. .. Materiel,

. .. Origine-des-reactifs,

. .. Methodes-experimentales, . Experiences-sur-l'activite, . Des, and ;. .. Reductases, 120 2.1

. Experiences, . Fluorescence, . Le, and . Orange,

. Experiences, . De, and . .. Cellulaire,

M. Abukhader, J. Heap, C. De-matteis, B. Kellam, S. W. Doughty et al., Binding of the Anticancer Prodrug CB1954 to the Activating Enzyme NQO2 Revealed by the Crystal Structure of Their Complex, vol.48, pp.7714-7719, 2005.

Z. I. ?-alam, A. Jenner, S. E. Daniel, A. J. Lees, N. Cairns et al., Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra, Journal of Neurochemistry, vol.69, issue.3, pp.459-509, 1997.

J. K. ?-andersen, Oxidative stress in neurodegeneration: cause or consequence, Nature Medicine, vol.10, pp.18-25, 2004.

M. Antoine, E. Marcheteau, P. Delagrange, G. Ferry, and J. A. Boutin, Characterization of cofactors, substrates and inhibitor binding to flavoenzyme quinone reductase 2 by automated supramolecular nano-electrospray ionization mass spectrometry, International Journal of Mass Spectrometry, vol.312, pp.87-96, 2012.

P. Anzenbacher and E. Anzenbacherová, Cellular and molecular life sciences: CMLS, Cytochromes P450 and metabolism of xenobiotics, vol.58, pp.737-747, 2001.

B. S. Appleby and J. L. Cummings, Discovering new treatments for Alzheimer's disease by repurposing approved medications, Current Topics in Medicinal Chemistry, vol.13, issue.18, pp.2306-2327, 2013.

C. Arriagada, I. Paris, M. J. Sanchez-de-las-matas, P. Martinez-alvarado, S. Cardenas et al., On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation, Neurobiology of Disease, vol.16, issue.2, pp.468-477, 2004.

S. H. Audi, R. D. Bongard, C. A. Dawson, D. Siegel, D. L. Roerig et al., Duroquinone reduction during passage through the pulmonary circulation, vol.285, pp.1116-1131, 2003.

S. Baez, J. Segura-aguilar, M. Widersten, A. S. Johansson, and B. Mannervik, Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes, The Biochemical Journal, vol.324, pp.25-28, 1997.

O. Bandmann, M. G. Sweeney, S. E. Daniel, C. D. Marsden, and N. W. Wood, Mitochondrial DNA polymorphisms in pathologically proven Parkinson's disease, vol.244, pp.262-265, 1997.

K. J. Barnham, C. L. Masters, and A. I. Bush, 205. Neurodegenerative diseases and oxidative stress, vol.3, 2004.

C. L. Baum, J. Selhub, and I. H. Rosenberg, The hydrolysis of nicotinamide adenine nucleotide by brush border membranes of rat intestine, Biochemical Journal, vol.204, issue.1, pp.203-207, 1982.

C. E. Benoit, S. Bastianetto, J. Brouillette, Y. Tse, J. A. Boutin et al., Loss of Quinone Reductase 2 Function Selectively Facilitates Learning Behaviors, Journal of Neuroscience, issue.38, pp.12690-12700, 2010.

M. A. Bianchet, S. B. Erdemli, and L. M. Et-amzel, Structure, function, and mechanism of cytosolic quinone reductases, Vitamins and Hormones, vol.78, pp.63-84, 2008.

M. A. Bianchet, M. Faig, and L. M. Amzel, Structure and mechanism of NAD[P]H:quinone acceptor oxidoreductases (NQO), Methods in Enzymology, vol.382, pp.82009-82012, 2004.

J. Blesa, I. Trigo-damas, A. Quiroga-varela, and V. R. Jackson-lewis, Oxidative stress and Parkinson's disease, Frontiers in Neuroanatomy, vol.9, p.91, 2015.

D. Blum, S. Torch, N. Lambeng, M. Nissou, A. L. Benabid et al., Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease, Progress in Neurobiology, vol.65, issue.2, pp.135-172, 2001.

D. Blum, S. Torch, M. F. Nissou, A. L. Benabid, and J. M. Verna, Extracellular toxicity of 6-hydroxydopamine on PC12 cells, Neuroscience Letters, vol.283, issue.3, pp.948-952, 2000.

J. A. Boutin, F. Bouillaud, E. Janda, I. Gacsalyi, G. Guillaumet et al., S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization, vol.95, pp.269-285, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02334766

J. A. Boutin, F. Chatelain-egger, F. Vella, P. Delagrange, and G. Ferry, Quinone reductase 2 substrate specificity and inhibition pharmacology, Chemico-Biological Interactions, vol.151, issue.3, pp.213-228, 2005.

J. A. Boutin, F. Meunier, P. H. Lambert, P. Hennig, D. Bertin et al., vivo and in vitro glucuronidation of the flavonoid diosmetin in rats, vol.21, pp.1157-1166, 1993.

W. H. Brown, B. L. Iverson, E. Anslyn, and C. S. Foote, Organic Chemistry, vol.8, pp.978-1305580350, 2017.

A. Brunmark and E. Cadenas, Redox and addition chemistry of quinoid compounds and its biological implications, Free Radical Biology and Medicine, vol.7, issue.4, pp.90126-90129, 1989.

P. Bubber, V. Haroutunian, G. Fisch, J. P. Blass, and G. E. Et-gibson, Mitochondrial abnormalities in Alzheimer brain: mechanistic implications, vol.57, pp.695-703, 2005.

L. Buryanovskyy, Y. Fu, M. Boyd, Y. Ma, T. Hsieh et al., Crystal Structure of Quinone Reductase 2 in Complex with Resveratrol, Z. Biochemistry, issue.36, pp.11417-11426, 2004.

B. Calamini, B. D. Santarsiero, J. A. Boutin, and A. D. Mesecar, Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2, The Biochemical Journal, vol.413, issue.1, pp.81-91, 2008.

L. E. Cassagnes, P. Perio, G. Ferry, N. Moulharat, M. Antoine et al., In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones, Free Radical Biology and Medicine, vol.89, pp.126-134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01611269

L. E. Cassagnes, N. Rakotoarivelo, S. Sirigu, P. Pério, E. Najahi et al., 210. Role of Quinone Reductase 2 in the Antimalarial Properties of Indolone-Type Derivatives, vol.22, 2017.

G. Cenini, A. Lloret, R. Cascella, O. Medicine, and C. Longevity, Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View, p.18, 2019.

S. Chen, K. Wu, and R. Knox, Structurefunction studies of DT-diaphorase (NQO1) and NRH:quinone oxidoreductase (NQO2), vol.29, pp.276-284, 2000.

Y. Choi, K. Jermihov, S. J. Nam, M. Sturdy, K. Maloney et al., Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS, Analytical chemistry, vol.83, issue.3, pp.1048-1052, 2011.

P. Chomarat, F. Cogé, S. P. Guénin, F. Mailliet, F. Vella et al., Cellular knock-down of quinone reductase 2: A laborious road to successful inhibition by RNA interference, vol.89, pp.1264-1275, 2007.

?. Chowdhry, S. Zanca, C. Rajkumar, U. Koga, T. Diao et al., NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling, Nature, vol.569, issue.7757, pp.570-575, 2019.

G. M. Cole and . Neurone, Ironic fate: can a banned drug control metal heavies in neurodegenerative diseases, vol.37, pp.889-890, 2003.

M. ?-d'ischia and C. Costantini, Nitric oxideinduced nitration of catecholamine neurotransmitters: A key to neuronal degeneration?, Bioorganic & Medicinal Chemistry, vol.3, issue.7, pp.923-927, 1995.

?. Dagnino-subiabre, A. Cassels, B. K. Baez, S. Johansson, A. S. Mannervik et al., Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones, J. Biochemical and Biophysical Research Communications, vol.274, issue.1, pp.32-36, 2000.

C. Daveu, C. Servy, M. Dendane, P. Marin, C. N. Ducrocq et al., Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide, Biology and Chemistry, vol.1, issue.3, pp.234-243, 1997.

?. David, D. C. Hauptmann, S. Scherping, I. Schuessel, K. Keil et al., Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice, The Journal of Biological Chemistry, vol.280, issue.25, pp.23802-23814, 2005.

?. De-la-bretèche, M. L. Servy, C. Lenfant, M. Ducrocq, and C. , Nitration of catecholamines with nitrogen oxides in mild conditions: a hypothesis for the reactivity of NO in physiological systems, Tetrahedron Letters, vol.35, issue.39, pp.7231-7232, 1994.

S. Derick, C. Gironde, P. Perio, K. Reybier, F. Nepveu et al., LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells, C. Scientific Reports, vol.7, issue.1, p.18069, 2017.

D. T. Dexter, F. R. Wells, A. J. Lees, F. Agid, Y. Agid et al., Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease, Journal of Neurochemistry, vol.52, issue.6, pp.1830-1836, 1989.

?. Díaz-véliz, G. Mora, S. Dossi, M. T. Gómez, P. Arriagada et al., Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra, vol.73, pp.923-924, 2002.

?. Dikalov, S. Griendling-kathy, K. Et-harrison-david, and G. , Measurement of Reactive Oxygen Species in Cardiovascular Studies, Hypertension, vol.49, issue.4, pp.717-727, 2007.

Y. M. Ding, J. D. Jaumotte, A. P. Signore, and M. Et-zigmond, Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor, J. Journal of Neurochemistry, vol.89, issue.3, pp.776-787, 2004.

?. Dinkova-kostova, A. T. Talalay, and P. , NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector, Archives of Biochemistry and Biophysics, vol.501, issue.1, pp.116-123, 2010.

?. Dufour, M. Yan, C. Siegel, D. Colucci, M. A. Jenner et al., Mechanism-based inhibition of quinone reductase 2 (NQO2): selectivity for NQO2 over NQO1 and structural basis for flavoprotein inhibition, European Journal of Chemical Biology, vol.12, issue.8, pp.1203-1208, 2011.

, ? EC 1.6.5.2. IUBMB Enzyme Nomenclature. Format HTML

, ? EC 1.6.99.2. IUBMB Enzyme Nomenclature. Format HTML, disponible sur

, ? EC 1.10.5.1. IUBMB Enzyme Nomenclature. Format HTML, disponible sur

L. Ernster, L. Danielson, and M. Et-ljunggren, Dt diaphorase I. Purification from the soluble fraction of rat-liver cytoplasm, and properties, Biochimica et Biophysica Acta, vol.58, issue.2, pp.90997-91003, 1962.

L. Ernster and F. Navazio, Soluble diaphorase in animal tissues, Acta Chemica Scandinavica, vol.12, issue.3, pp.595-602, 1958.

S. ?-fahn and G. Cohen, The oxidant stress hypothesis in Parkinson's disease: evidence supporting it, Annals of Neurology, vol.32, issue.6, pp.804-812, 1992.

M. Faig, M. A. Bianchet, P. Talalay, S. Chen, S. Winski et al., Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: Species comparison and structural changes with substrate binding and release, pp.3177-3182, 2000.

?. Ferry, G. Hecht, S. Berger, S. Moulharat, N. Coge et al., Old and new inhibitors of quinone reductase 2, vol.186, pp.103-109, 2010.

F. Filloux and . Townsend, Pre-and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection, J. J. Experimental Neurology, vol.119, issue.1, pp.79-88, 1993.

L. Formentini, F. Moroni, and A. Chiarugi, Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo, Biochemical Pharmacology, vol.77, issue.10, pp.1612-1620, 2009.

C. E. Foster, M. A. Bianchet, P. Talalay, M. Faig, and L. M. Amzel, Structures of mammalian cytosolic quinone reductases, vol.29, pp.241-245, 2000.

C. E. Foster, M. A. Bianchet, P. Talalay, Q. Zhao, and L. M. Amzel, Crystal Structure of Human Quinone Reductase Type, vol.38, issue.31, pp.9881-9886, 1999.

?. Franco-iborra, S. Vila, M. Perier, and C. , The Parkinson Disease Mitochondrial Hypothesis: Where Are We at, The Neuroscientist: A Review Journal Bringing Neurobiology, vol.22, issue.3, pp.266-277, 2016.

Y. Fu, L. Buryanovskyy, and . Zhang, Quinone Reductase 2 Is a Catechol Quinone Reductase, Z. Journal of Biological Chemistry, vol.283, issue.35, pp.23829-23835, 2008.

N. W. Gaikwad, L. Yang, E. G. Rogan, E. L. Cavalieri, and . Free, Evidence for NQO2-mediated reduction of the carcinogenic estrogen orthoquinones, Radical Biology and Medicine, vol.46, issue.2, pp.253-262, 2009.

S. Gandhi and A. Y. Abramov, Mechanism of Oxidative Stress in Neurodegeneration, Oxidative Medicine and Cellular Longevity, p.428010, 2012.

D. G. Graham, S. M. Tiffany, W. R. Bell, and W. F. Gutknecht, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Molecular Pharmacology, vol.14, issue.4, pp.644-653, 1978.

R. ?-graumann, I. Paris, P. Martinez-alvarado, P. Rumanque, C. Perez-pastene et al., Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson's disease, J. Polish Journal of Pharmacology, vol.54, issue.6, pp.573-579, 2002.

E. D. Hall, M. R. Detloff, K. Johnson, and N. C. Kupina, Journal of Neurotrauma, vol.21, issue.1, pp.9-20, 2004.

, Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury

R. A. Halverson, J. Lewis, S. Frausto, M. Hutton, and N. A. Muma, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.25, issue.5, pp.1226-1233, 2005.

T. Hashimoto and M. Nakai, Increased hippocampal quinone reductase 2 in Alzheimer's disease, Neuroscience Letters, vol.502, issue.1, pp.10-12, 2011.

T. G. Hastings, D. A. Lewis, and M. J. Zigmond, Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections, vol.93, pp.1956-1961, 1996.

D. N. Hauser and T. G. Hastings, Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism, Neurobiology of Disease, vol.51, pp.35-42, 2013.

L. ?-he, T. He, S. Farrar, L. Ji, T. Liu et al., Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species, Cellular Physiology and Biochemistry, vol.44, issue.2, pp.532-553, 2017.

E. Ito, K. Oka, R. Etcheberrigaray, T. J. Nelson, D. L. Mcphie et al., Internal Ca 2+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proceedings of the National Academy of Sciences of the United States of America, vol.91, pp.534-538, 1994.

T. Iyanagi and I. Yamazaki, One-electron-transfer reactions in biochemical systems V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DTdiaphorase), Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.216, issue.2, pp.282-294, 1970.

A. K. Jaiswal, Human NAD(P)H:quinone oxidoreductase2. Gene structure, activity, and tissue-specific expression, Journal of Biological Chemistry, vol.269, issue.20, pp.14502-14508, 1994.

A. K. Jaiswal, D. W. Bell, V. Radjendirane, and J. R. Testa, Localization of human NQO1 gene to chromosome 16q22 and NQO2-6p25 and associated polymorphisms, Pharmacogenetics, vol.9, issue.3, pp.413-418, 1999.

D. Jamieson, A. T. Tung, R. J. Knox, and A. V. Boddy, Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating cofactor, British Journal of Cancer, vol.95, issue.9, pp.1229-1233, 2006.

L. Jefti? and G. Manning, A survey on the electrochemical reduction of quinones, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.26, issue.2, pp.195-200, 1970.

P. Jenner, C. W. Olanow, and . Neurology, Oxidative stress and the pathogenesis of Parkinson's disease, pp.161-170, 1996.

B. ?-kalyanaraman, P. I. Premovic, and R. C. Sealy, Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study, Journal of Biological Chemistry, vol.262, issue.23, pp.11080-11087, 1987.

H. Kappus, H. Sies, and . Experientia, Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation, vol.37, pp.1233-1241, 1981.

D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo et al., Genetic or Pharmacological Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo: A Novel Therapy for Parkinson's Disease, vol.37, pp.899-909, 2003.

R. J. Knox, T. C. Jenkins, S. M. Hobbs, S. Chen, R. G. Melton et al., Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate, J. Cancer Research, vol.60, issue.15, pp.4179-4186, 2000.

A. Kovalchuk, R. Rodriguez-juarez, Y. Ilnytskyy, B. Byeon, S. Shpyleva et al., Sex-specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus -an aging connection, Aging Albany NY, vol.8, issue.4, pp.697-708, 2016.

J. Kovalevich and D. Langford, Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology, Methods in molecular biology, vol.1078, pp.9-21, 2013.

S. D. Krämer and B. Testa, The biochemistry of drug metabolism--an introduction: part 6. Inter-individual factors affecting drug metabolism, Chemistry & Biodiversity, vol.5, issue.12, pp.2465-2578, 2008.

S. D. Krämer and B. Testa, The biochemistry of drug metabolism--an introduction: part 7. Intra-individual factors affecting drug metabolism, Chemistry & Biodiversity, vol.6, issue.10, pp.1477-1660, 2009.

J. J. Kwiek, T. A. Haystead, and . Rudolph, Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines, J. Biochemistry, vol.43, issue.15, pp.4538-4547, 2004.

?. Les, F. Deleruyelle, S. Cassagnes, L. E. Boutin, J. A. Balogh et al., Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties, Chemico-Biological Interactions, vol.258, pp.115-125, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611272

K. ?-levsen, H. Schiebel, B. Behnke, R. Dötzer, W. Dreher et al., Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview, Journal of Chromatography. A, pp.55-72, 2005.

A. ?-lewén, P. Matz, and P. H. Chan, Free radical pathways in CNS injury, Journal of Neurotrauma, vol.17, issue.17, pp.871-890, 2000.

S. Liao and H. G. Williams-ashman, Enzymatic oxidation of some non-phosphorylated derivatives of dihydronicotinamide, vol.4, pp.208-213, 1961.

M. T. Lin and M. F. Beal, 787. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, vol.443, 2006.

D. J. Long, K. Iskander, A. Gaikwad, M. Arin, D. R. Roop et al., Disruption of Dihydronicotinamide Riboside:Quinone Oxidoreductase 2 (NQO2) Leads to Myeloid Hyperplasia of Bone Marrow and Decreased Sensitivity to Menadione Toxicity, Journal of Biological Chemistry, vol.277, issue.48, pp.46131-46139, 2002.

D. J. Long and A. K. Jaiswal, NRH:quinone oxidoreductase2 (NQO2), vol.129, pp.99-112, 2000.

?. López-alarcón, C. Denicola, and A. , Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays, Analytica Chimica Acta, vol.763, pp.1-10, 2013.

R. Losito, C. A. Owen, and E. V. Flock, Biochemistry, vol.6, issue.1, pp.62-68, 1967.

*. Menadione and . Doi,

H. Macarthur, M. B. Mattammal, and T. C. Westfall, A New Perspective on the Inhibitory Role of Nitric Oxide in Sympathetic Neurotransmission, vol.216, pp.686-692, 1995.

F. Mailliet, G. Ferry, F. Vella, S. Berger, F. Cogé et al., Characterization of the melatoninergic MT3 binding site on the NRH:quinone oxidoreductase 2 enzyme, vol.71, pp.74-88, 2005.

F. Mailliet, G. Ferry, F. Vella, K. Thiam, P. Delagrange et al., Organs from mice deleted for NRH:quinone oxidoreductase 2 are deprived of the melatonin binding site MT 3, J. A. FEBS Letters, vol.578, issue.1-2, pp.116-120, 2004.

P. Manini, L. Panzella, A. Napolitano, and M. Ischia, A novel hydrogen peroxide-dependent oxidation pathway of dopamine via 6-hydroxydopamine, Tetrahedron, vol.59, issue.13, pp.2215-2221, 2003.

Y. Matsuoka, M. Picciano, J. La-francois, K. Duff, and . Neuroscience, Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease, vol.104, pp.609-613, 2001.

M. P. Mattson, Pathways towards and away from Alzheimer's disease, vol.430, pp.631-639, 2004.

B. Mayer and B. Hemmens, Biosynthesis and action of nitric oxide in mammalian cells, Trends in Biochemical Sciences, vol.22, issue.12, pp.477-481, 1997.

S. Michaelis, A. Marais, A. K. Schrey, O. Y. Graebner, C. Schaudt et al., Journal of Medicinal Chemistry, vol.55, issue.8, pp.3934-3944, 2012.

T. P. ?-miettinen and M. Björklund, NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen, vol.11, pp.4395-4404, 2014.

K. Mohana and A. Achary, Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance, Drug Metabolism Reviews, vol.49, issue.3, pp.318-337, 2017.

T. J. Monks, R. P. Hanzlik, G. M. Cohen, D. Ross, and D. G. Graham, Toxicology and Applied Pharmacology, vol.112, issue.1, p.90273, 1992.

T. J. Monks and D. C. Jones, The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers, Current Drug Metabolism, vol.3, issue.4, pp.425-438, 2002.

H. E. Moon and S. H. Et-paek, Mitochondrial Dysfunction in Parkinson's Disease, vol.24, pp.103-116, 2015.

D. E. Mor, M. J. Daniels, and H. Et-ischiropoulos, The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration, Movement Disorders, vol.34, issue.2, pp.167-179, 2019.

R. Nakai, S. Fukuda, M. Kawase, Y. Yamashita, H. Ashida et al., Curcumin and its derivatives inhibit 2,3,7,8,-tetrachlorodibenzo-p-dioxin-induced expression of drug metabolizing enzymes through aryl hydrocarbon receptor-mediated pathway, Biotechnology, and Biochemistry, vol.82, issue.4, pp.616-628, 2018.

A. Napolitano, O. Crescenzi, A. Pezzella, and G. Prota, Generation of the Neurotoxin 6-Hydroxydopamine by Peroxidase/H 2O2 Oxidation of Dopamine, Journal of Medicinal Chemistry, vol.38, issue.6, pp.917-922, 1995.

A. Napolitano, P. Manini, and M. Et-d'ischia, Oxidation chemistry of catecholamines and neuronal degeneration: an update, Current Medicinal Chemistry, vol.18, issue.12, pp.1832-1845, 2011.

A. Napolitano, A. Pezzella, and G. Prota, 7-Dihydroxy-1,2,3,4-tetrahydroisoquinoline formation by iron mediated dopamine oxidation: a novel route to endogenous neurotoxins under oxidative stress conditions, Tetrahedron Letters, vol.40, issue.14, pp.272-277, 1999.

A. Napolitano, A. Pezzella, and G. Prota, New Reaction Pathways of Dopamine under Oxidative Stress Conditions: Nonenzymatic Iron-Assisted Conversion to Norepinephrine and the Neurotoxins 6-Hydroxydopamine and, Chemical Research in Toxicology, vol.12, issue.11, pp.1090-1097, 1999.

T. Nishiyama, T. Izawa, M. Usami, T. Ohnuma, K. Ogura et al., Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells, A. Biochemical and Biophysical Research Communications, vol.394, issue.3, pp.459-463, 2010.

T. Nishiyama, T. Kobori, K. Arai, K. Ogura, T. Ohnuma et al., Identification of human UDPglucuronosyltransferase isoform(s) responsible for the C-glucuronidation of phenylbutazone, Archives of Biochemistry and Biophysics, issue.1, pp.72-79, 2006.

T. Nishiyama, T. Ohnuma, Y. Inoue, T. Kishi, K. Ogura et al., UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation, A. Biochemical and Biophysical Research Communications, vol.371, issue.2, pp.247-250, 2008.

A. Nobili, E. C. Latagliata, M. T. Viscomi, V. Cavallucci, D. Cutuli et al., Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease, Nature Communications, vol.8, 2017.

K. A. Nolan, M. S. Dunstan, M. C. Caraher, K. A. Scott, D. Leys et al., Silico Screening Reveals Structurally Diverse, Nanomolar Inhibitors of NQO2 That Are Functionally Active in Cells and Can Modulate NF-?B Signaling, vol.11, pp.194-203, 2012.

Y. Nosoh, J. Kajioka, and M. Itoh, Effect of menadione on the electron transport pathway of yeast mitochondria, Archives of Biochemistry and Biophysics, vol.127, issue.1, pp.1-6, 1968.

A. E. Oakley, J. F. Collingwood, J. Dobson, G. Love, H. R. Perrott et al., Individual dopaminergic neurons show raised iron levels in Parkinson disease, vol.68, pp.1820-1825, 2007.

S. Oda, T. Fukami, T. Yokoi, and M. Nakajima, A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development, Drug Metabolism and Pharmacokinetics, vol.30, issue.1, pp.30-51, 2015.

K. Painting and B. Kirsop, A quick method for estimating the percentage of viable cells in a yeast population, using methylene blue staining, World Journal of Microbiology & Biotechnology, vol.6, issue.3, pp.346-347, 1990.

A. Palumbo, G. Astarita, and M. Et-d'ischia, Inhibition of neuronal nitric oxide synthase by 6-nitrocatecholamines, putative reaction products of nitric oxide with catecholamines under oxidative stress conditions, Biochemical Journal, vol.356, pp.105-110, 2001.

A. Palumbo, A. Napolitano, P. Barone, and M. Et-d'ischia, Nitrite-and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress-and nitric oxide-induced neurotoxicity in neuronal degeneration, Chemical Research in Toxicology, vol.12, issue.12, pp.1213-1222, 1991.

A. Palumbo, A. Napolitano, and M. Ischia, Nitrocatechols versus nitrocatecholamines as novel competitive inhibitors of neuronal nitric oxide synthase: lack of the aminoethyl side chain determines loss of tetrahydrobiopterinantagonizing properties, Bioorganic & Medicinal Chemistry Letters, vol.12, issue.1, pp.13-16, 2002.

I. Paris, S. Cardenas, J. Lozano, C. Perez-pastene, R. Graumann et al., Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson's disease, J. Neurotoxicity Research, vol.12, issue.2, pp.125-134, 2007.

C. E. Paul, E. Churakova, E. Maurits, M. Girhard, V. B. Urlacher et al., situ formation of H2O2 for P450 peroxygenases, vol.22, pp.5692-5696, 2014.

S. D. ?-pegan, M. Sturdy, G. Ferry, P. Delagrange, J. A. Boutin et al., X-ray structural studies of quinone reductase 2 nanomolar range inhibitors, vol.20, pp.1182-1195, 2011.

A. Pezzella, M. Ischia, A. Napolitano, G. Misuraca, and G. Prota, Iron-Mediated Generation of the Neurotoxin 6-Hydroxydopamine Quinone by Reaction of Fatty Acid Hydroperoxides with Dopamine: A Possible Contributory Mechanism for Neuronal Degeneration in Parkinson's Disease, Journal of Medicinal Chemistry, vol.40, issue.14, pp.2211-2216, 1997.

P. ?-picone, D. Nuzzo, L. Caruana, V. Scafidi, and M. Di-carlo, Mitochondrial dysfunction: different routes to Alzheimer's disease therapy, Oxidative Medicine and Cellular Longevity, vol.780179, 2014.

G. M. Pieper, C. C. Felix, B. Kalyanaraman, M. Turk, and A. M. Roza, Detection by ESR of DMPO hydroxyl adduct formation from islets of langerhans, Free Radical Biology and Medicine, vol.19, issue.2, pp.219-225, 1995.

J. J. Poderoso, M. C. Carreras, F. Schöpfer, C. L. Lisdero, N. A. Riobó et al., The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance, Free Radical Biology and Medicine, vol.26, issue.7, pp.277-286, 1999.

G. Powis, B. A. Svingen, and P. Appel, Quinone-Stimulated Superoxide Formation by Subcellular Fractions, Isolated Hepatocytes, and Other Cells, vol.20, pp.387-394, 1981.

A. D. ?-rabinovic, D. A. Lewis, T. G. Hastings, and . Neuroscience, Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine, vol.101, pp.67-76, 2000.

E. ?-radi, P. Formichi, C. Battisti, and A. Federico, Apoptosis and oxidative stress in neurodegenerative diseases, vol.42, pp.125-152, 2014.

A. N. Rappaport, E. Jacob, V. Sharma, S. Inberg, A. Elkobi et al., Expression of Quinone Reductase-2 in the Cortex Is a Muscarinic Acetylcholine Receptor-Dependent Memory Consolidation Constraint, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.35, issue.47, pp.15568-15581, 2015.

K. Reybier, S. Ayala, B. Alies, J. V. Rodrigues, S. Bustos-rodriguez et al., Angewandte Chemie International Edition, vol.55, issue.3, pp.1085-1089, 2016.

, Free Superoxide is an Intermediate in the Production of H 2O2 by Copper(I)-A? Peptide and O2

K. Reybier, P. Perio, G. Ferry, J. Bouajila, P. Delagrange et al., Insights into the redox cycle of human quinone reductase 2, Free Radical Research, issue.10, pp.1184-1195, 2011.

D. A. Richert, The Journal of Biological Chemistry, vol.189, issue.2, pp.763-768, 1951.

E. ?-rosengren, E. Linder-eliasson, and A. Et-carlsson, Detection of 5-S-cysteinyldopamine in human brain, Journal of Neural Transmission, vol.63, issue.3, pp.247-253, 1985.

D. Ross and D. Siegel, Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch, Frontiers in Physiology, vol.8, 2017.

C. ?-rouas, Y. Et-gueguen, and &. Irsn, Le système de détoxication des xénobiotiques est-il affecté par une exposition chronique à l'uranium, Disponible sur, 2011.

E. A. Sabens, A. M. Distler, J. J. Et-mieyal, and . Biochemistry, Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson's disease, pp.2715-2724, 2010.

L. Sampaio, F. S. De, F. P. Mesquita, P. R. De-sousa, J. L. Silva et al., The melatonin analog 5-MCA-NAT increases endogenous dopamine levels by binding NRH:quinone reductase enzyme in the developing chick retina, International Journal of Developmental Neuroscience, vol.38, pp.119-126, 2014.

A. Samuni, A. J. Carmichael, A. Russo, J. B. Mitchell, and P. Et-riesz, On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells, Proceedings of the National Academy of Sciences of the United States of America, vol.83, pp.7593-7597, 1986.

L. M. Sayre, M. A. Smith, and G. Perry, Chemistry and biochemistry of oxidative stress in neurodegenerative disease, vol.8, pp.721-738, 2001.

A. H. Schapira, Mitochondria in the aetiology and pathogenesis of Parkinson's disease, vol.7, pp.97-109, 2008.

M. Schultzberg, J. Segura-aguilar, C. Lind, and . Neuroscience, Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies, vol.27, pp.763-776, 1988.

?. Segura-aguilar, J. Baez, S. Widersten, M. Welch, C. J. Mannervik et al., Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome, The Journal of Biological Chemistry, vol.272, issue.9, pp.5727-5731, 1997.

P. M. Shaw, A. Reiss, M. Adesnik, D. W. Nebert, J. Schembri et al., The human dioxin-inducible NAD(P)H: quinone oxidoreductase cDNA-encoded protein expressed in COS-1 cells is identical to diaphorase 4, European Journal of Biochemistry, vol.195, issue.1, pp.171-176, 1991.

F. Shintani, T. Kinoshita, S. Kanba, T. Ishikawa, E. Suzuki et al., Bioactive 6-nitronorepinephrine identified in mammalian brain, The Journal of Biological Chemistry, issue.23, pp.13561-13565, 1996.

J. ?-sian, D. T. Dexter, A. J. Lees, S. Daniel, Y. Agid et al., Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia, Annals of Neurology, vol.36, issue.3, pp.348-355, 1994.

I. N. Singh, P. G. Sullivan, and E. D. Hall, Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers, Journal of Neuroscience Research, vol.85, issue.10, pp.2216-2223, 2007.

?. Soto-otero, R. Méndez-Álvarez, E. Hermida-ameijeiras, Á. Muñoz-patiño, A. M. Labandeira-garcia et al., Autoxidation and Neurotoxicity of 6-Hydroxydopamine in the Presence of Some Antioxidants, Journal of Neurochemistry, vol.74, issue.4, pp.1605-1612, 2000.

K. Stamer, R. Vogel, E. Thies, E. Mandelkow, and E. M. Mandelkow, Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, vol.156, pp.1051-1063, 2002.

A. H. Stokes, T. G. Hastings, and K. E. Vrana, Cytotoxic and genotoxic potential of dopamine, Journal of Neuroscience Research, vol.55, issue.6, pp.659-665, 1999.

R. H. Swerdlow, J. K. Parks, S. W. Miller, J. B. Tuttle, P. A. Trimmer et al., Origin and functional consequences of the complex I defect in Parkinson's disease, Annals of Neurology, vol.40, issue.4, pp.663-671, 1996.

J. ?-taskinen, B. T. Ethell, P. Pihlavisto, A. M. Hood, B. Burchell et al., Conjugation of catechols by recombinant human sulfotransferases, UDPglucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models, vol.31, pp.1187-1197, 2003.

B. Testa and S. D. Krämer, The biochemistry of drug metabolism--an introduction: part 1. Principles and overview, Chemistry & Biodiversity, vol.3, issue.10, pp.1053-1101, 2006.

B. Testa and S. D. Krämer, The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes, Chemistry & Biodiversity, vol.4, issue.3, pp.257-405, 2007.

B. Testa and S. D. Krämer, The biochemistry of drug metabolism--an introduction: part 3. Reactions of hydrolysis and their enzymes, Chemistry & Biodiversity, vol.4, issue.9, pp.2031-2122, 2007.

B. Testa and S. D. Krämer, The biochemistry of drug metabolism--an introduction: part 4. reactions of conjugation and their enzymes, Chemistry & Biodiversity, vol.5, issue.11, pp.2171-2336, 2008.

, ? The Human Protein Atlas, Cell Atlas, NQO1, 2019.

, ? The Human Protein Atlas, Cell Atlas, vol.2, 2019.

R. M. Thompson, N. Gerber, R. A. Seibert, and D. M. Desiderio, Identification of 2-methyl-1,4-naphthohydroguinone monoglucuronide as a metabolite of 2-methyl-1,4-naphthoquinone (menadione) in rat bile, Research communications in chemical pathology and pharmacology, vol.4, issue.3, pp.543-552, 1972.

J. P. Tranzer and H. Et-thoenen, An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine, Experientia, vol.24, issue.2, pp.155-156, 1968.

?. Van-der-hauwaert, C. Savary, G. Buob, D. Leroy, X. Aubert et al., Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models, Toxicology and Applied Pharmacology, vol.279, issue.3, 2014.

G. Walkinshaw and C. M. Waters, Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease, The Journal of Clinical Investigation, vol.95, issue.6, pp.2458-2464, 1995.

W. Wang, W. Le, T. Pan, J. L. Stringer, and A. K. Jaiswal, Association of NRH:Quinone Oxidoreductase 2 Gene Promoter Polymorphism With Higher Gene Expression and Increased Susceptibility to Parkinson's Disease, The Journals of Gerontology: Series A, vol.63, issue.2, pp.127-134, 2008.

X. Wang, W. Wang, L. Li, G. Perry, H. Lee et al., BBA) -Molecular Basis of Disease, Oxidative stress and mitochondrial dysfunction in Alzheimer's disease, pp.1240-1247, 2014.

I. Wilson, P. Wardman, T. S. Lin, and A. C. Sartorelli, One-electron reduction of 2-and 6-methyl-1,4-naphthoquinone bioreductive alkylating agents, Journal of Medicinal Chemistry, vol.29, issue.8, pp.1381-1384, 1986.

J. A. Winger, O. Hantschel, G. Superti-furga, and . Et-kuriyan, 7. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2), J. BMC Structural Biology, vol.9, issue.1, 2009.

J. Wu, Q. Li, X. Wang, S. Yu, L. Li et al., ), e59843. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway, PLOS ONE, vol.8, issue.3, 2013.

K. Wu, R. Knox, X. Z. Sun, P. Joseph, A. K. Jaiswal et al., Catalytic Properties of NAD(P)H:Quinone Oxidoreductase-2 (NQO2), a Dihydronicotinamide Riboside Dependent Oxidoreductase, Archives of Biochemistry and Biophysics, vol.347, issue.2, pp.221-228, 1997.

C. Yan, M. Dufour, D. Siegel, P. Reigan, J. Gomez et al., Indolequinone Inhibitors of NRH:Quinone Oxidoreductase 2. Characterization of the Mechanism of Inhibition in both Cell-Free and Cellular Systems, Biochemistry, vol.50, issue.31, pp.6678-6688, 2011.

N. Yang, R. Sun, X. Liao, J. Aa, G. Wang et al., UDPglucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine, vol.121, pp.169-183, 2017.

Y. Yoshiyama, M. Higuchi, B. Zhang, S. Huang, N. Iwata et al., Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model, Neuron, vol.53, issue.3, pp.337-351, 2007.

M. B. Youdim, E. Grünblatt, Y. Levites, G. Maor, S. N. Mandel et al., Early and late molecular events in neurodegeneration and neuroprotection in Parkinson's disease MPTP model as assessed by cDNA microarray; the role of iron, vol.4, pp.679-689, 2002.

M. B. Youdim, G. Stephenson, and D. B. Shachar, Ironing Iron Out in Parkinson's Disease and Other Neurodegenerative Diseases with Iron Chelators: A Lesson from 6-Hydroxydopamine and Iron Chelators, Desferal and VK-28, Annals of the New York Academy of Sciences, vol.1012, issue.1, pp.306-325, 2004.

L. Zecca, C. Bellei, P. Costi, A. Albertini, E. Monzani et al., New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals, pp.17567-17572, 2008.

L. Zecca, L. Casella, A. Albertini, C. Bellei, F. A. Zucca et al., Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease, Journal of Neurochemistry, vol.106, issue.4, pp.1866-1875, 2008.

L. Zecca, F. A. Zucca, H. Wilms, and D. Sulzer, Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics, vol.26, pp.578-580, 2003.

H. Zhao, J. Joseph, H. M. Fales, E. A. Sokoloski, R. L. Levine et al., Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.5727-5732, 2005.

?. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom et al., Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide, Free Radical Biology and Medicine, vol.34, issue.11, pp.142-146, 2003.

Q. Zhao, X. L. Yang, W. D. Holtzclaw, and P. Talalay, Unexpected genetic and structural relationships of a long forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase), Proceedings of the National Academy of Sciences, vol.94, issue.5, pp.1669-1674, 1997.

Y. Zhao and B. Zhao, Oxidative stress and the pathogenesis of Alzheimer's disease, Oxidative Medicine and Cellular Longevity, p.316523, 2013.

J. Zielonka and B. Et-kalyanaraman, Hydroethidine-and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth, Free Radical Biology and Medicine, issue.8, pp.983-1001, 2010.

J. Zielonka, J. Vasquez-vivar, and B. Et-kalyanaraman, Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine, Nature Protocols, vol.3, issue.1, pp.8-21, 2008.

J. Zielonka, A. Sikora, M. Hardy, J. Joseph, B. P. Dranka et al., Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides, Chemical research in toxicology, vol.25, issue.9, pp.1793-1799, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01425058