ1,
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and Table 6.1 lists some statistics of this distribution. These conclusively show that
the measures µ1 and τ differ significantly for most real-world models. In particular,
the fact that the median of (µ1 − τ)/µ1 is of order 20% means that, by using µ1 to
quantify the mean age at reproduction, one overestimates its actual value by more
than 25% in half of the cases.
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Figure 6.2: Distribution of the relative difference between µ1 and τ for the Compadre and Co-
madre databases. The difference is given as a percentage of µ1; for instance, a 30% difference
means that τ = 0.7µ1.

Mean 1st quartile Median 3rd quartile

Compadre 19.97 05.26 17.73 30.49
Comadre 22.16 12.54 22.60 31.14

Table 6.1: Statistics of the distribution of (µ1 − τ)/µ1 for the Com-
padre and Comadre databases. All values are percentages.

For a detailed example of a real-world model in which µ1 and τ differ greatly,
see Appendix 6.F. This example is particularly interesting because it illustrates the
fact that µ1 can be greater than the expected lifespan conditional on reproduction,
which decisively rules out its interpretation as the mean age at reproduction.

Before closing this section, let us comment on the fact that some models (152
out of 3871) appear to have τ < µ1. These are in fact models for which τ is very
close to µ1, but because of the uncertainty in its estimation appears to be slightly
smaller than it. Indeed, for most of these models µ1 − τ is very close to zero (only
ten of them have a relative difference such that |∆%| > 1%). All things considered,
the fact that µ1 lies below the 95% confidence interval of τ for only 0.46% of all
models is consistent with the fact that τ 6 µ1 (it would have to be more than 2.5%
to constitute a contradiction).

Finally, the excess of models for which µ1 ≈ τ in Compadre compared to Co-
madre is due to (mostly 2×2) models with very short generation times, presumably
corresponding to annuals plants in which the lifespans of individuals exhibit little
to no variation.
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6.4 Discussion
The mean age of the parents of the offspring produced by a cohort µ1 and the mean
age at reproduction τ are two genuinely different notions. So why have they not been
recognized as such before? Probably because precise definitions of these quantities
are seldom given. For instance, in the references given above – which are or have
been among the most influential in the field – µ1 is variously described as the “mean
age at childbearing in the stationary population” 4 by [16]; as the “mean age of
childbearing in a cohort” by [4, eq. (2.10) p. 19]; as the “mean age at reproduction of
a cohort of females” by [3, eq. (1.47a) p. 30]; and as the “mean age of the mothers at
the time of their daughter’s birth” by [21, eq. (4.12) p. 98]. Yet these four definitions
fail to detail how this “mean” should be computed, and could thus be thought to
refer to τ .

It is not obvious from the definitions of µ1 and τ how these two quantities are
related – or indeed why they should differ at all. One helpful way to think about it
is the following: µ1 can be seen as an offspring-centric measure of the mean age of
parents, whereas τ is a parent-centric measure of it. Indeed, to compute µ1 we ask
each newborn produced by a cohort “how old is your parent?”, while for τ we ask
a parent “how old are you going to be when you have offspring?” These questions
have distinct answers because they correspond to two different ways to sample a
parent.

Among other things, this explains why µ1 is greater than τ : indeed, parents that
live longer tend to have more offspring, and thus have a higher probability of being
sampled via their offspring than when the sampling is done uniformly at random.
As a result, they contribute more to µ1 than to τ . Since these parents with longer
lifespans are also those that tend to have a higher mean age at reproduction, this
biases µ1 upward compared to τ .

This also explains why the difference µ1− τ goes to zero as the fertility becomes
vanishingly small (see Appendix 6.C): in that case, the proportion of parents that
give birth to more than one offspring during their lifetime goes to zero, and as the
result the two parent-sampling schemes become equivalent.

To close this series of remarks regarding the link between µ1 and τ , observe that,
from a purely mathematical point of view, the difference between the two can be
made arbitrarily large. Indeed, recall that, when individuals reproduce at a constant
rate m, µ1 = E

(
T 2)/E(T ) and τ → 1

2E(T ) as m → +∞. Thus, by choosing an
appropriate distribution for the lifespan T and taking m large enough, we can make
µ1 arbitrarily large and τ arbitrarily small.

Now that we have seen that µ1 and τ are two different concepts, that they differ
significantly in practice, and that we better understand the link between them, one
important question remains: which of µ1 or τ should be favored in which context?

From a practical point of view, the expressions of τ are, admittedly, more complex
than those of µ1. This of course is not a problem for real-world applications, where
they are going to be evaluated numerically; for theoretical applications however, this
does make exact calculations harder, if possible at all.

Another important difference between both measures is their slightly different
domain of validity. While the interpretation of µ1 hinges on the assumption that
there are no interactions between individuals, the expression of τ relies on that of

4 What Keyfitz calls the stationary population is actually a cohort.
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Poissonian births. One might cynically argue that this is hardly a problem, because
both hypotheses are often used jointly in theoretical models, and never met in real-
world applications. Nevertheless, there is a real difference here that should be taken
into account when deciding which measure to choose.

Lastly, τ has the advantage of having a more direct interpretation than µ1.
Judging from the phrasing used by several authors, it seems that it is sometimes τ
they have in mind, even when working with µ1. Moreover, the interpretation of µ1
might not be as intuitive as we usually assume; notably, the fact that it can be greater
not only than the expected lifespan but also than the expected lifespan conditional
on reproduction (as illustrated by the Medium density scenario for Astrocaryum
mexicanum in Section 6.F of the Appendix) is likely to come as a surprise to many
ecologists and demographers.
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Appendices to Chapter 6

6.A Basic facts about Poisson point processes
This section was originally written as an online supplement to the article that forms
the basis of this chapter. Its aim was to present the basics of Poisson point processes
to biologists, we focusing on the properties on which our calculations rely. Thus no
attempt is made at stating the results in full generality, and we do not preoccupy
ourselves with technical conditions such as measurability. For a detailed presentation
of Poisson point processes, see e.g. [17] or [10].

It is common in modelling to assume that an event occurs at rate r(t) at time t.
Loosely speaking, this means that the probability that the event happens between t
and t + dt is independent of its previous occurrences, and is approximately r(t) dt.
The rigorous way to formalize this is to say that the events are distributed according
to an (inhomogeneous) Poisson point process with intensity r. Such a process can
be seen as a random set of points characterized by the following properties: writing
N(I) for the number of points that fall in a fixed set I ⊂ R,

(i) N(I) is a Poisson random variable with mean
∫
I r(t) dt.

(ii) N(I) and N(J) are independent whenever I and J are disjoint.

Note that the following useful fact is an immediate consequence of (i):

P(N(I) = 0) = exp
(
−
∫
I
r(t) dt

)
.

Property (ii), often known as the independent scattering property, essentially says
that Poisson point processes have a “completely random” structure.

From now on, we consider a fixed set I ⊂ R such that
∫
I r(t) dt < +∞. We let

P be a Poisson point process with intensity r on I and denote by N = Card(P ) its
number of points. Let X be a random point of I with density t 7→ r(t)/

∫
I r(t) dt,

i.e. whose distribution is characterized by

∀A ⊂ I, P(X ∈ A) =
∫
A r(t) dt∫
I r(t) dt

,

and note in passing that

E(X) =
∫
I t r(t) dt∫
I r(t) dt

.
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6.B. Expression of τ for discrete age structures

An important property of Poisson point processes is that, conditional on the
event {N = n}, P consists of n independent copies of X – that is, for every func-
tion ϕ,

E(ϕ(P ) |N = n) = E
(
ϕ({Xi : i = 1, . . . , n})

)
,

where Xi, i = 1, . . . , n, are independent copies of X. A consequence of this is that
the expected value of the average of the points in P is E(X). Formally, if N > 0
then we can define a random variable X̄ by

X̄ = 1
N

∑
t∈P

t .

We then have
E
(
X̄
∣∣∣N > 0

)
= E(X) . (6.9)

Indeed,
E
(
X̄
∣∣∣N > 0

)
= 1
P(N > 0)

∑
n>1

E
(
X̄
∣∣∣N = n

)
P(N = n) ,

and, for every n > 1,

E
(
X̄
∣∣∣N = n

)
= E

(
X1 + · · ·+Xn

n

)
= E(X) .

In fact, given a function f , the exact same reasoning can be applied to

W̄ = 1
N

∑
t∈P

f(t)

to show that
E
(
W̄
∣∣∣N > 0

)
= E(f(X)) . (6.10)

We close this short overview with a fundamental result known as Campbell’s
formula. This formula states that, for every function f ,

E

(∑
t∈P

f(t)
)

=
∫
I
f(t) r(t) dt . (6.11)

In contrast to (6.9) and (6.10), which are consequences of the independent scattering
property, Campbell’s formula is not specific to Poisson point processes.

6.B Expression of τ for discrete age structures
In discrete time, individual i has an integer-valued lifespan Ti and, at each age
t = 1, . . . , Ti, produces M (i)

t new individuals, where the variables M (i)
t are integer-

valued and independent of everything else. Here we will also need to assume that
each variable M (i)

t is a Poisson random variable with mean mt.

In that setting, the average X̄i of the ages at which individual i produces offspring
can be defined as

X̄i = 1
Ni

Ti∑
t=1

tM
(i)
t ,

this definition being valid only when Ni =
∑Ti
t=1M

(i)
t > 0. Note that, in this

expression, each age at which i produces offspring is weighted by the number of
offspring produced. This is similar to what is done for µ1, where each offspring
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6. The equivocal “mean age of parents at birth”

contributes to the average age of the parents. But another possibility would be to
weight all ages equally, that is, use the variable

Ȳi =
∑Ti
t=1 t I

(i)
t∑Ti

t=1 I
(i)
t

,

where I(i)
t = 1 if M (i)

t > 0 and 0 otherwise.

Since X̄i = Ȳi when individuals cannot give birth to several offspring simultane-
ously (or, more generally, when the number of offspring produced is either 0 or some
constant m), the two definitions were equivalent in the continuous-time setting. But
now, X̄i and Ȳi are two different and legitimate candidates for the “average age at
which i produces offspring”. However, Ȳi does not lend itself to analysis as easily as
X̄i and to obtain formula (5) – which is arguably the natural discrete-time equiv-
alent of formula (3) – it is X̄i that should be used. Therefore, we define τ to be
E(X̄i |Ni > 0).

The reasoning that lead to (3) could be adapted to obtain an expression for τ .
However, it is also possible to deduce this expression directly from our results in
continuous time. Indeed, the calculations of Section C of the Appendix are valid for
general lifespans, including discrete ones: when ν is discrete, we simply have for any
function ϕ ∫ +∞

0
ϕ(t) dν(t) =

∑
t>1

ϕ(t) pt ,

where pt = P(Ti = t).

Moreover, observe that if we let the age-specific fertility m be the piecewise
constant function defined by

m(t) =
∑
s>1

ms1]s−1,s](t) ,

where 1]s−1,s] is the function that evaluates to 1 if t ∈ ]s− 1, s] and 0 otherwise,
then the number of offspring produced by an individual between ages (t− 1) and t
is a Poisson variable with parameter mt. Thus, the only difference with the dis-
crete setting is that the ages at which these offspring are produced are uniformly
distributed in ]t− 1, t] instead of all equal to t.

Now, if we take the age-specific fertility to be the function m(ε) defined by

m(ε)(t) =
∑
s>1

ms

ε
1]s−ε,s](t) ,

then the number of offspring produced between ages (t− 1) and t is still a Poisson
variable with parameter mt, but this time the ages at which these offspring are
produced are uniformly distributed in ]t− ε, t]. Taking ε to zero, the mean age at
childbirth will therefore tend to that of the discrete-time model. We spare the reader
the straightforward but somewhat technical argument by which this can be made
rigorous. Noting that, for continuous functions g,∫ t

0
g(s)m(ε)(s) ds −−−→

ε→0

t∑
s=1

g(s)ms ,

we obtain the following discrete-time equivalent of (3):

µ1 = 1
c

∑
t>1

∑t
s=1 sms∑t
s=1ms

(
1−

t∏
s=1

e−ms

)
pt ,
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6.C. Proof of E(T̃ )→ E
(
T 2)/E(T ) as m→ 0

where pt = P(Ti = t) = `t − `t+1, and

c =
∑
t>1

(
1−

t∏
s=1

e−ms

)
pt .

6.C Proof of E(T̃ )→ E(T 2)/E(T ) as m→ 0
In this section we prove that, when the lifespan T of a fixed individual has a second
moment – a condition that is always met in practice – and the age-specific fertility
is constant and equal to m, then the expected lifespan of individuals that produce
offspring during their lifetime converges to E

(
T 2)/E(T ) as m → 0. As seen in the

main text, it follows immediately that τ → µ1, both in the continuous setting where
offspring production occurs at a constant rate m during the lifetime of individu-
als and in the discrete setting where individuals produce a Poisson(m) number of
offspring at each integer-valued age t > 1.

Proposition 6.C.1. Let T denote the lifespan of a fixed individual, and let T̃ have
the distribution of T conditional on reproduction in the model where reproduction
happens at constant rate (or in the model where individuals produce Poisson(m)
offspring at each integer age t > 1 at which they are alive), i.e.

E
(
T̃
)

=
E
(
T (1− e−mT )

)
E(1− e−mT ) .

Then, if E
(
T 2) < +∞,

E
(
T̃
)
→ E

(
T 2)

E(T ) as m→ 0 .

Proof. The following proof is due to Stephen P. Ellner and is a welcome simplification
of my original proof.

Let g(m, t) = (1− e−mt)/m, so that

E
(
T̃
)

= E(Tg(m,T ))
E(g(m,T )) .

Since
∂

∂m
g(m, t) =

(
1 +mt− emt

)e−mt
m2

and that 1 + x 6 ex for all x, we see that g(m, t) increases to t as m decreases
to 0. By the monotone convergence theorem, it follows that E(g(m,T )) ↑ E(T ) and
E(Tg(m,T )) ↑ E

(
T 2) as m ↓ 0. This terminates the proof.

6.D Proof of τ 6 µ1

In this section we prove that µ1, as defined by formulas (1) and (2), is always
greater than or equal to τ , as defined by formulas (3) and (5). This will be a simple
consequence of the following lemma.

Lemma 6.D.1. Let X be a positive random variable, and let g and h be positive
functions such that x 7→ g(x)/x is nondecreasing and x 7→ h(x)/x is nonincreasing.
Then,

E

(
g(X)h(X)

X

)
E(X) 6 E(g(X))E(h(X))
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Proof. Let Y be a random variable with the same distribution as X and that is
independent of X. We have to show

E(g(X))E(h(Y ))− E
(
g(Y )h(Y )

Y

)
E(X) > 0

⇐⇒ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

))
> 0

⇐⇒ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X>Y }

)
(6.12)

+ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)
> 0

Since x 7→ g(x)/x is nondecreasing,

(
g(X)
X
− g(Y )

Y

)
1{X<Y } 6 0 ,

and since x 7→ h(x)/x is nonincreasing,

0 6 Xh(Y )1{X<Y } 6 Y h(X)1{X<Y } .

As a result,

E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)
> E

(
Y h(X)

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)
= −E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X>Y }

)
.

Plugging this into (6.12) finishes the proof.

Proposition 6.D.2. Let T denote the lifespan of a fixed individual. Define the
random variables M and M∗ by

M =
∫ T

0
m(s) ds and M∗ =

∫ T

0
sm(s) ds

in the case where reproduction occurs at a constant rate, and by

M =
T∑
s=1

ms and M∗ =
T∑
s=1

sms

in the case where it takes place at integer-valued ages t > 1, so that, in both cases

µ1 = E(M∗)
E(M) and τ =

E
(
M∗

M (1− e−M )
)

E(1− e−M ) .

Then, τ 6 µ1.
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6.D. Proof of τ 6 µ1

Proof. First, observe that M∗ is actually a deterministic function of M . Indeed, let
ψ (resp. ψ∗) denote the function such that M = ψ(T ) (resp. M∗ = ψ∗(T )). Since ψ
is nondecreasing, if we define θ by

θ(x) = inf{t > 0 : ψ(t) > x} ,

then we have M∗ = ψ∗(θ(M)). To see this, note that θ(M) 6 T by construction
and that θ(M) < T implies

∫ T
θ(M)m(s) ds = 0 (resp.

∑T
s=θ(M)ms = 0), which in turn

implies
∫ T
θ(M) sm(s) ds = 0 (resp.

∑T
s=θ(M) sms = 0). Thus, writing

g(x) = ψ∗(θ(x)) and h(x) = 1− e−x ,

we have to prove

E(g(M))E(h(M)) > E

(
g(M)h(M)

M

)
E(M) .

Clearly, M is a positive random variable, and the functions g and h are positive.
Therefore, all we have to do to finish the proof is to show that x 7→ h(x)/x is nonin-
creasing and that x 7→ g(x)/x is nondecreasing, so that we can apply Lemma 6.D.1.
First,

d

dx

(
h(x)
x

)
= e−x(1 + x)− 1

x2 6 0 ,

since 1 + x 6 ex. Second,

g(x)
x

= ψ∗(θ(x))
ψ(θ(x)) = F (θ(x))

where F : t 7→ ψ∗(t)/ψ(t). The function θ is nondecreasing by construction. The
fact that F is nondecreasing can be shown by straightforward calculations, e.g., in
the continuous case,

d

dt
F (t) =

m(t)
(∫ t

0(t− s)m(s) ds
)

(∫ t
0 m(s) ds

)2 > 0 .

However, it is more satisfying to see that F (t) can be interpreted as the expectation
of a random variable Xt with density ft(s) = m(s)1[0,t](s)/ψ(t) in the continuous
case, and with probability mass function p

(t)
s = ms/ψ(t) for s = 1, . . . , t in the

discrete case. It then is easy to see that Xt is stochastically dominated by Xt′ for
t < t′, and so if follows immediately that F (t) = E(Xt) 6 E(Xt′) = F (t′).
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6.E Computing µ1 and τ for Compadre/Comadre
In this section, we detail how the data behind Figure 6.2 and Table 6.1 in the main
text were obtained.

The Compadre and Comadre each contain thousands of projection matrices
for hundreds of species. However, not all of these matrices are suitable to compute
µ1 and τ . Indeed, for this we need:

(i) The A = S + F decomposition of the projection matrix into its survival and
fertility components.

(ii) Non-zero S and F matrices.

(iii) A survival matrix S whose columns all sum to less than one, so that it can be
interpreted as a substochastic matrix and that (I− S)−1 is always guaranteed
to exist.

This leaves us with 3319 models in Compadre and 1245 models in Comadre.
For each of these, µ1 was computed with formula (11) and τ was estimated by
averaging several realizations of the random variable S/N described in the main-
text (conditional on N > 0). One such realization can be obtained thanks to the
following procedure, where w = (wi) denotes the stable distribution:

parent← False
while not parent do

i← random newborn stage chosen proportionally to the entries of (
∑

k fjkwk)j

age, N, S ← 0, 0, 0
alive← True
while alive do

age← age+ 1
offspring ← Poisson(

∑
j fji)

N ← N + offspring
S ← S + offspring · age
with probability 1−

∑
j sji do

alive← False
else do

i← random stage chosen proportionally the entries of (sji)j

end while
if N > 0 then

parent← True
end while
return S/N

Each estimate τ̂ is associated with a confidence interval [τ̂ − ε, τ̂ + ε], where
ε = 2σ̂/

√
n with σ̂ the empirical standard deviation and

√
n the number of replicates.

In order to get reliable estimates, the number of replicates n was doubled until
ε < 0.01τ̂ .

Because the probability of an individual producing some offspring during its
lifetime can be arbitrarily small, this means that obtaining one realization of S/N
with the procedure above can take an arbitrarily long time. To avoid getting stuck
on a computation, all models for which τ̂ could not be computed with the desired
precision in a reasonable time were ignored, and 1182 models were thus rejected.
Because this is a non-negligible fraction of the 4564 models available, this has the
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6.F. Projection matrices for A. mexicanum

potential to bias our results. However, note that since those models for which the
probability of producing offspring during one’s lifetime is very small are precisely
those for which we expect µ1 to differ greatly from τ , if anything this will lead us to
underestimate the difference between µ1 and τ .

Finally, after performing these calculations, 11 models (0.28%) were discarded
for having biologically unrealistic descriptors (e.g, λ ≈ 200 or an average age of
mothers in the stable population Ā ≈ 10000), leaving us with numerical values of
µ1 and τ for 2706 models of Compadre and 1165 models of Comadre.

6.F Projection matrices for A. mexicanum
In this section, we detail a specific example of a real-world model in which µ1 and
τ differ greatly. These particular models were chosen because they have frequently
been used as examples of matrix population models. For instance, one of them is
shipped with the ULM software for studying population dynamics [19].

The following projection matrices for the tropical palm Astrocaryum mexicanum
are from Appendix 6 of [5], who averaged them from several projection matrices
of [20]. Note that there is a small typo in the projection matrix for the Low density
model given by [5]: the entry (9, 8) of the projection matrix given is 0.8775, when it
should be 0.08775. Correcting this, we find the same descriptors as in their Table 4.

The model is mostly size-based. Stage 1 corresponds to seedlings; stages 2–4
to non-reproducing juveniles and stages 5–10 to full-grown adults. In the matrices
below, entries in bold correspond to reproductive transitions.

Ahigh =



0 0 0 0 0 1.4792 8.1560 9.9513 14.259 23.594
0.037349 0.83093 0 0 0 0 0 0 0 0

0 0.015881 0.89666 0 0 0 0 0 0 0
0 0 0.048969 0.95944 0 0 0 0 0 0
0 0 0 0.029778 0.90496 0 0 0 0 0
0 0 0 0 0.082074 0.91348 0 0 0 0
0 0 0 0 0 0.086520 0.90553 0 0 0
0 0 0 0 0 0 0.094467 0.87733 0 0
0 0 0 0 0 0 0 0.088200 0.88642 0
0 0 0 0 0 0 0 0 0.11358 0.9950



Amed. =



0 0 0 0 0.18385 4.222 8.41 8.8405 16.676 19.904
0.03629 0.84127 0 0 0 0 0 0 0 0

0 0.014582 0.91636 0 0 0 0 0 0 0
0 0 0.058131 0.93735 0 0 0 0 0 0
0 0 0 0.051565 0.91462 0 0 0 0 0
0 0 0 0 0.065923 0.8468 0 0 0 0
0 0 0 0 0 0.1424 0.8725 0 0 0
0 0 0 0 0 0 0.1200 0.84332 0 0
0 0 0 0 0 0 0 0.14800 0.913030 0
0 0 0 0 0 0 0 0 0.086966 0.9950



Alow =



0 0 0 0 0.33 0.918 8.0875 16.606 13.068 16.875
0.030332 0.850010 0 0 0 0 0 0 0 0

0 0.026738 0.93928 0 0 0 0 0 0 0
0 0 0.04966 0.94548 0 0 0 0 0 0
0 0 0 0.04804 0.9185 0 0 0 0 0
0 0 0 0 0.0815 0.9313 0 0 0 0
0 0 0 0 0 0.0687 0.86362 0 0 0
0 0 0 0 0 0 0.13637 0.91225 0 0
0 0 0 0 0 0 0 0.08775 0.87867 0
0 0 0 0 0 0 0 0 0.12133 0.9950


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Table 6.2 lists some relevant descriptors of these models. The difference between
µ1 and τ is significant in all three scenarios – a factor 2 in theMedium density model.
Finally, and most surprisingly, we see that in the High density case, µ1 is greater
than the expected lifespan conditional on reproduction. This counter-intuitive fact
casts serious doubts on the relevance of µ1 as a measure of reproductive timing in
the life-cycle.

High density Medium density Low density

µ1 275.2 261.8 275.5
τ 152.0 131.3 184.8
TR0 197.6 169.2 153.6
Ā 152.6 122.8 105.1
L 232.2 207.6 296.0

Table 6.2: Comparison of several measures of reproductive timing for three real-
world models for the demography of the tropical palm Astrocaryum mexicanum,
in part taken from Table 4 of [5]: TR0 denotes the R0 generation time, which
corresponds to the time it takes for the population to grow by a factor of its net
reproductive rate; Ā is the mean age of parents of offspring in a population that
has reached its stable distribution; µ1 is computed as in formula (11); τ and
L are estimates of the mean age at reproduction and of the expected lifespan
conditional on producing offspring, respectively. All values are expressed in
years.
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