.. .. Mécanismes-de-déformation,

, 3.3. Moyen d'amélioration des durées de vie sous sollicitations cycliques

. .. Sommaire-sommaire,

, Etude de l'amorçage de fissures en surface sous sollicitations cycliques, p.201

.. .. Essais, 2. Configurations microstructurales à l'amorçage des fissures surfaciques

, Analyse des orientations cristallographiques de la phase ?p aux sites d'amorçage

, Etude de l'amorçage de fissures subsurfaciques

, 2.2. Observations des sites d'amorçage des fissures subsurfaciques

. .. , 3.2. Trace du plan basal et facteur de Schmid du glissement basal, Caractérisation des sites d'amorçage des fissures subsurfaciques

, Etude du mécanisme d'amorçage de fissures

, 1.2.1. Configuration favorable à l'amorçage d'une fissure

, 2.2. Analyse du nombre de sites microstructuraux favorables à l'amorçage de fissure en fonction de la texture cristallographique

, Sites d'amorçage de fissures sous sollicitations cycliques

. .. , 2.2. Prédiction de l'amorçage de fissure sous sollicitations cycliques, Les relations avec les performances sous sollicitations cycliques

. .. Conclusion,

T. Ahmed and H. J. Rack, Phase transformations during cooling in ?+ ? titanium alloys, Mater. Sci. Eng. A, vol.243, pp.206-211, 1998.

A. Akhtar, Basal slip and twinning in ?-titanium single crystals, Metall. Trans. A, vol.6, p.1105, 1975.

A. Akhtar and E. Teghtsoonian, Prismatic slip in ?-titanium single crystals, Metall. Mater. Trans. A, vol.6, p.2201, 1975.

A. Ambard, L. Guétaz, F. Louchet, and D. Guichard, Role of interphases in the deformation mechanisms of an ?/? titanium alloy at 20 K, Mater. Sci. Eng. A, vol.319, issue.321, pp.2003-2010, 2001.

M. Anahid, M. K. Samal, and S. Ghosh, Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys, J. Mech. Phys. Solids, vol.59, pp.2157-2176, 2011.

C. Angelier, S. Bein, and J. Béchet, Building a continuous cooling transformation diagram of ?-CEZ alloy by metallography and electrical resistivity measurements, Metall. Mater. Trans. A, vol.28, pp.2467-2475, 1997.

S. Ankem and H. Margolin, Alpha-beta interface sliding in Ti-Mn alloys, Metall. Mater. Trans. A, vol.14, pp.500-503, 1983.

M. R. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, International Conference on Fatigue Damage of Structural Materials IV, vol.25, pp.145-147, 2003.

M. R. Bache, M. Cope, H. M. Davies, W. J. Evans, and G. Harrison, Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature, Int. J. Fatigue, vol.19, pp.83-88, 1997.

M. R. Bache, W. J. Evans, and H. M. Davies, Electron back scattered diffraction (EBSD) analysis of quasi-cleavage and hydrogen induced fractures under cyclic and dwell loading in titanium alloys, J. Mater. Sci, vol.32, pp.3435-3442, 1997.

,

P. J. Bania and D. Eylon, Fatigue crack propagation of titanium alloys under dwell-time conditions, Metall. Trans. A, vol.9, pp.847-855, 1978.

I. Bantounas, D. Dye, and T. C. Lindley, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V, Acta Mater, vol.57, pp.3584-3595, 2009.

L. Bao, C. Schuman, J. Lecomte, M. Philippe, X. Zhao et al., A Study of Twin Variant Selection and Twin Growth in Titanium, Adv. Eng. Mater, vol.13, pp.928-932, 2011.

B. Barkia, Viscoplasticité à l'ambiante du titane en relation avec ses teneurs en oxygène et hydrogène, 2014.

C. D. Barrett, H. El-kadiri, and M. A. Tschopp, Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium, J. Mech. Phys. Solids, vol.60, pp.2084-2099, 2012.

M. Battaini, E. V. Pereloma, and C. H. Davies, Orientation Effect on Mechanical Properties of Commercially Pure Titanium at Room Temperature, Metall. Mater. Trans. A, vol.38, pp.276-285, 2007.

G. J. Baxter, W. M. Rainforth, and L. Grabowski, TEM observations of fatigue damage accumulation at the surface of the near-? titanium alloy IMI 834, Acta Mater, vol.44, pp.24-33, 1996.

K. L. Biavant, S. Pommier, and C. Prioul, Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.527-545, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01636593

M. Brandes, Creep, Fatigue, and deformation of alpha and alpha-beta titanium alloys at ambient temperature, 2008.

M. C. Brandes, M. J. Mills, and J. C. Williams, The Influence of Slip Character on the Creep and Fatigue Fracture of an ? Ti-Al Alloy, Metall. Mater. Trans. A, vol.41, pp.3463-3472, 2010.

F. Bridier, Analyse expérimentale des modes de déformation et d'endommagement par fatigue à 20°C d'alliages de titane. Aspects cristallographiques à différentes échelles, 2006.

F. Bridier, D. L. Mcdowell, P. Villechaise, and J. Mendez, Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading, Int. J. Plast, vol.25, pp.1066-1082, 2009.

F. Bridier, P. Villechaise, and J. Mendez, Slip and fatigue crack formation processes in an ?/? titanium alloy in relation to crystallographic texture on different scales, Acta Mater, vol.56, pp.3951-3962, 2008.

F. Bridier, P. Villechaise, and J. Mendez, Analysis of the different slip systems activated by tension in a ?/? titanium alloy in relation with local crystallographic orientation, Acta Mater, vol.53, pp.555-567, 2005.

T. B. Britton, F. P. Dunne, and A. J. Wilkinson, On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals, Proc. R. Soc. Math. Phys. Eng. Sci, vol.471, 2015.

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, vol.1, pp.561-586, 1934.

P. Castany, F. Pettinari-sturmel, J. Crestou, J. Douin, and A. Coujou, Experimental study of dislocation mobility in a Ti-6Al-4V alloy, Acta Mater, vol.55, pp.6284-6291, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01886755

P. Castany, F. Pettinari-sturmel, J. Douin, and A. Coujou, TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy, Mater. Sci. Eng. A, vol.680, pp.85-91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01475460

P. Castany, F. Pettinari-sturmel, J. Douin, and A. Coujou, In situ transmission electron microscopy deformation of the titanium alloy Ti-6Al-4V: Interface behaviour, 14th International Conference on the Strength of Materials 483-484, pp.719-722, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01886758

R. Castro and L. Séraphin, Contribution à l'étude métallographique et structurale de l'alliage de titane ta6v, 1966.

C. Cayron, ARPGE : a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data, J. Appl. Crystallogr, vol.40, pp.1183-1188, 2007.

K. S. Chan, A micromechanical analysis of the yielding behavior of individual widmanstätten colonies of an ? + ? titanium alloy, Metall. Mater. Trans. A, vol.35, pp.3409-3422, 2004.

D. R. Chichili, K. T. Ramesh, and K. J. Hemker, The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling, Acta Mater, vol.46, pp.1025-1043, 1998.

A. T. Churchman and A. Edward, The slip modes of titanium and the effect of purity on their occurrence during tensile deformation of single crystals, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.226, pp.216-226, 1954.

F. Coghe, W. Tirry, L. Rabet, D. Schryvers, and P. Van-houtte, Importance of twinning in static and dynamic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure, Mater. Sci. Eng. A, vol.537, pp.1-10, 2012.

H. Conrad, THERMALLY ACTIVATED DEFORMATION OF ? TITANIUM BELOW 0.4 TM, Can. J. Phys, vol.45, pp.581-590, 1967.

F. A. Crossley and H. D. Kessler, Titanium base alloy, 1959.

M. A. Cuddihy, A. Stapleton, S. Williams, and F. P. Dunne, On cold dwell facet fatigue in titanium alloy aero-engine components, Int. J. Fatigue, vol.97, pp.177-189, 2017.

D. L. Davidson and D. Eylon, Titanium alloy fatigue fracture facet investigation by selected area electron channeling, Metall. Trans. A, vol.11, pp.837-843, 1980.

X. Demulsant and J. Mendez, Influence of environment on low cycle fatigue damage in Ti6Al4V and Ti 6246 titanium alloys, Mater. Sci. Eng. A, vol.219, pp.202-211, 1996.

F. P. Dunne and D. Rugg, On the mechanisms of fatigue facet nucleation in titanium alloys, Fatigue Fract. Eng. Mater. Struct, vol.31, pp.949-958, 2008.

F. P. Dunne, D. Rugg, and A. Walker, Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys, Int. J. Plast, vol.23, pp.1061-1083, 2007.

T. Duval, Analyse multi-échelles des relations microstructure/propriétés mécaniques sous sollicitation monotone et cyclique des alliages de titane -métastable, Thèse ENSMA Poitiers, vol.262, 2014.

M. P. Echlin, J. C. Stinville, V. M. Miller, W. C. Lenthe, and T. M. Pollock, Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium, Acta Mater, vol.114, pp.164-175, 2016.

N. Escale, Etude par Microscopie Electronique en Transmission des microstructures et des micromécanismes de déformation d'alliages de titane béta-métastables, 2015.

J. D. Eshelby, F. C. Frank, and F. R. Nabarro, XLI. The equilibrium of linear arrays of dislocations, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.42, pp.351-364, 1951.

W. J. Evans, Dwell-sensitive fatigue in a near alpha-titanium alloy, J. Mater. Sci. Lett, vol.6, pp.571-574, 1987.

W. J. Evans and M. R. Bache, Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685, Int. J. Fatigue, vol.16, pp.90194-90199, 1994.

W. J. Evans and C. R. Gostelow, The effect of hold time on the fatigue properties of a ?processed titanium alloy, Metall. Trans. A, vol.10, pp.1837-1846, 1979.

,

J. Everaerts, B. Verlinden, and M. Wevers, Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction, J. Microsc, vol.267, pp.57-69, 2017.

D. Eylon and J. A. Hall, Fatigue behavior of beta processed titanium alloy IMI 685, Metall. Trans. A, vol.8, pp.981-990, 1977.

A. Fatemi and D. F. Socie, A critical plane approach to multiaxial fatigue damage including outof-phase loading, Fatigue Fract. Eng. Mater. Struct, vol.11, pp.149-165, 1988.

X. Feaugas and M. Clavel, CYCLIC DEFORMATION BEHAVIOUR OF AN ?/? TITANIUM ALLOY-I. MICROMECHANISMS OF PLASTICITY UNDER VARIOUS LOADING PATHS, Acta Mater, vol.45, pp.2685-2701, 1997.

, , pp.406-411

, The Evaluation of Cold Dwell Fatigue in Ti-6242, 2007.

E. S. Fisher and C. J. Renken, Single-Crystal Elastic Moduli and the hcp ? bcc Transformation in Ti, Zr, and Hf, Phys. Rev, vol.135, pp.482-494, 1964.

,

A. Fitzner, D. G. Prakash, J. Q. Da-fonseca, M. Thomas, S. Zhang et al., The effect of aluminium on twinning in binary alpha-titanium, Acta Mater, vol.103, pp.341-351, 2016.

P. S. Follansbee and G. T. Gray, An analysis of the low temperature, low and high strain-rate deformation of Ti?6Al?4V, Metall. Trans. A, vol.20, pp.863-874, 1989.

,

I. Freiherr-von-thügen, Effet dwell : relation microstructure -microtexture -propriétés mécaniques de l'alliage de titane Ti6242, 2016.

M. Gerland, P. Lefranc, V. Doquet, and C. Sarrazin-baudoux, Deformation and damage mechanisms in an ?/? 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen, Mater. Sci. Eng. A, vol.507, pp.132-143, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00382004

A. Ghaderi and M. R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Mater, vol.59, pp.7824-7839, 2011.

Y. Guo, T. B. Britton, and A. J. Wilkinson, Slip band-grain boundary interactions in commercialpurity titanium, Acta Mater, vol.76, pp.1-12, 2014.

J. E. Hack and G. R. Leverant, The influence of microstructure on the susceptibility of titanium alloys to internal hydrogen embrittlement, Metall. Trans. A, vol.13, pp.1729-1738, 1982.

W. J. Harrison, M. T. Whittaker, and R. J. Lancaster, A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V, Mater. Sci. Eng. A, vol.574, pp.130-136, 2013.

V. Hasija, S. Ghosh, M. J. Mills, and D. S. Joseph, Deformation and creep modeling in polycrystalline Ti-6Al alloys, Acta Mater, vol.51, issue.03, pp.289-290, 2003.

D. He, J. Zhu, S. Zaefferer, and D. Raabe, Effect of retained beta layer on slip transmission in Ti-6Al-2Zr-1Mo-1V near alpha titanium alloy during tensile deformation at room temperature, Mater. Des, vol.56, pp.937-942, 1980.

,

S. Hémery, C. Lavogiez, A. Naït-ali, M. Guéguen, and P. Villechaise, Why do titanium alloys withstand more strain under dwell-fatigue than under fatigue loadings, Proc. 14th World Conf, 2020.

S. Hémery, A. Nait-ali, and P. Villechaise, Combination of in-situ SEM tensile test and FFTbased crystal elasticity simulations of Ti-6Al-4V for an improved description of the onset of plastic slip, Mech. Mater, vol.109, pp.1-10, 2017.

S. Hémery, P. Nizou, and P. Villechaise, In situ SEM investigation of slip transfer in Ti-6Al-4V: Effect of applied stress, Mater. Sci. Eng. A, vol.709, pp.277-284, 2018.

S. Hémery, C. Tromas, and P. Villechaise, Slip-stimulated grain boundary sliding in Ti-6Al-4 V at room temperature. Materialia 5, 100189, 2019.

S. Hémery and P. Villechaise, On the influence of ageing on the onset of plastic slip in Ti-6Al-4V at room temperature: Insight on dwell fatigue behavior, Scr. Mater, vol.130, pp.157-160, 2017.

S. Hémery and P. Villechaise, Comparison of slip system activation in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-2Sn-4Zr-6Mo under tensile, fatigue and dwell-fatigue loadings, Mater. Sci. Eng. A, vol.697, pp.177-183, 2017.

S. Hémery, P. Villechaise, and D. Mellier, On the Role of the Beta Phase on Slip Activity in Ti-6Al-4V Single Colonies, pp.1121-1128, 2016.

R. W. Hertzberg, R. P. Vinci, and J. L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 2012.

. Wiley, , p.9780470527801

S. K. Jha, C. J. Szczepanski, P. J. Golden, W. J. Porter, and R. John, Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V, Fatigue Damage of Structural Materials VIII, vol.42, pp.248-257, 2012.

,

I. P. Jones and W. B. Hutchinson, Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals, Acta Metall, vol.29, pp.90049-90052, 1981.

S. Joseph, I. Bantounas, T. C. Lindley, and D. Dye, Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si, Int. J. Plast, vol.100, pp.90-103, 2018.

H. Jousset, Viscoplasticité et microstructures d'un alliage de titane: effets de la température et de la vitesse de sollicitation, 2008.

M. Kasemer, M. P. Echlin, J. C. Stinville, T. M. Pollock, and P. Dawson, On slip initiation in equiaxed ?/? Ti-6Al-4V, Acta Mater, vol.136, pp.288-302, 2017.

,

M. E. Kassner, Y. Kosaka, and J. S. Hall, Low-cycle dwell-time fatigue in Ti-6242, Metall. Mater. Trans. A, vol.30, pp.2383-2389, 1999.

H. Ledbetter, H. Ogi, S. Kai, S. Kim, and M. Hirao, Elastic constants of body-centered-cubic titanium monocrystals, J. Appl. Phys, vol.95, pp.4642-4644, 2004.

S. W. Lee, S. Kim, W. Jo, W. Hong, W. Kim et al., Twinning and slip behaviors and microstructural evolutions of extruded Mg-1Gd alloy with rare-earth texture during tensile deformation, J. Alloys Compd, vol.791, pp.700-710, 2019.

P. Lefranc, Endommagement sous chargement cyclique avec temps de maintien de l'alliage de titane Ti-6242. Rôle de l'hydrogène interne, 2008.

P. Lefranc, C. Sarrazin-baudoux, and V. Doquet, Dwell-Fatigue Behaviour of a Beta-Forged Ti 6242 Alloy, Fracture of Nano and Engineering Materials and Structures, pp.171-172, 2006.

E. Levine, Deformation mechanisms in titanium at low temperatures, 1966.

, 2003. Titanium and Titanium Alloys: Fundamentals and Applications

H. Li, C. J. Boehlert, T. R. Bieler, and M. A. Crimp, Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V, pp.296-728, 2015.

K. , Philos. Mag, vol.95, pp.691-729

H. Li, C. J. Boehlert, T. R. Bieler, and M. A. Crimp, Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments, Philos. Mag, vol.92, pp.2923-2946, 2012.

,

P. D. Littlewood and A. J. Wilkinson, Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading, Int. J. Fatigue, vol.43, pp.111-119, 2012.

,

Y. Liu, P. Samimi, I. Ghamarian, D. A. Brice, D. E. Huber et al., Discovery via Integration of Experimentation and Modeling: Three Examples for Titanium Alloys, JOM, vol.67, pp.164-178, 2015.

D. Lunt, The effect of macrozones in Ti-6Al-4V on the strain localisation behavior, 2014.

D. Lunt, T. Busolo, X. Xu, J. Quinta-da-fonseca, and M. Preuss, Effect of nanoscale ?2 precipitation on strain localisation in a two-phase Ti-alloy, Acta Mater, vol.129, pp.72-82, 2017.

D. Lunt, J. Q. Da-fonseca, D. Rugg, and M. Preuss, Microscopic strain localisation in Ti-6Al-4V during uniaxial tensile loading, Mater. Sci. Eng. A, vol.680, pp.444-453, 2017.

J. Luster and M. A. Morris, Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships, Metall. Mater. Trans. A, vol.26, pp.1745-1756, 1995.

G. Lütjering, Influence of processing on microstructure and mechanical properties of (?+?) titanium alloys, Mater. Sci. Eng. A, vol.243, issue.97, pp.778-786, 1998.

G. Lütjering and J. C. Williams, , 2007.

Y. Ma, Q. Xue, H. Wang, S. Huang, J. Qiu et al., Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure, Mater. Charact, vol.132, pp.338-347, 2017.

,

I. Maclaren and M. Aindow, Analysis of the dislocation network at a low-angle near-twist boundary in zinc, Scr. Metall. Mater, vol.29, issue.93, p.90232, 1993.

K. May, Small scale testing of titanium alloys. Grad. Sch. Ohio State Univ, p.61, 2010.

F. Mcbagonluri, E. Akpan, C. Mercer, W. Shen, and W. O. Soboyejo, An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242, Mater. Sci. Eng. A, vol.405, pp.111-134, 2005.

D. L. Mcdowell, Simulation-based strategies for microstructure-sensitive fatigue modeling, The McEvily Symposium: Fatigue and Fracture of Traditional and Advanced Materials, TMS, pp.4-14, 2006.

,

D. L. Mcdowell and F. P. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int. J. Fatigue, Emerging Frontiers in Fatigue, vol.32, pp.1521-1542, 2010.

J. Mendez, On the effects of temperature and environment on fatigue damage processes in Ti alloys and in stainless steel, Mater. Sci. Eng. A, vol.263, pp.187-192, 1999.

M. A. Meyers, G. Subhash, B. K. Kad, and L. Prasad, Evolution of microstructure and shearband formation in ?-hcp titanium, Mech. Mater, vol.17, pp.175-193, 1994.

, , pp.90058-90060

S. Naka, A. Lasalmonie, P. Costa, and L. P. Kubin, The low-temperature plastic deformation of ?-titanium and the core structure of a-type screw dislocations, Philos. Mag. A, vol.57, pp.717-740, 1988.

R. K. Nalla, R. O. Ritchie, B. L. Boyce, J. P. Campbell, and J. O. Peters, Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures, Metall. Mater. Trans. A, vol.33, pp.899-918, 2002.

T. Neeraj, D. Hou, G. S. Daehn, and M. J. Mills, Phenomenological and microstructural analysis of room temperature creep in titanium alloys, Acta Mater, vol.48, pp.426-433, 2000.

T. Neeraj and M. J. Mills, Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.%Al alloy, Mater. Sci. Eng. A, vol.319, issue.321, pp.415-419, 2001.

T. Neeraj, M. F. Savage, J. Tatalovich, L. Kovarik, R. W. Hayes et al., Observation of tension-compression asymmetry in ? and titanium alloys, Philos. Mag, vol.85, pp.279-295, 2005.

S. Nemat-nasser, W. G. Guo, and J. Y. Cheng, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater, vol.47, pp.203-210, 1999.

S. L. Nyakana, J. C. Fanning, and R. R. Boyer, Quick Reference Guide for ? Titanium Alloys in the 00s, J. Mater. Eng. Perform, vol.14, pp.799-811, 2005.

D. Ozturk, A. L. Pilchak, and S. Ghosh, Experimentally validated dwell and cyclic fatigue crack nucleation model for ?-titanium alloys, Scr. Mater, vol.127, pp.15-18, 2017.

,

P. G. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Rev, vol.12, pp.169-194, 1967.

N. E. Paton and W. A. Backofen, Plastic deformation of titanium at elevated temperatures, Metall. Trans. 1, pp.2839-2847, 1970.

C. Pelissier, , 1996.

, Thèse Inst. Natl. Polytech. Grenoble

D. Peykov, E. Martin, R. R. Chromik, R. Gauvin, and M. Trudeau, Evaluation of strain rate sensitivity by constant load nanoindentation, J. Mater. Sci, vol.47, pp.7189-7200, 2012.

A. L. Pilchak, Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth, Scr. Mater, vol.68, pp.277-280, 2013.

A. L. Pilchak, A. Hutson, W. J. Porter, D. Buchanan, and R. John, On the Cyclic Fatigue and Dwell Fatigue Crack Growth Response of Ti-6Al-4V, Proceedings of the 13th World Conference on Titanium, pp.993-998, 2016.

A. L. Pilchak and J. C. Williams, Observations of Facet Formation in Near-? Titanium and Comments on the Role of Hydrogen, Metall. Mater. Trans. A, vol.42, pp.1000-1027, 2011.

P. J. Postans and R. H. Jeal, Dependence of crack growth performance upon structure in beta processed titanium alloys, Forg. Prop. Aerosp. Mater, pp.192-198, 1978.

M. H. Pourian, F. Bridier, P. Pilvin, and P. Bocher, Prediction of crack initiation sites in alpha Ti-alloys microstructures under dwell-fatigue using Cellular Automaton simulation method, Int. J. Fatigue, vol.85, pp.85-97, 2016.

D. G. Prakash, R. Ding, R. J. Moat, I. Jones, P. J. Withers et al., Deformation twinning in Ti-6Al-4V during low strain rate deformation to moderate strains at room temperature, Mater. Sci. Eng. A, vol.527, pp.5734-5744, 2010.

,

C. P. Przybyla and D. L. Mcdowell, Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti-6Al-4V, Int. J. Plast., Special Issue In Honor of Nobutada Ohno, vol.27, pp.1871-1895, 2011.

J. Qiu, Y. Ma, J. Lei, Y. Liu, A. Huang et al., A Comparative Study on Dwell Fatigue of Ti-6Al-2Sn-4Zr-xMo, 2014.

, Metall. Mater. Trans. A, vol.45, pp.6075-6087

R. E. Reed-hill, C. V. Iswaran, and M. J. Kaufman, A power law model for the flow stress and strain-rate sensitivity in CP titanium, Scr. Metall. Mater, vol.33, pp.157-162, 1995.

T. Sakai and M. E. Fine, Plastic deformation of Ti-Al single crystals in prismatic slip, Acta Metall, vol.22, pp.1359-1372, 1974.

F. Sansoz and H. Ghonem, Fatigue crack growth mechanisms in Ti6242 lamellar microstructures: Influence of loading frequency and temperature, Metall. Mater. Trans. A, vol.34, pp.2565-2577, 2003.

M. F. Savage, J. Tatalovich, and M. J. Mills, Anisotropy in the room-temperature deformation of ?-? colonies in titanium alloys: role of the ?-? interface, Philos. Mag, vol.84, pp.1127-1154, 2004.

M. F. Savage, J. Tatalovich, M. Zupan, K. J. Hemker, and M. J. Mills, Deformation mechanisms and microtensile behavior of single colony Ti-6242Si, Mater. Sci. Eng. A, vol.319, issue.321, pp.398-403, 2001.

E. Schmid and W. Boas, Kristallelastizität, Kristallplastizität: Mit Besonderer Berücksichtigung der Metalle, 1935.

H. Springer-berlin, , pp.15-24

J. R. Seal, M. A. Crimp, T. R. Bieler, and C. J. Boehlert, Analysis of slip transfer and deformation behavior across the ?/? interface in Ti-5Al-2.5Sn (wt.%) with an equiaxed microstructure, 2012.

, Mater. Sci. Eng. A, vol.552, pp.61-68

W. Shen, W. O. Soboyejo, and A. B. Soboyejo, An investigation on fatigue and dwell-fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo-0.1Si, Mech. Mater., Fatigue of Advanced Materials, vol.36, pp.117-140, 2004.

V. Sinha, M. J. Mills, and J. C. Williams, Determination of crystallographic orientation of dwellfatigue fracture facets in Ti-6242 alloy, J. Mater. Sci, vol.42, pp.8334-8341, 2007.

V. Sinha, M. J. Mills, and J. C. Williams, Crystallography of fracture facets in a near-alpha titanium alloy, Metall. Mater. Trans. A, vol.37, pp.2015-2026, 2006.

V. Sinha, M. J. Mills, and J. C. Williams, Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy, Metall. Mater. Trans. A, vol.35, pp.3141-3148, 2004.

V. Sinha, M. J. Mills, J. C. Williams, and J. E. Spowart, Observations on the faceted initiation site in the dwell-fatigue tested ti-6242 alloy: Crystallographic orientation and size effects, 2006.

, Metall. Mater. Trans. A, vol.37, pp.1507-1518

V. Sinha, A. L. Pilchak, S. K. Jha, W. J. Porter, R. John et al., Correlating Scatter in Fatigue Life with Fracture Mechanisms in Forged Ti-6242Si Alloy, Metall. Mater. Trans. A, vol.49, pp.1061-1078, 2018.

V. Sinha, R. B. Schwarz, M. J. Mills, and J. C. Williams, Effects of hydrogen on fatigue behavior of near-alpha titanium alloys, Scr. Mater, vol.153, pp.81-85, 2018.

,

Z. Song and D. W. Hoeppner, Dwell time effects on the fatigue behaviour of titanium alloys, Int. J. Fatigue, vol.10, pp.211-218, 1988.

A. N. Stroh and N. F. Mott, The formation of cracks as a result of plastic flow, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.223, pp.404-414, 1954.

C. A. Stubbington and S. Pearson, Effect of dwell on the growth of fatigue cracks in Ti-6Al-4V alloy bar, Eng. Fract. Mech, vol.10, pp.90030-90039, 1978.

S. Suri, G. B. Viswanathan, T. Neeraj, D. Hou, and M. J. Mills, Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an ?/? titanium alloy, Acta Mater, vol.47, pp.364-368, 1999.

T. Tanaka and H. Conrad, Deformation kinetics for {1010}?1120? slip in titanium single crystals below 0.4Tm, Acta Metall, vol.20, issue.72, pp.90136-90144, 1972.

L. Toubal, P. Bocher, and A. Moreau, Dwell-fatigue life dispersion of a near alpha titanium alloy, Int. J. Fatigue, vol.31, pp.601-605, 2009.

P. O. Tympel, T. C. Lindley, E. A. Saunders, M. Dixon, and D. Dye, Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V, Acta Mater, vol.103, pp.77-88, 2016.

E. Uta, N. Gey, P. Bocher, M. Humbert, and J. Gilgert, Texture heterogeneities in ?p/?s titanium forging analysed by EBSD-Relation to fatigue crack propagation, J. Microsc, vol.233, pp.451-459, 2009.

F. Wang, B. Li, T. T. Gao, P. Huang, K. W. Xu et al., Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti, Proceedings of the 8th Asian-European International Conference on Plasma Surface Engineering, vol.228, pp.254-256, 2011.

L. Wang, Y. Yang, P. Eisenlohr, T. R. Bieler, M. A. Crimp et al., Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium, Metall. Mater. Trans. A, vol.41, p.421, 2009.

X. Wang, P. Vo, M. Jahazi, and S. Yue, Dwell Fatigue Microstructure in a Near-? Titanium Alloy, Metall. Mater. Trans. A, vol.38, pp.831-839, 2007.

G. Welsch and W. Bunk, Deformation modes of the ?-phase of ti-6al-4v as a function of oxygen concentration and aging temperature, Metall. Trans. A, vol.13, pp.889-899, 1982.

J. C. Williams, R. G. Baggerly, and N. E. Paton, Deformation behavior of HCP Ti-Al alloy single crystals, Metall. Mater. Trans. A, vol.33, pp.837-850, 2002.

G. Q. Wu, C. L. Shi, W. Sha, A. X. Sha, and H. R. Jiang, Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys, Mater. Des, vol.46, pp.668-674, 2013.

Z. W. Wyatt, W. J. Joost, D. Zhu, and S. Ankem, Deformation mechanisms and kinetics of timedependent twinning in an ?-titanium alloy, Int. J. Plast, vol.39, pp.119-131, 2012.

M. H. Yoo and J. K. Lee, Deformation twinning in h.c.p. metals and alloys, Philos. Mag. A, vol.63, pp.987-1000, 1991.

S. Zaefferer, A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture, Mater. Sci. Eng. A, vol.344, pp.20-30, 2003.

W. D. Zeng and Y. G. Zhou, The influence of microstructure on dwell sensitive fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy, Mater. Sci. Eng. A, vol.290, pp.33-38, 2000.

, , pp.941-943

C. M. Zhang and F. P. Dunne, On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue, Proc. R. Soc. Math. Phys. Eng. Sci, vol.471, 2015.

Z. Zhang, T. Jun, T. B. Britton, and F. P. Dunne, Intrinsic anisotropy of strain rate sensitivity in single crystal alpha titanium, Acta Mater, vol.118, pp.317-330, 2016.

Z. Zheng, D. S. Balint, and F. P. Dunne, Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys, Int. J. Plast, vol.87, pp.15-31, 2016.