, 2.2. Overview of the data and their sources

, LEGUME PRODUCTION AND USE IN FEED: ANALYSIS OF LEVERS TO IMPROVE PROTEIN SELF-SUFFICIENCY FROM FORESIGHT

, 133 Definition of study boundaries and representation of the system

. .. , Definition of final states and hypothesis through a participatory approach, p.135

. .. Design-of-scenarios,

, Overview of the SYNERGY model used

S. .. Coupling,

, From scenarios to levers: modeling choices

, Results of the modeling framework

). .. Le_su, Coupled support for legumes

). .. Le_gmo, Increased demand for GMO-free animal products, p.142

. .. Appendices,

A. Appendix, The role of agriculture in the status of the nine planetary boundaries

B. Appendix, Livestock density in EU and modelling of agriculture N emissions to freshwater, p.173

C. Appendix, Evolution of harvested grain legume areas (i.e., pulses) in the EU

D. Appendix, PMP: from the standard approach to the Röhm and Dabbert

E. Appendix, Description of agricultural productions in western France

F. Appendix, Extracts from SYNERGY program coded under

G. Appendix, Description of technical coefficients and data sources of the SYNERGY model, p.189

H. Appendix, Executive summary of the TERUnic foresight

S. Gaudino, P. Reidsma, and A. Kanellopoulos, Integrated assessment of the EU's Greening reform and feed self-sufficiency scenarios on dairy farms in Piemonte, Italy. Agriculture, vol.8, p.137, 2018.

M. Geissdoerfer, P. Savaget, N. Bocken, and E. J. Hultink, The circular economy -a new sustainability paradigm, Journal of Cleaner Production, vol.143, pp.757-768, 2017.

P. Ghisellini, C. Cialani, and S. Ulgiati, A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems, Journal of Cleaner Production, vol.114, pp.11-32, 2016.

A. Gocht, P. Ciaian, and M. Bielza, EU-wide economic and environmental impacts of CAP greening with high spatial and farm-type detail, Journal of Agricultural Economics, vol.68, pp.651-681, 2017.

A. Gohin, F. Bareille, and S. Cariou, Les emplois liés aux filières de l'élevage en Bretagne : état des lieux quantitatif et qualitatif, 2016.

K. Happe, N. J. Hutchings, T. Dalgaard, and K. Kellerman, Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation, Agricultural Systems, vol.104, pp.281-291, 2011.

J. Helming, T. Kuhlman, V. Linderhof, and D. Oudendag, Impacts of legumes-related policy scenarios, Legume Future, 2014.

J. Helming and R. S. , Modelling the economic consequences of the EU Water Framework Directive for Dutch agriculture, Journal of Environmental Management, vol.91, pp.114-123, 2009.

D. A. Hennessy, On monoculture and the structure of crop rotations, American Journal of Agricultural Economics, vol.88, pp.900-914, 2006.

F. Jacquet, J. Butault, and L. Guichard, An economic analysis of the possibility of reducing pesticides in French field crops, Ecological Economics, vol.70, pp.1638-1648, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01018979

S. Janssen and M. K. Van-ittersum, Assessing farm innovations and responses to policies: A review of bio-economic farm models, Agricultural Systems, vol.94, pp.622-636, 2007.

E. S. Jensen, M. B. Peoples, and R. M. Boddey, Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review, Agronomy for Sustainable Development, vol.32, pp.329-364, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00930531

R. Jussiau, L. Montméas, and J. Parot, L'élevage en France: 10 000 ans d'histoire. Educagri Editions, 1999.

M. Moraine, M. Duru, and P. Nicholas, Farming system design for innovative croplivestock integration in Europe, Animal, vol.8, pp.1204-1217, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209211

,

B. Moss, Water pollution by agriculture, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.363, pp.659-666, 2008.

R. Naylor, H. Steinfeld, and W. Falcon, Losing the links between livestock and land, Science, vol.310, pp.1621-1622, 2005.

T. Nesme, K. Senthilkumar, A. Mollier, and S. Pellerin, Effects of crop and livestock segregation on phosphorus resource use: A systematic, regional analysis, European Journal of Agronomy, vol.71, pp.88-95, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02635786

F. Nilsson, K. P. Hasund, I. Gren, and Y. Surry, Multifunctional agriculture -what does the economic literature tell us?, International Review of Environmental and Resource Economics, vol.2, pp.281-319, 2008.

. Oecd, Managing risk in agriculture: a holistic approach, 2009.

. Oecd, Multifunctionality: towards an analytical framework, 2001.

J. C. Panzar and R. D. Willig, Economies of scope, The American Economic Review, vol.71, pp.268-272, 1981.

P. Peltonen-sainio and J. K. Niemi, Protein crop production at the northern margin of farming: to boost or not to boost, Agricultural and Food science, vol.21, pp.370-383, 2012.

F. Pendrill, U. M. Persson, and J. Godar, Agricultural and forestry trade drives large share of tropical deforestation emissions, Global Environmental Change, vol.56, pp.1-10, 2019.

M. B. Peoples, J. Brockwell, and D. F. Herridge, The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems, Symbiosis, vol.48, pp.1-17, 2009.

C. Perrot, D. Caillaud, and H. Chambaut, Économies d'échelle et économies de gamme en production laitière. Analyse technicoéconomique et environnementale des exploitations de polyculture-élevage françaises, Rencontres autour des recherches sur les ruminants, pp.33-36, 2012.

J. Peyraud, P. Cellier, and F. Aarts, Nitrogen flows and livestock farming: lessons and perspectives, Advances in Animal Biosciences, vol.5, pp.68-71, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02600720

,

J. Peyraud, M. Taboada, and L. Delaby, Integrated crop and livestock systems in Western Europe and South America: A review, European Journal of Agronomy, vol.57, pp.31-42, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210574

L. Jouy and A. Wissocq, Observatoire des pratiques : 34 types de successions culturales en France, Perspectives agricoles, vol.379, p.3, 2011.

B. Kamm, P. Schönicke, and C. Hille, Green biorefinery -Industrial implementation, Food Chemistry, vol.197, pp.1341-1345, 2016.

. Ktbl, Kuratorium für Technik und Bauwesen in der Landwirtschaft, Betriebsplanung Landwirtschaft: Daten für die Betriebsplanung in der Landwirtschaft, vol.15, 2014.

T. Kuhn and D. Schäfer, A farm typology for North Rhine-Westphalia to assess agrienvironmental policies. University of Bonn, Institute for Food and Resource, Economics Discussion, vol.1, p.50, 2018.

T. Kuhn, D. Schäfer, K. Holm-müller, and W. Britz, On-farm compliance costs with the EU-Nitrates Directive: A modelling approach for specialized livestock production in northwest Germany, Agricultural Systems, vol.173, pp.233-243, 2019.

,

B. Küpker, S. Huttel, W. Kleinhanss, and F. Offermann, Assessing impacts of CAP reform in France and Germany, German Journal of Agricultural Economics, vol.55, pp.227-237, 2006.

L. Meunier, , vol.4, 2018.

N. Lehmann, R. Finger, and T. Klein, Adapting crop management practices to climate change: Modeling optimal solutions at the field scale, Agricultural Systems, vol.117, pp.55-65, 2013.

B. Lengers, W. Britz, and K. Holm-müller, Comparison of GHG-Emission Indicators for Dairy Farms with Respect to Induced Abatement Costs, Accuracy, and Feasibility. Applied Economic Perspectives and Policy, vol.35, pp.451-475, 2013.

B. Lengers, W. Britz, and K. Holm-müller, What Drives Marginal Abatement Costs of Greenhouse Gases on Dairy Farms? A Meta-modelling Approach, Journal of Agricultural Economics, vol.65, pp.579-599, 2014.

P. Leterme, T. Nesme, J. Regan, and H. Korevaar, Environmental benefits of farm-and districtscale crop-livestock integration: A European perspective, pp.335-349, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02083266

K. Louhichi, P. Ciaian, and M. Espinosa, Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP), European Review of Agricultural Economics, vol.45, pp.205-238, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02627945

M. Magrini, A. M. Cholez, and C. , Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lockin in the French agrifood system, Ecological Economics, vol.126, pp.152-162, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635664

M. Moraine, J. Grimaldi, and C. Murgue, Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level, Agricultural Systems, vol.147, pp.87-97, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637593

T. Nemecek, J. Von-richthofen, and G. Dubois, Environmental impacts of introducing grain legumes into European crop rotations, European Journal of Agronomy, vol.28, pp.380-393, 2008.

M. Nilsson, T. Zamparutti, and J. E. Petersen, Understanding Policy Coherence: Analytical Framework and Examples of Sector-Environment Policy Interactions in the EU, Environmental Policy and Governance, vol.22, pp.395-423, 2012.

J. Peerlings and N. Polman, Agri-environmental contracting of Dutch dairy farms: the role of manure policies and the occurrence of lock-in, European Review of Agricultural Economics, vol.35, pp.167-191, 2008.

E. Pelzer, M. Modotti, R. Ballot, and M. Jeuffroy, Motivations and observed benefits and limits from farmers growing legumes. European Conference on Crop Diversification, 2019.

F. Pendrill, U. M. Persson, and J. Godar, Agricultural and forestry trade drives large share of tropical deforestation emissions, Global Environmental Change, vol.56, pp.1-10, 2019.

M. B. Peoples, J. Brockwell, and D. F. Herridge, The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems, Symbiosis, vol.48, pp.1-17, 2009.

S. Preissel, M. Reckling, N. Schläfke, and P. Zander, Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review, Field Crops Research, vol.175, pp.64-79, 2015.

M. Reckling, T. F. Döring, and G. Bergkvist, Grain legume yields are as stable as other spring crops in long-term experiments across northern, Europe. Agronomy for Sustainable Development, vol.38, p.63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02344192

M. Reckling, J. Hecker, and G. Bergkvist, A cropping system assessment framework-Evaluating effects of introducing legumes into crop rotations, European Journal of Agronomy, vol.76, pp.186-197, 2016.

P. Reidsma, S. Janssen, J. Jansen, and M. K. Van-ittersum, On the development and use of farm models for policy impact assessment in the European Union -A review, Agricultural Systems, vol.159, pp.111-125, 2018.

W. Richner, H. R. Oberholzer, F. Knuchel, and R. , Modell zur Beurteilung der Nitratauswaschung in Ökobilanzen -SALCA-NO3, Agroscope Science, vol.5, pp.1-28, 2014.

Y. Sasu-boakye, C. Cederberg, and S. Wirsenius, Localising livestock protein feed production and the impact on land use and greenhouse gas emissions, Animal, vol.8, pp.1339-1348, 2014.

N. Schläfke, P. Zander, and M. Reckling, Evaluation of legume-supported agriculture and policies at farm level, Legume Futures, 2014.

S. E. Bauer, K. Tsigaridis, and R. Miller, Significant atmospheric aerosol pollution caused by world food cultivation, Geophysical Research Letters, vol.43, pp.5394-5400, 2016.

R. Bobbink, K. Hicks, and J. Galloway, Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecological Applications, vol.20, pp.30-59, 2010.

T. Böcker, W. Britz, and R. Finger, Modelling the effects of a glyphosate ban on weed management in silage maize production, Ecological Economics, vol.145, pp.182-193, 2018.

W. Britz, M. Van-ittersum, A. O. Lansink, and T. Heckelei, Tools for integrated assessment in agriculture. State of the art and challenges, Bio-based and Applied Economics, vol.1, pp.125-150, 2012.

A. Bues, S. Preissel, and M. Reckling, The environmental role of protein crops in the new Common Agricultural Policy, European Parliament, 2013.

C. Cernay, T. Ben-ari, and E. Pelzer, Estimating variability in grain legume yields across Europe and the, Americas. Scientific Reports, vol.5, p.11171, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01241057

P. Chopin, T. Doré, L. Guindé, and J. Blazy, MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics, Agricultural Systems, vol.140, pp.26-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216256

, Calcul de la fertilisation azotée : guide méthodologique pour l'établissement des prescriptions locales, COMIFER, 2011.

S. Delmotte, S. Lopez-ridaura, J. Barbier, and J. Wery, Prospective and participatory integrated assessment of agricultural systems from farm to regional scales: Comparison of three modeling approaches, Journal of Environmental Management, vol.129, pp.493-502, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506259

, Proteins balance sheet 2011-12 to 2017-18, 2017.

F. Figge and A. S. Thorpe, The symbiotic rebound effect in the circular economy, Ecological Economics, vol.163, pp.61-69, 2019.

B. H. Frahan, J. Buysse, and P. Polomé, Positive mathematical programming for agricultural and environmental policy analysis: review and practice, Handbook of operations research in natural resources, pp.129-154, 2007.

, Statistique agricole annuelle, 2013.

, Accessed, vol.12, 2018.

, Recencement agricole, Agreste, vol.12, 2010.

F. Gale, J. Hansen, and M. Jewison, China's growing demand for agricultural imports, 2014.

J. N. Galloway, A. R. Townsend, and J. W. Erisman, Transformation of the nitrogen cycle: recent trends, questions, and potential solutions, Science, vol.320, pp.889-892, 2008.

A. Gocht, P. Ciaian, and M. Bielza, EU-wide economic and environmental impacts of CAP greening with high spatial and farm-type detail, Journal of Agricultural Economics, vol.68, pp.651-681, 2017.

O. Godinot, M. Carof, F. Vertès, and P. Leterme, SyNE: An improved indicator to assess nitrogen efficiency of farming systems, Agricultural Systems, vol.127, pp.41-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209218

K. Happe, N. J. Hutchings, T. Dalgaard, and K. Kellerman, Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation, Agricultural Systems, vol.104, pp.281-291, 2011.

T. Heckelei and W. Britz, Modelling agricultural policies: state of the art and new challenges. Arfini, F., 89th EAAE Seminar, pp.48-73, 2005.

J. Helming and R. S. , Modelling the economic consequences of the EU Water Framework Directive for Dutch agriculture, Journal of Environmental Management, vol.91, pp.114-123, 2009.

R. E. Howitt, Positive mathematical programming, American Journal of Agricultural Economics, vol.77, pp.329-342, 1995.

. Idele--inosys, Cas-types bovins lait, 2018.

, Accessed, vol.20, 2018.

, IFIP, 2013.

, INRA, 2003.

S. Janssen and M. K. Van-ittersum, Assessing farm innovations and responses to policies: A review of bio-economic farm models, Agricultural Systems, vol.94, pp.622-636, 2007.

J. Jouan, M. Carof, and A. Ridier, Upscaling bio-economic model: economic and environmental assessment of introducing legume and protein rich crops in farming systems of Western France, Sustainable agriculture, 15 th EAAE Congress, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668193

M. Carof and O. Godinot, A free online tool to calculate three nitrogen-related indicators for farming systems, Agricultural Systems, vol.162, pp.28-33, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826823

,

, Calcul de la fertilisation azotée : guide méthodologique pour l'établissement des prescriptions locales, COMIFER, 2011.

D. Bretagne, Mémento de la statistique agricole. Direction régionale de l'Alimentation, de l'Agriculture et de la Forêt, 2019.

. Draaf-pays-de-la-loire, Mémento de la statistique agricole. Direction régionale de l'Alimentation, de l'Agriculture et de la Forêt, Agreste, 2018.

, Accessed 2, 2019.

, Recencement agricole, Agreste, vol.12, 2010.

O. Godinot, M. Carof, F. Vertès, and P. Leterme, SyNE: An improved indicator to assess nitrogen efficiency of farming systems, Agricultural Systems, vol.127, pp.41-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209218

. Idele, Repères techniques et économiques en élevage laitier 2016 -Pays de la Loire, vol.7, 2016.

, IFIP, 2003.

J. Jouan, A. Ridier, and M. Carof, SYNERGY: a regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability, In review in Ecological Economics
URL : https://hal.archives-ouvertes.fr/hal-02593635

L. Meunier, , vol.4, 2018.

P. Aigrain, B. Bois, and F. Brugiere, L'utilisation par la viticulture française d'un exercice de prospective pour l'élaboration d'une stratégie d'adaptation au changement climatique, BIO Web Conf, vol.12, 2019.

A. Boecker, J. Hartl, and G. Nocella, How different are GM food accepters and rejecters really? A means-end chains application to yogurt in Germany, Food Quality and Preference, vol.19, pp.383-394, 2008.

C. Caraes, Prospective sur l'autonomie protéique dans les filières animales de l'Ouest à l'horizon 2040, ISA Lille, 2018.

J. Chavas, On the economics of agricultural production, Australian Journal of Agricultural and Resource Economics, vol.52, pp.365-380, 2008.

, Accessed, vol.5, 2019.

. Eurostat, Crop statistics, 2000.

. Faostat, Crops and livestock products, 2019.

F. Avenir, Coûts réels des filières non-OGM en nutrition animale et leurs incidences sur les coûts des produits animaux, Feedsim Avenir, 2019.

. Franceagrimer, Prospective filière française de la pêche maritime, 2018.

, A glossary of terms commonly used in futures studies, Forward Thinking Platform, 2014.

F. Gale, J. Hansen, and M. Jewison, China's growing demand for agricultural imports, 2014.

T. Gaudin, , 2005.

S. Gaudino, P. Reidsma, and A. Kanellopoulos, Integrated assessment of the EU's Greening reform and feed self-sufficiency scenarios on dairy farms in Piemonte, Italy. Agriculture, vol.8, p.137, 2018.

O. Godinot, M. Carof, F. Vertès, and P. Leterme, SyNE: An improved indicator to assess nitrogen efficiency of farming systems, Agricultural Systems, vol.127, pp.41-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209218

A. Gohin, Quelles conséquences d'une suppression de la politique agricole commune après, Revue d'economie politique, vol.119, pp.633-651, 2009.

A. Gohin, F. Bareille, and S. Cariou, Les emplois liés aux filières de l'élevage en Bretagne : état des lieux quantitatif et qualitatif, 2016.

A. Gohin, A. Carpentier, O. P. Koutchade, and F. Bareille, Amélioration de la représentation de l'offre agricole dans les modèles macroéconomiques, 2015.

J. A. Gómez-limón, A. Gómez-ramos, S. Fernandez, and G. , Foresight analysis of agricultural sector at regional level, Futures, vol.41, pp.313-324, 2009.

,

J. Helming, T. Kuhlman, V. Linderhof, and D. Oudendag, Economic drivers of legume production: approached via opportunity costs and transaction Costs, Executive Summary. ISAAA, vol.54, p.705, 2014.

J. Jouan, A. Ridier, and M. Carof, SYNERGY: a regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability, In review in Ecological Economics
URL : https://hal.archives-ouvertes.fr/hal-02593635

H. Jouvenel, Invitation à la prospective (An invitation to foresight), Futuribles, 2004.

R. Keeney and T. Hertel, GTAP-AGR : A Framework for Assessing the Implications of Multilateral Changes in Agricultural Policies, GTAP Technical Papers, 2005.

, Land Use and Food Security in 2050: a Narrow Road, Editions Quae, 2018.

M. Magrini, A. M. Cholez, and C. , Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lockin in the French agrifood system, Ecological Economics, vol.126, pp.152-162, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635664

J. Meynard, F. Charrier, and M. Fares, Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development, vol.38, p.54, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02306698

F. Pendrill, U. M. Persson, and J. Godar, Agricultural and forestry trade drives large share of tropical deforestation emissions, Global Environmental Change, vol.56, pp.1-10, 2019.

X. Poux and P. Aubert, An agroecological Europe in 2050: multifunctional agriculture for healthy eating. Findings from the Ten Years For Agroecology (TYFA) modelling exercise. Iddri-AScA, 2019.

S. Preissel, M. Reckling, N. Schläfke, and P. Zander, Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review, Field Crops Research, vol.175, pp.64-79, 2015.

M. Sebillotte, P. Aigrain, H. Hannin, and C. Sebillotte, Prospective Vignes et Vins. Scénarios et défis pour la recherche et les acteurs. INRA, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02833402

M. Sebillotte and C. Sebillotte, Foresight in mission-oriented research: The SYSPAHMM foresight method (SYStem, Processes, Clusters of Hypotheses, Micro-and Macroscenarios), Futures, vol.42, pp.15-25, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662867

T. Inovia, Guide de culture, 2017.

P. Tillie and E. Rodríguez-cerezo, Markets for non-genetically modified, identity-preserved soybean in the EU, Joint Research Centre, 2015.

T. Uthayakumar, H. Lousteau, C. Couturier, L. P. St-gervais, F. Van-vliet et al., The future of rural Europe: Lessons from a multi-scale modeling approaches, Pulse fiction, pour une transition agricole et alimentaire durable. World Wildlife Fund (WWF), 2012.

. Torralba, Similarly, exchanges of manure can benefit from progress in digital tools (e.g., decision-making services, Ridier and Képhaliacos, 2006.

. France, It can simulate farm-to-farm exchanges and considers specific regional characteristics (e.g., rotations, rations, soil and climate conditions)

. Louhichi, Indeed, the genericity and extension of BEMs is a key issue to improve research outcomes. Models such as FSSIM and CAPRI have been widely used and can be adapted to a variety of issues by adding specific modules, Gocht and Britz, 2010.

. Gaudino, These models benefit from dedicated research teams, which saves time and increases robustness, 2008.

A. Presse, , 2018.

. Arvalis, Calculette d'échange Paille -fumier, 2019.

C. Bouchard, M. Valantin-morison, and G. Grandeau, Itinéraires techniques intégrés du colza d'hiver: comment concilier environnement et économie. Courrier de l, 2011.

D. Bryngelsson, S. Wirsenius, F. Hedenus, and U. Sonesson, How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture, Food Policy, vol.59, pp.152-164, 2016.

. Céréopa, La protéine dans tous ses états : rapport sur l'indépendance protéique de l'élevage français. Centre d'Etude et de Recherche sur l'Economie et l'Organisation des Productions Animales, 2017.

C. Cernay, T. Ben-ari, and E. Pelzer, Estimating variability in grain legume yields across Europe and the, Americas. Scientific Reports, vol.5, p.11171, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01241057

R. Cortignani and S. Severini, Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming, Agricultural Water Management, vol.96, pp.1785-1791, 2009.

G. D'alisa, F. Demaria, and G. Kallis, Degrowth: A vocabulary for a new era, Routledge, 2014.

V. Forget, J. Depeyrot, and M. Mahé, Actif'Agri. Transformations des emplois et des activités en agriculture. Centre d'études et de prospective, Ministère de l'agriculture et de l'alimentation, 2019.

F. Stratégie, Faire de la politique agricole commune un levier de la transition agroécologique. France Stratégie, 2015.

, Pratiques d'élevage 2015 (données provisoires) -Traitement Draaf de Bretagne et des Pays de la Loire -SRISE à partir de la typologie du programme TERUnic, Agreste, 2018.

S. Gaudino, P. Reidsma, and A. Kanellopoulos, Integrated assessment of the EU's Greening reform and feed self-sufficiency scenarios on dairy farms in Piemonte, Italy. Agriculture, vol.8, p.137, 2018.

A. Gocht and W. Britz, EU-wide farm type supply models in CAPRI-How to consistently disaggregate sector models into farm type models, Journal of Policy Modeling, vol.33, pp.146-167, 2011.

S. Goddek, B. Delaide, and U. Mankasingh, Challenges of Sustainable and Commercial Aquaponics. Sustainability, vol.7, pp.4199-4224, 2015.

T. Gomiero, Agriculture and degrowth: State of the art and assessment of organic and biotech-based agriculture from a degrowth perspective, Journal of Cleaner Production, vol.197, pp.1823-1839, 2018.

F. Hedenus, S. Wirsenius, and D. Johansson, The importance of reduced meat and dairy consumption for meeting stringent climate change targets, Climatic Change, vol.124, pp.79-91, 2014.

L. Monde, Le départ en retraite d'un agriculteur sur trois d'ici trois ans va bouleverser le paysage agricole, 2019.

S. Lehuger, B. Gabrielle, and N. Gagnaire, Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed, Journal of Cleaner Production, vol.17, pp.616-624, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00087583

A. Leip, G. Billen, and J. Garnier, Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity, Environ Res Lett, vol.10, p.115004, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01261336

T. Lienhardt, K. Black, and S. Saget, Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe's protein deficit and mitigate climate change, Environment International, vol.130, 2019.

K. Louhichi, A. Kanellopoulos, and S. Janssen, FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies, Agricultural Systems, vol.103, pp.585-597, 2010.

,

J. Meynard, A. Messéan, and A. Charlier, Crop diversification: obstacles and levers. Study of farms and supply chains, INRA, 2013.

E. Midler, J. Depeyrot, and C. Detang-dessendre, Performance environnementale des exploitations agricoles et emploi. Centre d'études et de prospective, Ministère de l'agriculture et de l'alimentation, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02282322

C. Mitcham, The Oxford Handbook of Interdisciplinarity, 2010.

T. Parrique, J. Barth, and F. Briens, Decoupling debunked -Evidence and arguments against green growth as a sole strategy for sustainability, 2019.

J. Pelikan, W. Britz, and T. W. Hertel, Green light for green agricultural policies? An analysis at regional and global scales, Journal of Agricultural Economics, vol.66, pp.1-19, 2015.

P. Dominguez, I. Fellmann, T. Weiss, and F. , An economic assessment of GHG mitigation policy options for EU agriculture, Joint Research Centre, 2016.

D. Phillips, Hundreds of new pesticides approved in Brazil under Bolsonaro. The Guardian Raworth K (2017) Doughnut economics: seven ways to think like a 21st-century economist, 2019.

A. Ridier and C. Képhaliacos, Modélisation de la diversification des exploitations agricoles. Application aux élevages laitiers combinés à des vergers en agroforesterie, Ingénieries, vol.47, p.61, 2006.

O. Röhm and S. Dabbert, Integrating agri-environmental programs into regional production models: an extension of positive mathematical programming, American Journal of Agricultural Economics, vol.85, pp.254-265, 2003.

A. Schneider and C. Huyghe, Les légumineuses pour des systèmes agricoles et alimentaires durables. Editions Quae, 2015.

T. Univia, Les espèces cultivées -Colza, vol.6, 2019.

M. Torralba, N. Fagerholm, and P. J. Burgess, Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment, vol.230, pp.150-161, 2016.

J. Van-den-bergh, A third option for climate policy within potential limits to growth, Nature Climate Change, vol.7, pp.107-112, 2017.

M. K. Van-ittersum, F. Ewert, and T. Heckelei, Integrated assessment of agricultural systems -A component-based framework for the European Union (SEAMLESS), 2008.

, Agricultural Systems, vol.96, pp.150-165

, Union that strives for more: my agenda for Europe. Political guidelines for the next European Commission, European Commission, 2019.

F. Weiss and A. Leip, Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model, Ecosystems & Environment, vol.149, pp.124-134, 2012.

A. Wilfart, S. Espagnol, and S. Dauguet, ECOALIM: a dataset of environmental impacts of feed ingredients used in French animal production, PLOS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01595321

W. Willett, J. Rockström, and B. Loken, Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems, The Lancet, vol.393, pp.447-492, 2019.

. Where, are, respectively, the vectors of slope of the cost function of each crop, and of each crop activity (i.e., variant of the same crop), represents the vectors of intercepts of the cost functions for crop activities, vol.1

. France, Gallus species) and 36% of dairy cows (French Ministry of Agriculture, 2018.

, Regarding dairy production, milk deliveries have increased by 14% since 2000, to reach 91.4 million hectoliters in 2018. The dairy production is mainly located in Brittany that is the first dairy region in France. It has been substantially concentrated, with less farms producing more milk (e.g., -44% of milk-oriented farms in Brittany since 2000, but +14% of milk production) western France, 2018.

, Regarding pig production, the herd of pig has increased by 4% since 2000, mainly due to the increase in Brittany. Brittany is the first pig-production region in France, far ahead Pays de la Loire that ranks second

. Overall, western France

, This share has increased by 4 percentages points since 2000. However, crop production is mainly oriented to feed livestock: annual forage (mainly corn) represented in 2018 41% of the UAA, temporary pasture represent 25% of UAA, and permanent pasture 16%. Legume production remains low, 2018.

). , L. , ). , and M. , maizeG.(maG_maG, fa_ba_maG, fa_maG_maG, fa_wh_maG, fa_wh_ra_maG, lu_maG_wh, lu_wh_maG, maG_ba, maG_wh, maG_wh_ba, maG_wh_sun, pea_maG_maG, pea_wh_lu_maG, pea_wh_maG, pt_maG_ba, pt_maG, pt_maG_wh, pea_maG_wh_ra_wh, ra_wh_maG_wh, ra_maG_wh), pastureP.(pp_pp), pastureT.(pt_pt, pt_maF, pt_maG, pt_maF_ba, pt_maG_ba, pt_maF_wh, pt_maG_wh), pea.(pea_ba_ba, pea_wh_ba, pea_wh_wh, pea_maF_wh_ra_wh, pea_maG_maG, pea_maG_wh_ra_wh, pea_wh_maF, pea_wh_maG), rapeseed.(ra_ra, fa_wh_ra_maF, fa_wh_ra_maG, pea_maF_wh_ra_wh, pea_maG_wh_ra_wh, ra_wh_ba, ra_wh_maF_wh, ra_wh_maG_wh, ra_wh_wh), sunflower.(maF_wh_sun, maG_wh_sun, wh_sun) wheat.(wh_wh, fa_wh_ba, fa_wh_wh, lu_wh_wh, fa_wh_maF, fa_wh_maG, fa_wh_ra_maF, fa_wh_ra_maG, lu_maF_wh, lu_maG_wh, lu_wh_maF, lu_wh_maG, maG_wh, maF_wh_ba, maG_wh_ba, maF_wh_sun, maG_wh_sun, pea_wh, pea_maF_wh_ra_wh, pea_maG_wh_ra_wh, pea_wh_lu_maF, pea_wh_lu_maG, pea_wh_maF, pea_wh_maG, pea_wh_ba

, U=e=sum((i,s), GM_total(i,s))

, profit_total(i,s)

, mean'))-(BW_C(cc,t,i,s)*pwb_c(cc,t,'mean'))) +sum((c,t), (SL_C(c,t,i,s)*pws_c(c,t,'mean'))-(BL_C(c,t,i,s)*pwb_c(c,t,'mean')*0.9)) -sum((c,r,t)$rc(c,r),X(c,r,t,i,s)*chop_c(c,r,t,s)) -sum(ma,SL_FE(ma,i,s)*tc)-sum, GM_total(i,s)=e= sum((cc,t), (SW_C(cc,t,i,s)*pws_c(cc,t

, SW_A(a,ra,i,s)*weight_a(a)*pws_a(a,ra,'mean'))+ sum(ra,SW_milk(ra,i,s)*pws_milk(ra,'mean')) -sum(co,BW_CO(co,i,s)*pwb_co(co,'mean'))-sum((a,ra)$ai(i,s,a,ra)

*. Rc,

, X(c,r,t,i,s)=e= nb_cr(c,r)*Xrot(r,t,i,s)*nb_rot(r)

, Landtot1(s).. sum((r,t,i), Xrot(r,t,i,s))=l=Dlandtot(s)

, Landtot2(s).. sum((c,r,t,i)$rc(c,r), X(c,r,t,i,s))=l=Dlandtot(s)

(. Production_cc and ). , sum(r$rc(cc,r), X(cc,r,t,i,s)*y_c(cc,t,s))=e= SW_C(cc,t,i,s)+SL_C(cc,t,i,s)+ K_C

(. Production_foc and ). , sum(r$rc(foc,r), X(foc,r,t,i,s)*y_c(foc,t,s))=e= SL_C(foc,t,i,s)+ K_C

&. X('pasturet and . Rc, pastureT',r)*y_c('pastureT',t,s))=e=K_GR('grassT',i,s)+K_GR('hayT',i,s)+K_GR('silageT

&. X('pasturetleg and . Rc, pastureTleg',r)*y_c('pastureTleg',t,s))=e=K_GR('grassTleg',i,s)+K_GR('hayTleg',i,s)+K_GR('silageTleg

, Production_GrP(gr,i,s).. sum((r,t), X('pastureP',r,t,i,s)$rc('pastureP',r)*y_c('pastureP',t,s))=e=K_GR('grassP',i,s)+K_GR('hayP

. Legume1, sum((leg,r,t,i,s)$rc(leg,r),X(leg,r,t,i,s))=g=sum(s,Dlandtot(s)*0

, X('pastureP',r,t,i,s)$rc('pastureP',r))=l=x_culture_tot('pastureP',i,s)*1, p.1

, X('pastureP',r,t,i,s)$rc('pastureP',r))=g=x_culture_tot('pastureP',i,s)*0, p.99

. N_a, calve",ra,i,s)$ai(i,s,"calve",ra) =e= N_a("cow",ra,i,s)$ai(i,s,"cow",ra)*rate_prolif("cow

). N_a, heifer",ra,i,s)$ai(i,s,"heifer",ra) =e= N_a("cow",ra,i,s)$ai(i,s,"cow

). N_a, pig",ra,i,s)$ai(i,s,"pig",ra)=e= rate_prolif("sow",ra)*N_a("sow",ra,i,s)$ai(i,s,"sow

). .. Bw_a, sow",ra,i,s)$ai(i,s,"sow",ra)=e= rate_purchase("sow")*N_a("sow",ra,i,s)$ai(i,s,"sow

, Production_a(a,ra,i,s)

, SW_A(a,ra,i,s)$ai(i,s,a,ra) =e= N_a(a,ra,i,s)$ai(i,s,a,ra)*rate_sale(a)

, Production_milk(ra,i,s)

, SW_milk(ra,i,s) =e= sum(a$ai(i,s,a,ra), N_a(a,ra,i,s)$ai(i,s,a,ra)*y_milk(a,ra

, Numerous1(a,ra,cr,s)

, N_a(a,ra,cr,s)$ai(cr,s,a,ra)=e=0

, alim_cc(cc,i,s).. sum((a,ra)$ai(i,s,a,ra),(need_c(a,ra,cc)/1000)*N_a(a,ra,i,s)) =l= sum(t, BL_C(cc,t,i,s)+BW_C(cc,t,i,s)+ K_C

, alim_foc(foc,i,s).. sum((a,ra)$ai(i,s,a,ra),(need_c(a,ra,foc)/1000)*N_a(a,ra,i,s))=l= sum

). Co, sum((a,ra)$ai(i,s,a,ra),(need_co(a,ra,co)/1000)*N_a(a,ra,i,s))=l= BW_CO(co,i,s)

, alim_grass(i,s).. sum((a,ra)$ai(i,s,a,ra),need_gra(a,ra,'grass')*N_a(a,ra,i,s))=l=K_GR('grassT',i,s)+ K_GR('grassP

, alim_silage(i,s)..sum((a,ra)$ai(i,s,a,ra),need_gra(a,ra,'silage')*N_a(a,ra,i,s))=l=K_GR('silageT

, alim_hay(i,s)..sum((a,ra)$ai(i,s,a,ra),need_gra(a,ra,'hay')*N_a(a,ra,i,s))=l=K_GR('hayT',i,s)+ K_GR('hayP

, Fertilisation1(ma,i,s)

, Q_MA(ma,i,s)=e=K_FE(ma,i,s)+BL_FE(ma,i,s)

, Fertilisation1bis(ma,i,s)..sum((c,r)$rc(c,r),Q_MA_C(c,r,ma,i,s))=e=Q_MA(ma,i,s)

, Fertilisation2(ch,i,s)

, Q_FE(ch,i,s)=e=BW_FE(ch,i,s)*rate_n_fe(ch)

, Fertilisation2bis(ch,i,s).. sum((c,r)$rc(c,r),Q_FE_C(c,r,ch,i,s))=e= Q_FE(ch,i,s)

, fertilisation3(c,r,i,s)

, NEED_N(c,r,i,s)$rc(c,r)=e=sum(ma, Q_MA_C(c,r,ma,i,s)$rc(c,r)*Keq_ma(c,r,ma))+ sum(ch,Q_FE_C(c,r,ch,i,s)$rc

, fertilisation4(i,s)..sum(ma,K_FE(ma,i,s)+BL_FE(ma,i,s))=l=170*sum((c,r,t)$rc(c,r)

, fertilisation5(nfod,r,i,s)

, Q_MA_C(nfod,r,'dropping_dairy',i,s)$rc(nfod,r)=e=0

). , , p.6

, Q_MA_C(nspc,r,ma,i,s)$rc(nspc,r)=e=0

, fertilisation7(ma,s)

. Bl_fe(ma, PO',s)=e=0

). , .sum(ma,Q_MA_C(c,r,ma,i,s)$rc(c,r))=l=max_ma(c)*(sum(ma, Q_MA_C(c,r,ma,i,s)$rc(c,r))+ sum(ch,Q_FE_C(c,r,ch,i,s)$rc

). Production_ma(ma, .sum((a,ra)$ai(i,s,a,ra), N_a(a,ra,i,s)*y_N(a,ra,ma))=e= SL_FE(ma,i,s)+ K_FE

, need_n_culture(c,r,i,s)

, NEED_N(c,r,i,s)$rc(c,r) =e= sum(t, X(c,r,t,i,s)$rc(c,r)*Xxa(c,r,i,s))

, Exchange_C1(c,t).. sum ((i,s),SL_C(C,t,i,s))=e= sum((i,s)

, Exchange_C2(c,t).. sum ((i,s),SL_C(C,t,i,s))=e= sum ((i,s),SL_C(C,t,i,s)*1)

, Exchange_C3(c,t).. sum ((i,s),SL_C(C,t,i,s))=l= 0.001

, Exchange_FE1(ma,s).. sum (i,SL_FE(ma,i,s))=e= sum(i,BL_FE(ma,i,s))

, Exchange_FE2(ma,i,s)

, SL_FE(ma,i,s)=e=SL_FE(ma,i,s)*1

, s,a_c,ra),N_a(a_c,ra,i,s))=l= x_animal_tot(a_c,i,s)*(1+epsilon1)

, calib_a1bis(a_c,i,s).. sum(ra$ai(i,s,a_c,ra),N_a(a_c,ra,i,s))=g= x_animal_tot(a_c,i,s)*(1-epsilon1)

, calib_a2(a_c,ra,i,s)

, N_a(a_c,ra,i,s)=l= x_animal(a_c,ra,i,s)*(1+epsilon2*100)

, calib_c1(c,i,s)

, X(c,r,t,i,s))=l= x_culture_tot(c,i,s)*(1+epsilon1), r,t)$rc(c,r)

, calib_c1bis(fo,i,s).. sum((r,t)$rc(fo,r),X(fo,r,t,i,s))=g= x_culture_tot(fo,i,s)*(1-epsilon1)

. ********************first-step-of-pmp********************, , vol.2, p.2

, mean'))-(BL_C(c,t,i,s)*pwb_c(c,t,'mean'))) -sum((c,r,t)$rc(c,r),X(c,r,t,i,s)*chop_c(c,r,t,s)) -sum((c,r,t)$rc(c,r),alpha_c(c,r,t,i,s)*X(c,r,t,i,s)+ 0.5*beta_c(c,r,t,i,s)*sqr(X(c,r,t,i,s))) -sum(ma,SL_FE(ma,i,s)*tc)-sum

, SW_A(a,ra,i,s)*weight_a(a)*pws_a(a,ra, a,ra)$ai(i,s,a,ra)

, BW_A(a,ra,i,s)*pwb_a(a,'mean')) -sum((a_c),alpha_a1(a_c,i,s)*sum(ra$ai(i,s,a_c,ra), +sum(ra,SW_milk(ra,i,s)*pws_milk(ra

, N_A(a_c,ra,i,s)))) -sum((a,ra)$ai(i,s,a,ra),N_A(a,ra,i,s)*chop_a, *beta_a1(a_c,i,s)*sqr(sum(ra$ai(i,s,a_c,ra)

, r,t)$rc(c,r),su_c(c)*X(c,r,t,i,s))

, INPUT_atm(i,s,sc)=sum((c,r,t), X.l(c,r,t,i,s)*deposition)

, INPUT_NfIX(i,s,sc)=sum((c,r,t), X.l(c,r,t,i,s)*no_symb_Nfix)

, INPUT_BIO(i,s,sc)=sum((c,r,t), X.l(c,r,t,i,s)*y_c(c,t,s)*content_dryM_c(c)*prop_leg(c,s)*symb_Nfix(c))

, INPUT_EN_DIR(i,s,sc)=sum((c,r,t),X.l(c,r,t,i,s)*fuel_conso*fuel_dir_emission/1000)

, INPUT_EN_INDIR(i,s,sc)=sum((c,r,t),X.l(c,r,t,i,s)*fuel_conso*fuel_indLoss/1000)

, INPUT_SEED_DIR(i,s,sc)=sum((c,r,t), X.l(c,r,t,i,s)/time_c(c)*density_seed(c,t)*rate_N_seed(c)/1000*content_dryM_seed(c))

, INPUT_SEED_INDIR(i,s,sc)=sum((c,r,t),X.l(c,r,t,i,s)/time_c(c)*density_seed(c,t)*indloss_N_seed(c)/1000*content_dryM_seed(c))

, INPUT_INORG_FE_DIR(i,s,sc)=sum(ch, BW_FE.l(ch,i,s)*rate_N_fe(ch))

, INPUT_INORG_FE_INDIR(i,s,sc)=sum(ch, BW_FE.l(ch,i,s)*inorgfe_indloss)

, INPUT_MANURE(i,s,sc)=sum(ma,BL_FE.l(ma,i,s)-SL_FE.l(ma,i,s))

, FEED_LEG_DIR(i,s,sc)=(sum

, s))*rate_N_c(hp)*content_dryM_c(hp))+sum(co,BW_CO.l(co,i,s)*rate_N_co(co)*content_dryM_co(co)))

, CULTURE_LEG(i,s,sc)=(sum((hp,t),(SW_C.l(hp,t,i,s)+SL_C.l(hp,t,i,s))*rate_N_c(hp)*content_dryM_c(hp)))

, FEED_LEG_INDIR(i,s,sc)=(sum

, s))*indloss_N_c(hp)*content_dryM_c(hp))+sum(co,BW_CO.l(co,i,s)*indloss_N_co(co)*content_dryM_co(co)))

, FLOW_HP(i,s,sc)= FEED_LEG_DIR(i,s,sc)-CULTURE_LEG(i,s,sc)

, OUTPUT_HP_DIR(i,s,sc)= abs(FLOW_HP(i,s,sc))$(FLOW_HP(i,s,sc)<0)

, INPUT_HP_DIR(i,s,sc)= abs(FLOW_HP(i,s,sc))$(FLOW_HP(i,s,sc)>0)

, INPUT_HP_INDIR(i,s,sc)= (FLOW_HP(i,s,sc)*FEED_LEG_INDIR(i,s,sc)/FEED_LEG_DIR(i,s,sc))$((FLOW_HP(i,s,sc)>0) and (FEED_LEG_DIR(i,s,sc)<>0))

, FEED_NLEG_DIR(i,s,sc)=(sum((lp,t),(BW_C.l(lp,t,i,s)+ BL_C.l(lp,t,i,s))*rate_N_c(lp)*content_dryM_c(lp)))

, CULTURE_NLEG(i,s,sc)=(sum((lp,t),(SW_C.l(lp,t,i,s)+SL_C.l(lp,t,i,s))*rate_N_c(lp)*content_dryM_c(lp)))

, FEED_NlEG_INDIR(i,s,sc)=(sum((lp,t),(BW_C.l(lp,t,i,s)+ BL_C.l(lp,t,i,s))*indloss_N_c(lp)*content_dryM_c(lp)))

, FLOW_LP(i,s,sc)= FEED_NLEG_DIR(i,s,sc)-CULTURE_NLEG(i,s,sc)

, OUTPUT_LP_DIR(i,s,sc)= abs(FLOW_LP(i,s,sc))$(FLOW_LP(i,s,sc)<0)

, INPUT_LP_DIR(i,s,sc)= abs(FLOW_LP(i,s,sc))$(FLOW_LP(i,s,sc)>0)

, INPUT_LP_INDIR(i,s,sc)= (FLOW_LP(i,s,sc)*FEED_NlEG_INDIR(i,s,sc)/FEED_NLEG_DIR(i,s,sc))$((FLOW_LP(i,s,sc)>0) and (FEED_NLEG_DIR(i,s,sc)<>0))

, OUTPUT_milk(i,s,sc)=sum(ra,(SW_milk.l(ra,i,s)*milk_density*(0.337+(0.116*tb_milk(ra)/10)+(0.06*tp_milk(ra)/10))*(milk_protei n/1000)/milk_convprot))

, ANIMAL_BUY_DIR(i,s,sc) = sum(ra,BW_A.l('sow',ra,i,s)*113*rate_n_a, vol.1000

, ANIMAL_BUY_INDIR(i,s,sc)=sum(ra,BW_A.l('sow',ra,i,s)*113*indloss_N_a, vol.1000

, ANIMAL_SELL(i,s,sc) = sum((a,ra),SW_A.l(a,ra,i,s)*weight_a(a)*rate_n_a(a)/1000)

, FLOW_ANIMAL(i,s,sc) = ANIMAL_BUY_DIR(i,s,sc)-ANIMAL_SELL(i,s,sc)

, OUTPUT_ANIMAL(i,s,sc)= abs(FLOW_ANIMAL(i,s,sc))$(FLOW_ANIMAL(i,s,sc)<0)

, INPUT_ANIMAL_DIR(i,s,sc)= abs(FLOW_ANIMAL(i,s,sc))$(FLOW_ANIMAL(i,s,sc)>0)

, INPUT_ANIMAL_INDIR(i,s,sc)=(FLOW_ANIMAL(i,s,sc)*ANIMAL_BUY_INDIR(i,s,sc)/ANIMAL_BUY_DIR(i,s,sc))$((FLOW_ANIMAL(i,s, sc)>0) and (ANIMAL_BUY_DIR(i,s,sc)<>0))

, CARBONE_A_FARM(i,s,sc)=(sum((a,ra,ma), N_a.l(a,ra,i,s)*y_N(a,ra,ma)*rate_cn_fe(ma)))

, CARBONE_A_EXCHANGE(i,s,sc)=(sum(ma,(BL_FE.l(ma,i,s)-SL_FE.l(ma,i,s))*rate_cn_fe(ma)))

, BIOMASS_C_AIR(i,s,sc)=sum((spois,r,t

X. Y_c,

, BIOMASS_C_ROOT(i,s,sc)=(sum((rootC,r,t

X. Y_c, t,s)*content_dryM_c(rootC)*coeff_biomass_root(rootC))+sum((pois,r,t),X.l(pois,r,t,i,s)*2) +sum((t,r),X.l("pastureP

, Carbone_A_TOTAL(i,s,sc)=(CARBONE_A_FARM(i,s,sc)+CARBONE_A_EXCHANGE(i,s,sc))/1000

, Carbone_C_TOTAL(i,s,sc)= (BIOMASS_C_AIR(i,s,sc)+ BIOMASS_C_ROOT(i,s,sc))*40

. Carbone_actif, , p.0

, F1(i,s,sc)=20/(1+(20-1)*exp(-0.120*(Tmoy(i,s)-15)))

, F2(i,s,sc)=exp(-2.440*rate_clay(i,s)/1000)

, F3(i,s,sc)=1+0.19*rate_clay(i,s)/1000

, h(i,s,sc)=0.166*F3(i,s,sc)

, coeff_min(i,s,sc)=0.048*f1(i,s,sc)*F2(i,s,sc)

, kca(i,s,sc)=Carbone_actif(i,s,sc)*coeff_min(i,s,sc)*sum

, hm(i,s,sc)=(h(i,s,sc)*Carbone_C_TOTAL(i,s,sc)*10)+(Carbone_A_TOTAL(i,s,sc)*1000*0, vol.4

, stock_n_soil(i,s,sc)=((hm(i,s,sc)-kca(i,s,sc))/10)

, TOTAL_INPUT_DIR(i,s,sc)=INPUT_atm(i,s,sc)+INPUT_NfIX(i,s,sc)+INPUT_BIO(i,s,sc)+INPUT_EN_DIR(i,s,sc)+INPUT_SEED_DIR(i,s,sc) +INPUT_INORG_FE_DIR(i,s,sc) +INPUT_MANURE(i,s,sc)+ INPUT_LP_DIR(i,s,sc)+ INPUT_HP_DIR(i,s,sc)+INPUT_ANIMAL_DIR

, TOTAL_INPUT_INDIR(i,s,sc)= INPUT_EN_INDIR(i,s,sc)+

, INPUT_SEED_INDIR(i,s,sc)+INPUT_INORG_FE_INDIR(i,s,sc)+INPUT_HP_INDIR(i,s,sc)+INPUT_LP_INDIR(i,s,sc)+INPUT_ANIMAL_IND IR(i,s,sc)

, TOTAL_OUTPUT(i,s,sc)= OUTPUT_LP_DIR(i,s,sc)+ OUTPUT_HP_DIR(i,s,sc)+ OUTPUT_milk(i,s,sc)+ OUTPUT_ANIMAL

, SYNE(i,s,sc)= (TOTAL_OUTPUT(i,s,sc))/(TOTAL_INPUT_DIR(i,s,sc)+TOTAL_INPUT_INDIR(i,s,sc)-(stock_n_soil(i,s,sc)))

, s,sc)+TOTAL_INPUT_INDIR(i,s,sc)-(TOTAL_OUTPUT(i,s,sc))-(stock_n_soil(i,s,sc)))/sum