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Abstract

The work presented in the first part of this thesis is the result of a collaboration between Alstom and
the RATP. We present various models and algorithms that can be used to bound a real-valued function f
defined on an interval I and its (d− 1) first derivatives by knowing reliable bounds on f in some discrete
points and global bounds on its dth derivative. These results are applied to a situation inspired by the rail-
way world. Finally, we present various extensions of our work, and we explain how the previous models
can be easily generalized to vector-valued applications defined on an interval.
The second part of this thesis is dedicated to the theoretical and numerical study of a shape from shading
problem, which consists in a surface reconstitution from a black and white picture, by knowing only the
shades of gray and the altitude of the surface at some points. We remind how the viscosity solutions
framework allows us to obtain a well-posed formulation of this problem. Then we expose an explicit
expression of an approximation scheme associated to this problem, and we propose a significant opti-
mization of some algorithms used to solve numerically such a problem.
In the future, the works presented in the two parts of the thesis could be coupled to allow a real-time
guidance of flying objects like drones over a given region.

Résumé

Les travaux présentés dans la première partie de ce manuscrit de thèse sont le fruit d’une collaboration
entre Alstom et la RATP. Nous y présentons différents modèles et algorithmes permettant de borner une
fonction réelle f définie sur un intervalle I et ses (d − 1) premières dérivées à partir de bornes sur f en
certains points et de bornes globales sur la dérivée d-ième de f . Nous appliquons cela à une situation in-
spirée du monde ferroviaire. Enfin, nous présentons diverses extensions de nos travaux, et nous montrons
comment les résultats précédents peuvent se généraliser à des applications définies sur un intervalle I et
à valeurs vectorielles.
La seconde partie de ce manuscrit est consacrée à l’étude théorique et numérique d’un problème de
« shape from shading », qui consiste à reconstituer une surface représentée sur une image en noir et
blanc, par la seule connaissance des nuances de gris et d’altitudes en certains points. Nous y rappelons
comment le cadre des solutions de viscosité permet d’obtenir une formulation mathématique bien posée
de ce problème. Nous donnons ensuite une formulation explicite d’un schéma d’approximation asso-
cié à ce problème, et nous proposons une optimisation notable d’algorithmes permettant de résoudre
numériquement un tel problème.
À terme, l’ensemble des travaux présentés dans ce manuscrit pourraient être couplés pour permettre le
guidage en temps réel de mobiles volants, tels que des drones, au dessus d’une région donnée.
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Avant-propos

Cette thèse est le fruit de travaux menés à l’Université Pierre et Marie Curie (UPMC), devenue, depuis
2018, Sorbonne Université, au laboratoire Jacques-Louis Lions (LJLL), sous la direction d’Yvon MADAY

(rattaché au LJLL), dans le cadre d’un contrat doctoral s’étalant du 1er janvier 2016 au 31 août 2019.

Les premiers travaux de cette thèse résultent d’une collaboration entre le LJLL et Metrolab, co-entreprise
détenue à parts égales par Alstom et la régie autonome des transports parisiens (RATP). Une des études
menées à travers cette collaboration avait pour thématique l’odométrie, à savoir l’estimation de la position
d’un véhicule en mouvement, et pour objectif de proposer différents modèles et algorithmes mathéma-
tiques permettant une meilleure estimation des position, vitesse et accélération d’un train, en temps réel,
et selon un très haut niveau de garantie. La partie I de cette thèse présente la plupart des résultats obtenus
dans le cadre de cette étude, débutée à l’automne 2014 et ayant pris fin à l’automne 2016.

Les travaux présentés dans la partie II de ce manuscrit, ont quant à eux été entamés au début de l’année
2017 et menés conjointement avec Didier SMETS (rattaché au LJLL) et Yvon MADAY. Ils portent sur
la résolution d’un problème de « shape from shading », qui consiste en la reconstitution d’une surface
représentée sur une image en noir et blanc à partir des nuances de gris et, bien entendu, d’altitudes connues
en certains endroits.

Ce manuscrit a été rédigé dans l’état d’esprit suivant : apporter suffisamment d’éléments au lecteur pour
lui permettre de comprendre les modèles ou algorithmes qui y sont décrits d’une part, et de reproduire les
simulations qui y sont présentées d’autre part. Si Alstom et la RATP sont propriétaires du code MATLAB

ayant permis la réalisation des simulations de la partie I, et n’ont pas souhaité que celui-ci soit diffusé,
le code python associé à celles de la partie II sera regroupé dans un notebook jupyter, en cours de
conception, destiné à être librement diffusé.
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Introduction

Notations et conventions spécifiques

Dans cette partie :

• I désignera un intervalle de R d’intérieur non vide.

• N désignera un entier supérieur ou égal à 2, et t1, t2, . . . , tN désigneront N points de I tels que
t1 < t2 < · · · < tN , non nécessairement régulièrement espacés.

• Si x est un nombre réel, nous noterons σ(x) son signe, qui correspondra au symbole "+" lorsque x > 0,
et au symbole "−" lorsque x < 0. En particulier, si k ∈ N, le signe de (−1)k sera noté σ〈k〉.

• Toutes les simulations numériques ont été réalisées sous MATLAB, et ce même si la plupart des sorties
graphiques ont été reproduites, pour des raisons essentiellement esthétiques, sous LATEX.

Contexte et problématique

Pour un exploitant de transports en commun ferrés, la bonne localisation des trains en temps réel répond
à deux enjeux majeurs. Le premier est d’ordre sécuritaire : pour prévenir tout risque de collision, et
donc d’accident grave de voyageurs, il est important de maintenir les trains suffisamment éloignés les uns
des autres. Sur le plan commercial, pour éviter la saturation des espaces voyageurs (qui peut d’ailleurs
s’avérer source d’accidents. . . ), l’exploitant doit être en mesure de faire circuler, de la manière la plus
fluide possible, un maximum de trains sur son réseau. Au final, il s’agit de maintenir les trains en ligne
suffisamment proches les uns des autres sans que cela ait un quelconque impact sur la sécurité.
Notre étude, menée pour les besoins d’Alstom et de la RATP, rentre dans le cadre de ce problème. Notre
objectif était de proposer des modèles et algorithmes mathématiques qui permettent d’estimer les position,
vitesse et accélération d’un train, en temps réel, et selon un très haut niveau de garantie. Le comportement
d’un train est modélisé par des lois physiques usuelles : la dérivée de sa position correspond à sa vitesse,
la dérivée de sa vitesse à son accélération, etc. Le problème est qu’il est extrêmement difficile, voire
impossible, de quantifier ces grandeurs, puisqu’ils résultent de processus physiques tels qu’accélérations,
décélérations ou glissements que l’on ne sait pas modéliser ou estimer de façon fiable. Pour cette raison,
nous pouvions seulement nous fier à des mesures de la position du train données en des temps discrets
(par des équipements placés à bord du train ou sur la voie), et en des bornes certifiées sur l’accélération
du train et son jerk, i.e. la dérivée de son accélération.
Exprimons tout ceci en termes mathématiques. Supposons disposer d’une fonction f : I → R soumise
aux hypothèses suivantes :

(A1) Pour tout i ∈ {1, . . . , N}, il est possible de déterminer des nombres réels f−(ti) et f+(ti) tels que :

f−(ti) 6 f(ti) 6 f+(ti),
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(A2) Il existe (au moins) un entier d ∈ N
∗ pour lequel f admet une dérivée d-ième bornée, autrement dit

il est possible de déterminer deux constantes réelles f∗
− and f∗

+ telles que pour tout θ ∈ I :

f∗
− 6 f (d)(θ) 6 f∗

+,

En pratique, la fonction f sera bien évidemment inconnue, et l’entier d égal à 2 ou 3. Plus précisément,
pour un réel t de I donné, f(t) correspondra à la position du train (sur la voie) à l’instant t, f ′(t) à sa
vitesse, f ′′(t) à son accélération et f ′′′(t) à son jerk. En utilisant ces notations, nous souhaitons donc :

• déterminer, pour tous k ∈ {1, . . . , d − 1} et i ∈ {1, . . . , N}, des quantités f (k)
− (ti) et f (k)

+ (ti) telles

que f (k)
− (ti) 6 f (k)(ti) 6 f

(k)
+ (ti) et que l’écart f (k)

+ (ti)− f (k)
− (ti) soit le plus petit possible,

• mettre en cohérence, pour tous les indices k ∈ {1, . . . , d−1} et i ∈ {1, . . . , N}, l’ensemble des bornes

f
(k)
− (ti) et f (k)

+ (ti) ainsi disponibles.

Principaux outils

Conformément au très haut niveau de sécurité requis, nous avons décidé de ne développer que des modèles
ou algorithmes déterministes. Par conséquent, la fiabilité des données qui en sont issues sera la même
que celle des données d’entrée. En particulier, toute incohérence des données de sortie sera fatalement
imputable aux données d’entrée. Par ailleurs, l’utilisation de modèles probabilistes, comme les filtres
de Kalman utilisés dans ce genre de cas, par exemple évoqués par R. FARAGER dans [8], nous a paru
inappropriée, les défaillances étant alors localisées dans les queues des distributions de probabilité.
L’approche que nous proposons ici est, à notre connaissance, totalement nouvelle. Elle est basée sur les
deux résultats suivants, le premier d’entre eux étant la formule de Taylor-Lagrange, dont nous rappelons
un énoncé :

Théorème. (Formule de Taylor-Lagrange)
Soient m ∈ N

∗, g une fonction de I dans R, x ∈ I et h ∈ R
∗ tel que x + h ∈ I . On suppose que f est

(m−1) fois dérivable en tout point compris entre x et x+h, et m fois dérivable en tout point strictement
compris entre x et x+ h. Il existe alors ξ strictement compris entre x et x+ h tel que :

g(x+ h) =

(
m−1∑

k=0

hk

k!
g(k)(x)

)

+
hm

m!
g(m)(ξh).

Le second, dont la preuve est immédiate, est le suivant :

Proposition. (Principe de sélection)
Soit A un nombre réel, k un entier plus grand que 1, et (a−i )16i6k and (a+i )16i6k deux familles de
nombres réels. Si a−i 6 A 6 a+i pour tout i ∈ {1, . . . , k}, alors :

A− 6 A 6 A+ où

{

A− = max{a−1 , . . . , a−m},
A+ = min{a+1 , . . . , a+m}.

De ce fait, à l’exception des techniques proposées par L. JAULIN dans [11], que nous avions considéré en
début d’étude mais qui nous ont paru difficiles à mettre en œuvre, et le papier [13] de S. K. LELE sur les
schémas compacts, que nous avions utilisé pour tenter d’optimiser certains modèles que nous proposons,
aucune référence bibliographique n’accompagne les travaux présentés dans cette première partie de thèse.
Ceux-ci résultent donc exclusivement des échanges que nous avons eu avec des industriels d’Alstom
(I. BAINS, R. CADOT et J.-M. KLUTH) et de la RATP (S. FIORONI et F. JASMIN), et certains chercheurs
du LJLL (J. GARNIER, Y. PRIVAT, E. TRÉLAT, et surtout Y. MADAY).
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Organisation

Cette première partie de manuscrit s’organise comme suit. Au chapitre 1, nous présentons différentes
techniques permettant de borner les dérivées d’une fonction ; pour ce faire, nous utiliserons des méthodes
proches de celles traditionnellement utilisées pour approcher les dérivées intervenant dans une équation
différentielle ordinaire ou aux dérivées partielles. Au chapitre 2, nous montrons comment mettre en
cohérences différentes bornes sur une fonction et ses dérivées. Même si nous verrons par la suite comment
les combiner, les théories de ces deux chapitres peuvent être utilisées indépendamment l’une de l’autre.
Une résolution numérique du problème présenté dans cette introduction sera proposée au chapitre 3.
Pour finir, le chapitre 4 regroupe différents résultats ou idées qui pourraient être utilisés pour améliorer
les modèles présentés dans les chapitres précédents, mais que nous n’avons pas testés et/ou étudiés en
détail. En particulier, nous montrerons dans ce dernier chapitre comment notre travail, essentiellement
unidimensionnel, peut se généraliser de manière immédiate à des fonctions définies sur I et à valeurs
dans Rn, pour un entier n aussi grand que souhaité.





Chapter 1

How to bound the derivatives of a function?

Introduction

To solve the problem exposed in introduction, we first need to see how to bound the derivatives of a
function. In order to do it, we fix in this chapter t ∈ I and ψ : I → R a(n unknown) function for which:

• for all y ∈ I , we can determine (known) quantities ψ−(y) and ψ+(y) such that:

ψ−(y) 6 ψ(y) 6 ψ+(y). (1.1)

• there exists p ∈ N
∗ such that ψ admits a pth bounded derivative, i.e. there exists (known) real constants

ψ∗
− and ψ∗

+ such that for all ξ ∈ I:

ψ∗
− 6 ψ(p)(ξ) 6 ψ∗

+. (1.2)

Then our goal consists in finding some techniques to bound ψ(k)(t), for all k ∈ {1, . . . , p}.
We will not consider the function f used in introduction for the two following reasons. The first one is
that in practice, ψ will correspond to f as well as f ′. The second one is because in practice, we will just
have bounds on ψ = f or ψ = f ′ in t1, . . . , tN , and not overall I .
As mentioned in introduction, we will limit our study to cases p = 2 or p = 3, even if by doing heavier
computations, most of the models presented here could be extended. From section 1.1 to section 1.9, we
will present various ways that permits to bound a kth derivative of ψ, with 0 < k < p. For each one of
them, we will proceed as follow:

1) finding generic formulas that enable to bound ψ(k)(t),

2) choosing bounds on ψ(k)(t) as close as possible.

More precisely in section 1.1 we will start with the simpler case p = 2, and so k = 1. Then until
section 1.7, we will suppose p = 3. From sections 1.2 to 1.4 we will see how to bound ψ′(t) without
ψ′′, and how to bound ψ′′(t) without ψ′ from sections 1.5 to 1.7. In sections 1.8 and 1.9, we will present
alternative ways to bound ψ′(t) or ψ′′(t) by using bounds on ψ′′ or ψ′. After that we will explain how to
adapt the models presented in this chapter when ψ is just bounded in some discrete points (as function f
from introduction is), and we will end by doing some general remarks about the models presented in this
chapter.
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1.1 A way to bound ψ′(t) when p = 2

1.1.1 –– In this section, we assume that p = 2. Thus our goal consists in bounding ψ′(t) by using bounds
on ψ from (1.1) and ψ′′ from (1.2). In order to do this, we can apply the Taylor-Lagrange formula that
insures, for all δ > 0 satisfying t− δ ∈ I , the existence of ξ ∈ ]t− δ, t[ such that

ψ(t− δ) = ψ(t)− δψ′(t) +
δ2

2
ψ′′(ξ).

Therefore

ψ′(t) =
ψ(t)− ψ(t− δ)

δ
+
δ

2
ψ′′(ξ).

Finally for all δ > 0 such that t− δ ∈ I , by using (1.1) and (1.2), we obtain

ψ′
−(t ; δ) 6 ψ′(t) 6 ψ′

+(t ; δ) with







ψ′
−(t ; δ) =

ψ−(t)− ψ+(t− δ)
δ

+
δψ∗

−

2
,

ψ′
+(t ; δ) =

ψ+(t)− ψ−(t− δ)
δ

+
δψ∗

+

2
.

(1.3)

1.1.2 –– Let It = {δ > 0 | t− δ ∈ I}. Since inequalities from (1.3) are available for all δ ∈ It, we need
to choose the ones that are as close as possible. To do it, we introduce the associated diameter function

diamψ′
t : It → R, δ 7→ ψ′

+(t ; δ)− ψ′
−(t ; δ)

which measures according to δ the diameter of the interval [ψ′
−(t ; δ), ψ

′
+(t ; δ)] to which ψ′(t) belongs,

i.e. the distance between ψ′
−(t ; δ) the lower and ψ′

+(t ; δ) the upper bounds on ψ′(t) obtained in (1.3).
For all δ ∈ It, we clearly have

diamψ′
t(δ) =

[ψ+(t)− ψ−(t)] + [ψ+(t− δ)− ψ−(t− δ)]
δ

+
δ(ψ∗

+ − ψ∗
−)

2
. (1.4)

According to (1.1) and (1.2), differences ψ+(y) − ψ−(y), for all y ∈ I , and ψ∗
+ − ψ∗

− are positive.
Consequently diamψ′

t is a positive function and:

• If ψ+(y)− ψ−(y) = 0 for all y ∈ I , then diamψ′
t(δ) is minimal when δ is close to 0.

• If ψ∗
+ − ψ∗

− = 0, then diamψ′
t(δ) is minimal when δ is as huge as possible.

• In the other cases, we have diamψ′
t(δ)→ +∞ when δ → 0, but also when δ → +∞ if inf I = −∞,

hence the existence of a δ∗ ∈ It that minimises the diameter function diamψ′
t.

1.1.3 –– We now suppose that difference ψ∗
+ − ψ∗

− is positive, and that differences ψ+(y) − ψ−(y) are
positive and do not depend on y ∈ I . According to (1.4), for all δ ∈ It we have

diamψ′
t(δ) =

α

δ
+ βδ,

where α and β are two non-negative constants given by

α = 2[ψ+(t)− ψ−(t)] and β =
ψ∗
+ − ψ∗

−

2
.
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When the interval I (where ψ is defined) is sufficiently large, the minimizer of diamψ′
t corresponds to

the minimizer of the convex function

ε : R
∗
+ → R+, δ 7→

α

δ
+ βδ,

that has an unique global minimizer δ∗ on R
∗
+ satisfying

δ∗ =

√
α

β
and ε(δ∗) = 2

√

αβ.

δ

ε(δ)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.5

1

1.5

2

2.5

3 Cε

b

Figure 1 – Representative curve Cε of the function ε of proposition 1.1.3 when α = 0.2 and β = 1.25

1.2 Generic expressions of ψ′(t) when p = 3

1.2.1 –– From now on and until section 1.9, we will suppose that p = 3. According to (1.1) and (1.2), if
we want to bound ψ′(t), we can just use the various bounds on ψ and ψ′′′. In order to do this, we can
start from the Taylor expansions, available for all δ1 and δ2 in R

∗ such that t+ δ1 ∈ I and t+ δ2 ∈ I ,

ψ(t+ δ1) = ψ(t) + δ1ψ
′(t) +

δ21
2
ψ′′(t) +

δ31
6
ψ′′′(ξ1), (1.5)

ψ(t+ δ2) = ψ(t) + δ2ψ
′(t) +

δ22
2
ψ′′(t) +

δ32
6
ψ′′′(ξ2), (1.6)

where ξj is strictly between t and t+δj , for all j ∈ {1, 2}. For all α1, α2 ∈ R, by doingα1(1.5)+α2(1.6)
and by ordering α1δ1 + α2δ2 6= 0 and α1δ

2
1 + α2δ

2
2 = 0, it is possible to express ψ′(t) just by using

various evaluations of ψ and ψ′′′, but not of ψ′′, as follows:

ψ′(t) =
α1ψ(t+ δ1) + α2ψ(t+ δ2)− (α1 + α2)ψ(t)

α1δ1 + α2δ2
− α1δ

3
1ψ

′′′(ξ1)

6(α1δ1 + α2δ2)
− α2δ

3
2ψ

′′′(ξ2)

6(α1δ1 + α2δ2)
.

Observing that we can multiply α1 and α2 by a same non-null quantity without changing this expression
of ψ′(t), we can set α1 = δ22 , and so α2 = −δ21 (since α1δ

2
1 + α2δ

2
2 = 0). Moreover, to guarantee

0 6= α1δ1 + α2δ2 = δ1δ2(δ2 − δ1), we need to impose δ1 6= δ2. In the end, for all δ1, δ2 6= 0 such that
t+ δ1 ∈ I , t+ δ2 ∈ I and δ1 6= δ2, we have obtained

ψ′(t) =
δ22ψ(t+ δ1)− δ21ψ(t+ δ2)− (δ22 − δ21)ψ(t)

δ1δ2(δ2 − δ1)
+
δ1δ

2
2ψ

′′′(ξ2)

6(δ2 − δ1)
− δ2δ

2
1ψ

′′′(ξ1)

6(δ2 − δ1)
. (1.7)
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1.2.2 –– Centred formulas.

We suppose here that δ1 and δ2 have opposite signs. Then at the risk of exchanging the roles of δ1 and
δ2, we can suppose that δ1 > 0 and δ2 < 0. Thus by setting δ+ = δ1 > 0, δ− = −δ2 > 0, ξ+ = ξ1 and
ξ− = ξ2, formula (1.7) can be rewritten

ψ′(t) =
δ2−ψ(t+ δ+)− δ2+ψ(t− δ−) + (δ2+ − δ2−)ψ(t)

δ−δ+(δ+ + δ−)
− δ+δ

2
−ψ

′′′(ξ+)

6(δ− + δ+)
− δ−δ

2
+ψ

′′′(ξ−)

6(δ− + δ+)
. (1.8)

This exact expression of ψ′(t) is called a centred formula on ψ′(t). But even if this denomination could
be confusing, it does not mean that δ− = δ+.

1.2.3 –– Decentred formulas.

With notations from 1.2.1, we now suppose that δ1 and δ2 have the same sign, that means δ1 < 0 and
δ2 < 0, or δ1 > 0 and δ2 > 0. But since in practice ψ will be a function of a time variable, we will only
treat the case where δ1 < 0 and δ2 < 0, that permits to bound ψ′(t) just by using past data (useful to
perform real time analyses). Obviously the interesting reader will also be able to find analogous results
when δ1 > 0 and δ2 > 0.
Thus when δ1 < 0 and δ2 < 0 by setting δ′1 = −δ1 and δ′2 = −δ2, we note that we can work with positive
δj in formula (1.7) by replacing δj by −δj , for all j ∈ {1, 2}. Therefore and at the risk of exchanging
the roles of δ1 and δ2, for all δ1, δ2 > 0 such that t − δ1 ∈ I , t − δ2 ∈ I and δ1 < δ2, formula (1.7) is
equivalent to

ψ′(t) =
δ21ψ(t− δ2) + (δ22 − δ21)ψ(t) − δ22ψ(t− δ1)

δ1δ2(δ2 − δ1)
+
δ1δ

2
2ψ

′′′(ξ2)

6(δ2 − δ1)
− δ2δ

2
1ψ

′′′(ξ1)

6(δ2 − δ1)
. (1.9)

This exact expression of ψ′(t) is called a decentred formula on ψ′(t).

1.3 Centred bounds on ψ′(t) when p = 3

1.3.1 –– Let
Pt = {(δ−, δ+) ∈ R

∗
+ | t− δ− ∈ I, t+ δ+ ∈ I}.

For all (δ−, δ+) ∈ Pt, by setting







ψ′
−(t ; δ−, δ+) =

δ2−ψ−(t+ δ+) + (δ2+ − δ2−)ψ−σ(δ+−δ−)(t)− δ2+ψ+(t− δ−)
δ−δ+(δ− + δ+)

− δ−δ+ψ
∗
+

6
,

ψ′
+(t ; δ−, δ+) =

δ2−ψ+(t+ δ+) + (δ2+ − δ2−)ψσ(δ+−δ−)(t)− δ2+ψ−(t− δ−)
δ−δ+(δ− + δ+)

− δ−δ+ψ
∗
−

6
,

where the sign σ(δ+ − δ−) of δ+ − δ− also corresponds to the sign of δ2+ − δ2− = (δ+ − δ−)(δ+ + δ−).
Since δ− and δ+ are positive, (1.1), (1.2) and the centred formula (1.8) imply:

ψ′
−(t ; δ−, δ+) 6 ψ′(t) 6 ψ′

+(t ; δ−, δ+). (1.10)

ψ′
−(t ; δ−, δ+) and ψ′

+(t ; δ−, δ+) are respectively called lower and upper centred bounds on ψ′(t).

1.3.2 –– We now introduce the diameter function associated to bounds from (1.10) by setting

diamψ′
t : Pt → R, (δ−, δ+) 7→ ψ′

+(t ; δ−, δ+)− ψ′
−(t ; δ−, δ+).
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For all (δ−, δ+) ∈ Pt, we have:

diamψ′
t(δ−, δ+) =

δ2−[ψ+(t+ δ+)− ψ−(t+ δ+)] + δ2+[ψ+(t− δ−)− ψ−(t− δ−)]
δ−δ+(δ− + δ+)

+

∣
∣δ2+ − δ2−

∣
∣ [ψ+(t)− ψ−(t)]

δ−δ+(δ− + δ+)
+
δ−δ+(ψ

∗
+ − ψ∗

−)

6
.

According to (1.1) and (1.2), differences ψ+(y) − ψ(y), for all y ∈ I , and ψ∗
+ − ψ∗

− are non-negative.
Therefore diamψ′

t is also non-negative, and:

• If ψ+(y)− ψ(y) = 0 for all y ∈ I , then diamψ′
t(δ−, δ+) is minimal when (δ−, δ+) is close to (0, 0).

• If ψ∗
+ − ψ∗

− = 0, then diamψt(δ−, δ+) is minimal when δ− and δ+ are as huge as possible.

• In the other case, since diamψ′
t(δ−, δ+)→ +∞ when (δ−, δ+)→ (0, 0), but also when δ− → +∞ or

δ+ → +∞ if Pt (and thus I) is not bounded, we can conclude that there exists a couple (δ∗−, δ
∗
+) ∈ Pt

that minimizes the diameter function diamψ′
t.

1.3.3 –– Until the end of this section, we suppose that differenceψ∗
+−ψ∗

− is positive, and that differences
ψ+(y)− ψ−(y) are positive and do not depend on y ∈ I . Then for all (δ−, δ+) ∈ Pt,

diamψ′
t(δ−, δ+) =

α
(
δ2− + δ2+ +

∣
∣δ2+ − δ2−

∣
∣
)

δ−δ+(δ− + δ+)
+ βδ−δ+,

where α and β are two non-negative constants given by

α = ψ+(t)− ψ−(t) and β =
ψ∗
+ − ψ∗

−

6
.

1.3.4 –– Lemma. Under the assumptions done in 1.3.3, for all (δ−, δ+) ∈ Pt, we have

diamψ′
t(δ−, δ+) > diamψ′

t(δ, δ) with δ = min(δ−, δ+).

Proof.–– To start, we can note that for all δ > 0 such that t− δ ∈ I and t+ δ ∈ I ,

diamψ′
t(δ, δ) =

α

δ
+ βδ2.

Let (δ−, δ+) ∈ Pt such that δ− 6 δ+, and c = δ+ − δ−. Thus c > 0 and δ+ = δ− + c. Therefore

diamψ′
t(δ−, δ+) = diamψ′

t(δ−, δ− + c) =
α(2δ2− + 4δ−c+ 2c2)

δ−(2δ2− + 3δ−c+ c2)
+ β(δ2− + δ−c)

=
α

δ−
+ βδ2− +

α(δ−c+ c2)

δ(2δ2− + 3δ−c+ c2)
+ βδ−c

= diamψ′
t(δ−, δ−) +

α(δ−c+ c2)

δ(2δ2− + 3δ−c+ c2)
+ βδ−c.

And since c, δ−, α and β are non-negative, we obtain diamψ′
t(δ−, δ+) > diamψ′

t(δ−, δ−). Otherwise
since when δ− > δ+, we get diamψ′

t(δ−, δ+) > diamψ′
t(δ+, δ+) by the same way, the result follows.�

1.3.5 –– Let

It = {δ > 0 | t− δ ∈ I, t+ δ ∈ I} and Dt = {(δ, δ) | δ ∈ It}.
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Under the assumptions from 1.3.3, lemma 1.3.4 implies that the minimum of diamψ′
t is reached on Dt.

Therefore the research of a couple that minimizes the two-variables diameter function diamψ′
t on Pt

becomes a single-variable problem. In practice, we can explicitly determine a pair (δ∗, δ∗) ∈ Dt that
minimizes diamψ′

t on Pt knowing that the function

ε : R
∗
+ → R, δ 7→ α

δ
+ βδ2,

which satisfies diamψ′
t |Dt

= ε|It , is decreasing on ]0, δ∗] and increasing on [δ∗,+∞[, with

δ∗ =

(
α

2β

)1/3

and ε(δ∗) = 3
(α

2

)2/3

β1/3.

1.4 Decentred bounds on ψ′(t) when p = 3

1.4.1 –– Let
Pt = {(δ1, δ2) ∈ R

∗
+ | t− δ1 ∈ I, t− δ2 ∈ I, δ1 < δ2}.

For all (δ1, δ2) ∈ Pt, by setting






ψ′
−(t ; δ1, δ2) =

δ21ψ−(t− δ2) + (δ22 − δ21)ψ−(t)− δ22ψ+(t− δ1)
δ1δ2(δ2 − δ1)

+
δ1δ

2
2ψ

∗
−

6(δ2 − δ1)
− δ2δ

2
1ψ

∗
+

6(δ2 − δ1)
,

ψ′
+(t ; δ1, δ2) =

δ21ψ+(t− δ2) + (δ22 − δ21)ψ+(t)− δ22ψ−(t− δ1)
δ1δ2(δ2 − δ1)

+
δ1δ

2
2ψ

∗
+

6(δ2 − δ1)
− δ2δ

2
1ψ

∗
−

6(δ2 − δ1)
,

we deduce from (1.1), (1.2) and the decentred formula (1.9) that

ψ′
−(t ; δ1, δ2) 6 ψ′(t) 6 ψ′

+(t ; δ1, δ2). (1.11)

ψ′
−(t ; δ1, δ2) and ψ′

+(t ; δ1, δ2) are respectively called lower and upper decentred bounds on ψ′(t).

1.4.2 –– We now introduce the diameter function associated to bounds from (1.11)

diamψ′
t : Pt → R, (δ1, δ2) 7→ ψ′

+(t ; δ1, δ2)− ψ′
−(t ; δ1, δ2).

For all (δ1, δ2) ∈ Pt we have

diamψ′
t(δ1, δ2) =

δ21 [ψ+(t− δ2)− ψ−(t− δ2)] + δ22 [ψ+(t− δ1)− ψ−(t− δ1)]
δ1δ2(δ2 − δ1)

+
(δ22 − δ21)[ψ+(t)− ψ−(t)]

δ1δ2(δ2 − δ1)
+

(δ1δ
2
2 + δ2δ

2
1)(ψ

∗
+ − ψ∗

−)

6(δ2 − δ1)
.

Thanks to (1.1) and (1.2), differences ψ+(y) − ψ(y), for all y ∈ I , and ψ∗
+ − ψ∗

− are non-negative.
Therefore diamψ′

t is also non-negative, and:

• If ψ+(y)− ψ(y) = 0 for all y ∈ I , then diamψ′
t(δ1, δ2) is minimal when (δ1, δ2) is close to (0, 0).

• If ψ∗
+ − ψ∗

− = 0, then diamψt(δ1, δ2) is minimal when δ1 and δ2 are as huge as possible.

• In the other case, since diamψ′
t(δ1, δ2) → +∞ when (δ1, δ2) → (0, 0), but also when δ1 → +∞ if

Pt (and thus I) is not bounded, we can conclude that there exists a couple (δ∗1 , δ
∗
2) ∈ Pt that minimizes

the diameter function diamψ′
t.
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1.4.3 –– When difference ψ∗
+−ψ∗

− is positive, and differences ψ+(y)−ψ−(y) are positive and indepen-
dent of y ∈ I , then for all (δ1, δ2) ∈ Pt,

diamψ′
t(δ1, δ2) =

αδ2
δ1(δ2 − δ1)

+
β(δ1δ

2
2 + δ2δ

2
1)

δ2 − δ1
,

where α and β are two positive constants given by

α = 2[ψ+(t)− ψ−(t)] and β =
ψ∗
+ − ψ∗

−

6
.

Therefore to determine a global minimizer of diamψ′
t, it can be useful to consider the function

ε : U → R+, (δ1, δ2) 7→
αδ2

δ1(δ2 − δ1)
+
β(δ1δ

2
2 + δ2δ

2
1)

δ2 − δ1
,

where U is the set of couples (δ1, δ2) ∈ R
∗
+ × R

∗
+ such that δ1 < δ2. Since ε is positive and continue

on U with ε(δ1, δ2) → +∞ when δ2 → 0 or δ2 − δ1 → 0 or δ1 → +∞, this function has actually a
global minimizer. Unfortunately we have not found the exact expression of such a global minimizer. But
in practice, it will be sufficient to compute an approximation of it.

REMARK. Such a function ε seems graphically convex. Since each critical point of a convex function is
a global minimizer of it, the research of a global minimizer of ε could probably be limited to the research
of one of its critical point.

1.5 Generic expressions of ψ′′(t) when p = 3

1.5.1 –– To determine generic expressions of ψ′′(t), we will proceed as in section 1.2 by using linear
combinations of relations (1.5) and (1.6) to express ψ′′(t) by using various evaluations of ψ and ψ′′′,
but not of ψ′. So let δ1, δ2 as in 1.2.1. For all α1, α2 ∈ R, by ordering here α1δ

2
1 + α2δ

2
2 = 0 and

α1δ1 + α2δ2 6= 0, and by doing α1(1.5) + α2(1.6), we get

ψ′′(t) =
2[α1ψ(t+ δ1) + α2ψ(t+ δ2)− (α1 + α2)ψ(t)]

α1δ21 + α2δ22
− α1δ

3
1ψ

′′′(ξ1)

3(α1δ21 + α2δ22)
− α2δ

3
2ψ

′′′(ξ2)

3(α1δ21 + α2δ22)
.

Since we can multiply α1 and α2 by a same non-null quantity without changing this expression of ψ′′(t),
we can choose α1 = δ2 and so α2 = −δ1 (since α1δ1 + α2δ2 = 0). Moreover in order to guarantee
0 6= α1δ

2
1 + α2δ

2
2 = δ1δ2(δ1 − δ2), we need to impose δ1 6= δ2. In the end, for all δ1, δ2 > 0 such that

t− δ1 ∈ I , t− δ2 ∈ I and δ1 6= δ2, we get

ψ′′(t) =
2[δ1ψ(t+ δ2) + (δ2 − δ1)ψ(t)− δ2ψ(t+ δ1)]

δ1δ2(δ2 − δ1)
+
δ21ψ

′′′(ξ1)

3(δ2 − δ1)
− δ22ψ

′′′(ξ2)

3(δ2 − δ1)
. (1.12)

1.5.2 –– Centred formulas.

We suppose here that δ1 and δ2 have opposite signs. Then at the risk of exchanging the roles of δ1 and
δ2, we can assume that δ1 > 0 and δ2 < 0. Thus by setting δ+ = δ1 > 0, δ− = −δ2 > 0, and ξ+ = ξ1,
ξ− = ξ2, formula (1.12) can be rewritten

ψ′′(t) =
2[δ−ψ(t+ δ+) + δ+ψ(t− δ−)− (δ− + δ+)ψ(t)]

δ−δ+(δ− + δ+)
+
δ2−ψ

′′′(ξ−)

3(δ− + δ+)
− δ2+ψ

′′′(ξ−)

3(δ− + δ+)
. (1.13)

This expression of ψ′′(t) is called a centred formula on ψ′′(t), which still does not mean that δ− = δ+.
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1.5.3 –– Decentred formulas.

With notations from 1.5.1, we now suppose that δ1 and δ2 have the same sign. For the same reasons as
those from paragraph 1.2.3, we will only consider that the case δ1 < 0 and δ2 < 0.
Then by setting δ′1 = −δ1 and δ′2 = −δ2, we note that we can work with positive δj in formula (1.7) by
replacing δj by −δj , for all j ∈ {1, 2}. Therefore, and at the risk of exchanging the roles of δ1 and δ2,
for all δ1, δ2 > 0 such that t− δ1 ∈ I , t− δ2 ∈ I and δ1 < δ2, we obtain the following decentred formula
on ψ′′(t), which is just a reformulation of (1.12),

ψ′′(t) =
2[δ1ψ(t− δ2) + (δ2 − δ1)ψ(t) − δ2ψ(t− δ1)]

δ1δ2(δ2 − δ1)
+
δ22ψ

′′′(ξ2)

3(δ2 − δ1)
− δ21ψ

′′′(ξ1)

3(δ2 − δ1)
. (1.14)

1.6 Centred bounds on ψ′′(t) when p = 3

1.6.1 –– Let
Pt = {(δ−, δ+) ∈ R

∗
+ | t− δ− ∈ I, t+ δ+ ∈ I}.

For all (δ−, δ+) ∈ Pt, by setting


















ψ′′
−(t ; δ−, δ+) =

2[δ−ψ−(t+ δ+) + δ+ψ−(t− δ−)− (δ+ + δ−)ψ+(t)]

δ−δ+(δ− + δ+)
+

δ2−ψ
∗
−

3(δ− + δ+)
− δ2+ψ

∗
+

3(δ− + δ+)
,

ψ′′
+(t ; δ−, δ+) =

2[δ−ψ+(t+ δ+) + δ+ψ+(t− δ−)− (δ+ + δ−)ψ−(t)]

δ−δ+(δ− + δ+)
+

δ2−ψ
∗
+

3(δ− + δ+)
− δ2+ψ

∗
−

3(δ− + δ+)
,

we deduce from (1.1), (1.2) and the centred formula (1.13) that

ψ′′
−(t ; δ−, δ+) 6 ψ′′(t) 6 ψ′′

+(t ; δ−, δ+). (1.15)

ψ′′
−(t ; δ−, δ+) and ψ′′

+(t ; δ−, δ+) are respectively called lower and upper centred bounds on ψ′′(t).

1.6.2 –– We now introduce the diameter function associated to bounds from (1.15)

diamψ′′
t : Pt → R, (δ−, δ+) 7→ ψ′′

+(t ; δ−, δ+)− ψ′′
−(t ; δ−, δ+).

For all (δ−, δ+) ∈ Pt, we have

diamψ′′
t (δ−, δ+) =

2
(
δ−[ψ+(t+ δ+)− ψ−(t+ δ+)] + δ+[ψ+(t− δ−)− ψ−(t− δ−)]

)

δ−δ+(δ− + δ+)

+
2[ψ+(t)− ψ−(t)]

δ−δ+
+

(δ2− + δ2+)(ψ
∗
+ − ψ∗

−)

3(δ− + δ+)
.

By (1.1) and (1.2), differencesψ+(y)−ψ(y), for all y ∈ I , and ψ∗
+−ψ∗

− are non-negative. Consequently
diamψ′

t is also non-negative, and:

• If ψ+(y)− ψ(y) = 0 for all y ∈ I , then diamψ′′
t (δ−, δ+) is minimal when (δ−, δ+) is close to (0, 0).

• If ψ∗
+ − ψ∗

− = 0, then diamψ′′
t (δ−, δ+) is minimal when δ− and δ+ are as huge as possible.

• In the other cases, since diamψ′′
t (δ−, δ+)→ +∞ when (δ−, δ+)→ (0, 0), but also when δ− → +∞

or δ+ → +∞when Pt (and thus I) is not bounded, we can conclude that there exists a couple (δ∗−, δ
∗
+)

in Pt that minimizes the diameter function diamψ′′
t .
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1.6.3 –– Until the end of this section, we assume that difference ψ∗
+ − ψ∗

− is positive and that differences
ψ+(y)− ψ−(y) are positive and do not depend on y ∈ I . Then for all (δ−, δ+) ∈ Pt,

diamψ′′
t (δ−, δ+) =

α

δ−δ+
+
β(δ2− + δ2+)

(δ− + δ+)
,

where α and β are two non-negative constants given by

α = 4[ψ+(t)− ψ−(t)] and β =
ψ∗
+ − ψ∗

−

3
.

1.6.4 –– Lemma. Under the assumptions from 1.6.3:

(i) For all δ ∈ R
∗
+ such that t− δ ∈ I and t+ δ ∈ I , we have

diamψ′′
t (δ, δ) =

α

δ2
+ βδ.

(ii) For all (δ−, δ+) ∈ Pt such that t− δ− ∈ I and t+ δ+ ∈ I , we have

diamψ′′
t (δ−, δ+) > diamψ′′

t (δ, δ) with δ =
δ− + δ+

2
.

Proof.–– We immediately obtain (i) by doing easy calculations. Let us prove (ii). In order to do this, we
fix (δ−, δ+) ∈ Pt with t− δ− ∈ I and t+ δ+ ∈ I .

– Thanks to (i), we immediatly obtain diamψ′′
t

(
δ− + δ+

2
,
δ− + δ+

2

)

=
4α

(δ− + δ+)2
+
β(δ− + δ+)

2
.

– Using the inequality δ−δ+ 6

(
δ− + δ+

2

)2

=
(δ− + δ+)

2

4
, we get

1

δ−δ+
>

4

(δ− + δ+)2
.

– Finally we also have

(δ2− + δ2+)

(δ− + δ+)
=

2(δ2− + δ2+)

2(δ− + δ+)
=

(δ− + δ+)
2 + (δ− − δ+)2

2(δ− + δ+)
>

δ− + δ+
2

.

In the end since α and β are non-negative, we obtain

diamψ′′
t (δ−, δ+) =

α

δ−δ+
+
β(δ2− + δ2+)

(δ+ + δ−)

>
4α

(δ− + δ+)2
+
β(δ− + δ+)

2
= diamψ′′

t

(
δ− + δ+

2
,
δ− + δ+

2

)

,

which ends the proof of this lemma. �

1.6.5 –– Let

It = {δ > 0 | t− δ ∈ I, t+ δ ∈ I} and Dt = {(δ, δ) | δ ∈ It}.
Under the assumptions from 1.6.3, when the interval I (where function ψ is defined) is sufficiently large,
lemma 1.6.4 implies that diamψ′′

t reaches its minimum on Dt. In this case, to minimize diamψ′′
t , we

can use the fact that the function

ε : R
∗
+ → R+, δ 7→

α

δ2
+ βδ

as an unique global minimizer δ∗ which satisfies

δ∗ =

(
2α

β

)1/3

and ε(δ∗) = 3α1/3

(
β

2

)2/3

.
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1.7 Decentred bounds on ψ′′(t) when p = 3

1.7.1 –– Let
Pt = {(δ1, δ2) ∈ R

∗
+ | t− δ1 ∈ I, t− δ2 ∈ I, δ1 < δ2}.

For all (δ1, δ2) ∈ Pt, by setting


















ψ′′
−(t ; δ1, δ2) =

2[δ1ψ−(t− δ2) + (δ2 − δ1)ψ−(t)− δ2ψ+(t− δ1)]
δ1δ2(δ2 − δ1)

+
δ22ψ

∗
−

3(δ2 − δ1)
− δ21ψ

∗
+

3(δ2 − δ1)
,

ψ′′
+(t ; δ1, δ2) =

2[δ1ψ+(t− δ2) + (δ2 − δ1)ψ+(t)− δ2ψ−(t− δ1)]
δ1δ2(δ2 − δ1)

+
δ22ψ

∗
+

3(δ2 − δ1)
− δ21ψ

∗
−

3(δ2 − δ1)
,

we deduce from (1.1), (1.2) and the decentred formula (1.14) that

ψ′′
−(t ; δ1, δ2) 6 ψ′′(t) 6 ψ′′

+(t ; δ1, δ2). (1.16)

ψ′′
−(t ; δ−, δ+) and ψ′′

+(t ; δ−, δ+) are respectively called lower and upper decentred bounds on ψ′′(t).

1.7.2 –– We now introduce the diameter function associated to bounds from (1.16):

diamψ′′
t : Pt → R, (δ1, δ2) 7→ ψ′′

+(t ; δ1, δ2)− ψ′′
−(t ; δ1, δ2).

For all (δ1, δ2) ∈ Pt,

diamψ′′
t (δ1, δ2) =

2
(
δ1[ψ+(t− δ2)− ψ−(t− δ2)] + δ2[ψ+(t− δ1)− ψ−(t− δ1)]

)

δ1δ2(δ2 − δ1)

+
2[ψ+(t)− ψ−(t)]

δ1δ2
+

(δ21 + δ22)(ψ
∗
+ − ψ∗

−)

3(δ2 − δ1)
.

By (1.1) and (1.2), differencesψ+(y)−ψ(y), for all y ∈ I , and ψ∗
+−ψ∗

− are non-negative. Consequently
diamψ′

t is non-negative, and:

• If ψ+(y)− ψ(y) = 0 for all y ∈ I , then diamψ′′
t (δ1, δ2) is minimal when (δ1, δ2) is close to (0, 0).

• If ψ∗
+ − ψ∗

− = 0, then diamψ′′
t (δ1, δ2) is minimal when δ1 and δ2 are as huge as possible.

• In the other case, since diamψ′′
t (δ1, δ2) → +∞ when (δ1, δ2) → (0, 0), but also when δ1 → +∞ if

Pt (and thus I) is not bounded, we can conclude that there exists a couple (δ∗1 , δ
∗
2) ∈ Pt that minimizes

the diameter function diamψ′′
t .

1.7.3 –– When difference ψ∗
+ − ψ∗

− is positive, and when differences ψ+(y) − ψ−(y) are positive and
independent of y ∈ I , then for all (δ1, δ2) ∈ Pt,

diamψ′′
t (δ1, δ2) =

α

δ1(δ2 − δ1)
+
β(δ21 + δ22)

(δ2 − δ1)
,

where α and β are two positive constants given by

α = 4[ψ+(t)− ψ−(t)] and β =
ψ∗
+ − ψ∗

−

3
.

Therefore by setting U = {(δ1, δ2) ∈ R
∗
+×R

∗
+ | δ1 < δ2}, it can be useful to determine the minimizer(s)

of the function:

ε : U → R+, (δ1, δ2) 7→
α

δ1(δ2 − δ1)
+
β(δ21 + δ22)

(δ2 − δ1)
.

As for the decentred bounds on ψ′(t), we can prove that this function has a global minimizer even if we
have not found its exact expression, but it will be sufficient to compute an approximation of it in practice.
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1.8 Crossed bounds on ψ′(t) when p = 3

1.8.1 –– In this section, we suppose that we are able determine real numbers ψ′′
−(t) and ψ′′

+(t) such that

ψ′′
−(t) 6 ψ′′(t) 6 ψ′′

+(t). (1.17)

Let us precise that it is always possible, for instance by using the theories from sections 1.6 or 1.7. Then
the idea consists in using this information to determine other bounds on ψ′(t). Let

It = {δ > 0 | t− δ ∈ I}.

By the Taylor-Lagrange formula, we know that for all δ ∈ It, there exists ξ ∈ ]t− δ, t[ such that

ψ(t− δ) = ψ(t) + δψ′(t) +
δ2

2
ψ′′(t) +

δ3

6
ψ′′′(ξ), (1.18)

that can be rewritten

ψ′(t) =
ψ(t)− ψ(t− δ)

δ
+
δψ′′(t)

2
− δ2ψ′′′(ξ)

6
.

Therefore by setting







ψ′
−(t ; δ) =

ψ−(t)− ψ+(t− δ)
δ

+
δψ′′

−(t)

2
− δ2ψ∗

+

6
,

ψ′
+(t ; δ) =

ψ+(t)− ψ−(t− δ)
δ

+
δψ′′

+(t)

2
− δ2ψ∗

−

6
,

inequalities (1.1), (1.2) and (1.17) imply

ψ′
−(t ; δ) 6 ψ′(t) 6 ψ′

+(t ; δ). (1.19)

Quantities ψ′
−(t ; δ) and ψ′

+(t ; δ) are respectively called lower and upper crossed bounds on ψ′(t).

1.8.2 –– Let us introduce the diameter function associated to the crossed bounds (1.19):

diamψ′
t : It → R, δ 7→ ψ′

+(t ; δ)− ψ′
−(t ; δ).

For all δ ∈ It,

diamψ′
t(δ) =

[ψ+(t)− ψ−(t)] + [ψ+(t− δ)− ψ−(t− δ)]
δ

+
δ[ψ′′

+(t)− ψ′′
−(t)]

2
+
δ2(ψ∗

+ − ψ∗
−)

6
.

By (1.1), (1.2) and (1.17), differences ψ+(y) − ψ−(y), for all y ∈ I , ψ∗
+ − ψ∗

− and ψ′′
+(t) − ψ′′

−(t) are
non-negative. Thus diamψ′

t is also non-negative, and:

• If ψ+(y)− ψ−(y) = 0 for all y ∈ I , diamψ′
t(δ) is minimal when δ is close to 0.

• If ψ′′
+(t)− ψ′′

−(t) = ψ∗
+ − ψ∗

− = 0, then diamψ′
t(δ) is minimal when δ is as huge as possible.

• In the other cases, since diamψ′
t(δ)→ +∞ when δ → 0, but also when δ → +∞ if inf I = −∞, we

can conclude that there exists a δ∗ ∈ It that minimizes the diameter function diamψ′
t.
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1.8.3 –– We now assume that differences ψ+(y)− ψ−(y) are independent of y ∈ I . Then for all δ ∈ It

diamψ′
t(δ) =

α

δ
+ βδ + γδ2,

where α, β and γ are three non-negative constants given by

α = 2[ψ+(t)− ψ−(t)], β =
ψ′′
+(t)− ψ′′

−(t)

2
and γ =

ψ∗
+ − ψ∗

−

6
.

In paragraph 1.8.2 we have explained how to minimize diamψ′
t when α = 0 or when β = γ = 0. In the

other cases:

• When α > 0, β = 0 and γ > 0, we can refer to paragraph 1.3.5.

• When α > 0, β > 0 and γ = 0, we can refer to paragraph 1.1.3.

In the end, we just need to explain how to minimize diamψ′
t when α, β and γ are all three positive.

1.8.4 –– Lemma. Let λ, µ, ν > 0 and

u : R
∗
+ → R, δ 7→ λδ3 + µδ2 − ν.

There exists an unique δ∗ ∈ R+ such that u(δ∗) = 0, and u is negative on ]0, δ∗], positive on [δ∗,+∞[.

Proof.–– The function u is clearly differentiable and for all δ ∈ R
∗
+

u′(t) = 3λδ2 + 2µδ = 3λδ

(

δ +
2µ

3λ

)

.

Since λ and µ are positive, it implies u′(δ) > 0 for all δ ∈ R
∗
+. Therefore u is non-decreasing on R

∗
+,

and since u(0) = −µ < 0 by hypothesis, u(δ)→ +∞ when δ → +∞, we can easily conclude by using
the continuity of u. �

1.8.5 –– Taking the notations from 1.8.3 back, we suppose that α, β and γ are all three positive. Let

ε : R
∗
+ → R+, δ 7→

α

δ
+ βδ + γδ2.

Functions diamψ′
t and ε are obviously linked by the relation diamψ′

t = ε|It . Thus to determine the
minimizers of diamψ′

t, it could be useful to determine the ones of ε. For all δ ∈ R
∗
+,

ε′(δ) =
2γδ3 + βδ2 − α

δ2
.

Therefore lemma 1.8.4 applied with λ = 2γ, µ = β and ν = α implies that ε has an unique minimizer
δ∗ ∈ R

∗ satisfying
2γ(δ∗)3 + β(δ∗)2 − α = 0.

As a root of a real polynomial of the third degree, it is possible to determine the exact expression of δ∗,
but the corresponding formula is so complicated that we prefer to not explicit it. In practice, we suggest
the use of an algorithm (e.g. Newton’s method especially adapted to polynomial functions) to approach
the exact value of δ∗ the global minimizer of the function ε.
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1.9 Crossed bounds on ψ′′(t) when p = 3

1.9.1 –– In this section, we will lead an analogous analysis with ψ′′(t) as the one of section 1.8 with
ψ′(t). Thus we suppose here that we are able to determine quantities ψ′

−(t) and ψ′
+(t) such that

ψ′
−(t) 6 ψ′(t) 6 ψ′

+(t). (1.20)

Let us take back the notation of It from paragraph 1.8.1. According to relation (1.18), we have

ψ′′(t) =
2[ψ(t− δ)− ψ(t)]

δ2
+

2ψ′(t)

δ
+
δψ′′′(ξ)

3
.

Therefore by setting






ψ′′
−(t ; δ) =

2[ψ−(t− δ)− ψ+(t)]

δ2
+

2ψ′
−(t)

δ
+
δψ∗

−

3
,

ψ′′
+(t ; δ) =

2[ψ+(t− δ)− ψ−(t)]

δ2
+

2ψ′
+(t)

δ
+
δψ∗

+

3
,

inequalities (1.1), (1.2) and (1.20) imply

ψ′′
−(t ; δ) 6 ψ′′(t) 6 ψ′′

+(t ; δ). (1.21)

Quantities ψ′′
−(t ; δ) and ψ′′

+(t ; δ) are respectively called lower and upper crossed bounds on ψ′′(t).

1.9.2 –– Let us introduce the diameter function associated to the crossed bounds (1.21):

diamψ′′
t : It → R, δ 7→ ψ′′

+(t ; δ)− ψ′′
−(t ; δ).

For all δ ∈ It, we have

diamψ
′′
t (δ) =

2
[

[ψ+(t− δ)− ψ−(t− δ)] + [ψ+(t)− ψ−(t)]
]

δ2
+

2[ψ′
+(t)− ψ′

−(t)]

δ
+
δ(ψ∗

+ − ψ∗
−)

3
.

Thanks to (1.1), (1.2) and (1.20), differences ψ+(y)−ψ−(y), for all y ∈ I , ψ∗
+−ψ∗

− and ψ′
+(t)−ψ′

−(t)
are non-negative. Thus diamψ′′

t is also non-negative, and:

• If ψ+(y)− ψ−(y) = ψ′
+(t)− ψ′

−(t) = 0 for all y ∈ I , then diamψ′′
t (δ) is minimal when δ is close to

0.

• If ψ∗
+ − ψ∗

− = 0, then diamψ′′
t (δ) is minimal when δ is as huge as possible.

• In the other cases, since diamψ′′
t (δ)→ +∞ when δ → 0, but also when δ → +∞ if inf I = −∞, we

can conclude that there exists a δ∗ ∈ It that minimizes the diameter function diamψ′′
t .

1.9.3 –– We now assume that differences ψ+(y)− ψ−(y) are independent of y ∈ I . Then for all δ ∈ It

diamψ′′
t (δ) =

α

δ2
+
β

δ
+ γδ,

where α, β and γ are three non-negative constants given by

α = 4[ψ+(t)− ψ−(t)], β = 2[ψ′
+(t)− ψ′

−(t)] and γ =
ψ∗
+ − ψ∗

−

3
.

In paragraph 1.9.2 we have explained how to minimize diamψ′
t when α = β = 0, or when γ = 0. In the

other cases:
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• When α = 0, β > 0 and γ = 0, we can refer to proposition 1.1.3.

• When α > 0, β = 0 and γ > 0, we can refer to proposition 1.6.5.

In the end, we just need to explain how to minimize diamψ′
t when α, β and γ are all three positive.

1.9.4 –– Lemma. Let λ, µ, ν > 0 and

u : R
∗
+ → R, δ 7→ λδ3 − µδ − ν.

There exists an unique δ ∈ R
∗
+ such that u(δ∗) = 0, u is negative on ]0, δ∗[ and u is positive on ]δ∗,+∞[.

Proof.–– The function u is clearly differentiable and for all δ ∈ R
∗
+

u′(δ) = 3λδ2 − µ.

Since λ and µ are non-negative, setting down ρ =
√

µ/(3λ), we can observe that u is non-increasing
on ]0, ρ] and non-decreasing on [ρ,+∞[. Consequently, having u(0) = −ν < 0, u is negative on ]0, ρ].
Moreover, having u(δ) → +∞ when δ → +∞, we can easily conclude by using the continuity and the
monotony of u on [ρ,+∞[. �

1.9.5 –– Taking the notations from 1.9.3 back, we suppose that α, β and γ are all three positive. Let

ε : R
∗
+ → R, δ 7→ α

δ2
+
β

δ
+ γδ.

Functions diamψ′′
t and ε are obviously linked by the relation ε|It = diamψ′′

t . Thus to determine the
minimizers of diamψ′′

t , it could be useful to determine those of ε. For all δ ∈ R
∗
+

ε′(δ) =
γδ3 − βδ − 2α

δ3
.

Therefore lemma 1.9.4 applied with λ = γ, µ = β and ν = 2α implies that ε gets an unique minimizer
δ∗ ∈ R

∗ satisfying
γ(δ∗)3 − βδ∗ − 2α = 0.

As in 1.8.5, we can determine the exact expression of δ∗, but its expression is so complicated that we
suggest to approximate it by using a numerical algorithm (e.g. Newton’s method).

1.10 When ψ is just bounded in some discrete points

1.10.1 –– In this chapter, we have supposed being able to bound ψ at every point of I , which is a strong
hypothesis than those done in the introduction of this part I. Indeed in practice ψ will just be estimated in
t1, . . . , tN . Therefore when inequalities from (1.1) are available only for all y ∈ {t1, . . . , tN}, if we want
to bound a derivative of ψ in t = tj for such a j ∈ {1, . . . , N}, we must precise how to use the previous
models. Thus in this section we will assume that ψ is bounded in t1, . . . , tN and that t = tj for a such a
j ∈ {1, . . . , N}. In other words it means that ψ still satisfies (1.2) but that (1.1) is now restrained to

∀ i ∈ {1, . . . , N}, ψ−(ti) 6 ψ(ti) 6 ψ+(ti).

Then to bound ψ′ or ψ′′ as previously, we can only use:
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• bounds from (1.3), (1.19) and (1.21) by choosing δ = tj−tj−r, for all index r satisfying 1 6 j−r < j,
i.e. 1 6 r 6 j − 1 (in particular, we need to suppose j > 2 to do this),

• centred bounds from (1.10) and (1.15) by choosing δ− = tj − tj−r− and δ+ = tj+r+ − tj , for all
indexes r− and r+ satisfying 1 6 j−r− < j < j+r+ 6 N , i.e. 1 6 r− 6 j−1 and 1 6 r+ 6 N− j
(in particular, we need to suppose 2 6 j 6 N − 1 to do this),

• decentred bounds from (1.11) and (1.16) by choosing δ1 = tj − tj−r1 and δ2 = tj − tj−r2 , for all
indexes r1 and r2 satisfying 1 6 j − r2 < j − r1 < j, i.e. 1 6 r1 < r2 6 j − 1 (in particular, we need
to suppose j > 3 to do this).

With these notations, our goal consists in choosing as well as possible:

• index r ∈ {1, . . . , j − 1} with bounds from (1.3), (1.19) and (1.21),

• indexes r− ∈ {1, . . . , j − 1} and r+ ∈ {1, . . . , N − j} with centred bounds from (1.10) and (1.15),

• indexes r1 ∈ {1, . . . , j−2} and r2 ∈ {r1+1, . . . , j−1}with decentred bounds from (1.11) and (1.16),

to minimize the distance between the computed bounds on ψ′(tj) or ψ′′(tj).

1.10.2 –– Theoretically the previous indexes r, r− and r+, r1 and r2 are obtained by minimization of the
corresponding diameter function on a discrete subset. By example, when p = 2 with bounds from (1.3),
we have to minimize the diameter function diamψ′

tj from 1.1.2 on Itj ∩ {tj − tj−s | 1 6 s 6 j − 1}}.
And such a problem can be quite complicated and costly (in time) when j is high or when the value of
differences ψ+(ti)− ψ−(ti) depend on the index i ∈ {1, . . . , N}.
That is why in the rest of this section, we will suggest an alternative way to choose r, r− and r+, r1 and
r2 when there exists µ > 0 such that for all i ∈ {1, . . . , N}, differences ψ+(ti)−ψ−(ti) are equal or not
so far from µ. For the crossed bounds on ψ′(tj) (resp. ψ′′(tj)) from (1.19) (resp. (1.21)), it will also be
necessary to assume that for all i ∈ {1, . . . , N}, differences ψ′′

+(ti) − ψ′′
−(ti) (resp. ψ′

+(ti) − ψ′
−(ti))

are equal or sufficiently close to a same value µ′′ > 0 (resp. µ′ > 0).

1.10.3 –– How to choose r with bounds from (1.3), (1.19) and (1.21)?

We will explain it on the example of the bounds from (1.3), knowing that we can do the same by making
reference to section 1.8 with bounds from (1.19) and section 1.9 with bounds from (1.21). So let us take
the notations from section 1.1 back, and let us fix j ∈ {2, . . . , N}.

1) We first determine δ∗ the minimizer of function ε from proposition 1.1.3 taken with

α = 2µ and β =
ψ∗
+ − ψ∗

−

2
.

2) Since diamψ′
t = ε|It , then we should ideally take r ∈ {1, . . . , j − 1} such that tj − tj−r = δ∗. Un-

fortunately it will never exist such an index r in practice. But since for all i ∈ {1, . . . , N}, differences
ψ+(ti) − ψ−(ti) are equal or not so far from µ, the idea consists in choosing an index r such that
tj − tj−r is not so far from δ∗. Knowing that function ε is decreasing on ]0, δ∗] and increasing on
[δ∗,+∞[, we can proceed as follows:

• If tj − t1 6 δ∗, we choose r = j − 1.

• If tj − t1 > δ∗, we choose r the smallest index s ∈ {1, . . . , j − 1} such that tj − tj−s > δ∗.
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tjtj−r = t1

δ∗

Figure 2 – Choice of index r when tj − t1 6 δ∗

tjtj−rt1

δ∗

Figure 3 – Choice of index r when tj − t1 > δ∗

1.10.4 –– How to choose r− and r+ with centred bounds from (1.10) and (1.15)?

We will explain it on the example of centred bounds on ψ′(t) from (1.10), knowing that the same method
can be used with the centred bounds on ψ′′(t) from (1.15) by making reference to section 1.6. So let us
take notations from section 1.3 back. In this case, indexes r− ∈ {1, . . . , j− 1} and r+ ∈ {1, . . . , N − j}
are chosen independently and similarly as the index r from paragraph 1.10.3.

1) We first determine δ∗ the minimizer of function ε from proposition 1.3.5 taken with

α = µ and β =
ψ∗
+ − ψ∗

−

6
.

2) Then r− is selected as follows:

• If tj − t1 6 δ∗, we set r− = j − 1.

• If tj − t1 > δ∗, we choose r− the smallest index s ∈ {1, . . . , j − 1} such that tj − tj−s > δ∗.

For index r+:

• If tN − tj 6 δ∗, we set r− = N − j.
• If tN − tj > δ∗, we choose r− the smallest index s ∈ {1, . . . , N − j} such that tj+s − tj > δ∗.

t1 tj−r− tj tj+r+ tN

δ∗ δ∗

Figure 4 – Choice of indexes r− and r+ when tj − t1 > δ∗ and tN − tj > δ∗

1.10.5 –– How to choose r1 and r2 with decentred bounds from (1.11) and (1.16)?

As previously we will limit our explanations by focusing on the decentred bounds on ψ′(t) from (1.11),
knowing that we can do it similarly with the decentred bounds on ψ′′(t) from (1.16) by refering to
section 1.7.

1) We first determine (δ∗1 , δ
∗
2) (an approximation of) the minimizer of function ε from 1.4.3 taken with

α = 2µ and β =
ψ∗
+ − ψ∗

−

6
.

2) Here the choice of r2 depends on the choice of r1.
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• If tj − t2 6 δ∗1 , we set down r1 = j − 2 and r2 = j − 1.

• If tj−t2 > δ∗1 , then we first choose r1 the smallest index s ∈ {1, . . . , j−2} such that tj−tj−s > δ∗1 .
After that:

– If tj − t1 6 δ∗2 , we set r2 = j − 1.
– If tj− t1 > δ∗2 , we choose r2 the smallest index s ∈ {r1+1, . . . , j−1} such that tj− tj−s > δ∗2 .

t1 tj−r1tj−r2 tj

δ∗1

δ∗2

Figure 5 – Choice of indexes r1 and r2 when tj − t2 > δ∗1 and tj − t1 > δ∗2

1.10.6 –– REMARK. When we suppose that differences ψ+(ti) − ψ−(ti) are equal or sufficiently close
to a same value µ, computations of δ∗ (resp. δ∗, δ∗1 and δ∗2) in the first time from 1.10.3 (resp. 1.10.4,
1.10.5) can be done once and for all before the bounds computations. In particular, it means that for a use
in real time, it is sufficient to research the corresponding index r (resp. r− and r+, r1 and r2) and doing
the bounds computations mentioned in a second time.

1.10.7 –– A possible improvement.

The choice of the indexes r from 1.10.3, r− and r+ from 1.10.4, and r1 and r2 from 1.10.5 is quite
arbitrary. That’s why we suggest these possible improvements:

• For the index r, still on the example of bounds from (1.3), when tj−t1 > δ∗ and r 6= 1, we can perform
computations of bounds from (1.3) with δ = tj − tj−r and δ = tj − tj−r+1, and by choosing ψ′

−(t)
the lower bound and ψ′

+(t) the upper bound on ψ′(t) by applying the selection principle as follows:
{

ψ′
−(t) = max

{
ψ′
−(t ; tj − tj−r), ψ

′
−(t ; tj − tj−r+1)

}
,

ψ′
+(t) = min

{
ψ′
+(t ; tj − tj−r), ψ

′
+(t ; tj − tj−r+1)

}
.

(1.22)

• For r− and r+, still on the example of centred bounds from (1.10), when tj− t1 > δ∗1 and tN − tj > δ∗

with r− 6= 1 and r+ 6= 1, by setting

∆− = {tj − tj−r− , tj − tj−r−+1} and ∆+ = {tj+r+1 − tj , tj−r+ − tj},
we can compute bounds from (1.10) for all couples (δ−, δ+) in ∆− × ∆+. In the end, by using the
selection principle, we can select ψ′

−(t) the lower bound and ψ′
+(t) the upper bound on ψ′(t) given by:

{

ψ′
−(t) = max

{
ψ′
−(t ; δ−, δ+)

∣
∣ (δ−, δ+) ∈ ∆− ×∆+

}
,

ψ′
+(t) = min

{
ψ′
+(t ; δ−, δ+)

∣
∣ (δ−, δ+) ∈ ∆− ×∆+

}
.

(1.23)

• For r1 and r2, still on the example of decentred bounds from (1.11), when tN−t2 > δ∗1 and tN−t1 > δ∗2
with r1 6= 1 and r2 6= r1 + 1, by setting

∆1 = {tj − tj−r1 , tj − tj−r1+1} and ∆2 = {tj − tj−r2 , tj − tj−r2+1},
we can compute bounds from (1.11) for all couples (δ1, δ2) in ∆1 × ∆2. In the end by using the
selection principle, we can select ψ′

−(t) the lower bound and ψ′
+(t) upper bound on ψ′(t) given by:

{

ψ′
−(t) = max

{
ψ′
−(t ; δ1, δ2)

∣
∣ (δ1, δ2) ∈ ∆1 ×∆2

}
,

ψ′
+(t) = min

{
ψ′
+(t ; δ1, δ2)

∣
∣ (δ1, δ2) ∈ ∆1 ×∆2

}
.

(1.24)
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REMARK. In practice ψ will correspond to a time-variable function. Moreover, N will be a very large
integer (N larger than 103) and ti+1 − ti sufficiently small for all i ∈ {1, . . . , N − 1}. Therefore taking
the notations from 1.10.3 (resp. 1.10.4, 1.10.5) back, even if j is close to 1 (resp. 1 or N , 1), we will
have most of time tj − tj−r > δ∗ (resp. tj − tj−r− > δ∗ and tj+r+ − tj > δ∗, tj − tj−r1 > δ∗1 and
tj − tj−r2 > δ∗2) with r 6= 1 (resp. r− 6= 1 and r+ 6= 1, r1 6= 1 and r2 6= r1 +1). Thus it will be possible
to compute bounds on ψ′(t) as in (1.22) (resp. (1.23), (1.24)).

1.11 Some remarks about out models

1.11.1 –– We have proved that the functions ε associated to the various diameter functions reach their
global minimum. Even if we have not found or mentioned for all of them the exact expression of their
global minimizer, let us remind that it will be sufficient to approximate it in practice.

1.11.2 –– Now let us talk about the advantages and disadvantages of the centred and decentred bounds
presented in sections 1.3 and 1.4 for ψ′(t) and in sections 1.6 and 1.7 for ψ′′(t). To simplify our analysis,
we will suppose that differences ψ+(y) − ψ−(y) are independent of y ∈ I and we will only focus on
bounds on ψ′(t), knowing that similar phenomenons can be observed with ψ′′(t).
For various values of parameters ψ+(t)− ψ−(t) and ψ∗

+ − ψ∗
− the following table shows:

– the value of δ∗ the minimizer of function ε from proposition 1.3.5 (linked to the diameter function
associated to bounds from (1.10)) and its evaluation ε(δ∗),

– a pair (δ∗1 , δ
∗
2) that minimizes function ε from paragraph 1.4.3 (linked to the diameter function asso-

ciated to bounds from (1.11)) and its associated evaluation ε(δ∗1 , δ
∗
2), obtained by using a MATLAB

minimization algorithm.

Parameters Results with ε from 1.3.5 Results with ε from 1.4.3
ψ+(t)− ψ−(t) ψ∗

+ − ψ∗
− δ∗ ε(δ∗) δ∗1 δ∗2 ε(δ∗1 , δ

∗
2)

0.05 1 0.5313 0.1412 0.3760 1.7466 0.5084
0.05 2 0.4217 0.1778 0.2984 1.3863 0.6406
0.05 4 0.3347 0.2241 0.2368 1.1003 0.8071
0.1 1 0.6694 0.2241 0.4737 2.2006 0.8071
0.1 2 0.5313 0.2823 0.3760 1.7466 1.0169
0.1 4 0.4217 0.3557 0.2984 1.3863 1.2812
0.2 1 0.8434 0.3557 0.5968 2.7725 1.2812
0.2 2 0.6694 0.4481 0.4737 2.2006 1.6141
0.2 4 0.5313 0.5646 0.3760 1.7466 2.0337

Table 1 – Values of minimums and minimizers associated of functions ε from 1.3.5 and 1.4.3

We can observe that for a same choice of parameters, minimums of functions ε from 1.3.5 are about four
times smaller than those of functions ε from 1.4.3, that means that the centred bounds are much more
accurate than the decentred.
Nevertheless when ψ is a time-valued function with time expressed for instance in seconds, it means that
we must wait around δ∗ seconds to compute the more accurate centred bounds on ψ′(t). And since δ∗ is
quite high, the use of centred bounds to perform a real time analysis seems not reasonable.
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1.11.3 –– In this chapter, we have seen various methods that enable to bound a same kth derivative of a
function ψ : I → R in a point t. For each one of them, we have explained how to computeψ(k)

− (t) a lower

bound and ψ(k)
+ (t) an upper bound on ψ(k)(t) as close as possible, by minimizing the associated diameter

function. Even if for some of these methods, the global minimum of the diameter function will be lower
than for others methods, it does not mean that the more accurate lower or upper bounds on ψ(k)(t) will
be given by these first methods.
Consequently, it can be useful to compute bounds on ψ(k)(t) by using various techniques and by applying
the selection principle to select the best bounds among those.

Conclusion

According to the problem exposed in introduction of this part I, we are now able to bounds the derivatives
of the function f in times t1, . . . , tN by applying the previous models with ψ = f or ψ = f ′, and p = 2
or p = 3. Various examples of their use will be presented and analysed in detail in chapter 3. But before
that, we will expose in chapter 2 a way that enables to establish coherence between the various (available)
bounds on f , f ′ and f ′′.





Chapter 2

The forward-backward corrections

Introduction

By using the models from chapter 1 we are now able to bound the kth derivatives of the function f , for
all k ∈ {1, . . . , d − 1}. In this chapter, we will present how to establish coherence between the various
available bounds on f and its derivatives in t1, . . . , tN .
In order to do it, we fix t ∈ I and ϕ : I → R a(n unknown) function satisfying:

• For all k ∈ {0, . . . , p− 1}, we can determine (known) real numbers ϕ(k)
− (t) and ϕ(k)

+ (t) such that

ϕ
(k)
− (t) 6 ϕ(k)(t) 6 ϕ

(k)
+ (t). (2.1)

• There exists p ∈ N
∗ such that ϕ has a pth bounded derivative, i.e. there exists (known) real constants

ϕ∗
− and ϕ∗

+ ∈ R such that for all ξ ∈ I

ϕ∗
− 6 ϕ(p)(ξ) 6 ϕ∗

+. (2.2)

In sections 2.1 and 2.2, we will see how to bound ϕ at each point y ∈ I such that y > t and y < t
respectively just by using data from (2.1) and (2.2), and how these bounds can be used to correct other
bounds on ϕ in such a point y. From section 2.3, we will suppose the inequalities (2.1) satisfied for
all t ∈ {t1, . . . , tN}, and we will present in this same section two algorithms that perform the previous
corrections on bounds on ϕ in t1, . . . , tN . An analysis of these two algorithms will be led in section 2.4.
In section 2.5 we will present an multi-order algorithm that establishes coherence between all bounds
on ϕ and its derivatives in t1, . . . , tN . To terminate this chapter, we will illustrate in section 2.6 the
performances of the multi-order algorithm on a simple example.

2.1 Forward corrections

2.1.1 –– For all δ > 0 satisfying t + δ ∈ I , by Taylor-Lagrange formula there exists ξ ∈ ]t, t + δ[ such
that

ϕ(t+ δ) =

(
p−1
∑

k=0

δk

k!
ϕ(k)(t)

)

+
δp

p!
ϕ(p)(ξ).

49
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Therefore we deduce from (2.1) and (2.2):

τF
−(t+ δ) 6 ϕ(t+ δ) 6 τF

+(t+ δ) with







τF
−(t+ δ) =

(
p−1
∑

k=0

δk

k!
ϕ
(k)
− (t)

)

+
δp

p!
ϕ∗
−,

τF
+(t+ δ) =

(
p−1
∑

k=0

δk

k!
ϕ
(k)
+ (t)

)

+
δp

p!
ϕ∗
+.

(2.3)

To make it clear, these formulas applied to each value of p in {1, 2, 3} lead to

τF
±(t+ δ) = ϕ±(t) + δϕ∗

± when p = 1,

τF
±(t+ δ) = ϕ±(t) + δϕ′

±(t) +
δ2

2
ϕ∗
± when p = 2,

τF
±(t+ δ) = ϕ±(t) + δϕ′

±(t) +
δ2

2
ϕ′′
±(t) +

δ3

6
ϕ∗
± when p = 3.

It means that if we are able to bound the pth derivative of ϕ on overall I and its first (p− 1)th derivatives
just at one point t of I , then we can bound ϕ at each point of DF

t = I ∩ [t,+∞[. Nevertheless we can
easily observe that the difference ∆τF : δ 7→ τF

+(t+ δ)− τF
−(t+ δ) is increasing with respect to δ onDF

t ,
with ∆τF(δ)→ +∞ when δ → +∞ and sup I = +∞. Therefore the lower δ the higher the accuracy of
lower and upper bounds τF

±(t+ δ) of ϕ in t+ δ will be.

t

ϕ−(t)

ϕ+(t)

t+ δ

τF
−(t + δ)

τF
+(t+ δ)

Figure 6 – Example of bounds on ϕ on DF
t deduced from (2.3)

2.1.2 –– We now suppose that for a fixed δ > 0 such that t + δ ∈ I , we have determined real numbers
ϕ−(t+ δ) and ϕ+(t+ δ) such that

ϕ−(t+ δ) 6 ϕ(t+ δ) 6 ϕ+(t+ δ). (2.4)

Then by applying the selection principle with A = ϕ(t + δ), we can use (2.3) to adjust the bounds from
(2.4) as follows:

ϕ−(t+ δ) ← max
{
ϕ−(t+ δ), τF

−(t+ δ)
}

and ϕ+(t+ δ) ← min
{
ϕ+(t+ δ), τF

+(t+ δ)
}

.
(2.5)

These corrections are called forward corrections , hence the "F" on the bounds τF
±(t + δ). They are

illustrated by figure 7 by considering the same situation as in figure 6.
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t

ϕ−(t)

ϕ+(t)

t+ δ

τF
−(t+ δ)

τF
+(t + δ)

ϕ−(t + δ)

ϕ+(t + δ)

Figure 7 – Example of a forward correction (2.5) on an upper bound of ϕ in t+ δ

2.2 Backward corrections

2.2.1 –– The backward corrections principle is analogous to the forward corrections one, but we have to
deal with an additional difficulty due to signs considerations. Indeed for all δ > 0 such that t − δ ∈ I ,
Taylor-Lagrange formula insures the existence of ξ ∈ ]t− δ, t[ such that

ϕ(t− δ) =

(
p−1
∑

k=0

(−1)k δk
k!

ϕ(k)(t)

)

+
(−1)p δp

p!
ϕ(p)(ξ).

Therefore by (2.1) and (2.2) we obtain

τB
−(t− δ) 6 ϕ(t− δ) 6 τB

+(t− δ) (2.6)

with






τB
−(t− δ) =

(
p−1
∑

k=0

(−1)kδk
k!

ϕ
(k)
−σ〈k〉(t)

)

+
(−1)pδp

p!
ϕ ∗
−σ〈p〉,

τB
+(t− δ) =

(
p−1
∑

k=0

(−1)kδk
k!

ϕ
(k)
σ〈k〉(t)

)

+
(−1)pδp

p!
ϕ∗
σ〈p〉.

To clarify this, these formulas applied for each value of p in {1, 2, 3} give

τB
±(t− δ) = ϕ±(t)− δϕ∗

∓ when p = 1,

τB
±(t− δ) = ϕ±(t)− δϕ′

∓(t) +
δ2

2
ϕ∗
± when p = 2,

τB
±(t− δ) = ϕ±(t)− δϕ′

∓(t) +
δ2

2
ϕ′′
±(t)−

δ3

6
ϕ∗
∓ when p = 3.

Now we are also able to bound ϕ on DB
t = I ∩ ]−∞, t]. As in 2.1.1 we can observe that the lower δ the

higher the accuracy of bounds τB
±(t− δ) on ϕ(t− δ) will be.
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t− δ

ϕ−(t)

ϕ+(t)

t

τB
−(t + δ)

τB
+(t+ δ)

Figure 8 – Example of bounds on ϕ on DF
t deduced from (2.6)

2.2.2 –– We now suppose that for a fixed δ > 0 such that t− δ ∈ I , there exists real numbers ϕ−(t − δ)
and ϕ+(t− δ) such that

ϕ−(t− δ) 6 ϕ(t− δ) 6 ϕ+(t− δ). (2.7)

Then as in 2.1.2 we can use (2.6) to adjust the bounds from (2.7) by doing

ϕ−(t− δ) ← max
{
ϕ−(t− δ), τB

−(t− δ)
}

and ϕ+(t− δ) ← min
{
ϕ+(t− δ), τB

+(t− δ)
}

.
(2.8)

These corrections are called backward corrections , hence the "B" on the bounds τB
±(t − δ). They are

illustrated by the following figure:

t− δ

ϕ−(t)

ϕ+(t)

t

τB
−(t + δ)

τB
+(t+ δ)

ϕ−(t+ δ)

ϕ+(t + δ)

Figure 9 – Example of a backward correction (2.8) on a lower bound of ϕ in t− δ

2.3 The forward-backward and backward-forward algorithms

2.3.1 –– From now on, we will suppose the inequalities (2.1) satisfied for all t ∈ {t1, . . . , tN}:

∀ (i, k) ∈ {1, . . . , N} × {0, . . . , p− 1}, ϕ
(k)
− (ti) 6 ϕ(k)(ti) 6 ϕ

(k)
+ (ti). (2.9)
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In this section we present various algorithms that enable corrections on bounds on ϕ in t1, . . . , tN by
using the forward and backward corrections presented in the previous sections. In order to do it, for all
i ∈ {1, . . . , N}, we first store the lower and upper bounds on ϕ, . . . , ϕ(p−1) in ti in two vectors:

Φi
− =

(

ϕ
(k)
− (ti)

)

06k6p−1
and Φi

+ =
(

ϕ
(k)
+ (ti)

)

06k6p−1
.

Let us remark that by doing this, for all (i, k) ∈ {1, . . . , N} × {0, . . . , p− 1}, we have

ϕ
(k)
± (ti) = Φi

±(k + 1).

2.3.2 –– We first develop an algorithm that uses the forward corrections (2.5) to adapt the bounds on ϕ
in t1, . . . , tN . As explained in paragraph 2.1.1 the accuracy of bounds τF

±(t + δ) deduced from the
Taylor-Lagrange formula is higher when δ is close to 0. Thus for i going from 2 to N , it seems natural to
perform the forward corrections (2.5) with t = ti and δ = ti − ti−1. It leads to the forward algorithm :

Forward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

FOR ALL i from 2 to N :

Φi
−(1)← max

{

Φi
−(1),

(

p−1
∑

k=0

(ti − ti−1)
k

k!
Φi−1

− (k + 1)

)

+
(ti − ti−1)

p

p!
ϕ

∗
−

}

Φi
+(1)← min

{

Φi
+(1),

(

p−1
∑

k=0

(ti − ti−1)
k

k!
Φi−1

+ (k + 1)

)

+
(ti − ti−1)

p

p!
ϕ

∗
+

}

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.

To better understanding, the following figure illustrates the principle of this algorithm:

ϕ
t1 t2 t3 tN−1 tN

forward forward forward

Figure 10 – Illustration of the forward algorithm

By the same way, for i going fromN − 1 to 1, we can perform the backward corrections (2.8) with t = ti
and δ = ti+1 − ti to adapt the bounds on ϕ in t1, . . . , tN . It leads to the backward algorithm :

Backward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

FOR ALL i from N − 1 to 1:

Φi
−(1)← max

{

Φi
−(1),

(

p−1
∑

k=0

(ti+1 − ti)k
k!

Φi−1
−σ〈k〉(k + 1)

)

+
(ti+1 − ti)p

p!
ϕ

∗
−σ〈p〉

}

Φi
+(1)← min

{

Φi
+(1),

(

p−1
∑

k=0

(ti+1 − ti)k
k!

Φi−1
σ〈k〉(k + 1)

)

+
(ti+1 − ti)p

p!
ϕ

∗
σ〈p〉

}

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.
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ϕ
t1 t2 t3 tN−1 tN

backward backward backward

Figure 11 – Illustration of the Backward algorithm applied with ϕ in t1, . . . , tN

2.3.3 –– We can easily note that the forward (resp. backward) algorithm is idempotent, which means that
nothing happens if we reapply the forward (resp. backward) algorithm to the output of the first call of the
forward (resp. backward) algorithm. Consequently if we want to correct the bounds on ϕ in t1, . . . , tN
by using these algorithms, we suggest to successively apply the forward and backward algorithms until a
bound on ϕ in t1, t2, . . . , or tN is adjusted. That is what the forward-backward algorithm does:

Forward-backward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

v1− = 0, v1+ = 0, . . . , vN− = 0, vN+ = 0

WHILE there exists i ∈ {1, . . . , N} s.t. Φi
−(1) 6= vi− or Φi

+(1) 6= vi+:

FOR ALL i from 1 to N :
vi− = Φi

−(1), v
i
+ = Φi

+(1)
(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Forward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Backward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.

In the same way we can implement the backward-forward algorithm that has the same structure as the
forward-backward algorithm, but in which the backward algorithm is applied before the forward one:

Backward-forward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

v1− = 0, v1+ = 0, . . . , vN− = 0, vN+ = 0

WHILE there exists i ∈ {1, . . . , N} s.t. Φi
−(1) 6= vi− or Φi

+(1) 6= vi+:

FOR ALL i from 1 to N :
vi− = Φi

−(1), v
i
+ = Φi

+(1)
(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Backward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Forward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.

2.3.4 –– Considering these algorithms, it is legitimate to ask the following questions:

1) Do the forward-backward and backward-forward algorithm converge in a finite number of iterations?
And if so, can this number be estimated or determined?

2) Are there cases in which one of these algorithms gives a more accurate output than the other one?

The following section is intended to answer these two questions.
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2.4 Analysis of the forward-backward and backward-forward algorithms

2.4.1 –– Let us start with some basic observations and by introducing some specific notations.

• The forward and backward algorithms presented in 2.3.2 can only modify Φi
−(1) and Φi

+(1) the values
of the lower and upper bounds on ϕ in ti, for all i ∈ {1, . . . , N}. The other components of Φi

− and Φi
+

are associated to bounds on ϕ′, . . . , ϕ(p−1) and just required to adjust those on ϕ, which means that for
all k ∈ {1, . . . , p− 1} we will always have Φi

−(k + 1) = ϕ
(k)
− (ti) and Φi

+(k + 1) = ϕ
(k)
+ (ti).

• It is also useful to remind that the opposite of every lower (resp. upper) bound on ϕ is an upper (resp.
lower) bound on −ϕ. Therefore

Forward
(
p, t1, . . . , tN ,Φ

1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

= −Forward
(
p, t1, . . . , tN ,−Φ1

+,−Φ1
−, . . . ,−ΦN

+ ,−ΦN
− ,−ϕ∗

+,−ϕ∗
−

)
,

Backward
(
p, t1, . . . , tN ,Φ

1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

= −Backward
(
p, t1, . . . , tN ,−Φ1

+,−Φ1
−, . . . ,−ΦN

+ ,−ΦN
− ,−ϕ∗

+,−ϕ∗
−

)
,

and we can note that it is sufficient to study how the upper bounds on ϕ are modified by our algorithms.

• For all i ∈ {2, . . . , N} we will denote by δi the difference ti − ti−1.

• Finally for all i ∈ {1, . . . , N}, since it is sufficient to study how the upper bounds on ϕ are modified by
our algorithm, we will denote by ϕ0(ti) the initial value of Φi

+(1), the bound on ϕ in ti given by (2.9).
Then from paragraph 2.4.3, for all n ∈ N, we will denote by ϕF

n(ti) (resp. ϕB
n(ti)) the upper bound on

ϕ(ti) obtained after the nth forward (resp. backward) call in the forward-backward algorithm, and by
φB
n(ti) (resp. φF

n(ti)) the upper bound on ϕ(ti) obtained after the nth backward (resp. forward) call in
the backward-forward algorithm, with the convention ϕF

0(ti) = ϕB
0 (ti) = φF

0(ti) = φB
0 (ti) = ϕ0(ti).

Therefore when n > 1,

ϕF
n(t1) = ϕB

n−1(t1) , φF
n(t1) = φB

n(t1) , ϕB
n(tN ) = ϕF

n(tN ) , φB
n(tN ) = φF

n−1(tN) ,

if i > 2,

ϕF
n(ti) = min

{

ϕB
n−1(ti) , ϕ

F
n(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti−1)

)

+
δpi
p!
ϕ∗
+

}

,

φF
n(ti) = min

{

φB
n(ti) , φ

F
n(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti−1)

)

+
δpi
p!
ϕ∗
+

}

,

and if i 6 N − 1,

ϕB
n(ti) = min

{

ϕF
n(ti) , ϕ

B
n(ti+1) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti+1)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉

}

,

φB
n(ti) = min

{

φF
n−1(ti) , φ

B
n(ti+1) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti+1)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉

}

.

In particular, we obviously have

ϕ0(ti) > ϕF
1(ti) > ϕB

1 (ti) > ϕF
2(ti) > ϕB

2 (ti) > · · · > ϕ(ti),

ϕ0(ti) > φB
1 (ti) > φF

1(ti) > φB
2 (ti) > φF

2(ti) > · · · > ϕ(ti).



56 2. THE FORWARD-BACKWARD CORRECTIONS

2.4.2 –– It is reasonable to believe that the forward-backward and backward-forward algorithms have a
relatively similar behaviour. An argument which supports this conjecture is that applying the forward
(resp. backward) algorithm (to any input data) is like applying the backward (resp. forward) algorithm
(to other input data). To clarify and demonstrate it, we introduce the function

ψ : −I → R, t 7→ ϕ(−t)

that morally reverses the time when ϕ is a time-variable function. Clearly, ψ has the same regularity that
ϕ and satisfies, for all t ∈ I and k ∈ {0, . . . , p},

ψ(k)(−t) = (−1)kϕ(t).

Therefore for all (i, k) ∈ {1, . . . , N} × {0, . . . , p− 1}, we have

ψ
(k)
− (−ti) 6 ψ(k)(−ti) 6 ψ

(k)
+ (−ti) with







ψ
(k)
− (−ti) = (−1)kϕ(k)

−σ〈k〉(ti),

ψ
(k)
+ (−ti) = (−1)kϕ(k)

σ〈k〉(ti),
(2.10)

and for all ξ ∈ I , we have

ψ∗
− 6 ψ(p)(−ξ) 6 ψ∗

+ with

{

ψ∗
− = (−1)kϕ∗

−σ〈k〉,
ψ∗
+ = (−1)kϕ∗

σ〈k〉.
(2.11)

For all i ∈ {1, . . . , N}, let us now introduce:

Ψi
− =

(

ψ
(k)
− (−ti)

)

06k6p−1
and Ψi

+ =
(

ψ
(k)
+ (−ti)

)

06k6p−1
.

For the needs of this paragraph, we will denote here by:

– ϕF
−(ti) (resp. ϕF

+(ti)) the value of Φi
−(1) (resp. Φi

+(1)), the lower (resp. upper) bound on ϕ(ti) after
the call of the forward algorithm with p, t1, . . . , tN , Φ1

−, Φ1
+, . . . , ΦN

− , ΦN
+ in input,

– ψB
−(ti) (resp. ψB

+(ti)) the value of Ψi
−(1) (resp. Ψi

+(1)), the lower (resp. upper) bound on ψ(−ti)
after the call of the backward algorithm with p, −tN , . . . , −t1, ΨN

− , ΨN
+ , . . . , Ψ1

−, Ψ1
+ in input,

– ϕ0
+(ti) (resp. ψ0

+(−ti)) the value of Φi
+(1) (resp. Ψi

+(1)) before the application of the forward (resp.
backward) algorithm with the input data mentioned below.

Let us prove that ψB
+(−ti) = ϕF

+(ti) for all i ∈ {1, . . . , N}.

• By the structure of the forward and backward algorithms we have respectively ϕF
+(t1) = ϕ0

+(t1) and
ψB
+(−t1) = ψ0

+(−t1), hence ϕF(t1) = ψB(−t1) since ψ0
+(−t1) = ϕ0

+(t1) according to (2.10).

• If i ∈ {1, . . . , N − 1} satisfies ϕF(ti−1) = ψB(−ti−1), since the inequalities (2.10) and (2.11) imply

ϕ0(ti) = ψ0(−ti), ϕ(k)
+ (ti−1) = (−1)kψ(k)

σ〈k〉(ti−1) for all k ∈ {1, . . . , p}, and ϕ∗
+ = (−1)pψ∗

σ〈p〉,
then we get

ϕF
+(ti) = min

{

ϕ0
+(ti), ϕ

F
+(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti−1)

)

+
δpi
p!
ϕ∗
+

}

= min

{

ψ0
+(−ti), ψF

+(−ti−1) +

(
p−1
∑

k=1

(−1)kδki
k!

ψ
(k)
σ〈k〉(ti−1)

)

+
δpi
p!
ψ∗
σ〈k〉

}

= ψB
+(−ti) .
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Thus we have proved by induction that ψB
+(−ti) = ϕF

+(ti) for all i ∈ {1, . . . , N}. According to 2.4.1
it implies that ψB

−(−ti) = ϕF
−(ti) for all i ∈ {1, . . . , N}. And since an observation done in this same

paragraph insures that the other components of vectors Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ (resp. Ψ1
−, Ψ1

+, . . . , ΨN
− ,

ΨN
+ ) are unmodified by the forward (resp. backward) algorithm, we have obtained the point (i) of the

following proposition, its point (ii) being obtained by a similar way.

Proposition. For all i ∈ {1, . . . , N} let Ψi
− and Ψi

+ be given as previously.

(i) The modifications made by the forward algorithm that takes p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+

in input can be obtained by an application of the backward algorithm with p, −tN , . . . , −t1, ΨN
− ,

ΨN
+ , . . . , Ψ1

−, Ψ1
+ in input.

(ii) The modifications made by the backward algorithm that takes p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+

in input can be obtained by an application of the forward algorithm with p, −tN , . . . , −t1, ΨN
− ,

ΨN
+ , . . . , Ψ1

−, Ψ1
+ in input.

In a nutshell, for all U =
(
U i
−, U

i
+

)

16i6N
in (Rp × R

p)N , by setting UR =
(
UN−i
− , UN−i

+

)

16i6N
, the

previous assertions can be summarized as follows:

Forward
(
p, t1, . . . , tN ,Φ

1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

=
[
Backward

(
p,−tN , . . . ,−t1,ΨN

− ,Ψ
N
+ , . . . ,Ψ

1
−,Ψ

1
+, ψ

∗
−, ψ

∗
+

)]R
,

Backward
(
p, t1, . . . , tN ,Φ

1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

=
[
Forward

(
p,−tN , . . . ,−t1,ΨN

− ,Ψ
N
+ , . . . ,Ψ

1
−,Ψ

1
+, ψ

∗
−, ψ

∗
+

)]R
.

2.4.3 –– The answers to the questions asked in paragraph 2.3.4 will be based on the following result:

Lemma. For all i ∈ {2, . . . , N} the quantity

Ci =

[
p−1
∑

k=1

δki
k!

(

ϕ
(k)
+ (ti−1) + (−1)kϕ(k)

σ〈k〉(ti)
)
]

+
δpi
p!

(

ϕ∗
+ + (−1)pϕ∗

σ〈p〉

)

is non-negative.

Proof.–– Let us suppose that there exists i ∈ {2, . . . , N} such that Ci < 0, and let us fix n ∈ N
∗. As

reminded in 2.4.1, we have ϕF
n+1(ti−1) 6 ϕB

n(ti−1), and so

ϕF
n+1(ti) 6 ϕF

n+1(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti−1)

)

+
δpi
p!
ϕ∗
+

6 ϕB
n(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti−1)

)

+
δpi
p!
ϕ∗
+. (2.12)

By the same way, ϕB
n(ti) 6 ϕF

n(ti), and so

ϕB
n(ti−1) 6 ϕB

n(ti) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉

6 ϕF
n(ti) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉. (2.13)
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Thanks to (2.12) and (2.13), we obtain ϕF
n+1(ti) 6 ϕF

n(ti) + Ci, which implies that for all n ∈ N
∗,

ϕ(ti) 6 ϕF
n+1(ti) 6 ϕF

1(ti) + nCi. (2.14)

But since Ci is negative, we haveϕF
1(ti)+nCi → −∞when n→ +∞, hence a contradiction! Therefore

Ci is necessarily non-negative for all i ∈ {2, . . . , N}. �

REMARK. It is important to give a graphical interpretation of the previous lemma. For this purpose, let
us fix i ∈ {2, . . . , N} and let us introduce the functions

τF
i−1 : R× R→ R, (δ, y) 7→ y +

(
p−1
∑

k=1

δk

k!
ϕ
(k)
+ (ti−1)

)

+
δp

p!
ϕ∗
+,

τB
i : R× R→ R, (δ, y) 7→ y +

(
p−1
∑

k=1

(−1)kδk
k!

ϕ
(k)
σ〈k〉(ti)

)

+
(−1)pδp

p!
ϕ∗
σ〈p〉.

From an algebraic point of view, for all y ∈ R, we can easily show that

Ci = τB
i

(
δi, τ

F
i−1(δi, y)

)
− y.

Therefore from a graphical point of view, the sign ofCi determines the relative position between CF
i−1(y),

the graph of τF
i−1( · , y), and CB

i (z), the graph of τB
i ( · , z) where z = τF

i−1(δi, y).

b

b

b

Ci

y

z = τB
i (δi, y)

τ F
i−1(δi, z)

CB
i (z)CF

i−1(y)

ti−1 ti

Figure 12 – Graphical representation of the quantity Ci

And since for all n ∈ N
∗, we have

ϕF
n+1(ti) = min

{
ϕB
n(ti) , τ

F
i−1

(
δi, ϕ

F
n+1(ti−1)

)}
,

ϕB
n(ti−1) = min

{
ϕF
n(ti−1) , τ

B
i

(
δi, ϕ

B
n(ti)

)}
,

with

ϕF
n+1(ti−1) 6 ϕB

n(ti−1) and ϕB
n(ti) 6 ϕB

n(ti) ,

we can note that quantity Ci must be non-negative, otherwise a graphical analyse would lead step by step
to the inequality (2.14) obtained in the proof of the lemma. Figure 13 illustrates this phenomenon.
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b

b

b

b

b

b

b

b

b

b

ϕF
1(ti)

ti−1 ti

ϕB
1(ti)

ϕB
1(ti−1) Ci

ϕF
2(ti)

ϕF
2(ti−1)

ϕB
2(ti)

ϕB
2(ti−1) Ci

ϕB
3(ti)
...

Figure 13 – Graphical illustration of the contradiction obtained in the proof of the lemma when Ci < 0

2.4.4 –– Theorem. For all i ∈ {1, . . . , N} we have:

(i) ϕB
2 (ti) = ϕF

2(ti) = ϕB
1 (ti),

(ii) φF
2(ti) = φB

2 (ti) = φF
1(ti).

Proof.–– According to the proposition 2.4.2, it is sufficient to establish the point (i).

1) We start by proving that for all i ∈ {1, . . . , N},

ϕF
2(ti) = ϕB

1 (ti) . (2.15)

By contradiction, let us suppose that there exists i ∈ {1, . . . , N} such that ϕF
2(ti) < ϕB

1 (ti), and let
us define:

j = min
{
i ∈ {1, . . . , N}

∣
∣ ϕF

2(ti) < ϕB
1 (ti)

}
.

According to the structure of the forward algorithm, we have j > 2, and by definition of j, we have
ϕF
2(tj−1) = ϕB

1 (tj−1) and ϕF
2(tj) < ϕB

1 (tj). Thus

ϕF
2(tj) = ϕF

2(tj−1) +

(
p−1
∑

k=1

δkj
k!
ϕ
(k)
+ (tj−1)

)

+
δpj
p!
ϕ∗
+

= ϕB
1 (tj−1) +

(
p−1
∑

k=1

δkj
k!
ϕ
(k)
+ (tj−1)

)

+
δpj
p!
ϕ∗
+. (2.16)

In particular if ϕB
1 (tj−1) = ϕF

1(tj−1), then

ϕF
1(tj) 6 ϕF

1(tj−1) +

(
p−1
∑

k=1

δkj
k!
ϕ
(k)
+ (tj−1)

)

+
δpj
p!
ϕ∗
+ = ϕF

2(tj) ,
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and we end up with ϕF
2(tj) < ϕB

1 (tj) 6 ϕF
1(tj) 6 ϕF

2(tj), which is obviously impossible. Therefore
ϕB
1 (tj−1) < ϕF

1(tj−1), and

ϕB
1 (tj−1) = ϕB

1 (tj) +

(
p−1
∑

k=1

(−1)kδkj
k!

ϕ
(k)
σ〈k〉(tj−1)

)

+
δpj
p!
ϕ∗
σ〈p〉. (2.17)

With the notations from the lemma 2.4.3, the relations (2.16) and (2.17) finally imply

Cj = ϕF
2(tj)− ϕB

1 (tj) < 0,

which is in contradiction with this same lemma. Consequently we have proved that the equality (2.15)
is available for all i ∈ {1, . . . , N}.

2) Now let us prove that for all i ∈ {1, . . . , N},

ϕB
2 (ti) = ϕF

2(ti) . (2.18)

By the structure of the backward algorithm we have ϕB
2 (tN ) = ϕF

2(tN ). Now let i ∈ {2, . . . , N}
satisfying (2.18), that implies ϕB

2 (ti) = ϕB
1 (ti) according to (2.15). Then

ϕB
2 (ti−1) = min

{

ϕF
2(ti−1) , ϕ

B
1 (ti) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉

}

.

Since (2.15) also implies ϕF
2(ti−1) = ϕB

1 (ti−1), we finally obtain:

ϕF
2(ti−1) = ϕB

1 (ti−1) 6 ϕB
1 (ti) +

(
p−1
∑

k=1

(−1)kδki
k!

ϕ
(k)
σ〈k〉(ti)

)

+
(−1)pδpi

p!
ϕ∗
σ〈p〉,

which shows that we also have ϕB
2 (ti−1) = ϕF

2(ti−1). In the end we have proved by induction the
availability of equality (2.18) for all i ∈ {1, . . . , N}. �

REMARK. Let us signal that the result established in the step 2) of this proof can be immediately obtained
by using the one from step 1), since by starting from the output of the first forward call and by applying
the forward-backward algorithm on ψ : t 7→ ϕ(−t), proposition 2.4.2 states that the second forward on
ψ corresponds to the second backward on ϕ.

2.4.5 –– According to the theorem 2.4.4, we are now able to answer the question 1) from 2.3.4: the
forward-backward and backward-forward algorithms precisely converge in one iteration. In other words,
it means that these algorithms can be rewritten:

Forward-backward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Forward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Backward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.
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Backward-forward

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Backward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

(

Φ1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+

)

← Forward
(

p, t1, . . . , tN ,Φ
1
−,Φ

1
+, . . . ,Φ

N
− ,Φ

N
+ , ϕ

∗
−, ϕ

∗
+

)

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.

2.4.6 –– Let us now focus on the question 2) from 2.3.4. To answer it, we need to prove some other
preliminary results. Here is the first one:

Proposition. For all i ∈ {1, . . . , N} we have φF
1(ti) 6 ϕF

1(ti) and ϕB
1 (ti) 6 φF

1(ti).

Proof.–– Thanks to the proposition 2.4.2 it is sufficient to prove that φF
1(ti) 6 ϕF

1(ti) for all i ∈ {1, . . . , N}.

• Giving the structure of the forward-backward algorithm we have φF
1(t1) 6 ϕ0(t1) = ϕF

1(t1).

• Let i ∈ {2, . . . , N} such that φF
1(ti−1) 6 ϕF

1(ti−1). As a reminder,

ϕF
1(ti) = min

{

ϕ0(ti), ϕ
F
1(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti)

)

+
δpi
p!
ϕ∗
+

}

.

If ϕF
1(ti) = ϕ0(ti), then we immediately have φF

1(ti) 6 ϕ0(ti) = ϕF
1(ti). So let us suppose that

ϕF
1(ti) = ϕF

1(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti)

)

+
δpi
p!
ϕ∗
+.

In this case, our initial hypothesis φF
1(ti−1) 6 ϕF

1(ti−1) implies

ϕF
1(ti) > φF

1(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti)

)

+
δpi
p!
ϕ∗
+

> min

{

φB
1 (ti) , φ

F
1(ti−1) +

(
p−1
∑

k=1

δki
k!
ϕ
(k)
+ (ti)

)

+
δpi
p!
ϕ∗
+

}

= φF
1(ti) .

To sum up, we have proved the expected result by induction. �

2.4.7 –– Lemma. For all index j ∈ {2, . . . , N} such that ϕB
1 (tj−1) < ϕF

1(tj−1) and ϕB
1 (tj) = ϕF

1(tj),
we have ϕF

1(tj) = ϕ0(tj).

Proof.–– Let j be an index from {2, . . . , N} such that ϕB
1 (tj−1) < ϕF

1(tj−1) and ϕB
1 (tj) = ϕF

1(tj). Thus

ϕB
1 (tj−1) = ϕB

1 (tj) +

(
p−1
∑

k=1

(−1)kδkj
k!

ϕ
(k)
σ〈k〉(tj)

)

+
δpj
p!
ϕ∗
σ〈p〉

= ϕF
1(tj) +

(
p−1
∑

k=1

(−1)kδkj
k!

ϕ
(k)
σ〈k〉(tj)

)

+
δpj
p!
ϕ∗
σ〈p〉.
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Let us suppose that ϕF
1(tj) < ϕ0(tj). Then

ϕF
1(tj) = ϕF

1(tj−1) +

(
p−1
∑

k=1

δkj
k!
ϕ
(k)
+ (tj)

)

+
δpj
p!
ϕ∗
+.

Finally, with the notation from the lemma 2.4.3, we obtain

Cj = ϕB
1 (tj)− ϕF

1(tj) < 0,

which is in contradiction with this same result. Therefore ϕF
1(tj) = ϕ0(tj). �

2.4.8 –– Proposition. Let i ∈ {1, . . . , N − 1}.
(i) For all j ∈ {i+ 1, . . . , N}, we have

ϕB
1 (ti) 6 ϕB

1 (tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

, (2.19)

φB
1 (ti) 6 φB

1 (tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

. (2.20)

(ii) We assume that ϕB
1 (ti) < ϕF

1(ti). Let Γi be the set of indexes l ∈ {i + 1, . . . , N} such that
ϕB
1 (tl) = ϕF

1(tl). Then Γi 6= ∅, and for j = minΓi, we have

ϕB
1 (ti) = ϕ0(tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

. (2.21)

Proof.–– (i) We will only prove the availability of (2.19), (2.20) being obtained similarly. We proceed
by induction on j ∈ {i+1, . . . , N}, case j = i+1 being obviously true by the definition of ϕB

1 (ti).
So let j ∈ {i+ 1, . . . , N − 1} be an index such that

ϕB
1 (ti) 6 ϕB

1 (tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

.

Then by the definition of ϕB
1 (tj), we have

ϕB
1 (tj) 6 ϕB

1 (tj+1) +

(
p−1
∑

k=1

(−1)kδkj+1

k!
ϕ
(k)
σ〈k〉(tj+1)

)

+
(−1)pδpj+1

p!
ϕ∗
σ〈p〉,

which immediately implies

ϕB
1 (ti) 6 ϕB

1 (tj+1) +

j+1
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

.

(ii) By the structure of the backward algorithm, we have N ∈ Γi. Therefore Γi 6= ∅, and j = minΓi

is well-defined. By the definition of j, we have ϕB
1 (tl) < ϕF

1(tl) for all l ∈ {i, . . . , j − 1}, hence

ϕB
1 (tl) = ϕB

1 (tl+1) +

(
p−1
∑

k=1

(−1)kδkl+1

k!
ϕ
(k)
σ〈k〉(tl+1)

)

+
(−1)pδpl+1

p!
ϕ∗
σ〈p〉.
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Thus

ϕB
1 (ti) = ϕB

1 (tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

. (2.22)

And since we also have ϕB
1 (tj−1) < ϕF

1(tj−1) and ϕB
1 (tj) = ϕF

1(tj), then the lemma 2.4.7 implies
that ϕF

1(tj) = ϕ0(tj). Consequently, we have ϕB
1 (tj) = ϕ0(tj), and so the equality (2.21) can be

deduced from (2.22). �

2.4.9 –– Theorem. For all i ∈ {1, . . . , N}, we have ϕB
1 (ti) = φF

1(ti).

Proof.–– Let i ∈ {1, . . . , N}.
• Let us suppose that ϕB

1 (ti) < ϕF
1(ti). Regarding the structure of the backward algorithm, it necessarily

implies i ∈ {1, . . . , N − 1}, and so we can introduce j as at the point (ii) of the proposition 2.4.8,
which satisfies

ϕB
1 (ti) = ϕ0(tj) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

.

Now since φB
1 (tj) 6 ϕ0(tj), the point (i) of the proposition 2.4.8 implies

φB
1 (ti) 6 ϕ0(ti) +

j
∑

l=i+1

[(
p−1
∑

k=1

(−1)kδkl
k!

ϕ
(k)
σ〈k〉(tl)

)

+
(−1)pδpl

p!
ϕ∗
σ〈p〉

]

= ϕB
1 (ti) .

By the proposition 2.4.6, since we also have ϕB
1 (ti) 6 φB

1 (ti), we can conclude that ϕB
1 (ti) = φF

1(ti).

• If φF
1(ti) 6 φB

1 (ti), then by the proposition 2.4.2, we can go back to the previous case in order to
conclude that ϕB

1 (ti) = φF
1(ti).

• Let us finally suppose that ϕB
1 (ti) = ϕF

1(ti) and φF
1(ti) = φB

1 (ti). Then proposition 2.4.6 leads to

φF
1(ti) 6 ϕF

1(ti) = ϕB
1 (ti) 6 φB

1 (ti) = φF
1(ti) ,

hence ϕB
1 (ti) = φF

1(ti). �

2.4.10 –– Using the previous results we can now provide the answer to the question 2) from 2.3.4, which
is given by the following result:

Corollary. The forward-backward and backward-forward algorithms are equivalent, that means, given
the same input arguments, their output arguments are precisely the same.

Proof.–– According to 2.4.1 and their rewritings proposed in paragraph 2.4.5, the forward-backward and
backward-forward algorithms are equivalent if and only if ϕB

1 (ti) = φF
1(ti) for all i ∈ {1, . . . , N}.

Therefore we can conclude by applying theorem 2.4.9. �

2.4.11 –– In a nutshell, to correct bounds on ϕ at t1, . . . , tN from (2.9), we can indifferently use the
forward-backward or backward-forward algorithm in their final forms from 2.4.5, instead of their initial
versions presented in paragraph 2.3.3. It is also important to note that we can explicitly determine the
number of operations done by these rewritten algorithms (which is the same for both of them thanks to
theorem 2.4.9) since it only depends on p, the derivative order of function ϕ, and on N , the number of
data.
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2.5 A forward-backward multi-order algorithm

2.5.1 –– In the previous sections, we have presented and studied algorithms that perform forward and
backward corrections to adjust the bounds on ϕ at t1, . . . , tn from (2.9). We have more precisely proved
in section 2.4 that the forward-backward and backward-forward algorithms from the paragraph 2.4.5
enable these in a totally equivalent way. Now let us remark the two following facts:

– For all k ∈ {1, . . . , p − 1} we can also use the forward-backward or backard-forward algorithms to
correct bounds on ϕ(k) from (2.9) by replacing p by p − k, ϕ by ϕ(k) and, for all i ∈ {1, . . . , N},
vectors Φi

− and Φi
+ by Φi

−[k + 1, p] and Φi
+[k + 1, p] in the previous paragraphs.

– For all k ∈ {0, . . . , p − 1} the higher the accuracy on bounds on ϕ(k+1), . . . , ϕ(p−1) the higher the
accuracy on bounds on ϕ(k) from the forward-backward or backward-forward algorithms will be.

Thus we can implement the forward-backward multi-order algorithm that establishes coherence between
the various bounds on ϕ and its derivatives from (2.9) as follows:

Forward-backward multi-order

INPUT: p, t1, . . . , tN , Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ , ϕ∗
−, ϕ∗

+.

FOR ALL k from p− 1 to 0:
∣

∣

∣

∣

∣

∣

∣

∣

(

Φ1
±[k+1:p], . . . ,ΦN

± [k+1:p]
)

← Forward-backward
(

p−k, t1, . . . , tN ,Φ1
±[k+1:p], . . . ,ΦN

± [k+1:p],ϕ∗
±

)

or equivalently
(

Φ1
±[k+1:p], . . . ,ΦN

± [k+1:p]
)

← Backward-forward
(

p−k, t1, . . . , tN ,Φ1
±[k+1:p], . . . ,ΦN

± [k+1:p],ϕ∗
±

)

OUTPUT: Φ1
−, Φ1

+, . . . , ΦN
− , ΦN

+ with their updated values.

REMARK. In this algorithm we have written Φ1
±[k+1:p] instead of Φ1

−[k+1:p],Φ
1
+[k+1:p], Φ

N
± [k+1:p]

instead of ΦN
− [k+1:p],ΦN

+ [k+1:p], and ϕ∗
± instead of ϕ∗

−, ϕ
∗
+ in order to save space.

2.5.2 –– The equivalence between the forward-backward and backward-forward algorithms can be used to
parallelize some computations of the forward-backward multi-order algorithm. To do this it is sufficient to
use the forward-backward algorithm in the for-loop when k is an even number and the backward-forward
algorithm when k is an odd number. For instance when ϕ is three times differentiable, i.e. when p = 3,
this morally consists in performing successively:

1) forward on ϕ′′(t2), . . . , ϕ′′(tN ),

2) backward on ϕ′′(tN−1), . . . , ϕ′′(t1),

3) backward on ϕ′(tN−1), . . . , ϕ′(t1),

4) forward on ϕ′(t2), . . . , ϕ′(tN ),

5) forward on ϕ(t2), . . . , ϕ(tN ),

6) backward on ϕ(tN−1), . . . , ϕ(t1).

Now let us highlight that for all i going from N − 1 to 1:

– As soon as bounds on ϕ′′(ti) are adjusted by the backward algorithm in step 2), they will no longer be
modified by the forward-backward multi-order algorithm.

– Adjustments on ϕ′(ti) done by the backward algorithm from step 3) only require bounds on ϕ′′(ti+1).
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Therefore, computations from steps 2) and 3) can be parallelized by performing in the same time, for i
going from N − 1 to 1, the backward corrections on ϕ′′(ti) and ϕ′(ti). In the same way computations
from steps 4) and 5) can be parallelized by performing at the same time, for i going from 2 to N , the
forward corrections on ϕ′(ti) and ϕ(ti).

2.5.3 –– To finish this section, let us indicate how to bound ϕ, . . . , ϕ(p−1) on overall I just by using
their bounds at t1, . . . , tN given by the forward-backward multi-order algorithm. In which follows, each
bound obtained in output of this algorithm will be called a corrected bound.
Here again, it is sufficient to detail for the function ϕ. So let us fix k ∈ {0, . . . , p− 1} and t ∈ I .

• If t < t1, it is sufficient to take bounds deduced from (2.8) and the corrected bounds on ϕ in t = t1.

• If t > tN , it is sufficient to take bounds deduced from (2.5) and the corrected bounds on ϕ in t = tN .

• Let us suppose that there exists i ∈ {2, . . . , N − 1} such that t ∈ ]ti, ti+1[. We get a lower bound
τF
−(t) and an upper bound τF

+(t) on ϕ(t) by using (2.5) and the corrected bounds on ϕ in t = ti,
and a lower bound τB

−(t) and an upper bound τB
+(t) on ϕ(t) by using (2.8) and the corrected bounds

on ϕ in t = ti+1. Therefore by using the selection principle we get ϕ−(t) 6 ϕ(t) 6 ϕ+(t) with
ϕ−(t) = max

{
τF
−(t), τ

B
−(t)

}
and ϕ+(t) = min

{
τF
+(t), τ

B
+(t)

}
.

2.6 A basic example

2.6.1 –– In this section we present some numerical simulations that illustrate the general performances
of the forward-backward multi-order algorithm from paragraph 2.5.1 on a simple example. We suppose
here that I = R and that function ϕ is given by:

ϕ : I → R, t 7→ cos(t)− t2.

Function ϕ is clearly two times differentiable on R with ϕ′′(t) = − cos(t) − 2 for all t ∈ R. Therefore
the inequalities from (2.2) are satisfied with p = 2, ϕ∗

− = −3 and ϕ∗
+ = −1.

We then suppose that N = 41 and, for all i ∈ {1, . . . , N},

ti =
i − 21

40
.

In doing so,

t1 = −2 < t2 = −1.9 < t3 = −1.8 < · · · < tN−1 = 1.9 < tN = 2.

We finally generate bounds ϕ−(ti) and ϕ+(ti) at ϕ(ti) and ϕ′
−(ti) and ϕ′

+(ti) at ϕ′(ti) from (2.9) by
defining, for all i ∈ {1, . . . , N},

ϕ−(ti) = ϕ(ti)− Ui and ϕ+(ti) = ϕ(ti) + (1− Ui),

ϕ′
−(ti) = ϕ′(ti)− U ′

i and ϕ′
+(ti) = ϕ′(ti) + (1 − U ′

i),

where Ui and U ′
i are two uniform continuous distributions on [0, 1] depending on index i.

2.6.2 –– We have done ten simulations on data generated as in 2.6.1. For each one of them we have
indicated in table 2 ρ (resp. ρ′) corresponding to the average percentage of reduction of the distance
between the bounds on ϕ (resp. ϕ′) given in input of the forward-backward multi-order algorithm and
those obtained in output of this algorithm. We have also indicate τ the computation time (expressed in
milliseconds) required for each one of these simulations.
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ρ ρ′ τ
1st 69.1% 56.8% 1.65ms
2nd 66.6% 66.8% 2.14ms
3rd 80.0% 64.2% 1.88ms
4th 71.6% 68.8% 2.49ms
5th 72.2% 55.0% 2.22ms
6th 74.6% 60.8% 1.66ms
7th 78.4% 55.9% 2.26ms
8th 76.9% 64.0% 2.09ms
9th 73.4% 63.6% 3.11ms

10th 76.7% 55.0% 1.66ms

Table 2 – Performances of the forward-backward multi-order algorithm on ten simulations

We can observe that our algorithm significantly improve the accuracy of bounds on ϕ and ϕ′, and that its
computations are executed in a very short time. So even if the hazard on our data would be in practice
less important than here, these encouraging results highlight the efficiency of the forward and backward
corrections presented in this chapter.

REMARK. Even if it is not mentioned, by the way of these simulations we can check:

1) the validity of statements made in paragraph 2.4.5, i.e. that the forward-backward (resp. backward-
forward) algorithms from 2.3.3 and 2.4.5 are indeed equivalent. In doing so we can also observe that
their rewritings are (obviously) significantly faster their initial versions.

2) the veracity of corollary 2.4.10, which says that the forward-backward and backward-forward algo-
rithms are equivalent.

Conclusion

In this chapter we have presented various models that establish coherence between bounds on a function
and its derivative, and we have suggested and implemented an efficient and optimal algorithm which
enables this. According to the study of chapter 1 it means that we are now able to solve the problem
presented in introduction. We will do this on a concrete example (and more sophisticated and realistic
that the one presented in section 2.6) in the following chapter.



Chapter 3

Numerical simulations

Introduction

In this section, we present various simulations that illustrate possible uses of the models exposed in
chapters 1 and 2. Since our study was in particular done for the needs of the RATP, these simulations
are inspired by situations taken from the Parisian underground, even if they are totally fictional: how to
estimate the position, speed and acceleration of a train online?
In section 3.1, we specify the various hypotheses done for our simulations and we precise the problem
that will be considered. In section 3.2, we suggest a treatment that will be used to solve this problem.
We will perform in section 3.3 a preliminary simulation to show how to initialize our treatment and
analyse these first results. Then we will suggest some improvements or adaptations that will be exposed
and commented in section 3.4. Finally in section 3.5 will be presented an adaptation of our treatment
usable to lead a posteriori analyses. In doing so, we will be able to compare in detail the benefits and
disadvantages of the use of centred and decentred bounds from chapter 1.

3.1 Hypothesis and objectives

3.1.1 –– Hypothesis.

In this section:

• The distances will be expressed in meters (m) and the times in seconds (s). Sometimes speeds will be
expressed in kilometres by hour (km/h) for the understanding, as they often are in the daily life.

• f : I → R will represent the distance crossed by a train, which will correspond to its position since the
time t1 supposed to be 0. By doing a simplification of the physical models (e.g. train not deformable),
it can be assimilated to the distance crossed by a punctual mobile (for instance corresponding to the
front of the train) on a line. We will suppose that I = R+ and that f is three times differentiable.
Therefore as explained in introduction, if t ∈ R+, f(t) corresponds to the position of the train at the
time t, f ′(t) its speed, f ′′(t) its acceleration and f ′′′(t) a quantity called its jerk.

• We will generate 1800 data. Thus we set N = 1800 and, for all i ∈ {2, . . . , N}, we define

ti = (i− 1)·0.05 + λi ·0.01,

with λi a continuous uniform distribution on [−1, 1] (depending on index i). As previously,

t1 < t2 < · · · < tN ,

67
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and times t1, t2, . . . , tN are normally not uniformly distributed.

• We suppose the railway road divided in sections of 0.1m and that on each time ti we are able to
determine in which section the (front of the) train is. Therefore, for all i ∈ {0, . . . , N}, there exists an
unique ki ∈ N such that ki ·0.1 6 f(ti) 6 (ki + 1)·0.1. Thus assumption (A1) from the introduction
of this part I is obtained by setting:

f−(ti) = ki ·0.1 and f+(ti) = (ki + 1)·0.1. (3.1)

t

(i− 1)0.05 s i 0.05 s

0.01 s 0.01 s 0.01 s 0.01 s

ti ti+1

f−(ti+1)

f+(ti+1)

f+(ti)

f−(ti)

0.1m

0.1m

0.1m

0.1m

f(t)

b

b

Figure 14 – Illustration of the generated times ti and lower f−(ti) and upper f+(ti) bounds on f(ti)

• We suppose that f ′′ and f ′′′ are bounded. More precisely, for all θ ∈ R+, we assume that

−1.3 6 f ′′(θ) 6 1.2,
−1 6 f ′′′(θ) 6 1.

(3.2)

In doing so assumption (A2) from the introduction of this part I is satisfied with d = 2 and d = 3.

• Each second s ∈ N
∗, we suppose that we receive an new sample of measurements (obtained since the

previous second) including the times ti and their associated lower f−(ti) and upper f+(ti) bounds on
f(ti), for all index i such that ti ∈ [s− 1, s[.

• All the simulations presented in this chapter were done by using the same input data. It means that
differences of performances can only be explained by modifications of our various treatments.

3.1.2 –– Objectives.

Let us remind that by the way of our simulations, we want to see how to use our models in order to
bound the position, speed and acceleration of a train in real time. Then according to the problem ex-
posed in introduction of this part I, our goal will be the following. Each second s, by using data from
paragraph 3.1.1, we want to:
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• determine quantities f (k)
− (ti) and f (k)

+ (ti) such that f (k)
− (ti) 6 f (k)(ti) 6 f

(k)
+ (ti) with difference

f
(k)
+ (ti)− f (k)

− (ti) as low as possible, for all k ∈ {1, 2} and all index i such that ti ∈ [s− 1, s[,

• establish coherence between all the available bounds on f , f ′ and f ′′ in times ti such that ti < s, in
order to make them as accurate as possible.

3.1.3 –– REMARK. Let us remind that in practice, f , f ′ and f ′′ are (obviously) unknown functions.
But in order to generate our data and verify the validity of our models, we have generate their exact
trajectories. We have first constructed f ′′′ as a piecewise continuous affine function. Then f ′′, f ′ and f
are piecewise polynomial functions obtained by successive integrations. For the clarity and not overwrite
this chapter of figures, the graphical representations of f ′′′, f ′′, f ′ and f are presented in its appendix.

3.2 Suggested treatment

3.2.1 –– In order to solve the problem exposed in the previous section, we suggest an iterative treatment
that will be divided in two steps. For each second s ∈ N

∗, this treatment will consist in:

STEP 1. For all index j such that tj ∈ [s− 1, s[:

1.1. Bounds computation on f ′(tj) by applying (1.11) with the available data on ψ = f and
ψ′′′ = f ′′′.

1.2. Bounds computation on f ′(tj) by applying (1.3) with the available data on ψ = f and
ψ′′ = f ′′.

1.3. Selection principle on bounds on f ′(tj) obtained in steps 1.1 and 1.2.

1.4. Bounds computation on f ′′(tj) by applying (1.16) with the available data on ψ = f and
ψ′′′ = f ′′′.

1.5. Bounds computation on f ′′(tj) by applying (1.3) with the available data on ψ = f ′ (from
step 1.3) and ψ′′ = f ′′′.

1.6. Selection principle on bounds on f ′′(tj) from steps 1.4 and 1.5 and by using the uniform
bounds from (3.2).

1.7. Bounds computation on f ′(tj) by applying (1.19) with the available data on ψ = f ,
ψ′′ = f ′′ (from step 1.6) and ψ′′′ = f ′′′.

1.8. Selection principle on bounds on f ′(tj) from steps 1.3 and 1.7.

1.9. Bounds computation on f ′′(tj) by applying (1.21) with the available data on ψ = f ,
ψ′′ = f ′′ (from step 1.8) and ψ′′′ = f ′′′.

1.10. Selection principle on bounds on f ′′(tj) from steps 1.6 and 1.9.

STEP 2. Correction of data from the five latest samples (or s latest when s 6 4) by using the forward-
backward multi-order algorithm with p = 3, ϕ = f and so ϕ(p) = f ′′′.

The use of this iterative treatment in real time is illustrated in figure 15.

3.2.2 –– About the step 1.

We need to explain how bounds on f ′ or f ′′ from steps 1.1, 1.2, 1.4, 1.5, 1.7 and 1.9 are computed. In
order to do this, we refer to section 1.10. As explained in paragraph 1.10.1, we need to choose:
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second s− 1

new sample

treatment

new bounds

second s

new sample

treatment

new bounds

second s+ 1

new sample

treatment

new bounds

Figure 15 – Illustration of the iterative treatment presented in 3.2.1

• indexes r1 and r2 that enable to apply (1.11) (resp. (1.16)) with δ1 = tj − tj−r1 and δ2 = tj − tj−r2

at step 1.1 (resp. 1.4),

• an index r that enables to apply (1.3) (resp. (1.3), (1.19), (1.21)) with δ = tj − tj−r at step 1.2 (resp.
1.5, 1.7, 1.9).

An analysis of our treatment shows that differences f+(ti)−f−(ti), f ′
+(ti)−f ′

−(ti) and f ′′
+(ti)−f ′′

−(ti)
will be reduced over time and will depend on i ∈ {1, . . . , N}. Thus as suggested in 1.10.3 or 1.10.5, we
will suppose that differences f+(ti)− f−(ti), f ′

+(ti)− f ′
−(ti) and f ′′

+(ti)− f ′′
−(ti) are respectively close

to a same value µ > 0, µ′ > 0 and µ′′ > 0 in order to determine:

• r1 and r2 by referring to 1.10.5 at steps 1.1 and 1.4,

• r by referring to 1.10.3 at steps 1.2, 1.5, 1.7 and 1.9.

3.2.3 –– About the step 2.

Let us explain why we have not limited the use of the forward-backward multi-order algorithm to the
sample associated to the second s in the step 2. In fact, when we will compute bounds of f ′ and f ′′ in the
step 1 of our treatment, bounds computed for the sample associated to a second s will required bounds
on f or f ′ from the previous samples (e.g. associated to seconds s− 1 or s− 2). And since the higher the
accuracy of bounds from the past, the higher the accuracy of new bounds will be, it explains our choice.

3.3 A first simulation

3.3.1 –– For this first simulation, we have supposed that the distance between bounds on f(ti) is not so
far from µ = 0.1m for all i ∈ {1, . . . , N}, as are the initial data from (3.1). To compute bounds on f ′ or
f ′′ from steps 1.5, 1.7 and 1.9 we have supposed that the differences between the required bounds on f ′

(resp. f ′′) are not so far from the minimum of the function ε from 1.4.3 (resp. 1.7.3) taken with:

α = 2µ = 0, 2 and β =
1− (−1)

6
=

1

3
(resp. α = 4µ = 0, 4 and β =

2[1− (−1)]
6

=
2

3
).
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In doing so, bounds on f ′ or f ′′ are computed as explained in 3.2.2. Taking the notations from this
paragraph back, the various indexes r1, r2 or r computed to do this are obtained by minimizing a certain
function ε (see paragraphs 1.10.3 or 1.10.5). For each step, the following tables indicate the minimizer
and minimum value of these considering functions ε:

step
minimizer (δ∗1 , δ

∗
2) minimum value

δ∗1 δ∗2 ε(δ∗1 , δ
∗
2)

1.1 0.3760 1.7466 1.0169
1.4 0.3760 1.7466 2.3288

Table 3 – Minimizers and minimums of functions ε considered at steps 1.1 and 1.4

step minimizer δ∗ minimum ε(δ∗)
1.2 0.4 1
1.5 1.4142 2.8284
1.7 0.3777 1.0114
1.9 1.9052 2.4301

Table 4 – Minimizers and minimums of functions ε considered at steps 1.2, 1.5, 1.7 and 1.9

REMARK. The attentive reader will have noted that the function considered at step 1.2 is the same as the
one represented in figure 1.

3.3.2 –– Output data analyses.

In table 5 we have indicated the average distance between the various bounds on f , f ′ or f ′′ obtained on
each step of our treatment, and their associated minimal and maximal values.

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.2642 1.9822/2.3381
bounds from step 1.5 2.8550 2.4203/3.1767
bounds from step 1.6 1.9646 1.2745/2.3380
bounds from step 1.9 2.2345 1.7741/2.4310
bounds from step 1.10 1.9193 1.2745/2.3374
final bounds (step 2) 1.8129 1.2745/2.3009

error on f ′

(in m/s)

bounds from step 1.1 0.9773 0.7230/1.0250
bounds from step 1.2 0.9737 0.7899/1.0121
bounds from step 1.3 0.8288 0.3890/1.0091
bounds from step 1.7 0.9174 0.5990/1.0250
bounds from step 1.8 0.8263 0.3890/1.0073
final bounds (step 2) 0.6875 0.3890/1.0002

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0694 0.0116/0.1000

Table 5 – General performances of this preliminary simulation

We can first observe that in step 1, using various methods to bound a same derivative and the selection
principle to adjust them is really effective. For instance with f ′, the selection principle from step 1.3
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improves the accuracy of bounds obtained at steps 1.1 or 1.2 of approximatively 15%. Nevertheless by
analysing the output data from steps 1.8 and 1.10, the improvements from steps 1.7 and 1.9 are relatively
limited. This phenomenon will be studied in detail in paragraph 3.3.5.
About the use of the FB_algorithm algorithm from step 2, we can note that it improves in average of:

– 6% the accuracy of bounds on f ′′ from step 1.10,

– 16% the accuracy of bounds on f ′ from step 1.8,

– more than 30% the accuracy of the initial bounds on f from inequalities 3.1.

Moreover that represents:

– an improvement of 20% in comparison to the first bounds on f ′′ from step 1.4,

– an improvement of 30% in comparison to the first bounds on f ′ computed at steps 1.1 or 1.2.

Thus as expected, that illustrates the efficiency of the forward-backward multi-order algorithm presented
in chapter 2. However we can observe that some bounds on f are not corrected by our treatment (since
the maximal error after step 2 is equal to 0.1). In fact this phenomenon is just observed at the end of the
simulation, when the train is stopped.

3.3.3 –– Graphical representations.

We have produced various graphical representations on f and f ′ to illustrate the performances of our
treatment. At first we have illustrated the effect of our treatment on bounds on f :

t

77 77.2 77.4 77.6

f(t)

839

840

exact trajectory

initial bounds

final bounds (from step 2)

Figure 16 – Bounds on f obtained with our treatment

We can observe that the oscillations of initial bounds on f from (3.1), due to the measurement principle
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exposed in paragraph 3.1.1 and illustrated by the figure 14, are significantly smoothed by the forward-
backward multi-order algorithm (used at step 2).

The same phenomenon can be observed with f ′ and f ′′, but will limit our graphic analysis to outputs
on f ′ because they are more impressive than those on f ′′. As shown in figure 17, we can note that the
oscillations on the various bounds on f ′ computed at step 1 are smoothed by the FB_optimal algorithm.
Let us signal that these oscillations are probably due to the use of initial bounds on f from the current
sample (not yet corrected).
As previously, we can also observe that bounds on f ′ from steps 1.1 and 1.7 are practically the same, and
especially for the lower bounds. That is probably due to the fact that bounds on f ′ are computed by using
the same past data at these two steps by doing which is explained at paragraph 3.3.1: with other initial
values of f+(ti)− f−(ti) (i ∈ {1, . . .N}) or uniform bounds on f ′′ or f ′′′, it generally does not happen.
In other words, it just means that we had bad luck in our special case. . .

20 21 22

t

31

32

33
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35

36

37

38

39

f ′(t)

exact trajectory

bounds from step 1.1

bounds from step 1.2

bounds from step 1.7

bounds after step 2

Figure 17 – Bounds on f ′ (in km/h) obtained with our treatment

3.3.4 –– Computation time.

Each sample is handled in less than 0.001 s in comparison to the second available to perform our various
computations. That means our treatment is totally adapted for an use in real time, and that it can be
improved (by doing more or quite complicated computations) without any problem. Some improvements
of this first treatment that require more computations will be presented and analysed in section 3.4.

3.3.5 –– About the usefulness of the various computations from step 1.

As observed in paragraphs 3.3.2 and 3.3.3, some bounds computations on f ′ or f ′′ done in step 1 seem
useless. To end the study of this preliminary simulation, we present here the outputs of various adaptations
of our treatment that omit some of bounds computations on f ′.
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average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.2684 1.9896/2.3381
bounds from step 1.5 2.9708 2.4207/3.1905
bounds from step 1.6 1.9670 1.2745/2.3380
bounds from step 1.9 2.2576 1.7739/2.4375
bounds from step 1.10 1.9175 1.2745/2.3352
bounds from step 2 1.8148 1.2745/2.3042

error on f ′

(in m/s)

bounds from step 1.1 — — / —
bounds from step 1.2 0.9755 0.7965/1.0121
bounds from step 1.3 — — / —
bounds from step 1.7 0.9635 0.6819/1.1202
bounds from step 1.8 0.8478 0.4031/1.0103
bounds from step 2 0.7511 0.4031/1.0005

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0712 0.0143/0.1000

Table 6 – Performances of our treatment without steps 1.1 and so 1.3

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.2668 1.9850/2.3381
bounds from step 1.5 2.9439 2.4324/3.2139
bounds from step 1.6 1.9660 1.2745/2.3380
bounds from step 1.9 2.2519 1.7731/2.4511
bounds from step 1.10 1.9204 1.2745/2.3376
bounds from step 2 1.8142 1.2745/2.3011

error on f ′

(in m/s)

bounds from step 1.1 0.9788 0.7235/1.0250
bounds from step 1.2 — — / —
bounds from step 1.3 — — / —
bounds from step 1.7 0.9623 0.6769/1.1202
bounds from step 1.8 0.8425 0.3890/1.0234
bounds from step 2 0.7132 0.3890/1.0160

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0706 0.0116/0.1000

Table 7 – Performances of our treatment without steps 1.2 and so 1.3
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average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.2646 1.9822/2.3381
bounds from step 1.5 2.8570 2.4203/3.1767
bounds from step 1.6 1.9647 1.2745/2.3380
bounds from step 1.9 2.2374 1.7742/2.4360
bounds from step 1.10 1.9195 1.2745/2.3374
bounds from step 2 1.8130 1.2745/2.3009

error on f ′

(in m/s)

bounds from step 1.1 0.9775 0.7230/1.0250
bounds from step 1.2 0.9738 0.7899/1.0121
bounds from step 1.3 0.8290 0.3890/1.0091
bounds from step 1.7 — — / —
bounds from step 1.8 — — / —
bounds from step 2 0.6901 0.3890/1.0002

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0696 0.0116/0.1000

Table 8 – Performances of our treatment without steps 1.7 and so 1.8

In comparison to the outputs of table 5, the analysis of tables 6 to 8 shown that doing all the computations
from step 1 seems unnecessary. In particular and as highlighted in the previous paragraphs, computations
from steps 1.7 and 1.8 improve almost anything. However the only analysis of tables 6 to 8 proved that
computing bounds on f ′ in two different ways is useful, according to the outputs of the various selection
principle from steps 1.3 or 1.8.
In summary, that means that all of these formulas could be useful, but it is maybe not necessary to use all
of them to improve significantly the accuracy of the outputs. In our context, computations from steps 1.7
and 1.8 seem dispensable. We can also observe analogous phenomenons with bounds computations on
f ′′: in this case, computations from steps 1.5 and 1.6 are clearly useless.

3.4 Some improvements or adaptations

3.4.1 –– We can try to adapt the treatment done in section 3.3 just by taking into account its inputs and
outputs. Let us remind that for a given index j ∈ {1, . . . , N}, bounds on f ′(tj) or f ′′(tj) from step 1 are
computed by using bounds on f , f ′ or f ′′ in ti, with i 6 j. Here we suggest to take into account if ti
belongs to the current sample or not. If so, that means that the bounds on f , f ′ or f ′′ in ti come from a
previous substep of step 1. If not, these bounds have been already corrected by our treatment and come
from the step 2 of our treatment applied on the last sample.

• At steps 1.1, 1.2, 1.4, 1.7 and 1.9, data on f from current and previous samples may be used. According
to table 5 the distance between bounds on f from the current sample are distant of 0.1m when those
from the previous sample are distant in average of 0.07m. Thus we can suppose that bounds on f used
on these steps are close to the average of these values, i.e. 0.085m.

• Similarly at step 1.5 bounds on f ′ from current and previous samples may be used. Those from the
current sample are obtained in step 1.3 and distant in average of 0.8288m/s ≃ 0.83m, while those
from the last sample are distant in average of 0.6875m/s ≃ 0.69m. Thus we can suppose that bounds
on f ′ used at this step are close to the average of these two values, i.e. 0.76m/s.
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• At step 1.7 (resp. 1.9) bounds on f ′′(ti) (resp. f ′(ti)), and so from the current sample, are also used.
Since these bounds come from step 1.6 (resp. 1.8), we can suppose that the distance between these
bounds is not so far from 1.9646m/s2 ≃ 0.96m/s2 (resp. 0.9174m/s ≃ 0.92m/s).

In doing so bounds from step 1 are computed as explained in 3.2.2. In comparison to tables 3 and 4
from paragraph 3.3.1, the following tables indicate the minimizers and minimum values of the various
functions ε considered to compute these various bounds on f ′ and f ′′.

step
minimizer (δ∗1 , δ

∗
2) minimum value

δ∗1 δ∗2 ε(δ∗1 , δ
∗
2)

1.1 0.3561 1.6545 0.9124
1.4 0.3561 1.6545 2.2060

Table 9 – New minimizers and minimums of functions ε considered at steps 1.1 and 1.4

step minimizer δ∗ minimum ε(δ∗)
1.2 0.3688 0.9220
1.5 1.1747 2.3495
1.7 0.3721 0.8677
1.9 1.6973 2.1451

Table 10 – New minimizers and minimums of functions ε considered at steps 1.2, 1.5, 1.7 and 1.9

The performances associated to this adapted simulation are given by the following table:

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.2595 1.9439/2.3427
bounds from step 1.5 2.7642 2.2347/3.1493
bounds from step 1.6 1.9562 1.2342/2.3406
bounds from step 1.9 2.2318 1.7125/2.4476
bounds from step 1.10 1.9065 1.2342/2.3406
bounds from step 2 1.7886 1.2342/2.3079

error on f ′

(in m/s)

bounds from step 1.1 0.9761 0.7099/1.0256
bounds from step 1.2 0.9710 0.7675/1.0033
bounds from step 1.3 0.8389 0.3908/1.0009
bounds from step 1.7 0.9155 0.5905/1.0250
bounds from step 1.8 0.8352 0.3908/1.0009
bounds from step 2 0.6815 0.3908/0.9970

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0691 0.0094/0.1000

Table 11 – General performances of this adapted simulation

In the end, we can note that there are almost no improvements in comparison to the preliminary simu-
lation done in section 3.3. Consequently it seems difficult to improve the general performances of our
treatment just by doing this kind of adjustments. It is maybe possible to do better by adjusting the previous
parameters in real time, but we have not tried to do it for now.
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3.4.2 –– An other idea consists in trying to improve the previous treatments by doing what it is indicated in
paragraph 1.10.7. With this aim in mind, we compute the required index r, r1 and r2 as in paragraph 3.4.1
(since our output data are a little bit better). Here are the associated output performances:

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 2.1399 1.8490/2.3377
bounds from step 1.5 2.2395 1.9269/2.3427
bounds from step 1.6 1.8830 1.1634/2.3377
bounds from step 1.9 2.1235 1.6468/2.4049
bounds from step 1.10 1.8310 1.1634/2.3295
bounds from step 2 1.7138 1.1634/2.1893

error on f ′

(in m/s)

bounds from step 1.1 0.8859 0.6552/1.0219
bounds from step 1.2 0.9099 0.7463/1.0012
bounds from step 1.3 0.7599 0.3569/1.0004
bounds from step 1.7 0.8423 0.5779/1.0219
bounds from step 1.8 0.7512 0.3569/1.0004
bounds from step 2 0.6095 0.2912/0.9287

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0662 0.0094/0.1000

Table 12 – Performances of the simulation adapted as suggested in 1.10.7

In comparison to the simulation performed in 3.4.1, we can note that:

– the final bounds on f ′′ (from step 2) are improved of a little more than 4% in average,

– the final bounds on f ′ are improved of a little more than than 10% in average,

– the final bounds on f are improved of a little more than 4%.

This constitutes more significant improvements, in particular for the bounds on f ′. And since here the
computation time is almost unchanged in comparison to the previous simulations, we can say that it
constitutes an interesting improvement.

3.4.3 –– Observing that bounds on f , f ′ and f ′′ are significantly more accurate after the use of our
treatment, we have thought that reapplying our treatment to each sample could improve their accuracy.
In order to do this, we have first treat each sample as in 3.4.2, and a second time by taking in account the
improvements provide by the first treatment in computations from the step 1. For the second treatment,
we have thus supposed bounds on f close to 0.066m, those on f ′ close to 0.61m/s and those on f ′′ close
to 1.71m/s2, which leads to the following choice of parameters:

step
minimizer (δ∗1 , δ

∗
2) minimum value

δ∗1 δ∗2 ε(δ∗1 , δ
∗
2)

1.1 0.3273 1.5207 0.7708
1.4 0.3273 1.5207 2.0276

Table 13 – Minimizers and minimums of functions ε for steps 1.1 and 1.4 of the second treatment
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step minimizer δ∗ minimum ε(δ∗)
1.2 0.3250 0.8124
1.5 1.1045 2.2091
1.7 0.3484 0.7172
1.9 1.5320 1.9302

Table 14 – Minimizers and minimums of functions ε for steps 1.2, 1.5, 1.7 and 1.9 of the second treatment

Unfortunately it does not improve almost anything, as shown by the following table:

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 1.9530 1.5251/2.3685
bounds from step 1.5 2.0099 1.6194/2.3685
bounds from step 1.6 1.6749 1.1313/2.1732
bounds from step 1.9 1.8834 1.4379/2.3252
bounds from step 1.10 1.6682 1.1313/2.1732
bounds from step 2 1.7102 1.1634/2.1893

error on f ′

(in m/s)

bounds from step 1.1 0.7231 0.3734/1.0329
bounds from step 1.2 0.7758 0.4900/1.0182
bounds from step 1.3 0.5843 0.2877/0.9085
bounds from step 1.7 0.6781 0.3149/0.9735
bounds from step 1.8 0.5836 0.2877/0.9085
bounds from step 2 0.6074 0.2912/0.9286

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0661 0.0094/0.1000

Table 15 – Performances when we apply twice the treatment used in 3.4.2

In the end, various application of our treatment to a same sample seems inefficient. To conclude, we thus
suggest to use it as explained in paragraph 3.4.2.

3.5 An alternative use

3.5.1 –– As we have seen in section 1.11, even if the centred bounds seem more precise than the decen-
tered, their use to perform real-time analyses seems inappropriate. That is why the treatment suggested in
paragraph 3.2.1 does not use them. To highlight and illustrate the differences between these centred and
decentred bounds, we now suppose that we want to solve a posteriori the problem exposed in section 3.1.
Thus the use of the centred formulas appears now reasonable.
In order to use them, we will modify the suggested treatment from section 3.2 by using:

– the centred bounds from (1.10) instead of the decentred (1.11) in step 1.1,

– the centred bounds from (1.15) instead of the decentred from (1.16) in step 1.4.

Then bounds on f ′ or f ′′ from step 1 are computed by referring to paragraphs 1.10.3 and 1.10.4, in the
same way as in section 3.3. By taking notations from these paragraphs back, the various indexes r, r−
and r+ used to compute bounds on f ′ and f ′′ are obtained by supposing bounds f distant of 0.1m, and
those on f ′ (resp. f ′′) of the minimum of function ε from 1.3.5 (resp. 1.6.5) taken with

α = µ = 0.1 and β =
1− (−1)

6
=

1

3
(resp. α = 4α = 0.4 and β =

1− (−1)
3

=
2

3
).
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The following tables show the values of the various functions ε considered to computes indexes r−, r+
and r in question:

step minimizer δ∗ minimum ε(δ∗, δ∗)
1.1 0.6694 0.2241
1.4 1.0627 1.0627

Table 16 – Minimizer and minimum of functions ε considered at steps 1.1 and 1.4

step minimizer δ∗ minimum ε(δ∗)
1.2 0.4 1
1.5 1.1045 2.2091
1.7 0.4839 0.7483
1.9 1.2713 1.4476

Table 17 – Minimizer and minimum of functions ε considered at steps 1.2, 1.5, 1.7 and 1.9

3.5.2 –– Output data analyses.

The following table presents the average distance between bounds on f , f ′ and f ′′ obtained at each step
of our treatment:

average min/max

error on f ′′

(in m/s2)

bounds from step 1.4 1.0315 0.0000/7.8986
bounds from step 1.5 1.8855 1.5591/1.9972
bounds from step 1.6 1.0065 0.0000/1.9972
bounds from step 1.9 1.4600 1.1012/1.8612
bounds from step 1.10 1.0048 0.0000/1.6689
bounds from step 2 0.9641 0.0000/1.1541

error on f ′

(in m/s)

bounds from step 1.1 1.0363 0.0000/3.6597
bounds from step 1.2 3.4341 2.8137/3.6437
bounds from step 1.3 0.9759 0.0000/1.7720
bounds from step 1.7 2.4700 1.7470/3.5433
bounds from step 1.8 0.9759 0.0000/1.7720
bounds from step 2 0.9173 0.0000/1.1264

error on f
(in m)

initial bounds 0.1000 0.1000/0.1000
final bounds (step 2) 0.0504 0.0049/0.1000

Table 18 – Performances of our a posteriori treatment (using centred bounds instead of the decentred)

In comparison to the results obtained in table 5 with the preliminary simulation using the decentred
bounds on f ′ and f ′′, we can note that:

– the average distance between bounds on f ′′ from step 1.5 is divided by more than 2, and those from
step 2 are all the more accurate,

– the average distance between bounds on f ′ from step 1.1 is approximatively divided by 4, and those
from step 2 by 3,
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– the average distance between the initial bounds on f is in the end reduced of 50%, against 30% when
the decentred bounds were used.

Thus as expected, the centred bounds produce more accurate bounds than the decentred. But as confirmed
by analysing the values of δ∗ given by the table 16 (which correspond to the waiting time to get the input
data used in computations of the centred bounds), their use in real time seems totally unreasonable.

3.5.3 –– Computation time.

The computation time is almost unchanged in comparison to the one obtained witrh the preliminary
simulation using the decentred formula.

3.5.4 –– Graphical representation.

The improvements due to the use of the centred bounds noted in the paragraph 3.5.2 can be observed
graphically. In comparison to the output on f ′ represented in figure 17, the following picture shows an
important improvement of the accuracy of the bounds from steps 1.1 and 2:

20 21 22
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f ′(t)

exact trajectory

bounds from (modified) step 1.1

bounds from step 1.2

bounds from step 1.7

bounds after step 2

Figure 18 – Bounds on f ′ (in km/h) with our a posteriori treatment (using centred bounds)

Even if it is more difficult to observe with f (due to a scale problem), we can see in figure 19 that bounds
on f obtained at step 2 are closer than those obtained in figure 16. We can for instance look it on the
neighbourhood of t = 77.4 s: the lower bounds on f are significantly higher than the initial in comparison
to those obtained with the real-time treatment from section 3.3 (where one of them was manifestly not
corrected).
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t
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initial bounds

final bounds (from step 2)

Figure 19 – Bounds on f obtained with our treatment

3.5.5 –– REMARK. As for the real-time treatment presented in section 3.3, it is then possible to improve
this a posteriori treatment by doing analogous improvements than those presented in section 3.4. But
knowing that we will obtain similar result by doing them, we will not present them in this document.

Conclusion

On a sophisticated example inspired of the Parisian underground, this chapter has shown how the theories
from chapter 1 and 2 can be used to solve the problem presented in introduction of this part I. We have
developed and improved two treatments that enable to bound a function and its derivative in real time for
the first one, and a posteriori for the other.
By doing these simulations, we have also highlighted the efficiency of our various models. Now it could
be interesting to see how to improve it. Let us give some possible ways to do this:

• As suggested in 3.4.1, by choosing the best data to use in step 1 in real time, and not arbitrary as we
have done in this chapter. However in doing so, care should be taken to ensure that the calculations are
not too costly in time.

• When we are estimating the position of a mobile (here a train), by taking into account the fact that the
mobile is accelerating or decelerating, when such informations are available.

• By coupling our treatments with some other models, etc.

There is probably a lot of other possible improvements as those mentioned here, but these will depend
before anything else of the nature of the input data. Some other improvements may also be suggested by
an experience feedback.
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Appendix
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Figure 20 – Exact trajectory of f ′′′ (in m/s3)
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Figure 21 – Exact trajectory of f ′′ (in m/s2)
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Figure 22 – Exact trajectory of f ′ (in km/h)
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Figure 23 – Exact trajectory of f (in m)





Chapter 4

Some possible extensions

Introduction

This chapter gathers various results or ideas that could be used to generalize or improve the models
or algorithms presented in the previous chapters, but not really studied in detail, tested in practice or
presented in an optimal form. In section 4.1 we extend our works from chapter 1 by presenting various
techniques that enable to bound a function by using (other) bounds on it and uniforms bounds on one
of its derivatives. We introduce a new kind of forward-backward corrections in section 4.2. Finally we
suggest some possible adaptations of our models to functions defined on (a part of) Rn to R in section 4.3.

4.1 How to bound a function by one of its derivative?

4.1.1 –– In chapter 1, we have presented various techniques that enable to bound the derivatives of a
function ψ in a point t just by using uniform bounds on one of its pth derivatives. So as in this chapter, let
us fix t ∈ I and ψ : I → R a function satisfying inequalities (1.1) and (1.2), that means:

• for all y ∈ I , we can determine (known) quantities ψ−(y) and ψ+(y) such that:

ψ−(y) 6 ψ(y) 6 ψ+(y).

• there exists p ∈ N
∗ such that ψ admits a pth bounded derivative, i.e. there exists (known) real constants

ψ∗
− and ψ∗

+ such that for all ξ ∈ I:

ψ∗
− 6 ψ(p)(ξ) 6 ψ∗

+.

In this section, we will how to bound ψ in t by leading similar computations, and here again just by
considering cases p = 2 or p = 3.

4.1.2 –– Let us start with the case p = 2. As we did for ψ′(t) or ψ′′(t) in sections 1.2 or 1.5, we need to
find here an expression of ψ(t) that only depends on ψ and ψ′′. To do this, we start from the following
Taylor expansions, available for all δ1 and δ2 in R

∗ such that t+ δ1 ∈ I and t+ δ2 ∈ I ,

ψ(t+ δ1) = ψ(t) + δ1ψ
′(t) +

δ21
2
ψ′′(ξ1), (4.1)

ψ(t+ δ2) = ψ(t) + δ2ψ
′(t) +

δ22
2
ψ′′(ξ2), (4.2)

85
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where ξj is strictly between t and t+δj for all j ∈ {1, 2}. For all α1, α2 ∈ R, by doing α1(4.1)+α2(4.2)
and by ordering α1 + α2 6= 0 and α1δ1 + α2δ2 = 0, we obtain

ψ(t) =
α1ψ(t+ δ1) + α2ψ(t+ δ2)

α1 + α2
− α1δ

2
1ψ

′′(ξ1)

2(α1 + α2)
− α2δ

2
2ψ

′′(ξ2)

2(α1 + α2)
.

And since we can multiply α1 and α2 by a same non-null quantity without changing this expression of
ψ(t), we can fix α1 = δ2, and so α2 = −δ1 (since α1δ1 +α2δ2 = 0). To guarantee α1 +α2 6= 0, we this
need to impose δ1 6= δ2. In the end for all δ1, δ2 ∈ R

∗ such that t+ δ1 ∈ I , t+ δ2 ∈ I and δ1 6= δ2,

ψ(t) =
δ2ψ(t+ δ1)− δ1ψ(t+ δ2)

δ2 − δ1
+
δ1δ

2
2ψ

′′(ξ2)

2(δ2 − δ1)
− δ2δ

2
1ψ

′′(ξ1)

2(δ2 − δ1)
. (4.3)

4.1.3 –– Centred bounds on ψ when p = 2.

Let us suppose that δ1 and δ2 have opposite signs. At the risk of exchanging their roles, we can suppose
δ1 > 0 and δ2 < 0. Then by setting δ+ = δ1, δ− = −δ2, ξ+ = ξ1 and ξ− = ξ2, formula (4.3) can be
rewritten:

ψ(t) =
δ−ψ(t+ δ+) + δ+ψ(t− δ−)

δ− + δ+
− δ−δ

2
+ψ

′′(ξ+)

2(δ− + δ+)
− δ+δ

2
−ψ

′′(ξ−)

2(δ− + δ+)
. (4.4)

Let us define
Pt = {(δ−, δ+) ∈ R

∗
+ | t− −δ− ∈ I, t+ δ+ ∈ I}.

Thus for all (δ−, δ+) ∈ Pt, by setting






ψ−(t ; δ−, δ+) =
δ−ψ−(t+ δ+) + δ+ψ−(t− δ−)

δ− + δ+
− δ−δ+ψ

∗
+

2
,

ψ+(t ; δ−, δ+) =
δ−ψ+(t+ δ+) + δ+ψ+(t− δ−)

δ− + δ+
− δ−δ+ψ

∗
−

2
,

we deduce of (1.1), (1.2) and (4.4) that

ψ−(t ; δ−, δ+) 6 ψ(t) 6 ψ+(t ; δ−, δ+).

And as in chapter 1 the values of δ− and δ+ that minimize the distance between bounds ψ−(t ; δ−, δ+)
and ψ+(t ; δ−, δ+) on ψ(t) can be found by studying the diameter function

diamψt : Pt → R+, (δ−, δ+) 7→ ψ+(t ; δ−, δ+)− ψ−(t ; δ−, δ+).

4.1.4 –– Decentred bounds on ψ when p = 2.

We now suppose that δ1 and δ2 have the same sign, and more precisely that δ1 < 0 and δ2 < 0 (the only
interesting case for our applications). Then by doing our usual transformations, for all δ1, δ2 ∈ R

∗
+ such

that t− δ1 ∈ I , t− δ2 ∈ I and δ1 < δ2, formula (4.3) can be rewritten:

ψ(t) =
δ2ψ(t− δ1)− δ1ψ(t− δ2)

δ2 − δ1
+
δ1δ

2
2ψ

′′(ξ2)

2(δ2 − δ1)
− δ2δ

2
1ψ

′′(ξ1)

2(δ2 − δ1)
. (4.5)

Let us define
Pt = {(δ1, δ2) ∈ R

∗
+ | t− δ1 ∈ I, t− δ2 ∈ I, δ1 < δ2}.

Thus for all (δ1, δ2) ∈ Pt, by setting






ψ−(t ; δ1, δ2) =
δ2ψ−(t− δ1)− δ1ψ+(t− δ2)

δ2 − δ1
+

δ1δ
2
2ψ

∗
−

2(δ2 − δ1)
− δ2δ

2
1ψ

∗
+

2(δ2 − δ1)
,

ψ+(t ; δ1, δ2) =
δ2ψ+(t− δ1)− δ1ψ−(t− δ2)

δ2 − δ1
+

δ1δ
2
2ψ

∗
+

2(δ2 − δ1)
− δ2δ

2
1ψ

∗
−

2(δ2 − δ1)
,
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we deduce of (1.1), (1.2) and (4.5) that

ψ−(t ; δ1, δ2) 6 ψ(t) 6 ψ+(t ; δ1, δ2).

Here again the values of δ1 and δ2 that minimize the distance between these bounds on ψ(t) can be
obtained by studying the diameter function

diamψt : Pt → R+, (δ1, δ2) 7→ ψ+(t ; δ1, δ2)− ψ−(t ; δ1, δ2).

4.1.5 –– Decentred bounds on ψ when p = 3. We now suppose that p = 3. To obtain an expression of
ψ(t) that only depends on various evaluations of ψ and ψ′′′, we need to use three Taylor expansions of
the third order to eliminate the contributions in ψ′ and ψ′′. That is why we will only compute decentred
bounds on ψ(t). So let δ1, δ2 and δ3 be three real numbers satisfying

t− δ1 ∈ I , t− δ2 ∈ I , t− δ3 ∈ I and 0 < δ1 < δ2 < δ3. (4.6)

By the Taylor-Lagrange formula, there exists (ξ1, ξ2, ξ3) ∈ ]t− δ1, t[× ]t− δ2, t[× ]t− δ3, t[ such that

ψ(t− δ1) = ψ(t)− δ1ψ′(t) +
δ21
2
ψ′′(t)− δ31

6
ψ′′′(t1), (4.7)

ψ(t− δ2) = ψ(t)− δ2ψ′(t) +
δ22
2
ψ′′(t)− δ32

6
ψ′′′(t2), (4.8)

ψ(t− δ3) = ψ(t)− δ3ψ′(t) +
δ23
2
ψ′′(t)− δ33

6
ψ′′′(t3). (4.9)

For all α1, α2, α3 ∈ R, by ordering

α1 + α2 + α3 6= 0,

α1δ1 + α2δ2 + α3δ3 = α1δ
2
1 + α2δ

2
2 + α3δ

2
3 = 0, (4.10)

and by doing α1(4.7) + α2(4.8) + α3(4.9), we can obtain the following expression of ψ(t):

ψ(t) =
α1ψ(t− δ1) + α2ψ(t− δ2) + α3ψ(t− δ3)

α1 + α2 + α3
+
α1δ

3
1ψ

′′′(ξ1) + α2δ
3
2ψ

′′′(ξ2) + α3δ
3
3ψ

′′′(ξ3)

6(α1 + α2 + α3)
.

(4.11)

Since we can multiply α1, α2 and α3 by a same non-null quantity without changing this expression of
ψ(t), we can first fix α1 = 1. In doing so,

(4.10) ⇐⇒
{
α2δ2 + α3δ3 = −δ1
α2δ

2
2 + α3δ

2
3 = −δ21

⇐⇒







α2 =
δ1(δ1 − δ3)
δ2(δ3 − δ2)

,

α3 =
δ1(δ2 − δ1)
δ3(δ3 − δ2)

.

Now by multiplying α1, α2 and α3 by δ2δ3(δ3 − δ2), which is a non-null quantity since thanks to (4.6),
we can finally suppose that

α1 = δ2δ3(δ3 − δ2), α2 = −δ1δ3(δ3 − δ1) and α3 = δ1δ2(δ2 − δ1).

By using (4.6) we can easily observe that

α1 > 0, α2 < 0, α3 > 0 and α1 + α2 + α3 = (δ2 − δ1)(δ3 − δ2)(δ3 − δ1) > 0.
(4.12)
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Consequently, by setting







ψ−(t ; δ1, δ2, δ3) =
α1ψ−(t− δ1) + α2ψ+(t− δ2) + α3ψ−(t− δ3)

α1 + α2 + α3
+
α1ψ

∗
− + α2ψ

∗
+ + α3ψ

∗
−

6(α1 + α2 + α3)
,

ψ+(t ; δ1, δ2, δ3) =
α1ψ+(t− δ1) + α2ψ−(t− δ2) + α3ψ+(t− δ3)

α1 + α2 + α3
+
α1ψ

∗
+ + α2ψ

∗
− + α3ψ

∗
+

6(α1 + α2 + α3)
,

we can deduce of (4.11) and (4.12) that

ψ−(t ; δ1, δ2, δ3) 6 ψ(t) 6 ψ+(t ; δ1, δ2, δ3).

Here again the triplets (δ1, δ2, δ3) satisfying (4.6) that minimize the distance between these bounds on
ψ(t) can be found by minimizing the corresponding diameter function (where α1, α2 and α3 must obvi-
ously be seen as functions of δ1, δ2 and δ3).

4.1.6 –– On the concrete example of the problem solved in chapter 3, these models can for instance be
used in the suggested treatment from 3.2.1 to improve the accuracy of the initial bounds on f . By doing
it before the step 1.1, it would logically improve the accuracy of bound on f ′ and f ′′ computed after that.

4.2 Other forward-backward corrections

4.2.1 –– The models presented in chapter 2 enable to determine admissible values on ϕ(k)(t), the kth

derivative in a point t of a function ϕ : I → R admitting a pth bounded derivative, by having some
informations on ϕ(k), . . . , ϕ(p). The models presented in this section are intended to refine that by
considering admissible values for couples of the form

(
ϕ(k)(t), ϕ(k+1)(t)

)
, with k ∈ {0, . . . , p − 1},

by knowing bounds on couple of the form ϕ(k)(t) ± δ±ϕ(k+1)(t), for given δ−, δ+ > 0. Then the idea

consists in using this new bounds on ϕ(k)(t)± δ(k+1)
± (t) to adjust those on ϕ(k)(t) and ϕ(k+1)(t).

EXAMPLE. When p = 2, let us suppose that we can determine quantities ϕ±(t) and ϕ′
±(t) such that

ϕ−(t) 6 ϕ(t) 6 ϕ+(t),
ϕ′
−(t) 6 ϕ′(t) 6 ϕ′

+(t),

but also, for given δ− and δ+ in R
∗
+, quantities ϕ±(t− δ−) and ϕ±(t+ δ+) such that

ϕ−(t− δ−) 6 ϕ(t− δ−) 6 ϕ+(t− δ−),
ϕ′
−(t+ δ+) 6 ϕ′(t+ δ+) 6 ϕ′

+(t+ δ+).

Then by using the Taylor-Lagrange formula, we can boundϕ(t)+δ+ϕ′(t) and ϕ(t)−δ−ϕ′(t) as follows:

ϕ−(t+ δ+)−
δ2+ϕ

∗
+

2
6 ϕ(t) + δ+ϕ

′(t) 6 ϕ+(t+ δ+)−
δ2+ϕ

∗
−

2
,

ϕ−(t− δ−)−
δ2−ϕ

∗
+

2
6 ϕ(t)− δ−ϕ′(t) 6 ϕ+(t− δ−)−

δ2−ϕ
∗
−

2
.

4.2.2 –– The study leads in this section will use the following terminology:

Definition. We call rectangle of R2 each Cartesian product of the form I × J , where I and J are two
closed and bounded intervals of R.
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4.2.3 –– By setting x = ϕ(k)(t) and y = ϕ(k+1)(t) in 4.2.1, the corrections suggested in this section
requires the resolution of a same geometrical problem. Given eight real numbers x−, x+, y−, y+, m−,
m+, µ−, µ+ and two positive numbers δ− and δ+, it consists in determining the smallest rectangle of R2

that contains all the couples (x, y) ∈ R
2 satisfying the following constraints:

x 6 x+, (1)

x > x−, (2)

y 6 y+, (3)

y > y−, (4)

x+ δ+y 6 m+, (5)

x+ δ+y > m−, (6)

x− δ−y 6 µ+, (7)

x− δ−y > µ−. (8)

For instance on the example from 4.2.1, we will have

x± = ϕ±(t), y± = ϕ′
±(t), m± = ϕ±(t+ δ+)−

δ2+ϕ
∗
∓

2
and µ± = ϕ±(t− δ−)−

δ2−ϕ
∗
∓

2
.

For all i ∈ {1, . . . , 8}, let Ei be the set of couples (x, y) ∈ R
2 satisfying the constraint (i), and

E =
8⋂

i=1

Ei

the set of couples (x, y) ∈ R
2 satisfying the constraints (1) to (8). In other word, we are looking for the

smallest rectangle of R2 that contains E.
We can first observe this problem is well-posed. Indeed, let P be the set of rectangles of R2 that contains
E. Since E ⊂ [x−, x+]× [y−, y+], then we have P 6= ∅. By setting

P ∗ =
⋂

P∈P

P ,

it is clear that P ∗ is also a rectangle of R2, that E ⊂ P ∗, and that P ∗ is included in any rectangle of R2

that contains E. Therefore P ∗ is the unique solution of our problem.
When P ∗ 6= ∅, which is equivalent to say that E 6= ∅, there exists unique intervals I∗ and J∗ such that
P ∗ = I∗ × J∗. And since in practice x will be associated to ψ(k)(t) and y to ψ(k+1)(t), we will be able
to conclude that ψ(k)(t) ∈ I∗ and that ψ(k+1)(t) ∈ J∗.
In the following paragraphs, we will first expose a characterisation of the fact that P ∗ is non empty. Then
under the assumption E 6= ∅, we will explicit the bounds of the intervals I∗ and J∗ that define P ∗.

4.2.4 –– The resolution of the problem exposed in 4.2.3 will we be lead by geometrical considerations.

• For all i ∈ {1, . . . , 8}, the set Ei described by the constraint (i) corresponds to a half-space of R2.
In the following, we will denote by li the line that defines the boundary of Ei. These lines have for
equations:

l1 : x = x+, l3 : y = y+, l5 : y =
m+ − x
δ+

, l7 : y =
x− µ+

δ−
,

l2 : x = x−, l4 : y = y−, l6 : y =
m− − x
δ+

, l8 : y =
x− µ−

δ−
.

• For all indexes i and j such that 1 6 i < j 6 8 and lines li and lj are secant, we will denote by
(xij , yij) the unique intersection point between li and lj .

• We will more precisely set A = (x23, y23), B = (x13, y13), C = (x14, y14), D = (x24, y24), and
A′ = (x68, y68),B′ = (x58, y58),C′ = (x57, y57),D′ = (x67, y67). Thus when rectangleE1∩· · ·∩E4

(resp. parallelogramE5 ∩ · · · ∩E8) is non-empty, then points A, B, C, D (resp. A′, B′, C′, D′) are its
vertexes.
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l1l2

l3

l4

l5l6

l7

l8

A b Bb

C
b

D
b

A′ b

B′b

C′b

D′b

E

Figure 24 – Geometrical representation of E with lines l1, . . . , l8 when E 6= ∅

4.2.5 –– Definition. Let k ∈ {1, . . . , 8} and i1, . . . , ik be indexes such that 1 6 i1 < · · · < ik 6 8.
We will say that constraints (i1), . . . , (ik) are compatible if the set Ei1 ∩ · · · ∩ Eik of points from R

2

satisfying these constraints is non-empty.

4.2.6 –– To characterize the fact thatE is non-empty, which means that constraints (1) to (8) are satisfied,
we can start by finding criteria that insure that some of these constraints are compatible.

Proposition. We have the twelve following compatibility criterion:

• Constraints (1) and (2) are compatible if and only if l1 is on the right of l2, that means:

x− 6 x+. (R1)

• Constraints (3) et (4) are compatible if and only if l3 is above l4, that means

y− 6 y+. (R2)

• Constraints (5) et (6) are compatible if and only if l5 is above l6, that means

m− 6 m+. (R3)

• Constraints (7) et (8) are compatible if and only if l7 is below l8, that means

µ− 6 µ+. (R4)

• Constraints (1), (6) and (8) are compatible if and only if A′ is on the right of l1, that means

x68 =
δ−m

− + δ+µ
−

δ− + δ+
6 x+. (R5)

• Constraints (2), (5) and (7) are compatible if and only if C′ is on the right of l2, that means

x57 =
δ−m

+ + δ+µ
+

δ− + δ+
> x−. (R6)
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• Constraints (3), (6) and (7) are compatible if and only if D′ is below l3, that means

y67 =
m− − µ+

δ− + δ+
6 y+. (R7)

• Constraints (4), (5) and (8) are compatible if and only if B′ is above l4, that means

y58 =
m+ − µ−

δ− + δ+
> y−. (R8)

• Constraints (2), (4) and (5) are compatible if and only if D is below l5, that means

y25 =
m+ − x−

δ+
> y−. (R9)

• Constraints (1), (3) and (6) are compatible if and only if B is above l6, that means

y16 =
m− − x+

δ+
6 y+. (R10)

• Constraint (2), (3) and (7) are compatible if and only if A is above l7, that means

y27 =
x− − µ+

δ−
6 y+. (R11)

• Constraints (1), (4) and (8) are compatible if and only if C is below l8, that means

y18 =
x+ − µ−

δ−
> y−. (R12)

Proof.–– Criteria associated to relations (R1) to (R4) are obvious. Let us establish criterion associated to
relation (R5), criteria associated to (R6) à (R12) being obtained similarly.

x
x+

y

l6 l8l1

b

x68

Figure 25 – Graphical illustration of compatibility between constraints (6), (8) and (1)

By the definition of (x68, y68), we can first note that :

m− − x68
δ+

= y68 =
x68 − µ−

δ−
,

hence :

x68 =
δ−m

− + δ+µ
−

δ− + δ+
.
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Now let us suppose that (R5) is satisfied, i.e. x68 6 x+. Then (x68, y68) satisfies (1) by hypothesis, and
also (6) et (8) by definition. Reciprocally, let us suppose that there exists (x, y) ∈ R

2 satisfying (1), (6)
and (8). Since (6) and (8) are satisfied, by doing δ−(6)+ δ+(8), we obtain (δ−+ δ+)x > δ−m

−+ δ+µ
−,

i.e.

x >
δ−m

− + δ+µ
+

δ− + δ+
= x68.

And since (1) is also satisfied, we finally obtain x+ > x68, which precisely corresponds to (R5). �

4.2.7 –– Theorem. The following conditions are equivalent:

(i) E is non-empty.

(ii) Relations (R1) to (R12) are satisfied.

Proof.–– Implication (i) ⇒ (ii) is clear since for all k ∈ {1, . . . , 8} and indexes i1, . . . , ik such that
1 6 i1 < · · · < ik 6 8, we have Ei1 ∩ · · · ∩Eik 6= ∅ as soon as E = E1 ∩ · · · ∩E8 6= ∅. Reciprocally,
let us suppose that (ii) is satisfied, and let us prove that (i) is also satisfied. In order to do this, we need to
find a point M ∈ R

2 that verifies each of constraints (1) to (8).
We will reason according to the position of point A′ = (x68, y68) in R

2. As we have seen in the proof of
proposition 4.2.6, by using the equations of l6 and l8,

x68 =
δ−m

− + δ+µ
−

δ− + δ+
,

which implies

y68 =
m− − µ−

δ− + δ+
.

1) Since (R5) is satisfied, proposition 4.2.6 says that A′ must be on the left of l1. Let Λ1 be the straight
line of equation

y = y− +
x− x+
δ−

,

i.e. the parallel line to l7 and l8 passing through point C. We can prove that relation (R12) is also
equivalent to say that A′ is above Λ1. Indeed saying that A′ is above de Λ1 means that

m− − µ−

δ− + δ+
>

1

δ−

(
δ−m

− + δ+µ
−

δ− + δ+
− x+

)

+ y−, i.e.
x+ − µ−

δ−
> y−.

which precisely corresponds to relation (R12). By the same way we can prove that relation (R10) means
that A′ is below Λ2, the straight line of equation

y = y+ +
x+ − x
δ+

,

which is the parallel to l5 and l6 passing throughB. Finally, by defining

Z =

{

(x, y) ∈ R
2

∣
∣
∣
∣
x 6 x+, y >

x− x−
δ−

+ y−, y 6
x+ − x
δ+

+ y+
}

,

we have shown that A′ must belong to Z .
Obviously when A′ belongs to E, it is sufficient to set M = A′ to obtain the expected result. Thus
in the following, we will suppose that A′ /∈ E. First we have A′ ∈ E1 by the definition of Z . Next
we have {A′} = d6 ∩ d8 by the definition of A′, hence A′ ∈ E6 ∩ E8, and so A′ ∈ E5 ∩ E7 since
conditions (R3) and (R4) are satisfied. Consequently hypothesis A′ /∈ E can be rewritten:

A′ ∈ (ZrE2) ∪ (ZrE3) ∪ (ZrE4).
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l1

Λ1

Λ2

b

b

b

b

A B

CD

Z

Figure 26 – Representation of Z , the admissible region to point A′ in R
2

2) Let us suppose that A′ ∈ R1, with

R1 =

{

(x, y) ∈ R
2

∣
∣
∣
∣
y < y−, y >

x− x+
δ−

+ y−, y 6
x− x−
δ−

+ y−
}

.

In practice, R1 corresponds to the region of R2 constituted of the points strictly below l4 the straight
line of equation y = y−, above Λ1, the straight line of equation y = y− + (x − x+)/δ−, and below
Λ3, the straight line of equation y = y− + (x− x−)/δ− (the parallel to Λ1 passing throughD).
By definition, relation (R9) means that B′ is above l4. Let M be (x48, y48) the intersection point
between l4, the straight line passing throughC andD, and l8, the straight line passing throughA′ and
B′. Let us show that M ∈ E.

l4

Λ3 Λ1

b b

b

b

D

C

A′

B′

M
bc

Figure 27 – Point M solution when A′ ∈ R1

• Since M ∈ l4, we have y48 = y−, and since M ∈ l8, we deduce that x48 = δ−y
− + µ− by using

the equation of l8 given in 4.2.4.

• According to (R12), we have x+−µ− > δ−y
−, hence x48 = δ−y

−+µ− 6 x+. ThereforeM ∈ E1.

• Since A′ = (x68, y68) is supposed to be below Λ3, then

0 6

(

y− +
x68 − x−

δ−

)

− y68 = y− +
µ− − x−

δ−
,

and so x48 = δ−y
− + µ− > x−. Thus M ∈ E2.

• By definition, M ∈ d4 ⊂ E4, and we have in particular M ∈ E3 since (R2) is satisfied.

• According to (R8) we have m+ − µ− − (δ− + δ+)y
− > 0. Therefore

m+ − x48
δ+

− y48 =
m+ − µ− − (δ− + δ+)y

−

δ+
> 0,

which proves that M is below l5, i.e. M ∈ E5.
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• Since A′ /∈ E2, we have

y− − m− − µ−

δ− + δ+
> 0,

hence (δ− + δ+)y
− + µ− −m− > 0. Therefore

y48 −
m− − x48

δ+
=

(δ− + δ+)y
− + µ− −m−

δ+
> 0,

which proves that M is (strictly) above l6, and so belong to E6.

• By definition, M ∈ d8 ⊂ E8, and we have in particular M ∈ E7 since (R4) is satisfied.

Consequently under the hypotheses (ii) and A′ ∈ R1, we have M ∈ E.

3) Let us suppose that A′ ∈ R2, with

R2 =

{

(x, y) ∈ R
2

∣
∣
∣
∣
x < x−, y >

x− x−
δ−

+ y−, y 6
x− x−
δ−

+ y+
}

.

In practice, R2 corresponds to the region of R2 constituted of the points stricly on the left of l2, the
straight line of equation x = x−, above Λ3, the straight line of equation y = y− + (x− x−)/δ−, and
below Λ4, the straight line of equation y = y+ + (x− x−)/δ−.
If B′ ∈ E2, we can show by using (R1) and (R4) that M = (x28, y28), the intersection point between
l2 (the straight line passing through A and D) and l8 (the straight line passing through A′ and B′),
belongs to E. But if B′ /∈ E2, we can show by using (R3) and (R9) that M = (x25, y25) ∈ E.

l2

Λ3

Λ4

b

b

b

bA

D
A′

B′

M
bc

Figure 28 – Point M solution A′ ∈ R2 and B′ ∈ E2

l2

Λ3

Λ4

b

b

b

b

b

A

DA′

B′

C′

Mbc

Figure 29 – Point M solution when A′ ∈ R2 and B′ /∈ E2
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4) Let us suppose that A′ ∈ R3, with

R3 =

{

(x, y) ∈ R
2

∣
∣
∣
∣
y >

x− x−
δ−

+ y−, y 6
x− − x
δ+

+ y+
}

.

In practice, R3 corresponds to the region of R2 constituted of the points above Λ4, the straight line of
equation y = y−+(x− x−)/δ−, and below Λ5, the straight line of equation y = y++(x−− x)/δ+.
Here again we need to distinguish two cases. If B′ is below Λ5, knowing that (R3), (R6) and (R9) are
satisfied, we can prove that M = (x25, y25), the intersection point between l2 and l5, belongs to E.
But ifB′ is above Λ5, knowing that (R1), (R2) and (R11) are satisfied, we can prove thatA = (x−, y+)
belongs to E.

l2

Λ4

Λ5

b

b

b

b

b

A

D

A′

B′

C′

bc M

Figure 30 – Point M solution when A′ ∈ R3 and B′ is below Λ4

l2

Λ4

Λ5

b

b

b

A

D

A′

B′

bc

Figure 31 – A is solution when A′ ∈ R3 and B′ is above Λ4

5) Let us end by considering that A′ ∈ R4, with

R4 =

{

(x, y) ∈ R
2

∣
∣
∣
∣
y > y+, y >

x− − x
δ+

+ y+, y 6
x+ − x
δ+

+ y+
}

.

In practice, R4 corresponds to the region of R2 constituted by the points strictly above l3, the straight
line of equation y = y+, above Λ4, the straight line of equation y = y+ + (x− − x)/δ+, and below
Λ2, the straight line of equation y = y+ + (x+ − x)/δ+.
In this case, knowing that (R2), (R3), (R7) and (R10) are satisfied, we can prove that M = (x36, y36),
the intersection point between l3 and l6, belongs to E.
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l3

Λ4 Λ2

b b

b

b

A′

D′

A

BbcM

Figure 32 – Point M solution when A′ ∈ R4

In the end, having

(ZrE2) ∪ (ZrE3) ∪ (ZrE4) = R1 ∪R2 ∪R3 ∪R4,

we deduce of points 1) to 5) that implication (ii)⇒ (i) is also true. �

4.2.8 –– Let us assume that E is non-empty. According to theorem 4.2.7, that means that relations (R1)
to (R12) are satisfied. From now on, we will make explicit the bounds of the intervals that define P ∗, the
smallest rectangle of R2 that contains E. So let us fix (x, y) ∈ E.

• By doing (5)− δ+(4), we can note that

x 6 x45 = m+ − δ+y−.

Similarly, by doing (7) + δ−(3), we can note that

x 6 x37 = µ+ + δ−y
+.

Finally, the linear combination δ−(5) + δ−(7) leads to (δ− + δ+)x 6 δ−m
+ + δ+µ

+, from which we
deduce

x 6 x57 =
δ−m

+ + δ+µ
+

δ− + δ+
.

And since x 6 x+ according to (1), by setting

x∗+ = min
(
x+, x37, x45, x57

)
,

we have obtained x 6 x∗+.

• By the same way, by setting
x∗− = max

(
x−, x36, x48, x68

)
,

where

x36 = m− − δ+y+, x48 = δ−y
− + µ− and x68 =

δ−m
− + δ+µ

−

δ− + δ+
,

we can prove that x > x∗−.

• By doing (5)− δ+(2), we obtain

y 6 y25 =
m+ − x−

δ+
.

Similarly, relation (8)− δ−(1) leads to

y 6 y18 =
x+ − µ−

δ−
.
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Finally the difference (5)− (8) provides (δ− + δ+)y 6 m+ − µ−, hence

y 6 y58 =
m+ − µ−

δ− + δ+
.

And since y 6 y+ according to (3), by setting

y∗+ = min
(
y+, y18, y25, y58

)
,

we can conclude that y 6 y∗+.

• By the same way, if
y∗− = max

(
y−, y16, y27, y67

)
,

where

y16 =
m− − x+

δ+
, y27 =

x− − µ+

δ−
and y67 =

m− − µ+

δ− + δ+
,

we can prove that y > y∗−.

In the end, we have established the following result:

Lemma. If E is non-empty, then it is contained in the rectangle Π = [x∗−, x
∗
+]× [y∗−, y

∗
+].

4.2.9 –– Let us take the notations of x∗−, x∗+, y∗−, y∗+ and Π introduced in 4.2.8 back.

Theorem. If E is non-empty, then P ∗ the smallest rectangle from R
2 that contains E is equal to Π.

Proof.–– Let us assume thatE is non-empty. Then by theorem 4.2.7, conditions (R1) to (R12) are satisfied,
and according to lemma 4.2.8, we have already proved that Π is a rectangle of R2 that contains E, i.e.
that P ∗ ⊂ Π. To establish the theorem, it is now sufficient to determine:

– for all x ∈ {x∗−, x∗+}, an element y ∈ R such that (x, y) ∈ E, and,

– for all y ∈ {y∗−, y∗+}, an element x ∈ R such that (x, y) ∈ E.

We will only do it for x = x∗+, the other cases being obtained similarly.

1) Let us assume that x∗+ = x37, and let us show that M = (x37, y37) = (δ−y
++µ+, y+) belongs to E.

• Since x∗+ = x37, then we have x37 = x∗+ 6 x+ by the definition of x∗+, and so M ∈ E1.

• Since (R11) is equivalent to x− 6 δ−y
+ + µ+ = x37, we deduce that M ∈ E2.

• We have M ∈ l3 ⊂ E3 by definition. In particular we also have M ∈ E4 according to (R2).

• Since x∗+ = x37, we have x37 6 x57. And since

x37 6 x57 =
δ−m

+ + δ+µ
+

δ− + δ+
⇐⇒ x37 6 m+− δ+y+ ⇐⇒ y37 = y+ 6

m+ − x37
δ+

,

we can note that M is below l5, that means M ∈ E5.

• We can easily show that condition (R7) precisely means that M is above l6, hence M ∈ E6.

• We have M ∈ d7 ⊂ E7. In particular, we also have M ∈ E8 according to (R4).

Consequently, we have already proved that M ∈ E.
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2) If x∗+ = x45, by using the relations (R2), (R3), (R8), (R9) and inequalities x45 6 x+ and x45 6 x57,
that are implied by the hypothesis x∗+ = x45, we can demonstrate as in point 1) that

(x45, y45) = (m+−δ+y−, y−) ∈ E.

3) If x∗+ = x57, by using conditions (R2), (R6), (R11) and inequalities x57 6 x+, x57 6 x37 and
x37 6 x45, that are implied by the hypothesis x∗+ = x57, then we can prove as in point 1) that

A′ = (x57, y57) =

(
δ−m

+ + δ+µ
+

δ− + δ+
,
m+ − µ+

δ− + δ+

)

∈ E.

4) To conclude, we need to suppose that x∗+ = x+. This case will be treated a little differently from
previous cases. Let us define

{
β+ = min(y+, y15, y18),
β− = max(y−, y16, y17),

where

y15 =
m+ − x+

δ+
, y16 =

m− − x+
δ+

, y17 =
x+ − µ+

δ−
and y18 =

x+ − µ−

δ−
.

• We first prove that β− 6 β+.

– We have y− 6 y+ according to (R2), but also y16 6 y+ according to (R10). Finally, since
x∗+ = x+, we deduce that x+ 6 x37 = δ−y

+ + µ+, which is equivalent to y17 6 y+.
– Since x∗+ = x+, we obtain x+ 6 x45, and so y− 6 y15. Inequality y16 6 y15 immediately results

from (R2). Finally since x∗+ = x+, we also have x+ 6 x57, which is equivalent to y17 6 y15.
– Condition (R12) implies that y− 6 y18, and (R2) implies that y17 6 y18. Finally by using (R5),

we can demonstrate that y17 6 y18.

For all u ∈ {y−, y16, y17} et v ∈ {y+, y15, y18}, we have proved that u 6 v. Hence β− 6 β+.

• Now let us fix y ∈ [β−, β+], and let us consider M = (x+, y). We have M ∈ l1 ⊂ E1, and also
M ∈ E2 since (R1) is satisfied. In addition we haveM ∈ E3 ∩E5 ∩E8 (resp. M ∈ E4 ∩E6 ∩E7)
according to inequality y 6 β+ (resp. y > β−). ThereforeM ∈ E.

In any case, we have been able to determine y ∈ R such that (x∗+, y) ∈ E. Hence the result. �

4.2.10 –– Let us summarize the study leads in the previous paragraphs. According to theorem 4.2.7, if
conditions (R1) to (R12) are satisfied, then E the set of couples (x, y) from R

2 satisfying the constraints
(1) to (8) from 4.2.3 is non-empty. When it happens, theorem 4.2.9 insures that bounds x− and x+ on x
and y− and y+ on y can be corrected by doing:

x− ← x∗−, x+ ← x∗+, y− ← y∗− and y+ ← y∗+,

quantities x∗± and y∗± having been defined in 4.2.8.
When it is possible to do it with x = ψ(k)(t) and y = ψ(k+1)(t), then we obtain new corrections on
bounds on ψ(k)(t) and ψ(k+1)(t). These corrections are still associated to a forward-backward process
since as seen on the example 4.2.1, constrains of type (1) to (8) on x = ψ(k)(t) and y = ψ(k+1)(t) are in
practice obtained by applying the Taylor-Lagrange formula on ψ at points lower and upper that t.
Now an interesting work would consist in implementing numerically these new forward-backward cor-
rections, in order to evaluate their efficiency and comparing it with the one obtained with our classical
forward-backward corrections from chapter 2. It is also important to signal that if the classical forward-
backward corrections are efficient when they are used with sufficiently close data, nothing says that it will
be the same with this new kind corrections. Unfortunately for a lack of time, we have essentially lead this
theoretical study, but we have not yet taken the time to do enough numerical simulations.
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4.3 In higher dimension

4.3.1 –– In this section, we fix n ∈ Nr{0, 1}, and we will see how it is possible to generalize in a very
elementary way the models and algorithms presented in the previous chapters to functions defined on
I and valued in R

n. It is well-known that there is no general hypotheses that makes Taylor-Lagrange
formula true to functions valued in R

n. For instance, if g : R → R
2, x 7→ (cos x, sinx), then for all

ξ ∈ ]0, 2π[ we have

g(2π)− g(0) = (0, 0) 6= 2π(− sin ξ, cos ξ) = (2π − 0)g′(ξ).

However if g : I → R
n has amth derivative, x ∈ I and h ∈ R

∗ satisfies x+h ∈ I , for all j ∈ {1, . . . , n},
it is still possible to apply the Taylor-Lagrange formula to gj : I → R, hence the existence of ξj strictly
between x and x+ h such that

gj(x + h) =

(
m−1∑

k=0

hk

k!
g
(k)
j (x)

)

+
hm

m!
g
(m)
j (ξj).

Therefore theories from the previous chapters can be extended to functions from I to R
n by working

component by component. Thus to solve the problem presented in introduction of this part with a function
f : I → R

n satisfying for instance analogous hypotheses than those done in chapter 3, that means:

• for all i ∈ {1, . . . , N}, f(ti) is bounded,

• f ′′ and f ′′′ are uniformly bounded,

we can concretely apply the treatment presented in sections 3.2 or 3.5 on each component of f . Let us
highlight that in doing this, the various components of f can be handled independently, hence a possible
parallelization of the various computations.

b

b

ti

tj

Exact trajectory

Initial bounds

Bounds deduced of the

forward-backward corrections

Final bounds

Figure 33 – Example of forward-backward corrections when n = 2
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4.3.2 –– EXAMPLE. We have tested the effect of the extension suggested in 4.3.1 on a very simple ex-
ample. Denoting by f2 the function f considered in chapter 3 for our one-dimensional simulations, we
have adapted them to solve a problem in dimension n = 2 on the function f given by:

f : R→ R
2, t 7→ (t, f2(t)).

By generating analogous input data on f1 : t 7→ t and using precisely the same as those used in chapter 3
for f2, we have noted similar performances in comparison to those observed one the one-dimensional
case: equivalent computation time and improvements on each component of f . In particular we have
obtained exactly the same performances on f2, that illustrates the independence of the treatment done
component by component.

4.3.3 –– The extension in higher dimension presented in this section suggests to equip R
n of the norm

‖·‖∞ : R
n → R+, x 7→ max{|xj | | 1 6 j 6 n},

which is always possible since all the norms on R
n are equivalent. If the initial bounds on f or f (d)

are expressed in an other norm of R
n, it can require a pejoration of our initial data, which could be

nevertheless make up by our treatment. An additional work but not lead until now (since we were only
considering a unidimensional problem) could consist in extending our models by taking the initial norm
(associated to the input data) on R

n.

REMARK. More generally, for functions valued in R
n, our goal will consist in reducing the certified

domains (in the sense of inclusion) that bounds f and its derivatives in t1, . . . , tN . Whatever the shape
of these domains, we can thus seek to reduce the diameter of each one of these domains. When n = 1
in the theory presented above, these domains are intervals and we have tried to reduced their diameter: it
justifies the terminology of diameter functions adopted in chapter 1.

Conclusion

There are probably many other possible generalizations or extensions to the works presented in chapters 1
to 3. We have only presented here those that we had already considered, or that we thought were the most
essential. If the ones presented in sections 4.1 and 4.2 seem now relatively easy to test in practice, the
generalization of our models in higher dimension mentioned in section 4.3 could be much more difficult,
both theoretically and numerically.



Conclusion et perspectives

L’étude menée dans cette partie nous a permis de voir comment, à partir de bornes en certains points sur
une application (inconnue en pratique) f : I → R

n, où n ∈ N
∗, et de bornes uniformes sur au moins

l’une de ses dérivées d-ième, il était possible de borner les applications f ′, . . . , f (d−1) d’une part, et
mettre en cohérence différentes bornes sur f , f ′, . . . , f (d−1) d’autre part. En ce sens, notre travail se
révèle particulièrement adapté aux situations où l’on ne parvient pas à modéliser mathématiquement, que
ce soit de façon totale ou partielle, le phénomène ou le système étudié. Dans notre cas, nous souhaitions
estimer les position, vitesse et accélération d’un train sans avoir une connaissance suffisante de ses car-
actéristiques techniques (mécanismes d’accélération ou de freinage) ; nous pouvions seulement nous fier
à des bornes ponctuelles sur sa position, et des bornes uniformes sur son accélération et son jerk.
Rappelons que notre approche, à notre connaissance novatrice en la matière, est totalement déterministe.
À cet égard, elle se distingue des méthodes probabilistes (e.g. filtrage de Kalman), souvent inadaptées
lorsque qu’un très haut niveau de sureté est requis, comme c’était le cas pour les applications que nous
considérions. Par ailleurs, nos modèles et algorithmes peuvent être sans crainte couplés à d’autres exis-
tant sur le sujet, sans que cela risque d’impacter le niveau de fiabilité, et peuvent en outre être utilisés
pour détecter certaines incohérences dans les jeux de données traités.
En combinant les différents algorithmes que nous avons conçus, nous avons résolu une problématique
inspiré du monde ferroviaire. Nous avons à cet effet illustré l’efficacité de nos modèles, et montré qu’ils
permettent de réaliser tant des analyses en temps réel qu’a posteriori.

Si l’on peut déjà se satisfaire de ces premiers résultats encourageants, de nombreuses pistes permet-
tant d’améliorer, de généraliser ou d’appliquer notre travail nous semblent intéressantes à considérer.
Donnons-en quelques unes parmi bien d’autres :

• Au chapitre 1, nous avons proposé différentes façons de borner les dérivées k-ièmes d’une fonction ψ
dérivable p = 2 ou p = 3 fois, pour 0 < k < p. Une suite logique consisterait à mener ce travail pour
des entiers k et p quelconques, le cas k = 0 ayant été évoqué à la section 4.1.

• Toujours au chapitre 1, en comparant les avantages et incovénients des formules centrées et décentrées,
nous avons montré qu’il existe une concession entre leur précision et leur possible utilisation en temps
réel. Une autre perspective consisterait à trouver récupérer des bornes aussi précises que celles déduites
des formules centrées, mais qui puissent être raisonnablement utilisées en temps réel. Nous avions à
cet égard tenté de nous inspirer de ce que permettent les schémas compacts de S. K. LELE dans [13]
pour la résolution d’équations différentielles, mais leur adaptation à notre étude ne semble pas si aisée.

• Une extension des corrections forward-backward proposées au chapitre 2 a été considérée à la sec-
tion 4.2. Il pourrait être intéressant d’étudier en détail l’efficacité de ces nouvelles corrections, en
particulier par rapport à celles du chapitre 2, ou bien encore de trouver d’autres modèles similaires
permettant de mettre en cohérences différentes bornes sur une fonction et ses dérivées.

• Nos modèles ont été originellement développées pour des fonctions à valeurs réelles. À la section 4.3,
nous avons expliqué comment les appliquer très simplement à des applications à valeurs dans Rn, pour
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un entier n arbitrairement grand, en équipant Rn de la norme infinie. Il nous semblerait désormais
important de trouver des méthodes qui prennent en compte la topologie initiale des données sur Rn à
traiter, et plus généralement d’étendre tout cela à des applications de R

p dans Rq , pour p et q choisis
quelconques dans N∗.

• Nous évoquions enfin le possible couplage de nos modèles à d’autres. Signalons à cet égard une
possible application à certaines techniques de machine learning, qui essaient de retrouver les équations
régissant un système dynamique spatio-temporel de la forme :

∂tu = F (u, ∂xu, . . . , x, θ),

Ici, u désigne une fonction, l’inconnue du système, dépendant d’une variable temporelle t et d’une
variable d’espace x connu ou partiellement, F une fonctionnelle non nécessairement connue, et θ un
paramètre. Pour parvenir à leurs fins, ils se basent sur diverses observations de u, et éventuellement
∂tu, ∂xu, etc. à disposition. Pour de plus amples informations, nous renvoyons le lecteur à l’article [2]
d’I. AYED, E. de BÉZENAC, A. BRAJARD et P. GALLINARI.
À partir de l’information disponible sur u, et l’une de ses dérivées dans le meilleur des cas, ou, le
cas échéant, sur certains processus liés à la dynamique du système, nos modèles permettraient sans
doute d’obtenir plus d’information sur les dérivées de u, puis raffiner toute les informations sur u et
ses dérivées ainsi récupérées. Ainsi, les équations obtenues par ces techniques de machine learning
expliqueraient d’autant mieux le système ou phénomène étudié.

Bien entendu, il existe sans doute bien d’autres applications, adaptations ou améliorations de nos travaux ;
nous en proposerons d’ailleurs de nouvelles à l’issue de l’étude menée dans le partie II de ce me manuscrit.
Mais insistons sur le fait qu’en pratique, celles-ci dépendront avant tout du système ou phénomène étudié,
et nous seront suggérées par la nature des données à disposition, ou encore par un retour d’expérience.



II

Theorical and numerical study
of a shape from shading problem
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Introduction

Notations et conventions spécifiques

La plupart des notations ou conventions spécifiques à cette étude seront spécifiées tout au long du texte,
ou pour les plus traditionnelles d’entre elles, à la fin de ce document. Nous ne préciserons donc ici que
les plus essentielles d’entre elles.
Sauf mention explicite du contraire, étant donné d ∈ N

∗ :

• Nous noterons abusivement 0 le vecteur nul de Rd.

• La famille (e1, . . . , ed) désignera la base canonique de Rd.

• Si x ∈ R
n et j ∈ {1, . . . , d}, nous noterons généralement xj ou x(j) la j-ième composante de x, de

sorte que x = (x1, . . . , xd) ou x =
(
x(1), . . . , x(d)

)
. Dans quelques rares cas, nous préférerons noter

celle-ci xj−1 ou x(j − 1), de sorte que x = (x0, . . . , xd−1) ou x =
(
x(0), . . . , x(d− 1)

)
.

Bien entendu, nous nous efforcerons de chasser toute ambiguïté à cet égard durant cette étude.

• Si x, y ∈ R
n, nous noterons x·y = x1y1+ · · ·+xnyn le produit scalaire usuel de x et y, et |x| = √x·x

la norme euclidienne de x.

• R
d sera supposé muni de sa structure usuel d’espace euclidien, et, au besoin, toute partie de Rd sera vue

comme un sous-espace métrique de R
d. Pour toute partie A de R

d, nous noterons alors A l’adhérence
de A dans Rd, et ∂A sa frontière dans Rd.

• Nous noterons respectivement B(0, 1) et B′(0, 1) les boules unités ouverte et fermée de Rd.

De plus, si X est une partie de Rd :

• Nous noterons respectivement C(X) (resp. C1(X), C∞(X)) l’ensemble des fonctions continues (resp.
différentiables à différentielles continues, indéfiniment différentiables) de X dans R.

• Nous noterons B(X) l’ensemble des fonctions continues et bornées de X dans R. Pour u et v deux
fonctions de B(X), nous écrirons en outre u 6 v dès que u(x) 6 v(x) pour tout x ∈ X .

Enfin, toutes les simulations présentées dans cette partie ont été réalisées sous python, et ce même si
nombre de sorties graphiques ont été reproduites, pour des raisons esthétiques, sous LATEX.

Contexte de l’étude, organisation et contributions

Dans cette partie, on s’intéresse à la résolution d’un problème de shape from shading (abrégé en s.f.s.
dans ce qui suit), qui consiste à reconstituer la surface représentée sur une image en noir et blanc, par
la seule connaissances des différentes nuances de gris et, bien entendu, de la position exacte de certains
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points de la surface. Une première modélisation mathématique de ce problème à partir d’une équation
différentielle non linéaire a été proposée par B. K. HORN dans [9] en 1975. Depuis, de nombreux auteurs
ont considéré ce problème et diverses approches ont été proposées.
Notre étude est essentiellement basée sur les travaux initialement menés par P.-L. LIONS, E. ROUY et
A. TOURIN, par exemple dans [16] ou [19], et plus récemment repris par E. PRADOS et O. FAUGERAS,
par exemple dans [17] ou [18]. Dans ce cas, la solution du problème de s.f.s. sera associée à la solution de
viscosité d’une équation de Hamilton-Jacobi stationnaire du premier ordre, et nous tenterons de fait d’en
déterminer une approximation. En l’état, nos contributions consistent en un bref état de l’art théorique
et numérique de cette approche du problème. Nous proposons également une formulation explicite d’un
schéma d’approximation considéré comme implicite, et nous effectuons, code python à l’appui, une
optimisation de certains algorithmes utilisés jusqu’alors. De façon plus précise :

• La littérature au sujet des solutions de viscosité étant généralement très spécialisée, nous avons souhaité,
au chapitre 5, rappeler les définitions et résultats théoriques nécessaires à l’étude du problème s.f.s., en
proposant parfois même des preuves directes de résultats établis dans des cadres plus généraux ailleurs
(voir par exemple le résultat d’unicité de la section 5.3). Pour la compréhension, nous mettons cette
théorie en œuvre sur des exemple simples, et nous montrons comment l’appliquer à notre problème.

• Les chapitres suivants sont consacrés à la résolution numérique du problème de s.f.s. Nous y reprenons
pour l’essentiel un schéma d’approximation, qualifié d’implicite par E. PRADOS et O. FAUGERAS dans
[18], et nous montrons comment le rendre explicite, dans un cadre unidimensionnel au chapitre 6,
puis dans un cadre bi-dimensionnel au chapitre 7. Dans les deux cas, nous proposons un algorithme
permettant une résolution effective, et manifestement bien plus rapide, du problème de s.f.s. Nous
présentons enfin diverses simulations numériques illustrant les performances de notre algorithme. Dans
un soucis de reproductibilité, l’intégralité du code python permettant de reproduire nos simulations
est mis en libre accès (à ce jour, nos fichiers sont livrés en l’état, mais un notebook jupyter est en
préparation).
Si le problème de s.f.s. et l’équation associée sont traditionnellement étudiés en dimension 2, la seule
que l’on considère d’un point de vue pratique, l’étude spécifique du cas unidimensionnel permet de
fixer les idées et de mieux comprendre comment celles-ci se généralisent en dimension supérieure.
C’est pourquoi il nous a semblé utile de consacrer un chapitre entier à l’étude de ce problème en
dimension 1.

Bien entendu, et même si ne nous les évoquerons pas ici, il existe bien d’autres manières d’aborder et
de résoudre un tel problème. À cet égard, signalons par exemple les méthodes dites de fast marching,
présentées par J. A. SETHIAN dans [20], puis appliquées au problème de s.f.s. par et R. KIMMEL et
J. A. SETHIAN dans [12]. Ou bien encore les travaux de B. WU, W. C. LIU, A. GRUMPE et C. WÔHLER

qui, dans [21], considèrent des modèles prenant en compte la variation de certains paramètres physiques
(e.g. l’albedo).

Formulation du problème

Comme nous l’avons précédemment expliqué, notre objectif consiste à reconstituer la surface représentée
sur une image en noir et blanc, par la seule connaissances des différentes nuances de gris et de la position
exacte de certains points de la surface, et ce dans un cadre tant unidimensionnel que bidimensionnel. En
ce sens, si l’image correspond à une traditionnelle photographie en noir et blanc en dimension 2, nous
pourrons l’assimiler à une “bande grisée” en dimension 1.
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D’un point de vue mathématique, fixant n ∈ {1, 2} :

• Nous supposerons que la surface S observée sur l’image peut être décrite comme suit :

S =
{(
x, u(x)

) ∣
∣ x ∈ Ω

}
,

où Ω désigne un ouvert connexe et borné de R
n (physiquement assimilé à la région photographiée) et

u une fonction bornée de Ω dans R (correspondant physiquement à la l’altitude).

• L’espace sera supposé éclairé par une unique source lumineuse ponctuelle et située au dessus de S.
Ainsi, à tout point

(
x, u(x)

)
de S, où x ∈ Ω, il est d’associer un unique vecteur L(x) unitaire et

orienté vers la source lumineuse.

• L’intensité lumineuse en un point x ∈ Ω sera modélisée par une quantité I(x) comprise entre 0 et 1,
d’où une fonction I : Ω → [0, 1]. Très concrètement, I mesurera le niveau de gris sur l’image, le noir
correspondant à une intensité nulle (zone d’ombre) et le blanc à une intensité égale à 1.

Sous ces conditions, et en utilisant un modèle physique usuel (scène lambertienne et d’albédo constant
égal à 1), l’équation de la brillance (brightness equation) stipule que pour tout x ∈ Ω, l’intensité lu-
mineuse I(x) de S au point

(
x, u(x)

)
est décrite par la relation :

I(x) = max

(

0,
n(x)·L(x)
|n(x)|

)

=







cosα(x) si
−π
2

6 α(x) 6
π

2
,

0 sinon,

n(x) =
(
n1(x), n2(x), n3(x)

)
désignant un vecteur normal à S au point

(
x, u(x)

)
tel que n3(x) > 0, et

α(x) l’angle entre les vecteurs L(x) et n(x).

S

b

b
n(x)

L(x)

x

u(x)

α(x)

Figure 34 – Représentation de S, L(x) et n(x) en dimension 1

En pratique, nos scènes seront éclairées par le soleil. Dans ce cas, il est raisonnable de supposer la source
lumineuse située à l’infini, et donc qu’il existe un unique triplet (l, l3) ∈ R

n × R, avec l3 > 0, tel que
L(x) = (l, l3) pour tout x ∈ Ω. De fait, sachant que pour tout x ∈ Ω, un vecteur normal à S en

(
x, u(x)

)

est donné par (−∇u(x), 1), la précédente équation se réécrit :

I(x) = max

(

0,
−∇u(x)·l+ l3
√

1 + |∇u(x)|2

)

. (II.1)
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Pour reconstituer la surface S recherchée, tout revient donc à déterminer la fonction u qui la décrit. Au
regard de (II.1), connaissant I : Ω→ [0, 1], il est possible de récupérer de l’information sur u à partir de
l’équation :

I(x) =
−∇u(x)·l+ l3
√

1 + |∇u(x)|2
. (II.2)

Ce faisant, si u satisfait à (II.2), elle satisfait en particulier à (II.1), mais le profil de u obtenu par résolution
de (II.2) ne sera pas forcément fidèle à la réalité. Signalons qu’il s’agit là d’une limitation uniquement dû
au modèle physique : en effet, lorsque I s’annule, (II.1) peut-être satisfaite pour différents profils de u.
Dans cette seconde partie de manuscrit, la surface S sera donc reconstruite par résolution de l’équation
simplifiée (II.2). Comme nous le verrons dès le chapitre 5, il s’agit d’une équation de Hamilton-Jacobi
du premier ordre, mal posée en l’état : non unicité flagrante, existence de solutions généralement non
classiques, etc. Nous y montrerons en particulier comment le formalisme des solutions de viscosité
permet, en partie, de palier ces difficultés.



Chapter 5

Generalities about Hamilton-Jacobi equations

Introduction

In this chapter, we remind various results about the Hamilton-Jacobi equations. To begin with, a definition
and first examples of these (ill-posed) equations are given in section 5.1. Then we introduce in section 5.2
the notion of viscosity solutions in the continuous case. In sections 5.3 and 5.4, we state uniqueness and
existence results, by giving a direct proof of this first one, and we apply all this to the s.f.s. problem in
section 5.5. We shortly explain how to extend this to the discontinuous case in section 5.6. Finally in
section 5.7, we will introduce theoritically the approximation schemes that will be used in the following
chapters in order to solve numerically the s.f.s. problem in one-dimension as well as in two-dimension.

5.1 Definitions and first observations

5.1.1 –– From a formal point of view, a first order Hamilton-Jacobi equation is an equation of unknown
u : Ω→ R that can be written:

∀x ∈ Ω, H(x, u(x),∇u(x)) = 0, (5.1)

where Ω is an open subset of Rn (with n ∈ N
∗) andH : Ω×R×R

n → R is a continuous function called
a Hamiltonian. Let us remark that if a function u satisfies (5.1), then for all λ ∈ R

∗, it will also satisfy
λH(x, u(x),∇u(x)) = 0 for all x ∈ Ω. As we will see in section 5.2, this obvious observation will have
importance consequences when we will deal with viscosity solutions.
A special case of Hamilton-Jacobi equations of the first order is given by those which only depend on x
and∇u(x), i.e. that can be written:

∀x ∈ Ω, H(x,∇u(x)) = 0, (5.2)

where Ω is still an open subset of Rn (with n ∈ N
∗) and H : Ω × R

n → R a continuous function also
called a Hamiltonian.

5.1.2 –– EXAMPLE. The eikonal equation

∀x ∈ Ω, |∇u(x)| = 1 (5.3)

is a Hamilton-Jacobi equation of the form (5.2), and functions

H : Ω× R
n → R, (x, p) 7→ |p| − 1 and −H : Ω× R

n → R, (x, p) 7→ 1− |p|
are two Hamiltonians associated to (5.3).

109
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5.1.3 –– In connection with the shape from shading problem we are interested in, by fixing n ∈ {1, 2}, we
can note that the brightness equation (II.2) presented in introduction of this part II is a Hamilton-Jacobi
of the form (5.2), with for Hamiltonian

H : Ω× R
n → R, x 7→ I(x)

√

1 + |∇u(x)|2 +∇u(x)·l − l3.

REMARK. In the particular case where the unit light vector (l, l3) ∈ R
n × R is defined by

l = 0 and l3 = 1,

and the intensity satisfies, for all x ∈ Ω,

I(x) =

√
2

2
,

we can easily prove that the brightness equation is equivalent to the eikonal equation (5.3).

5.1.4 –– Let us formulate some observations about equations of the form (5.2).

• Boundary conditions.
We can note that equation (5.2) is ill-posed. Indeed since this equation only depends on x and ∇u(x),
if u is a solution of (5.2) then for all λ ∈ R function u + λ is also solution of (5.2). To avoid this
difficulty, we can fix for instance the value of u in at least one point of Ω.
In control theory, by assuming that Ω is convex, the function

d : Ω→ R, x 7→ inf
y∈∂Ω

(
|y − x|

)

that measures the distance of a point from Ω to its boundary ∂Ω turns out to be a natural weak solution
of the eikonal equation (5.3), that satisfies the boundary condition:

∀x ∈ ∂Ω, d(x) = 0.

More generally, let ϕ : ∂Ω→ R be a continuous function and

v : Ω→ R, x 7→ inf
y∈∂Ω

(
ϕ(y) + |y − x|

)
.

While ϕ(x) 6 ϕ(y)+ |y−x| for all x, y ∈ ∂Ω, function v turns out to be a weak solution of the eikonal
equation (5.3) that satisfies the boundary condition

∀x ∈ ∂Ω, v(x) = ϕ(x).

That is why equation (5.2) is generally coupled to Dirichlet boundary condition

∀x ∈ ∂Ω, u(x) = ϕ(x), (5.4)

for a given continuous function ϕ : ∂Ω→ R.
But in the case of our shape from shading problem, prescribing Dirichlet boundary conditions seems
unreasonable since it physically consists in knowing the altitude of the shape in the boundary of the
black and white picture (which is associated to the domain Ω).

• Existence, uniqueness and regularity of the solutions.
Now let us suppose n = 1, Ω = ]0, 1[, and focus on the problem still given by the eikonal equation

{
|u′(x)| = 1 if x ∈ ]0, 1[,
u(x) = 0 if x ∈ {0, 1}. (5.5)
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Rolle theorem shows that all solution of (5.5) is never differentiable on overall ]0, 1[. Therefore this
problem does not admit a classical solution, and we will have to look for solutions in a weaker sense.
Now for all k ∈ N, let us consider the 2−k-periodic function uk from [0, 1] to R defined, for all
x ∈

[
0, 2−k

]
, by

uk(x) =
1

2k+1
−
∣
∣
∣
∣

1

2k+1
− x
∣
∣
∣
∣

.

It is clear that uk and −uk are continuous functions on [0, 1] and differentiable on ]0, 1[ except at a
finite number of points. Thus these functions constitutes acceptable weak solutions of problem (5.5),
and this problem still admits and infinity of solutions.

0

1

2

1

2

1
x

u(x)

C0

C1
C2

Figure 35 – Representative curves C0, C1, C2 of functions u0, u1, u2 satisfying (5.5)

The previous considerations show that we can at most hope to find continuous solutions to Hamilton-
Jacobi equations of the form (5.2). In addition since it seems necessary and natural to couple this kind of
equations to Dirichlet boundary conditions of the form (5.4), this is clearly not sufficient.
That is why we need to introduce a class of weak solution that makes problems of the form (5.2)-(5.4)
well-posed. The viscosity solutions presented in the following section are intended to do it.

5.2 Continuous viscosity solutions

5.2.1 –– For the rest of this chapter, we fix n ∈ N
∗ and we denote by Ω an open and bounded subset of

R
n. Until section 5.6, we will also denote by H a continuous application defined on Ω × R

n. In this
section 5.2, we will more generally consider the equation of unknown u : Ω→ R:

∀x ∈ Ω, H(x,∇u(x)) = f(x), (5.6)

where f is a continuous function from Ω to R.

Definition. Let u ∈ C(Ω).
(i) We say that u is a viscosity subsolution of equation (5.6), or that u satisfies H(x,∇u(x)) 6 f(x)

in a viscosity sense, if for all φ ∈ C1(Ω) and all x0 local maximum of (u − φ) we have

H(x0,∇φ(x0)) 6 f(x0).

(ii) We say that u is a viscosity supersolution of equation (5.6), or that u satisfiesH(x,∇u(x)) > f(x)
in a viscosity sense, if for all φ ∈ C1(Ω) and all x0 local minimum of (u− φ) we have

H(x0,∇φ(x0)) > f(x0).



112 5. GENERALITIES ABOUT HAMILTON-JACOBI EQUATIONS

(iii) We say that u is a viscosity solution of equation (5.6), or that u satisfies H(x,∇u(x)) = f(x) in a
viscosity sense, if u is both a subsolution and a supersolution of this equation.

5.2.2 –– EXAMPLE. An important example of viscosity solutions is given by the classical solutions. In-
deed if u ∈ C1(Ω) is a classical solution of (5.6), then we have H(x,∇u(x)) = f(x) for all x ∈ Ω.
And since for all φ ∈ C1(Ω) and all x0 local extremum of (u − φ) we have ∇u(x0) = ∇φ(x0), then
H(x0,∇φ(x0)) = 0 and u is therefore a viscosity solution of (5.6).

5.2.3 –– It is important to note that definitions from 5.2.1 depend on the choice of H . This will be
confirmed on a concrete example in 5.2.7. For now we can prove the following result, which shows how
the definitions from 5.2.1 behave by switching to the opposite.

Proposition. Let u ∈ C(Ω) and let us denote by v the function −u.

(i) Function u satisfies H(x,∇u(x)) 6 f(x) in a viscosity sense if and only if function v satisfies
−H(x,−∇v(x)) > −f(x) in a viscosity sense.

(ii) Function u satisfies H(x,∇u(x)) > f(x) in a viscosity sense if and only if function v satisfies
−H(x,−∇v(x)) 6 −f(x) in a viscosity sense.

(iii) Function u satisfies H(x,∇u(x)) = f(x) in a viscosity sense if and only if function v satisfies
−H(x,−∇v(x)) = −f(x) in a viscosity sense.

Proof.–– It is sufficient to prove (i), (ii) being obtained by a totally similar way and (iii) being an imme-
diate consequence of the previous points by definition 5.2.1. So let φ ∈ C(Ω) and x0 ∈ Ω.

• Let us suppose that u satisfies H(x,∇u(x)) 6 f(x) in a viscosity sense. If x0 is a local maximum of
v − φ = −u− φ, then x0 is a local minimum of −(−u− φ) = u− (−φ). Therefore

H(x0,−∇φ(x0)) 6 −f(x0), hence −H(x0,−∇φ(x0)) > f(x0),

and the arbitrariness on φ and x0 shows that−v satisfies H(x,−∇v(x)) > −f(x) in a viscosity sense.

• Reciprocally let us suppose that v satisfies −H(x,−∇v(x)) > −f(x) in a viscosity sense. If x0 is a
local minimum of u− φ, then x0 is a local maximum of −(u− φ) = v − (−φ). Therefore

−H(x0,−∇(−φ)(x0)) > f(x0), hence H(x0,∇φ(x0)) 6 −f(x0),

and the arbitrariness on φ and x0 shows that u satisfies H(x,∇u(x)) 6 f(x) in a viscosity sense. �

5.2.4 –– Until section 5.6, unless otherwise indicated, we will only talk about subsolution, supersolution
or solution to mean viscosity subsolution, viscosity supersolution or viscosity solution. Let us highlight
that all of our definitions deal with continuous functions. We will shortly explain how to extend them to
discontinuous functions in section 5.6.
Moreover points (i), (ii) and (iii) of definition 5.2.1 will be extended to continuous functions from Ω to
R as long as their restrictions to Ω satisfy the corresponding conditions. By doing so, we will say that a
function u ∈ C

(
Ω
)

is a solution (resp. subsolution, supersolution) of the Dirichlet problem (5.2)-(5.4)

{
H(x,∇u(x)) = 0 if x ∈ Ω
u(x) = ϕ(x) if x ∈ ∂Ω

if u is a solution (resp. subsolution, supersolution) of (5.2) and if it satisfies (5.4).
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5.2.5 –– As it stands, it seems difficult to show that a function is a solution of viscosity of equation (5.6)
just by applying definition 5.2.1. To make this easier, given a function u ∈ C(Ω) and x ∈ Ω, we introduce
the superdifferential of u in x, which is the closed and convex subset of Rn given by:

D+u(x) =

{

p ∈ R
n

∣
∣
∣
∣
lim sup
y→x

u(y)− u(x)− p·(y − x)
|y − x| 6 0

}

,

and the subdifferential of u in x, which is the closed and convex subset of Rn given by:

D−u(x) =

{

p ∈ R
n

∣
∣
∣
∣
lim inf
y→x

u(y)− u(x)− p·(y − x)
|y − x| > 0

}

.

We can graphically observe that a point p ∈ R
n is in D+u(x) (resp. D−u(x)) if and only if the hyperplane

y 7→ u(x) + (p | y − x) is above (resp. under) the graph of u in a neighbourhood of x.
We can also verify that D±(−u)(x) = −D∓u(x) and D±(u + λ)(x) = D±u(x) for all λ ∈ R.

EXAMPLE. If n = 1, Ω = R and u : R→ R, x 7→ |x|, we have

D+u(x) =







{1} if x > 0,
{−1} if x < 0,
∅ if x = 0,

and D−u(x) =







{1} if x > 0,
{−1} if x < 0,
[−1, 1] if x = 0.

5.2.6 –– The following result establishes a link between the superdifferential and subdifferential intro-
duced in the previous paragraph and the viscosity solutions. Its proof can be for instance found in [6].

Theorem. Let u ∈ C(Ω).
(i) u is a subsolution of (5.6) if and only if H(x, p) 6 f(x) for all (x, p) ∈ Ω×D+u(x).

(ii) u is a supersolution of (5.6) if and only if H(x, p) > f(x) for all (x, p) ∈ Ω×D−u(x).

5.2.7 –– EXAMPLE. We suppose here that n = 1, Ω = ]0, 1[, and

H : ]0, 1[ × R→ R, (x, p) 7→ |p| − 1.

By taking the notations of functions uk from paragraph 5.1.4 back and by using the various results from
5.2.5, we can verify that

D+u0(x) =







{1} if x <
1

2
,

{−1} if x >
1

2
,

[−1, 1] if x =
1

2
,

and D−u0(x) =







{1} if x <
1

2
,

{−1} if x >
1

2
,

∅ if x =
1

2
.

Therefore theorem 5.2.6 easily implies that u0 is a viscosity solution of the problem
{
H(x, u′(x)) = 0 if x ∈ ]0, 1[,

u(x) = 0 if x ∈ {0, 1}, (5.7)

and that −u0 is not a viscosity solution of this problem. Now we can also deduce from proposition 5.2.3
that −u0 is a viscosity solution of

{
−H(x, u′(x)) = 0 if x ∈ ]0, 1[,

u(x) = 0 if x ∈ {0, 1}, (5.8)

but not u0. Similarly, we can show that when k > 1, functions uk or −uk are not viscosity solutions to
either of these two problems.
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5.3 Uniqueness result

5.3.1 –– In this section, we will thus see how it is possible to insure, in a viscosity sense, the uniqueness
of a solution to problem (5.2)-(5.4)

{
H(x,∇u(x)) = 0 if x ∈ Ω,
u(x) = ϕ(x) if x ∈ ∂Ω.

As said in 5.2.4, let us remind that we will talk about solution instead of viscosity solution. Let us start
by introducing some vocabulary and reminding some general results of real analysis.

• We call modulus each function m : [0,+∞[ → [0,+∞[ that is non-decreasing, continuous in 0 and
that satisfies m(0) = 0.

• If (X, d) is a compact metric space and f : X → R a continuous application, then:

– f is bounded and reaches its bounds.

– f is uniformly continuous and admits a modulus of continuity, that can be considered as modulusmf

such that for all x, y ∈ X :
|f(x)− f(y)| 6 mf (d(x, y)).

Indeed such a function is given by

mf : [0,+∞[→ [0,+∞[, t 7→ sup{|f(x)− f(y)| | x, y ∈ X, |x− y| 6 t}.

5.3.2 –– The uniqueness result is based on a maximum principle . More precisely, we say that equation
(5.2) satisfies a maximum principle if for all functions u, v ∈ C

(
Ω
)

such that u and v are respectively
subsolution and supersolution of (5.2), we have:

[
∀ x ∈ ∂Ω, u(x) 6 v(x)

]
=⇒

[
∀ x ∈ Ω, u(x) 6 v(x)

]
.

It is then clear that if (5.2) satisfies a maximum principle, the problem (5.2)-(5.4) has at most one solution.
Indeed, let be u, v ∈ C

(
Ω
)

two solutions of it. Then:

– u and v are both subsolutions and supersolutions of (5.2),

– u(x) = v(x) for all x ∈ ∂Ω by (5.4).

In particular, having u(x) 6 v(x) for all x ∈ ∂Ω with u subsolution and v supersolution of (5.2), that
satisfies a maximum principle, we get u(x) 6 v(x) for all x ∈ Ω. But as u and v play symmetrical roles,
we also have v(x) 6 u(x) for all x ∈ Ω, that implies u = v on overall Ω.
We can show that equation (5.2) satisfies a maximal principle under the following assumptions:

(A1) There exists a modulus m such that, for all x, y ∈ Ω and p ∈ R
n:

H(x, p)−H(y, p) 6 m
(
|x− y|(1 + |p|)

)
.

(A2) For all x ∈ Ω, the functionH(x, · ) : Rn → R, p 7→ H(x, p) is convex.

(A3) There exists α < 0 and ψ ∈ C
(
Ω
)

with ψ|Ω ∈ C1(Ω) such that, for all x ∈ Ω:

H(x,∇ψ(x)) 6 α.
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In the rest of this section, we will give a direct proof of this by referring to the work of H. ISHII in [10],
M. G. CRANDALL, L. C. EVANS and P.-L. LIONS in [7] and G. BARLES in [4].

5.3.3 –– The classical way to prove the uniqueness result consists in performing a split into two variables.
Given u, v ∈ C

(
Ω
)

and ε > 0, the split we will consider will be defined as follows:

Φε : Ω× Ω→ R, (x, y) 7→ u(x)− v(y)− |x− y|
2

ε2
.

Since u, v are continuous and Ω is compact (because closed and bounded in R
n), functions u, v, (u− v)

and Φε are bounded and reach they bounds. Thus there exists:

– R > 0 such that |u(x)| 6 R and |v(x)| 6 R for all x ∈ Ω,

– M ∈ R such that M = sup
{
u(x)− v(x)

∣
∣ x ∈ Ω

}
,

– (xε, yε) ∈ Ω× Ω such that the real Mε = Φ(xε, yε) satisfies Mε > Φε(x, y) for all (x, y) ∈ Ω× Ω.

Conserving the previous notations, we can establish the following result:

Lemma. We assume that u(x) 6 v(x) for all x ∈ ∂Ω and that M > 0. Then:

(i) Mε →M when ε→ 0.

(ii)
|xε − yε|2

ε2
→ 0 when ε→ 0.

(iii) There exists η > 0 such that xε, yε ∈ Ω for all ε ∈ ]0, η].

Proof.–– Let ε > 0.

(i) By the definition of Mε, we clearly have

M 6 Mε, (5.9)

since Mε = Φε(xε, yε) > Φε(x, x) = u(x) − v(x) for all x ∈ Ω. In particular, by (5.9) and the
definition of R,

M 6 Mε = u(xε)− v(xε)−
|xε − yε|2

ε2
6 2R− |xε − yε|

2

ε2
,

that implies, since M > 0,

|xε − yε|2 6 2Rε2. (5.10)

Otherwise as Ω is compact and v continuous, if mv is a modulus of continuity of v,

Mε 6 u(xε)− v(yε) = u(xε)− v(xε) + v(xε)− v(yε) 6 M +mv(|xε − yε|).

Then by (5.9) and (5.10), we obtain

0 6 Mε −M 6 [u(xε)− v(yε)]−M 6 mv

(

ε
√
2R
)

. (5.11)

Therefore when ε goes to 0, we deduce from (5.11) that Mε goes to M .
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(ii) When ε goes to 0, we also deduce from (5.11) that u(xε)− v(yε) goes to M . Thus since by (i),

u(xε)− v(yε)−
|xε − yε|2

ε2
= Mε −−−→

ε→0
M ,

it necessarily implies that
|xε − yε|2

ε2
goes to 0 when ε goes to 0.

(iii) By contradiction, let us suppose that for all η > 0, there exists ε ∈ ]0, η] such that xε ∈ ∂Ω. Then
we can easily construct a sequence (ε(n))n∈N of non-negative numbers that converges to 0 and
satisfies xε(n) ∈ ∂Ω for all n ∈ N.
If n ∈ N, since u

(
xε(n)

)
6 v
(
xε(n)

)
by hypothesis, we deduce from (5.10) and (ii) that:

Mε(n) 6 u
(
xε(n)

)
− v
(
yε(n)

)
−
∣
∣xε(n) − yε(n)

∣
∣
2

[ε(n)]2

6 mv

(

ε(n)
√
2R
)

−
∣
∣xε(n) − yε(n)

∣
∣
2

[ε(n)]2
−−−−−→
n→+∞

0.

Therefore, we have M 6 0 by (5.9) whereas M > 0 by hypothesis, which is impossible!
Consequently there exists η1 > 0 such that xε ∈ Ω as soon as ε ∈ ]0, η1], and we establish in the
same way the existence of η2 > 0 such that yε ∈ ]0, η2] as soon as ε ∈ ]0, η2]. Then we conclude
that (iii) is true by taking η = min(η1, η2). �

5.3.4 –– Lemma. Let α < 0, f ∈ C(Ω) a function such that f(x) 6 α for all x ∈ Ω, and u, v ∈ C
(
Ω
)

functions that satisfy in a viscosity sense

H(x,∇u(x)) 6 f(x) and H(x,∇v(x)) > 0.

Under the assumption (A1), if u(x) 6 v(x) for all x ∈ ∂Ω, then u(x) 6 v(x) for all x ∈ Ω.

Proof.–– Let us take the notations of M and, for all ε > 0, of xε and yε introduced in 5.3.3 back. Our
goal is to prove that M 6 0 ; by contradiction, let us suppose that M > 0. By (iii) of lemma 5.3.3, we
can fix η > 0 such that xε, yε ∈ Ω when ε ∈ ]0, η]. Then for all ε ∈ ]0, η]:

– xε is a local maximum of x 7→ u(x)−
[

v(yε) +
|x− yε|2

ε2

]

, so by hypothesis,

f(xε) > H

(

xε,
2|xε − yε|2

ε2

)

. (5.12)

– yε is a local minimum of y 7→ v(y)−
[

u(xε)−
|xε − y|2

ε2

]

, so by hypothesis,

0 6 H

(

yε,
2|xε − yε|

ε2

)

. (5.13)

Therefore by (5.12), (5.13) and hypothesis on f , for all ε ∈ ]0, η], we have
∣
∣
∣
∣
H

(

xε,
2|xε − yε|2

ε2

)

−H
(

yε,
2|xε − yε|

ε2

)∣
∣
∣
∣
> −f(xε) > −α > 0. (5.14)
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In the same time, since by assumption (A1) and (ii) of lemma 5.3.3,
∣
∣
∣
∣
H

(

xε,
2|xε − yε|2

ε2

)

−H
(

yε,
2|xε − yε|2

ε2

)∣
∣
∣
∣
6 m

(

|xε − yε|+
|xε − yε|2

ε2

)

−−−→
ε→0

0,

we get a contradiction with (5.14). It means that we cannot have M > 0, hence the result. �

5.3.5 –– Theorem. (Maximum principle)
Under the assumptions (A1), (A2) and (A3), equation (5.2) satisfies a maximum principle.

Proof.–– Let u ∈ C
(
Ω
)

and v ∈ C
(
Ω
)

be respectively subsolution and supersolution of (5.2), with

∀x ∈ ∂Ω, u(x) 6 v(x). (5.15)

Let us first note that since ψ and v are continuous on the compact Ω, at the risk of replacing ψ by ψ − C
with C a sufficiently large constant, we can always suppose that

∀x ∈ ∂Ω, ψ(x) 6 v(x). (5.16)

We now fix θ ∈ ]0, 1[ and we introduce the function

uθ : Ω→ R, x 7→ θu(x) + (1− θ)ψ(x).
• By (5.15) and (5.16), for all x ∈ ∂Ω we have

uθ(x) = θu(x) + (1 − θ)ψ(x) 6 θv(x) + (1− θ)v(x) = v(x).

• Otherwise we can prove by easy computations that for all x ∈ Ω:

D+uθ(x) = {θp+ (1− θ)∇ψ(x) | p ∈ D+u(x)}.
Therefore if x ∈ Ω and q ∈ D+uθ(x), writing q = θp + (1 − θ)∇ψ(x) for such a p ∈ D+u(x), we
successively deduce from (A2) and (A3) that

H(x, q) = H(x, θp+ (1− θ)∇ψ(x)) 6 θH(x, p) + (1− θ)H(x,∇ψ(x)) 6 (1− θ)α 6 α,

which shows that uθ satisfies H(x,∇uθ(x)) 6 α in the viscosity sense by theorem 5.2.6.

In the end, lemma 5.3.4 applied to the constant function f : x 7→ α assures that uθ(x) 6 v(x) for all
x ∈ Ω. But since θ was arbitrarily chosen in ]0, 1[, the result follows as θ goes to 1. �

5.3.6 –– According to 5.3.2 and 5.3.5, we can now say loud and clear:

Corollary. (Uniqueness result)
Under the assumptions (A1), (A2) and (A3), the Dirichlet problem (5.2)-(5.4) has at most one solution.

5.3.7 –– EXAMPLE. As in example 5.2.7, we suppose here that n = 1, Ω = ]0, 1[, and

H : ]0, 1[→ R, (x, p) 7→ |p| − 1.

It clearly satisfies assumptions (A1) and (A2), but also (A3) for any constant function ψ on ]0, 1[. Thus
corollary 5.3.6 shows that function

u0 : [0, 1]→ R, x 7→ 1

2
−
∣
∣
∣
∣

1

2
− x
∣
∣
∣
∣

is the unique viscosity solution of problem (5.7). By proposition 5.2.3, we can also note that −u0 is the
unique viscosity solution of problem (5.8).
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5.4 Existence result

5.4.1 –– The existence result uses the control theory, which is out the scope of this document. Thus we
will only remind here the corresponding result and illustrating it on a concrete example. In order to do
this, we need to introduce some notations. So let us suppose that (A2) is satisfied, i.e. H(x, · ) convex
for all x ∈ Ω, and that H can be extended as a continuous function on Ω× R

n, still noted H .

• For all x ∈ Ω, the Legendre transform of H(x, · ) is the function

LH(x, · ) : R
n → R ∪ {+∞}, q 7→ sup{p·q −H(x, p) | p ∈ R

n}.

• For all T > 0 and x, y ∈ Ω, we denote by Γx,y(T ) the set of paths γ : [0, T ]→ R
n such that γ(0) = x,

γ(T ) = y, γ(]0, T [) ⊂ Ω and γ′ ∈ L∞(]0, T [,Rn).

• By using the previous notations, for all x, y ∈ Ω, we finally set

L(x, y) = inf

{
∫ T

0

LH
(
γ(s), −γ′(s)

)
ds

∣
∣
∣
∣
∣
T > 0, γ ∈ Γx,y(T )

}

.

We will see that an existence result can be obtained under the following assumptions:

(A4) Ω is smooth and connected.

(A5) inf{H(x, p) | p ∈ R
n} 6 0 for all x ∈ Ω.

(A6) For all x ∈ Ω, function H(x, · ) is coercive, i.e. H(x, p)→ +∞ when |p| → +∞.

(A7) H can be extended as a continuous function on Ω× R
n, still noted H .

(A8) For all x, y ∈ ∂Ω, function ϕ satisfies the following compatibility condition:

ϕ(x)− ϕ(y) 6 L(x, y).

5.4.2 –– Here is reminded the existence result. As mentioned by E. PRADOS and O. FAUGERAS in [18],
it was described by P.-L. LIONS in [14] (see its chapter 5, and more precisely its theorem 5.3).

Theorem. (Existence result)

(i) Under the assumptions (A2) and (A4) to (A8), function

u : Ω→ R, x 7→ inf
y∈∂Ω

(
ϕ(y) + L(x, y)

)

is a continuous viscosity solution to the Dirichlet problem (5.2)-(5.4).

(ii) More precisely, under the assumptions (A2) and (A4) to (A7), the function u above is a viscosity
solution to the Dirichlet problem (5.2)-(5.4) if and only if assumption (A8) is satisfied.

5.4.3 –– EXAMPLE. As in examples 5.2.7 or 5.3.7, let us suppose that n = 1, Ω = ]0, 1[, and

H : ]0, 1[→ R, (x, p) 7→ |p| − 1.
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It is clear that assumptions (A2) and (A4) to (A7) are satisfied. On the other hand, by doing easy calcula-
tions, we can verify that for all x ∈ ]0, 1[, the Legendre transform LH(x, · ) of H(x, · ) verifies

LH(x, q) =

{
1 if |q| 6 1,

+∞ if |q| > 1.

Therefore, for all x, y ∈ ∂Ω = {0, 1},

L(x, y) = inf

{
∫ T

0

LH
(
γ(s), −γ′(s)

)
ds

∣
∣
∣
∣
∣
T > 0, γ ∈ Γx,y(T )

}

= inf

{
∫ T

0

LH
(
γ(s), −γ′(s)

)
ds

∣
∣
∣
∣
∣
T > 0, γ ∈ Γx,y(T ), ‖γ′‖∞ 6 1

}

= inf {T | T > 0, γ ∈ Γx,y(T ), ‖γ′‖∞ 6 1}
= |y − x|.

Consequently assumption (A8) can be rewritten

{
ϕ(0)− ϕ(1) 6 L(0, 1) = 1,
ϕ(1)− ϕ(0) 6 L(1, 0) = 1,

i.e. |ϕ(1)− ϕ(0)| 6 1.

According to theorem 5.4.2, this shows that the equation

∀x ∈ ]0, 1[, H(x, u′(x)) = 0

has a continuous viscosity solution u : [0, 1]→ R if and only if |u(0)− u(1)| 6 1.

5.5 Application to the shape from shading problem

5.5.1 –– In sections 5.3 and 5.4, given n ∈ N
∗, Ω an open subset of Rn, H : Ω×R

n → R a Hamiltonian
and ϕ : ∂Ω → R a continuous function, we have presented various assumptions on H and ϕ that insure
the existence and uniqueness of a viscosity solution to the problem

{
H(x,∇u(x)) = 0 if x ∈ Ω,
u(x) = ϕ(x) if x ∈ ∂Ω.

As explained in the introduction of this part II, in practice n will be equal to 1 or 2, Ω a rectangular
domain, and H given, for all (x, p) ∈ Ω× R

n, by

H(x, p) = I(x)
√

1 + |p|2 + l·p− l3. (5.17)

As a reminder, I is a (known) function from Ω to [0, 1] corresponding to the brightness intensity, and
L = (l, l3) ∈ R

n × R
∗
+ is associated to the unit light vector. For this choice of H , problem (5.2)-(5.4)

will be called the shape from shading problem (s.f.s. problem in abbreviated form).
In this section, we will present various assumptions on the brightness intensity I and the unit light vector
L that insure the existence and uniqueness of a solution to this s.f.s. problem. For the existence, this will
be possible by referring to theorem 5.4.2, and by referring to corollary 5.3.6 for the uniqueness.
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5.5.2 –– In order to determine assumptions that insure the existence and uniqueness to the s.f.s. problem,
we will start by proving some preliminary results. Here is the first one:

Proposition. For all x ∈ Ω, function H(x, · ) is convex.

Proof.–– Let us fix x ∈ Ω, and let us denote more simply by Hx the function H(x, · ). Whatever the
value of n, it is clear that this function is indefinitely differentiable on R

n.

1) We first treat the case n = 1. For all p ∈ R, we have

H ′
x(p) =

I(x)p
√

1 + p2
+ l and so H ′′

x (p) =
1

(1 + p2)3/2
> 0.

Hence the convexity of Hx.

2) We now assume that n = 2. Then if p ∈ R
2, for all j ∈ {1, 2} we have

∂jHx(p) = I(x)
pj

√

1 + |p|2
+ lj ,

and so

∂2jHx(p) = I(x)
1 + p2j + |p|2
(1 + |p|2)3/2 and ∂1(∂2Hx(p)) = I(x)

p1p2
(1 + |p|2)3/2 .

ThereforeM the Hessian of Hx in p is the matrix given by

M =
I(x)

(1 + |p|2)3/2
(

1 + p21 + |p|2 p1p2
p1p2 1 + p22 + |p|2

)

.

We can thus verify that trM > 0 and detM > 0, which implies that all the eigenvalues of M are
non-negative. ThereforeM is non-negative, and Hx is a convex function. �

5.5.3 –– Proposition. For all x ∈ Ω we have

inf{H(x, p) | p ∈ R
2} =

{ √

I2(x)− |l|2 − l3 if I(x) > |l|,
−∞ if I(x) < |l|.

Proof.–– Let us fix x ∈ Ω and let us take the notation of Hx from the proof of proposition 5.5.2 back.

• We first suppose that I(x) > |l|. Whatever the value of n in {1, 2}, we can prove by doing classical
computations that

p∗ =
−l

√

I2(x) − |l|2
is the unique critical point of Hx. And since Hx is convex in accordance with proposition 5.5.2, we
deduce that it corresponds to its global minimizer. Hence

inf{Hx(p) | p ∈ R} = Hx(p
∗) =

√

I2(x)− |l|2 − l3.

• We now suppose that I(x) = |l|. Then for all p ∈ R
2
r{0},

Hx(p) = |l|
√

1 + |p|2 + l·p− l3 = |l||p|
√

1 +
1

|p|2 − l·(−p)− l3.
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According to the Cauchy-Schwarz inequality, we have l·p > −|l||p|, hence

Hx(p) > |l||p|
√

1 +
1

|p|2 − |l||p| − l3 = |l||p|
(√

1 +
1

|p|2 − 1

)

︸ ︷︷ ︸

> 1

− l3 > −l3.

And since Hx(0) = −l3, we can conclude that:

inf{Hx(p) | p ∈ R
n} = −l3 =

√

I2(x)− |l|2 − l3.

• Let us finally suppose that I(x) < |l|. Since I(x) > 0, it implies that |l| > 0. Now let us fix t > 0 and
let us define pt = t|l|. Then,

Hx(pt) = I(x)
√

1 + t2|l|2 − t|l|2 − l3 = t|l|
[

I(x)

√

1 +
1

t2|l|2 − |l|
]

− l3. (5.18)

And since I(x) < |l|, we easily obtain Hx(pt)→ −∞ when t→ +∞, hence

inf{Hx(p) | p ∈ R} = −∞. �

5.5.4 –– Proposition. Let x ∈ Ω. The following conditions are equivalent:

(i) I(x) > |l|.

(ii) Function H(x, · ) is coercive, i.e. H(x, p)→ +∞ when |p| → +∞.

Proof.–– (i)⇒ (ii) : Let us assume that I(x) > |l|, and let us fix p ∈ R
2
r{0}. Since

H(x, p) = I(x)
√

1 + |p|2 + l·p− l3 = I(x)|p|
√

1 +
1

|p|2 + l·p− l3,

then by the Cauchy-Schwarz inequality, we get

H(x, p) > I(x)|p|
√

1 +
1

|p|2 − |l||p| − l3 > |l| |p|
(√

1 +
1

|p|2 − 1

)

︸ ︷︷ ︸

> 1

− l3.

Therefore, we clearly obtain H(x, p)→ +∞ when |p| → +∞. Hence (i)⇒ (ii).

(ii)⇒ (i) : Let us suppose that (i) is not satisfied, i.e. I(x) 6 |l|. Then as in the proof of proposition 5.5.3,
let us fix t > 0 and let us set pt = t|l|. According to (5.18), we have

H(x, pt) = t|l|
[

I(x)

√

1 +
1

t2|l|2 − |l|
]

− l3.

Therefore if I(x) < |l|, then for t large enough, we get

I(x)

√

1 +
1

t2|l|2 − |l| < 0,
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hence H(x, pt)→ −∞ when t→ +∞. On the other hand, when I(x) = |l|, (5.18) implies

H(x, pt) = t|l|2
(√

1 +
1

|p|2 − 1

)

︸ ︷︷ ︸

> 1

− l3,

hence H(x, pt)→ −l3 when t→ +∞. In any case, (ii) is not satisfied. �

5.5.5 –– We will start by showing how to insure the existence of a viscosity solution to the s.f.s. problem.
According to theorem 5.4.2, we have to see when assumptions (A2) and (A4) to (A8) are satisfied. We
can first note that the validity of (A8) depends on the choice of function ϕ, and must be considered in
practice on a case-by-case basis. To insure that the other assumptions are satisfied, we will see that it is
sufficient to suppose:

(A9) I is continuous.

(A10) I(x) > |l| for all x ∈ Ω.

Theorem. (Existence of a solution to the s.f.s. problem)

(i) If (A9) is satisfied, then (A7) is satisfied.

(ii) In addition if (A8) and (A10) are also satisfied, then the s.f.s. problem has a solution.

Proof.–– Point (i) is obvious. According to theorem 5.4.2, to obtain (ii), we need to prove that assump-
tions (A2) and (A4) to (A6) are satisfied, (A7) being true thanks to (i) and (A8) being supposed true.

• (A2) is true thanks to proposition 5.5.2.

• Since Ω is supposed to be rectangular, then assumption (A4) is satisfied.

• If (A10) is satisfied, then since I(x) 6 1 = |l|2 + l3,

inf{H(x, p) | p ∈ R
n} 6

√

I2(x)− |l|2 − l23 6

√

l23 − l3 = l3 − l3 = 0,

and (A5) is also satisfied.

• (A6) is also true as soon as (A10) thanks to proposition 5.5.4. �

5.5.6 –– Now let us consider the uniqueness of solutions to the s.f.s. problem. We will show that the
uniqueness to this problem can be obtained with this additional hypothesis:

(A11) There exists α < 1 such that I(x) 6 α for all x ∈ Ω.

Theorem. (Uniqueness of a solution to the s.f.s. problem)
Under the assumptions (A9) and (A11), the s.f.s. problem has at most one solution.

Proof.–– According to corollary 5.3.6, it is sufficient to prove that assumptions (A1) to (A3) are satisfied.

• For all x, y ∈ Ω and p ∈ R
n, we have

H(x, p)−H(y, p) 6 |H(x, p)−H(y, p)| = |I(x) − I(y)|
√

1 + |p|2.

And since for all t ∈ R+, we have 1 + t2 6 (1 + t)2, then

H(x, p)−H(y, p) 6 |I(x)− I(y)|
√

(1 + |p|)2 = |I(x)− I(y)|(1 + |p|).
Thus if (A9) is satisfied, it is now clear that (A1) is also satisfied.
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• (A2) is still satisfied thanks to proposition 5.5.2.

• Let us introduce

ψ : Ω→ R, x 7→ −x·l
l3

.

It is clear that ψ ∈ C
(
Ω
)

and that ψ|Ω ∈ C1(Ω) with, for all x ∈ Ω,

∇ψ(x) = − l

l3
.

But L = (l, l3) is supposed to be an unit vector, hence |l|2 + l23 = 1. Therefore if x ∈ Ω, we have

H
(
x,∇ψ(x)

)
= I(x)

√

1 +
|l|2
l23
− |l|

2

l3
− l3 = I(x)

√

|l|2 + l23
l23

− |l|
2 + l23
l3

=
I(x) − 1

l3
.

Now we can easily observe that if (A11), then (A3) is also satisfied. �

5.5.7 –– When there exists points x ∈ Ω such that I(x) = 1.

According to 5.5.6, if there exists points x ∈ Ω such that I(x) = 1, then we can not insure the uniqueness
of a solution to the s.f.s. problem. To start, let us illustrate it on a concrete example. In order to do this,
let us suppose n = 1, Ω = ]−1, 1[, and let us introduce

u : [−1, 1]→ R, x 7→
√

1− x2.

By supposing I(x) = u(x) for all x ∈ ]−1, 1[ and ϕ(−1) = ϕ(1) = 0, we clearly have I(0) = u(0) = 1,
and thanks to theorem 5.2.6, we can prove that u and its opposite−u are two different viscosity solutions
of the s.f.s. problem, as shown by the following figure:

b b
−1 x 1

u(x) =
√
1− x2

−u(x) = −
√
1− x2

Figure 36 – Two different viscosity solutions of a same s.f.s. problem when I reaches 1

This very simple example confirms that we can generally loss the uniqueness of a solution to the s.f.s.
problem as soon as the brightness intensity at some point of Ω is equal to 1.
In [18], E. PRADOS and O. FAUGERAS have extended the result established by P.-L. LIONS, E. ROUY
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and A. TOURIN in [16] by proving that if I−1({1}), the set of points x ∈ Ω such that I(x) = 1, is equal
to a finite union of disjoint connected compact sets, then by setting

Ω′ = ΩrI−1({1}),

the uniqueness of a solution to the s.f.s. problem can be obtained again by supposing that ϕ can be
extended as a continuous function from ∂Ω′ to R and by solving

{
H(x,∇u(x)) = 0 if x ∈ Ω′,
u(x) = ϕ(x) if x ∈ ∂Ω′,

instead of the initial s.f.s. problem.

5.6 About the discontinuous viscosity solutions

5.6.1 –– The aim of this section is not to explain how to generalize the previous theories to discontinuous
functions, but just to mention that it is possible to do it. Since we have not studied this in detail, we will
only present general ideas that enable it by giving some references that talk about it with a more accuracy
(and probably rigorousness) level and by mentioning its possible application to the s.f.s. problem.
As explained by G. Barles in [4], the first point is that contrary to the classical point of view adopted with
partial differential equations, we will here consider equations posed on closed subset, i.e. of the form:

∀x ∈ Ω, G(x, u(x),∇u(x)) = 0, (5.19)

for such a locally bounded function G defined on Ω× R× R
n.

By doing this, if H is now a continuous function defined on Ω × R
n, the Dirichlet problem (5.2)-(5.4)

can be seen as an equation of the form (5.19) for G defined, for all x ∈ Ω, u ∈ R and p ∈ R
n, by

G(x, u, p) =

{
H(x, p) if x ∈ Ω,
u− ϕ(x) if x ∈ ∂Ω.

(5.20)

5.6.2 –– Notation. Given d ∈ N
∗ and f a locally bounded function defined on U an open subset of Rd,

we will denote by f∗ its upper semi-continuous (u.s.c. in abbreviated form) envelope and by f∗ its lower
semi-continuous (l.s.c. in abbreviated form) envelope. For all x ∈ U , let us remind:

f∗(x) = lim sup
y→x

f(y) and f∗(x) = lim inf
y→x

f(y).

In the following, if the function f depends on several variables, f∗ and f∗ will always correspond to the
u.s.c. and l.s.c. envelopes through all its variables.

EXAMPLE. With the definition of G from relation (5.20), for all x ∈ Ω, u ∈ R and p ∈ R
n, we have







G∗(x, u, p) = G∗(x, u, p) = H(x,∇u(x)) if x ∈ Ω,
G∗(x, u, p) = min {H(x, p), u− ϕ(x)} if x ∈ ∂Ω,
G∗(x, u, p) = max {H(x, p), u− ϕ(x)} if x ∈ ∂Ω.

5.6.3 –– In comparison to the definition obtained in 5.2.1, here is given its generalization that enable to
deal with the discontinuous case:
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Definition. A locally bounded and u.s.c. function u : Ω → R is called a viscosity subsolution of (5.19)
if for all φ ∈ C1

(
Ω
)

and all x0 local maximum of (u− φ), we have

G∗(x0, u(x0),∇u(x0)) = 0.

A locally bounded and l.s.c. function v : Ω → R is called a viscosity supersolution of (5.19) if for all
φ ∈ C1

(
Ω
)

and all x0 local minimum of (u− φ), we have

G∗(x0, u(x0),∇u(x0)) = 0.

Finally, a function from Ω to R is said to be a viscosity solution of (5.19) if it is both a subsolution and a
supersolution of this equation.

5.6.4 –– With this extension, we can now find viscosity solutions to equations or problems that do not
admit a continuous viscosity solution. That is for instance the case with the Dirichlet problem associated
to the eikonal equation

{
H(x, u′(x)) = 0x if x ∈ ]0, 1[

u(x) = 2x if x ∈ {0, 1} with H : [0, 1]→ R, (x, p) 7→ |p| − 1.

Thanks to the mean value theorem, this problem does not have any continuous viscosity solution. By
using the generalized definitions from 5.6.3, we can now prove that the function

u : [0, 1]→ R, x 7→
{
x if x ∈ [0, 1[,
2 if x = 1.

is a discontinuous viscosity solution of this problem.
As for the continuous case, there exists existence and uniqueness taking into account viscosity solutions
as defined in 5.6.3. As observed by E. PRADOS and O. FAUGERAS in [18], such an uniqueness result
is for instance given by G. BARLES in [4] (corollary 4.1). For an existence result, we can refer to the
theorem V.4.13 given by M. BARDI and I. CAPUZZO-DOLCETTA in [3]. They more specifically consider
Hamilton-Jacobi Bellman equations, i.e. equations of the form:

λu(x) + sup{−g(x, a)·∇u(x)− c(x, a) | a ∈ A} = 0, (5.21)

where λ ∈ R, A is a topological space, g : Ω×A→ R
n and c : Ω×A→ R.

5.6.5 –– In relation to 5.6.4, we can terminate this section by showing how the Hamiltonian associated
to the s.f.s. problem, which is given by (5.17), can be rewritten in order to obtain an Hamilton-Jacobi
Bellman equation of the form (5.21). In order to do this, we can first establish the following result:

Lemma. Let f : Rn → R be a differentiable and convex function. Then for all p ∈ R
n, we have

f(p) = sup{f(q)−∇f(q)·(q − p) | q ∈ R
n}.

Proof.–– Let us fix p ∈ R
n. Since f(p) = f(q)−∇f(q)·(q − p), we clearly have

f(p) 6 sup{f(q)−∇f(q)·(q − p) | q ∈ R
n}.

Thus to prove our result, we now need to establish:

∀ q ∈ R
n, f(p) > f(q)−∇f(q)·(q − p). (5.22)
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• We start by supposing n = 1. The result being obvious when q = p, we will suppose that q 6= p. Given
t ∈ ]0, 1[, let us introduce zt = tp+ (1− t)q. Then we have

q − p =
1

t
(q − zt),

and, by using the convexity of f ,

f(q)− f(zt) >
1

t
[f(q)− f(p)].

Thus if q − p > 0, we obtain

f(q)− f(p)
q − p =

1/t

1/t
· f(q)− f(p)

q − p 6
f(q)− f(zt)

q − zt
−−−−→
t→+∞

f ′(q),

whereas when q − p < 0,

f(q)− f(p)
q − p =

1/t

1/t
· f(q)− f(p)

q − p >
f(q)− f(zt)

q − zt
−−−−→
t→+∞

f ′(q),

Whatever the sign of q − p is, we can now easily claim that (5.22) is true.

• Let us suppose that n > 2. By fixing q ∈ R
2 and by introducing

γ : R→ R
n, t 7→ tp+ (1− t)q,

since f ◦ γ : R→ R is convex and differentiable, we can deduce of the previous case that

f(p) = (f ◦ γ)(1) > (f ◦ γ)(0)− (f ◦ γ)′(0)·(0− 1) = f(q)−∇f(q)·(q − p). �

5.6.6 –– Let us fix (x, p) ∈ Ω× R
n. By applying lemma 5.6.5 with f = H(x, · ), we find

H(x, p) = sup {H(x, q)−∇qH(x, q)·(q − p) | q ∈ R
n} ,

where∇qH(x, q) corresponds to the gradient of H(x, · ) in q. After calculations, it leads to

H(x, p) = sup

{

I(x)
√

1 + |q|2
+

(

I(x) q
√

1 + |q|2
+ l

)

·p− l3
∣
∣
∣
∣
∣
q ∈ R

n

}

,

Knowing that the application

ϕ : R
2 → B(0, 1) , q 7→ q

√

1 + |q|2

is bijective, by setting b = ϕ(q), we obtain

H(x, p) = sup
{

I(x)
√

1− |b|2 +
(
I(x)b + l

)
·p− l3

∣
∣
∣ b ∈ B(0, 1)

}

.

And since B(0, 1) = B′(0, 1), we have finally proved the following result, which effectively shows that
the s.f.s. problem can be expressed with an Hamilton-Jacobi Bellman equation of the form (5.21):

Proposition. For all (x, p) ∈ Ω× R
n, we have

H(x, p) = sup
{

I(x)
√

1− |b|2 +
(
I(x)b + l

)
·p− l3

∣
∣
∣ b ∈ B′(0, 1)

}

.
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5.7 Approximation schemes

5.7.1 –– To end this chapter, we will present the notion of approximation scheme, that can be used in
order to compute a numerical approximation of the viscosity solution u of a Hamilton-Jacobi equation.
As usual, given a meshM of Ω, we will determine an approximation U of u at each node ofM. This
approximation U will be computed iteratively:

1) We start from U0 a first approximation of u at each node ofM.

2) Given n ∈ N and Un an approximation of u at each node ofM, Un+1 is computed by mimicking the
problem we want to solve, i.e. for all x ∈M,

H(x,∇u(x)) = 0.

Since the exact value of ∇u(x) will be unknown in practice, we will discretize it by using the values
of Un instead of those of u inM (that we are trying to compute).

3) Computations from step 2) will be done as soon as
∥
∥Un+1 − Un

∥
∥
∞
> ε, for a given accuracy thresh-

old ε > 0. Then, for the first index n such that
∥
∥Un+1 − Un

∥
∥
∞

6 ε, we will set U = Un+1.

This approach motivates the introduction of approximation schemes, as done by G. BARLES and P. E.
SOUGANIDIS in [5]. From a formal point of view, such a scheme is a locally bounded function

S :
(
R

∗
+

)n × Ω× R× B
(
Ω
)
→ R, (h, x, t, u) 7→ S(h, x, t, u).

For all h ∈
(
R

∗
+

)n
, x ∈ Ω and u ∈ B

(
Ω
)
, S(h, x, u(x), u) will morally corresponds to an approximation

of H(x,∇u(x)). Thus given h ∈
(
R

∗
+

)n
, a function uh ∈ B

(
Ω
)

will be called a solution (resp. a
subsolution) of S(h, · , · , · ) if, for all x ∈ Ω,

S
(
h, x, uh(x), uh

)
= 0 (resp. S

(
h, x, uh(x), uh

)
6 0).

In practice:

• h will correspond to the mesh size ofM,

• a solution uh of S(h, · , · , ·) will correspond to a numerical approximation of the considered Hamilton-
Jacobi equation,

• and the values of such a solution uh will be determined by solving equations of the form: given h and v,
for all x ∈M, find t ∈ R such that

S(h, x, t, v) = 0.

In the sequel, we will see how to insure the existence of solutions to an given approximation scheme, and
how to insure their convergence to the viscosity solution of the considered Hamilton-Jacobi equation.

REMARK. Since in practice, we are interested in computing approximation of the viscosity solution of
an Hamilton-Jacobi equation on a given meshM of Ω, the definition of approximation schemes could be
limited to functions of the form

S :
(
R

∗
+

)n ×M× R× R
N → R

where the integer N corresponds to the number of nodes of the mesh M. In fact, the proof of the
convergence of a solution of an approximation scheme to the viscosity solution of the Hamilton-Jacobi
equation seems simpler by considering a continuous point of view, i.e. approximation schemes defined
on
(
R

∗
+

)n × Ω× R× B
(
Ω
)

instead of
(
R

∗
+

)n ×M× R× R
N .
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5.7.2 –– First, we have to insure the existence of a solution to a given approximation scheme, a property
called stability, which is traditionally defined as follows:

Definition. An approximation scheme S :
(
R

∗
+

)n × Ω × R × B
(
Ω
)
→ R is said to be stable if for all

h ∈ (R)
n, it admits a solution uh ∈ B

(
Ω
)

that can bounded independently of h.

5.7.3 –– An important notion, that will insure the stability of an approximation scheme as well as the
convergence of its solutions to the viscosity solution of the considered Hamilton-Jacobi equation is the
monotonicity of the scheme.

Definition. An approximation scheme S :
(
R

∗
+

)n ×Ω×R×B
(
Ω
)
→ R is said to be monotonous if for

all h ∈ (Rn)
n, x ∈ Ω and t ∈ R, the function S(h, x, t, · ) is non-increasing, i.e. if for all u, v ∈ B

(
Ω
)
,

we have S(h, x, t, u) > S(h, x, t, v) as soon as u 6 v.

5.7.4 –– A stability result is for instance given by E. PRADOS and O. FAUGERAS in [18] (theorem 8).
Given an approximation scheme S :

(
R

∗
+

)n×Ω×R×B
(
Ω
)
→ R, it uses on the following assumptions:

(A12) S is monotonous (in the sense of the definition 5.7.3).

(A13) For all h ∈
(
R

∗
+

)n
, x ∈ Ω and u ∈ B

(
Ω
)
, the function S(h, x, · , u) is non-decreasing and has a

positive limit in the neighbourhood of +∞.

(A14) There exists d ∈ N
∗ such that for all h ∈

(
R

∗
+

)n
and x ∈ Ω, there exists Ξh,x ⊂ Ω

d
and

σh,x : R× R
d → R such that S(h, x, t, u) = σh,x

(
t, (u(ξ))ξ∈Ξh,x

)
for all t ∈ R and u ∈ B

(
Ω
)
.

(A15) For all h ∈
(
R

∗
+

)n
, the scheme S admits a subsolution.

(A16) All the subsolutions of S are upper bounded independently with respect to the first variable of S.

Theorem. (Stability result)
If the assumptions (A12) to (A16) are satisfied, then S is stable.

REMARK. The general idea of the proof of this result is given by E. PRADOS and O. FAUGERAS in [18]:
given h ∈ R

∗
+ and u0 a subsolution of S(h, · , · , · ), they construct by induction a sequence (un)n∈N of

subsolutions of S. Then by considering u the limit of this sequence (which is well-defined), they prove
that it is a solution of S(h, · , · , · ). However, they have not justified why un, for all n ∈ N, and u are in
B
(
Ω
)
, what should be done before talking about subsolution or solution. . .

5.7.5 –– It seems important to highlight that if the notion of stability is essential to insure that an approx-
imation scheme is not without solution, it does not depend on the considered Hamilton-Jacobi equation.
Thus in order to obtain a convergence result, it will be necessary to link the scheme with the equation.
The notion of consistency will enable this. As used by G. BARLES and P. E. SOUGANIDIS in [5], it deals
with equation of the form (5.19). So let us take the notation of G from 5.6.1 back.

Definition. An approximation scheme S :
(
R

∗
+

)n × Ω × R× B
(
Ω
)
→ R is said to be consistent if, for

all x ∈ Ω and φ ∈ C∞
(
Ω
)
, we have

lim sup
h→0
y→x
ξ→0

S(h, y, φ(y) + ξ, φ+ ξ)

h
6 G∗

(
x, ψ(x),∇φ(x)

)

and

lim inf
h→0
y→x
ξ→0

S(h, y, φ(y) + ξ, φ+ ξ)

h
> G∗

(
x, ψ(x),∇φ(x)

)
.
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5.7.6 –– Given an approximation scheme S :
(
R

∗
+

)n × Ω× R × B
(
Ω
)
→ R, it is possible to obtain the

following convergence result, proved by G. BARLES and P. E. SOUGANIDIS in [5]. It requires the three
following additional assumptions:

(A17) S is stable.

(A18) S is consistent.

(A19) Equation (5.19) satisfies a strong uniqueness property, i.e. if u is an u.s.c. solution of (5.19) and v
a l.s.c. solution of (5.19), then u(x) 6 v(x) for all x ∈ Ω.

Theorem. (Convergence result)
Under the assumptions (A12) and (A17) to (A19), when h goes to 0, the solution uh of S(h, · , · , · )
converges locally uniformly to the unique discontinuous solution of equation (5.19).

Conclusion

The notion of viscosity solution turns out to be a way to insure the existence and uniqueness of a solution
to Hamilton-Jacobi equations. As we have seen in introduction, our shape from shading problem is
describes by a Hamilton-Jacobi equation. To solve it, we now need to see when it admits a viscosity
solution, which constitutes one of the aims of the following chapter.





Chapter 6

Numerical resolution of the one-dimensional

shape from shading problem

Introduction

By using the notion of viscosity solutions, we have seen in chapter 5 how to insure the existence and
uniqueness of the shape from shading problem. In this new chapter, we intend to solve it numerically in
the one-dimensional case. Even if it is not the most interesting case in practice, its study can be useful for
a better understanding of the bi-dimensional case.
Thus here, we will assume that n = 1 and, without loss of generality, Ω = ]0, α[ for some α > 0. Then
we are interesting in computing an approximation of the viscosity solution of the s.f.s. problem:

{
H
(
x, u′(x)

)
= 0 if x ∈ ]0, α[,

u(x) = ϕ(x) if x ∈ {0, α}, (6.1)

where H is given, for all (x, p) ∈ Ω× R, by

H(x, p) = I(x)
√

1 + p2 + lp− l3.

Let us recall that I is a function from Ω to [0, 1] corresponding to the brightness intensity, and that
(l, l3) ∈ R

2 is an unit vector such that l3 > 0 and that is oriented to the light source. Moreover, as we
have proved in 5.6.6, or as we can check in this simple case, by introducing

Υ : [−1, 1]×
(
Ω× R

)
→ R, (b ;x, p) 7→ I(x)

√

1− b2 +
(
I(x)b + l

)
p− l3,

for all (x, p) ∈ Ω× R, we also have

H(x, p) = sup
b∈[−1,1]

Υ(b ;x, p). (6.2)

We have seen in paragraph 5.5.7 that when there exists points x ∈ Ω such that I(x) = 1, we can loose the
uniqueness of a solution to problem (6.1). As suggested in this same paragraph, when the set of points
from Ω where I equals 1 is a finite union of disjoint connected compact sets, it is possible to avoid this
difficulty by solving

{
H
(
x, u′(x)

)
= 0 if x ∈ Ω′,

u(x) = ϕ(x) if x ∈ ∂Ω′.

instead of (6.1), with H defined as above, Ω′ = {x ∈ Ω | I(x) < 1} and ϕ extended as a continuous
function from ∂Ω′ to R. So even if we will not do it here in order to simplify our talk, everything we will
do in this chapter can be extended to this particular case by replacing Ω by Ω′ and ∂Ω by ∂Ω′.
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In section 6.1, we will construct an approximation scheme S : R∗
+ × [−1, 1]×R×B([−1, 1])→ R that

we will be used to compute numerical approximation of the viscosity solution of the s.f.s. problem (6.1).
An explicit expression of this approximation scheme will be determined in section 6.2. Then, we will
explain in section 6.3 how to determine an explicit solution t ∈ R of the equation S(h, x, t, u) = 0,
for fixed h ∈ R, x ∈ Ω and u ∈ B

(
Ω
)
, that will be necessary in order to solve numerically the s.f.s.

problem (6.1). In section 6.4, we will expose a numerical algorithm that will enable to solve numerically
the s.f.s. problem (6.1), and we will finally analyse its performances by presenting various numerical
simulations in section 6.5.

6.1 An approximation scheme associated to the s.f.s. problem

6.1.1 –– In this section, we will show how to obtain an approximation scheme associated to equation (6.1).
So let us fix h ∈ R

∗
+ and let us define

Ωh =
{
x ∈ Ω

∣
∣ ∀ s ∈ {−1, 1}, x+ sh ∈ Ω

}
and ∂Ωh = ΩrΩh.

These definitions obviously imply that Ω = Ωh∪∂Ωh. Let us indicate that the notation of ∂Ωh is abusive
since it does not rigorously correspond to the boundary of Ωh. However ∂Ωh can be morally seen as a
boundary of Ωh that has h to diameter, as shown by the following figure:

b b

0 α

h h ∂Ωh

Ωh

Figure 37 – Representation of the domains Ωh and ∂Ωh

Now let explain how to define our approximation scheme S. So let us also fix x ∈ Ω, t ∈ R and
u ∈ B

(
Ω
)
. As we have seen in section 5.7, an important assumption that will insure the stability of S as

well as the convergence of its solutions to the viscosity solutions of (6.1) is its monotonicity.

• Let us suppose that x ∈ Ωh. In order to insure the monotonicity of our scheme, given b ∈ [−1, 1], we
introduce the differential quotient

q(b ;h, x, t, u) = s
t− u(x− sh)

h
where

{
s = 1 if I(x)b + l > 0,
s = −1 if I(x)b + l < 0.

By doing this, we always have
(
I(x)b + l

)
s > 0.

Consequently, for fixed b, h and x, the quantity

Υ
(
b ;x, q(b ;h, x, t, u)

)
= I(x)

√

1− b2 +
(
I(x)b + l

)
s · t− u(x− sh)

h
− l3

is non-decreasing with respect to t and non-increasing with respect to u. Therefore we can set

S(h, x, t, u) = sup
b∈[−1,1]

Υ
(
b ;x, q(b ;h, x, t, u)

)

= sup
b∈[−1,1]

{

I(x)
√

1− b2 +
(
I(x)b + l

)
s · t− u(x− sh)

h
− l3

}

. (6.3)

Let us observe that since q(b ;h, x, t, u) morally corresponds to an approximation of u′(x), then thanks
to (6.2), S(h, x, t, u) corresponds to an approximation of H

(
x, u′(x)

)
.
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• Since our s.f.s. problem is given with Dirichlet boundary conditions, we will suppose being able to
extendϕ on ∂Ωh in order to insure the continuity of S(h, x, ·, ·), which can be easily in one-dimension.
Then if x ∈ ∂Ωh, we can set

S(h, x, t, u) = t− ϕ(x). (6.4)

Finally, we have constructed an approximation scheme

S : R
∗
+ × [−1, 1]× R× B([−1, 1])→ R, (h, x, t, u) 7→ S(h, x, t, u)

that is non-increasing with respect to its last variable (u ∈ B([0, 1])) and non-decreasing with respect
to its third variable (t ∈ R). It essentially corresponds to the "implicit decentred scheme" used by E.
PRADOS and O. FAUGERAS in [18]. In fact, we will prove in the following sections that despite its
present expression, we can obtain explicit expressions of its values and solutions.

6.1.2 –– The following result, proved by E. PRADOS and O. FAUGERAS in [18] in the bi-dimensional
case, will be useful to prove the stability of the previous approximation scheme S as well as to initialize
our numerical algorithms.

Proposition. For all h ∈ R
∗
+, the function

u0 : [−1, 1]→ R, x 7→ −lx
l3

+ C,

where C ∈ R is chosen so that u0(x) 6 min
∂Ωh

ϕ for all x ∈ Ω, is a subsolution of S(h, · , · , · ).

6.1.3 –– Now let us explain why the approximation scheme S constructed in 6.1.1 is stable. According
to theorem 5.7.4, it is sufficient to explain when assumptions (A12) to (A16) are satisfied.

• The scheme S was constructed in order to insure that it is non-increasing with respect to its fourth
variable (u ∈ B([−1, 1])). Thus (A12) is always satisfied.

• Similarly, S was constructed in order to insure that it is non-decreasing with respect to its third variable
(t ∈ R). In addition, for fixed h ∈ R

∗
+, x ∈ Ω, u ∈ B

(
Ω
)

and t→ +∞:

– Thanks to (6.4), if x ∈ ∂Ωh, then we clearly have S(h, x, t, u) = t− ϕ(x)→ +∞.

– Thanks to (6.3), if x ∈ Ωh, except when I(x) = l = 0, there exists b ∈ [−1, 1] such that I(x)b+l > 0
(indeed, I(x) ∈ [0, 1] and (l, l3) is an unit vector such that l3 > 0), hence S(h, x, t, u)→ +∞.

This shows that (A13) is satisfied as soon as we do not have l = I(x) = 0.

• Let us fix h ∈ R
∗
+ and x ∈ Ω.

– If x ∈ ∂Ωh, for all t ∈ R and U ∈ R
2, let us set

σh,x(t, U) = t− ϕ(x).
– Now let us suppose that x ∈ Ωh, and let us fix t ∈ R and U = (U−, U+) ∈ R

2. By setting

σh,x(t, U) = sup
b∈[−1,1]

{

I(x)
√

1− b2 +
(
I(x)b + l

)
s · t− α

h
− l3

}

,

where {
s = 1, α = U−, if I(x)b + l > 0,
s = −1, α = U+, if I(x)b + l < 0,

we can easily observe that

S(h, x, t, u) = σh,x

(

t,
(
u(x− h), u(x+ h)

))

.
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By extending ϕ to ∂Ωh in order to insure the continuity of S(h, x, · , · ), we can prove by refering to
lemma 4 of [18] that

σh,x : R× R
2 → R, (t, U) 7→ σh,x(t, U)

is continuous, and so that (A14) holds for d = 2 and Ξh,x = {x− h, x+ h}.

• According to proposition 6.1.2, assumption (A15) is satisfied.

• Thanks to proposition 6 of [18], assumption (A16) is also satisfied.

6.1.4 –– Now let us terminate this section by indicating when the solutions of the approximation schemeS
converge to the viscosity solution of the s.f.s. problem (6.1). In order to do this, we refer to theorem 5.7.6,
which says that it is sufficient to satisfy assumptions (A12) and (A17) to (A19).

• We have seen that previously that S was constructed in order to satisfy assumption (A12).

• The stability property (A17) was studied in the previous paragraph (6.1.3).

• Conditions that insure that the consistency assumption (A18) and the strong uniqueness property from
(A19) are satisfied and are given by E. PRADOS and O. FAUGERAS in [18]. We will not expose them
here and we invite the reader that want to know more detail about it to refer this report.

6.2 An explicit expression of the approximation scheme

6.2.1 –– As constructed in 6.1.1, given h ∈ R
∗
+, x ∈ Ωh, t ∈ R and u ∈ B

(
Ω
)
, S(h, x, t, u) just

corresponds to the supremum of a real function:

S(h, x, t, u) = sup
b∈[−1,1]

{

I(x)
√

1− b2 +
(
I(x)b + l

)
s · t− u(x− sh)

h
− l3

}

,

where the value of s ∈ {−1, 1} depends on the sign of I(x)b + l:

{
s = 1 if I(x)b + l > 0,
s = −1 if I(x)b + l < 0,

which does not make calculation of its value easy as soon as I(x) 6= 0. In this section, for such fixed
quantities h, x, t and u, we propose to determine an explicit expression of S(h, x, t, u).

6.2.2 –– To achieve our objectives, we will use the following result, that can be proved by doing very
classical calculations.

Lemma. For all δ, α > 0, w, c ∈ R, the function

ψ :
[
−√α,√α

]
→ R, b 7→ δ

√

α− b2 + wb+ c

is concave. It has an unique critical point b∗ on ]−√α,√α[, which corresponds to its global maximiser
and which satisfies

b∗ =
w
√
α√

δ2 + w2
and ψ(b∗) = c+

√

α(δ2 + w2).
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6.2.3 –– In this paragraph, we will fix h ∈ R
∗
+, x ∈ Ωh such that I(x) > 0, t ∈ R and u ∈ B

(
Ω
)
. Since

now, h, x, t and u are fixed once for all, for all b ∈ [−1, 1], we will abusively denote by Ψ(b) the quantity
Υ
(
b ;x, q(b ;h, x, t, u)

)
. Hence a function Ψ : [−1, 1]→ R.

1) Let us introduce

R1 = {b ∈ [−1, 1] | I(x)b + l > 0} and R−1 = {b ∈ [−1, 1] | I(x)b + l < 0}.

By doing this,

S(h, x, t, u) = sup
[−1,1]

Ψ = max

{

sup
R1

Ψ, sup
R−1

Ψ

}

.

2) For all s ∈ {−1, 1}, let ψs : [−1, 1]→ R be the function defined, for all b ∈ [−1, 1], by

ψs(b) = I(x)
√

1− b2 +
(
I(x)b + l

)
s
t− u(x− sh)

h
− l3

= I(x)

δs

√

1
αs

− b2 + sI(x)
t− u(x− sh)

h
ws

b + sl
t− u(x− sh)

h
− l3

cs

.

Functions Ψ and ψs are obviously linked by the relation Ψ|Rs
= ψs |Rs

. Moreover, thanks to
lemma 6.2.2, the function ψs is concave and has an unique critical point b∗s on [−1, 1] correspond-
ing to its global maximizer, and

ψs(b
∗
s) = cs +

√

αs(δ2s + w2
s) = sl

t− u(x− sh)
h

− l3 + I(x)

√

1 +
[t− u(x− sh)]2

h2
. (6.5)

3) Let us suppose that |l| 6 I(x), and let us fix s ∈ {−1, 1}.
• If Ψ has no critical point on Rs, then it reaches its maximum on the boundary of Rs, i.e. at s or
−l/I(x). But it can not be reached at s since Ψ|Rs

= ψs |Rs
and ψs reaches its maximum on ]−1, 1[,

according to lemma 6.2.2. Hence

sup
Rs

Ψ = Ψ

( −l
I(x)

)

=
√

I2(x)− l2 − l3. (6.6)

• If Ψ has a critical point on Rs, then it is also a critical point of ψs. Thus by referring to point 2), we
deduce that b∗s ∈ Rs, and that b∗s also corresponds to the global maximizer of Ψ on Rs, hence

sup
Rs

Ψ = ψs(b
∗
s) = sl

t− u(x− sh)
h

− l3 + I(x)

√

1 +
[t− u(x− sh)]2

h2
.

4) Let us suppose that |l| > I(x). If l > I(x), then R1 = [−1, 1], so by referring to point 2),

sup
[−1,1]

Ψ = ψ1(b
∗
1) = l

t− u(x− h)
h

− l3 + I(x)

√

1 +
[t− u(x− h)]2

h2
.

But if l < −I(x), then R−1 = [−1, 1], and so thanks to point 2),

sup
[−1,1]

Ψ = ψ−1

(
b∗−1

)
= −l t− u(x+ h)

h
− l3 + I(x)

√

1 +
[t− u(x+ h)]2

h2
.

According to points 1) to 4), we have established the following result:
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Theorem. Let us fix h ∈ R
∗
+, x ∈ Ωh such that I(x) > 0, t ∈ R and u ∈ B

(
Ω
)
.

• If |l| 6 I(x), then by setting

as(h, x, t, u) =

{
ψs(b

∗
s) if b∗s ∈ Rs,

Ψ
(
−l/I(x)

)
if b∗s /∈ Rs,

we have
S(h, x, t, u) = max{as(h, x, t, u) | s ∈ {−1, 1}}.

• If |l| > I(x), then we have

S(h, x, t, u) =

{
ψ1(b

∗
1) if l > I(x),

ψ−1(b
∗
−1) if l < −I(x).

As a reminder, the exact values of ψs(b
∗
s) and Ψ

(
−l/I(x)

)
are respectively given in (6.5) and (6.6).

6.3 Explicit solutions of the approximation scheme

6.3.1 –– In paragraph 6.1.3, we have exposed various conditions that insure that our approximation
scheme S is stable, i.e. that for all h ∈ R

∗
+, there exists a function uh ∈ B

(
Ω
)

such that for all x ∈ Ω,

S(h, x, uh(x), uh) = 0.

In this section, given h ∈ R
∗
+ and u ∈ B

(
Ω
)

such that for all x ∈ Ω, the equation

S(h, x, t, u) = 0 (6.7)

has a solution t ∈ R, we will determine the explicit expression of such a solution t. Since when x ∈ ∂Ωh,
we have S(h, x, t, u) = t − ϕ(x), it is clear that t = ϕ(x) is the only solution in this case. As in the
previous section, the non-obvious case consists in considering this equation when x ∈ Ωh. In order to do
this, we will thus fix h ∈ R

∗
+, x ∈ Ωh and u ∈ B

(
Ω
)
.

REMARK. Let us note that for an arbitrary choice of u ∈ B
(
Ω
)
, equation (6.7) can note have a solution.

But as soon as S satisfies assumptions (A12) to (A14), we can for instance verify that for all subsolution
u of S(h, · , · , · ) and all x ∈ Ω, equation (6.7) has a solution t ∈ R.

6.3.2 –– To begin with, let us suppose that I(x) = 0. In this particular case, by using the definition of S
from 6.1.1, equation S(h, x, t, u) = 0 can be immediately rewritten

sl
t− u(x− sh)

h
= 0 where

{
s = 1 if l > 0,
s = −1 if l < 0.

• If l = 0, we thus obtain S(h, x, t, u) = 0 for all t ∈ R.

• If l 6= 0, then it is clear that its unique solution is

t = u(x− sh) + shl3
l

.

6.3.3 –– From now, we will focus on the non-obvious case I(x) > 0. In paragraph 6.2.3, we were looking
for an explicit value of S(h, x, t, u), for fixed h ∈ R

∗
+, x ∈ Ωh such that I(x) > 0, t ∈ R and u ∈ B

(
Ω
)
.

Here, for such fixed quantities h, x and u, we are looking for the solutions t ∈ R of the equation (6.7),
i.e. S(h, x, t, u) = 0.
Thus, in the rest of this section, by the same principle as in paragraph 6.2.3, since h, x and u will be fixed
once for all, in accordance with the value of t ∈ R, we will abusively denote by:
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– Ψ(·; t) the function from [−1, 1] to R defined, for all b ∈ [−1, 1], by Ψ(b; t) = Υ
(
b;x, q(b;h, x, t, u)

)
,

– for all s ∈ {−1, 1}, by ψs( · ; t) the function ψs, and by b∗s(t) its global maximiser.

Since the notations of R1 and R−1 do not depend on t, we will reuse these notations. By doing this, for
all t ∈ R and s ∈ {−1, 1}, the quantity as(h, x, t, u) used in theorem 6.2.3 to give the explicit expression
of S(h, x, t, u) can be rewritten:

as(h, x, t, u) =

{
ψs

(
b∗s(t) ; t

)
if b∗s(t) ∈ Rs,

Ψ
(
− l/I(x) ; t

)
if b∗s(t) /∈ Rs.

6.3.4 –– Thanks to the expression of S(h, x, t, u) obtained in 6.2.3, it seems interesting to determine, for
all s ∈ {−1, 1}, the elements that can belong to

Θs =
{
t ∈ R

∣
∣ ψs

(
b∗s(t) ; t

)
= 0, b∗s(t) ∈ Rs

}
.

In order to do this, given s ∈ {−1, 1} and t ∈ R, we will more simply set

qs(t) = s
t− u(x− sh)

h
.

By doing this, we obviously have, for all b ∈ [−1, 1],

ψs

(
b ; t) = I(x)

√

1− b2 +
(
I(x)b + l

)
qs(t)− l3.

Proposition. Let us suppose that I(x) > 0, and let us fix s ∈ {−1, 1} and t ∈ Θs. Then

Aq2s(t) +Bqs(t) + C = 0 with







A = I2(x) − l2,
B = 2ll3,
C = I2(x) − l23.

(6.8)

Consequently:

(i) If A = 0, then B 6= 0 and

t = u(x− sh)− shC

B
.

(ii) If A 6= 0, then we have ∆ = B2 − 4AC > 0 and existence of σ ∈ {−1, 1} such that

t = u(x− sh) + sh
−B + σ

√
∆

2A
.

Proof.–– By referring to point 2) from 6.2.3, we have

ψs

(
b∗s(t) ; t

)
= I(x)

√

1 + q2s(t) + slqs(t)− l3.

Thus we have

ψs

(
b∗s(t) ; t

)
= 0 =⇒ I(x)

√

1 + q2s(t) = l3 − lqs(t)
=⇒ I2(x)[1 + q2s(t)] = l23 − 2ll3 + l2q2s(t)

=⇒ (I2(x) − l2)
︸ ︷︷ ︸

A

q2s (t) + 2ll3
︸︷︷︸

B

qs(t) + (I2(x) − l23)
︸ ︷︷ ︸

C

= 0,

which proves the validity of relation (6.8). Now let us prove points (i) and (ii).
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(i) If A = 0, then |l| = I(x) by the definition of A, and so l 6= 0 since we have supposed I(x) > 0. In
addition, (6.8) can be rewritten

0 = Bqs(t) + C = B
t− u(x− sh)

h
+ C.

And since l is non-zero, then B is also non-zero, so we obtain the expected result.

(ii) If A 6= 0, then since (l, l3) is an unit vector, we have

∆ = (2ll3)
2− 4[I2(x)− l2][I2(x)− l23 ] = 4I2(x)[l2 + l23− I2(x)] = 4I2(x)[1− I2(x)] > 0.

Thus according to relation (6.8), we deduce that there exists σ ∈ {−1, 1} such that

qs(t) =
−B + σ

√
∆

2A
,

and we can easily conclude by using the definition of qs(t). �

6.3.5 –– The following proposition gives a characterization of the existence of a solution to equation (6.7),
that will be useful in order to explicit the value of such a solution.

Proposition. Let us fix x ∈ Ωh such that 0 < I(x) < 1. The following conditions are equivalent:

(i) There exists t ∈ R such that S(h, x, t, u) = 0.

(ii) There exists s ∈ {−1, 1} such that Θs 6= ∅.

If these conditions are satisfied, then τ = min(Θ−1 ∪Θ1) is well-defined and satisfies S(h, x, τ, u) = 0.

Proof.–– (i) ⇒ (ii) : According to theorem 6.2.3, the implication is clear as soon as |l| > I(x). If
|l| 6 I(x), since I(x) < 1 = l2 + l3, we then have

Ψ

( −l
I(x)

; t

)

=
√

I2(x)− l2 − l3 <
√

l33 − l3 = 0.

Consequently, thanks to theorem 6.2.3, we also obtain the expected implication.

(ii)⇒ (i) : Let us suppose that (ii) is satisfied. In this case, thanks to proposition 6.3.4, the sets Θ1 and
Θ−1 are finite, and so the quantity τ = min(Θ−1 ∪ Θ1) is well-defined. We will prove that it satisfies
S(h, x, τ, u) = 0, which will immediately imply (i).

• By the definition of τ , let us fix s ∈ {−1, 1} such that τ ∈ Θs. Then b∗s(τ) ∈ Rs, so according to
theorem 6.2.3, we get

0 = ψs

(
b∗s(τ) ; τ

)
6 sup

b∈[−1,1]

Ψ(b ; τ) = S(h, x, τ, u). (6.9)

• Now let us fix s ∈ {−1, 1} and ts ∈ Θs. By the definition of τ , we thus have τ 6 ts. But since for all
b ∈ [−1, 1], function Ψ(b ; · ) is non-decreasing by construction, it implies

sup
b∈Rs

Ψ(b ; τ) 6 sup
b∈Rs

Ψ(b ; ts).

And since ts ∈ Θs, therefore thanks to point 2) from 6.2.3,

b∗s(ts) ∈ Rs and sup
b∈Rs

Ψ(b ; ts) = ψs

(
b∗s(ts) ; ts

)
= 0.
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Consequently, for all s ∈ {−1, 1}, we have obtained

sup
b∈Rs

Ψ(b ; τ) 6 0,

so thanks to point 1) from 6.2.3,

S(h, x, τ, u) =

{

sup
b∈R−1

Ψ(b ; ts), sup
b∈R1

Ψ(b ; ts)

}

6 0 (6.10)

According to (6.9) and (6.10), we have already proved that S(h, x, τ, u) = 0. �

REMARK. Let us observe that since (l, l3) is an unit vector, the assumption I(x) < 1 is always satisfied
as soon as |l| > I(x).

6.3.6 –– Let us terminate this section by explaining how to determine an explicit solution of the equa-
tion (6.7) in the non-obvious case I(x) > 0. In order to do this, let us suppose that 0 < I(x) < 1 and
that (6.7) has a solution. Then thanks to proposition 6.3.5, we have

S(h, x, τ, u) with τ = min(Θ−1 ∪Θ1).

To conclude, we now just need to determine the explicit expression of τ . In order to do this, it is sufficient
to determine the elements that belong to Θ−1 and Θ1, which can be done by referring to proposition 6.3.4.
So let us reuse the notations from this proposition.

• If A = 0, then I2(x) = l2, and so I(x) = |l|. In this case, there exists an unique s ∈ {−1, 1} such that
Rs 6= ∅, and for this s, we have Rs = ]−1, 1[r{−s}. Let us consider

ts = u(x− sh)− shC

B
.

Thanks to lemma 6.2.2, it is clear that

b∗s(ts) =
qs(t)

√

1 + q2s(t)
∈ ]−1, 1[ ⊂ Rs.

Otherwise, by referring to relation (6.5) and by using the definitions of ts, B and C, we get

ψs

(
b∗s(ts) ; ts

)
= − lC

B
− l3 + |l|

√

1 +
C2

B2
= − l(l

2 + l23)

2ll3
︸ ︷︷ ︸

−
(l2+l2

3
)

2l3

+

√

l2(l2 + l23)
2

4l2l23
︸ ︷︷ ︸

(l2+l23)

2l3

= 0.

Consequently, this proves that

Θs = {ts} =

{

u(x− sh)− shC

B

}

.

Therefore, in this case, we have τ = ts, and

S(h, x, ts, u) = 0.
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• If A 6= 0, then for all s, σ ∈ {−1, 1}, by setting

ts,σ = u(x− sh) + sh
−B + σ

√
∆

2A
,

we can observe that

Θs =
{
ts,σ

∣
∣ σ ∈ {−1, 1}, ψs

(
b∗s(ts,σ) ; ts,σ

)
= 0, b∗s(ts,σ) ∈ Rs

}
.

REMARK. Let us formulate the following observations:

• WhenA 6= 0, we have not found for which values of s and σ we have τ = ts,σ, i.e. S(h, x, ts,σ, u) = 0.

• If I(x) = 1, proposition 6.3.5 becomes generally false, and so that we can not apply the method
describe above in order to determine the value of a t satisfying S(h, x, t, u) = 0. In fact, in this
case, the expression of S(h, x, t, u) given by theorem 6.2.3 can be independent of t, and it could be
impossible to determine the expression of such a t.
From a theoretical point of view, we have explained in paragraph 5.5.7 that if there exists x ∈ Ω such
that I(x) = 1, then the s.f.s. problem can have several viscosity solutions, but that we can recover the
uniqueness of a viscosity solution by solving this problem on Ω′ = {x ∈ Ω | I(x) < 1} instead of Ω.
Here, we have highlighted that it is also necessary to do it from a numerical point of view.

6.4 Associated algorithm

6.4.1 –– Definition. A mesh of Ω = [0, α] (resp. Ω = ]0, α[) is a subset of the form:

ΩN =
{
ih
∣
∣ i ∈ {0, . . . , N}

}

(resp. ΩN =
{
ih
∣
∣ i ∈ {1, . . . , N − 1}

}
,

∂ΩN = ΩNrΩN ),

where N is an integer larger than 2 and h is defined by

h =
α

N
. (6.11)

With these notations, each element of the mesh is called a node, and h is called the mesh size.

6.4.2 –– Let us formulate some remarks about the previous definition and let us specify some notations.
So let N be an integer larger than 2.

• We can first observe that ΩN = ΩN ∪ ∂ΩN .

• Then it is important to note that meshes ΩN and ΩN are fully determined by the integerN : that is why
we have chosen to make it appear as an index. Therefore in this sense, ΩN does not correspond to the
closure of ΩN and ∂ΩN does not correspond to its boundary.

• It is also important to observe that the mesh-size h is fully determined by N . In order to simplify the
notations, we will not signal this dependence (but we will keep it in mind).
In addition, for this choice of h, let us remark that ΩN precisely corresponds to the nodes of ΩN that
belong to the set Ωh introduced in 6.1.1.
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ω0 ω1 ω2 ωi ωN

0 h 2h ih α = Nh bc node of ΩN

b node of ∂ΩN

Figure 38 – Representation of the meshes ΩN and ΩN of Ω and Ω

• In what follows, given N > 2, h will automatically corresponds to the mesh-size of ΩN , i.e. h will be
automatically defined by the relation (6.11). In addition, given i ∈ {0, . . . , N}, we will denote by ωi

the node ih.

The following figure, that can be compared to figure 37, illustrates this all:

6.4.3 –– Given N > 2 and h defined by the relation (6.11), we want to compute an approximation uh
of the viscosity solution u of the s.f.s. problem (6.1) at each node of ΩN . This approximation will be
computed as suggested by the proof of the stability result 5.7.4:

– We start with u0 ∈ B
(
Ω
)

a subsolution of S(h, · , · , · ).

– Given n ∈ N and un a subsolution of S(h, · , · , · ), un+1 is chosen such that for all x ∈ Ω,

S(h, x, un+1(x), un) = 0.

– In the end, we take uh the limit of the sequence (un)n∈N.

Let us remind that in section 6.1, we have presented various conditions that insure that such a sequence
(un)n∈N is already well-defined and convergent, and that its limit uh converges to u when h goes to 0,
i.e. N is sufficiently large. Thus from now on, given v ∈ B

(
Ω
)
, our goal will consist in solving, for all

x ∈ ΩN , an equation of the form S(h, x, t, v) = 0 with respect to t ∈ R, which can be done as explained
in paragraph 6.3.6.
Now let us observe that if v ∈ B

(
Ω
)
, then for all x ∈ ΩN , the value of S(h, x, t, v) only depends on the

values of h, x, t and those taken by v in other nodes from ΩN . That is why in the sequel, by using the
notation of σh,x from 6.1.3, we will deal with the function SN : ΩN × R × R

N+1 → R defined, for all
x ∈ ΩN , t ∈ R and V =

(
V (i)

)

06i6N
∈ R

N+1, by:

– SN (x, t, V ) = σh,x

(

t,
(
V (i− 1), V (i+ 1)

))

if x ∈ ΩN and i ∈ {1, . . . , N − 1} satisfies x = ωi,

– SN (x, t, V ) = t− ϕ(x) if x ∈ ∂ΩN .

By doing this, V will be called a subsolution of SN if SN (ωi, V (i), V ) 6 0 for all i ∈ {0, . . . , N}.

6.4.4 –– Suggested algorithm.

Given N > 2, h defined as in (6.11), ε > 0 an accuracy threshold and nmax ∈ N
∗, let us explain how to

obtain Uapp ∈ R
N+1 an approximation of u at each node of ΩN . Just by knowing the values of I at each

nodes of ΩN , those of the components of the unit vector (l, l3) oriented to the light source and those of
the function ϕ at each node of ∂ΩN , Uapp will be computed as follows:

1) We start with U0 =
(
U0(i)

)

06i6N
a subsolution of SN satisfying U0(i) = ϕ(ωi) for index i such that

ωi ∈ ∂ΩN .

2) Given n ∈ N and Un =
(
Un(i)

)

06i6N
a subsoltion of SN , Un+1 =

(
Un+1(i)

)

06i6N
is chosen such

that, for all i ∈ {0, . . . , N},
SN (ωi, Un+1(i), Un) = 0.

In practice, Un+1(i) can be explicitly computed as explained in paragraph 6.3.6.
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3) Computations from 2) are done as long as ‖Un+1 − Un‖∞ > ε and n 6 nmax. If there exists n 6 nmax

such that ‖Un+1 − Un‖∞ < ε, we set Uapp = Un+1 for the smallest of these integer n. If this is not
the case, we set Uapp = Unmax .

Finally, for all i ∈ {0, . . . , N}, Uapp(i) corresponds to an approximation of the function uh from 6.4.3 at
the node ωi. As a reminder, uh converges to u the viscosity solution of (6.1) as soon as h goes to 0.

REMARK. Let us formulate some observations about the previous algorithm:

• At step 2), it is important to note that for all i ∈ {0, . . . , N}, the value of Un+1(i) depends on the values
of Un, but not those of Un+1. Thus, computations done at this step can be performed independently,
hence a possible parallelization.

• Still at step 2), starting with a subsolution Un of SN , for all i ∈ {0, . . . , N}, Un+1(i) is chosen such
that SN (ωi, Un+1(i), Un) = 0. Since SN is non-increasing with respect to its last variable, then we
have SN (h, Un+1(i), Un+1) 6 0 for all i ∈ {0, . . . , N}, and so Un+1 is also a subsolution of SN .

• As explain in introduction, if there exists a point of Ω such that I(x) = 1, then we can adapt our
algorithm by replacing ΩN by Ω′

N =
{
x ∈ ΩN

∣
∣ x ∈ Ω′

}
and ∂ΩN by ∂Ω′

N = ΩNrΩ′
N .

6.5 Numerical simulations

6.5.1 –– In this section, we will present various simulations done in order to solve the s.f.s. problem (6.1)
by a direct use of the algorithm from paragraph 6.4.4, or after various adaptations of it. Thus we will take
the notations from this paragraph back, and unless otherwise indicated, for all the simulations presented
in this section:

• In step 1), by setting:

µ = min
x∈∂ΩN

ϕ(x) and C =







µ if l > 0,

µ+
Nhl

l3
if l < 0,

then we have C 6 max
∂ΩN

ϕ. Thus thanks to proposition 6.1.2, the subsolution U0 was chosen such that,

for all index i satisfying ωi ∈ ΩN ,

U0(i) = C − ilh

l3
.

• Computations from step 2) will be done by referring to paragraph 6.3.6, and by using a vectorization.

• The accuracy threshold ε from 3) will be always equal to 10−3.

• The number of iterations of the algorithm from 6.4.4 will correspond to the first integer n such that
‖Un+1 − Un‖∞ < ε. We will denote it by ι, and we will then say that the algorithm from 6.4.4
converges in ι iterations.
Concretely, ι corresponds to the number of times the computations from step 2) are performed.

• The vector
Uapp =

(
Uapp(i)

)

06i6N
∈ R

N+1

will always corresponds to the vector obtained in output of our algorithm. In addition, given u : Ω→ R

a viscosity solution of (6.1),
U =

(
U(i)

)

06i6N
∈ R

N+1
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will always corresponds to the vector such that U(i) = u(ωi) for all i ∈ {0, . . . , N}. With these
notations, we will consider the following errors:

η∞ = ‖Uapp − U‖∞ and ηave =
1

N + 1

N∑

i=0

|Uapp(i)− U(i)|.

• In accordance with the remark from 6.4.4, if there exists points x ∈ Ω such that I(x) = 1, we have in
practice supposed that Ω′ = {x ∈ Ω | I(x) < 0.99} for numerical reasons (round of errors). We will
then denote by nfix the number of points from ΩN where I is larger than 0.99.

• We will denote by Imin and Imax the minimal and maximal values of I on ΩN .

• Finally, we will denote by τ the computation time of the considered simulation, from the first compu-
tations done in step 1) to the last computations done in step 2).

6.5.2 –– For our first simulations, we can solve numerically the s.f.s. problem (6.1) with Ω = ]0, 1[,
(l, l3) = (0, 1) and I(x) =

√
2/2 for all x ∈ ]0, 1[. As observed in 5.1.3, this leads to the eikonal

problem largely studied in chapter 5:

{
|u′(x)| = 1 if x ∈ ]0, 1[,
u(x) = ϕ(x) if x ∈ {0, 1}.

Then for N = 20, we have applied the algorithm presented in 6.4.4 with the following choices of ϕ:

• ϕ(0) = ϕ(1) = 0. In this case, thanks to 5.2.7 and 5.3.7, we know that

u : [0, 1]→ R, x 7→ 1

2
−
∣
∣
∣
∣

1

2
− x
∣
∣
∣
∣

is the only continuous viscosity solution of the s.f.s. problem. Numerically, our algorithm converges in
ι = 11 iterations, with η∞ and ηave smaller than 10−15, i.e. η∞ = ηave = 0 and so Uapp(i) = u(ωi) for
all i ∈ {0, . . . , 21} with machine precision.
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Figure 39 – Graphical representations of u and Uapp when ϕ(0) = ϕ(1) = 0
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• ϕ(0) = 0 and ϕ(1) = 2. We have observed in 5.6.4 that the s.f.s. problem does not admit a continuous
viscosity solution, but that

u : [0, 1]→ R, x 7→
{
x if x ∈ [0, 1[,
2 if x = 1.

is a discontinuous viscosity solution of it. Numerically, our algorithm converges in ι = 20 iterations,
with η∞ and ηave smaller than 10−15, i.e. η∞ = ηave = 0 and so Uapp(i) = u(ωi) for all i ∈ {0, . . . , 21}
with machine precision.
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Figure 40 – Graphical representations of u and Uapp when ϕ(0) = 0 and ϕ(1) = 2

These first simulations show that our algorithm enables to obtain approximations of a continuous viscosity
solution of a s.f.s. problem as well as a discontinuous. We can also note that for these particular choices
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of I and (l, l3), we have always recovered the exact value of the viscosity solution of the s.f.s. problem:
that is probably because the exact solutions are piecewise linear, so that in this case, discretizations of u′

in our approximation scheme S are exact.
Let us also signal that these two simulations were done almost instantaneously: in less than 4ms.

6.5.3 –– Let us consider a more sophisticated example, by trying to recover the following shape:

u : [0, 1]→ R, x 7→ 1− x2
4

.

So here, Ω = ]0, 1[, and thanks to the brightness equation (II.1) presented in the introduction of this
part II, I is therefore defined by:

I : ]0, 1[→ R, x 7→ lx+ 2l3√
4 + x2

.

In this case, according to theorem 5.2.6, we can indeed prove that u is a viscosity solution of the s.f.s.
problem. Thus by fixing N = 20 and supposing that ϕ(x) = u(x) for all x ∈ ∂ΩN , for various choices
of (l, l3), the table 19 presented the corresponding values of η∞, ηave, ι, but also the number nfix of nodes
of ΩN where the intensity I was larger than 0.99 and the computation time τ (expressed in milliseconds).

l l3 Imin Imax η∞ ηave ι nfix τ
√
3

2

1

2
0.52 0.82 1.19·10−2 5.65·10−3 20 0 4.90ms

√
2

2

√
2

2
0.72 0.94 1.19·10−2 5.65·10−3 26 0 6.82ms

1

2

√
3

2
0.88 1 1.00·10−2 4.05·10−3 53 3 11.8ms

0 1 0.90 1 8.75·10−3 3.12·10−3 28 5 7.29ms

−1
2

√
3

2
0.57 0.85 1.19·10−2 5.65·10−3 21 0 4.51ms

Table 19 – Values of Imin, Imax, η∞, ηave, ι, nfix and τ for various choices of (l, l3)

In comparison to the simulations from the previous paragraph, we now obtain approximations that are
effectively different to the viscosity solution u of the s.f.s. problem, but really close to it, as shown by
the errors η∞ and ηave. Even if the number of iterations ι seems increasing as soon as the values of I are
close to 1, we finally obtain good approximations of u practically instantaneously.

In order to illustrate our simulations, we have represented I , Uapp and u for various choices of l and l3 at
figures 41 and 42: l = −1/2 at figure 41, l = 1/2 at figure 42, and l3 =

√
3/2 for both of them. It is

interesting to observe that Uapp have been computed by starting from the exact value of u in x = 0 in the
first case, and from its exact value in x = 1 in the other one. In fact, the convergence over iterations of
Uapp to the viscosity solution u seems to follow the light source direction. Unfortunately, we are not able
to explain analytically this phenomenon, which can be observed in the other cases, for other simulations,
and more generally also in two-dimension.
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Figure 41 – Graphical representations of I , u and Uapp when (l, l3) =

(
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2

)
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Figure 42 – Graphical representations of I , u and Uapp when (l, l3) =
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6.5.4 –– An example with a shadow area.

In order to illustrate the behaviour of our algorithm when there exists a shadow area, let us consider
that the shape is defined by the following piecewise continuous function u : [0, 4] → R defined, for all
x ∈ [0, 4], as follows:

u(x) =







2 if x ∈ [0, 1[,
−2x+ 4 if x ∈ [1, 2[,

0 if x ∈ [2, 4].

We thus have Ω = ]0, 4[. Now let us suppose that

(l, l3) =

(

−
√
2

2
,

√
2

2

)

.
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Then, from a theoretical point of view, for all x ∈ ]0, 4[, the brightness equation (II.1) implies

I(x) =

{ √
2/2 if x /∈ [1, 2[,
0 if x ∈ [1, 2[.

But as shown by the figure 43, from a physical point of view, the orientation of the light vector makes
that a shadow area can be observed on the interval [1, 3[, and not only [1, 2[ (to better visualize it, we can
for instance suppose that u describes the profile of a mountain).

1 2 3 40
x

1

2

u(x)

u

light ray

I(x)

Figure 43 – Graphical representation of u and I from a physical point of view

That is the reason why we will finally suppose, for all x ∈ [0, 4], that

I(x) =

{ √
2/2 if x /∈ [1, 3[,
0 if x ∈ [1, 3[.

As described in paragraph 6.3.2, over the shadow area, we expect to recover a shape that has the same
direction than the light source in output of our algorithm. By fixing N = 20, this is precisely what we
get in practice, as shown by the figure 44.
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Figure 44 – Example of a reconstructed shape in the presence of a shadow area
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Conclusion

In this chapter, we have mainly proved how to obtain an explicit formulation of an approximation scheme
associated to the s.f.s. problem. This was manifestly considered as implicit until now, in the one-
dimensional case. By using this explicit expression of the approximation scheme, we have been able
to implement an effective and efficient algorithm that enables to recover continuous as well as discontin-
uous solutions of various s.f.s. problems, practically instantaneously.
If the one-dimensional s.f.s. problem has no interest in practice, its study could be useful to understand
how to obtain an explicit formulation of the approximation scheme we have considered. As we will see
in the following chapter, it will also be possible to introduce an analogous scheme in two-dimension, and
we will be able to obtain an explicit expression of it by using mainly the same tricks.



Chapter 7

Numerical resolution of the bi-dimensionnal

shape from shading problem

Introduction

In this new chapter, we will essentially extend to the bi-dimensional case what we have done in chapter 6
with the shape from shading problem in the one-dimensional case. Thus from now on, we will assume
that n = 2 and Ω = ]0, α1[ × ]0, α2 for such α1, α2 > 0, and we will consider the s.f.s. problem:

{
H(x,∇(x)) = 0 if x ∈ Ω,
u(x) = ϕ(x) if x ∈ ∂Ω,

(7.1)

where H is given, for all (x, p) ∈ Ω× R, by

H(x, p) = I(x)
√

1 + |p|2 + l·p− l3.

As a reminder, I is a function from Ω to [0, 1] corresponding to the brightness intensity, l = (l1, l2) ∈ R
2

and l3 > 0 are such that (l, l3) corresponds to the unit vector oriented to the light source, and ϕ : ∂Ω→ R

a function that is supposed to be continuous. In addition, by introducing

Υ : [−1, 1]×
(
Ω× R

)
→ R, (b ;x, p) 7→ I(x)

√

1− |b|2 +
(
I(x)b + l

)
·p− l3,

thanks to 5.5.7, for all (x, p) ∈ Ω× R, we now have

H(x, p) = sup
b∈B′(0,1)

Υ(b ;x, p).

As in chapter 6, everything we will present in this chapter will be available when the set of points from Ω
where I is equal to 1 corresponds to a finite union of disjoint connected compact sets by replacing Ω by
Ω′ = {x ∈ Ω | I(x) < 1}. But in order to simplify our talk, we will not do it here.
So here, on the same principle as in chapter 6, we will first see how to obtain an approximation scheme
associated to our s.f.s. problem (section 7.1). Then we will give an explicit expression of this approxi-
mation scheme (section 7.2) and of its solutions (section 7.3). We will present a numerical algorithm that
will enable to solve (7.1) numerically (section 7.4) and we will illustrate its performances (section 7.5).
We will terminate this chapter by presenting possible extensions of our work (section 7.6).

149
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7.1 An approximation scheme associated to the s.f.s. problem

7.1.1 –– The approximation scheme associated to the bi-dimensional s.f.s. problem is constructed in a
totally similar way than in the one-dimensional case. We start by fixing h = (h1, h2) ∈

(
R

∗
+

)2
and by

introducing

Ωh =
{
x ∈ Ω

∣
∣ ∀ (j, s) ∈ {1, 2} × {−1, 1}, x+ shjej ∈ Ω

}
and ∂Ωh = ΩrΩh.

Let us remind that (e1, e2) corresponds to the standard basis from R
2. By doing this, we still have

Ω = Ωh ∪ ∂Ωh, and ∂Ωh does not correspond rigorously to the boundary of Ωh, but can be morally
considered as a boundary of Ωh that has h to diameter, as shown by the following figure:

0

α1

x1

α2
x2

h1

h2

∂Ωh

Ωh

Figure 45 – Representation of the domains Ωh and ∂Ωh

Now by fixing x ∈ Ω, t ∈ R and u ∈ B
(
Ω
)
, the approximation scheme S :

(
R

∗
+

)2×Ω×R×B
(
Ω
)
→ R

is constructed as follows:

• If x ∈ Ωh, for all b ∈ B′(0, 1), by introducing the vector

q(b ;h, x, t, u) =
(
q1(b ;h, x, t, u), q2(b ;h, x, t, u)

)

that is defined, for all j ∈ {1, 2}, by

qj(b ;h, x, t, u) = sj
t− u(x− sjhjej)

hj
where

{
sj = 1 if I(x)bj + lj > 0,
sj = −1 if I(x)bj + lj < 0,

we can set

S(h, x, t, u) = sup
b∈[−1,1]

Υ
(
b ;x, q(b ;h, x, t, u)

)
.

• If x ∈ ∂Ωh, by extending continuously ϕ on ∂Ωh in order to insure the continuity of S(h, x, · , · ), we
set

S(h, x, t, u) = t− ϕ(x).

As in the one-dimensional case, we thus obtain an approximation scheme

S : R
∗
+ × [−1, 1]× R× B([−1, 1])→ R, (h, x, t, u) 7→ S(h, x, t, u)

that is non-increasing with respect to its last variable (u ∈ B([0, 1])) and non-decreasing with respect to
its third variable (t ∈ R).
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REMARK. In figure 45, we have represented the axes in an non-usual way. Even if our choice can be
surprising, it is motivated by an ease of presentation that will be revealed in section 7.4.

7.1.2 –– The following result extend to the bi-dimensional case lemma 6.1.2:

Proposition. For all h ∈ R
∗
+, the function

u0 : Ω→ R, x 7→ −l·x
l3

+ C,

where C ∈ R is chosen so that u0 6 min
∂Ωh

ϕ, is a subsolution of S(h, · , · , · ).

7.1.3 –– As in paragraph 6.1.3, we can determine conditions that insure that the approximation scheme
defined in 7.1.1 is stable:

• S is non-increasing with respect to its last variable (u ∈ B
(
Ω
)
), thus it always satisfies (A12).

• S is non-decreasing with respect to its third variable (t ∈ R), and for fixed h ∈
(
R

∗
+

)2
, x ∈ Ω and

u ∈ B
(
Ω
)
, when t → +∞, we have S(h, x, t, u) → +∞ as soon as we do not have I(x) = l = 0.

Thus (A13) is satisfied as soon as we do not have I(x) = l = 0.

• Let us fix h = (h1, h2) ∈
(
R

∗
+

)2
and x ∈ Ω.

– If x ∈ ∂Ωh, for all t ∈ R and U ∈ R
4, let us set

σh,x(t, U) = t− ϕ(x).

– If x ∈ Ωh, for all t ∈ R and U = (U1, U2, U3, U4) ∈ R
4, by setting

σh,x(t, U) = sup
b∈B′(0,1)

{

I(x)
√

1− |b|2 +
(

I(x)b1 + l1
)

s1 · t− α1

h1
+
(

I(x)b2 + l2
)

s2 · t− α2

h2
− l3

}

,

where
{

s1 = 1, α1 = U1, if I(x)b1 + l1 > 0,
s1 = −1, α1 = U3, if I(x)b1 + l1 < 0,

and

{

s2 = 1, α2 = U2, if I(x)b2 + l2 > 0,
s2 = −1, α2 = U4, if I(x)b2 + l2 < 0,

we can easily observe that

S(h, x, t, u) = σh,x

(

t,
(
u(x− h1e1), u(x− h2e2), u(x+ h1e1), u(x+ h2e2)

))

.

So by extending continuously ϕ to ∂Ωh, we can prove by refering to lemma 4 from [18] that

σh,x : R× R
2 → R, (t, U) 7→ σh,x(t, U)

is continuous, and that (A14) happens with d = 4 and Ξh,x = {x−h1e1, x−h2e2, x+h1e1, x+h2e2}.

• According to proposition 7.1.2, assumption (A15) is satisfied.

• Thanks to proposition 6 from [18], assumption (A16) is also satisfied.

Finally, conditions that insure that the solutions of S converge to the viscosity solution of (7.1) can be
found identically than in paragraph 6.1.4 with the one-dimensional case.
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7.2 An explicit expression of the approximation scheme

7.2.1 –– Now on the same principle as in section 6.2 with the one-dimensional case, given h ∈
(
R

∗
+

)2
,

x ∈ Ωh such that I(x) > 0, t ∈ R and u ∈ B
(
Ω
)
, we will determine an explicit expression of the

approximation scheme S constructed in the previous section in (h, x, t, u). Since h, x, t and u are fixed,
we will more simply note Ψ(b) the quantity Υ

(
b ;x, q(b ;h, ;x, t, u)

)
, hence a functionΨ : B′(0, 1)→ R.

In the one-dimensional, the exact expression of S(h, x, t, u) was essentially found by considering the
regions R−1 and R1 from [−1, 1] where the expression of the quantity q(b ;h, x, t, u) was changing. In
the bi-dimensional, we need to do this for each component of q(b ;h, x, t, u), thus we need to consider:

R(1,1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 > 0, I(x)b2 + l2 > 0} ,

R(1,−1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 > 0, I(x)b2 + l2 < 0} ,

R(−1,1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 < 0, I(x)b2 + l2 > 0} ,

R(−1,−1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 < 0, I(x)b2 + l2 < 0} ,

and the regions that corresponds, possibly also with the point −l/I(x), to their boundary in B′(0, 1):

R(0,1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 = 0, I(x)b2 + l2 > 0} ,

R(0,−1) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 = 0, I(x)b2 + l2 < 0} ,

R(1,0) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 > 0, I(x)b2 + l2 = 0} ,

R(−1,0) = {(b1, b2) ∈ B′(0, 1) | I(x)b1 + l1 < 0, I(x)b2 + l2 = 0} .

B′(0, 1)

b1 =
−l1

I(x)

b2 =
−l2

I(x)

R(1,1)R(−1,1)

R(−1,−1) R(1,−1)

bc

−l

I(x)

R(1,0)

R(0,1)

R(0,−1)

R(−1,0)

Figure 46 – Representation of the regions R(±1,±1), R(0,±1) and R(±1,0)

By the definition of S, we thus have

S(h, x, t, u) = sup
B′(0,1)

Ψ = max

{

sup
R(1,1)

Ψ, sup
R(1,−1)

Ψ, sup
R(−1,1)

Ψ, sup
R(−1,−1)

Ψ}
}

. (7.2)

7.2.2 –– To find an explicit expression of S(h, x, t, u), we will use the following result, that can be seen
as an extension in the bi-dimensional case of lemma 6.2.2:
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Lemma. For all δ > 0, w ∈ R
2 and c ∈ R, the function

ψ : B′(0, 1)→ R, b 7→ δ
√

1− |b|2 + w·b+ c

is concave. It has an unique critical point b∗ on B′(0, 1), which corresponds to its global maximiser and
which satisfies

b∗ =
w

√

δ2 + |w|2
and ψ(b∗) = c+

√

δ2 + |w|2.

7.2.3 –– Let us start by supposing |l| 6 I(x), which is equivalent to say that −l/I(x) ∈ B′(0, 1).

• Let us fix s = (s1, s2) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}. For all b = (b1, b2) ∈ Rs, we have

Ψ(b) = I(x)
√

1− |b|2 +
(

I(x)b1 + l1
)

s1 · t− u(x− s1h1e1)

h1
+
(

I(x)b2 + l2
)

s2 · t− u(x− s2h2e2)

h2
− l3

= I(x)

δs

√

1− |b|2 + I(x)

(

s1
t− u(x− s1h1e1)

h1
, s2

t− u(x− s2h2e2)

h2

)

ws

· (b1, b2)

+ l1
t− u(x− s1h1e1)

h1
+ l2

t− u(x− s2h2e2)

h2
− l3

cs

,

which proves that Ψ coincides with ψs : B
′(0, 1)→ R, b 7→ δs

√

1− |b|2+ws·b+cs onRs. Therefore if
Ψ has a critical point onRs, then according to lemma 7.2.2, it necessarily corresponds to the maximiser
b∗s of ψs, hence

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

But if Ψ has no critical point on Rs, then Ψ reaches its supremum on the boundary of Rs in B′(0, 1),
which is included in R(0,1) ∪R(0,−1) ∪R(1,0) ∪R(−1,0) ∪ {−l/I(x)}.

• Now let us fix s2 ∈ {−1, 1} and let us set s = (0, s2). For all b = (b1, b2) ∈ Rs, we have

Ψ(b) = I(x)

√

1− l21
I2(x)

− b22 +
(
I(x)b2 + l2

)
s2
t− u(x− s2h2e2)

h2
− l3

= I(x)

δs

√

1− l21
I2(x)

αs

− b22 + I(x)s2
t− u(x− s2h2e2)

h2
ws

· b2 + s2l2
t− u(x− s2h2e2)

h2
− l3

cs

,

which proves that Ψ coincides with ψs : [−αs, αs] → R, b2 7→ δs
√

1− b22 + wsb2 + cs on Rs.
Therefore if Ψ has a critical point on Rs, then according to lemma 6.2.2, it necessarily corresponds to
the maximiser b∗s of ψs, hence

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

But if Ψ has no critical point on Rs, then Ψ reaches its supremum on the boundary of Rs, and so
necessarily in −l/I(x) since Ψ|Rs

= ψs |Rs
is concave.
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• Similarly, if s1 ∈ {−1, 1} and s = (s1, 0), for all b = (b1, b2) ∈ Rs, we have

Ψ(b) = I(x)

√

1− l22
I2(x)

− b21 +
(
I(x)b1 + l1

)
s1
t− u(x− s1h1e1)

h2
− l3

= I(x)

δs

√

1− l22
I2(x)

αs

− b21 + I(x)s2
t− u(x− s1h1e1)

h1
ws

· b1 + s1l1
t− u(x− s1h1e1)

h1
− l3

cs

,

which proves that Ψ coincides with ψs : [−αs, αs] → R, b1 7→ δs
√

1− b21 + wsb1 + cs on Rs.
Therefore if Ψ has a critical point on Rs, then according to lemma 6.2.2, it necessarily corresponds to
the maximiser b∗s of ψs, hence

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

But if Ψ has no critical point on Rs, then Ψ reaches its supremum on the boundary of Rs, and so
necessarily in −l/I(x) since Ψ|Rs

= ψs |Rs
is concave.

Consequently, by reusing the previous notations, by introducing Σ = {(s1, s2) | s1, s2 ∈ {−1, 0, 1}},
and by setting

a(0,0)(h, x, t, u) = Ψ

( −l
I(x)

)

and, if s 6= (0, 0),

as(h, x, t, u) =

{
ψs(b

∗
s) if b∗s ∈ Rs,

Ψ
(
−l/I(x)

)
if b∗s /∈ Rs,

thanks to (7.2), we have proved that

S(h, x, t, u) = max {as(h, x, t, u) | s ∈ Σ} .

7.2.4 –– Now let us suppose that |l| > I(x). In this case, we have −l/I(x) /∈ B′(0, 1), which leads to
some differences in comparison to the previous case, studied in 7.2.3.

• If s = (s1, s2) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}, for all b = (b1, b2) ∈ Rs, we still have

Ψ(b) = I(x)

δs

√

1− |b|2 + I(x)

(

s1
t− u(x− s1h1e1)

h1
, s2

t− u(x− s2h2e2)

h2

)

ws

· (b1, b2)

+ l1
t− u(x− s1h1e1)

h1
+ l2

t− u(x− s2h2e2)

h2
− l3

cs

,

and Ψ coincides with ψs : B
′(0, 1)→ R, b 7→ δs

√

1− |b|2 +ws·b+ cs onRs. Thus if Ψ has a critical
point on Rs, then it still corresponds to the critical point b∗s of ψs, hence

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

But if Ψ has no critical point on Rs, then Ψ reaches its supremum on the boundary of Rs in B′(0, 1),
which is now only included in R(0,1) ∪R(0,−1) ∪R(1,0) ∪R(−1,0).
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• If s2 ∈ {−1, 1} and s = (0, s2), for all b = (b1, b2) ∈ Rs, we still have

Ψ(b) = I(x)

δs

√

1− l21
I2(x)

αs

− b22 + I(x)s2
t− u(x− s2h2e2)

h2
ws

· b2 + s2l2
t− u(x− s2h2e2)

h2
− l3

cs

,

which proves that Ψ coincides with ψs : [−αs, αs] → R, b2 7→ δs
√

1− b22 + wsb2 + cs on Rs. But
since −l/I(x) /∈ B′(0, 1), we now have Rs = [−αs, αs]. Thus denoting by b∗s the maximiser of ψs,
now we always have

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

• Similarly, if s1 ∈ {−1, 1} and s = (s1, 0), for all b = (b1, b2) ∈ Rs, we have

Ψ(b) = I(x)

δs

√

1− l22
I2(x)

αs

− b21 + I(x)s2
t− u(x− s1h1e1)

h1
ws

· b1 + s1l1
t− u(x− s1h1e1)

h1
− l3

cs

,

which proves that Ψ coincides with ψs : [−αs, αs] → R, b1 7→ δs
√

1− b21 + wsb1 + cs on Rs. And
since −l/I(x) /∈ B′(0, 1), then Rs = [−αs, αs], thus denoting by b∗s the maximiser of ψs, we obtain

sup
Rs

Ψ = ψs(b
∗
s) = cs +

√

δs + |ws|2.

Consequently, by reusing the previous notations, by introducing Σ = {(s1, s2) | s1, s2 ∈ {−1, 0, 1}},
and by setting, for all s ∈ Σr{(0, 0)},

as(h, x, t, u) =

{
ψs(b

∗
s) if b∗s ∈ Rs,

−∞ if b∗s /∈ Rs,

thanks to (7.2), we have proved that

S(h, x, t, u) = max {as(h, x, t, u) | s ∈ Σr{(0, 0)}} .

REMARK. It is maybe important to highlight that when |l| > I(x), there still exists s ∈ Σr{(0, 0)} such
that b∗s ∈ Rs, that is to say S(h, x, t, u) 6= −∞. Indeed, we the previous notations:

– If |l1| > I(x) and |l2| > I(x), then there exists s ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)} such that
Rs = B′(0, 1), that obviously implies b∗s ∈ Rs.

– If |l1| 6 I(x) or |l2| 6 I(x), then there exists s ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} such that Rs 6= ∅,
and for such a s, we have Rs = [−αs, αs], hence b∗s ∈ Rs.

7.2.5 –– By taking the notations from 7.2.3 and 7.2.4 back, results from these two paragraphs can be
summarized as follows:

Theorem. Let us fix h = (h1, h2) ∈
(
R

∗
+

)2
, x ∈ Ωh such that I(x) > 0, t ∈ R and u ∈ B

(
Ω
)
. If

a(0,0)(h, x, t, u) =

{
Ψ
(
−l/I(x)

)
if |l| 6 I(x),

−∞ if |l| > I(x),
,

and, for all s ∈ Σr{(0, 0)},

as(h, x, t, u) =

{
ψs(b

∗
s) if b∗s ∈ Rs,

a(0,0)(h, x, t, u) if b∗s /∈ Rs,

then we have
S(h, x, t, u) = max {as(h, x, t, u) | s ∈ Σ} .
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7.3 Explicit solutions of the approximation scheme

7.3.1 –– Given h = (h1, h2) ∈
(
R

∗
+

)2
, x ∈ Ωh and u ∈ B

(
Ω
)
, we are now interested in the equation of

unknown t ∈ R:

S(h, x, t, u) = 0. (7.3)

As in section 6.3, equation (7.3) does not necessarily has a solution. Assuming that this equation has a
solution, our goal will consist in finding an explicit expression of such a solution. Here again, if x ∈ ∂Ωh,
it is obvious that t = ϕ(x) is its only solution.
In addition, when x ∈ Ωh and I(x) = 0, the definition of S easily implies

S(h, x, t, u) =

(
s1l1
h1

+
s2l2
h2

)

t− s1l1u(x− s1h1e1)
h1

− s2l2u(x− s2h2e2)
h2

− l3,

where, for all j ∈ {1, 2}, the value of sj only depends on the sign of lj :

sj =

{
1 if lj > 0,
−1 if lj < 0.

In this case, if the quantity

λ =

(
s1l1
h1

+
s2l2
h2

)

is null, then we can not conclude anything. But if λ is non-null, then

t =
1

λ

(
s1l1u(x− s1h1e1)

h1
+
s2l2u(x− s2h2e2)

h2
+ l3

)

is the only solution of equation (7.3).
In the following, we will thus only consider that x ∈ Ωh and I(x) > 0. We will take the notations
introduced in section 7.2 back, but in a similar way as in section 6.3, we will more precisely denote by:

– Ψ(·; t) the function from [−1, 1] to R defined, for all b ∈ [−1, 1], by Ψ(b; t) = Υ
(
b;x, q(b;h, x, t, u)

)
,

– for all s ∈ Σr{(0, 0)}, by ψs( · ; t) the function ψs, and by b∗s(t) its global maximiser.

7.3.2 –– For all s ∈ Σr{(0, 0)}, let us introduce:

Θs =
{
t ∈ R

∣
∣ ψs

(
b∗s(t) ; t

)
= 0, b∗s(t) ∈ Rs

}
.

As for the one-dimensional problem, it seems natural to determine the elements that belongs to such a
set Θs. To begin with, let us fix s = (s1, s2) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)} and t ∈ Θs. In order
to simplify our notations, let us set q(t) =

(
q1(t), q2(t)

)
where, for all j ∈ {1, 2},

qj(t) = sj
t− uj
hj

with uj = u(x− sjhjej).

Therefore, for all b ∈ B′(0, 1),

ψs(b ; t) = I(x)

δs

√

1− |b|2 + I(x)q(t)

ws

· b+ I(x)q(t)·l − l3
cs

.
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Thus thanks to lemma 7.2.2, we have

ψs

(
b∗s(t) ; t

)
= 0 =⇒ I2(x)[1 + q21(t) + q22(t)] = [l3 − l1q1(t)− l2q2(t)]. (7.4)

By the definition of q(t), we have

I2(x)[1 + q21(t) + q22(t)] = I2(x)

(
1

h21
+

1

h22

)

︸ ︷︷ ︸
a

t2− 2I2(x)

(
u1
h21

+
u2
h22

)

︸ ︷︷ ︸

b

t+ I2(x)

(

1 +
u21
h21

+
u22
h22

)

︸ ︷︷ ︸
c

l3 − l1q1(t)− l2q2(t) = −
(
s1l1
h1

+
s2l2
h2

)

︸ ︷︷ ︸
α

t+

(

l3 +
s1l1u1
h1

+
s2l2u2
h2

)

︸ ︷︷ ︸

β

.

Therefore, implication (7.4) can be rewritten

ψs

(
b∗s(t) ; t

)
= 0 =⇒ (α2 − a)

︸ ︷︷ ︸

A

t2 + (2αβ − b)
︸ ︷︷ ︸

B

t+ (β2 − c)
︸ ︷︷ ︸

C

= 0.

With the previous notations (and especially those of A, B and C), we now immediately obtain the fol-
lowing result:

Proposition. Let us assume that I(x) > 0 and let us fix s ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}, t ∈ Θs.

(i) If A = 0 and B 6= 0, then

t =
−C
B

.

(ii) If A 6= 0, then we have ∆ = B2 − 4AC > 0 and existence of σ ∈ {−1, 1} such that

t =
−B + σ

√
∆

2A
.

REMARK. This result can be linked to proposition 6.3.4. In the case (ii) of this last proposition, we
have proved algebraically that ∆ is always non-negative, whereas here, we can just say that ∆ is non-
negative since we have supposed that (there exists) t ∈ Θs. In a general way, there is no reason for such
a discriminant ∆ be always non-negative, but it is maybe possible to prove that it is always the case.

7.3.3 –– Now let us suppose that s2 ∈ {−1, 1}, and let us set s = (0, s2). By observing that Rs = ∅ as
soon as |l1| > I(x), we will in addition suppose that |l1| 6 I(x). Therefore by setting

q2(t) = s2
t− u(x− s2h2e2)

h2
,

we obtain, for all b ∈ B′(0, 1),

ψs(b ; t) = I(x)

δs

√

1− l21
I2(x)

αs

− b22 + I(x) q2(t)

ws

b2 + l2 q2(t)− l3
cs

.

Thus thanks to lemma 7.2.2,

ψs

(
b∗s(t) ; t

)
= 0 ⇐⇒ l3 − l2 q2(t) = I(x)

√
(

1− l21
I2(x)

)
(
1 + q22(t)

)

=⇒ [I2(x)− l21 − l23]
︸ ︷︷ ︸

A

q22(t) + 2l2l3
︸︷︷︸

B

q2(t) + I2(x) − l21 − l22
︸ ︷︷ ︸

C

= 0. (7.5)

Consequently:
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• If A = 0, then I2(x) = l21 + l23, and since (l, l3) = (l1, l2, l3) is an unit vector, we can thus observe that
l2 = 0 if and only if I(x) = 1. So if we also have I(x) < 1, then we get B 6= 0, and

q2(t) =
−C
B

.

• If A 6= 0, by setting ∆ = B2 − 4AC and knowing that (l, l3) is an unit vector, we can observe that

∆ = 4l22l
2
3 − 4

[(
I2(x) − l21

)
− l22

] [(
I2(x)− l21

)
− l23

]

= 4l22l
2
3 − 4

(
I2(x)− l21

)2
+ (l22 + l23)

(
I2(x) − l21

)
− 4l22l

2
3

= 4
(
I2(x) − l21

) (
l21 + l22 + l23
︸ ︷︷ ︸

= 1

−I2(x)
)
> 0.

Thus, according to (7.5), we have existence of σ ∈ {−1, 1} such that

q2(t) =
−B + σ

√
∆

2A
.

Finally, by using the expression of q2(t), we obtain the following result:

Proposition. Let us suppose that I(x) > 0, and let fix s2 ∈ {−1, 1}, s = (0, s2) and t ∈ Θs.

(i) If A = 0 and I(x) < 1, then

t = u(x− sh)− shC

B
.

(ii) If A 6= 0, then we have ∆ = B2 − 4AC > 0 and existence of σ ∈ {−1, 1} such that

t = u(x− sh) + sh
−B + σ

√
∆

2A
.

REMARK. Here again, we can note that the particular case I(x) = 1 is problematic. . .

7.3.4 –– As in 7.3.3, for the regions Θs where s = (0, s2) and s2 ∈ {−1, 1}, by setting

A = I2(x) − l22 − l23, B = 2l1l3 and C = I2(x)− l21 − l22,

we can establish the following result:

Proposition. Let us suppose that I(x) > 0, and let fix s1 ∈ {−1, 1}, s = (s1, 0) and t ∈ Θs.

(i) If A = 0 and I(x) < 1, then

t = u(x− sh)− shC

B
.

(ii) If A 6= 0, then we have ∆ = B2 − 4AC > 0 and existence of σ ∈ {−1, 1} such that

t = u(x− sh) + sh
−B + σ

√
∆

2A
.

7.3.5 –– On the same model as proposition 6.3.5, the following result gives a characterization about the
existence of a solution to the equation (7.1):
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Proposition. Let us fix x ∈ Ωh, and let us suppose that 0 < I(x) < 1 and that the assumptions from
points (i) and (ii) from proposition 7.3.2 are satisfied for all s ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}.
Then following conditions are equivalent:

(i) There exists t ∈ R such that S(h, x, t, u) = 0.

(ii) There exists s ∈ Σr{(0, 0)} such that Θs 6= ∅.

If these conditions are satisfied, then by setting

Θ =
⋃

s∈Σr{(0,0)}

Θs

we have
S(h, x, τ, u) = 0 with τ = minΘ.

Proof.–– Implication (i)⇒ (ii) can be proved as those from proposition 6.3.5 in the one-dimensional case,
by referring to theorem 7.2.5. For (ii)⇒ (i), thanks to propositions 7.3.2 to 7.3.4, we can verify that the
various assumptions done in our proposition insure that the above quantity τ is well-defined. Then the
equality S(h, x, τ, u) = 0 can be established as in 6.3.5. �

7.3.6 –– Finally, when the equation (7.3) has a solution, we can explicitly determine one of it as in 6.3.6 in
the one-dimensional case: under the assumptions from proposition 7.3.5, we will have S(h, x, τ, u) = 0,
and an explicit expression of τ can be obtained by referring to propositions 7.3.2 to 7.3.3.
We can maybe highlight that the hypotheses done in proposition 7.3.5 are pretty heavier and (physically)
complicated than those done in proposition 6.3.5 in the one-dimensional case. Until now, we have not
found how to simplify them (but is it possible to do it?), or considered what it could happened when they
are not satisfied (but can they not be satisfied?).

7.4 Associated algorithm

7.4.1 –– In the following, we will denote by N the Cartesian product (Nr{0, 1})2.

Definition. A mesh of Ω (resp. Ω, ∂Ω) is a subset of the form:

ΩN =
{
(ih1, jh2)

∣
∣ i ∈ {0, . . . , N1}, j ∈ {0, . . . , N2}

}

(resp. ΩN =
{
(ih1, jh2)

∣
∣ i ∈ {1, . . . , N1 − 1}, j ∈ {1, . . . , N2 − 1}

}
,

∂ΩN = ΩNrΩN ),

where N = (N1, N2) is a couple from N , and h1 and h2 are defined by

h1 =
A1

N1
and h2 =

A2

N2
. (7.6)

With these notations, each element of the mesh is called a node, and the couple h = (h1, h2) is called the
mesh-size.

7.4.2 –– Given N ∈ N , and in a similar way as in section 6.4:

• We still have ΩN = ΩN ∪ ∂ΩN .
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• Notations ΩN and ∂ΩN could be still abusive or confusing, but they are motived by the same reasons
as those exposed in 6.4.2 in the one-dimensional case.

• The mesh-size h is also fully determined byN , even if we do not mention this dependence, and for this
choice of h, ΩN still corresponds to the nodes of ΩN that belongs to the set Ωh defined in 7.1.1.

• In the following, given N = (N1, N2) ∈ N , h = (h1, h2) will automatically corresponds to the mesh
size of ΩN , i.e. defined by (7.6). In addition, for all i ∈ {0, . . . , N1} and j ∈ {0, . . . , N2}, we will
denote by ωi,j the node (ih1, jh2).

The following figure illustrates all of this:

0

α1 = N1h1

h1

ih1

x1

α2 = N2h2h2 jh2
x2

b b b b b b

b

b

b

b

bbbbbb

b

b

b

b bc bc bc bc

bc

bc

bcbcbcbc

bc

bc bc bc

bcbc

ωi,j

Domain Ω

bc Node of ΩN

b Node of ∂ΩN

Figure 47 – Representation of the meshes ΩN and ∂ΩN of Ω and ∂Ω

7.4.3 –– The algorithm we will use to solve numerically the s.f.s. problem (7.1) will be constructed
similarly than those exposed in 6.4.4 for the one-dimensional case. Thus here, thanks to 7.1.3, given
N ∈ N , instead of S, we will consider the function SN : ΩN × R×MN+1(R) defined, for all x ∈ ΩN ,
t ∈ R and V ∈MN+1(R), by:

– if x = ωi,j with (i, j) ∈ {1, . . . , N1 − 1} × {1, . . . , N2 − 1},

SN(x, t, v) = σh,x

(

t,
(
V (i− 1, j), V (i, j − 1), V (i+ 1, j), V (i, j + 1)

))

,

– if x ∈ ∂ΩN ,
SN (x, t, u) = t− ϕ(x).

Such a matrix V will be called a subsolution if, for all (i, j) ∈ {0, . . . , N1} × {0, . . . , N2}, it satisfies
SN (ωi,j , V (i, j), V ) 6 0.

REMARK. Given a function v ∈ B
(
Ω
)
, let us suppose that

V =
(
v(ωi,j)

)

06i6N1

06j6N2

=








v(ω0,0) v(ω0,1) · · · v(ω0,N2)
v(ω1,0) v(ω1,1) · · · v(ω1,N2)

...
...

...
v(ωN1,0) v(ωN1,1) · · · v(ωN1,N2)







∈ MN+1(R) . (7.7)

The orientation of our axes in figure 47 (and 45) was chosen such that the nodes of the mesh ΩN can
be visually ordered as the values of v (at each node of ΩN ) in the matrix V from (7.7). If this choice is
maybe not natural, it will be largely comfortable from algorithmic and graphical points of view.



7.5. Numerical simulations 161

7.4.4 –– Suggested algorithm.

Given N = (N1, N2) ∈ N , h defined as in (7.6), ε > 0 an accuracy threshold and nmax ∈ N
∗, an

approximation Uapp ∈ R
N+1 at each node of ΩN will be computed as follows. Just by knowing the

values of I at each nodes of ΩN , those of the components of the unit vector (l1, l2, l3) oriented to the
light source and those of the function ϕ at each node of ∂ΩN , Uapp will be computed as follows:

1) We start with U0 ∈MN+1(R) a subsolution of SN satisfying U0(i, j) = ϕ(ωi,j) for all indexes i and
j such that ωi,j ∈ ∂ΩN .

2) Given n ∈ N and Un ∈ MN+1(R) a subsoltion of SN , Un+1 ∈ MN+1(R) is chosen such that, for all
(i, j) ∈ {0, . . . , N1} × {0, . . . , N2},

SN (ωi,j , Un+1(i, j), Un) = 0.

In practice, Un+1(i) can be explicitly computed as explained in paragraph 7.3.6.

3) Computations from 2) are done as long as ‖Un+1 − Un‖∞ > ε and n 6 nmax. If there exists n 6 nmax

such that ‖Un+1 − Un‖∞ < ε, we set Uapp = Un+1 for the smallest of these integer n. If this is not
the case, we set Uapp = Unmax .

REMARK. As for the one-dimensional case:

• At step 2), let us highlight that for the same reasons as in 6.4.4, Un+1 is a subsolution if SN as soon as
Un is a subsolution of SN , and it is also possible to lead the computations in parallel.

• If there exists point from Ω such that I(x) = 1, then if Ω′ = {x ∈ Ω | I(x) < 1}, we can adapt our
work by replacing ΩN by Ω′

N

{
x ∈ ΩN

∣
∣ x ∈ Ω′

}
and ∂ΩN by ∂Ω′

N = ΩNrΩ′
N .

7.5 Numerical simulations

7.5.1 –– All the simulations done in this section were done in a total similar way as those performed
in section 6.5 in one-dimension. Consequently, by taking the notations from 7.4.4, the hypotheses and
notations adopted for our bi-dimensional simulations will be mutatis mutandis the same as those exposed
in 6.5.1. Let us just explain how to initialize the subsolution U0 from step 1). By considering

µ = min
x∈∂ΩN

ϕ(x) and C =







µ if l1 > 0 and l2 > 0,

µ+
N2l2h2
l3

if l1 > 0 and l2 < 0,

µ+
N1l1h1
l3

if l1 < 0 and l2 > 0,

µ+
N1l1h1 +N2l2h2

l3
+ if l1 < 0 and l2 < 0,

then thanks to proposition 7.1.2, we observe that we can set, for all indexes i and j satisfying ωi,j ∈ ΩN ,

U0(i, j) = C − il1h1 + jl2h2
l3

.
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7.5.2 –– As in paragraph 6.5.3 in the one-dimensional case, we can consider the surface given by:

u : [0, 1]2 → R, (x, y) 7→ x21 + x22
4

.

In this case, we thus have Ω = ]0, 1[2, and

I : ]0, 1[2→ R, (x1, x2) 7→
l3 − l1x1 − l2x2
√

4 + x21 + x22
.

For our simulations, we have supposed N = (20, 20). The following table indicates, for various choices
of l1, l2 and l3, the global performances of each one of them.

l1 l2 l3 Imin Imax η∞ ηave ι nfix τ

0 0 1 0.82 1 2.24·10−2 8.05·10−3 38 20 40.8ms

1

2
0

√
3

2
0.52 0.85 1.61·10−2 6.21·10−3 34 0 32.3ms

−1
2

0

√
3

2
0.78 1 2.15·10−2 7.91·10−3 105 12 112ms

1

2

1

2

√
2

2
0.18 0.69 2.10·10−2 6.82·10−3 38 0 35.5ms

1

2

−1
2

√
2

2
0.42 0.84 1.89·10−2 6.59·10−3 45 0 44.1ms

−1
2

−1
2

√
2

2
0.72 0.98 2.18·10−2 7.73·10−3 86 0 87.8ms

Table 20 – Values of Imin, Imax, η∞, ηave, ι, nfix and τ for various choices of (l1, l2, l3)

As we can easily observe, the performances of our bi-dimensional algorithm are globally similar to those
obtained with the one-dimensional algorithm. We can especially appreciate the very short computation
time due to the parallelization of our computations, which is encouraging if we have in mind to use this
algorithm with higher values of N , that means with larger and/or refined meshes.

7.5.3 –– When the mesh-size goes to 0.

Linked to the simulations done in 7.5.2, we can focus on the behaviour of our algorithm for various
choices of N , and so mesh-size h. Thus we have deal here with the same u and I as in the previous
paragraph, and by supposing

(l1, l2, l3) =

(

1

2
,
1

2
,

√
2

2

)

.

As shown by the table 21, the errors η∞ and ηave are of order 1/h, which illustrates the convergence of
our approximation to the viscosity solution of our s.f.s. problem.
Moreover, the number of iterations ι seems linear. More precisely, we always have ι = N1 +N2 − 2 in
these particular cases, which seems to be a strange coincidence. In fact, for other choices of l1, l2 and l3,
ι still increases linearly with respect to N1 and N2, but there generally does not such an elegant formula.
With this same notation of k, the computation time seems to increase quadratically with respect to k.
This is totally logical since the number of nodes equals to k2, and since we have an explicit method to
compute Uapp.



7.5. Numerical simulations 163

(N1, N2) η∞ ηave ι τ

(10, 10) 3.72·10−2 1.07·10−2 18 1.59·10−2 s
(20, 20) 2.10·10−2 6.82·10−3 38 3.55·10−2 s
(30, 30) 1.46·10−2 4.93·10−3 58 6.80·10−2 s
(50, 50) 9.12·10−3 3.16·10−3 98 1.90·10−1 s

(100, 100) 4.71·10−3 1.66·10−3 198 9.87·10−1 s
(200, 200) 2.40·10−3 4.93·10−4 398 8.14·100 s

Table 21 – Values of η∞, ηave, ι, nfix and τ for various choices of (N1, N2)

7.5.4 –– About the computation time

Let us consider the same situation than those considered in the previous paragraph. We will now illustrate
the efficiency of the parallelization of the computations done in step 2). In order to do this, we will
consider a punctual version of our algorithm. Concretically, we have done the computations from step 2)
as suggested by E. PRADOS and O. FAUGERAS in [18]:

• We start with Un+1 = Un.

• Then the values of Un+1 are updated one by one. For i going from 1 to N1, if i is an odd (resp. even)
number, for j going from 1 to N2 (resp. N2 to 1), if ωi,j ∈ ΩN , Un+1(i, j) is now taken as the solution
with respect to t of the equation

S(ωi,j, t, Un+1) = 0.

Consequently, these computations are no more independent, and so, not parallelizable!

This can be illustrated by the following figure:
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Figure 48 – Computation order from step 2) with a punctual version of our algorithm

The table 22, that must be compared with the table 21, presents the general performance of this modified
algorithm. If the errors η∞ and ηave are mainly identical and the number of iterations is globally divided
by two, the computation time is dramatically increasing. It is for instance multiplied by more than 40
when N1 = N2 = 200. . .
This illustrates the real efficiency of the parallelization of the computations done in the step 2) of our
algorithm. More generally, this shows how we have been able to take advantage of the explicit formulation
of our approximation scheme. So even if in the end, from a numerical point of view, we have mainly
done adaptations of existent methods, this would probably have been impossible without the theoretical
analyses done in sections 7.2 and 7.3.
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(N1, N2) η∞ ηave ι τ

(10, 10) 3.72·10−2 1.07·10−2 10 4.23·10−2 s
(20, 20) 2.10·10−2 6.82·10−3 20 3.44·10−1 s
(30, 30) 1.46·10−2 4.93·10−3 29 1.19·100 s
(50, 50) 1.46·10−2 4.93·10−3 47 5.53·100 s
(100, 100) 4.61·10−3 1.66·10−3 90 4.52·101 s
(200, 200) 2.33·10−3 8.52·10−4 398 3.63·102 s

Table 22 – General performances with a punctual implementation of our algorithm

.

7.5.5 –– It is possible to give more examples like the previous, but we will not do it longer. We will rather
focus on an application of the shape from shading we have considered: how to determine the relief of a
given countryside just by knowing I and some altitudes? This will constitute the topic of the next section.
But before that, let us illustrate graphically the situations considered both in paragraphs 7.5.2 and 7.5.3.
In figure 49, we have represented the black and white picture associated to the surface described by the
viscosity solution u. The figure 50 shows the surface we have recovered with our approximation Uapp.
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Figure 49 – Initial image corresponding to I when (l1, l2, l3) =
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and N1 = N2 = 20
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Figure 50 – Graphical representation of Uapp when (l1, l2, l3) =

(

1

2
,
1

2
,

√
2

2

)

and N1 = N2 = 20

7.6 A possible application

7.6.1 –– An application we have considered consists in recovering the surface of a given countryside just
by using informations associated to one black and white virtual images. We can find (e.g. on the internet)
such images with data sets that indicates an approximation of the brightness intensity at each pixel of the
images, and the altitudes at each pixel of the images. In this section, we will present various simulations
done by using this kind of data sets. Here are mentioned the main assumptions done for our simulations:

• The unit light vector is given by (l1, l2, l3) =

(

−1
2
,
−1
2
,

√
2

2

)

.

• The altitudes will be expressed in meters. Whatever the value of N , the mesh-size will h = (h1, h2)
will satisfy h1 = h2 = 1.

• Given indexes i and j, the brightness intensity I(ωi,j) was computed (and so, the virtual image ob-
tained) by replacing ∇u(ωi,j) by an approximation∇appu(ωi,j) in the brightness equation (II.1). The
approximation∇appu(ωi,j) =

(
∂1,appu(x), ∂2,appu(x)

)
was defined as follows:

∂1,appu(ωi,j) =
[u(ωi+1,j−1)− u(ωi−1,j−1)] + 2[u(ωi+1,j)− u(ωi−1,j)] + [u(ωi+1,j+1)− u(ωi−1,j+1)]

4h1
,

∂2,appu(ωi,j) =
[u(ωi−1,j+1)− u(ωi−1,j−1)] + 2[u(ωi,j+1)− u(ωi,j−1)] + [u(ωi+1,j+1)− u(ωi+1,j−1)]

4h2
.
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Then, we have performed our algorithm in the following situations:

no 1: N = (200, 200), and the black and white picture is given by the figure 51. In this case, Imin = 0.22,
Imax = 0.82, and the minimal and maximal altitudes are umin = 1087.78m and umax = 1143.70m.

Figure 51 – Black and white image associated to the situation no 1

no 2: N = (200, 200), and the black and white picture is given by the figure 52. In this case, Imin = 0,
Imax = 0.88, and the minimal and maximal altitudes are umin = 1032.90m and umax = 1119.98m.

Figure 52 – Black and white image associated to the situation no 2
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no 3: N = (200, 200), and the black and white picture is given by the figure 53. In this case, Imin = 0.13,
Imax = 1, there are nfix = 16 nodes of ΩN where the brightness intensity is greater than 0.99, and
the minimal and maximal altitudes are umin = 978.42m and umax = 1067.16m.

Figure 53 – Black and white image associated to the situation no 3

REMARK. The previous black and white images are views of moutain ranges from the Canton of Zürich
(Switzerland). The associated data sets come from the file 26740_12450.tif from [1].

7.6.2 –– For each situation, we have applied our algorithm as for the simulations done in section 7.5. The
following table indicates their associated performances:

situation η∞ ηave ι τ

no 1 1.32 0.36 398 11.59 s
no 2 2.55 0.31 396 11.24 s
no 3 2.05 0.47 516 15.18 s

Table 23 – Values of η∞, ηave, ι and τ depending on the considered situation

As we can see, the errors η∞ and ηave are close to 1, i.e. of the order of 1/h1 = 1/h2, which is coherent
with the results observed in section 7.5. It also proves that our algorithm tolerates the imprecision on the
values of the brightness intensity I (given in input). These errors are also very satisfying in comparison
to the associated differences umax − umin.
We can also note that the number of iterations ι and the computation times τ are equivalent to those
obtained in our previous situations.
In order to illustrate graphically our simulations, we have presented in figures 54 to 56 the surfaces
recovered with the computed altitudes (stored in Uapp, given in output of our algorithm) associated to
simulations no 1 to no 3. In particular with the surface from figure 55 (associated to the situation no 2), we
can observe the plateau that seems to be represented in the left top of figure 52.
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Figure 54 – Graphical representation of the approximation Uapp associated to the situation no 1

Figure 55 – Graphical representation of the approximation Uapp associated to the situation no 2
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Figure 56 – Graphical representation of the approximation Uapp associated to the situation no 3

7.6.3 –– In order to improve the output of the simulations done in paragraph 7.6.2, we have tried to use a
Newton’s method. Let us explain how we have done this. We still want to determine a matrix

U = (Ui,j)06i6N1

06j6N2

such that Ui,j corresponds to an approximation of u(ωi,j), for all (i, j) ∈ {0, . . . , N1} × {0, . . . , N2}.
As explained in 7.6.1, in our case, for such a couple (i, j), the brightness intensity I(ωi,j) satisfies

−∇appu(ωi,j)·l + l3
√
1 + |∇appu(ωi,j)|2

− I(ωi,j) = 0.

By setting

d1(U) =
[Ui+1,j−1 − Ui−1,j−1] + 2[Ui+1,j − Ui−1,j] + [Ui+1,j+1 − Ui−1,j+1]

4h1
,

d2(U) =
[Ui−1,j+1 − Ui−1,j−1] + 2[Ui,j+1 − Ui,j−1] + [Ui+1,j+1 − Ui+1,j−1]

4h2
,

then
(
d1(U), d2(U)

)
corresponds to an approximation of∇appu(ωi,j). Thus by considering the function

F : MN+1(R)→ MN+1(R) , U = (Ui,j)06i6N1

06j6N2

7→ F (U) =
(
Fi,j(U)

)

06i6N1

06j6N2

where, for all (i, j) ∈ {0, . . . , N1} × {0, . . . , N2},

Fi,j(U) =
−l1d1(U)− l2d2(U) + l3
√

1 + d21(U) + d22(U)
− I(ωi,j),
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we have thus applied the Newton’s method in order to solve the equation F (U) = 0, by starting with the
matrix Uapp obtained in output of our algorithm.
Unfortunately, it is well-known that the Newton’s method is convergent for initial data sufficiently close
to the solution. In our case, Uapp seems still too far from the solution of our s.f.s. problem, so the
Newton’s method does not converge. At the moment, we have not find a way that enables to overcome
this difficulty.

7.6.4 –– In comparison to the data sets used as explained in 7.6.1, we can also find sets where we still
know (an approximation of) I at each pixel of the corresponding image, but the altitudes only at some
pixels not necessarily located on the boundary of the image. This raises the question of the adaptability
of our models when the brightness equation is not associated to Dirichlet boundary conditions.
For now, we are not able to recover any information on u without Dirichlet boundary conditions. In
practice, this constitutes an important limitation of our work. In his P.h.D. thesis [17], E. PRADOS has
proposed a new formulation of the s.f.s. problem in order to overcome this difficulty, but we have not
considered it for now.

Conclusion

In this chapter, we have shown how to extend our theory and algorithm from chapter 6 to the bi-
dimensional case. Therefore, we have been able to implement an efficient algorithm that enables to
solve numerically various s.f.s. problems. Unfortunately, our algorithm requires Dirichlet boundary con-
ditions. If this hypothesis was motivated theoretically in chapter 5, it is not realistic for many applications
of the s.f.s. problem. For now, we have not tried to overcome this difficulty.



Conclusion et perspectives

Pour rappel, dans cette partie, nous nous intéressions à un problème de shape from shading, ou comment
reconstituer une surface représentée sur une image en noir et blanc, à partir des seules nuances de gris
et d’altitudes connues en certains points. Nous avons vu qu’un tel problème pouvait mathématiquement
être modélisé par une équation de Hamilton-Jacobi du premier ordre, que nous avons résolu dans un cadre
classique : une équation couplée à des conditions de type Dirichlet.
Ce faisant, au chapitre 5, nous avons montré comment l’utilisation du formalisme des solutions de vis-
cosité permettait d’assurer l’existence et l’unicité d’une solution à un tel problème, de base mal posé.
Nous avons ensuite proposé une formulation explicite d’un schéma d’approximation adapté au problème
de s.f.s, considéré comme implicite jusqu’alors, dans un cadre unidimensionnel au chapitre 6 puis dans un
cadre bidimensionnel au chapitre 7. En nous basant sur ce schéma, et plus particulièrement sur sa formu-
lation explicite, nous avons ainsi pu proposer un algorithme de résolution du problème de s.f.s. qui, dans
les cas que nous avons considéré, s’avère significativement plus rapide que ceux proposés jusqu’alors.
À présent, une continuation logique de notre travail consisterait à sortir de ce cadre d’étude classique,
où notre équation est couplée à des conditions de type Dirichlet. Si cette approche usuelle peut s’avérer
raisonnable dans certains cadres, elle se révèle bien trop contraignante dans le nôtre. En effet, dans bon
nombre de cas concrets, l’altitude de la surface que l’on cherche à reconstruire est inconnue au bord, mais
connue en un certain nombre de points situés à l’intérieur du domaine. Un premier travail pourrait donc
consister à voir comment adapter notre travail, si tenté qu’il puisse l’être, à ce type de situations.

Terminons en signalant une application possible du shape from shading. Comme nous l’avons évoqué
à la section 7.6, on trouve aujourd’hui en accès libre de nombreuses images, par exemple satellites ou
virtuelles, en noir et blanc avec les jeux de données d’intensité associés, mais pas nécessairement les al-
titudes correspondantes. Une fois que les difficultés liées à la résolution du problème de s.f.s., précédem-
ment évoquées, seront surmontées, l’information que nous récupérerions sur l’altitude pourrait permettre
à des mobiles volants, tels que les drônes, de connaître les éventuels obstacles à éviter. Utilisant en outre
les modèles présentés dans la partie I de ce manuscrit, nous pourrions ainsi permettre leur guidage en
temps réel.
Même si ce cadre applicatif resterait à préciser et considérer, nous pourrions ainsi unifier de manière
concrète les théories présentées dans les deux parties de ce manuscrit. Et nous donnerions de cette façon,
à celles et ceux qui en douteraient encore, une nouvelle illustration du caractère applicatif des Mathéma-
tiques à de très larges situations.
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Main assumptions done in part II

(A1) There exists a modulus m such that, for all x, y ∈ Ω and p ∈ R
n:

H(x, p)−H(y, p) 6 m
(
|x− y|(1 + |p|)

)
.

(A2) For all x ∈ Ω, the function H(x, · ) : Rn → R, p 7→ H(x, p) is convex.

(A3) There exists α < 0 and ψ ∈ C
(
Ω
)

with ψ|Ω ∈ C1(Ω) such that, for all x ∈ Ω:

H(x,∇ψ(x)) 6 α.

(A4) Ω is smooth and connected.

(A5) inf{H(x, p) | p ∈ R
n} 6 0 for all x ∈ Ω.

(A6) For all x ∈ Ω, function H(x, · ) is coercive, i.e. H(x, p)→ +∞ when |p| → +∞.

(A7) H can be extended as a continuous function on Ω× R
n, still noted H .

(A8) For all x, y ∈ ∂Ω, function ϕ satisfies the following compatibility condition:

ϕ(x) − ϕ(y) 6 L(x, y).

(A9) I is continuous.

(A10) I(x) > |l| for all x ∈ Ω.

(A11) There exists α < 1 such that I(x) 6 α for all x ∈ Ω.

(A12) S is monotonous.

(A13) For all h ∈
(
R

∗
+

)n
, x ∈ Ω and u ∈ B

(
Ω
)
, the function S(h, x, · , u) is non-decreasing and has a

positive limit in the neighbourhood of +∞.

(A14) There exists d ∈ N
∗ such that for all h ∈

(
R

∗
+

)n
and x ∈ Ω, there exists Ξh,x ⊂ Ω

d
and

σh,x : R× R
d → R such that S(h, x, t, u) = σh,x

(
t, (u(ξ))ξ∈Ξh,x

)
for all t ∈ R and u ∈ B

(
Ω
)
.

(A15) For all h ∈
(
R

∗
+

)n
, the scheme S admits a subsolution.

(A16) All the subsolutions of S are upper bounded independently with respect to the first variable of S.

(A17) S is stable.

(A18) S is consistent.

(A19) Equation (5.19) satisfies a strong uniqueness property, i.e. if u is an u.s.c. solution of (5.19) and v
a l.s.c. solution of (5.19), then u(x) 6 v(x) for all x ∈ Ω.
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General notations and conventions

We specify here the general notations and conventions used in all this document.

Abbreviations

e.g. corresponds to the abbreviation of the Latin locution exampli gratia, which means for instance.

etc. corresponds to the abbreviation of the Latin locution et cetera, which means and the rest.

i.e. corresponds to the abbreviation of the Latin locution id est, which means that is.

l.s.c. corresponds to the abbreviation of lower semi-continuous.

resp. corresponds to the abbreviation of respectively.

s.f.s. correspond to the abbreviation of shape from shading.

s.t. corresponds to the abbreviation of such that.

u.s.c. corresponds to the abbreviation of upper semi-continuous.

Quantifiers

We denote by ∀ the universal quantifier and by ∃ the existential quantifier.

Sets theory

• Symbols ∈, ⊂, ∪ and ∩ have their usual signification.

• We denote by ∅ the empty set.

• If X is a set and A,B two subsets of X , BrA is the set of x ∈ X such that x ∈ B and x /∈ B.

• If n is an integer larger than 2, X1, . . . , Xn are n sets, and x ∈ X1 × · · · ×Xn, for all integer j from 1
to n, we denote by xj or x(j) the j th component of x.
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Numbers

• N and R respectively correspond to the sets of natural numbers, integers and real numbers.

• We denote by 6 the usual order on N or R. In addition, we define

N
∗ = Nr{0}, R

∗ = Rr{0}, R+ = {x ∈ R | x > 0} and R
∗
+ = R

∗ ∩ R+.

• We add to R two symbols,−∞ and +∞, and we extend the usual ordering relation on R admitting that
−∞ 6 x 6 +∞ for all x ∈ R ∪ {−∞,+∞}.

• We will adopt the french notation to designate the intervals. Concretely, if a, b ∈ R, we define

[a, b] = {x ∈ R | a 6 x 6 b}, [a,+∞[ = {x ∈ R | x > a},
]a, b[ = {x ∈ R | a < x < b}, ]−∞, a] = {x ∈ R | x 6 a},
[a, b[ = {x ∈ R | a 6 x < b}, ]a,+∞[ = {x ∈ R | x > a},
]a, b] = {x ∈ R | a < x 6 b}, ]−∞, a[ = {x ∈ R | x < a}.

• If A is a part of R, we define −A = {−a | a ∈ A}.

• If A is a non-empty subset (or family of elements) of R lower (resp. upper) bounded, we denote by
inf A (resp. supA) the infimum (resp. supremum) of A, and we also denote it by minA (resp. maxA)
when there exists a an element ofA such that a = inf A (resp. a = supA). WhenA is not lower (resp.
upper) bounded, we set inf A = −∞ (resp. supA = +∞).

Applications

• The identity application of a set X is idX : X → X, x 7→ x.

• We denote by f|A the restriction of an application f to a set A.

• We denote by g ◦ f the application that composes an application g with an application f .

• If n ∈ N /∈ {0, 1}, k ∈ {1, . . . , n}, X1, . . . , Xn, Y are (n+ 1) sets and f : X1 × · · · ×Xn → Y is an
application, given xj ∈ Xj for all j ∈ {1, . . . , n}r{k}, we define the kth partial application of f by

f(x1, . . . , xk−1, · , xk+1, . . . , xn) : Xk → Y, x 7→ f(x1, . . . , xk−1, x, xk+1, . . . , xn).

• If n ∈ N
∗, X , Y1, . . . , Yn are (n + 1) sets, f : X → Y1 × · · · × Yn, x ∈ X and j ∈ {1, . . . , n}, we

denote by fj(x) the j th component of f(x), hence an application fj : X → Yj , x 7→ fj(x).

• When it makes sense, we write

lim
x→a

f(x) = λ, or f(x)→ λ when x→ a, or f(x) −−−→
x→a

λ

to mean that the limit of f(x) when x approaches a is equal to λ.
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Functions

A function corresponds to an application that is real valued.

• If X is a set, f and g are two functions defined on X , and λ ∈ R:

– function f + g is given by (f + g) : X → R, x 7→ f(x) + g(x),

– function λf is given by λf : X → R, x 7→ λf(x), with in particular −f = (−1)f ,

– function f + λ is given by f + λ : X → R, x 7→ f(x) + λ,

– functions f − g and f − λ respectively corresponds to functions f + (−g) and f + (−λ),
– we write f 6 g to mean that f(x) 6 g(x) for all x ∈ X .

• If A is a set and f(x) a real quantity depending on x, we define

inf
x∈A

f(x) = inf{f(x) | x ∈ A} (resp. sup
x∈A

f(x) = sup{f(x) | x ∈ A}).

Derivatives and differentials

• When it makes sense, if f is a function defined on a non-empty interval I , a ∈ I and k ∈ N
∗, we denote

by f (k)(a) the kth derivative of f in a, hence a function f (k) : I → R, x 7→ f (k)(x). By convention
we set f (0) = f . Finally we can also write f ′ instead of f (1), f ′′ instead of f (2), etc.

More generally, if f : I → R
n (n ∈ N

∗), we extend these notations by setting f (k) =
(

f
(k)
1 , . . . , f

(k)
n

)

.

• If n ∈ N
∗, k ∈ {1, . . . , n}, f is a sufficiently smooth function defined on U an open subset of Rn and

a ∈ U , we denote by ∂kf(a) the kth partial derivative of f in a and by ∇f(a) = (∂jf(a))16j6n its
gradient, hence applications ∂kf : U → R, x 7→ ∂jf(x) and ∇f : U → R

n, x 7→ ∇f(x). We will
also write ∂2kf instead of ∂k(∂kf).
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Abstract

The work presented in the first part of this thesis is the result of a collaboration between Alstom and
the RATP. We present various models and algorithms that can be used to bound a real-valued function f
defined on an interval I and its (d− 1) first derivatives by knowing reliable bounds on f in some discrete
points and global bounds on its dth derivative. These results are applied to a situation inspired by the rail-
way world. Finally, we present various extensions of our work, and we explain how the previous models
can be easily generalized to vector-valued applications defined on an interval.
The second part of this thesis is dedicated to the theoretical and numerical study of a shape from shading
problem, which consists in a surface reconstitution from a black and white picture, by knowing only the
shades of gray and the altitude of the surface at some points. We remind how the viscosity solutions
framework allows us to obtain a well-posed formulation of this problem. Then we expose an explicit
expression of an approximation scheme associated to this problem, and we propose a significant opti-
mization of some algorithms used to solve numerically such a problem.
In the future, the works presented in the two parts of the thesis could be coupled to allow a real-time
guidance of flying objects like drones over a given region.

Keywords. Differentiable functions, bounded functions, certified bounds, Taylor-Lagrange formula, op-
timisation, real time computations, Hamilton-Jacobi equations, finite differences schemes, shape from
shading.

Résumé

Les travaux présentés dans la première partie de ce manuscrit de thèse sont le fruit d’une collaboration
entre Alstom et la RATP. Nous y présentons différents modèles et algorithmes permettant de borner une
fonction réelle f définie sur un intervalle I et ses (d − 1) premières dérivées à partir de bornes sur f en
certains points et de bornes globales sur la dérivée d-ième de f . Nous appliquons cela à une situation in-
spirée du monde ferroviaire. Enfin, nous présentons diverses extensions de nos travaux, et nous montrons
comment les résultats précédents peuvent se généraliser à des applications définies sur un intervalle I et
à valeurs vectorielles.
La seconde partie de ce manuscrit est consacrée à l’étude théorique et numérique d’un problème de
« shape from shading », qui consiste à reconstituer une surface représentée sur une image en noir et
blanc, par la seule connaissance des nuances de gris et d’altitudes en certains points. Nous y rappelons
comment le cadre des solutions de viscosité permet d’obtenir une formulation mathématique bien posée
de ce problème. Nous donnons ensuite une formulation explicite d’un schéma d’approximation asso-
cié à ce problème, et nous proposons une optimisation notable d’algorithmes permettant de résoudre
numériquement un tel problème.
À terme, l’ensemble des travaux présentés dans ce manuscrit pourraient être couplés pour permettre le
guidage en temps réel de mobiles volants, tels que des drones, au dessus d’une région donnée.

Mots-clés. Fonctions différentiables, fonctions bornées, bornes certifiées, formule de Taylor-Lagrange,
optimisation, calculs en temps réel, équations de Hamilton-Jacobi, schémas aux différences finies, prob-
lème de « shape from shading ».
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