, synthétisés par CVD est 10 fois plus faible que celle de ceux produits par décharge d'arc ou ablation laser, vol.16

. Référence,

A. M. Rao, Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes, Physical Review Letters, vol.86, p.3895, 2001.

S. D. Bergin, Multicomponent solubility parameters for single-walled carbon nanotube/ solvent mixtures, ACS nano, vol.3, pp.2340-2350, 2009.

S. D. Bergin, New solvents for nanotubes: approaching the dispersibility of surfactants, The Journal of Physical Chemistry C, vol.114, pp.231-237, 2009.

K. Chiou, Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols, Proceedings of the National Academy of Sciences, vol.115, pp.5703-5708, 2018.

R. Rastogi, Comparative study of carbon nanotube dispersion using surfactants, Journal of colloid and interface science, vol.328, pp.421-428, 2008.

W. Gomulya, Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping, Advanced Materials, vol.25, pp.2948-2956, 2013.

J. N. Coleman, Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives, Applied Physics Letters, vol.82, pp.1682-1684, 2003.

H. Yau and . Chun, Sonochemical degradation of N-methylpyrrolidone and its influence on single walled carbon nanotube dispersion, Chemical Communications, vol.51, pp.16621-16624, 2015.

E. T. Mickelson, Fluorination of single-wall carbon nanotubes, Chemical physics letters, vol.296, issue.2, pp.188-194, 1998.

V. K. Abdelkader, Carbon tetrachloride cold plasma for extensive chlorination of carbon nanotubes, The Journal of Physical Chemistry C, vol.117, pp.16677-16685, 2013.

. Khare and . Bishun, Functionalization of carbon nanotubes via nitrogen glow discharge, The Journal of Physical Chemistry B, vol.109, pp.23466-23472, 2005.

G. Zhang, Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes, Journal of the American Chemical Society, vol.128, pp.6026-6027, 2006.

B. I. Kharisov, Recent advances on the soluble carbon nanotubes, Industrial & Engineering Chemistry Research, vol.48, pp.572-590, 2008.

P. Pinheiro, Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon, vol.38, pp.1469-1479, 2000.

H. Hu, Nitric acid purification of single-walled carbon nanotubes, The Journal of Physical Chemistry B, vol.107, pp.13838-13842, 2003.

T. Q. Tran, Purification and dissolution of carbon nanotube fibers spun from the floating catalyst method, ACS applied materials & interfaces, vol.9, pp.37112-37119, 2017.

. Ramesh and . Sivarajan, Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation, The Journal of Physical Chemistry B, vol.108, pp.8794-8798, 2004.

P. Wang, Superacid-surfactant exchange: enabling nondestructive dispersion of full-length carbon nanotubes in water, ACS nano, vol.11, pp.9231-9238, 2017.

T. Villmow, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix, Polymer, vol.49, pp.3500-3509, 2008.

Z. Jia, Study on poly (methyl methacrylate)/carbon nanotube composites, Materials Science and Engineering: A, vol.271, issue.1-2, pp.395-400, 1999.

J. Suhr, Temperature-activated interfacial friction damping in carbon nanotube polymer composites, Nano letters, vol.6, issue.2, pp.219-223, 2006.

Y. Bin, Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions, Macromolecules, vol.36, pp.6213-6219, 2003.

K. Lau, Thermal and mechanical properties of single-walled carbon nanotube bundlereinforced epoxy nanocomposites: the role of solvent for nanotube dispersion, Composites science and technology, vol.65, pp.719-725, 2005.

U. Khan, The effect of solvent choice on the mechanical properties of carbon nanotubepolymer composites, Composites Science and Technology, vol.67, pp.3158-3167, 2007.

M. N. Tchoul, Composites of single-walled carbon nanotubes and polystyrene: preparation and electrical conductivity, Chemistry of Materials, vol.20, pp.3120-3126, 2008.

V. K. Radhakrishnan, Influence of initial mixing methods on melt-extruded single-walled carbon nanotube-polypropylene nanocomposites, Polymer Engineering & Science, vol.50, pp.1831-1842, 2010.

H. Xia, Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization, Chemistry of materials, vol.15, pp.3879-3886, 2003.

J. C. Grunlan, Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Advanced Materials, vol.16, pp.150-153, 2004.

P. Pötschke, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, vol.43, pp.3247-3255, 2002.

E. Pavlenko, SELF-DISPERSION OF CARBON NANOTUBES IN THERMOPLAST POLYMER. ICCM, p.19

C. Montreal, Available online, 2013.

V. Derenskyi, Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio, Advanced Materials, vol.26, pp.5969-5975, 2014.

S. Zhang, Roll-to-roll continuous carbon nanotube sheets with high electrical conductivity, RSC advances, vol.8, pp.12692-12700, 2018.

X. Li, Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion, ACS nano, vol.6, issue.2, pp.1347-1356, 2012.

B. Dan, Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS nano, vol.3, pp.835-843, 2009.

F. Mirri, High-performance carbon nanotube transparent conductive films by scalable dip coating, ACS nano, vol.6, pp.9737-9744, 2012.

C. Zhou, Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes, Chemistry of materials, vol.17, pp.1997-2002, 2005.

Y. Zhou, A method of printing carbon nanotube thin films, Applied physics letters, vol.88, p.123109, 2006.

P. Xiao, Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface, Chemistry of Materials, vol.28, pp.7125-7133, 2016.

Y. Kim, Langmuir-Blodgett films of single-wall carbon nanotubes: layer-by-layer deposition and in-plane orientation of tubes, Japanese journal of applied physics, vol.42, p.7629, 2003.

J. Matsui, Simple fabrication of carbon nanotube monolayer film, Chemistry letters, vol.35, pp.42-43, 2005.

J. Matsui, Fabrication of densely packed multi-walled carbon nanotube ultrathin films using a liquid-liquid interface, Journal of Materials Chemistry, vol.17, pp.3806-3811, 2007.

P. Kim, Capillarity-driven fluidic alignment of single-walled carbon nanotubes in reversibly bonded nanochannels, Small, vol.4, pp.92-95, 2008.

V. K. Sangwan, Controlled growth, patterning and placement of carbon nanotube thin films, Solid-State Electronics, vol.54, pp.1204-1210, 2010.

Q. Cao, Highly bendable, transparent thin-film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics, Advanced Materials, vol.18, issue.3, pp.304-309, 2006.

S. H. Hur, Extreme bendability of single-walled carbon nanotube networks transferred from hightemperature growth substrates to plastic and their use in thin-film transistors, Applied Physics Letters, vol.86, p.243502, 2005.

R. Zhang, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications, Chemical Society Reviews, vol.46, issue.12, pp.3661-3715

M. Zhang, Strong, transparent, multifunctional, carbon nanotube sheets, Science, vol.309, pp.1215-1219, 2005.

C. Feng, Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes, Advanced Functional Materials, vol.20, pp.885-891, 2010.

L. Xu, Continuous Langmuir-Blodgett Deposition and Transfer by Controlled Edge-to-Edge Assembly of Floating 2D Materials, Langmuir, vol.35, pp.51-59, 2018.

M. Parchine, Large area 2D and 3D colloidal photonic crystals fabricated by a roll-to-roll Langmuir-Blodgett method, Langmuir, vol.32, pp.5862-5869, 2016.

B. Ashrafi, Correlation between Young's modulus and impregnation quality of epoxyimpregnated SWCNT buckypaper, Composites Part A: Applied Science and Manufacturing, vol.41, pp.1184-1191, 2010.

N. R. Raravikar, Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films, Chemistry of materials, vol.17, pp.974-983, 2005.

J. N. Coleman, Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives, Applied Physics Letters, vol.82, pp.1682-1684, 2003.

B. Fernández-d'arlas, Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes, Composites Science and Technology, vol.72, pp.235-242, 2012.

X. Xu, Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films, Applied physics letters, vol.81, pp.2833-2835, 2002.

R. V. Salvatierra, One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films, Chemistry of Materials, vol.22, pp.5222-5234, 2010.

M. Cadek, Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area, Nano Letters, vol.4, pp.353-356, 2004.

V. Jourdain, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon, vol.58, pp.2-39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067024

P. H. Ma, Carbon nanotubes for polymer reinforcement, 2011.

A. Martone, The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix, Composites Science and Technology, vol.71, pp.1117-1123, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00753184

J. Banerjee, Melt mixed carbon nanotubes/polymer nanocomposites, Polymer Composites, 2019.

U. Tayfun, Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: Effect of surface modification of fullerene, Composites Part B: Engineering, vol.80, pp.101-107, 2015.

M. Cadek, Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area, Nano Letters, vol.4, pp.353-356, 2004.

Y. Breton, Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology, Carbon, vol.42, pp.1027-1030, 2004.

J. N. Coleman, High performance nanotube reinforced plastics: Understanding the mechanism of strength increase, Advanced Functional Materials, vol.14, pp.791-798, 2004.

Y. Hou, Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites, ACS nano, vol.3, pp.1057-1062, 2009.

A. H. Barber, Measurement of carbon nanotube-polymer interfacial strength, Applied Physics Letters, vol.82, pp.4140-4142, 2003.

J. K. Sandler, A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres, Polymer, vol.45, pp.2001-2015, 2004.

S. Y. Lin, Isothermal crystallization behavior of polyamide 6, 6/multiwalled carbon nanotube nanocomposites, Polymer Engineering & Science, vol.49, pp.2447-2453, 2009.

R. Haggenmueller, Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites, Macromolecules, vol.39, pp.2964-2971, 2006.

H. Meng, Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6, Polymer, vol.49, pp.610-620, 2008.

T. M. Wu, Crystallization behavior of poly (?-caprolactone)/multiwalled carbon nanotube composites, Journal of Polymer Science Part B: Polymer Physics, vol.44, issue.3, pp.598-606, 2006.

E. M. Moore, Enhancing the strength of polypropylene fibers with carbon nanotubes, Journal of applied polymer science, vol.93, pp.2926-2933, 2004.

J. Y. Kim, Mechanical reinforcement and crystallization behavior of poly (ethylene 2, 6-naphthalate) nanocomposites induced by modified carbon nanotube, Composites Part A: Applied Science and Manufacturing, vol.40, pp.45-53, 2009.

C. Rong, Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly (ether ether ketone, Composites Science and Technology, vol.70, pp.380-386, 2010.

A. M. Díez-pascual, Development and characterization of PEEK/carbon nanotube composites, Carbon, vol.47, pp.3079-3090, 2009.

E. Pavlenko, Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite, Journal of Applied Physics, vol.115, p.234901, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01756989

M. Rinaldi, Melt processing and mechanical property characterization of high-performance poly (ether ether ketone)-carbon nanotube composite, Polymer International, vol.66, pp.1731-1736, 2017.

F. Deng, Tensile properties at different temperature and observation of micro deformation of carbon nanotubes-poly (ether ether ketone) composites, Composites Science and Technology, vol.67, pp.2959-2964, 2007.

J. H. Du, The present status and key problems of carbon nanotube based polymer composites, Express Polymer Letters, vol.1, pp.253-273, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00268326

S. Abdulla, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sensors and Actuators B: Chemical, vol.221, pp.1523-1534, 2015.

S. Bai, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers, Small, vol.11, pp.5807-5813, 2015.

H. Kwon, Optical probing of local pH and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes, The Journal of Physical Chemistry C, vol.119, pp.3733-3739, 2015.

H. B. Luo, One-Pot, Large-Scale Synthesis of Organic Color Center-Tailored Semiconducting Carbon Nanotubes, ACS nano, vol.13, pp.8417-8424, 2019.

R. Bonnet, Inducing injection barrier by covalent functionalization of multiwall carbon nanotubes acting as Moiré crystals, Applied Physics Letters, vol.109, p.143110, 2016.

C. Klinke, Charge transfer induced polarity switching in carbon nanotube transistors, Nano letters, vol.5, pp.555-558, 2005.

B. Bourlon, Determination of the intershell conductance in multiwalled carbon nanotubes, Physical review letters, vol.93, p.176806, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00017815

M. Foygel, Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity, Physical Review B, vol.71, p.104201, 2005.

G. Ambrosetti, Solution of the tunneling-percolation problem in the nanocomposite regime, Physical Review B, vol.81, issue.15, p.155434, 2010.

A. Combessis, Optical density as a probe of carbon nanotubes dispersion in polymers, Journal of Applied Polymer Science, vol.130, pp.1778-1786, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01890809

L. Hu, Percolation in transparent and conducting carbon nanotube networks, Nano letters 4, vol.12, pp.2513-2517, 2004.

B. Dan, Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS nano, vol.3, pp.835-843, 2009.

S. De, Size effects and the problem with percolation in nanostructured transparent conductors, ACS nano 4, vol.12, pp.7064-7072, 2010.

C. Li, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotubebased composites, Applied Physics Letters, vol.91, issue.22, p.223114, 2007.

J. Zhou, Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion, Nanoscale, vol.9, issue.2, pp.604-612, 2017.

J. Zhou, Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers, ACS applied materials & interfaces, vol.9, issue.5, pp.4835-4842, 2017.

S. Stassi, Flexible tactile sensing based on piezoresistive composites: A review, Sensors, vol.14, issue.3, pp.5296-5332, 2014.

. Dinh-trong and . Nghia, Influence of the composition of MWCNTs layers on the properties of strain gauges, 9th IEEE Conference on Nanotechnology, 2009.

N. Hu, Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor, Carbon, vol.48, pp.680-687, 2010.

M. Yuan, Influence of molecular weight on rheological, thermal, and mechanical properties of PEEK, Polymer Engineering & Science, vol.51, issue.1, pp.94-102, 2011.

J. Xu, Z. Zhang, X. Xiong, and H. Zeng, A new solvent for poly (ether ether ketone), Polymer, issue.20, pp.4432-4434, 1992.

, Victrex PEEK Chemical resistance Guide (site web Victrex)

P. Xing, Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes, Journal of Membrane Science, vol.229, issue.1-2, pp.95-106, 2004.

G. H. Melton, Applied Plastics Engineering Handbook, pp.7-21, 2011.

V. Mittal, Polymer nanotubes nanocomposites: synthesis, properties and applications, p.290, 2014.

B. Crist and J. M. Schultz, Polymer spherulites: A critical review, Progress in Polymer Science, vol.56, pp.1-63, 2016.

A. V. Fratini, E. M. Cross, R. B. Whitaker, and W. W. Adams, Refinement of the structure of PEEK fibre in an orthorhombic unit cell, Polymer, vol.27, issue.6, pp.861-865, 1986.

C. N. Velisaris and J. C. Seferis, Crystallization kinetics of polyetheretherketone (PEEK) matrices, Polymer Engineering & Science, vol.26, issue.22, pp.1574-1581, 1986.

D. J. Blundell and B. N. Osborn, The morphology of poly (aryl-ether-ether-ketone), Polymer, issue.8, pp.953-958, 1983.

B. H. Stuart, A study of the absorption of chlorinated organic solvents by poly (ether ether ketone) using vibrational spectroscopy, Polymer, vol.36, issue.22, pp.4209-4213, 1995.

T. Huang, Pore structure and properties of poly (ether ether ketone) hollow fiber membranes: influence of solvent-induced crystallization during extraction, Polymer International, vol.68, pp.1874-1880, 2019.

M. Tomassetti, Thermogravimetric analysis of conjugated and unconjugated sodium cholates, Thermochimica acta, vol.78, pp.235-249, 1984.

Y. H. Shih and M. S. Li, Adsorption of selected volatile organic vapors on multiwall carbon nanotubes, Journal of Hazardous Materials, vol.154, issue.1-3, pp.21-28, 2008.

D. Kazachkin, Y. Nishimura, S. Irle, K. Morokuma, R. D. Vidic et al., Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study, Langmuir, vol.24, issue.15, pp.7848-7856, 2008.

A. A. Kolesnikova, Y. S. Eremin, and A. M. Grekhov, Time-stability Dispersion of Carbon Nanotubes in Chloroform, Physics Procedia, vol.72, pp.51-55, 2015.

J. A. Elliott, J. K. Sandler, A. H. Windle, R. J. Young, and M. S. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent, Physical review letters, vol.92, issue.9, p.95501, 2004.

C. S. Cojocaru, D. Kim, D. Pribat, and J. E. Bourée, Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition, Thin Solid Films, vol.501, issue.1-2, pp.227-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00541129

R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian et al., Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution, Acs Nano, vol.7, issue.7, pp.6156-6161, 2013.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, vol.287, issue.5453, pp.637-640, 2000.

G. Dresselhaus and S. Riichiro, Physical properties of carbon nanotubes, 1998.

T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, p.220, 1992.

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.47, issue.9, pp.4086-4089, 1976.

L. Hu, Percolation in transparent and conducting carbon nanotube networks, Nano letters 4, vol.12, pp.2513-2517, 2004.

W. Hayes and R. Loudon, Scattering of light by crystals, 2012.

P. G. De-gennes, Pierre Curie et le rôle de la symétrie dans les lois physiques, Simple Views on Condensed Matter, vol.4, p.394, 1992.

F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, The Journal of Chemical Physics, vol.53, issue.3, pp.1126-1130, 1970.

S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.362, pp.2271-2288, 1824.

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics reports, vol.409, issue.2, pp.47-99, 2005.

A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.362, pp.2477-2512, 1824.

M. Lazzeri and F. Mauri, Nonadiabatic Kohn anomaly in a doped graphene monolayer, Physical review letters, vol.97, issue.26, p.266407, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00129684

A. C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid state communications, vol.143, issue.1-2, pp.47-57, 2007.

G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li et al., Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice, Nature Physics, vol.15, issue.3, p.237, 2019.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, Phonon linewidths and electron-phonon coupling in graphite and nanotubes, Physical review B, vol.73, issue.15, 2006.

I. Partie, Fabrication et caractérisation Référence

E. Pavlenko, SELF-DISPERSION OF CARBON NANOTUBES IN THERMOPLAST POLYMER. ICCM, p.19

C. Montreal, Available online, 2013.

H. Bodiguel, F. Doumenc, and B. Guerrier, Stick? slip paverning at low capillary numbers for an evaporating colloidal suspension, Langmuir, vol.26, issue.13, pp.10758-10763, 2010.

N. D. Denkov, Two-dimensional crystallization, Nature, vol.361, p.26, 1993.

S. Tcholakova, Z. Valkova, D. Cholakova, Z. Vinarov, I. Lesov et al., Efficient self-emulsification via cooling-heating cycles, Nature communications, vol.8, p.15012, 2017.

C. Liu, M. Li, R. Han, J. Li, and C. Liu, Rheology of water-in-oil emulsions with different drop sizes, Journal of Dispersion Science and Technology, vol.37, issue.3, pp.333-344, 2016.

B. P. Binks and T. S. Horozov, Colloidal particles at liquid interfaces, 2006.

. Matsui, Simple fabrication of carbon nanotube monolayer film, Chemistry letters, vol.35, pp.42-43, 2005.

N. Briggs, Stable pickering emulsions using multi-walled carbon nanotubes of varying wettability, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.537, pp.227-235, 2018.

W. Wang, Bending single-walled carbon nanotubes into nanorings using a Pickering emulsion-based process, Carbon, vol.50, pp.1769-1775, 2012.

H. Wang and E. K. Hobbie, Amphiphobic carbon nanotubes as macroemulsion surfactants, Langmuir, vol.19, pp.3091-3093, 2003.

M. Shen and D. E. Resasco, Emulsions stabilized by carbon nanotube? silica nanohybrids, Langmuir, vol.25, pp.10843-10851, 2009.

. Krstic and . Vojislav, Langmuir? Blodgev films of matrix-diluted single-walled carbon nanotubes, Chemistry of materials, vol.10, pp.2338-2340, 1998.

X. Li, Langmuir? Blodgev assembly of densely aligned single-walled carbon nanotubes from bulk materials, Journal of the American Chemical Society, vol.129, pp.4890-4891, 2007.

Q. Cao, Arrays of single-walled carbon nanotubes with full surface coverage for highperformance electronics, Nature Nanotechnology, vol.8, p.180, 2013.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the nature of defects in graphene by Raman spectroscopy, Nano letters, vol.12, issue.8, pp.3925-3930, 2012.

A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.362, pp.2477-2512, 1824.

I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel et al., , 2012.

, Establishment, morphology and properties of carbon nanotube networks in polymer melts, Polymer, vol.53, issue.1, pp.4-28

P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Thermal transport measurements of individual multiwalled nanotubes, Physical review letters, vol.87, issue.21, p.215502, 2001.

V. J. Gokhale, O. A. Shenderova, G. E. Mcguire, and M. Rais-zadeh, Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings, Journal of Microelectromechanical Systems, vol.23, issue.1, pp.191-197, 2014.

A. Burlaka, S. Lukin, S. Prylutska, O. Remeniak, Y. Prylutskyy et al., , 2010.

, Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies, Experimental Oncology

M. Liu, K. L. Jiang, Q. Q. Li, H. T. Yang, and S. S. Fan, Laser-induced high local temperature in carbon nanotube, Solid State Phenomena, vol.121, pp.331-336, 2007.

Y. Inoue and A. Ishijima, Local heating of molecular motors using single carbon nanotubes, Biophysical reviews, vol.8, issue.1, pp.25-32, 2016.

, Materials Properties Guide -Victrex (disponible sur le site de Victrex)

J. D. Jackson, Classical Electrodynamics, 1975.

, Surface Treatment and Adhesion of APTIV® Film (disponible sur le site de Victrex)

S. Nuriel, L. Liu, A. H. Barber, and H. D. Wagner, Direct measurement of multiwall nanotube surface tension, Chemical Physics Letters, vol.404, issue.4-6, pp.263-266, 2005.

A. H. Barber, R. Sidney, H. D. Cohen, and . Wagner, Static and dynamic wetting measurements of single carbon nanotubes, Physical review letters, vol.92, p.186103, 2004.

J. N. Israelachvili, Intermolecular and surface forces, p.255, 2011.

L. Dong, F. Arai, and T. Fukuda, Nanoassembly of carbon nanotubes through mechanochemical nanorobotic manipulations, Japanese journal of applied physics, vol.42, issue.1R, p.295, 2003.

N. Hu, Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor, Carbon, vol.48, pp.680-687, 2010.

I. Balberg, N. Binenbaum, and N. Wagner, Percolation thresholds in the three-dimensional sticks system, Physical Review Letters, vol.52, issue.17, p.1465, 1984.

M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev, Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity, Physical Review B, vol.71, issue.10, p.104201, 2005.

A. Combessis, Optical density as a probe of carbon nanotubes dispersion in polymers, Journal of Applied Polymer Science, vol.130, pp.1778-1786, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01890809

C. Laurent, E. Flahaut, and A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, vol.48, pp.2994-2996, 2010.

J. G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, Journal of applied physics, vol.34, pp.1793-1803, 1963.

B. I. Shklovskii and A. L. Efros, Electronic properties of doped semiconductors, vol.45, 2013.

E. Kymakis and G. A. Amaratunga, Electrical properties of single-wall carbon nanotube-polymer composite films, Journal of applied physics, vol.99, issue.8, p.84302, 2006.

D. S. Mclachlan, AC and DC percolative conductivity of single wall carbon nanotube polymer composites, Journal of Polymer Science Part B: Polymer Physics, vol.43, pp.3273-3287, 2005.

S. L. Jia, H. Z. Geng, L. Wang, Y. Tian, C. X. Xu et al., Carbon nanotube-based flexible electrothermal film heaters with a high heating rate, Royal Society open science, vol.5, issue.6, p.172072, 2018.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, p.14095, 2000.

C. Kim, S. H. Park, J. I. Cho, D. Y. Lee, T. J. Park et al., Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning, Journal of Raman Spectroscopy, vol.35, issue.11, pp.928-933, 2004.

C. Guizani, M. Jeguirim, R. Gadiou, F. J. Sanz, and S. Salvador, Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars, Energy, vol.112, pp.133-145, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01609108

A. Merlen, J. Buijnsters, and C. Pardanaud, A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons, Coatings, vol.7, issue.10, p.153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596681

L. G. Cançado, A. Jorio, E. M. Ferreira, F. Stavale, C. A. Achete et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano letters, vol.11, issue.8, pp.3190-3196, 2011.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology, vol.8, issue.4, p.235, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

G. Montagnac, R. Caracas, E. Bobocioiu, F. Vittoz, and B. Reynard, Anharmonicity of graphite from UV Raman spectroscopy to 2700 K, Carbon, vol.54, pp.68-75, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02107895

G. P. Srivastava, The physics of phonons, 1990.

P. Mallet-ladeira, P. Puech, C. Toulouse, M. Cazayous, N. Ratel-ramond et al., A Raman study to obtain crystallite size of carbon materials: a better alternative to the Tuinstra-Koenig law, Carbon, vol.80, pp.629-639, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01756987

J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. Silva, Raman spectroscopy on amorphous carbon films, Journal of Applied Physics, vol.80, issue.1, pp.440-447, 1996.

P. Puech, A. Dabrowska, N. Ratel-ramond, G. L. Vignoles, and M. Monthioux, New insight on carbonisation and graphitisation mechanisms as obtained from a bottom-up analytical approach of X-ray diffraction patterns, Carbon, vol.147, pp.602-611, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02080628

L. G. Cançado, A. Jorio, and M. A. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size, Physical Review B, vol.76, issue.6, p.64304, 2007.

L. G. Cançado, M. G. Da-silva, E. H. Ferreira, F. Hof, K. Kampioti et al., Disentangling contributions of point and line defects in the Raman spectra of graphenerelated materials, 2D Materials, vol.4, issue.2, p.25039, 2017.

M. Hanfland, H. Beister, and K. Syassen, Graphite under pressure: Equation of state and first-order Raman modes, Physical Review B, vol.39, issue.17, p.12598, 1989.

Y. Shin, M. Lozada-hidalgo, J. L. Sambricio, I. V. Grigorieva, A. K. Geim et al., , 2016.

, Raman spectroscopy of highly pressurized graphene membranes, Applied Physics Letters, vol.108, issue.22, p.221907

J. N. Rouzaud and A. Oberlin, Structure, microtexture, and optical properties of anthracene and saccharose-based carbons, Carbon, vol.27, issue.4, pp.517-529, 1989.

P. Mallet-ladeira, P. Puech, P. Weisbecker, G. L. Vignoles, and M. Monthioux, Behavior of Raman D band for pyrocarbons with crystallite size in the 2-5 nm range, Applied Physics A, vol.114, issue.3, pp.759-763, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01756986

P. Puech, J. M. Plewa, P. Mallet-ladeira, and M. Monthioux, Spatial confinement model applied to phonons in disordered graphene-based carbons, Carbon, vol.105, pp.275-281, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01756977

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the nature of defects in graphene by Raman spectroscopy, Nano letters, vol.12, issue.8, pp.3925-3930, 2012.

, 1483,5 cm -1 apparaît sur les deux spectres, la bande à 1475 cm -1 est uniquement présente avec le CSA, tandis que la bande à 1509 cm -1 apparaît uniquement avec le FSA

, Les calculs DFT pour le décalage Raman du mode actif donnent un décalage spectral de + 6 cm -1 pour le premier état donneur et de -7 cm -1 pour le premier état accepteur (calcul sous vide). De plus, la simulation DFT de liaison avec SO3Cl donne une énergie de -1,3 eV accompagnée d'un décalage de la bande à 1480 cm -1 , ce qui indique un dopage p et une oxydation du fullerène. Ceci est cohérent avec les calculs DFT pour la molécule SO3 qui ne montre aucun transfert de charge, ce qui implique que l'atome de chlore est le porteur de la charge transférée

, évolution de la réaction chimique avec C60 + (C60 2 + ) avec l'acide chlorosulfonique (acide sulfurique fumant)

G. Pillet, D. Tristant, M. Berd, W. Bacsa, and P. Puech, Initial stage of C60 cation formation in superacids, Chemical Physics, vol.513, pp.13-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865321

M. D. Tzirakis and M. Orfanopoulos, Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology, Chem. Rev, vol.113, issue.7, pp.5262-5321, 2013.

P. Scharff, W. Bischof, S. Ebinal, C. Ehrhardt, R. Gerken et al., Oxidation of buckminsterfullerene C60 in brönsted-acids, Carbon, vol.32, issue.4, pp.709-714, 1994.

M. Ricco, D. Pontiroli, M. Mazzani, F. Gianferrari, M. Pagliari et al., Fullerenium Salts: A New Class of C60-Based Compounds, J. Am. Chem. Soc, vol.132, issue.6, pp.2064-2068, 2010.

G. P. Miller, M. A. Buretea, J. W. Swirczewski, and J. M. Mcconnachie, The Reactivity of C60 in Fuming Sulfuric and Chlorosulfonic Acids, MRS Online Proc. Lib. Archiv, p.349, 1994.

G. P. Miller, C. S. Hsu, H. Thomann, L. Y. Chiang, and M. Bernardo, Functionalizing C60 via Nucleophilic Trapping of its Radical Cations: 1. Alkoxylation and Arylation of C60; 2. Synthesis of Earmuff Ethers (Difulleroxyalkanes), MRS Online Proc. Lib. Archiv, p.247, 1992.

J. C. Chow, P. K. Ummat, and W. R. Datars, Oxidation of C60 by hexafluorides

, J. Phys.: Condens. Matter, vol.12, issue.39, p.8551, 2000.

C. A. Reed, K. C. Kim, R. D. Bolskar, and L. J. Mueller, Taming Superacids: Stabilization of the Fullerene Cations HC60 + and C60· +, Science, vol.289, issue.5476, pp.101-104, 2000.

B. Kern, D. Strelnikov, P. Weis, A. Böttcher, and M. M. Kappes, IR, NIR, and UV Absorption Spectroscopy of C60 2+ and C60 3+ in Neon Matrixes, J. Phys. Chem. Lett, vol.5, issue.3, pp.457-460, 2014.

F. Giacalone and N. Martin, Fullerene Polymers: Synthesis and Properties, Chem. Rev, vol.106, issue.12, pp.5136-5190, 2006.

C. A. Mirkin and W. B. Caldwell, Thin film, fullerene-based materials, Tetrahedron, vol.52, issue.14, pp.5113-5130, 1996.

G. Du?kesas and S. Larsson, Bond lengths and reorganization energies in fullerenes and their ions, Theor. Chem. Acc, vol.97, issue.1-4, pp.110-118, 1997.

C. H. Choi, M. Kertesz, and L. Mihaly, Vibrational Assignment of All 46 Fundamentals of C60 and C60 6-: Scaled Quantum Mechanical Results Performed in Redundant Internal Coordinates and Compared to Experiments, J. Phys. Chem. A, vol.104, issue.1, pp.102-112, 2000.

M. C. Martin, X. Du, J. Kwon, and L. Mihaly, Observation and assignment of silent and higher-order vibrations in the infrared transmission of C60 crystals, Phys. Rev. B, vol.50, issue.1, p.173, 1994.

S. Díaz-tendero, M. Alcamí, and F. Martín, Coulomb Stability Limit of Highly Charged C q+ 60

. Fullerenes, Phys. Rev. Lett, vol.95, issue.1, p.13401, 2005.

L. Y. Chiang, J. W. Swirczewski, C. S. Hsu, S. K. Chowdhury, S. Cameron et al., Multihydroxy additions onto C60 fullerene molecules, J. Chem. Soc. Chem. Commun, vol.24, pp.1791-1793, 1992.

A. Dawid, K. Górny, and Z. Gburski, The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study, Spectrochim Acta A: Mol. Biomol. Spectrosc, vol.136, pp.1993-1997, 2015.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Ab initio Phys. Rev. B, vol.47, pp.558-561, 1993.

G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphoussemiconductor transition in germanium, Ab initio Phys. Rev. B, vol.49, pp.14251-14269, 1994.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational materials science, vol.6, issue.1, pp.15-50, 1996.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

J. Klimes, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter, vol.22, issue.2, p.22201, 2009.

J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B, vol.83, p.195131, 2011.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater, vol.108, pp.1-5, 2015.

H. Kuzmany, M. Matus, B. Burger, and J. Winter, Raman Scattering in C60 fullerenes and fullerides, Adv. Mater, vol.6, issue.10, pp.731-745, 1994.

C. A. Reed and R. D. Bolskar, Discrete Fulleride Anions and Fullerenium Cations, Chem. Rev, vol.100, issue.3, pp.1075-1120, 2000.

F. Cataldo, S. Iglesias-groth, and A. Manchado, On the Radical Cation Spectra of Fullerenes and Fulleranes. Part 1: C60, C70,C76, C78 and C84, Fuller. Nanotub. Carbon Nanostruct, vol.20, issue.8, pp.656-671, 2012.

F. Cataldo, Spectroscopical study on C60 and C70 fullerene solutions in superacids, Spectrochim. Acta A: Mol. Biomol. Spectrosc, vol.51, issue.3, pp.405-414, 1995.

J. Winter, H. Kuzmany, A. Soldatov, P. A. Persson, P. Jacobsson et al., Charge transfer in alkali-metal-doped polymeric fullerenes, Phys. Rev. B, vol.54, issue.24, p.17486, 1996.

M. Krause, D. Deutsch, P. Janda, L. Kavan, and L. Dunsch, 60 s ont été utilisés. Les spectres ont été ajustés avec des fonctions lorentziennes symétriques (intensité [I], HWHM et nombre d'onde [?]). Les cartographies Raman ont été obtenues par ajustement automatique à l'aide du logiciel Matlab. Pour les cartographie Raman, nous extrayons cinq zones sélectionnées: (a) dans la zone irradiée, la zone «A»; (b) sur la couche de graphène suspendu située à 1,1 µm de la ligne de coupe, la zone «B»; (c) au bord de la micro-cavité, température ambiante dans un flux d'argon (300 sccm), vol.13, pp.159-166, 2005.

, Pour une couche supportée, les interactions avec le substrat limitent la déformation et la fonctionnalisation n'est possible que d'un côté. La figure (3.a) montre une carte ID / IG Raman obtenue par ajustement du spectre Raman du graphène suspendu au-dessus d'une micro-cavité (indiqué par une ligne noire) et soutenu ailleurs. Les spectres Raman associés à des zones spécifiques sont reportés à la figure (4.a). Dans la zone irradiée «A», l'intensité de la bande D est nettement supérieure à celle de la bande G. Sur la zone «B», le graphène suspendu est toujours très défectueux, comme l'indique l'intensité de la bande D. Au bord de la micro-cavité (zone "C"), la couche de graphène n, Les processus moléculaires associés aux interactions entre le faisceau d'électron et l'oxygène ne sont pas entièrement connus. L'irradiation de graphène par un faisceau d'électrons induit des défauts ponctuels

L. Valeurs-pour-la-zone-«b»-sur-le-graphène-suspendu-et-«d»-sur-le-graphène-supporté and . Différentes, Afin de vérifier si cette constatation est robuste, la carte du rapport ID/ID ? est montré sur la figure 5. En dehors de la micro-cavité, la valeur est en moyenne supérieure à celle sur la micro--cavité. Les graphène suspendus et supportés ont donc un comportement différent et peuvent par conséquent être représentés par les zones «B» et «D». Après recuit, l'intensité de la bande D est fortement réduite pour les zones «A», «B» et «D», tandis que la largeur de bande à mi-hauteur (HWHM) 1 µm de la coupe

G. Pillet, V. Freire-soler, M. N. Eroles, W. Bacsa, E. Dujardin et al., Reversibility of defect formation during oxygen-assisted electron-beam-induced etching of graphene, Journal of Raman Spectroscopy, vol.49, issue.2, pp.317-323, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01866089

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, p.666, 2004.

P. Venezuela, M. Lazzeri, and F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Phys. Rev. B, vol.84, p.35433, 2011.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett, p.3925, 2012.

Y. Y. Wang, J. Jiang, T. H. Lin, H. Y. Nan, C. W. Gao et al., Structural evolution in CVD graphene chemically oxidized by sulphuric acid, J. Raman Spectrosc, vol.46, p.283, 2015.

L. G. Cançado, A. Jorio, E. H. Martins-ferreira, F. Stavale, C. A. Achete et al., Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Lett, p.3190, 2011.

V. S. Prudkovskiy, K. P. Katin, M. M. Maslov, P. Puech, R. Yakimova et al., Efficient cleaning of graphene from residual lithographic polymers by ozone treatment, Carbon, vol.109, p.221, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01756979

Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga et al., Graphene Annealing : How Clean Can It Be?, Nano Lett, p.414, 2011.

G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotech, vol.3, issue.5, p.270, 2008.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao et al., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors, ACS Nano, vol.2, p.463, 2008.

J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys, p.113712, 2008.

H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B, vol.2010, issue.3, p.35416

J. L. Li, K. N. Kudin, M. J. Mcallister, R. K. Prud'homme, I. A. Aksay et al., Oxygen-Driven Unzipping of Graphitic Materials, Phys. Rev. Lett, issue.17, p.176101, 2006.

H. C. Schniepp, J. Li, M. J. Mcallister, H. Sai, M. Herrera-alonso et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B, p.8535, 2006.

A. Tiberj, M. Rubio-roy, M. Paillet, J. R. Huntzinger, P. Landois et al., & Zahab, A. A. Reversible optical doping of graphene, Scientific reports, 2013.

G. Gouadec, P. Colomban, and N. P. Bansal, Raman Study of Hi-Nicalon-Fiber-Reinforced Celsian Composites: I, Distribution and Nanostructure of Different Phases, J. Am. Ceram. Soc, vol.84, p.1136, 2001.

W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen et al., Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Lett, p.1645, 2010.

M. D. Fischbein and M. Drndi?, Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett, p.113107, 2008.

J. R. Rani, J. Lim, J. Oh, J. W. Kim, H. S. Shin et al., Epoxy to Carbonyl Group Conversion in Graphene Oxide Thin Films: Effect on Structural and Luminescent Characteristics, J. Phys. Chem. C, p.116, 2012.

J. Son, M. Choi, H. Choi, S. J. Kim, S. Kim et al., Structural evolution of graphene in air at the electrical breakdown limit, p.466, 2016.

D. Yoon, Y. W. Son, and H. Cheong, Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy, Nano Lett, p.3227, 2011.

A. Felten, A. Eckmann, J. J. Pireaux, R. Krupke, and C. Casiraghi, Controlled modification of mono-and bilayer graphene in O2, H2 and CF4 plasmas, Nanotechnology, p.355705, 2013.

D. C. Elias, R. R. Nair, T. M. Mohiuddin, S. V. Morozov, P. Blake et al., Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, vol.323, issue.5914, p.610, 2009.

A. Merlen, J. G. Buijnsters, and C. Pardanaud, A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons, vol.7, p.153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596681

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi et al., Doping Dependence of the Raman Spectrum of Defected Graphene, ACS Nano, vol.8, p.7432, 2014.

J. Hong, M. K. Park, E. J. Lee, D. Lee, D. S. Hwang et al., Origin of new broad Raman D and G peaks in annealed graphene, Sci. Rep, 2013.