P. Romanienko, W. Mark, J. Ingenito, and J. Giacalone, MSKCC Mouse Genetics Core Facility) for generating mutant mice

J. White, NY) for CDK1 and CDK1-HA baculoviruses and advice for CDK expression and H1 kinase assays with purified proteins; C. Claeys Bouuaert (Keeney laboratory) for help with baculovirus expression and protein purification

M. Boekhout and D. Ontoso, Keeney laboratory) for help with animal handling

B. Joseph, MSKCC) for Drosophila cDNA

M. Jelcic and C. Huang, MSKCC) for D

H. Funabiki-;-for, X. Laevis-cdna, ;. N. Fang, M. Turkekul, A. Barlas et al., MSKCC Molecular Cytology Core Facility) for help with ovarian histology; members of the Wassmann and Keeney laboratories for discussion

E. Nikalayevich, Wassmann laboratory) for help with the separase sensor assay

F. Passarelli, Wassmann laboratory) for help with rescue experiments in Fig. 7; C. Rachez (Institut Pasteur) for access to the phosphorimager

;. C. Cladière, S. Zhang, and D. Barford, MSKCC core facilities were supported by National Institutes of Health grant P30 CA008748. N. Bouftas is supported by a fellowship from the French Ministère de la Recherche, and a fellowship from the Fondation ARC pour la Recherche sur le Cancer. Work in the Wassmann laboratory was financed by the References Alfieri, Open Biol, vol.7, p.170204, 2017.

A. E. Baltus, D. B. Menke, Y. C. Hu, M. L. Goodheart, A. E. Carpenter et al., In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication, Nat. Genet, vol.38, pp.1430-1434, 2006.

N. Bendris, B. Lemmers, J. M. Blanchard, and N. Arsic, Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements, PLoS One, vol.6, p.22879, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193307

E. Bolcun-filas, V. D. Rinaldi, M. E. White, and J. C. Schimenti, Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway, Science, vol.343, pp.533-536, 2014.

C. Bouchoux and F. Uhlmann, A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit, Cell, vol.147, pp.803-814, 2011.

M. Brandeis, I. Rosewell, M. Carrington, T. Crompton, M. A. Jacobs et al., Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero, Proc. Natl. Acad. Sci. USA, vol.95, pp.4344-4349, 1998.

S. Brunet, Z. Polanski, M. H. Verlhac, J. Z. Kubiak, and B. Maro, Bipolar meiotic spindle formation without chromatin, Curr. Biol, vol.8, pp.516-523, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02107228

D. Coudreuse and P. Nurse, Driving the cell cycle with a minimal CDK control network, Nature, vol.468, pp.1074-1079, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01120603

N. E. Davey and D. O. Morgan, Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex, Mol. Cell, vol.64, pp.12-23, 2016.

D. Desai, Y. Gu, and D. O. Morgan, Activation of human cyclindependent kinases in vitro, Mol. Biol. Cell, vol.3, pp.571-582, 1992.

G. M. Deyter, T. Furuta, Y. Kurasawa, and J. M. Schumacher, Caenorhabditis elegans cyclin B3 is required for multiple mitotic processes including alleviation of a spindle checkpoint-dependent block in anaphase chromosome segregation, PLoS Genet, vol.6, 2010.

D. Giacomo, M. , M. Barchi, F. Baudat, W. Edelmann et al., Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants, Proc. Natl. Acad. Sci. USA, vol.102, pp.737-742, 2005.

W. El-yakoubi and K. Wassmann, Meiotic Divisions: No Place for Gender Equality, Adv. Exp. Med. Biol, vol.1002, pp.1-17, 2017.

D. Fisher, L. Krasinska, D. Coudreuse, and B. Novák, Phosphorylation network dynamics in the control of cell cycle transitions, J. Cell Sci, vol.125, pp.4703-4711, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01068356

P. Gallant and E. A. Nigg, Identification of a novel vertebrate cyclin: cyclin B3 shares properties with both A-and B-type cyclins, EMBO J, vol.13, pp.595-605, 1994.

L. Gui and H. Homer, Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes, Development, vol.139, pp.1941-1946, 2012.

K. V. Gunbin, V. V. Suslov, I. I. Turnaev, D. A. Afonnikov, and N. A. Kolchanov, Molecular evolution of cyclin proteins in animals and fungi, BMC Evol. Biol, vol.11, p.224, 2011.

S. J. Han, J. P. Martins, Y. Yang, M. K. Kang, E. M. Daldello et al., The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the, Meiotic Cell Cycle. Sci. Rep, vol.7, p.14077, 2017.

A. Heim, B. Rymarczyk, and T. U. Mayer, Regulation of Cell Division, Adv. Exp. Med. Biol, vol.953, pp.83-116, 2017.

S. Hellmuth, F. Böttger, C. Pan, M. Mann, and O. Stemmann, PP2A delays APC/C-dependent degradation of separase-associated but not free securin, EMBO J, vol.33, pp.1134-1147, 2014.

M. Herbert, M. Levasseur, H. Homer, K. Yallop, A. Murdoch et al., Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1, Nat. Cell Biol, vol.5, pp.1023-1025, 2003.

M. Herbert, D. Kalleas, D. Cooney, M. Lamb, and L. Lister, Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births, Cold Spring Harb. Perspect. Biol, vol.7, 2015.

H. Hochegger, A. Klotzbücher, J. Kirk, M. Howell, K. Le-guellec et al., New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation, Development, vol.128, pp.3795-3807, 2001.

J. E. Holt, S. I. Lane, and K. T. Jones, The control of meiotic maturation in mammalian oocytes, Curr. Top. Dev. Biol, vol.102, pp.207-226, 2013.

L. J. Holt, A. N. Krutchinsky, and D. O. Morgan, Positive feedback sharpens the anaphase switch, Nature, vol.454, pp.353-357, 2008.

H. W. Jacobs, J. A. Knoblich, and C. F. Lehner, Drosophila Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B, Genes Dev, vol.12, pp.3741-3751, 1998.

D. Jain, M. R. Puno, C. Meydan, N. Lailler, C. E. Mason et al., ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2, 2018.

P. D. Jeffrey, A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex, Nature, vol.376, pp.313-320, 1995.

I. Kalaszczynska, Y. Geng, T. Iino, S. Mizuno, Y. Choi et al., Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells, Cell, vol.138, pp.352-365, 2009.

J. Z. Kubiak, M. Weber, G. Géraud, and B. Maro, Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes, J. Cell Sci, vol.102, pp.457-467, 1992.

N. R. Kudo, K. Wassmann, M. Anger, M. Schuh, K. G. Wirth et al., Resolution of chiasmata in oocytes requires separase-mediated proteolysis, Cell, vol.126, pp.135-146, 2006.

S. I. Lane, Y. Yun, and K. T. Jones, Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubulekinetochore attachment but not by bivalent alignment or tension, vol.139, pp.1947-1955, 2012.

E. Ledan, Z. Polanski, M. E. Terret, and B. Maro, Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis Karasu et al. Journal of Cell Biology 16 Role of cyclin B3 in oocyte meiosis I, 2001.

, Dev. Biol, vol.232, pp.400-413

X. C. Li and J. C. Schimenti, Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis, PLoS Genet, vol.3, 2007.

J. Li, J. X. Tang, J. M. Cheng, B. Hu, Y. Q. Wang et al., Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I, J. Cell Biol, vol.217, pp.3901-3911, 2018.

Y. Li, L. Wang, L. Zhang, Z. He, G. Feng et al., Cyclin B3 is specifically required for metaphase to anaphase transition in mouse oocyte meiosis I. bioRxiv. doi: (Preprint posted, 2018.

T. Lischetti and J. Nilsson, Regulation of mitotic progression by the spindle assembly checkpoint, Mol. Cell. Oncol, vol.2, p.970484, 2015.

J. C. Lozano, V. Vergé, P. Schatt, J. L. Juengel, and G. Peaucellier, Evolution of cyclin B3 shows an abrupt three-fold size increase, due to the extension of a single exon in placental mammals, allowing for new protein-protein interactions, Mol. Biol. Evol, vol.29, pp.3855-3871, 2012.

M. Malumbres, E. Harlow, T. Hunt, T. Hunter, J. M. Lahti et al., Cyclin-dependent kinases: a family portrait, Nat. Cell Biol, vol.11, pp.1275-1276, 2009.

L. Meijer, A. Borgne, O. Mulner, J. P. Chong, J. J. Blow et al., Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5, Eur. J. Biochem, vol.243, pp.527-536, 1997.

D. C. Miles, J. A. Van-den-bergen, A. H. Sinclair, and P. S. Western, Regulation of the female mouse germ cell cycle during entry into meiosis, Cell Cycle, vol.9, pp.408-418, 2010.

D. O. Morgan, Cyclin-dependent kinases: engines, clocks, and microprocessors, Annu. Rev. Cell Dev. Biol, vol.13, pp.261-291, 1997.

T. B. Nguyen, K. Manova, P. Capodieci, C. Lindon, S. Bottega et al., Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin, J. Biol. Chem, vol.277, pp.41960-41969, 2002.

T. Niault, K. Hached, R. Sotillo, P. K. Sorger, B. Maro et al., Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I, PLoS One, vol.2, p.1165, 2007.

C. A. Nieduszynski, J. Murray, and M. Carrington, Whole-genome analysis of animal A-and B-type cyclins, Genome Biol, vol.3, 2002.

E. Nikalayevich, N. Bouftas, and K. Wassmann, Detection of Separase Activity Using a Cleavage Sensor in Live Mouse Oocytes, Methods Mol. Biol, vol.1818, pp.99-112, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346915

S. Ortega, I. Prieto, J. Odajima, A. Martín, P. Dubus et al., Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice, Nat. Genet, vol.35, pp.25-31, 2003.

M. Petronczki, M. F. Siomos, and K. Nasmyth, Un ménageà quatre: the molecular biology of chromosome segregation in meiosis, Cell, vol.112, pp.83-90, 2003.

A. Rattani, P. K. Vinod, J. Godwin, K. Tachibana-konwalski, M. Wolna et al., Dependency of the spindle assembly checkpoint on Cdk1 renders the anaphase transition irreversible, Curr. Biol, vol.24, pp.630-637, 2014.

J. Refik-rogers, K. Manova, and A. Koff, Misexpression of cyclin B3 leads to aberrant spermatogenesis, Cell Cycle, vol.5, pp.1966-1973, 2006.

P. J. Romanienko, J. Giacalone, J. Ingenito, Y. Wang, M. Isaka et al., A vector with a single promoter for in vitro transcription and mammalian cell expression of CRISPR gRNAs, PLoS One, vol.11, 2016.

S. Santaguida, A. Tighe, A. M. D'alise, S. S. Taylor, and A. Musacchio, Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine, J. Cell Biol, vol.190, pp.73-87, 2010.

D. Santamaría, C. Barrière, A. Cerqueira, S. Hunt, C. Tardy et al., Cdk1 is sufficient to drive the mammalian cell cycle, Nature, vol.448, pp.811-815, 2007.

B. A. Schulman, D. L. Lindstrom, and E. Harlow, Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A, Proc. Natl. Acad. Sci. USA, vol.95, pp.10453-10458, 1998.

N. Shindo, K. Kumada, and T. Hirota, Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition, Dev. Cell, vol.23, pp.112-123, 2012.

S. Sigrist, H. Jacobs, R. Stratmann, and C. F. Lehner, Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3, Cell Cycle, vol.14, pp.11-13, 1995.

B. Stern and P. Nurse, A quantitative model for the cdc2 control of S phase and mitosis in fission yeast, Trends Genet, vol.12, pp.80016-80019, 1996.

M. P. Swaffer, A. W. Jones, H. R. Flynn, A. P. Snijders, and P. Nurse, CDK substrate phosphorylation and ordering the cell cycle, Cell, vol.167, pp.1750-1761, 2016.

J. X. Tang, D. Chen, S. L. Deng, J. Li, Y. Li et al., CRISPR/Cas9-mediated genome editing induces gene knockdown by altering the pre-mRNA splicing in mice, BMC Biotechnol, vol.18, p.61, 2018.

M. E. Terret, K. Wassmann, I. Waizenegger, B. Maro, J. M. Peters et al., The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity, Curr. Biol, vol.13, pp.1797-1802, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02107202

S. A. Touati and K. Wassmann, How oocytes try to get it right: spindle checkpoint control in meiosis, Chromosoma, vol.125, pp.321-335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01539806

S. A. Touati, D. Cladière, L. M. Lister, I. Leontiou, J. P. Chambon et al., Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis, Cell Reports, vol.2, pp.1077-1087, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01539621

S. A. Touati, E. Buffin, D. Cladière, K. Hached, C. Rachez et al., Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest, Nat. Commun, vol.6, p.6946, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292001

N. Treen, T. Heist, W. Wang, and M. Levine, Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo, Curr. Biol, vol.28, pp.1330-1331, 2018.

C. Tsurumi, S. Hoffmann, S. Geley, R. Graeser, and Z. Polanski, The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes, J. Cell Biol, vol.167, pp.1037-1050, 2004.

F. Uhlmann, C. Bouchoux, and S. López-avilés, van den Heuvel. 2009. C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.366, pp.4091-4102, 2011.

K. Wassmann and R. Benezra, Mad2 transiently associates with an APC/p55Cdc complex during mitosis, Proc. Natl. Acad. Sci. USA, vol.95, pp.11193-11198, 1998.

K. Wassmann, T. Niault, and B. Maro, Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes, Curr. Biol, vol.13, pp.1596-1608, 2003.

Y. Yang, C. R. Yang, S. J. Han, E. M. Daldello, A. Cho et al., Maternal mRNAs with distinct 39 UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation, Genes Dev, vol.31, pp.1302-1307, 2017.

K. Yuan and P. H. O'farrell, Cyclin B3 is a mitotic cyclin that promotes the metaphase-anaphase transition, Curr. Biol, vol.25, pp.811-816, 2015.

Q. H. Zhang, W. S. Yuen, D. Adhikari, J. A. Flegg, G. Fitzharris et al., Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II, J. Cell Biol, vol.216, pp.3133-3143, 2017.

T. Zhang, S. T. Qi, L. Huang, X. S. Ma, Y. C. Ouyang et al., Cyclin B3 controls anaphase onset independent of spindle assembly checkpoint in meiotic oocytes, Cell Cycle, vol.14, pp.2648-2654, 2015.

. Karasu, Journal of Cell Biology 17 Role of cyclin B3 in oocyte meiosis I

D. Adhikari and K. Liu, The Regulation of Maturation Promoting Factor during Prophase I Arrest and Meiotic Entry in Mammalian Oocytes, Molecular and Cellular Endocrinology, vol.382, issue.1, pp.480-87, 2014.

C. Alfieri, S. Zhang, and D. Barford, Visualizing the Complex Functions and Mechanisms of the Anaphase Promoting Complex/Cyclosome (APC/C), Open Biology, vol.7, issue.11, 2017.

M. Almonacid, M. Terret, and M. Verlhac, Actin-Based Spindle Positioning: New Insights from Female Gametes, Journal of Cell Science, vol.127, issue.3, pp.477-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02155971

N. Bendris, B. Lemmers, J. Blanchard, and N. Arsic, Cyclin A2 Mutagenesis Analysis: A New Insight into CDK Activation and Cellular Localization Requirements, PloS One, vol.6, issue.7, p.22879, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193307

R. R. Bhatt and J. E. Ferrell, The Protein Kinase P90 Rsk as an Essential Mediator of Cytostatic Factor Activity, Science, vol.286, issue.5443, pp.1362-65, 1999.

M. Bourouh, R. Dhaliwal, K. Rana, S. Sinha, Z. Guo et al., Distinct and Overlapping Requirements for Cyclins A, B and B3 in Drosophila Female Meiosis, 2016.

A. S. Brooker and K. M. Berkowitz, The Roles of Cohesins in Mitosis, Meiosis, and Human Health and Disease, Methods in Molecular Biology, vol.1170, pp.229-66, 2014.

N. G. Brown, R. Vanderlinden, E. R. Watson, F. Weissmann, A. Ordureau et al., Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C, Cell, vol.165, issue.6, pp.1440-53, 2016.

B. A. Buschhorn, G. Petzold, M. Galova, P. Dube, C. Kraft et al., Substrate Binding on the APC/C Occurs between the Co-Activator CDH1 and the Processivity Factor DOC1, Nature Structural & Molecular Biology, vol.18, issue.1, pp.6-13, 2011.

A. Capalbo, E. R. Hoffmann, D. Cimadomo, M. Filippo, L. Ubaldi et al., Human Female Meiosis Revised: New Insights into the Mechanisms of Chromosome Segregation and Aneuploidies from Advanced Genomics and Time-Lapse Imaging, Human Reproduction Update, vol.23, issue.6, pp.706-728, 2017.

M. Carmena, M. Wheelock, H. Funabiki, and W. C. Earnshaw, The Chromosomal Passenger Complex (CPC): From Easy Rider to the Godfather of Mitosis, Nature Reviews. Molecular Cell Biology, vol.13, issue.12, pp.789-803, 2012.

A. Castro and T. Lorca, Greatwall Kinase at a Glance, Journal of Cell Science, vol.131, issue.20, p.222364, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01906066

A. Chaigne, C. Campillo, N. S. Gov, R. Voituriez, J. Azoury et al., A Soft Cortex Is Essential for Asymmetric Spindle Positioning in Mouse Oocytes, Nature Cell Biology, vol.15, issue.8, pp.958-66, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00994646

J. Chambon, S. A. Touati, S. Berneau, D. Cladière, C. Hebras et al., , p.2, 2013.

, Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II, Current Biology, vol.23, issue.6, pp.485-90

. Chang, P. C. Heng-yu, J. Jennings, N. M. Stewart, and K. T. Verrills,

. Jones, Essential Role of Protein Phosphatase 2A in Metaphase II Arrest and Activation of Mouse Eggs Shown by Okadaic Acid, Dominant Negative Protein Phosphatase 2A, and FTY720, The Journal of Biological Chemistry, vol.286, issue.16, pp.14705-14717, 2011.

. Chang, M. Heng-yu, K. T. Levasseur, and . Jones, Degradation of APCcdc20 and APCcdh1 Substrates during the Second Meiotic Division in Mouse Eggs, Journal of Cell Science, vol.117, issue.26, pp.6289-96, 2004.

T. Chiang, F. E. Duncan, K. Schindler, R. M. Schultz, and M. A. Lampson, Evidence That Weakened Centromere Cohesion Is a Leading Cause of Age-Related Aneuploidy in Oocytes, Current Biology : CB, vol.20, issue.17, pp.1522-1550, 2010.

T. Choi, S. Rulong, J. Resau, K. Fukasawa, W. Matten et al., Mos/Mitogen-Activated Protein Kinase Can Induce Early Meiotic Phenotypes in the Absence of Maturation-Promoting Factor: A Novel System for Analyzing Spindle Formation during Meiosis I, Proceedings of the National Academy of Sciences of the United States of America, vol.93, issue.10, pp.4730-4765, 1996.

S. Cohen-gogo, C. Cellier, J. Coindre, V. Mosseri, G. Pierron et al., Ewing-like Sarcomas with BCOR-CCNB3 Fusion Transcript: A Clinical, Radiological and Pathological Retrospective Study from the Société Française Des Cancers de L'Enfant, Pediatric Blood & Cancer, vol.61, issue.12, pp.2191-98, 2014.

W. H. Colledge, M. B. Carlton, G. B. Udy, and M. J. Evans, Disruption of C-Mos Causes Parthenogenetic Development of Unfertilized Mouse Eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.

D. Coudreuse and P. Nurse, Driving the Cell Cycle with a Minimal CDK Control Network, Nature, vol.468, issue.7327, pp.1074-79, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01120603

E. Daldello, X. G. Maria, C. Luong, J. Yang, M. Kuhn et al., Cyclin B2 Is Required for Progression through Meiosis in Mouse Oocytes, Development, 2019.

N. E. Davey and D. O. Morgan, Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex, Molecular Cell, vol.64, issue.1, pp.12-23, 2016.

O. Davydenko, R. M. Schultz, and M. A. Lampson, Increased CDK1 Activity Determines the Timing of Kinetochore-Microtubule Attachments in Meiosis I, The Journal of Cell Biology, vol.202, issue.2, pp.221-250, 2013.

D. Antoni, C. G. Anna, D. Pearson, J. C. Cimini, V. Canman et al., The Mad1/Mad2 Complex as a Template for Mad2 Activation in the Spindle Assembly Checkpoint, Current Biology: CB, vol.15, issue.3, pp.214-239, 2005.

G. M. Deyter, T. Furuta, Y. Kurasawa, and J. M. Schumacher, Caenorhabditis Elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint-Dependent Block in Anaphase Chromosome Segregation, PLoS Genetics, vol.6, issue.11, 2010.

J. Dumont, S. Petri, F. Pellegrin, M. Terret, and M. T. ,

P. Bohnsack, V. Rassinier, P. Georget, O. J. Kalab, M. Gruss et al., A Centriole-and RanGTP-Independent Spindle Assembly Pathway in Meiosis I of Vertebrate Oocytes, The Journal of Cell Biology, vol.176, issue.3, pp.295-305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02155996

J. Dumont, M. Umbhauer, P. Rassinier, A. Hanauer, and M. Verlhac, P90Rsk Is Not Involved in Cytostatic Factor Arrest in Mouse Oocytes, The Journal of Cell Biology, vol.169, issue.2, pp.227-258, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187522

J. Eichhorn, S. Sakurikar, . Alford, T. Chu, and . Chambers, Critical Role of Anti-Apoptotic Bcl-2 Protein Phosphorylation in Mitotic Death, Cell Death & Disease, vol.4, issue.10, p.834, 2013.

S. J. Elledge, Cell Cycle Checkpoints: Preventing an Identity Crisis, Science, vol.274, issue.5293, pp.1664-72, 1996.

D. L. Fisher and P. Nurse, A Single Fission Yeast Mitotic Cyclin B P34cdc2 Kinase Promotes Both S-Phase and Mitosis in the Absence of G1 Cyclins, The EMBO Journal, vol.15, issue.4, pp.850-60, 1996.

P. C. Fonseca, E. H. Da, Z. Kong, A. Zhang, . Schreiber et al., Structures of APC/CCdh1 with Substrates Identify Cdh1 and Apc10 as the D-Box Co-Receptor, Nature, vol.470, issue.7333, pp.274-78, 2011.

T. Fung, R. Y. Kan, and . Poon, A Roller Coaster Ride with the Mitotic Cyclins, Seminars in Cell & Developmental Biology, vol.16, issue.3, pp.335-377, 2005.

P. Gallant and . Nigg, Identification of a Novel Vertebrate Cyclin: Cyclin B3 Shares Properties with Both A-and B-Type Cyclins, The EMBO Journal, vol.13, issue.3, pp.595-605, 1994.

M. Galli and D. O. Morgan, Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development, Developmental Cell, vol.36, issue.3, pp.344-52, 2016.

R. Gómez, A. Valdeolmillos, T. María, A. Parra, C. Viera et al., Mammalian SGO2 Appears at the Inner Centromere Domain and Redistributes Depending on Tension across Centromeres during Meiosis II and Mitosis, EMBO Reports, vol.8, issue.2, pp.173-80, 2007.

J. Gonzalez-garcia, J. Raul, M. Bradley, L. Nomikos, Z. Paul et al., The Dynamics of MAPK Inactivation at Fertilization in Mouse Eggs, Journal of Cell Science, vol.127, issue.12, pp.2749-60, 2014.

L. Gopinathan, R. Szmyd, D. Low, M. K. Diril, H. Chang et al., Emi2 Is Essential for Mouse Spermatogenesis, Cell Reports, vol.20, issue.3, pp.697-708, 2017.

I. H. Gorr, D. Boos, and O. Stemmann, Mutual Inhibition of Separase and Cdk1 by Two-Step Complex Formation, Molecular Cell, vol.19, issue.1, pp.135-176, 2005.

I. H. Gorr and A. Reis,

O. Jones and . Stemmann, Essential CDK1 Inhibitory Role for Separase during Meiosis I in Vertebrate Oocytes, Nature Cell Biology, vol.8, issue.9, pp.1035-1072, 2006.

S. D. Gross, M. S. Schwab, A. L. Lewellyn, and J. L. Maller, Induction of Metaphase Arrest in Cleaving Xenopus Embryos by the Protein Kinase P90Rsk, Science, vol.286, issue.5443, pp.1365-67, 1999.

S. D. Gross, M. S. Schwab, F. E. Taieb, A. L. Lewellyn, Y. W. Qian et al., The Critical Role of the MAP Kinase Pathway in Meiosis II in Xenopus Oocytes Is Mediated by P90(Rsk), Current Biology: CB, vol.10, issue.8, pp.430-468, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02694042

P. Gutiérrez-escribano and P. Nurse, A Single Cyclin-CDK Complex Is Sufficient for Both Mitotic and Meiotic Progression in Fission Yeast, Nature Communications, vol.6, p.6871, 2015.

O. Haccard, A. Lewellyn, R. S. Hartley, E. Erikson, and J. L. ,

. Maller, Induction of Xenopus Oocyte Meiotic Maturation by MAP Kinase, Developmental Biology, vol.168, issue.2, pp.677-82, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02144032

K. Hached, S. Z. Xie, E. Buffin, D. Cladiere, C. Rachez et al., Mps1 at Kinetochores Is Essential for Female Mouse Meiosis I, Development, vol.138, issue.11, pp.2261-71, 2011.

S. Han, J. Jin, Y. Martins, M. K. Yang, E. M. Kang et al., The Translation of Cyclin B1 and B2 Is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle, Scientific Reports, vol.7, 2017.

L. H. Hartwell, K. Robert, J. Mortimer, M. Culotti, and . Culotti, Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of Cdc Mutants, Genetics, vol.74, issue.2, pp.267-86, 1973.

N. Hashimoto, N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata et al., Parthenogenetic Activation of Oocytes in C-Mos -Deficient Mice, Nature, vol.370, issue.6484, p.68, 1994.

T. Hassold and P. Hunt, To Err (Meiotically) Is Human: The Genesis of Human Aneuploidy, Nature Reviews Genetics, vol.2, issue.4, p.280, 2001.

R. Heald and A. Khodjakov, Thirty Years of Search and Capture: The Complex Simplicity of Mitotic Spindle Assembly, The Journal of Cell Biology, vol.211, issue.6, pp.1103-1114, 2015.

S. Hellmuth, F. Böttger, C. Pan, M. Mann, and O. Stemmann, PP2A Delays APC/C-dependent Degradation of Separase-associated but Not Free Securin, The EMBO Journal, vol.33, issue.10, pp.1134-1181, 2014.

S. Hellmuth, C. Pöhlmann, A. Brown, F. Böttger, M. Sprinzl et al., Positive and Negative Regulation of Vertebrate Separase by Cdk1-Cyclin B1 May Explain Why Securin Is Dispensable, The Journal of Biological Chemistry, vol.290, issue.12, pp.8002-8012, 2015.

Y. Herrán, C. Gutiérrez-caballero, M. Sánchez-martín, T. Hernández, A. Viera et al., The Cohesin Subunit RAD21L Functions in Meiotic Synapsis and Exhibits Sexual Dimorphism in Fertility, The EMBO Journal, vol.30, issue.15, pp.3091-3105, 2011.

E. P. Hertz, T. Thrane, N. E. Kruse, B. Davey, J. López-méndez et al., A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase, Molecular Cell, vol.63, issue.4, pp.686-95, 2016.

H. Hochegger, . Klotzbücher, M. Kirk, . Howell, . Le-guellec et al., New B-Type Cyclin Synthesis Is Required between Meiosis I and II during Xenopus Oocyte Maturation, Development, vol.128, pp.3795-3807, 2001.

S. Hoffmann, B. Maro, J. Z. Kubiak, and Z. Polanski, A Single Bivalent Efficiently Inhibits Cyclin B1 Degradation and Polar Body Extrusion in Mouse Oocytes Indicating Robust SAC during Female Meiosis I, PloS One, vol.6, issue.11, p.27143, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00631737

J. E. Holt, I. R. Simon, K. T. Lane, and . Jones, Chapter Seven -The Control of Meiotic Maturation in Mammalian Oocytes, In Current Topics in Developmental Biology, vol.102, pp.207-233, 2013.

J. E. Holt, V. Pye, E. Boon, J. L. Stewart, I. García-higuera et al., , 2014.

, Activator FZR1 Is Essential for Meiotic Prophase I in Mice, Development, vol.141, issue.6, pp.1354-65

P. A. Hunt and T. J. Hassold, Human Female Meiosis: What Makes a Good Egg Go Bad?, Trends in Genetics, vol.24, issue.2, pp.86-93, 2008.

T. Hunt, Maturation Promoting Factor, Cyclin and the Control of M-Phase, Current Opinion in Cell Biology, vol.1, issue.2, pp.268-74, 1989.

D. Inoue, M. Ohe, Y. Kanemori, T. Nobui, and N. Sagata, A Direct Link of the Mos-MAPK Pathway to Erp1/Emi2 in Meiotic Arrest of Xenopus Laevis Eggs, Nature, vol.446, issue.7139, pp.1100-1104, 2007.

T. Ishiguro, K. Tanaka, T. Sakuno, and Y. Watanabe, Shugoshin-PP2A Counteracts Casein-Kinase-1-Dependent Cleavage of Rec8 by Separase, Nature Cell Biology, vol.12, issue.5, pp.500-506, 2010.

M. Isoda, K. Sako, K. Suzuki, K. Nishino, N. Nakajo et al., Dynamic Regulation of Emi2 by Emi2-Bound Cdk1/Plk1/CK1 and PP2A-B56 in Meiotic Arrest of Xenopus Eggs, Developmental Cell, vol.21, issue.3, pp.506-525, 2011.

H. W. Jacobs, A. Jürgen, C. F. Knoblich, and . Lehner, Drosophila Cyclin B3 Is Required for Female Fertility and Is Dispensable for Mitosis like Cyclin B, Genes and Development, vol.12, issue.23, pp.3741-51, 1998.

P. D. Jeffrey, A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz et al., Mechanism of CDK Activation Revealed by the Structure of a CyclinA-CDK2 Complex, Nature, vol.376, issue.6538, pp.313-333, 1995.

R. Jessberger, Age-Related Aneuploidy through Cohesion Exhaustion, EMBO Reports, vol.13, issue.6, pp.539-585, 2012.

J. Jia, Y. Han, H. Kim, M. Ahn, J. Kwon et al., Structural Basis for Recognition of Emi2 by Polo-like Kinase 1 and Development of Peptidomimetics Blocking Oocyte Maturation and Fertilization, Scientific Reports, vol.5, p.14626, 2015.

F. Jin, M. Hamada, L. Malureanu, B. Karthik, W. Jeganathan et al.,

J. M. Morbeck and . Van-deursen, Cdc20 Is Critical for Meiosis I and Fertility of Female Mice, PLOS Genetics, vol.6, issue.9, p.1001147, 2010.

K. T. Jones, Mammalian Egg Activation: From Ca2+ Spiking to Cell Cycle Progression, Reproduction, vol.130, issue.6, pp.813-836, 2005.

I. Kalaszczynska, Y. Geng, T. Iino, . Shin-ichi, Y. Mizuno et al., Cyclin A -Redundant in Fibroblasts, Essential in Hematopoietic and Embryonic Stem Cells, Cell, vol.138, issue.2, pp.352-65, 2009.

M. E. Karasu and S. Keeney, Cyclin B3 Is Dispensable for Mouse Spermatogenesis, BioRxiv, 2019.

V. L. Katis, J. J. Lipp, R. Imre, A. Bogdanova, and E. Okaz,

M. Kirschner and T. Mitchison, Beyond Self-Assembly: From Microtubules to Morphogenesis, Cell, vol.45, issue.3, pp.329-371, 1986.

M. Konishi, N. Shindo, M. Komiya, K. Tanaka, T. Itoh et al., Quantitative Analyses of the Metaphase-to-Anaphase Transition Reveal Differential Kinetic Regulation for Securin and Cyclin B1, Biomedical Research, vol.39, issue.2, pp.75-85, 2018.

H. Kosako, Y. Gotoh, and E. Nishida, Requirement for the MAP Kinase Kinase/MAP Kinase Cascade in Xenopus Oocyte Maturation, The EMBO Journal, vol.13, issue.9, pp.2131-2169, 1994.

C. Kraft, F. Herzog, C. Gieffers, K. Mechtler, A. Hagting et al., Mitotic Regulation of the Human Anaphase-Promoting Complex by Phosphorylation, The EMBO Journal, vol.22, issue.24, pp.6598-6609, 2003.

N. R. Kudo, M. Katja-wassmann, M. Anger, K. G. Schuh, H. Wirth et al., Resolution of Chiasmata in Oocytes Requires Separase-Mediated Proteolysis, Cell, vol.126, issue.1, pp.135-181, 2006.

H. Kyogoku and T. S. Kitajima, Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes, Developmental Cell, vol.41, issue.3, pp.287-298, 2017.

S. I. Lane, Y. Yun, and K. T. Jones, Timing of Anaphase-Promoting Complex Activation in Mouse Oocytes Is Predicted by Microtubule-Kinetochore Attachment but Not by Bivalent Alignment or Tension, Development, vol.139, issue.11, pp.1947-55, 2012.

S. Lane and L. Kauppi, Meiotic Spindle Assembly Checkpoint and Aneuploidy in Males versus Females, Cellular and Molecular Life Sciences, vol.76, issue.6, pp.1135-50, 2019.

J. Lee and T. Hirano, RAD21L, a Novel Cohesin Subunit Implicated in Linking Homologous Chromosomes in Mammalian Meiosis, The Journal of Cell Biology, vol.192, issue.2, pp.263-76, 2011.

. Lee, T. S. Jibak, Y. Kitajima, K. Tanno, T. Yoshida et al., Unified Mode of Centromeric Protection by Shugoshin in Mammalian Oocytes and Somatic Cells, Nature Cell Biology, vol.10, issue.1, pp.42-52, 2008.

M. D. Levasseur, C. Thomas, O. R. Davies, J. M. Higgins, and S. Madgwick, Aneuploidy in Oocytes Is Prevented by Sustained CDK1 Activity through Degron Masking in Cyclin B1, Developmental Cell, vol.48, issue.5, pp.672-684, 2019.

J. Li, J. Tang, J. Cheng, B. Hu, Y. Wang et al., Cyclin B2 Can Compensate for Cyclin B1 in Oocyte Meiosis I, J Cell Biol, vol.217, issue.11, pp.3901-3912, 2018.

M. Li, Y. Shin, L. Hou, X. Huang, Z. Wei et al., The Adaptor Protein of the Anaphase Promoting Complex Cdh1 Plays An Essential Role in Maintaining Replicative Lifespan and in Learning and Memory, Nature Cell Biology, vol.10, issue.9, pp.1083-89, 2008.

M. Li, J. P. York, and P. Zhang, Loss of Cdc20 Causes a Securin-Dependent Metaphase Arrest in Two-Cell Mouse Embryos, Molecular and Cellular Biology, vol.27, issue.9, pp.3481-88, 2007.

W. -. Li, I. Shan, M. Liao, H. Wen, S. Haw-chang-lan et al., BCOR-CCNB3-Positive Soft Tissue Sarcoma with Round-Cell and Spindle-Cell Histology: A Series of Four Cases Highlighting the Pitfall of Mimicking Poorly Differentiated Synovial Sarcoma, Histopathology, vol.69, issue.5, pp.792-801, 2016.

S. Lim and P. Kaldis, Cdks, Cyclins and CKIs: Roles beyond Cell Cycle Regulation, Development, vol.140, issue.15, pp.3079-93, 2013.

L. Lister, A. Martine, L. A. Kouznetsova, D. Hyslop, S. L. Kalleas et al., Age-Related Meiotic Segregation Errors in Mammalian Oocytes Are Preceded by Depletion of Cohesin and Sgo2, Current Biology: CB, vol.20, issue.17, pp.1511-1532, 2010.

D. Liu, M. M. Matzuk, W. K. Sung, Q. Guo, P. Wang et al., Cyclin A1 Is Required for Meiosis in the Male Mouse, Nature Genetics, vol.20, issue.4, pp.377-80, 1998.

E. Llano, R. Gómez, C. Gutiérrez-caballero, Y. Herrán, M. Sánchez-martín et al., Shugoshin-2 Is Essential for the Completion of Meiosis but Not for Mitotic Cell Division in Mice, Genes & Development, vol.22, issue.17, pp.2400-2413, 2008.

M. Lohka, M. Hayes, and J. Maller, Purification of Maturation-Promoting Factor, an Intracellular Regulator of Early Mitotic Events, Proceedings of the National Academy of Sciences of the United States of America, vol.85, issue.9, pp.3009-3022, 1988.

. Lorca, F. H. Thierry, D. Cruzalegui, J. Fesquet, J. Cavadore et al., Calmodulin-Dependent Protein Kinase II Mediates Inactivation of MPF and CSF upon Fertilization of Xenopus Eggs, Nature, vol.366, issue.6452, p.270, 1993.

J. Lozano, V. Claude, P. Vergé, J. L. Schatt, G. Juengel et al., Evolution of Cyclin B3 Shows an Abrupt Three-Fold Size Increase, Due to the Extension of a Single Exon in Placental Mammals, Allowing for New Protein-Protein Interactions, In Molecular Biology and Evolution, vol.29, pp.3855-71, 2012.

J. Lozano, E. Perret, P. Schatt, C. Arnould, G. Peaucellier et al., Molecular Cloning, Gene Localization, and Structure of Human Cyclin B3, Biochemical and Biophysical Research Communications, vol.291, issue.2, pp.406-419, 2002.

M. Maclennan, J. H. Crichton, C. J. Playfoot, and I. R. Adams, Oocyte Development, Meiosis and Aneuploidy, Seminars in Cell & Developmental Biology, Plasma membrane repair & Development and pathology of the gonad, vol.45, pp.68-76, 2015.

S. Madgwick, D. V. Hansen, M. Levasseur, P. K. Jackson, and K. T. ,

. Jones, Mouse Emi2 Is Required to Enter Meiosis II by Reestablishing Cyclin B1 during Interkinesis, The Journal of Cell Biology, vol.174, issue.6, pp.791-801, 2006.

J. B. Mailhes, C. Hilliard, J. W. Fuseler, and S. N. London, Okadaic Acid, an Inhibitor of Protein Phosphatase 1 and 2A, Induces Premature Separation of Sister Chromatids during Meiosis I and Aneuploidy in Mouse Oocytes in Vitro, Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, vol.11, issue.6, pp.619-650, 2003.

M. Malumbres and M. Barbacid, Mammalian Cyclin-Dependent Kinases, Trends in Biochemical Sciences, vol.30, issue.11, pp.630-671, 2005.

M. Malumbres, E. Harlow, T. Hunt, T. Hunter, J. M. Lahti et al., Cyclin-Dependent Kinases: A Family Portrait, Nature Cell Biology, vol.11, issue.11, pp.1275-76, 2009.

M. Mapelli, L. Massimiliano, S. Santaguida, and A. Musacchio, The Mad2 Conformational Dimer: Structure and Implications for the Spindle Assembly Checkpoint, Cell, vol.131, issue.4, pp.730-773, 2007.

A. L. Marston and A. Amon, Meiosis: Cell-Cycle Controls Shuffle and Deal, Nature Reviews Molecular Cell Biology, vol.5, issue.12, p.983, 2004.

Y. Masui and C. L. Markert, Cytoplasmic Control of Nuclear Behavior during Meiotic Maturation of Frog Oocytes, Journal of Experimental Zoology, vol.177, issue.2, pp.129-174, 1971.

B. E. Mcguinness, M. Anger, A. Kouznetsova, A. M. Gil-bernabé, W. Helmhart et al., Regulation of APC/C Activity in Oocytes by a Bub1-Dependent Spindle Assembly Checkpoint, Current Biology, vol.19, issue.5, pp.369-80, 2009.

B. E. Mcguinness, T. Hirota, R. Nobuaki, J. Kudo, K. Peters et al., Shugoshin Prevents Dissociation of Cohesin from Centromeres during Mitosis in Vertebrate Cells, PLoS Biology, vol.3, issue.3, p.86, 2005.

A. Mclaren, Primordial Germ Cells in the Mouse, Developmental Biology, vol.262, issue.1, pp.1-15, 2003.

T. Meer, W. Van-der, L. S. Chan, C. Palazon, M. Nieduszynski et al., Cyclin A1 Protein Shows Haplo-Insufficiency for Normal Fertility in Male Mice, Reproduction, vol.127, issue.4, pp.503-514, 2004.

A. W. Murray, Recycling the Cell Cycle: Cyclins Revisited, Cell, vol.116, issue.2, pp.221-255, 2004.

A. Musacchio and E. D. Salmon, The Spindle-Assembly Checkpoint in Space and Time, Nature Reviews Molecular Cell Biology, vol.8, issue.5, pp.379-93, 2007.

S. I. Nagaoka, J. Terry, P. A. Hassold, and . Hunt, Human Aneuploidy: Mechanisms and New Insights into an Age-Old Problem, Nature Reviews. Genetics, vol.13, issue.7, pp.493-504, 2012.

K. I. Nakayama and K. Nakayama, Ubiquitin Ligases: Cell-Cycle Control and Cancer, Nature Reviews Cancer, vol.6, issue.5, p.369, 2006.

O. O. Nerusheva, S. Galander, J. Fernius, D. Kelly, and A. L. Marston, Tension-Dependent Removal of Pericentromeric Shugoshin Is an Indicator of Sister Chromosome Biorientation, Genes & Development, vol.28, issue.12, pp.1291-1309, 2014.

T. B. Nguyen, K. Manova, P. Capodieci, C. Lindon, S. Bottega et al., Characterization and Expression of Mammalian Cyclin B3, a Prepachytene Meiotic Cyclin, Journal of Biological Chemistry, vol.277, issue.44, pp.41960-69, 2002.

T. Niault, K. Hached, R. Sotillo, P. K. Sorger, B. Maro et al., Changing Mad2 Levels Affects Chromosome Segregation and Spindle Assembly Checkpoint Control in Female Mouse Meiosis I, PloS One, vol.2, issue.11, p.1165, 2007.

T. Nishiyama, K. Ohsumi, and T. Kishimoto, Phosphorylation of Erp1 by P90rsk Is Required for Cytostatic Factor Arrest in Xenopus Laevis Eggs, Nature, vol.446, issue.7139, pp.1096-99, 2007.

P. Nurse, Universal Control Mechanism Regulating Onset of M-Phase, Nature, vol.344, issue.6266, pp.503-511, 1990.

J. S. Oh, A. Susor, K. Schindler, R. M. Schultz, and M. Conti, Cdc25A Activity Is Required for the Metaphase II Arrest in Mouse Oocytes, Journal of Cell Science, vol.126, issue.5, pp.1081-85, 2013.

J. Oh, . Su, J. Seung, M. Han, and . Conti, Wee1B, Myt1, and Cdc25 Function in Distinct Compartments of the Mouse Oocyte to Control Meiotic Resumption, The Journal of Cell Biology, vol.188, issue.2, pp.199-207, 2010.

J. Oh, A. Su, M. Susor, and . Conti, Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes, Science, vol.332, issue.6028, pp.462-65, 2011.

M. Ohe, D. Inoue, Y. Kanemori, and N. Sagata, Erp1/Emi2 Is Essential for the Meiosis I to Meiosis II Transition in Xenopus Oocytes, Developmental Biology, 2007.

M. Ohe, Y. Kawamura, H. Ueno, D. Inoue, Y. Kanemori et al., Emi2 Inhibition of the Anaphase-Promoting Complex/Cyclosome Absolutely Requires Emi2 Binding via the C-Terminal RL Tail, Molecular Biology of the Cell, vol.21, issue.6, pp.905-918, 2010.

H. Ohkura, Meiosis: An Overview of Key Differences from Mitosis, Cold Spring Harbor Perspectives in Biology, vol.7, issue.5, 2015.

R. Paules, R. Buccione, G. Moschel, J. Woude, and . Eppig, Mouse Mos Protooncogene Product Is Present and Functions during Oogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.86, issue.14, pp.5395-99, 1989.

L. S. Penrose, Mental Deficiency-II, The Eugenics Review, vol.24, issue.4, pp.289-91, 1933.

A. C. Perry and M. Verlhac, Second Meiotic Arrest and Exit in Frogs and Mice, EMBO Reports, vol.9, issue.3, pp.246-51, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02107174

M. Petronczki, M. F. Siomos, and K. Nasmyth, Un Ménage à Quatre: The Molecular Biology of Chromosome Segregation in Meiosis, Cell, vol.112, issue.4, pp.423-463, 2003.

K. P. Phillips, A. F. Mary, J. L. Petrunewich, R. A. Collins, X. J. Booth et al., Inhibition of MEK or Cdc2 Kinase Parthenogenetically Activates Mouse Eggs and Yields the Same Phenotypes as Mos?/? Parthenogenotes, Developmental Biology, vol.247, issue.1, pp.210-233, 2002.

G. Pierron, F. Tirode, C. Lucchesi, S. Reynaud, S. Ballet et al., A New Subtype of Bone Sarcoma Defined by BCOR-CCNB3 Gene Fusion, Nature Genetics, vol.44, issue.4, pp.461-66, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02440379

J. Pines, Cubism and the Cell Cycle: The Many Faces of the APC/C, Nature Reviews Molecular Cell Biology, vol.12, issue.7, pp.427-465, 2011.

H. Piotrowska, B. Kempisty, P. Sosi?ska, S. Ciesiolka, D. Bukowska et al., The Role of TGF Superfamily Gene Expression in the Regulation of Folliculogenesis and Oogenesis in Mammals: A Review, Veterinarni Medicina, issue.10, pp.505-515, 2018.

G. Pirino, M. P. Wescott, and P. J. Donovan, Protein Kinase A Regulates Resumption of Meiosis by Phosphorylation of Cdc25B in Mammalian Oocytes, Cell Cycle, vol.8, issue.4, pp.665-70, 2009.

T. Potapova and G. J. Gorbsky, The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis, Biology, vol.6, issue.1, 2017.

A. Rattani, R. B. Mejia, K. Roberts, M. B. Roig, J. Godwin et al., APC/CCdh1 Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity, Current Biology, vol.27, issue.10, pp.1462-1476, 2017.

A. Rattani, M. Wolna, M. Ploquin, W. Helmhart, S. Morrone et al., Sgol2 Provides a Regulatory Platform That Coordinates Essential Cell Cycle Processes during Meiosis I in Oocytes, ELife, vol.2, 2013.

N. R. Rauh, A. Schmidt, J. Bormann, E. A. Nigg, and T. U. Mayer, Calcium Triggers Exit from Meiosis II by Targeting the APC/C Inhibitor XErp1 for Degradation, Nature, vol.437, issue.7061, pp.1048-52, 2005.

J. Refik-rogers, K. Manova, and A. Koff, Misexpression of Cyclin B3 Leads to Aberrant Spermatogenesis, Cell Cycle, vol.5, issue.17, pp.1966-73, 2006.

J. D. Reimann, E. Freed, J. Y. Hsu, E. R. Kramer, J. Peters et al., Emi1 Is a Mitotic Regulator That Interacts with Cdc20 and Inhibits the Anaphase Promoting Complex, Cell, vol.105, issue.5, pp.645-55, 2001.

A. Reis, S. Madgwick, H. Chang, I. Nabti, M. Levasseur et al., Prometaphase APCcdh1 Activity Prevents Non-Disjunction in Mammalian Oocytes, Nature Cell Biology, vol.9, issue.10, pp.1192-98, 2007.

H. Richardson, D. J. Lew, M. Henze, K. Sugimoto, and S. I. Reed, Cyclin-B Homologs in Saccharomyces Cerevisiae Function in S Phase and in G2, Genes & Development, vol.6, issue.11, pp.2021-2055, 1992.

C. G. Riedel, L. Vittorio, Y. Katis, S. Katou, T. Mori et al., Protein Phosphatase 2A Protects Centromeric Sister Chromatid Cohesion during Meiosis I, Nature, vol.441, issue.7089, p.53, 2006.

C. L. Rieder, R. W. Cole, A. Khodjakov, and G. Sluder, The Checkpoint Delaying Anaphase in Response to Chromosome Monoorientation Is Mediated by an Inhibitory Signal Produced by Unattached Kinetochores, The Journal of Cell Biology, vol.130, issue.4, pp.941-989, 1995.

N. Sagata, I. Daar, M. Oskarsson, S. D. Showalter, and . Gf-vande-woude, The Product of the Mos Proto-Oncogene as a Candidate 'Initiator' for Oocyte Maturation, Science, vol.245, issue.4918, pp.643-689, 1989.

K. Sako, K. Suzuki, M. Isoda, S. Yoshikai, C. Senoo et al., Emi2 Mediates Meiotic MII Arrest by Competitively Inhibiting the Binding of Ube2S to the APC/C, Nature Communications, vol.5, p.3667, 2014.

I. Sánchez and B. D. Dynlacht, New Insights into Cyclins, CDKs, and Cell Cycle Control, Seminars in Cell & Developmental Biology, vol.16, issue.3, pp.311-332, 2005.

J. R. Sanders and K. T. Jones, Regulation of the Meiotic Divisions of Mammalian Oocytes and Eggs, Biochemical Society Transactions, vol.46, issue.4, pp.797-806, 2018.

A. Satyanarayana and P. Kaldis, Mammalian Cell-Cycle Regulation: Several Cdks, Numerous Cyclins and Diverse Compensatory Mechanisms, Oncogene, vol.28, issue.33, pp.2925-2964, 2009.

A. Schmidt, P. I. Duncan, N. R. Rauh, G. Sauer, A. M. Fry et al., Xenopus Polo-like Kinase Plx1 Regulates XErp1, a Novel Inhibitor of APC/C Activity, Genes & Development, vol.19, issue.4, pp.502-515, 2005.

B. A. Schulman, D. L. Lindstrom, and E. Harlow, Substrate Recruitment to Cyclin-Dependent Kinase 2 by a Multipurpose Docking Site on Cyclin A, Proceedings of the National Academy of Sciences of the United States of America, vol.95, issue.18, pp.10453-58, 1998.

S. Shoji, N. Yoshida, M. Amanai, M. Ohgishi, T. Fukui et al., Mammalian Emi2 Mediates Cytostatic Arrest and Transduces the Signal for Meiotic Exit via Cdc20, The EMBO Journal, vol.25, issue.4, pp.834-879, 2006.

R. Sigl, C. Wandke, V. Rauch, J. Kirk, T. Hunt et al., Loss of the Mammalian APC/C Activator FZR1 Shortens G1 and Lengthens S Phase but Has Little Effect on Exit from Mitosis, Journal of Cell Science, vol.122, issue.22, pp.4208-4225, 2009.

V. Sudakin, G. K. Chan, and T. J. Yen, Checkpoint Inhibition of the APC/C in HeLa Cells Is Mediated by a Complex of BUBR1, BUB3, CDC20, and MAD2, The Journal of Cell Biology, vol.154, issue.5, pp.925-961, 2001.

M. Sullivan and D. O. Morgan, Finishing Mitosis, One Step at a Time, Nature Reviews Molecular Cell Biology, vol.8, issue.11, pp.894-903, 2007.

T. Suzuki, E. Suzuki, N. Yoshida, A. Kubo, H. Li et al., Mouse Emi2 as a Distinctive Regulatory Hub in Second Meiotic Metaphase, Development, vol.137, pp.3281-91, 2010.

C. Sweeney, M. Murphy, M. Kubelka, S. E. Ravnik, C. F. Hawkins et al., A Distinct Cyclin A Is Expressed in Germ Cells in the Mouse, Development, vol.122, issue.1, pp.53-64, 1996.

. Tachibana-konwalski, J. Kikuë, L. Godwin, L. Van-der-weyden, . Champion et al., Rec8-Containing Cohesin Maintains Bivalents without Turnover during the Growing Phase of Mouse Oocytes, Genes & Development, vol.24, issue.22, pp.2505-2521, 2010.

W. Tang, J. Q. Wu, C. Chen, C. Yang, J. Y. Guo et al., Emi2-Mediated Inhibition of E2, 2010.

, Substrate Ubiquitin Transfer by the Anaphase-Promoting Complex/Cyclosome through a D-Box-Independent Mechanism, Molecular Biology of the Cell, vol.21, issue.15, pp.2589-97

W. Tang, J. Q. Wu, Y. Guo, D. V. Hansen, J. A. Perry et al., Cdc2 and Mos Regulate Emi2 Stability to Promote the Meiosis I-Meiosis II Transition, Molecular Biology of the Cell, vol.19, issue.8, pp.3536-3579, 2008.

C. Templado, L. Uroz, and A. Estop, New Insights on the Origin and Relevance of Aneuploidy in Human Spermatozoa, MHR: Basic Science of Reproductive Medicine, vol.19, issue.10, pp.634-677, 2013.

M. Terret, K. Emilie, and . Wassmann, Le point faible méiotique : la première division, médecine/sciences, vol.24, issue.2, pp.197-204, 2008.

M. Terret, K. Emilie, I. Wassmann, B. Waizenegger, J. M. Maro et al., The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity, Current Biology, vol.13, issue.20, pp.1797-1802, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02107202

C. Thibier, . V.-de, R. Smedt, D. Poulhe, C. Huchon et al., In Vivo Regulation of Cytostatic Activity in Xenopus Metaphase II-Arrested Oocytes, Developmental Biology, vol.185, issue.1, pp.55-66, 1997.

T. C. Thomson, K. E. Fitzpatrick, and J. J. , Intrinsic and Extrinsic Mechanisms of Oocyte Loss, MHR: Basic Science of Reproductive Medicine, vol.16, issue.12, pp.916-943, 2010.

S. A. Touati, E. Buffin, D. Cladière, K. Hached, C. Rachez et al., Mouse Oocytes Depend on BubR1 for Proper Chromosome Segregation but Not for Prophase I Arrest, Nature Communications, vol.6, p.6946, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292001

S. A. Touati, D. Cladière, L. M. Lister, I. Leontiou, J. Chambon et al., Cyclin A2 Is Required for Sister Chromatid Segregation, But Not Separase Control, in Mouse Oocyte Meiosis, Cell Reports, vol.2, issue.5, pp.1077-87, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01539621

N. Treen, T. Heist, W. Wang, and M. Levine, Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo, Current Biology, vol.28, issue.7, pp.1150-1156, 2018.

. Vázquez-diez, L. M. Cayetana, G. Gomes-paim, and . Fitzharris, Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos, Current Biology: CB, vol.29, issue.5, pp.865-873, 2019.

M. H. Verlhac, J. Z. Kubiak, M. Weber, G. Geraud, W. H. Colledge et al., Mos Is Required for MAP Kinase Activation and Is Involved in Microtubule Organization during Meiotic Maturation in the Mouse, Development, vol.122, issue.3, pp.815-837, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02107246

M. -. Verlhac, C. Hélène, J. Z. Lefebvre, M. Kubiak, P. Umbhauer et al., Mos Activates MAP Kinase in Mouse Oocytes through Two Opposite Pathways, The EMBO Journal, vol.19, issue.22, pp.6065-74, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02107220

M. Voet, M. A. Van-der, D. G. Lorson, K. L. Srinivasan, S. Bennett et al., C. Elegans Mitotic Cyclins Have Distinct as Well as Overlapping Functions in Chromosome Segregation, Cell Cycle, vol.8, issue.24, pp.4091-4102, 2009.

L. A. Vrooman, I. So, T. J. Nagaoka, P. A. Hassold, and . Hunt, Evidence for Paternal Age-Related Alterations in Meiotic Chromosome Dynamics in the Mouse, Genetics, vol.196, issue.2, pp.385-96, 2014.

W. Wang and M. W. Kirschner, Emi1 Preferentially Inhibits Ubiquitin Chain Elongation by the Anaphase Promoting Complex, Nature Cell Biology, vol.15, issue.7, pp.797-806, 2013.

Z. Wang, R. Yu, and S. Melmed, Mice Lacking Pituitary Tumor Transforming Gene Show Testicular and Splenic Hypoplasia, Thymic Hyperplasia, Thrombocytopenia, Aberrant Cell Cycle Progression, and Premature Centromere Division, Molecular Endocrinology, vol.15, issue.11, pp.1870-79, 2001.

K. Wassmann, Sister Chromatid Segregation in Meiosis II : Deprotection through Phosphorylation, Cell Cycle, vol.12, issue.9, pp.1352-59, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01539807

K. Wassmann, T. Niault, and B. Maro, Metaphase I Arrest upon Activation of the Mad2-Dependent Spindle Checkpoint in Mouse Oocytes, Current Biology, vol.13, issue.18, pp.1596-1608, 2003.

E. R. Watson, G. Nicholas, J. Brown, H. Peters, B. A. Stark et al., Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division, Trends in Cell Biology, vol.29, issue.2, pp.117-151, 2019.

H. M. Wear, J. Matthew, K. H. Mcpike, and . Watanabe, From Primordial Germ Cells to Primordial Follicles: A Review and Visual Representation of Early Ovarian Development in Mice, Journal of Ovarian Research, vol.9, 2016.

K. E. Wickliffe, S. Lorenz, D. E. Wemmer, J. Kuriyan, and M. Rape, The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2, Cell, vol.144, issue.5, pp.769-81, 2011.

A. Williamson, K. E. Wickliffe, B. G. Mellone, L. Song, G. H. Karpen et al., Identification of a Physiological E2 Module for the Human Anaphase-Promoting Complex, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.43, pp.18213-18231, 2009.

D. J. Wolgemuth, Function of the A-Type Cyclins During Gametogenesis and Early Embryogenesis, Results and Problems in Cell Differentiation, vol.53, pp.391-413, 2011.

W. Wu, K. Hu, D. Wang, Z. Zeng, D. Zhang et al., CDC20 Overexpression Predicts a Poor Prognosis for Patients with Colorectal Cancer, Journal of Translational Medicine, vol.11, p.142, 2013.

W. Yakoubi, E. El, D. Buffin, Y. Cladière, I. Gryaznova et al., Mps1 Kinase-Dependent Sgo2 Centromere Localisation Mediates Cohesin Protection in Mouse Oocyte Meiosis I, Nature Communications, vol.8, issue.1, p.694, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01609894

T. M. Yamamoto, M. Iwabuchi, K. Ohsumi, and T. Kishimoto, APC/C-Cdc20-Mediated Degradation of Cyclin B Participates in CSF Arrest in Unfertilized Xenopus Eggs, Developmental Biology, vol.279, issue.2, pp.345-55, 2005.

H. Yamano, APC/C: Current Understanding and Future Perspectives, F1000Research, vol.8, p.725, 2019.

M. Yang, B. Li, C. Liu, D. R. Tomchick, M. Machius et al., Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer, PLOS Biology, vol.6, issue.3, p.50, 2008.

R. Yang, R. Morosetti, and H. P. Koeffler, Characterization of a Second Human Cyclin A That Is Highly Expressed in Testis and in Several Leukemic Cell Lines, Cancer Research, vol.57, issue.5, pp.913-933, 1997.

Y. Yang, C. Yang, S. J. Han, E. M. Daldello, A. Cho et al., Maternal MRNAs with Distinct 3? UTRs Define the Temporal Pattern of Ccnb1 Synthesis during Mouse Oocyte Meiotic Maturation, Genes & Development, vol.31, issue.13, pp.1302-1309, 2017.

H. Zhang, L. Liu, X. Li, K. Busayavalasa, Y. Shen et al., Life-Long in Vivo Cell-Lineage Tracing Shows That No Oogenesis Originates from Putative Germline Stem Cells in Adult Mice, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.50, pp.17983-88, 2014.

Q. Zhang, W. Shan-yuen, D. Adhikari, J. A. Flegg, G. Fitzharris et al., Cyclin A2 Modulates Kinetochore-Microtubule Attachment in Meiosis II, The Journal of Cell Biology, vol.216, issue.10, pp.3133-3176, 2017.

T. Zhang, S. T. Qi, L. Huang, X. S. Ma, Y. C. Ouyang et al., Cyclin B3 Controls Anaphase Onset Independent of Spindle Assembly Checkpoint in Meiotic Oocytes, Cell Cycle, vol.14, issue.16, pp.2648-54, 2015.

Y. Zhang, Z. Zhang, X. Xu, X. Li, M. Yu et al., Protein Kinase A Modulates Cdc25B Activity during Meiotic Resumption of Mouse Oocytes, Developmental Dynamics: An Official Publication of the American Association of Anatomists, vol.237, issue.12, pp.3777-86, 2008.

W. El-yakoubi and K. Wassmann, Meiotic divisions: no place for gender equality, Advances in Experimental Medicine and Biology, pp.1-17, 2017.

J. E. Holt, S. Lane, and K. T. Jones, Chapter seven -The control of meiotic maturation in mammalian oocytes, Current topics in developmental biology, vol.102, pp.207-226, 2013.

M. Herbert, D. Kalleas, and D. Cooney, Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births, Cold Spring Harb Perspect Biol, vol.7, issue.4, p.17970, 2015.

C. Templado, L. Uroz, and A. Estop, New insights on the origin and relevance of aneuploidy in human spermatozoa, Mol Hum Reprod, vol.19, issue.10, pp.634-643, 2013.

T. Hassold and P. Hunt, To Err (Meiotically) is human: the genesis of human aneuploidy, Nat Rev Genet, vol.2, issue.4, p.280, 2001.

S. I. Nagaoka, T. J. Hassold, and P. A. Hunt, Human aneuploidy: mechanisms and new insights into an age-old problem, Nat Rev Genet, vol.13, issue.7, pp.493-504, 2012.

S. A. Touati and K. Wassmann, How oocytes try to get it right: spindle checkpoint control in meiosis, Chromosoma, vol.125, issue.2, pp.321-335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01539806

A. Capalbo, E. R. Hoffmann, and D. Cimadomo, Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging, Hum Reprod Update, vol.23, issue.6, pp.706-722, 2017.

C. Vázquez-diez and G. Fitzharris, Causes and consequences of chromosome segregation error in preimplantation embryos, Reproduction, vol.155, issue.1, pp.63-76, 2018.

I. Schneider and J. Ellenberg, Mysteries in embryonic development: how can errors arise so frequently at the beginning of mammalian life?, PLoS Biol, vol.17, issue.3, p.3000173, 2019.

J. R. Sanders and K. T. Jones, Regulation of the meiotic divisions of mammalian oocytes and eggs, Biochem Soc Trans, vol.46, issue.4, pp.797-806, 2018.

K. Wassmann, Sister chromatid segregation in meiosis II : deprotection through phosphorylation, Cell Cycle, vol.12, issue.9, pp.1352-1359, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01539807

J. Pines and T. Hunter, Isolation of a human cyclin CDNA: evidence for cyclin MRNA and protein regulation in the cell cycle and for interaction with P34cdc2, Cell, vol.58, issue.5, pp.833-846, 1989.

D. L. Chapman and D. J. Wolgemuth, Identification of a Mouse B-type cyclin which exhibits developmentally regulated expression in the germ line, Mol Reprod Dev, vol.33, issue.3, pp.259-269, 1992.

C. A. Nieduszynski, J. Murray, and M. Carrington, Wholegenome analysis of animal A-and B-type cyclins, Genome Biol, vol.3, issue.12, 2002.

L. Jian, J. Tang, and J. Cheng, Cyclin B2 can compensate for cyclin B1 in oocyte meiosis I, J Cell Biol, vol.217, issue.11, pp.3901-3911, 2018.

M. E. Karasu and S. Keeney, Cyclin B3 is dispensable for mouse spermatogenesis, BioRxiv, vol.608315, 2019.

M. E. Karasu, N. Bouftas, and S. Keeney, Cyclin B3 promotes anaphase I onset in oocyte meiosis, J Cell Biol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171206

L. Yufei, L. Wang, and L. Zhang, Cyclin B3 is required for metaphase to anaphase transition in oocyte meiosis I, J Cell Biol, 2019.

M. Brandeis, I. Rosewell, and M. Carrington, Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero, Proc Nat Acad Sci, vol.95, issue.8, pp.4344-4349, 1998.

E. M. Daldello, X. G. Luong, and C. Yang, Cyclin B2 is required for progression through meiosis in mouse oocytes, Development, vol.146, p.172734, 2019.

G. J. Gorbsky, The spindle checkpoint and chromosome segregation in meiosis, Febs J, vol.282, issue.13, pp.2458-2474, 2015.

H. Homer, The APC/C in female mammalian meiosis I, Reproduction, vol.146, issue.2, pp.61-71, 2013.

T. M. Emilie, K. Wassmann, and I. Waizenegger, The Meiosis I-to-Meiosis II transition in mouse oocytes requires separase activity, Curr Biol, vol.13, issue.20, pp.1797-1802, 2003.

M. Herbert, M. Levasseur, and H. Homer, Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1, Nat Cell Biol, vol.5, issue.11, pp.1023-1025, 2003.

N. R. Kudo, K. Wassmann, and M. Anger, Resolution of chiasmata in oocytes requires separase-mediated proteolysis, Cell, vol.126, pp.135-146, 2006.

L. L. Runft, L. A. Jaffe, and L. M. Mehlmann, Egg activation at fertilization: where it all begins, Dev Biol, vol.245, issue.2, pp.237-254, 2002.

A. Perry and M. Verlhac, Second meiotic arrest and exit in frogs and mice, EMBO Rep, vol.9, issue.3, pp.246-251, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02107174

T. Kishimoto, Entry into mitosis: a solution to the decades-long enigma of MPF, Chromosoma, vol.124, issue.4, pp.417-428, 2015.

S. Vigneron, P. Robert, and K. Hached, The master greatwall kinase, a critical regulator of mitosis and meiosis, Int J Dev Biol, vol.60, issue.7-8-9, pp.245-254, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01878032

D. Adhikari and K. Liu, The regulation of maturation promoting factor during Prophase I arrest and meiotic entry in mammalian oocytes, Mol Cell Endocrinol, vol.382, issue.1, pp.480-487, 2014.

S. J. Han and M. Conti, New pathways from PKA to the Cdc2/ Cyclin B complex in oocytes: wee1B as a potential PKA substrate, Cell Cycle, vol.5, issue.3, pp.227-231, 2006.

P. Solc, R. M. Schultz, and J. Motlik, Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells, Mol Hum Reprod, vol.16, issue.9, pp.654-664, 2010.

H. Richardson, D. J. Lew, and M. Henze, Cyclin-B homologs in saccharomyces cerevisiae function in S phase and in G2, Genes Dev, vol.6, issue.11, pp.2021-2034, 1992.

P. Gutiérrez-escribano and P. Nurse, A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast, Nat Commun, vol.6, issue.1, p.6871, 2015.

D. L. Fisher and P. Nurse, A single fission yeast mitotic cyclin B P34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins, Embo J, vol.15, issue.4, pp.850-860, 1996.

B. E. Mcguinness, M. Anger, A. Kouznetsova, and A. M. , Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint, Curr Biol, vol.19, issue.5, pp.369-380, 2009.

K. Wassmann, T. Niault, and B. Maro, Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes, Curr Biol, vol.13, issue.18, pp.1596-1608, 2003.

E. Ledan, Z. Polanski, and M. Terret, Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation, Dev Biol, vol.232, issue.2, pp.400-413, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02156019

A. Reis, S. Madgwick, and H. Chang, Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes, Nat Cell Biol, vol.9, issue.10, pp.1192-1198, 2007.

K. T. Jones, Mammalian egg activation: from Ca2+ spiking to cell cycle progression, Reproduction, vol.130, issue.6, pp.813-823, 2005.

C. Vantéry, A. C. De-gavin, and J. D. Vassalli, An accumulation of P34cdc2at the end of mouse oocyte growth correlates with the acquisition of meiotic competence

, Dev Biol, vol.174, issue.2, pp.335-344, 1996.

N. Hashimoto and T. Kishimoto, Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation, Dev Biol, vol.126, issue.2, pp.242-252, 1988.

M. D. Levasseur, C. Thomas, and O. R. Davies, Aneuploidy in oocytes is prevented by sustained CDK1 activity through degron masking in cyclin B1, Dev Cell, vol.48, pp.672-684, 2019.

T. Arooz, C. H. Yam, and W. Y. Siu, On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells, Biochemistry, vol.39, issue.31, pp.9494-9501, 2000.

S. Hellmuth, F. Böttger, and C. Pan, PP2A delays APC/ C-dependent degradation of separase-associated but not free securin, Embo J, vol.33, issue.10, pp.1134-1147, 2014.

L. J. Holt, A. N. Krutchinsky, and D. O. Morgan, Positive feedback sharpens the anaphase switch, Nature, vol.454, issue.7202, pp.353-357, 2008.

S. A. Touati, D. Cladière, and L. M. Lister, Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis, Cell Rep, vol.2, issue.5, pp.1077-1087, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01539621

M. Konishi, N. Shindo, and M. Komiya, Quantitative analyses of the metaphase-to-anaphase transition reveal differential kinetic regulation for securin and cyclin B1, Biomed Res, vol.39, issue.2, pp.75-85, 2018.

J. Z. Kubiak, M. Weber, and H. De-pennart, The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF, Embo J, vol.12, issue.10, pp.3773-3778, 1993.

V. L. Nixon, M. Levasseur, and A. Mcdougall, Ca2+ oscillations promote APC/C-dependent cyclin B1 degradation during metaphase arrest and completion of meiosis in fertilizing mouse eggs, Curr Biol, vol.12, issue.9, pp.746-750, 2002.

T. M. Yamamoto, M. Iwabuchi, and K. Ohsumi, APC/C-cdc20-mediated degradation of cyclin B participates in CSF arrest in unfertilized xenopus eggs, Dev Biol, vol.279, issue.2, pp.345-355, 2005.

J. S. Oh, A. Susor, and K. Schindler, Cdc25A activity is required for the metaphase II arrest in mouse oocytes, J Cell Sci, vol.126, issue.5, pp.1081-1085, 2013.

J. S. Oh, A. Susor, and M. Conti, Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes, Science, vol.332, issue.6028, pp.462-465, 2011.

M. Verlhac, C. Lefebvre, and J. Z. Kubiak, Mos activates MAP kinase in mouse oocytes through two opposite pathways, Embo J, vol.19, issue.22, pp.6065-6074, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02107220

M. H. Verlhac, J. Z. Kubiak, and H. J. Clarke, Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes, Development, vol.120, issue.4, pp.1017-1025, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02107254

D. Clift and M. Schuh, Re-starting life: fertilization and the transition from meiosis to mitosis, Nat Rev Mol Cell Biol, vol.14, issue.9, pp.549-562, 2013.

B. Strauss, A. Harrison, and P. A. Coelho, Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis, J Cell Biol, vol.217, issue.1, pp.179-193, 2018.

M. Jackman, M. Firth, and J. Pines, Human Cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the golgi apparatus, Embo J, vol.14, issue.8, pp.1646-1654, 1995.

P. Marangos and J. Carroll, The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes, Reproduction, vol.128, issue.2, pp.153-162, 2004.

J. E. Holt, J. Weaver, and K. T. Jones, Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes, Development, vol.137, issue.8, pp.1297-1304, 2010.

T. Kotani, K. Yasuda, and R. Ota, Cyclin B1 MRNA translation is temporally controlled through formation and disassembly of RNA granules, J Cell Biol, vol.202, issue.7, pp.1041-1055, 2013.

Y. Yang, C. Yang, and S. J. Han, Maternal MRNAs with Distinct 3? UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation, Genes Dev, vol.31, issue.13, pp.1302-1307, 2017.

S. J. Han, J. Martins, and Y. Yang, The translation of cyclin B1 and B2 is differentially regulated during mouse oocyte reentry into the meiotic cell cycle, Sci Rep, vol.7, issue.1, 2017.

L. Gui and H. Homer, Hec1-dependent cyclin B2 stabilization regulates the G2-M transition and early prometaphase in mouse oocytes, Dev Cell, vol.25, issue.1, pp.43-54, 2013.

A. Rattani, P. K. Vinod, and J. Godwin, Dependency of the spindle assembly checkpoint on Cdk1 renders the anaphase transition irreversible, Curr Biol, vol.24, issue.6, pp.630-637, 2014.

S. A. Touati, E. Buffin, and D. Cladière, Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest, Nat Commun, vol.6, p.6946, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292001

P. Gallant and E. A. Nigg, Identification of a novel vertebrate cyclin: cyclin B3 shares properties with both A-and B-type cyclins, Embo J, vol.13, issue.3, pp.595-605, 1994.

S. Sigrist, H. Jacobs, and R. Stratmann, Exit from mitosis is regulated by drosophila fizzy and the sequential destruction of cyclins A, B and B3, Embo J, vol.14, pp.4827-4838, 1995.

J. Lozano, E. Perret, and P. Schatt, Molecular cloning, gene localization, and structure of human cyclin B3, Biochem Biophys Res Commun, vol.291, issue.2, pp.406-413, 2002.

M. A. Kreutzer, J. P. Richards, D. Silva-udawatta, and M. N. , Caenorhabditis elegans cyclin A-and B-type genes: a cyclin A multigene family, an ancestral cyclin B3 and differential germline expression, J Cell Sci, vol.108, pp.2415-2424, 1995.

J. C. Lozano, V. Vergé, and P. Schatt, Evolution of cyclin B3 shows an abrupt three-fold size increase, due to the extension of a single exon in placental mammals, allowing for new protein-protein interactions, Mol Biol Evol, vol.29, pp.3855-3871, 2012.

K. Yuan, O. Farrell, and P. H. , Cyclin B3 is a mitotic cyclin that promotes the metaphase-anaphase transition, Curr Biol, vol.25, pp.811-816, 2015.

H. W. Jacobs, J. A. Knoblich, and C. F. Lehner, Drosophila cyclin B3 is required for female fertility and is dispensable for mitosis like cyclin B, Genes Dev, vol.12, issue.23, pp.3741-3751, 1998.

M. Bourouh, R. Dhaliwal, and K. Rana, Distinct and overlapping requirements for cyclins A, B and B3 in drosophila female meiosis, Genes Genomes Genet, vol.3, pp.3711-3724, 2016.

M. W. Matthew, Cyclin CYB-3 controls both S-phase and mitosis and is asymmetrically distributed in the early C. Elegans Embryo, Development, vol.143, issue.17, pp.3119-3127, 2016.

G. Deyter, T. Furuta, and Y. Kurasawa, Caenorhabditis Elegans Cyclin B3 is required for multiple mitotic processes including alleviation of a spindle checkpointdependent block in anaphase chromosome segregation, PLoS Genet, vol.6, issue.11, p.1001218, 2010.

G. Pierron, F. Tirode, and C. Lucchesi, A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion, Nat Genet, vol.44, issue.4, pp.461-466, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02440379

L. Wan-shan, C. Liao, I. Wen, and M. , BCOR-CCNB3-positive soft tissue sarcoma with round-cell and spindle-cell histology: a series of four cases highlighting the pitfall of mimicking poorly differentiated synovial sarcoma, Histopathology, vol.69, issue.5, pp.792-801, 2016.

S. Cohen-gogo, C. Cellier, and J. Coindre, Ewinglike Sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Société Française Des Cancers de L'Enfant. Pediatr Blood Cancer, vol.61, pp.2191-2198, 2014.

M. Voet, M. A. Lorson, and D. G. Srinivasan, Elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation, Cell Cycle, vol.8, issue.24, pp.4091-4102, 2009.

T. B. Nguyen, K. Manova, and P. Capodieci, Characterization and expression of mammalian cyclin B3, a prepachytene meiotic cyclin, J Biol Chem, vol.277, issue.44, pp.41960-41969, 2002.

N. Treen, T. Heist, and W. Wang, Depletion of maternal cyclin B3 contributes to zygotic genome activation in the ciona embryo, Curr Biol, vol.28, issue.7, pp.1150-1156, 2018.

T. Zhang, S. T. Qi, and L. Huang, Cyclin B3 controls anaphase onset independent of spindle assembly checkpoint in meiotic oocytes, Cell Cycle, vol.14, issue.16, pp.2648-2654, 2015.

, 14-week-old mice, strain CD1 Swiss (Janvier labs, France)

, Sterile-filtered, suitable for mouse embryo culture M2 medium (Sigma) supplemented with penicillin (final concentration 1.678 mM) and streptomycin (final concentration 0.689 mM), and where indicated supplemented with 100 mg/mL dbcAMP

, Mineral oil suitable for mouse embryo cell culture (Sigma)

, Attach the drawn out glass Pasteur pipette to the tubing and use it for collection and cleaning of oocytes

, Dissection scissors and forceps

, Glass capillaries: outer diameter 1 mm, inner diameter 0.75 mm, length 100 mm

, Magnetic puller, for example Narishige PN-30

, Microinjection microscope, we use a Nikon Eclipse Ti with Eppendorf TransferMan NK2 micromanipulators and TOKAI HIT Thermoplate

, Eppendorf FemtoJet Microinjector connected to the microinjection needle holder

, Eppendorf CellTram Oil (or similar) manual microinjector connected to the holding pipette holder

, Depression glass slide

, Holding pipette: VacuTip microcapillaries, inner diameter 15 ?m, outer diameter 100 ?m, angle 35°

, Microloader tips 20 ?L (Eppendorf)

, Linearized and purified plasmid encoding for the cleavage sensor under T7, T3, or SP6 promoter and allowing synthesis of a poly(A)-tail (see Note 1)

, T7/T3/SP6 mMessage mMachine transcription kit

. Microcentrifuge,

R. Water,

, Applied Scientific Instrumentation), a Yokogawa CSU-X1 spinning disc and a nanopositioner MCL Nano-Drive. The spinning disc unit is sup, We use an inverted microscope Zeiss Axiovert 200M, combined with an MS-2000 automated stage

, The light sources are 50 mW 488 nm and 561 nm lasers (Roper Scientific). The images are taken with an EMCCD camera

, Objective: Plan-APOCHROMAT 40×/1.4 Oil DIC (UV) VIS-IR (Zeiss)

, The body of the microscope is encased in an incubation chamber heated by a heating unit (PeCon)

, Heating insert: incubator cover, incubator main body, lens warmer

, Imaging chamber: Chamlide CMB 35 mm 1-well magnetic chamber for round coverslips

, Immersion oil with refractive index of 1.518 (e.g.,Cargille Type 37 immersion oil)

E. Nikalayevich, Cover the drops with mineral oil. Prepare another 60 mm polystyrene dish containing 4-5 drops of M2 medium (without dbcAMP) and place on the heated stage of a binocular microscope

K. Wassmann, Sister chromatid segregation in meiosis II: deprotection through phosphorylation, Cell Cycle, vol.12, pp.1352-1359, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01539807

A. Webster and M. Schuh, Mechanisms of aneuploidy in human eggs, Trends Cell Biol, vol.27, pp.55-68, 2017.

S. B. Buonomo, R. K. Clyne, and J. Fuchs, Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin, Cell, vol.103, pp.387-398, 2000.

N. R. Kudo, K. Wassmann, and M. Anger, Resolution of chiasmata in oocytes requires separase-mediated proteolysis, Cell, vol.126, pp.135-146, 2006.

N. C. Hornig, P. P. Knowles, and N. Q. Mcdonald, The dual mechanism of separase regulation by securin, Curr Biol, vol.12, pp.973-982, 2002.

H. Funabiki, H. Yamano, and K. Kumada, Cut2 proteolysis required for sister-chromatid separation in fission yeast, Nature, vol.381, pp.438-441, 1996.

O. Cohen-fix, J. Peters, and M. Kirschner, Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibtitor Psd1p, Genes Dev, vol.10, pp.3081-3093, 1996.

H. Zou, T. J. Mcgarry, and T. Bernal, Identification of a vertebrate sister-chromatid, 1999.

I. H. Gorr, D. Boos, and O. Stemmann, Mutual inhibition of separase and Cdk1 by two-step complex formation, Mol Cell, vol.19, pp.135-141, 2005.

S. Hellmuth, C. Pöhlmann, and A. Brown, Positive and negative regulation of vertebrate separase by Cdk1-Cyclin B1 may explain why securin is dispensable, J Biol Chem, vol.290, pp.8002-8010, 2015.

H. Homer, The APC/C in female mammalian meiosis I, Reproduction, vol.146, pp.61-71, 2013.

A. S. Brooker and K. M. Berkowitz, The roles of cohesins in mitosis, meiosis, and human health and disease, Methods Mol Biol, vol.1170, pp.229-266, 2014.

K. Tachibana-konwalski, G. J. Van-der-weyden, and L. , Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes, Genes Dev, vol.24, pp.2505-2516, 2010.

S. Burkhardt, M. Borsos, and A. Szydlowska, Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice, Curr Biol, vol.26, pp.1-8, 2016.

N. Shindo, K. Kumada, and T. Hirota, Separase sensor reveals dual roles for separase coordinating cohesin cleavage and Cdk1 inhibition, Dev Cell, vol.23, pp.112-123, 2012.