G. M. Alexander, S. C. Rogan, A. I. Abbas, B. N. Armbruster, Y. Pei et al., Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors, Neuron, vol.63, issue.1, pp.27-39, 2009.

S. Andjelic, T. Gallopin, B. Cauli, E. L. Hill, L. Roux et al., Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons, J Neurophysiol, vol.101, issue.2, pp.641-54, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00366743

M. C. Angulo, B. Lambolez, E. Audinat, S. Hestrin, and J. Rossier, Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells, J Neurosci

M. C. Angulo, J. F. Staiger, J. Rossier, and E. Audinat, Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection, J Neurosci

J. Apulei, N. Kim, D. Testa, J. Ribot, D. Morizet et al., Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g, Cereb Cortex, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02379324

G. A. Ascoli, L. Alonso-nanclares, S. A. Anderson, G. Barrionuevo, R. Benavides-piccione et al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat Rev Neurosci, vol.9, pp.557-568, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

A. Bacci, J. R. Huguenard, and D. A. Prince, Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex, J Neurosci, vol.23, issue.3, pp.859-66, 2003.

A. Bacci and J. R. Huguenard, Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons, Neuron, vol.49, issue.1, pp.119-149, 2006.

M. Beurdeley, J. Spatazza, H. H. Lee, S. Sugiyama, C. Bernard et al., Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, J Neurosci, vol.32, pp.9429-9466, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

B. Lorenzo, P. Alaiyed, S. Kim, E. Villapol, S. Conant et al., Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics, Neural Plast, p.5735789, 2018.

J. A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang et al., Driving fastspiking cells induces gamma rhythm and controls sensory responses, Nature, vol.459, issue.7247, pp.663-670, 2009.

B. Cauli, E. Audinat, B. Lambolez, M. C. Angulo, N. Ropert et al., Molecular and physiological diversity of cortical nonpyramidal cells, J Neurosci, vol.17, p.3894, 1997.

B. Chattopadhyaya,

D. Cristo, G. Higashiyama, H. Knott, G. W. Kuhlman, and S. J. ,

E. Welker,

Z. J. Huang, Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period, J Neurosci, vol.24, issue.43, pp.9598-611, 2004.

B. W. Connors and M. J. Gutnick, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci, vol.13, pp.99-104, 1990.

S. S. Deepa, D. Carulli, C. Galtrey, K. Rhodes, J. Fukuda et al., Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans, J Biol Chem, vol.281, issue.26, pp.17789-800, 2006.

L. De-vivo, S. Landi, M. Panniello, L. Baroncelli, S. Chierzi et al., Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex, Nat Commun, vol.4, p.1484, 2013.

A. Dityatev, C. I. Seidenbecher, and M. Schachner, Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain, Trends Neurosci, vol.33, issue.11, pp.503-515, 2010.

E. Dzyubenko, C. Gottschling, and A. Faissner, Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets, Neural Plast, p.5214961, 2016.

M. Fagiolini, J. M. Fritschy, K. Löw, H. Möhler, U. Rudolph et al., Specific GABAA circuits for visual cortical plasticity, Science, vol.303, issue.5664, pp.1681-1684, 2004.

G. Faini, A. Aguirre, S. Landi, D. Lamers, T. Pizzorusso et al., Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons. Elife, vol.7, p.41520, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974162

M. Ferrer-ferrer and A. Dityatev, Shaping Synapses by the Neural Extracellular Matrix, Front Neuroanat, vol.12, p.40, 2018.

L. Gabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition, Neuron, vol.48, p.315, 2005.

J. R. Geiger, T. Melcher, D. S. Koh, B. Sakmann, P. H. Seeburg et al., Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS, Neuron, vol.15, issue.1, pp.193-204, 1995.

J. L. Gomez, J. Bonaventura, W. Lesniak, W. B. Mathews, P. Sysa-shah et al., Chemogenetics revealed: DREADD occupancy and activation via converted clozapine, vol.357, pp.503-507, 2017.

J. A. Gorski,

T. Talley,

M. Qiu, L. Puelles, and J. L. ;-rubenstein,

K. R. Jones, Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage, J Neurosci, vol.22, issue.15, pp.6309-6323, 2002.

A. Harauzov, M. Spolidoro, G. Dicristo, D. Pasquale, R. Cancedda et al., Cortex Examined in the Rat and Mouse. eNeuro, 2017.

K. K. Lensjø, M. E. Lepperød, G. Dick, T. Hafting, and M. Fyhn, Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity, J Neurosci, vol.37, issue.5, pp.1269-1283, 2017.

C. J. Magnus, P. H. Lee, D. Atasoy, H. H. Su, L. L. Looger et al., Chemical and genetic engineering of selective ion channel-ligand interactions, Science, vol.333, pp.1292-1296, 2011.

P. Maurel, U. Rauch, M. Flad, R. K. Margolis, and R. U. Margolis, Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase, Proc Natl Acad Sci, vol.91, issue.7, pp.2512-2518, 1994.

B. W. Okaty, M. N. Miller, K. Sugino, C. M. Hempel, and S. B. Nelson, Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons, J Neurosci, vol.29, issue.21, pp.7040-52, 2009.

D. Orduz, P. P. Maldonado, M. Balia, M. Vélez-fort, V. De-sars et al., Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex, vol.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02302602

G. Paxinos and K. Franklin, The mouse brain in stereotaxic coordinates, 2004.

T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett et al., Reactivation of ocular dominance plasticity in the adult visual cortex, Science, vol.298, issue.5596, pp.1248-51, 2002.

J. Rossier, A. Bernard, J. H. Cabungcal, Q. Perrenoud, A. Savoye et al., Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin, Mol Psychiatry, vol.20, issue.2, pp.154-61, 2015.

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Dev Neurobiol, vol.71, issue.1, pp.45-61, 2011.

A. Saghatelyan, A. De-chevigny, M. Schachner, and P. M. Lledo, Tenascin-R mediates activitydependent recruitment of neuroblasts in the adult mouse forebrain, Nat Neurosci, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00163278

A. Sale, N. Berardi, M. Spolidoro, L. Baroncelli, and L. Maffei, GABAergic inhibition in visual cortical plasticity. Front Cell Neurosci, vol.4, p.10, 2010.

V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, vol.459, issue.7247, pp.698-702, 2009.

T. J. Stachniak, A. Ghosh, and S. M. Sternson, Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus?midbrain pathway for feeding behavior, Neuron, vol.82, pp.797-808, 2014.

G. M. Alexander, S. C. Rogan, A. I. Abbas, B. N. Armbruster, Y. Pei et al., Neurotechnique Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors, Neuron, vol.63, pp.27-39, 2009.

A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, Tripartite Synapse Haydon, 1999.

B. N. Armbruster, X. Li, M. H. Pausch, S. Herlitze, and B. L. Roth, Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand 104, 2007.

B. N. Armbruster and B. L. Roth, Mining the receptorome, J Biol Chem, vol.280, pp.5129-5132, 2005.

A. M. Arranz, K. L. Perkins, F. Irie, D. P. Lewis, J. Hrabe et al., Hyaluronan Deficiency Due to Has3 Knock-Out Causes Altered Neuronal Activity and Seizures via Reduction in Brain Extracellular Space, J Neurosci, vol.34, pp.6164-6176, 2014.

G. A. Ascoli, L. Alonso-nanclares, S. A. Anderson, G. Barrionuevo, R. Benavides-piccione et al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat Rev Neurosci, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

J. K. Atwal, J. Pinkston-gosse, J. Syken, S. Stawicki, Y. Wu et al., PirB is a functional receptor for myelin inhibitors of axonal regeneration, Science (80-), vol.322, pp.967-970, 2008.

A. Bacci, U. Rudolph, J. R. Huguenard, D. A. Prince, and X. Zhang, Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses, J Neurosci, vol.23, pp.9664-74, 2003.

A. Bacci, U. Rudolph, J. R. Huguenard, D. A. Prince, and X. Zhang, Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses, J Neurosci, vol.23, pp.9664-74, 2003.

T. S. Balmer, Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons, 2016.

M. Bartos, I. Vida, M. Frotscher, A. Meyer, H. Monyer et al., Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks, vol.99, pp.1-6, 2002.

D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, Removing Brakes on Adult Brain Plasticity: From Molecular to Behavioral Interventions, J Neurosci, vol.30, pp.14964-14971, 2010.

F. Bear, How monocular deprivation shifts ocular dominance in visual cortex of young mice, vol.44, pp.917-923, 2004.

M. Bear and W. Singer, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature, 1986.

M. Bélanger, I. Allaman, and P. J. Magistretti, Brain energy metabolism: Focus on Astrocyte-neuron metabolic cooperation, Cell Metab, vol.14, pp.724-738, 2011.

C. Bernard and A. Prochiantz, Otx2-PNN Interaction to Regulate Cortical Plasticity, Neural Plast, 2016.

M. Beurdeley, J. Spatazza, H. Lee, S. Sugiyama, C. Bernard et al., Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex, J Neurosci, vol.32, pp.9429-9437, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

C. Brakebusch, C. I. Seidenbecher, F. Asztely, U. Rauch, H. Matthies et al., Brevican-Deficient Mice Display Impaired Hippocampal CA1 Long-Term Potentiation but Show No Obvious Deficits in Learning, vol.22, pp.7417-7427, 2002.

G. Brückner, A. Bringmann, W. Härtig, G. Köppe, B. Delpech et al., Acute and long-lasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain, Exp Brain Res, vol.121, pp.300-310, 1998.

B. Cauli, E. Audinat, B. Lambolez, M. C. Angulo, N. Ropert et al., Molecular and Physiological Diversity of, 1997.

, Cortical Nonpyramidal Cells. J Neurosci, vol.17, pp.3894-3906

O. Bukalo, M. Schachner, and A. Dityatev, Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus, Neuroscience, vol.104, pp.359-369, 2001.

G. Buzsáki and X. Wang, Mechanisms of Gamma Oscillations, Annu Rev Neurosci, vol.35, pp.203-225, 2012.

J. Cang, V. A. Kalatsky, S. Löwel, and M. P. Stryker, Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse, Vis Neurosci, vol.22, pp.685-691, 2005.

R. Canolty, E. Edwards, S. Dalal, M. Soltani, and S. Nagarajan, High gamma power is phaselocked to theta oscillations in human neocortex, Science, pp.80-1626, 2006.

J. A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang et al., Driving fast-spiking cells induces gamma rhythm and controls sensory responses, Nature, vol.459, pp.663-667, 2009.

D. Carulli, T. Pizzorusso, J. Kwok, E. Putignano, A. Poli et al., , 2010.

D. Carulli, K. E. Rhodes, D. J. Brown, T. P. Bonnert, S. J. Pollack et al., Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components, J Comp Neurol, vol.494, pp.559-577, 2006.

M. R. Celio, R. Spreafico, S. Biasi, . De, L. Vitellaro-zuccarello et al., , 1998.

J. E. Coleman, M. Nahmani, J. P. Gavornik, R. Haslinger, A. J. Heynen et al., Rapid Structural Remodeling of Thalamocortical Synapses Parallels Experience-Dependent Functional Plasticity in Mouse Primary Visual Cortex, J Neurosci, vol.30, pp.9670-9682, 2010.

B. W. Connors and M. Gutnick, Intrinsic firing patterns of diverse neocortical neurons, 1990.

W. Crick and C. Koch, Towards a neurobiological theory of consciousness, Semin Neurosci, vol.2, pp.263-275, 1990.

R. D. Cuttoli, S. Mondoloni, F. Marti, D. Lemoine, U. Maskos et al., Manipulating midbrain dopamine neurons and reward-related behaviors with lightcontrollable nicotinic acetylcholine receptors, pp.1-23, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875646

N. W. Daw, K. Fox, H. Sato, and D. C. , Critical period for monocular deprivation in the cat visual cortex, 1992.

, J Neurophysiol, vol.67, pp.1-6

J. Defelipe, Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex, J Chem Neuroanat, vol.14, pp.1-19, 1997.

N. Dehorter, O. Marin, G. Ciceri, G. Bartolini, L. Lim et al., Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch, Science (80-), vol.349, pp.1216-1220, 2015.

J. A. Del-rio, L. Lecea, . De, I. Ferrer, and E. Soriano, The development of parvalbumin-immunoreactivity in the neocortex of the mouse, Dev Brain Res, 1994.

G. Devienne, B. Gac, . Le, J. Piquet, and B. Cauli, Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After 1-12, 2018.

G. Devienne, L. Gac, B. Piquet, J. Cauli, and B. , Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp, J Vis Exp, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01961034

A. Dityatev, G. Brückner, G. Dityateva, J. Grosche, R. Kleene et al., Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets, Dev Neurobiol, 2007.

A. Dityatev and M. Schachner, Extracellular matrix molecules and synaptic plasticity, Nat Rev Neurosci, 2003.

U. C. Dräger, Receptive fields of single cells and topography in mouse visual cortex, J Comp Neurol, 1975.

V. Dragoi, J. Sharma, and M. Sur, Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex These phenomena raise the question of whether orientation selectivity in adult V1 can undergo, Neuron, vol.28, pp.287-298, 2000.

J. R. Dunn, J. E. Reed, D. G. Plessis, E. J. Shaw, P. Reeves et al., Expression of ADAMTS-8 , a secreted protease with antiangiogenic properties , is downregulated in brain tumours 1186-1193, 2006.

F. A. Edwards, A. Konnerth, B. Sakmann, and T. Takahashi, A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system, Pflügers Arch Eur J Physiol, vol.414, pp.600-612, 1989.

E. Ethell, Matrix Metalloproteinases in Brain Development and Remodeling: Synaptic Functions and Targets, J Neurosci Res, vol.18, pp.369-376, 2011.

M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei, Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation, Vision Res, vol.34, pp.709-720, 1994.

G. Faini, A. Aguirre, S. Landi, D. Lamers, T. Pizzorusso et al., Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974162

A. Faissner, M. Pyka, M. Geissler, T. Sobik, R. Frischknecht et al., Contributions of astrocytes to synapse formation and maturation -Potential functions of the perisynaptic extracellular matrix, Brain Res Rev, vol.63, pp.26-38, 2010.

M. Ferrer-ferrer and A. Dityatev, Shaping Synapses by the Neural Extracellular Matrix, Front Neuroanat, vol.12, pp.1-16, 2018.

S. Freitag, M. Schachner, and F. Morellini, Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R, Behav Brain Res, vol.145, pp.109-117, 2003.

T. F. Freund and I. Katona, Perisomatic Inhibition, Neuron, vol.56, pp.33-42, 2007.

R. Frischknecht, M. Heine, D. Perrais, C. I. Seidenbecher, D. Choquet et al., Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity, Nat Neurosci, vol.12, pp.897-904, 2009.

L. J. Garey and J. D. Pettigrew, Ultrastructural changes in kitten visual cortex after environmental modification, Brain Res, vol.66, pp.165-172, 1974.

K. A. Giamanco, M. Morawski, and R. T. Matthews, Perineuronal net formation and structure in aggrecan knockout mice, Neuroscience, vol.170, pp.1314-1327, 2010.

E. M. Goldberg, B. D. Clark, E. Zagha, M. Nahmani, A. Erisir et al., K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons, Neuron, vol.58, pp.387-400, 2008.

J. A. Gordon and M. P. Stryker, Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse, J Neurosci, 1996.

J. Grosche and G. Bruckner, Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures, Exp Brain Res, vol.137, pp.83-93, 2001.

M. Guerrero-tarragó, V. J. Yuste, M. Iglesias, J. Pérez, and J. X. Comella, Binding patterns of lectins with GalNAc specificity in the mouse dorsal root ganglia and spinal cord, J Neurocytol, vol.28, pp.75-84, 1999.

M. G. Hamel, J. M. Ajmo, C. C. Leonardo, F. Zuo, J. D. Sandy et al., Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension, Exp Neurol, vol.210, pp.428-440, 2008.

J. L. Hanover, Z. J. Huang, S. Tonegawa, and M. P. Stryker, Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex, J Neurosci, vol.19, p.40, 1999.

A. Harauzov, M. Spolidoro, G. Dicristo, D. Pasquale, R. Cancedda et al., Reducing Intracortical Inhibition in the Adult Visual Cortex Promotes Ocular Dominance Plasticity, J Neurosci, vol.30, pp.361-371, 2010.

H. Hayani, I. Song, and A. Dityatev, Increased Excitability and Reduced Excitatory Synaptic Input Into Fast-Spiking CA2 Interneurons After Enzymatic Attenuation of Extracellular Matrix, Front Cell Neurosci, vol.12, pp.1-13, 2018.

H. He, Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex, J Neurosci, vol.26, pp.2951-2955, 2006.

T. K. Hensch, Critical period plasticity in local cortical circuits, Nat Rev Neurosci, vol.6, pp.877-888, 2005.

T. K. Hensch, CRITICAL PERIOD REGULATION, Annu Rev Neurosci, 2004.

T. K. Hensch and P. M. Bilimoria, Re-opening Windows: Manipulating Critical Periods for Brain Development, 2012.

T. K. Hensch and M. Fagiolini, Inhibitory threshold for critical-period activation in primary visual cortex, Nature, vol.404, pp.183-186, 2000.

T. K. Hensch and M. Fagiolini, Inhibitory threshold for critical-period activation in primary visual cortex, Nature, vol.404, pp.183-186, 2000.

T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov et al., Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex, Science, issue.80, 1998.

S. Hippenmeyer, E. Vrieseling, M. Sigrist, T. Portmann, C. Laengle et al., PLoS BIOLOGY A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling 3, 2005.

S. B. Hofer, T. D. Mrsic-flogel, T. Bonhoeffer, and M. Hübener, Experience leaves a lasting structural trace in cortical circuits, Nature, vol.457, pp.313-317, 2009.

S. B. Hofer, T. D. Mrsic-flogel, T. Bonhoeffer, and M. Hübener, Prior experience enhances plasticity in adult visual cortex, Nat Neurosci, vol.9, pp.127-132, 2006.

H. Sonja, B. Mrsic-flogel, T. D. Bonhoeffer, T. Hübener, and M. , Prior experience enhances plasticity in adult visual cortex, Nat Neurosci, vol.81, pp.121-129, 2006.

X. Hou, N. Yoshioka, H. Tsukano, A. Sakai, S. Miyata et al., Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex, Sci Rep, vol.7, pp.1-17, 2017.

C. R. Houser, S. Hendry, E. G. Jones, and J. E. Vaughn, Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex, J Neurocytol, vol.12, pp.617-638, 1983.

Z. J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales et al., BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex, vol.98, pp.739-755, 1999.

D. H. Hubel and T. N. Wiesel, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J Comp Neurol, vol.158, pp.267-293, 1974.

D. H. Hubel and T. N. Wiesel, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J Neurosci, 1970.

D. H. Hubel and T. N. Wiesel, Receptive fields of single neurones in the cat's striate cortex, J Physiol, vol.148, pp.574-591, 1959.

Y. Iwai, M. Fagiolini, K. Obata, and T. K. Hensch, Rapid critical period induction by tonic inhibition in visual cortex, J Neurosci, vol.23, pp.6695-702, 2003.

E. G. Jones, Gabaergic neurons and their role in cortical plasticity in primates, Cereb Cortex, vol.3, pp.361-372, 1993.

H. Katagiri, M. Fagiolini, and T. K. Hensch, Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex, Neuron, vol.53, pp.805-812, 2007.

Y. Kawaguchi, Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex, J Neurosci, vol.15, pp.2638-2655, 1995.

Y. Kawaguchi, Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum, J Neurosci, vol.13, pp.4908-4931, 1993.

Y. Kawaguchi, H. Katsumaru, T. Kosaka, C. W. Heizmann, and K. Hama, Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin, Brain Res, vol.416, pp.369-374, 1987.

Y. Kawaguchi and Y. Kubota, GABAergic cell subtypes and their synaptic connections in neocortex, Neurosci Res, vol.25, p.11, 1997.

E. I. Knudsen, Sensitive Periods in the Development of the Brain and Behavior, Journal of Cognitive Neuroscience, vol.16, issue.8, pp.1412-1425, 2004.

F. Knudsen, P. Knudsen, and S. D. Esterly, A critical localization occlusion, J Neurosci, vol.4, pp.1012-1020, 1984.

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nat Neurosci, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

Y. Kubota, R. Hattori, and Y. Yui, Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex, Brain Res, vol.649, pp.159-173, 1994.

S. W. Kuffler, Discharge Patterns and Functional Organization of Mammalian Retina, J Neurophysiol, vol.16, pp.37-68, 1953.

S. J. Kuhlman, N. D. Olivas, E. Tring, T. Ikrar, X. Xu et al., plasticity in the visual cortex, Nature, vol.501, pp.543-546, 2013.

J. Kwok, D. Carulli, and J. W. Fawcett, In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity, J Neurochem, 2010.

J. Kwok, G. Dick, D. Wang, and J. W. Fawcett, Extracellular matrix and perineuronal nets in CNS repair, Dev Neurobiol, vol.71, pp.1073-1089, 2011.

B. Lambolez, E. Audinat, P. Bochet, F. Crépel, and J. Rossier, AMPA receptor subunits expressed by single purkinje cells, Neuron, vol.9, pp.247-258, 1992.

I. A. Lanzarevich, S. V. Stasenko, M. A. Rozhnova, E. V. Pankratova, A. E. Dityatev et al., Dynamics of the brain extracellular matrix governed by interactions with neural cells, pp.1-7, 2018.

D. Lau, E. De-miera, D. Contreras, A. Ozaita, M. Harvey et al., Impaired Fast-Spiking, Suppressed Cortical Inhibition, and Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K+ Channel Proteins, J Neurosci, vol.20, pp.9071-9085, 2000.

A. T. Lee, S. M. Gee, D. Vogt, T. Patel, J. L. Rubenstein et al., Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition, Neuron, vol.81, pp.61-68, 2014.

S. Lemarchant, M. Pruvost, J. Montaner, E. Emery, D. Vivien et al., ADAMTS proteoglycanases in the physiological and pathological central nervous system, J Neuroinflammation, vol.10, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00903345

K. K. Lensjø, M. E. Lepperød, G. Dick, T. Hafting, and M. Fyhn, Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity, J Neurosci, vol.37, pp.1269-1283, 2017.

H. Liu, P. Gao, H. Xu, M. Liu, Y. T. Yao et al., Perineuronal nets increase inhibitory GABAergic currents during the critical period in rats, Int J Ophthalmol, vol.6, pp.120-125, 2013.

C. J. Magnus, P. H. Lee, D. Atasoy, H. H. Su, L. L. Looger et al., Chemical and genetic engineering of selective ligand-ion channel interactions, Science (80-), vol.333, pp.1292-1296, 2011.

A. Majewska and M. Sur, Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation, Proc Natl Acad Sci, vol.100, pp.16024-16029, 2003.

F. Manseau, S. Marinelli, P. Méndez, B. Schwaller, D. A. Prince et al., Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fast-spiking interneurons, PLoS Biol, vol.8, 2010.

O. Marín, Interneuron dysfunction in psychiatric disorders, Nat Rev Neurosci, vol.13, pp.107-120, 2012.

N. Mataga, Y. Mizuguchi, and T. K. Hensch, Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator, Neuron, vol.44, pp.1031-1041, 2004.

D. A. Mccormick, B. W. Connors, J. W. Lighthall, and D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J Neurophysiol, vol.54, pp.782-806, 1985.

A. Mcgee, Y. Yang, Q. Fischer, N. W. Daw, and S. M. Strittmatter, Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor, Science (80-), vol.309, pp.2222-2226, 2005.

P. A. Mcrae, M. M. Rocco, G. Kelly, J. C. Brumberg, and R. T. Matthews, Sensory Deprivation Alters Aggrecan and Perineuronal Net Expression in the Mouse Barrel Cortex, J Neurosci, vol.27, pp.5405-5413, 2007.

P. Méndez and A. Bacci, Assortment of GABAergic plasticity in the cortical interneuron melting pot, Neural Plast, 2011.

P. Milev, P. Maurel, A. Chiba, M. Mevissen, S. Popp et al., Differential Regulation of Expression of Hyaluronan-Binding Proteoglycans in Developing Brain, Biochem Biophys Res Commun, vol.212, pp.207-212, 1998.

H. Morishita, J. M. Miwa, N. Heintz, and T. K. Hensch, Lynx1, a cholinergic brake limits plasticity in adult visual cortex. Science (80-), 2010.

V. B. Mountcastle, The columnar organization of the neocortex, Brain, vol.120, pp.701-722, 1997.

T. Murakami, T. Taguchi, A. Ohtsuka, and A. Kikuta, Neurons with strongly negative-charged surfacecoats in adult rat brain as detected by staining with cationic iron colloid, Arch Histol Cytol, vol.56, pp.13-21, 1993.

E. M. Nabel and H. Morishita, Regulating critical period plasticity: Insight from the visual system to fear circuitry for therapeutic interventions, Front Psychiatry, vol.4, pp.1-8, 2013.

V. Nagy, Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory, J Neurosci, vol.26, pp.1923-1934, 2006.

H. Nakamura, Y. Fujii, I. Inoki, K. Sugimoto, K. Tanzawa et al., Brevican Is Degraded by Matrix Metalloproteinases and Aggrecanase-1 ( ADAMTS4 ) at, 2000.

, Different Sites *, vol.275, pp.38885-38890

D. Nowicka, S. Soulsby, J. Skangiel-kramska, and S. Glazewski, Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex, Eur J Neurosci, vol.30, pp.2053-2063, 2009.

B. W. Okaty, M. N. Miller, K. Sugino, C. M. Hempel, and S. B. Nelson, Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons, vol.29, pp.7040-7052, 2009.

C. R. Olson and R. D. Freeman, Profile of the sensitive period for monocular deprivation in kittens, Exp Brain Res, vol.39, 1980.

S. Oray, A. Majewska, and M. Sur, Dendritic {Spine} {Dynamics} {Are} {Regulated} by {Monocular} {Deprivation} and {Extracellular} {Matrix} {Degradation}, Neuron, vol.44, pp.1021-1030, 2004.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller et al., Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), Nat Commun, vol.8, pp.1-14, 2017.

. Pellerin, Activity-Dependent Regulation of Energy Metabolismby Astrocytes: An Update, 2007.

, Glia

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc Natl Acad Sci, vol.91, pp.10625-10629, 1994.

Z. Perova, K. Delevich, and B. Li, Depression of Excitatory Synapses onto Parvalbumin Interneurons in the Medial Prefrontal Cortex in Susceptibility to Stress, J Neurosci, vol.35, pp.3201-3206, 2015.

P. Hugh, V. Jarn, and C. H. , Microglia in neurodegenerative disease, Nat Rev Neurol, 2010.

T. A. Pham, S. J. Graham, S. Suzuki, A. Barco, E. R. Kandel et al., A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB, Learn Mem, vol.11, pp.738-747, 2004.

T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett et al., Reactivation of ocular dominance plasticity in the adult visual cortex, Science (80-), vol.298, pp.1248-1251, 2002.

T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi et al., Structural and functional recovery from early monocular deprivation in adult rats, 2006.

F. Pouille and M. Scanziani, Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition, Clin Orthod Res, 2001.

M. A. Raghanti, A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex, Front Neuroanat, vol.4, pp.1-10, 2010.

S. Reimers, M. Hartlage-rübsamen, G. Brückner, and S. Roßner, Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity, Eur J Neurosci, vol.25, pp.2640-2648, 2007.

J. Rossier, A. Bernard, J. Cabungcal, Q. Perrenoud, A. Savoye et al., Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8 , Adamts15 and Neprilysin 154-161, 2015.

L. Roux and G. Buzsáki, Tasks for inhibitory interneurons in intact brain circuits, Neuropharmacology, vol.88, pp.10-23, 2015.

B. Rudy and C. J. Mcbain, Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing, TRENDS Neurosci, vol.24, pp.1-10, 2001.

. S-ramon-y-cajal, Histology of the Nervous System, 1995.

A. K. Saghatelyan, A. Dityatev, S. Schmidt, T. Schuster, U. Bartsch et al., Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R, Mol Cell Neurosci, vol.17, pp.226-240, 2001.

A. Sale, F. M. Vetencourt, P. Medini, M. C. Cenni, L. Baroncelli et al., Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition, Nat Neurosci, pp.679-681, 2007.

M. Sato and M. P. Stryker, Distinctive Features of Adult Ocular Dominance Plasticity, J Neurosci, vol.28, pp.10278-10286, 2008.

M. Sato and M. P. Stryker, Distinctive Features of Adult Ocular Dominance Plasticity, J Neurosci, vol.28, pp.10278-10286, 2008.

N. B. Sawtell, M. Y. Frenkel, B. D. Philpot, K. Nakazawa, S. Tonegawa et al., NMDA-Receptor-Dependent-Ocular-Dominance-Plasticity-in-Adult-Visual-Cortex_2003_Neuron, vol.38, pp.977-985, 2003.

G. Seeger, K. Brauer, W. Härtig, and G. Brückner, Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry, Neuroscience, vol.58, pp.371-388, 1994.

M. Slaker, L. Churchill, R. P. Todd, J. M. Blacktop, D. G. Zuloaga et al., Removal of Perineuronal Nets in the Medial Prefrontal Cortex Impairs the Acquisition and Reconsolidation of a Cocaine-Induced Conditioned Place Preference Memory, J Neurosci, vol.35, pp.4190-4202, 2015.

S. L. Smith and J. T. Trachtenberg, Experience-dependent binocular competition in the visual cortex begins at eye opening, Nat Neurosci, vol.10, pp.370-375, 2007.

V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, vol.459, pp.698-702, 2009.

J. Sohn, S. Okamoto, N. Kataoka, T. Kaneko, K. Nakamura et al., Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex, Front Neuroanat, vol.10, pp.1-18, 2016.

I. Song and A. Dityatev, Crosstalk between glia, extracellular matrix and neurons, Brain Res Bull, vol.136, pp.101-108, 2018.

B. A. Sorg, S. Berretta, J. M. Blacktop, J. W. Fawcett, H. Kitagawa et al., Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity, J Neurosci, vol.36, pp.11459-11468, 2016.

J. Spatazza, H. Lee, A. A. Dinardo, L. Tibaldi, A. Joliot et al., Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity, Cell Rep, vol.3, pp.1815-1823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380061

T. J. Stachniak, A. Ghosh, and S. M. Sternson, Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus?Midbrain Pathway for Feeding Behavior, Neuron, vol.82, pp.797-808, 2014.

H. Stanton, J. Melrose, C. B. Little, and A. J. Fosang, Biochimica et Biophysica Acta Proteoglycan degradation by the ADAMTS family of proteinases. BBA -Mol Basis Dis, vol.1812, pp.1616-1629, 2011.

M. D. Sternlicht and Z. Werb, H Ow M Atrix M Etalloproteinases, pp.463-516, 2007.

S. M. Sternson and B. L. Roth, Chemogenetic Tools to Interrogate Brain Functions, Annu Rev Neurosci, vol.37, 2014.

J. Storm-mathisen, A. K. Leknes, A. T. Bore, J. L. Vaaland, P. Edminson et al., Nature, vol.301, pp.517-520, 1983.

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours, J Neurophysiol, vol.41, pp.896-909, 1978.

G. Stuart, H. Dodt, and B. Sakmann, Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy, Pflügers Arch Eur J Physiol, vol.423, pp.511-518, 1993.

S. Sugiyama, A. Nardo, S. Aizawa, I. Matsuo, M. Volovitch et al., Experience-Dependent Transfer of Otx2 Homeoprotein into the Visual Cortex Activates Postnatal Plasticity, Cell, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02380510

S. Sugiyama, A. Prochiantz, and T. K. Hensch, From brain formation to plasticity: Insights on Otx2 homeoprotein, Dev Growth Differ, vol.51, pp.1490-1492, 2009.

D. Wang and J. Fawcett, The perineuronal net and the control of CNS plasticity 147-160, 2012.

P. Weber, U. Bartsch, M. N. Rasband, R. Czaniera, Y. Lang et al., Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS, J Neurosci, vol.19, pp.4245-62, 1999.

T. H. Wen, S. Afroz, S. M. Reinhard, A. R. Palacios, K. Tapia et al., Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice, Cereb Cortex, pp.1-14, 2017.

T. N. Wiesel and D. H. Hubel, Responses in Striate Deprived of Vision Cortex of One Eye, J Neurophysiol, vol.26, pp.1003-1017, 1963.

. Winter-f-de, J. Kwok, J. W. Fawcett, T. T. Vo, D. Carulli et al., The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity, 2016.

Q. Ye and Q. Miao, Experience-dependent Development of Perineuronal Nets and Chondroitin Sulfate Proteoglycan Receptors in, Matrix Biol, vol.32, pp.352-363, 2014.

Q. Ye and Q. Miao, Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex, Matrix Biol, vol.32, pp.352-363, 2013.

Y. Yoshimura and E. M. Callaway, Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity, Nat Neurosci, vol.8, pp.1552-1559, 2005.

X. Yu, K. Duan, C. Shang, H. Yu, and Z. Zhou, Calcium influx through hyperpolarization-activated cation channels ( I h channels ) contributes to activity-evoked neuronal secretion, 2003.

D. R. Zimmermann and M. T. Dours-zimmermann, Extracellular matrix of the central nervous system: From neglect to challenge, Histochem Cell Biol, vol.130, pp.635-653, 2008.

Y. Zuo, A. Lin, P. Chang, and W. B. Gan, Development of long-term dendritic spine stability in diverse regions of cerebral cortex, Neuron, vol.46, pp.181-189, 2005.

, Do not use plasmids containing genes of interest in the laboratory as they are a potential source of contamination

, Dedicate a set of pipettes and aerosol resistant filter tips to manipulate DNA and RNA at concentrations lower than 1 ng/µL. Never use these to analyze PCR products

, Always use RNase-and DNase-free products and wear gloves

, Use dedicated chemicals for preparing internal patch-clamp solutions. Never use a spatula but rather weighing paper to weigh powders

, Use a dedicated pH electrode and pH standard solutions, as they can be a source of contamination

, Store borosilicate glass capillaries; 20 µL long, fine and flexible tips; a 20 µL micropipette; a home-made expeller (patch-clamp pipette holder attached to a 10 mL syringe); 500 µL PCR tubes; 10 µL aerosol resistant filter tips; and thin permanent markers in a dedicated box

, During the first PCR, all the genes of interest are co-amplified by mixing together all PCR primers. To detect reliably transcripts from single cells, it is essential to design efficient and selective PCR primers. The use of nested (internal) primers for the second rounds of PCR improves, Primer Design Note: Multiplex RT-PCR relies on two amplification steps

, Retrieve the curated mRNA sequences of the genes of interest in NCBI Reference Sequence Database 32 as well as those of their related family

, Enter the name of the gene(s) and the species of interest as a query and click on the retrieved relevant sequence. 2. To restrict the analysis to the coding sequence of the gene(s), click on Send to (upper right corner), and select Coding sequences and FASTA Nucleotide as format. Then click on Create File and save the FASTA sequence using a

, Multiple Alignment Construction & Analysis Workbench) or any other multiple alignment software to determine the regions of homology. 1. Click on File | New Project... and select DNA as the sequence type. To import the gene sequences, select Sequence | Import Sequence, Use MACAW software, vol.33

, Click and drag all sequences in the Schematic window to select the entire sequences

, Adjust the Pairwise score cutoff to a relatively high value (e.g., 1,000) and the Min. seqs. per block to the total number of sequences to align and click on Begin

, In the appearing Search Result window, select the result(s) with the highest MP-score and click on Link. If no result is found, decrease the Pairwise score cutoff and/or the Min. seqs

, To facilitate the visualization of homologous regions, select Alignment | Shading | Mean score

, To obtain the most specific primers, select the regions with the least sequence homology

, Fetch the sequences of all splice variants and repeat steps 2.2.1-2.2.6. Select their common regions for an overall detection. Consider alternative cassettes for dedicated splice variants analyses 20, vol.34, p.36

, Align the mRNA sequences on the animal model genome using BLAST 37 genomes (Basic Local Alignment Search Tool) to determine the intron-exon structure of the genes

, Select the BLAST mouse genome by clicking on Mouse and upload the retrieved FASTA sequence in the Enter Query Sequence section. In the Program Selection, select Optimize for Highly similar sequences (megablast)

, Make sure that it corresponds to the gene of interest as indicated in features of the Alignments section

, Sort the alignment by Query start position in the same section to obtain the exons succession of the coding sequence. Note the start and end positions of all hits which roughly correspond to the position of the introns on the query sequence

, In case of intron-less genes, the collection of the nucleus is problematic as it can lead to potentially confounding results. To address this issue, include a set of primers aimed at amplifying an intronic sequence to probe for the presence of gDNA 25

. Copyright, Journal of Visualized Experiments, vol.136, p.12, 2018.

, To achieve an efficient amplification, select primers generating amplicons with a length ideally comprised between 200 and 400 base pairs

, To amplify simultaneously various cDNAs during the multiplex PCR step, design primers with a length between 18 and 24 nucleotides and a melting temperature (Tm) between 55 and 60 °C

, To minimize the formation of secondary structures, which reduce the amplification yield, select sense and anti-sense primers with minimal hairpin and duplex lengths (Figure 2B)

, Design internal primers using the same criteria (steps 2.5-2.8)

, Verify the specificity of the PCR primers by aligning the primers on the Reference RNA Sequence Database of the organism of interest using a nucleotide BLAST

, BLAST

, In the Choose Search Set section, click on Others (nr etc.), select Reference RNA sequences (refseq_rna) in the Database option and specify the organism (e.g., Mus musculus (taxid:10090)) to restrict the analysis to the desired species

, In the Algorithm parameters section reduce the word size down to 7 to increase the chance to obtain hits

, To design selective primers, keep only those whose sequence has at least 3 mismatches with undesired cDNAs when possible

, µM) to ensure that all external primers can be mixed together at a final concentration of 1 µM, Order desalted primers at a relatively high concentration

, Preparation of RT Reagents 1. 5x RT-mix: Prepare in RNase-free water 400 µL of working RT mix solution (5x) containing random primers at 25 µM and dNTPs at 2.5 mM each

. Dithiothreitol, Prepare 1 mL of 0.2 M DTT in RNase-free water and store it as 50 µL aliquots

, Store 2,500 U of RNase inhibitor (40 U/µL) and 10,000 U of reverse transcriptase (RTase, 200 U/µL) as 5 µL aliquots

, To ensure an optimal quality of the RT reagents, store the aliquots at -80 °C. Use them for up to 10 cells and only for one day

, PCR Validation 1. Prepare cDNAs by doing a reverse transcription on a relatively large amount of total RNA (typically 1 µg) extracted 38 from the structure of interest. 1. Do not use the pipettes dedicated to single cell RT-PCR for these preliminary steps but use the RNase-free pipettes

, In a 500 µL PCR tube, add 1 µL of diluted total RNA and 8 µL of RNase-free water. Denature at 95 °C for 1 min and cool down the tube on ice

, Add 4 µL of RT 5x buffer supplied by the manufacturer, 4 µL of RT mix solution, 1 µL of RTase, 1 µL of RNase inhibitor, and 1 µL of 200 mM DTT

, Flick the tube, spin it, and incubate overnight at 37 °C

, Store the cDNAs at -80 °C for up to several years. Prepare an aliquot of cDNAs diluted to 1 ng/µL of total RNAs equivalents

, Mix and dilute each primer pair at 1 µM with the pipettes dedicated to single cell RT-PCR. Use 20 µL of each primer mix for 100 µL PCRs

, On ice, prepare for each primer pair a premix containing: water (q.s., 80 µL), 10 µL of 10X buffer, 1 µL of 100x dNTPs, vol.50, pp.500-501

, Add 2 drops (~100 µL) of mineral oil to the premix without touching the wall or the cap of the PCR tube

, To minimize the formation of primer-dimers, perform a hot start by placing the PCR tubes in the thermocycler pre-heated at 95 °C. After 30 s, quickly expel 20 µL of the primer mix on top of the oil

, After 3 min at 95 °C, run 40 cycles (95 °C, 30 s; 60 °C, 30 s; 72 °C, 35 s) followed by a final elongation step at 72 °C for 5 min

, Analyze 10 µL of each PCR products by agarose gel electrophoresis (2%, weight/volume) 39 . If some PCR products do not have the expected size, re-design other primers (see Section 2)

, Consult the local safety office before using it. Always wear gloves when manipulating it. Use a commercially available solution of ethidium bromide (10 mg/mL) solution instead of powder to minimize the risk of inhalation. Similarly, UV light can be harmful, so make sure to wear UV protection safety glasses or a mask

, Once all primer pairs have been individually validated, test the multiplex protocol

, Mix and dilute all external primers together at 1 µM. Store the multiplex primers mix at -20 °C for up to several weeks. 2. On ice, prepare a premix containing: water (q.s., 80 µL), 10 µL of 10X buffer, 1 µL of 100x dNTPs (50 µM of each), 500-1,000 pg of cDNAs diluted at 1 ng/µL

, Flick the PCR tube, spin it, and add two drops (~100 µL) of mineral oil

, Adjust all the volumes according to the number of genes to analyze and consider using 10% of extra volume to compensate for pipetting errors

, Shake gently, spin the tube, dispatch 80 µL of premix in each PCR tube, and add two drops (~100 µL) of mineral oil per tube without touching the wall or the cap of the tubes

, For 60 mL of internal patch-clamp recording solution

M. Koh,

, Add 40 mL RNase-free water and dissolve 2.02 g of K-gluconate (144 mM final, 143 mg of HEPES (10 mM final), and 180 µL of 1 M MgCl, vol.2

, Since the internal solution is also used as a buffer for the reverse transcription, carefully control Mg 2+ concentration. Compensate for a lower Mg 2+ concentration in the internal solution by adding MgCl 2 afterwards to reach a final concentration of 2 mM in the RT reaction

, To label the harvested cell after patch-clamp recording, add 2-5 mg/mL of RNase-free biocytin to the internal solution described above

, 22 µm pore size) the internal solution and store it at -80 °C as 100-250 µL aliquots

, To validate the use of the internal solution for single-cell RT-PCR, add 0.5 µL of total RNAs diluted at 1 ng/µL to 6 µL of patch-clamp solution and leave it on the bench for about 30 min

, With a 2 µL micropipette, add 2 µL of 5x RT-mix, 0.5 µL of 20x DDT, 0.5 µL RNase inhibitor, and 0.5 µL RTase, and incubate overnight at 37°C

, On ice add water (q.s., 80 µL), 10 µL of 10X buffer

, Note: Omitting the 0.5 µL of total RNA and replacing it with 0.5 µL RNase-free water will ensure that the internal solution is free of RNA and/ or DNA contaminations

, Acute Slice Preparation Note: This protocol describes the slicing procedure for juvenile (i.e., less than 28 postnatal days) male and female mice

, Prepare 2 L of aCSF containing (in mM) 125 NaCl, 2.5 KCl, 2 CaCl 2 , 1 MgCl 2 , 1.25 NaH 2 PO 4 , 26 NaHCO 3 , 10 Glucose, and 15 Sucrose. To reduce glutamatergic activity during slice preparation, prepare a cutting solution by adding 1 mM of kynurenic acid

, Before slicing, prepare a dissection kit containing surgical scissors, fine iris scissors, two spatulas, forceps, a disc of paper filter, and cyanoacrylate glue

, Use ice-cold cutting solution saturated with O 2 /CO 2 (95%/5%) and cool down the cutting chamber at -20 °C

, Anesthetize the mouse with a small paper towel soaked with isoflurane. After ~2 min, make sure that the mouse is under deep anesthesia by verifying the absence of response to paw pinch

, Quickly decapitate the mouse. Remove the scalp and open the skull. Extract the brain carefully and place it into a small beaker filled with ice cold (~4 °C) cutting solution oxygenated with O 2 /CO 2

, Remove the cutting chamber from -20 °C conditions and remove moisture with a paper towel

, Carefully dissect the brain to isolate the region of interest, glue it on the cutting chamber, and add ice-cold cutting solution oxygenated with O 2 /CO 2

, Transfer them at room temperature in a resting chamber filled with oxygenated cutting solution and allow them to recover for at least 0, vol.5

, Single Cell RT-PCR after Patch-clamp Recording 1. Clean the perfusion system regularly with ~100 mL of 30% H 2 O 2 solution and rinse extensively with ~500 mL of distilled water to avoid bacteria growth, as it is an overlooked source of RNase contamination

, Chlorinate the filament with a patch pipette filled with concentrated bleach every harvesting day. Do not use a micropipette to fill the patch pipette but rather a 20 µL long, fine, flexible tip attached to a 1 mL syringe. Then, rinse it extensively with RNase free water and dry it with a gas duster

, Prepare a small box of ice containing 5x RT-mix and 20x DTT aliquots. Store the RTase and RNase inhibitor aliquots at -20 °C in a benchtop cooler

, -2 µm open tip diameter, 3-5 M?) from borosilicate glass while wearing gloves and fill one of them with 8 ?L of internal solution, Pull patch pipettes

, Place the pipette in the pipette holder while wearing new gloves and not touching the filament with fingers

, Approach the patch pipette with a positive pressure and perform whole-cell recording to characterize the targeted cell

, At the end of the recording, prepare a 500 µL PCR tube filled with 2 µL of 5x RT Mix and 0.5 µL of 20x DTT, spin it, and store it on ice

. Copyright, Journal of Visualized Experiments, vol.136, p.12, 2018.

, Avoid as much as possible collecting the nucleus if some intron-less genes are considered. In such a case always include a set of primers aimed at amplifying gDNA to probe for genomic contamination

, Withdraw the pipette gently to form an outside-out patch to limit contamination by the extracellular debris (Figure 4) and to favor the closure of the cell membrane for subsequent histochemical analysis

, Keep in mind that knobs, micromanipulators, computer keyboard, or computer mouse are potential sources of RNase contamination

, Attach the pipette to the expeller and expel its content into the PCR tube by applying a positive pressure

, Break the tip of the pipette into the PCR tube to help the collection of its content

, Briefly centrifuge the tube, add 0.5 µL of RNase inhibitor and 0.5 µL of RTase, mix gently, centrifuge again, and incubate overnight at 37 °C. 17. Spin the tube and store it at -80 °C for up to several months until PCR analysis

, Perform the first amplification step directly in the tube containing the ~10 µL of RT products by adding water (q.s., 80 µL), 10 µL of 10x buffer

, Histochemical Staining of the Recorded Cell

, Following the electrophysiological recordings, maintain the slice for 20 min in oxygenated aCSF to allow the diffusion of biocytin in the axonal and dendritic tree

. M-phosphate and . Buffer,

, Wash the slices 4 times, 5 min each, with 1 mL Phosphate Buffered Saline (PBS)

, In the same well, permeabilize and saturate the slice during 1 h at room temperature with 1 mL of PBS supplemented with 0.25% Triton X-100 and 0

G. A. Ascoli, Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat.Rev.Neurosci, vol.9, issue.7, pp.557-568, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

J. Defelipe, New insights into the classification and nomenclature of cortical GABAergic interneurons, Nat.Rev.Neurosci, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01541368

B. Tasic, Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat.Neurosci, 2016.

A. Zeisel, Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, 2015.

B. Cauli, Classification of fusiform neocortical interneurons based on unsupervised clustering, Proc.Natl.Acad.Sci.U.S.A, vol.97, issue.11, pp.6144-6149, 2000.

B. Cauli, Molecular and physiological diversity of cortical nonpyramidal cells, J.Neurosci, vol.17, issue.10, pp.3894-3906, 1997.

I. Férézou, 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons, J. Neurosci, vol.22, issue.17, pp.7389-7397, 2002.

B. Cauli, Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways, J.Neurosci, vol.24, issue.41, pp.8940-8949, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00086334

Y. Wang, A. Gupta, M. Toledo-rodriguez, C. Z. Wu, and H. Markram, Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex, Cereb.Cortex, vol.12, issue.4, pp.395-410, 2002.

Y. Wang, Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat, J.Physiol, vol.561, pp.65-90, 2004.

A. Karagiannis, Classification of NPY-expressing neocortical interneurons, J.Neurosci, vol.29, issue.11, pp.3642-3659, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00369558

D. Battaglia, A. Karagiannis, T. Gallopin, H. W. Gutch, and B. Cauli, Beyond the frontiers of neuronal types, Front Neural Circuits, vol.7, p.13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537215

M. Toledo-rodriguez, Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex, Cereb.Cortex, vol.14, issue.12, pp.1310-1327, 2004.

M. Toledo-rodriguez, P. Goodman, M. Illic, C. Wu, and H. Markram, Neuropeptide and calcium binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat, J.Physiol, 2005.

C. Lecrux, Pyramidal neurons are "neurogenic hubs" in the neurovascular coupling response to whisker stimulation, J.Neurosci, vol.31, issue.27, pp.9836-9847, 2011.

A. Lacroix, COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex, J.Neurosci, vol.35, issue.34, pp.11791-11810, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01541357

K. Matthias, Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus, J.Neurosci, vol.23, issue.5, pp.1750-1758, 2003.

A. Rancillac, Glutamatergic control of microvascular tone by distinct gaba neurons in the cerebellum, J.Neurosci, vol.26, issue.26, pp.6997-7006, 2006.

T. Miki, ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis, Nat.Neurosci, vol.4, issue.5, pp.507-512, 2001.

B. Liss, R. Bruns, and J. Roeper, Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons, EMBO J, vol.18, issue.4, pp.833-846, 1999.

T. Gallopin, Identification of sleep-promoting neurons in vitro, Nature, vol.404, issue.6781, pp.992-995, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02347492

T. Gallopin, The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus, Neuroscience, vol.134, issue.4, pp.1377-1390, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02348562

S. P. Fernandez, Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain, Brain Struct.Funct, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01541354

J. T. Porter, Selective excitation of subtypes of neocortical interneurons by nicotinic receptors, J.Neurosci, vol.19, issue.13, pp.5228-5235, 1999.

E. L. Hill, Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons, J.Neurophysiol, vol.97, issue.4, pp.2580-2589, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00134867

I. Férézou, Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons, Cereb.Cortex, vol.17, issue.8, pp.1948-1957, 2007.

E. Hu, VIP, CRF, and PACAP act at distinct receptors to elicit different cAMP/PKA dynamics in the neocortex, Cereb.Cortex, vol.21, issue.3, pp.708-718, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00516639

M. Louessard, Tissue plasminogen activator expression is restricted to subsets of excitatory pyramidal glutamatergic neurons, Mol.Neurobiol, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01541351

G. J. Stuart, H. U. Dodt, and B. Sakmann, Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy, Pflugers Arch, vol.423, issue.5-6, pp.511-519, 1993.

C. R. Cadwell, Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat.Biotechnol, vol.34, issue.2, pp.199-203, 2016.

J. Fuzik, Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes, Nat.Biotechnol, vol.34, issue.2, pp.175-183, 2016.

N. A. O'leary, Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res, vol.44, issue.D1, pp.733-745, 2016.

G. D. Schuler, S. F. Altschul, and D. J. Lipman, A workbench for multiple alignment construction and analysis, Proteins, vol.9, issue.3, pp.180-190, 1991.

D. Ruano, B. Lambolez, J. Rossier, A. V. Paternain, and J. Lerma, Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing, Neuron, vol.14, issue.5, pp.1009-1017, 1995.

J. T. Porter, Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex, Eur.J.Neurosci, vol.10, issue.12, pp.3617-3628, 1998.

D. Ruano, D. Perrais, J. Rossier, and N. Ropert, Expression of GABA(A) receptor subunit mRNAs by layer V pyramidal cells of the rat primary visual cortex, Eur.J.Neurosci, vol.9, issue.4, pp.857-862, 1997.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J.Mol.Biol, vol.215, issue.3, pp.403-410, 1990.

. Copyright, Journal of Visualized Experiments, vol.136, p.12, 2018.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, issue.1, pp.156-165, 1987.

P. Y. Lee, J. Costumbrado, C. Y. Hsu, and Y. H. Kim, Agarose gel electrophoresis for the separation of DNA fragments, J.Vis.Exp, vol.62, 2012.

B. Liss, K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons, Nat.Neurosci, vol.8, issue.12, pp.1742-1751, 2005.

B. Lambolez, E. Audinat, P. Bochet, F. Crepel, and J. Rossier, AMPA receptor subunits expressed by single Purkinje cells, Neuron, vol.9, issue.2, pp.247-258, 1992.

T. Gallopin, H. Geoffroy, J. Rossier, and B. Lambolez, Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex, Cereb.Cortex, vol.16, issue.10, pp.1440-1452, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086902

M. O. Cunningham, Neuronal metabolism governs cortical network response state, Proc.Natl.Acad.Sci.U.S.A, vol.103, issue.14, pp.5597-5601, 2006.

K. Tsuzuki, B. Lambolez, J. Rossier, and S. Ozawa, Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons, J.Neurochem, vol.77, issue.6, pp.1650-1659, 2001.

D. A. Mccormick, B. W. Connors, J. W. Lighthall, and D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, Journal of Neurophysiology, vol.54, issue.4, pp.782-806, 1985.

S. Andjelic, Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons, J.Neurophysiol, vol.101, issue.2, pp.641-654, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00366743

B. Cauli and B. Lambolez, Unravelling Single Cell Genomics: Micro and, pp.81-92, 2010.

N. Bontoux, Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling, Lab Chip, vol.8, issue.3, pp.443-450, 2008.

L. N. Sellner, R. J. Coelen, and J. S. Mackenzie, Reverse transcriptase inhibits Taq polymerase activity, Nucleic Acids Res, vol.20, issue.7, pp.1487-1490, 1992.

Q. Perrenoud, J. Rossier, H. Geoffroy, T. Vitalis, and T. Gallopin, Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex, Cereb.Cortex, 2012.

L. Tricoire, Common origins of hippocampal ivy and nitric oxide synthase expressing neurogliaform cells, J.Neurosci, vol.30, issue.6, pp.2165-2176, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00465517

C. A. Cea-del-rio, M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes, J.Neurosci, vol.30, issue.17, pp.6011-6024, 2010.

L. Tricoire, A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity, J.Neurosci, vol.31, issue.30, pp.10948-10970, 2011.

O. Franz, B. Liss, A. Neu, and J. Roeper, Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarizationactivated cyclic nucleotide-gated ion channels (Ih) in central neurons, Eur.J.Neurosci, vol.12, issue.8, pp.2685-2693, 2000.

A. Szabo, Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types, J.Neurosci, vol.32, pp.6511-6516, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01541372

K. Hodne and F. A. Weltzien, Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities, Int.J.Mol.Sci, vol.16, issue.11, pp.26832-26849, 2015.

H. H. Li, Amplification and analysis of DNA sequences in single human sperm and diploid cells, Nature, vol.335, issue.6189, pp.414-417, 1988.

P. Bochet, Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel, Neuron, vol.12, issue.2, pp.383-388, 1994.

E. Audinat, B. Lambolez, J. Rossier, and F. Crepel, Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells, Eur.J.Neurosci, vol.6, issue.12, pp.1792-1800, 1994.

P. Jonas, C. Racca, B. Sakmann, P. H. Seeburg, and H. Monyer, Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression, Neuron, vol.12, issue.6, pp.1281-1289, 1994.

J. R. Geiger, Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS, Neuron, vol.15, issue.1, pp.193-204, 1995.

A. C. Flint, U. S. Maisch, J. H. Weishaupt, A. R. Kriegstein, and H. Monyer, NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex, J.Neurosci, vol.17, issue.7, pp.2469-2476, 1997.

M. C. Angulo, B. Lambolez, E. Audinat, S. Hestrin, and J. Rossier, Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells, J.Neurosci, vol.17, issue.17, pp.6685-6696, 1997.

B. Lambolez, N. Ropert, D. Perrais, J. Rossier, and S. Hestrin, Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons, Proc.Natl.Acad.Sci.U.S.A, vol.93, issue.5, pp.1797-1802, 1996.

B. Liss, Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription, EMBO J, vol.20, issue.20, pp.5715-5724, 2001.

Y. Aponte, C. C. Lien, E. Reisinger, and P. Jonas, Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus, J.Physiol, vol.574, pp.229-243, 2006.