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INTRODUCTION	
	
Throw	up	a	handful	of	feathers,	and	all	must	fall	to	the	ground	according	to	definite	laws;	

but	how	simple	is	this	problem	compared	to	the	action	and	reaction	of	the	innumerable	

plants	and	animals	which	have	determined,	in	the	course	of	centuries,	the	proportional	

numbers	and	kinds	of	trees	now	growing	on	the	old	Indian	ruins!	

	
Charles	Darwin	in	On	the	Origin	of	Species	(1859)	
	

	

A.	Forests	in	an	age	of	planetary	challenges	

The	significance	of	forests	

Ever	since	Gilgamesh	set	out	on	his	 journey	to	 the	Cedar	Forests	 in	Lebanon	(George,	

2003)	–	and	presumably	much	earlier	–,	human	beings	have	shown	a	deep	fascination	

for	 forests.	 	 Trees	 and	 forests	 have	 been	 variously	 worshipped	 in	 sacred	 groves	 or	

mythologized	 as	 the	 center	 of	 the	 universe	 (Sturlson,	 2005).	 They	 are	 the	 place	 of	

legendary	 battles1	and	 philosophical	 thought	 experiments,	 have	 been	 feared	 for	 the	

creatures	 that	 might	 emerge	 from	 them,	 and	 turned	 into	 potent	 metaphors	 that	

continue	to	inform	our	thinking2.	In	18th	and	19th	century	Europe,	under	the	influence	

of	 	 burgeoning	 industrialization	 and	 secularisation,	 Romantic	 poets,	 in	 particular,	

rediscovered	 them	 both	 as	 save	 havens	 from	 emerging	 technology	 and	 the	 uncanny	

locations	where	humans	could	encounter	their	unconscious	(Cox,	1985;	Pensel,	2019).	

During	the	same	period,	early	scientists	and	explorers	such	as	Alexander	von	Humboldt	

set	out	on	their	journeys	to	discover	the	tropical	rainforests	of	South	America,	spurring	

a	 new	 fascination	 for	 the	 biodiversity	 and	 complexity	 of	 nature	 (von	 Humboldt	 &	

																																																								
1	For	 instance,	 the	Teutoburg	Forest	where	Roman	 legions	and	Germanic	 tribes	clashed,	and	Sherwood	
Forest,	the	hiding	place	of	Robin	Hood.		
2	This	ranges	from	"deeply	rooted"	ideas,	over	proto-scientific	knowledge	collections	that	were	known	as	
forests,	 such	 as	 Francis	Bacon's	Sylva	Sylvarum	 (De	Bruyn,	 2001;	Rusu	&	Lüthy,	 2017),	 to	modern-day	
algorithms	("random	forest").		
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Bonpland,	1814).	These	 ideas	continue	 to	 resonate	until	 today,	where	 forests	are	 still	

regarded	as	refuges	from	civilisation	and	their	destruction	has	become	one	of	the	most	

vivid	symbols	of	humanity's	impact	on	the	Earth.		

The	fascination	with	forests,	aesthetic	and	beyond,	is	deeply	connected	with	the	

vital	 role	 forests	 have	 played	 and	 continue	 to	 play	 for	 human	 existence.	 It	 is	 not	 by	

accident	 that,	 already	 in	 the	 earliest	 texts	 we	 know	 of,	 they	 are	 linked	 to	mankind's	

technological	rebellion	against	the	gods.	Gilgamesh's	infraction	consists	in	cutting	down	

the	cedar	trees.	In	Greek	and	Roman	mythology,	it	is	only	in	the	paradisical	Golden	Age	

of	mankind	that	"[n]o	pine	had	yet,	on	its	high	mountain	felled	/	Descended	to	the	sea	to	

find	strange	lands	/	Afar;"	(Ovid,	2009).	Throughout	history,	human	beings	have	relied	

on	 functioning	 forest	 ecosystems,	 either	 directly	 –	 harvesting	 them	 for	 fuelwood	 and	

timber,	the	building	of	ships	and	accommodation	–	or	indirectly	–	as	sources	of	food	and	

water,	 shelter	 from	 natural	 and	 human-made	 hazards,	 and	 for	 their	 mental	 health	

(Bratman	et	al.,	2012;	Vira	et	al.,	2015).		

In	return	–	and	as	a	result	of	their	importance	as	resources	–,	human	beings	have	

always	 influenced	 forests.	 Forests	 across	 the	 world	 have	 been	 deeply	 and	 lastingly	

transformed	 by	 human	 beings,	 both	 in	 their	 extent	 and	 in	 their	 composition	 for	

thousands	of	years	(Thompson	et	al.,	2013;	Roberts	et	al.,	2018;	Odonne	et	al.,	2019).	In	

recent	 times,	 this	 influence	 has	 become	 even	 more	 pronounced,	 with	 large-scale	

destruction	 of	 forests	 looming	 over	 biomes	 across	 the	 world,	 threatening	 their	

biodiversity	 (Barlow	 et	 al.,	 2016)	 and	 the	 many	 services	 they	 provide.	 And	 while	

humans	 have	 always	 transformed	 forests	 and	 often	 at	 regional	 scales,	 they	 are	 now	

transforming	 forests	globally,	 rendering	 changes	 to	 the	whole	Earth-system	a	distinct	

possibility.	
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It	 is	here,	 at	 these	 large	scales,	 that	 forests	and	 trees	are	directly	 linked	 to	 the	

future	of	humanity.		First,	they	greatly	influence	the	hydrological	cycle,	can	change	local	

and	regional	climates	and	thus,	 in	some	places,	make	human	existence	possible	 in	the	

first	place	(Ellison	et	al.,	2017).	Second,	since	plants,	through	photosynthesis,	assimilate	

carbon	 and	 store	 it	 in	 their	 tissue,	 the	 biosphere	 in	 general	 and	 forests	 in	 particular	

represent	a	 large	terrestrial	carbon	sink	(Pan	et	al.,	2011).	They	are	estimated	to	take	

up	around	30%	of	yearly	carbon	emissions	(Le	Quéré	et	al.,	2009;	Quéré	et	al.,	2018),	

providing	an	essential	buffer	 to	 anthropogenic	 carbon	emissions	and	 slowing	down	a	

changing	 climate.	 But	 what	 exactly	 becomes	 of	 the	 biosphere	 under	 further	

anthropogenic	climate	change,	and	how	this	will	feed	back	into	climate	change	itself,	is	

an	unresolved	question	(Bonan,	2008).			

It	is	therefore	essential	to	develop	approaches	and	methods	to	better	understand	

forest	dynamics,	acquire	the	data	sets	to	test	our	hypotheses	and	develop	tools	that	can	

transform	 theoretical	 knowledge	 into	 practical	 predictions	 for	 the	 management	 of	

forests	at	global	scales	(Millar	et	al.,	2007).	

	

Climate	change	–	a	planetary	challenge	
	
The	 overarching	 challenge	 in	 managing	 and	 understanding	 the	 future	 of	 the	 world's	

forests	is,	first	and	foremost,	that	they	are	embedded	in	a	global	system	that	is	in	itself	

complex.	 Therefore,	 the	 future	 of	 forests	 cannot	 be	 extricated	 from	 the	 larger	

systematic	changes	that	the	Earth	system	as	a	whole	is	currently	undergoing	as	a	result	

of	climate	change.		

The	 source	 of	 current	 climate	 change	 is	 well	 known:	 an	 increase	 in	

anthropogenic	 carbon	 emissions,	 leading	 to	 an	 increase	 in	 atmospheric	 carbon	 levels	
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from	a	preindustrial	 level	 of	 280ppm	 to	more	 than	400ppm	 in	 recent	 years3.	 Equally	

well-known	is	the	basic	mechanism:	greenhouse	gas	molecules	such	as	carbon	dioxide	

vibrate	 in	 ways	 that	 their	 energy	 spacings	 correspond	 to	 the	 frequency	 of	 infrared	

radiation,	but	not	the	visible	spectrum,	and	thus	capture	and	reemit	a	large	portion	of	

energy	back	to	the	Earth's	surface.			

But	the	resultant	anthropogenic	climate	change	confronts	human	society	with	a	

planetary-scale	 challenge	whose	 solution	 lies	beyond	nation	 states	 and	whose	 impact	

will	likely	persist	for	centuries	or	even	milennia	(IPCC,	2014).	Over	the	past	decades,	a	

concerted	effort	has	been	made	to	quantify	and	monitor	the	current	state	of	the	Earth	

and	its	ecosystems	(Goetz	et	al.,	2009),	define	limits	beyond	which	the	Earth's	systems	

might	 undergo	 irreversible	 change	 (Rockström	 et	 al.,	 2009;	 Lenton,	 2011)	 and	 to	

provide	 technological	 (Keith,	 2009;	 Praetorius	 &	 Schumacher,	 2009)	 and	 non-

technological	 solutions	 (Jackson	 et	 al.,	 2008)	 to	 offset	 carbon	 emissions	 or	 adapt	 to	

climate	change	(Smith	et	al.,	2011).	Prediction,	however,	is	at	the	heart	of	most	scientific	

activity	 –	 prediction	 both	 in	 the	 sense	 of	 predicting	 current	 patterns	 and,	 more	

importantly	for	climate	change,	in	the	sense	of	forecasting	future	patterns.	For	science	

to	support	political	decision	making,	 it	needs	 to	provide	scenarios	 for	 future	states	of	

the	Earth	system	(Meehl	et	al.,	2002),	and	 it	 is	exactly	here	that	climate	change	poses	

one	of	its	biggest	challenges.	

Climate	 dynamics	 are	 complex	 in	 the	 sense	 that	 they	 include	many	 nonlinear	

effects,	 feedbacks	 and	 subsystems	 that	 respond	 at	 different	 timescales	 (Colman	 &	

McAvaney,	2009).	Some	of	these	feedbacks	can	be	predicted	with	high	confidence,	such	

as	 surface	 albedo	 decreasing	 with	 decreasing	 ice	 extents	 and,	 in	 turn,	 reinforcing	

																																																								
3	Source:	NOAA	Earth	System	Laboratory,		Global	Monitoring	Division:	
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html,	last	accessed	on	October	12,	
2019.		
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temperature	increases	(Curry	et	al.,	1995).	Others	such	as	aerosol-cloud	interaction	are	

highly	uncertain	(IPCC,	2014).	While	there	is	consensus	that	catastrophic	whole-Earth	

system	changes,	such	as	a	runaway	greenhouse	effect	on	Venus,	are	highly	unlikely	due	

to	anthropogenic	forcing	(Goldblatt	&	Watson,	2012),	there	is	considerable	uncertainty	

about	 so-called	 "tipping	 points",	 abrupt	 system	 shifts	 brought	 about,	 for	 example,	 by	

changes	 in	 oceanic	 circulation,	 a	 rapid	 loss	 of	 icesheets	 or	 vegetation	 diebacks	

(Schellnhuber,	 2009;	 Lenton,	 2011)	 that	 could	 potentially	 alter	 a	 vast	 part	 of	 Earth's	

ecosystems	and	have	 catastrophic	 consequences	 for	human	 society	 (cf.	 Figure	1	 for	 a	

geographic	overview).	

	

Figure	 1:	 Map	 of	 potential	 tipping	 points	 due	 to	 climatic	 change	 in	 the	 21st	
century.	 Shown	 are	 large-scale	 shifts	 of	 some	 of	 the	 Earth's	 subsystems	 that	 could	
occur	in	the	21st	century,	overlaid	on	a	map	of	population	density	and	modified	with	a	
question	mark	when	particularly	unlikely.	The	figure	is	taken	from	Lenton	et	al.,	2008.	
It	 should	 be	 noted	 that	 the	 likelihood	 of	 some	 of	 the	 shown	 tipping	 points	 has	 been	
reassessed	 more	 recently,	 and	 that	 the	 "Amazon	 dieback",	 for	 example,	 is	 now	
estimated	to	have	much	lower	probability	than	initial	model	estimates	suggested	(Malhi	
et	al.,	2009;	Rammig	et	al.,	2010;	Good	et	al.,	2013).	
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But	 even	 if	 tipping	 points	 are	 avoided,	 climate	 change	 will	 have	 and	 already	 has	

important	 consequences	 for	 the	 biosphere.	 Changes	 in	 global	 temperatures	 and	

weather	 variability	 impact	 the	 suitability	 of	 habitats,	with	 ecosystems	 and	 organisms	

responding	 in	 various	ways,	 through	 spatial	 and	 temporal	 shifts,	 adaptations	 (Bell	 &	

Gonzalez,	 2009)	 or	 individual-level	 plasticity.	 Not	 all	 responses	 affect	 biodiversity	

negatively	 (Bellard	 et	 al.,	 2012),	 but	 they	 likely	 lead	 to	 changes	 in	 global	 ecosystem	

functioning	(cf.	Figure	2),	and	further	cascading	effects	on	the	Earth	system.	Ecological	

regime	 shifts,	 for	 example,	 have	 the	 potential	 to	 substantially	 endanger	 human	

livelihoods,	 affect	 food	 supplies	 and	 increase	 the	 prevalence	 of	 diseases	 worldwide	

(Godfray	et	al.,	2010;	Altizer	et	al.,	2013;	Scheffers	et	al.,	2016).		This,	in	turn,	increases	

the	 likelihood	 of	 further	 rapid	 changes,	 such	 as	 mass	 migrations	 and	 armed	 conflict	

(Reuveny,	2007;	Kelley	et	al.,	2015).	

	

Figure	2:	Impact	of	climate	change	on	ecosystem	processes.	This	figure	shows	that	
out	 of	 94	 processes	 identified	 in	 biological	 systems,	 77	 were	 impacted	 by	 climate	
change.	Figure	taken	from	Scheffers	et	al.,	2016	.		
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The	uncertainty	of	vegetation	dynamics	

While	high	uncertainty	is	thus	a	feature	of	climate	change	as	a	whole,	it	is	a	particularly	

prominent	 property	 of	 forest	 ecosystems.	How	exactly	 forests,	 and	 tropical	 forests	 in	

particular,	with	 their	high	 levels	of	biodiversity	and	 large	networks	of	organisms,	will	

respond	to	further	climate	change	is	one	of	the	great	challenges	to	tackle.			

On	 the	 one	 hand,	 a	 number	 of	 factors	 reinforce	 carbon	 sequestration	 in	 forest	

ecosystems,	 such	 as	 increasing	 carbon	 dioxide	 concentrations	 that	 lead	 to	 a	 carbon	

fertilization	 effect	 (Zhu	 et	 al.,	 2016),	 increasing	 temperatures	 that	 result	 in	 higher	

metabolic	activities	of	plants	(Dusenge	et	al.,	2019),	and	changes	in	phenology	that	lead	

to	extended	growth	periods	 for	plants	 in	temperate	and	boreal	regions	(Cleland	et	al.,	

2007).	On	the	other	hand,	climate	change	might	not	only	result	 in	higher	assimilation	

rates,	 but	 also	 considerably	 increase	 respiration	 and	 biomass	 turnover	 –	 with	

photosynthetic	 activity	 decoupled	 from	 carbon	 sequestration	 (Malhi,	 2012;	 Fatichi	 et	

al.,	2014).	Furthermore,	stronger	variability	in	precipitation	and	temperature	patterns	

and	more	extreme	events,	 such	as	 longer	and	more	extreme	droughts,	might	 increase	

tree	mortality	or	suppress	tree	growth	(Phillips	et	al.,	2009;	Bonal	et	al.,	2016),	or	even	

result	 in	vegetation	diebacks	and	a	 transition	of	ecosystems	to	new	quasi-equilibrium	

states	(Malhi	et	al.,	2009).	

There	 is	 	 a	particular	 risk	when	self-amplification	and	nonlinear	 feedbacks	are	

involved.	 Since	 forest	 ecosystems	 feed	 back	 into	 local	 climates	 through	

evapotranspiration	 (Salati	 et	 al.,	 1979;	 Eltahir	 &	 Bras,	 1994;	 Moreira	 et	 al.,	 1997),		

increasing	droughts	leading	to	tree	mortality	in	tropical	forests	can	in	turn	amplify	the	

risk	of	 further	droughts	and	 further	 tree	mortality	 (Zemp	et	al.,	2017).	One	particular	

scenario	that	has	been	evoked	in	this	context	is	the	transition	from	tropical	rainforest	to	
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savanna	 –	 or	 from	 savanna	 to	 forest	 –	 due	 to	 changes	 in	 precipitation	 levels	 (Lobo	

Sternberg,	2001;	Hirota	et	al.,	2011).		

Empirical	evidence	suggests	that,	 in	the	past	decades,	tropical	 forest	ecoystems	

such	as	 the	Amazon	or	African	 rain	 forests	have	not	undergone	such	drastic	 changes,	

but	rather	had	steady	carbon	accumulation	rates	of	ca.	0.5	MgC	ha-1	yr-1	(Phillips	et	al.,	

2008;	Lewis	et	al.,	2009),	offsetting	losses	through	deforestation	and	land-use	changes	

by	increased	growth	(Gaubert	et	al.,	2019).	Furthermore,	tropical	forests	seem	to	have	

large	 restoration	 potentials,	 with	 secondary	 forest	 recovery	 buffering	 losses	 due	 to	

deforestation	elsewhere	(Poorter	et	al.,	2016).		

	

	

Figure	3:	Potential	 aboveground	biomass	accumulation	due	 to	 secondary	 forest	
growth	in	the	Neotropics.	The	map	shows	the	potential	accumulation	of	aboveground	
biomass	over	a	time	span	of	20	years	due	to	lowland	secondary	forest	growth,	based	on	
44	 study	 sites	 (indicated	 by	 circles,	 scaled	 according	 to	 their	 carbon	 accumulation	
rates).	From	Poorter	et	al.,	2016.	
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However,	 to	what	 extent	 these	 trends	 and	potentials	will	 persist	 is	 unclear.	 Evidence	

has	also	emerged	that	the	sink	potential	of	tropical	forests	is	slowing	down	(Brienen	et	

al.,	 2015),	 and	 there	 is	 considerable	uncertainty	 regarding	a	potential	 transition	 from	

carbon	 sink	 to	 source	 (Baccini	et	al.,	 2017).	While	 a	uniform	 response	 from	a	 system	

such	as	the	Amazon	is	generally	unlikely,	continued	deforestation	and	land-use	change	

will	have	strong	impacts	regionally	(Lewis	et	al.,	2015;	Houghton	&	Nassikas,	2017)	and	

increase	the	risk	of	long-term,	gradual	degradation,	mainly	due	to	changes	in	hydrology	

that	could	result	in	further	biomass	losses	and	a	shift	from	rain	to	dry	forests	(Malhi	et	

al.,	2009;	Rammig	et	al.,	2010;	Levine	et	al.,	2016).	

The	challenge	to	correctly	assess	feedbacks	and	predict	the	future	of	our	forests,	

is	 enormous,	 and	 does	 not	 only	 rely	 on	 a	 good	 understanding	 of	 biogeochemical	

processes,	 but	 also	 the	 demographics	 and	 evolutionary	 dynamics	 that	 shape	 and	 are	

shaped	by	these	processes	(Aitken	et	al.,	2008;	Fisher	et	al.,	2018).	This	brings	us	to	the	

initial	 quote	 by	 Charles	Darwin.	While	Darwin	might	 have	 been	 very	 generous	 in	 his	

assessment	of	the	predictive	power	of	physics,	the	problem	of	predictability	in	ecology	

and	evolution	has	become	even	more	accute	 in	 the	 light	of	 climate	change	and	global	

forest	 losses.	 Knowing	 that	 we	 fundamentally	 rely	 on	 functioning	 forests,	 their	

contribution	to	hydrological	cycles	and	global	carbon	stocks,	the	overarching	question	

that	poses	itself	is:	How	can	we	understand,	predict	and	manage	forests	globally?	And	

how,	 in	 particular,	 can	 we	 forecast	 the	 future	 of	 tropical	 rainforests	 with	 their	 high	

biodiversity	and	complex	community	dynamics?		
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B.	 Towards	 a	 predictive	 ecology:	 Functional	 traits,	 remote	 sensing	 and	 the	

integrative	power	of	vegetation	modelling	

Prediction	in	ecology	

While	it	is	impossible	to	define	such	a	complex,	social	endeavour	as	scientific	inquiry	in	

a	 single,	 overarching	 concept,	 prediction	 has	 always	 been	 one	 of	 its	 main	 tenets.	

Together	with	explanation	and	 the	 continuous	process	of	methodical	data	acquisition	

and	 hypothesis	 testing	 –	 linking	 empirical	 observations	 through	 rules	 –,	 prediction	 –	

using	those	rules	to	make	inferences	about	what	is	or	about	what	is	yet	to	come	–	could	

be	 said	 to	 constitute	 the	 sciences'	 "family	 resemblance"	 (Wittgenstein,	 1953).	 While	

some	have	held	 that	explanation	can	ultimately	be	reduced	 to	prediction	–	 i.e.	 a	good	

scientific	 explanation	 is	 one	 that	 is	 successful	 in	 predicting	 patterns	 (Peirce,	 1878;	

Dewey,	1903;	Houlahan	et	al.,	2017)	–,	others	have	pointed	out	that	scientific	theories,	

even	 though	 they	 are	 often	 used	 for	 predictive	 purposes,	 are	more	 than	 instruments	

(Popper,	1963).	

Irrespective	of	the	larger	philosophical	implications,	however,	there	seems	to	be	

a	 broad	 underlying	 agreement	 that	 scientific	 inquiry	 is	 a	 formalization	 and	

sophistication	 of	 everyday	 inquisitiveness,	 i.e	 "enlightened	 common	 sense"	 (Popper,	

1972),	 and	 heavily	 revolves	 around	 gathering	 information	 to	 solve	 problems.	 If	 one	

conceives	of	biological	adapations	encoded	in	organisms	as	information	(Davies,	2019),	

this	practical	aspect	of	science	could	even	be	regarded	as	an	extension	of	the	trial-and-

error	process	of	 life	 in	general	 (Dewey,	1903;	Popper,	1990).	Broadly,	 the	process	by	

which	a	crow	 finds	out	how	to	crack	 the	shell	of	a	walnut	 is	mirrored	 in	a	physicist's	
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attempt	 to	 excite	 molecules	 or	 the	 ecologist's	 attempt	 to	 predict	 patterns	 of	

biodiversity4.		

In	 this	 broad	 sense	 of	 the	word,	 studies	 of	 ecology	 and	 evolution	 have	 always	

been	 predictive.	 Even	 when	 experimentation	 has	 to	 be	 replaced	 by	 observational	

studies,	we	hypothesize	that	relationships	and	patterns	between	variables	found	at	one	

specific	site	will	be	similar	at	another	site	–	i.e.	transferable	(Wenger	&	Olden,	2012)	–,	

and	 if	 they	 are	 not,	 that	 we	 can	 ameliorate	 our	 original	 model	 to	 incorporate	 the	

deviation	into	future	hypotheses.	We	expect,	for	example,	that	the	rules	that	govern	bird	

speciation	on	islands	will	share	some	general	characteristics	with	those	that	have	been	

found	 for	 Darwin's	 finches	 on	 Galapagos	 (Grant,	 1996),	 or	 that	 patterns	 of	 species	

abundances	 at	 one	 site	 will	 be	 repeated	 at	 another	 site	 –	 not	 with	 the	 exact	 same	

parameters	 or	 species	 in	 either	 case,	 but	 based	 on	 some	 basic	 principles	 that	 do	 not	

change.			

At	 the	 same	 time,	 the	 high	 complexity	 of	 ecosystems	 and	 the	 many	 variables	

involved,	 most	 of	 them	 difficult	 to	 measure	 –	 e.g.,	 the	 behavior	 of	 animals,	 the	

development	 of	 trees	 across	 decades	 –,	 render	 the	 falsification	 of	 hypotheses	

complicated.	 While	 there	 have	 been,	 for	 example,	 experimental	 manipulations	 of	

ecosystems	to	assess	the	consequences	of	climatic	change	(Brando	et	al.,	2008;	Norby	&	

Zak,	2011),	traditional	hypothetico-deductive	methods	quickly	reach	their	limits	when	

addressing	 systems	 such	 as	 tropical	 rainforests	 that	 evolve	 on	 global	 scales	 and	over	

timescales	 larger	 than	 any	 single	 researcher's	 lifetime.	 Furthermore,	 if	 a	 particular	

hypothesis	cannot	be	supported	in	ecology,	alternative	explanations	are	legion	(Quinn	

&	Dunham,	1983).	While	 this	might	explain	why	ecology	has	often	 focussed	on	broad	

patterns	 instead	 of	 quantitative	 predictions	 and	 why	 there	 are	 wider	 issues	 in	

																																																								
4	The	physicist	and	ecologist	presumably	have	stricter	protocols	than	the	crow.		
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replication	in	the	social	and	life	sciences	(Earp	&	Trafimow,	2015),	 	 there	is	a	need	to	

produce	 predictions	 and	 subject	 theories	 to	 rigorous	 testing	 (Mouquet	 et	 al.,	 2015;	

Houlahan	et	al.,	2017).		

In	the	past	two	decades,	ecology	has,	however,	seen	a	number	of	developments	

that	 hold	 great	 promise	 to	 enhance	 its	 predictive	 capabilities.	 These	 developments	

comprise	the	study	of	functional	traits	as	a	mechanistic	link	between	species	and	their	

environment,	the	deployment	of	remote	sensing	techniques	at	unprecedented	scales	to	

discover	patterns	across	the	globe,	and	the	development	of	dynamic	vegetation	models	

that	 can	 serve	 as	 integrators	 for	 various	 data	 sources	 and	 put	 the	 reliability	 of	

ecological	knowledge	to	the	test.		

	

Trait-based	ecology	and	scaling	laws	

Traits	are	properties	of	 individual	organisms	at	 the	phenotype	 level,	 and	 linked	 to	an	

organism's	 evolutionary	 history	 through	 its	 genes.	 Many	 of	 these	 traits,	 due	 to	 their	

evolutionary	origins,	play	a	particular	functional	role	for	the	organism,	and	when	these	

functional	roles	can	be	 linked	 to	overall	ecosystem	functioning,	a	 framework	emerges	

that	 links	 biodiversity	 and	 community	 ecology	 with	 ecosystem	 functioning	 (Grime,	

1997),	 comprises	evolutionary	history	 	 (Reich	et	al.,	 2003)	and	allows	 for	predictions	

across	different	environmental	conditions	(Reich	et	al.,	1997).	

	 With	 regard	 to	 plant	 traits	 it	 has,	 for	 example,	 been	 shown	 that	 they	 strongly	

impact	 the	 competitive	 abilities	 of	 plants,	 that	 they	 can	promote	 coexistence	 through	

functional	differentiation,	and	that	they	thus	are	intrinsically	linked	to	the	vital	rates	of	

organisms	 (Poorter	et	al.,	 2008;	Hérault	et	al.,	 2011;	Kraft	et	al.,	 2015;	Kunstler	et	al.,	

2016;	Visser	et	al.,	2016).	Although	variability	around	predicted	relationships	 is	often	

high,	thus	substantially	reducing	the	precision	of	prediction	(Paine	et	al.,	2015;	Poorter	
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et	 al.,	 2018),	 functional	 traits	 have	 proved	 an	 important	 step	 towards	 a	 predictive	

ecology	across	scales	(Lavorel	&	Garnier,	2002).		

In	 particular,	 relying	 on	 large	 global	 data	 sets	 (Kattge	et	al.,	 2011),	 trait-based	

ecology	 has	 identified	 fundamental	 trade-offs	 between	 various	 leaf	 and	 wood	 traits,	

leading	to	the	hypothesis	of	a	leaf	economics	spectrum	(Wright	et	al.,	2004)	and	a	wood	

economics	spectrum	(Chave	et	al.,	2009).	Among	the	trade-offs	found	are,	for	example,	a	

positive	 correlation	 between	 leaf	 mass	 per	 area	 and	 leaf	 lifespan	 and	 a	 negative	

correlation	 between	 leaf	 mass	 per	 area	 and	 photosynthetic	 capacity	 –	 meaning	 that	

plants	 either	 invest	 in	 long-lived	 and	 expensive	 leaves	 with	 lower	 photosynthetic	

capacity,	 or	 in	 short-lived,	 but	 cheap	 and	 photosynthetically	more	 productive	 leaves,	

thus	 aligning	 on	 a	 "slow-fast"	 continuum	 of	 plant	 functioning	 (Reich,	 2014).	 Similar	

trade-offs,	 such	 as	 the	 trade-off	 between	 high	mortality	 risks	 and	 fast	 growth	 at	 low	

wood	densities	 (compared	 to	 slow	growth,	but	 low	mortality)	 can	be	 found	 for	wood	

density.	In	a	recent	global	synthesis,	further	comprising	traits	such	as	adult	height	and	

diaspore	mass,	Díaz	et	al.	(2016)	showed	that	there	were	clear	trade-offs	in	investment,	

suggesting	 strong	 evolutionary	 limitations	 in	 the	 way	 plants	 invest	 the	 carbon	 they	

acquire.		

In	this	light,	trait-based	approaches	can	also	be	seen	as	part	of	a	larger	program	

in	ecology	that	is	interested	in	the	scaling	relationships	within	and	between	organisms	

(Jarvis,	 1995).	 	 Given	 the	 relative	 rarity	 of	 isometric	 scaling	 (i.e.	 the	 preservation	 of	

proportions,	but	see	Reich	et	al.,	2006),	these	scaling	relationships	are	also	often	simply	

called	allometries.	Allometries	have	been	found	empirically	for	a	wide	number	of	plant	

traits	and	dimensions,	such	as	the	scaling	of	 leaf	area	with	sapwood	area	(Vertessy	et	

al.,	 1995),	 of	 crown	 dimensions	with	 stem	 diameter	 (Jucker	 et	 al.,	 2017)	 and	 above-

ground	 biomass	 and	 stem	 diameter	 (Chave	 et	 al.,	 2014).	 Given	 that	 stem	 diameter	
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measurements	 are	 routinely	measured	 in	 ground	 inventories,	 but	 biomass	 estimates	

could	 only	 be	 directly	 accessed	 through	 destructive	 sampling,	 the	 latter	 allometry	 in	

particular	has	 served	as	an	 important	 tool	 to	predict	 above	ground	biomass	at	 global	

scales.		

	

	

Figure	 4:	 Global	 scaling	 relationship	 between	 crown	 dimensions	 and	 stem	
diameter.	Shown	is	the	relationship	(on	logscales)	between	the	product	of	tree	height	
and	crown	diameter	with	stem	diameter	for	different	forest	types.	Panel	a)	shows	raw	
data	and	the	means	for	each	diameter	class,	panel	b)	separate	relationships	for	different	
forest	types	and	panel	c)	the	corresponding	slope	parameters.	From	Jucker	et	al.,	2017.	
	

	
What	makes	 scaling	 relationshps	 an	 important	 part	 of	 predictive	 ecology	 is	 that	 they	

reflect	physiological	and	evolutionary	constraints	of	organisms	(Niklas,	1994)	and	could	

thus	 reflect	 general	 underlying	 laws.	 Metabolic	 scaling	 theory	 has	 developed	 a	

framework	 to	 explain	 a	 wide	 number	 of	 scaling	 relationships	 found	 in	 animals	 and	
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plants	through	the	branching	patterns	of	vessels	and	physiological	constraints	on	fluid	

flow	 (West	 et	al.,	 1999;	 Enquist	 et	al.,	 2003).	 And	while	 there	 are	 notable	 deviations	

from	metabolic	 scaling	 (Reich	 et	 al.,	 2006;	 Enquist	 et	 al.,	 2007;	 Coomes	 et	 al.,	 2011;	

Price	et	al.,	2012),	the	generality	of	scaling	rules	and	the	use	of	testable	predictions	have	

contributed	strongly	to	a	more	predictive	ecological	research	agenda.	

	

Remote	scaling	as	a	global	observatory	

While	trait-based	research	has	focussed	on	the	properties	of	individual	organisms	that	

are	measured	through	intense	ground	work	in	many,	but	dispersed,	sampling	sites,	an	

ecology	considering	processes	at	global	scales	increasingly	needs	data	at	global	scales.	

In	many	ways,	 the	 challenges	 encountered	 here	mirror	 those	 of	 astronomy:	 systems	

operating	at	spatial	and	temporal	scales	that	can	rarely	be	accessed	by	human	beings,	a	

resulting	 lack	 of	 experimental	 opportunities	 and	 the	 need	 to	 rely	 on	 observational	

evidence.	As	a	consequence,	some	of	ecology's	approaches	also	mirror	closely	those	of	

astronomy,	especially	in	the	use	of	so-called	remote	sensing	techniques.		

Remote	 sensing,	 in	 the	 broadest	 sense	 of	 the	 word,	 is	 the	 inference	 of	 object	

properties	 without	 physical	 contact.	 It	 is	 based	 on	 the	 idea	 that	 the	 frequency	

distribution	of	a	radiative	signal	is	shaped	by	the	objects	that	have	emitted	or	reflected	

it	 and	 the	media	 through	which	 the	 radiation	has	 passed	 on	 the	way	 to	 the	 receiver.	

Where	astrophysics	infers	the	composition	of	stars	through	absorption	lines	associated	

with	elements	or	molecules,	ecology	can	use	the	spectral	signature	of	signals	to	infer	the	

existence	 of	 vegetation,	 its	 density	 and,	 ideally,	 its	 chemical	 composition.	 Remote	

sensing	in	ecology	takes	both	active	forms	–	probing	objects	and	organisms	of	interest	

with	 a	 source	 of	 radiation	 –	 and	 passive	 forms	 –	 using	 already	 existing	 sources	 of	

radiation	 such	 as	 sunlight	 or	 thermal	 radiation	 –,	 and	 can	 then	 be	 used	 to	 gather	
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information	 either	 about	 individual	 organisms	 ("direct")	 or	 about	 these	 organisms'	

environment	("indirect)	(Turner	et	al.,	2003).	

The	use	of	remote	sensing	in	ecology	dates	back	at	least	to	the	early	1970s	when	

researchers	 started	 to	 use	 data	 from	 the	 Landsat	 satellite	 to	 construct	 vegetation	

indices	(Rouse	et	al.,	1973;	Tucker,	1979).	The	Normalized	Difference	Vegetation	Index	

(NDVI),	based	on	the	different	absorption	and	reflectance	properties	of	photosynthetic	

tissues	in	the	near	infrared	region	and	the	visible	part	of	the	light	spectrum,	has	proved	

a	valuable	source	for	ecological	studies	ever	since	(Pettorelli	et	al.,	2011).	Compared	to	

early	 uses	 of	 remote	 sensing,	we	 nowadays	 possess	 a	much	wider	 arsenal	 of	 remote	

sensing	sources	–	from	the	optical	part	of	the	spectrum,	over	infrared	to	radio	waves	–	

that	combine	to	form	a	large	global	observatory	of	the	Earth	system	and	its	biosphere,	

or	 "flux	 towers	 in	 the	 sky"	 (Schimel	&	 Schneider,	 2019).	 This	 has	 allowed	 for	 a	wide	

variety	of	ecological	questions	and	challenges	to	be	tackled,	including	wetland	methane	

emissions	(Bloom	et	al.,	2010),	estimates	of	biomass	(Le	Toan	et	al.,	1992;	Saatchi	et	al.,	

2011),	primary	productivity	(Frankenberg	et	al.,	2011),	 leaf	phenology	(Richardson	et	

al.,	 2009),	 the	 detection	 of	 invasive	 species	 (Asner	 et	 al.,	 2008)	 and	 biodiversity	

predictions	(Gillespie	et	al.,	2008),	to	name	but	a	few.		

In	forest	ecology,	lidar	("light	detection	and	ranging"),	or	the	use	of	lasers	in	the	

visible	 or	 infrared	 spectrum,	 has	 proved	 a	 particularly	 powerful	 tool.	 Lidar	 systems	

measure	the	distance	between	the	emitter	and	the	object	that	is	scanned	and	thus	can	

estimate	the	position	of	the	scanned	objects,	with	the	resulting	data	typically	obtained	

either	as	full	waveform	data	or	as	discretized	returns	(cf.	Figure	5).	On	one	end	of	the	

scale,	its	terrestrial	version	(TLS)	allows	for	detailed	reconstructions	of	forests	tree	by	

tree	 (Calders	 et	 al.,	 2018)	 that	 can,	 in	 turn,	 be	 passed	 on	 to	 further	 studies,	 such	 as	
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susceptibility	 to	wind	(Jackson	et	al.,	2019),	precise	biomass	estimation	(Disney	et	al.,	

2018)	or	to	supplement	and	aid	forest	inventories	(Bauwens	et	al.,	2016).		

	

Figure	 5:	 Illustration	 of	 airborne	 lidar	 scanning.	 	 Shown	 is	 an	 illustration	 of	
vegetation	 being	 scanned	 by	 an	 airborne	 lidar	 instrument,	 as	 well	 as	 the	 lidar	
waveform	 that	 would	 be	 recorded.	 Also	 shown	 is	 the	 concept	 of	 translating	 the	
waveform	 into	 discrete	 returns	 by	 identifying	 the	 leading	 edges	 of	 peaks	 in	 the	
signal.		Figure	from	Lefsky	et	al.,	2002.	
	

When	mounted	on	airplanes	(so-called	airborne	lidar	or	ALS),	on	the	other	hand,	lidar	

scans	can	be	carried	out	across	thousands	of	hectares	and	then	be	used	to	infer	detailed	

topographic	 information	 (Höfle	 &	 Rutzinger,	 2011),	 delineate	 individual	 trees	 across	

forest	 types	(Morsdorf	et	al.,	2004;	Vega	et	al.,	2014;	Ferraz	et	al.,	2016)	and	estimate	

the	underlying	biomass,	with	a	wide	 range	of	 techniques	available	 (Asner	&	Mascaro,	
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2014;	 Coomes	 et	 al.,	 2017).	 Finally,	 this	 approach	 can	 also	 be	 extended	 to	 satellite-

based	observations	(spaceborne	lidar,	SLS),	allowing	to	create	estimates	of	forest	height	

on	regional	to	global	scales	(Rosette	et	al.,	2008;	Simard	et	al.,	2011).	NASA's	recently	

launched	 GEDI	 system	 onboard	 the	 international	 space	 station,	 for	 example,	 will	

provide	 high	 resolution	 spaceborne	 data	 and	 thus	 considerable	 improve	 estimates	 of	

forest	structure	globally	(Qi	&	Dubayah,	2016).		

Together	with	other	future	missions,	such	as	the	radar-based	BIOMASS	mission	

(Le	Toan	et	al.,	 2011),	 and	 supported	 by	 a	 strong	network	 of	 field	 data	 (Chave	et	al.,	

2019),	 remote	sensing	provides	 the	spatial	extent	 in	data	 that	 is	needed	 to	make	and	

validate	predictions	at	global	scales.	

	

Dynamic	vegetation	models	

Trait-based	 approaches	 and	 remote	 sensing	 represent	 important	 and	 complementary	

steps	 in	 the	 development	 of	 testable	 predictions	 about	 forest	 ecosystems.	 It	 remains,	

however,	a	challenge	to	link	them	to	each	other	(Homolová	et	al.,	2013;	Antonarakis	et	

al.,	 2014)	 and	 to	 a	 wider	 body	 of	 ecological	 theory,	 such	 as	 demographic	 processes	

(Salguero-Gómez	 et	 al.,	 2018).	 While	 allometries,	 in	 particular,	 have	 served	 as	

important	tools	to	translate	between	ground	and	remote	sensing	observations	(Asner	&	

Mascaro,	 2014;	 Jucker	 et	 al.,	 2017),	 further	 techniques	 are	 needed	 that	 can	 easily	

translate	between	various	data	types	and	approaches,	take	into	account	both	dynamic	

changes	and	spatial	extent	and	synthesize	knowledge	across	scales.	And	this	 is	where	

the	great	power	of	vegetation	models	lies:	They	bring	together	knowledge	from	various	

domains	of	ecology	to	build	a	virtual	version	of	the	observed	ecoystems	and	thus	both	

identify	 knowledge	 gaps	 in	 current	 ecological	 theory	 and	 derive	 predictions	 for	 the	

future	(Shugart	et	al.,	2015;	Schimel	&	Schneider,	2019).		
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Vegetation	 models	 have	 a	 comparatively	 long	 history.	 The	 growth	 and	 yield	 tables	

employed	 by	 German	 foresters	 in	 the	 late	 18th	 century	 are	 often	 regarded	 as	 the	

beginning	 of	 forest	 growth	 modelling	 (Vanclay,	 1994;	 Pretzsch,	 2009).	 With	 the	

objective	 to	 predict	 the	 yield	 of	 forest	 stands	 (i.e.	 the	 expected	 volume	 increments),	

foresters	collected	data	over	years	and	extrapolated	to	future	conditions,	initially	using	

graphical	 methods	 and	 later	 with	 more	 sophisticated	 equations	 and	 models	 (Peng,	

2000).	Forest	models	have	thus,	from	the	very	beginning,	been	tied	closely	to	predictive	

aims	 and	 were	 designed	 to	 help	 in	 decision-making	 processes.	 According	 to	 the	

respective	 aims	 of	 practitioners,	 forest	models	 could	 vary	widely	 in	 their	 complexity,	

including	 differential	 equations	 (Garcia,	 1983),	 cellular	 automata	 (Karafyllidis	 &	

Thanailakis,	1997)	or	complex	process-based	models	of	later	generations	(Friend	et	al.,	

1993).	

While	 the	exact	 terminology	of	 vegetation	modelling	varies	 (Porté	&	Bartelink,	

2002),	 two	 important	 steps	 in	 the	 development	 of	 the	 discipline	 have	 been	 process-

based	 ecoystem	 models	 on	 the	 one	 hand	 (McMurtrie	 &	 Wolf,	 1983;	 Running	 &	

Coughlan,	1988;	Running	&	Gower,	1991)	and	so-called	gap	models	on	the	other	hand	

(Botkin	 et	 al.,	 1972;	 Shugart,	 &	 West,	 1980).	 The	 former	 were	 developed	 with	 the	

emergence	 of	 remote	 sensing	 data	 in	 mind	 and	 aimed	 at	 representing	 ecosystem	

processes,	 such	 as	 carbon,	 water	 and	 nutrient	 cycling,	 mechanistically	 through	 the	

explicit	 calculation	 of	 processes	 such	 as	 photosynthesis,	 respiration,	 and	

evapotranspiration.	While	they	strived	for	high	accuracy	concerning	exchanges	of	mass	

and	 energy,	 they	 relied,	 however,	 on	minimalistic	 information	 regarding	 species	 and	

their	 ecology,	often	 representing	 the	whole	 forest	 canopy	as	one	 "big	 leaf"	 (Monteith,	

1981;	Running	&	Coughlan,	1988).	 	Gap	models,	on	 the	other	hand,	were	designed	 to	
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mirror	 the	mosaic	 dynamics	 of	 forest	 growth,	 simulating	 individual	 tree	 growth	 and	

vertical	 competition	 for	 light	 on	 small	 patches	 (typically	 100	 to	 1000m2)	 that	 were	

decoupled	from	each	other	and	could	thus	represent	different	successional	states.	While	

gap	 models	 successfully	 simulated	 the	 dynamics	 of	 a	 wide	 variety	 of	 ecosystems,	

became	more	sophisticated	over	time,	e.g.	through	explicit	tree	representations	(Pacala	

et	al.,	 1996;	 DeAngelis	 &	Mooij,	 2005)	 and	 continue	 to	 inform	models	 (Fischer	 et	al.,	

2016,	 cf.	 Figure	 6),	 they	 have	 often	 had	 the	 drawback	 of	 using	 highly	 aggregated,	

empirical	 relationships	 to	 calculate	 processes	 such	 as	mortality	 or	 even	 tree	 growth	

(Bugmann,	2001).		

	

Figure	6:	Conceptual	representation	of	the	FORMIND	gap	model.	The	figure	shows	
the	 basic	 processes	modelled	 in	 the	 forest	 gap	model	 FORMIND	 in	 white,	 as	 well	 as	
additional	simulated	processes	in	blue.	Parallelograms	describe	model	input.	Numbers	
behind	 the	 respective	 processes	 indicate	 the	 sequence	 in	which	 they	 are	 carried	 out.	
Sections	refer	to	the	publication	this	figure	has	been	taken	from	(Fischer	et	al.,	2016).	
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However,	since	the	1990s,	a	growing	synthesis	between	the	two	model	types	has	begun	

to	emerge.	The	first	Dynamic	Global	Vegetation	Models	(DGVM)	such	as	HYBRID	(Friend	

et	al.,	 1997)	or	 the	 Integrated	Biosphere	Simulator	 IBIS	 (Foley	et	al.,	 1996)	combined	

the	 simulation	 of	 light	 competition	 between	 trees	 known	 from	 gap	 models	 with	 the	

fundamental	ecosystem	functioning	known	from	process-based	models	and	were	then	

coupled	to	General	Circulation	Models	(GCMs).	While	the	resulting	climate	and	carbon	

cycle	 projections	 were	 often	 highly	 diverging,	 with	 the	 tropics	 and	 Amazonia	 a	

particular	 source	 of	 uncertainty	 (Sitch	 et	 al.,	 2008),	 DGVMs	 thus	 presented	 a	 unique	

opportunity	to	forecast	the	future	of	the	Earth's	system,	analyze	atmosphere-biosphere	

feedbacks	and	assess	the	effects	on	the	global	carbon	cycle.	

Of	particular	concern	in	the	development	of	DGVMs	has	been	the	use	of	so-called	

PFTs	–	plant	functional	types	–	that	group	together	a	wide	range	of	species	into	entities	

that	 are	 supposed	 to	 have	 similar	 plant	 functioning	 (Purves	 &	 Pacala,	 2008).	 While	

often	 necessary	 to	 reduce	 computational	 demands,	 PFTs	 can	 act	 as	 hidden	 model-

tuning	 parameters	 (Scheiter	 et	al.,	 2013)	 and	most	 likely	 fail	 to	 capture	 the	 complex	

dynamics	of	forest	ecosystems.	The	large	biodiversity	of	tropical	forest	vegetation	has,	

for	 example,	 often	 been	 subdivided	 into	 only	 two	 very	 broad	 categories	 –	 tropical	

broadleaf	evergreen	and	tropical	broadleaf	deciduous	trees	(Foley	et	al.,	1996;	Sitch	et	

al.,	2003;	Krinner	et	al.,	2005).	The	question	of	whether	this	representation	is	adequate	

feeds	back	into	one	of	the	fundamental	ecological	questions,	i.e.	how	biodiversity	affects	

ecosystems	 (Sutherland	et	al.,	 2013)	and	 the	particular	 role	of	 rare	and	extreme	 trait	

combinations	 in	 the	 functioning	 of	 ecosystems	 (Ter	 Steege	 et	 al.,	 2013;	 Violle	 et	 al.,	

2017).		
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On	most	of	the	issues	plaguing	early-generation	DGVMs	(Prentice	et	al.,	2007),	however,	

considerable	 progress	 has	 been	 made	 in	 the	 past	 years.	 Advances	 include	 the	

integration	 of	 demographic	 processes	 (Medvigy	 et	 al.,	 2009;	 Fisher	 et	 al.,	 2018),	 the	

multiplication	 of	 plant	 functional	 types	 or	 their	 conversion	 into	 continuous	 trait	

distributions	(Pavlick	et	al.,	2013;	Fyllas	et	al.,	2014;	Sakschewski	et	al.,	2015),	and	new	

methods	to	rapidly	translate	from	individual-based	dynamics	to	large-scale	ecosystem	

functioning	(Purves	et	al.,	2008;	Strigul	et	al.,	2008).	Furthermore,	modern	successors	

to	early	gap	models	are	now	used	at	large	scales	to	provide	estimates	of	biomass	(Rödig	

et	al.,	2017)	and	analyze	biodiversity-productivity	relationships	 (Bohn	&	Huth,	2017).	

With	 their	 ability	 to	 thus	 harmonize	 trait-based	 research,	 assimilate	 remote	 sensing	

data	and	translate	them	into	predictions	of	ecosystem	functioning,	dynamic	vegetation	

models	have	become	an	essential	part	of	predictive	ecology	and	climate	science.		 	
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C.	 From	 regression	 to	 the	mean	 to	 individual-based	models:	 The	 importance	 of	

the	individual		

Despite	 the	 advances	 in	 trait-based	 approaches,	 the	 large-scale	 data	 provided	 by	

remote	 sensing	 and	 the	 integrative	 potential	 of	 next-generation	 DGVMs,	 one	 largely	

unresolved	issue	remains	how	to	exactly	incorporate	individual	organisms	such	as	trees	

into	our	predictive	tools.		

On	the	one	hand,	individuals	could	be	considered	one	of	the	most	basic,	if	not	the	

most	basic	unit	of	ecology	(Railsback,	2001;	Begon	et	al.,	2005).	While	 there	has	been	

considerable	debate	about	what	consitutes	the	units	of	selection	in	evolution	(Brandon	

&	 Burian,	 1986),	many	 fundamental	 processes	 in	 ecology	 occur	 between	 individuals,	

including	 such	 diverse	 interactions	 as	 competition,	 facilitation,	 predator-prey	

relationships	 and	 pollination.	 Whether	 a	 tree	 can	 grow	 and	 survive	 in	 a	 particular	

environment,	 will	 depend	 on	 the	 biotic	 environment	 as	 much	 as	 on	 the	 abiotic	

environment.	 And	 while	 some	 aspects	 of	 the	 biotic	 environment	 are	 mediated	 by	

evolutionary	 history	 beyond	 the	 individual,	 i.e.	 what	 competitors	 the	 tree	 will	

encounter	 or	 what	 mycorrhizal	 funghi	 it	 will	 associate	 with,	 there	 is	 clear	 empirical	

evidence	 that	 an	 individual	 tree's	 growth	 is	 shaped	 by	 its	 neighbors	 and	 in	 return	

shapes	 its	 neighbors'	 growth	 (Wright	 et	 al.,	 2014;	 Chen	 et	 al.,	 2016;	 Williams	 et	 al.,	

2017),	 with	 important	 consequences	 for	 community	 ecology	 (Chesson,	 1986).	 This	

importance	 of	 the	 local	 environment	 and	 interactions	 between	 individuals	 translates	

also	to	ecological	research.	Given	that	 individuals	shape	each	other,	a	 large	number	of	

ecological	experiments	and	field	measurements	have	been,	by	necessity,	carried	out	at	

the	individual	level.		
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At	 the	 same	 time,	 individuals	 have	 rarely	 found	 their	 way	 into	 dynamic	 vegetation	

models	–	or	as	"average	individuals"	–,	and	how	exactly	individual-based	measurements	

should	be	assimilated,	has	been	an	open	question	(Purves	&	Pacala,	2008).	In	a	similar	

vein,	 trait-based	 ecology	 has	 often	 focussed	 on	 average	 traits,	 although	 trait-fitness	

relationships	are	likely	mediated	by	individuals	(Shipley	et	al.,	2016).		

In	part,	 this	 lack	of	consideration	 for	 individual	variation	 is	due	 to	practicality:	

remote	 sensing	 data	 are	 typically	 not	 obtained	 at	 the	 individual	 level,	 averaging	

procedures	 greatly	 reduce	 computational	 efforts	 in	models,	 and	 sampling	 efforts	 are	

much	lower	in	trait-based	studies	when	species	means	can	be	used.	More	specifically,	if	

individual-level	variation	is	discounted,	large	data	bases	can	be	used	to	supply	missing	

trait	data	for	species	means	(Zanne	et	al.,	2009;	Kattge	et	al.,	2011).		

Another	reason	for	the	neglect	of	individual-level	variation	might,	however,	also	

be	 found	 in	 the	particularities	of	knowledge	acquisition	and	 the	scientific	method,	 i.e.	

the	 tendency	 towards	 generality	 and	 simplicity.	 The	 idea	 that	 the	 basic	 units	 of	

cognition,	 i.e.	what	is	 individual	to	objects	and	beings,	cannot	be	known	and	is	always	

averaged	out	in	knowledge	production	("Individuum	est	ineffabile")	can	be	traced	back	

to	 Aristotle	 (Aristotle,	 1963).	 It	 is	 in	 this	 sense	 that	 science	 often	 relies	 on	

generalisations.	Its	most	popular	statistical	model	–	ordinary	least	squares	regression	–,	

summarizes	 variation	 around	 the	 predicted	 mean	 as	 error.	 Ecological	 variation	 that	

cannot	be	accounted	for	is	thus	typically	summarized	as	"unexplained	variation".		

Science's	tendency	towards	generalisation	has	been	further	reinforced	by	a	drive	

towards	parsimony.	The	underlying	principle,	known	as	Occam's	razor,	states	that	"the	

supreme	goal	of	all	 theory	 is	 to	make	 the	 irreducible	basic	elements	as	simple	and	as	

few	 as	 possible	without	 having	 to	 surrender	 the	 adequate	 representation	 of	 a	 single	

datum	 of	 experience."	 (Einstein,	 1934).	 If	 a	 simpler	 explanation	 is	 available,	 that	
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nonetheless	still	describes	the	system	well,	it	is	generally	preferred	to	one	that	requires	

many	 variables	 and	 assumptions.	 Individual	 variation,	 in	 short,	 should	 thus	 not	 be	

included,	if	our	understanding	does	not	require	it.		

A	key	point	of	the	principle	of	parsimony	is,	however,	that	simplicity	is	justified	

only	as	long	as	it	is	adequate	to	the	system	that	is	studied,	i.e.	a	model	that	is	simple,	but	

cannot	predict	or	 reproduce	empirical	patterns,	 is	not	 a	good	model	 (Houlahan	et	al.,	

2017).	When	all	models	are	wrong	and	only	some	useful	(Box,	1979),	abstractions	need	

to	be	judged	by	their	predictive	power	and	usefulness.	While	correlative	studies	might	

thus	 profit	 from	 applying	 parsimonious	 principles	 to	 distinguish	measurement	 noise	

from	 real	 variation,	 this	 does	 not	 necessarily	 hold	 true	 for	 mechanistic	 modelling	

(Coelho	et	al.,	2019).		

In	 particular,	 there	 are	 several	 ways	 in	 which	 individual-level	 information	 is	

mechanistically	 important	 for	 ecology	 in	 general	 and	 the	 prediction	 of	 vegetation	

dynamics	 in	 particular.	 Individual	 (or	 intraspecific)	 variation	 often	 dominates	 trait	

variation	and	can	qualitatively	alter	ecological	dynamics	in	the	presence	of	nonlinearity	

(Bolnick	et	al.,	 2003,	2011).	 Since	most	 trait-trait	 relationships	 and	allometric	 scaling	

laws	are	described	on	logarithmic	scales,	the	prediction	from	the	mean	of	several	trait	

values	 is	 not	 the	 same	 as	 the	mean	 of	 several	 predictions	 from	 trait	 values	 (cf.	 also	

Figure	 7).	 In	 particular,	 if	 we	 assume	 ecosystems	 to	 be	 complex,	 i.e.	 with	 emerging	

dynamics,	 then	 small	 alterations	 in	 underlying	 distributions	 could	 have	 strong	

repercussions	 on	 the	 predicted	 dynamics.	 Furthermore,	 plasticity	 in	 plant	 traits	 and	

dimensions	 has	 consistently	 be	 shown	 to	 affect	 forest	 structure	 and	 functioning	

(Longuetaud	et	al.,	2013;	 Jucker	et	al.,	2015),	and	 large	parts	of	biodiversity	might	be	

explained	by	high-dimensional	variation	between	individuals	(Clark	et	al.,	2010).		
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Figure	 7:	 Jensen's	 inequality	 in	 ecology.	 Demonstration	 of	 the	 effect	 of	 individual	
variation	in	predator	attack	rate	and	handling	time	on	feeding	rate,	when	feeding	rate	is	
a	 convex	 function	 of	 attack	 rate	 and	 a	 concave	 function	 of	 handling	 time.	 Assuming	
dimorphic	populations,	i.e.	with	individuals	that	have	either	high	or	low	attack	rates	(or	
handling	times),	average	feeding	rates	are	shown	in	blue.	In	red	are	shown	the	feeding	
rates	of	the	average	individual.	This	illustrates	how	using	mean	individuals	in	ecological	
models	 could	 produce	 wrong	 predictions	 despite	 relying	 on	 the	 same	 underlying	
relationship	 between	 attacking	 rates	 (or	 handling	 times)	 and	 feeding	 rates.	 From	
Bolnick	et	al.,	2011.	
	

It	 is	 in	 this	 context	 that	 individual-based	 modelling	 (IBM)	 approaches	 are	 a	 highly	

promising	tool	for	the	future	of	predictive	ecology.	Originating	from	the	gap-modelling	

philosophy,	individual-based	models	of	forest	ecoystems	have	been	developed	early	on.	

Simulating	 the	 dynamics	 of	 forests	 tree	 by	 tree	 (DeAngelis	 &	 Mooij,	 2005),	 often	 in	

spatially	 explicit	 ways	 (Pacala	 et	 al.,	 1996;	 Chave,	 1999;	 Maréchaux	 &	 Chave,	 2017),	

individual-based	 models	 were	 thus	 able	 to	 simulate	 ecosystem	 dynamics	 bottom-up	

and	 across	 scales.	 This	 allows	 not	 only	 for	 the	 simulation	 of	 interactions	 between	

individuals,	the	explicit	integration	of	ecosystem	functioning	and	biodiversity	(Grimm	et	

al.,	 2017)	 or	 the	mechanistic	 representation	 	 of	mortality	 events	 such	 as	 treefall,	 but	

also	 for	 a	highly	 flexible	 integration	of	data,	 from	ground	data	up	 to	 remotely	 sensed	

canopy	data	(Shugart	et	al.,	2015;	Knapp	et	al.,	2018).		
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And	 while	 the	 incorporation	 of	 individuals	 into	 dynamic	 vegetation	 models	 and	

variability	around	 traits	might	make	models	more	 complex,	 it	 also	allows	 for	a	wider	

variety	of	 tests	 that	 can	ensure	 that	dynamics	are	 rendered	accurately.	Pattern-based	

modelling,	 in	 particular,	 i.e.	 the	 repeated	 validation	 of	 submodels,	 can	 substantially	

increase	the	confidence	 in	model	predictions	(Grimm	et	al.,	2005;	Grimm	&	Railsback,	

2012).		

	

Summary:	Towards	large-scale	predictions	of	forest	dynamics	

In	 summary,	 forest	 ecosystems,	 and	 particularly	 tropical	 rainforests	 are	 complex	

adaptive	systems	(Levin,	1998)	that	are	essential	 to	human	 life	and	that	emerge	 from	

the	 competitive	 –	 and	 facilitating	 (Brooker	 et	 al.,	 2008)	 –	 interactions	 of	 plant	

organisms.	 These	 organisms	 are	 modular,	 plastically	 react	 to	 their	 environment,	

develop	 over	 decades	 or	 centuries	 and	 are	 embedded	 in	 complex	 ecological	 and	

evolutionary	processes.	To	better	predict	their	future	and	inform	human	policy	making,	

approaches	are	needed	to	adequately	simulate	these	emerging	dynamics.	Coupled	with	

remote	 sensing	 and	 the	 powers	 of	 modern	 computers,	 individual-based	 approaches	

offer	a	highly	promising	answer	to	this	challenge,	either	by	informing	or	even	becoming	

part	of	DGVMs	(Sato	et	al.,	2007;	Smith	et	al.,	2014;	Shugart	et	al.,	2018),	thus	opening	

up	 avenues	 for	 the	 large-scale	 prediction	 of	 forest	 growth	 from	 individual	 tree	

organisms	at	global	scales.		
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OBJECTIVES	
	

The	ultimate	aim	of	the	work	at	hand	was	to	further	our	understanding	of	the	complex	

ecology	 and	 functioning	 of	 forests,	 specifically	 tropical	 rainforests	 –	 in	 the	 hope	 that,	

one	day,	we	can	predict	 the	 future	of	 these	ecosystems	with	reasonable	accuracy	and	

precision.	 At	 the	 heart	 of	 the	 effort	 lies	 the	 continued	 development	 of	 an	 individual-

based	 forest	 growth	model,	 TROLL,	 whose	 code	 had	 been	 first	 written	 20	 years	 ago	

(Chave,	1999)	and	which	has	been	comprehensively	updated	more	recently	to	simulate	

a	tropical	rainforest	in	French	Guiana	(Maréchaux	&	Chave,	2017).			

While	 this	most	 recent	version	of	TROLL	has	shown	good	correspondence	 to	a	

number	 of	 important	 metrics	 of	 forest	 structure	 and	 dynamics	 at	 the	 study	 site	 –	

aboveground	 biomass,	 primary	 productivity,	 successional	 dynamics	 (Maréchaux	 &	

Chave,	2017)	–,	it	was	the	aim	of	this	PhD	project	to	further	increase	the	realism	and	the	

predictive	 potential	 of	 the	model	 to	 lay	 the	 ground-work	 for	 large-scale	 predictions.	

Most	important	in	this	regard	was	the	assimilation	of	various	data	sources	into	TROLL,	

both	 for	 calibration	 and	 validation	 purposes,	 with	 a	 special	 focus	 on	 airborne	 laser	

scanning	 (ALS)	 and	 its	 potential	 to	 extend	 predictions	 across	 several	 thousands	 of	

hectares	of	forest.	Figure	8	illustrates	how	continuous	improvements	in	methodology	in	

this	 PhD	 work	 have	 improved	 the	 match	 between	 TROLL	 canopies	 and	 ALS-derived	

canopy	height	estimates.	This	successful	 integration	could	serve	as	a	blueprint	 for	the	

integration	of	futher	remote	sensing	sources,	both	terrestrial	and	space-borne,	and,	one	

day,	the	extension	of	TROLL	to	regional,	if	not	global,	scales.		
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Figure	 8:	 Improvements	 in	 the	 representation	 of	 empirically	 observed	 canopy	
height	with	 the	 TROLL	 forest	 growth	model.	The	above	graph	shows	how	TROLL-
based	 rendering	 of	 empirical	 forest	 canopies	 have	 evolved	 from	 an	 initial	 simulation	
(upper	panel)	with	little	variation	in	tree	height,	over	the	inclusion	of	variation	around	
allometric	 means	 (middle	 left)	 up	 to	 the	 spatially	 explicit	 fitting	 with	 the	 Canopy	
Constructor	(bottom	panel),	as	laid	out	in	Chapter	2.		
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Throughout	this	work,	individual-based	model-building	with	TROLL	invariably	posed	a	

number	of	 challenges.	 First	 and	 foremost,	 since	 individual-based	models	 simulate	 the	

dynamics	of	ecosystems	bottom-up,	they	ideally	give	rise	to	similar	emergent	behavior	

as	natural	systems	(Railsback,	2001;	DeAngelis	&	Grimm,	2014).	In	practical	terms	this	

meant,	 however,	 that	 the	 causes	 of	 divergences	 from	 empirical	 patterns	 were	 often	

difficult	to	identify	in	a	straightforward	way.	Second,	individual-based	models	are	often	

parameter-rich	 mechanistic	 models,	 including	 both	 explicit	 (tuned	 parameters)	 and	

implicit	(empirical	formulae)	parameterisations	and	thus	inherit	the	problems	of	other	

complex	ecosystem	models.	A	particular	 issue	is	equifinality,	 the	potential	 to	generate	

similar	patterns	as	found	empirically,	but	without	simulating	the	underlying	processes	

adequately	 (Beven	 &	 Freer,	 2001).	 As	 a	 consequence,	 a	 delicate	 balance	 had	 to	 be	

maintained	 between	 mirroring	 natural	 complexity	 and	 keeping	 the	 model	

understandable	and	suitable	for	the	purposes	of	prediction	(Levins,	1966).			

	

When	 integrating	TROLL	with	both	 field	data	and	airborne	 lidar	scans,	a	major	

challenge	 emerged	 in	 how	 to	 constrain	 parameters	 to	 which	 the	 model	 was	 highly	

sensitive,	but	 for	which	sufficient	 field	data	was	 lacking.	This	concerned,	 for	example,	

allometric	laws	relating	trunk	diameter	and	crown	extent,	biomass	allocation	rules	and	

mortality-related	parameters.	 In	particular,	 the	question	emerged	of	how	to	do	this	 in	

an	efficient	way,	 considering	 the	high	computational	demands	of	 the	 spatially	explicit	

TROLL	 simulations.	 How	 could	 we,	 for	 example,	 in	 a	 pratical	 way,	 decide	 which	

deviations	 from	empirical	 canopies	were	due	 to	useful	model	 abstractions	 (i.e.	 crown	

geometry),	and	which	deviations	represented	fundamental	misrepresentations	(treefall	

dynamics)?	 Did	 the	model	 impose	 sufficient	 constraints	 to	 infer	 scaling	 relationships	

between	tree	properties?	And	how	could	this	be	extended	to	spatial	scales	relevant	to	
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research	 on	 climate	 change?	Much	 of	 this	 thinking	 has	 informed	 Chapter	 1	 and	 was	

published	as	a	Tansley	Insight	(Fischer	et	al.,	2019).	

	

	 What	 emerged	 from	 a	 continued	 pursuit	 of	 these	 questions	 was	 the	 idea	 of	 a	

divide-and-conquer	 approach,	 inspired	 by	 pattern-oriented	 modelling	 (Grimm	 et	 al.,	

2005).	 Pattern-oriented	 modelling	 means	 that,	 if	 an	 individual-based	 model	 indeed	

simulates	 a	 natural	 system	 bottom-up,	 then	 it	 should	 also	mirror	 the	 natural	 system	

across	all	 levels	of	representation,	and	validation	should	be	carried	out	at	every	scale.	

With	 this	 approach	 in	mind,	 instead	 of	 fitting	 all	 of	 TROLL's	 parameters	 at	 the	 same	

time,	the	idea	was	to	split	the	inference	of	forest	structure	and	dynamics	into	two	steps.	

The	 first	 step	 asked:	What	 is	 the	 best	 representation	 of	 forest	 structure	 that	we	 can	

create	 of	 an	 empirically	 observed	 canopy?	 Could	we	 reconstruct	 a	 tree	 configuration	

that	 conforms	 to	 TROLL	 principles	 and	 that	 fits	 empirical	 data,	 having	 only	 a	 field	

inventory	and	an	airborne	lidar	scan	at	our	disposal?	Could	we	potentially	extend	this	

to	a	 larger	area,	e.g.	 the	area	covered	by	 the	whole	 lidar	scan?	The	result	was	 the	 so-

called	 Canopy	 Constructor	 algorithm	 which	 shared	 some	 broad	 characteristics	 with	

recent	developments	by	 the	FORMIND	modelling	group	 (Taubert	et	al.,	 2015;	Bohn	&	

Huth,	 2017),	 but	 would	 be	 a	 much	 more	 general	 tool	 to	 create	 geometric	

representations	 of	 tropical	 forests	 and	 to	 infer	 forest	 biomass	 or	 tree	 abundances	 at	

large	scales	(Chapter	2).		

	

	 The	 second	 step	 of	 the	 divide-and-conquer	 approach	 was	 the	 translation	 of	 a	

static	forest	structure	into	a	dynamical	ensemble	of	growing	and	dying	trees.	Now	that	

the	Canopy	Constructor	provided	a	means	to	infer	static	allometries,	it	was	necessary	to	

link	it	with	the	process-based	approach	of	TROLL.	The	most	fundamental	challenge	here	
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was	 to	 translate	 an	 ensemble	 of	 trees	 that	 corresponded	 well	 to	 a	 lidar	 scan	

geometrically	 into	a	biologically	viable	old-growth	forest	and	then	to	ensure	that	they	

would	 continue	 to	 coexist	 in	 a	 stable	 way.	 To	 improve	 stability	 and	 transferability,	

TROLL	 was	 updated	 to	 include	 intra-specific	 variation,	 crown	 plasticity	 and	 an	

improved	representation	of	photosynthetic	dynamics.	Based	on	this	work,	 the	realism	

of	TROLL	with	regard	to	empirical	patterns	could	be	assessed,	and	a	platform	was	built	

for	 the	 future	 prediction	 of	 vegetation	 dynamics	 directly	 from	 remotely	 sensed	 old-

growth	forests	(Chapter	3).	

	

	 Once	the	model	was	calibrated,	this	new	version	of	TROLL	then	served	as	basis	

to	 tackle	a	 crucial	 ecological	question,	namely:	How	does	 inter-individual	variation	 in	

traits	and	allometries	and	the	plasticity	of	plants	to	environmental	conditions	influence	

whole-ecosystem	properties	 in	 the	old-growth	 forests	of	French	Guiana?	 In	ecological	

systems,	non-linear	 responses	between	organisms	are	 common	 (Bolnick	et	al.,	 2011),	

and	 in	 forests	 in	 particular,	 individual	 variation	 has	 been	 shown	 to	 greatly	 impact	

whole-stand	 aboveground	 biomass	 (Pretzsch,	 2014).	 This	 study	 thus	 served	 to	make	

use	 of	 the	 recently	 developed	 improvements	 of	 TROLL	 to	 explore	 the	 	 relationship	

between	variation	and	functioning	more	thoroughly	(Chapter	4).	

	

	 Finally,	 albeit	not	 at	 the	 center	of	 the	 thesis	project	 at	hand,	plants	 traits	have	

continually	played	an	important	role	in	it,	be	it	for	the	inference	of	tree	demography	in	

TROLL,	or	as	 in	 the	case	of	wood	density,	 for	 the	estimation	of	aboveground	biomass	

with	the	Canopy	Constructor.	To	apply	both	the	Canopy	Constructor	and	TROLL	at	large	

spatial	and	temporal	scales,	good	collections	of	traits	and	a	good	understanding	of	the	

eco-evolutionary	dynamics	 that	shape	them	will	be	a	prerequisite.	 It	 is	 in	 this	context	
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that	this	PhD	work	zoomed	out	again,	from	the	narrower	questions	of	model-calibration	

and	individual	variation	in	the	Guianas	to	the	wider	patterns	of	wood	density	variation.	

Over	the	course	of	two	years,	a	new	global	data	base	of	wood	densities	was	created,	to	

update	a	previous	collection	(Chave	et	al.,	2009;	Zanne	et	al.,	2009),	and	to	explore	both	

the	evolutionary	divergences	and	global	distribution	of	wood	density		(Chapter	5).	 	
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Chapter	1:	Improving	plant	allometry	by	fusing	

forest	models	and	remote	sensing		

(Tansley	Insight,	published	on	21	March,	2019	in	New	Phytologist)	

	

This	 chapter	 is	 a	 conceptual	 paper	 on	 how	 the	 complexity	 of	 individual-based	 forest	

growth	 models	 and	 the	 data-richness	 of	 remote	 sensing	 inform	 each	 other	 to	 yield	

ecological	insights.	At	its	heart	is	the	analysis	of	plant	allometries,	i.e.	the	various	scaling	

relationships	 that	 exist	 between	 plant	 size	 and	 function	 and	 that	 have	 been	 a	 core	

component	of	vegetation	models	and	research	on	the	global	carbon	cycle.	We	review	the	

challenges	 in	 allometric	 scaling,	 provide	 an	 example	 with	 the	 individual-based	 forest	

model	TROLL	of	how	they	can	be	tackled	by	advances	in	data-model	fusion,	and	outline	

how,	 in	 doing	 so,	 such	 models	 can	 serve	 as	 data	 integrators	 for	 dynamic	 global	

vegetation	models.	

	



Tansley insights

Improving plant allometry by fusing forest
models and remote sensing

Author for correspondence:
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Summary

Allometry determines how tree shape and function scale with each other, related through size.
Allometric relationships help scale processes from the individual to theglobal scale and constitute
a core component of vegetationmodels. Allometric relationships have been expected to emerge
from optimisation theory, yet this does not suitably predict empirical data. Here we argue that
the fusion of high-resolution data, such as those derived from airborne laser scanning, with
individual-based forest modelling offers insight into how plant size contributes to large-scale
biogeochemical processes. We review the challenges in allometric scaling, how they can be
tackled by advances in data-model fusion, and how individual-based models can serve as data
integrators for dynamic global vegetation models.

I. Introduction

Forests provide important services to societies globally, sequester-
ing large amounts of carbon, limiting erosion, regulating the water
cycle, and providing a habitat for many species. Size, shape and
function relationships among plants, or allometries, play a key role
in understanding these services. Such relationships encapsulate
ontogenetic, ecological and evolutionary constraints (Niklas,
1994) and have been widely used in quantitative tools to aid forest
management.Howmuch carbon is stored in the world’s forests, for
instance, is estimated from forest inventories using allometric
models and then scaled up to regional and global scales, based on
Earth observation data and modelling (Pan et al., 2011).

Allometries also describe how metabolic functions, such as
respiration rates and net primary production, scale with each other.

A theory has been developed to infer allometric scaling from
evolutionary optimisation principles (Enquist & Niklas, 2002),
but this theory does not account for recent advances in plant
physiology (Rogers et al., 2017; Scoffoni et al., 2017), and its
predictions do notmatch empirical datawell (Muller-Landau et al.,
2006; Poorter et al., 2012). Our ability to simulate the vegetation
response to environmental change in Dynamic Global Vegetation
Models (DGVMs) is, however, directly dependent on the robust-
ness of these scaling relationships. BecauseDGVMs adopt a coarse-
grained description of forests, allometries are often used to link
fluxes and pools, but the results do not always correspond to
empirical observations (Wolf et al., 2011).

A great opportunity to bring processes and field information into
a consistent modelling framework is offered by individual-based
models (IBMs) of forest dynamics (DeAngelis&Grimm, 2014). In
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IBMs, the forest ecosystem emerges from a combination of
individual tree physiological and demographic processes at a scale
that is relevant for forest resource management and ecological data
assimilation, as in the FORMINDmodel (R€odig et al., 2017). This
approach can be extended to larger scales, either by informing
DGVMs through IBMs (for example ED2; Medvigy et al., 2009;
LPJ-GUESS, Smith et al., 2014) or by directly scaling them up
(SEIB-DGVM, Sato et al., 2007; FORMIND, Fischer et al.,
2016). Like DGVMs, forest IBMs often rely on empirical
allometric models to predict tree shape and function but, during
model calibration, information can also be gained about the
allometric models themselves and the processes that shape them.

Proper calibration and validation of forest IBMs should be based
on a variety of independent data sources, ranging from forest
inventories to eddy-flux data, as recently exemplified with the
TROLL model, a physiology-based and fully spatially explicit
forest IBM (Mar"echaux & Chave, 2017). A promising additional
data source is provided by remote sensing. With its ability to
generate detailed information over unprecedented scales and at
locations that are otherwise hard to access (for example upper
canopy layers, remote ecosystems), remote sensing has already had a
transformative effect on vegetation modelling (Shugart et al.,
2015).

Here, we examine how a fusion of IBMs and airborne laser
scanning (ALS), a remote-sensing technology that provides
structural information at landscape scale, can be used to
improve allometric relationships and better understand the
processes that shape them. We argue that by linking forest IBMs
with ALS, we can reduce unexplained variation in allometric
estimates and extend these to large spatial scales, as displayed in

Fig. 1. This is an important step towards increased biological
knowledge and improved predictions of ecosystem functioning.
It is also a test case for the integration of future remote-sensing
sources such as hyperspectral imaging or spaceborne laser
scanning.

II. Tree allometry and transferability

When tree size, shape and function relate to each other across scales
and environmental conditions, then the measurement of a single
dimension can already provide a rough estimate of whole-tree
attributes. This factor is particularly relevant when one quantity is
more easily measured (for example trunk diameter) than the others
(for example metabolic rate or biomass). Empirical studies provide
a strong support for generalised allometric relationships. Whole-
plant autotrophic respiration, for example, scales predictably with
biomass across several orders of magnitude and from boreal to
tropical forests (Mori et al., 2010), and general patterns of
allocation into aboveground vs belowgound plant organs exist at
individual and stand levels globally (Poorter et al., 2012; Chen
et al., 2019). Similarly, allometries that relate trunk diameter to tree
height, as shown in Fig. 2, can be found across forest types and have
been used to supplement height measurements that are error prone
and time consuming without optimised protocols (Sullivan et al.,
2018).

The notion that a model developed at one site may be valid
elsewhere is called transferability (Wenger & Olden, 2012). An
important application is exemplified by the calculation of carbon
stocks from forest inventories. The product of wood density, trunk
cross-sectional area, and tree height turns out the be a good

Simulation 

IBM

Data collection Model-driven data assimilation 

Dynamic global vegetation models

Airborne laser scanning 

Model–data
comparison

Model
reformulation Improved

allometries 
Improved process

understanding 

Prior
knowledge

Parameter
refinement

Fig. 1 Individual-based models (IBMs) as data
assimilators, in interface with dynamic global
vegetation models (DGVMs): application to
allometric inference. Ground-based censuses
and airborne laser scanning (ALS) provide
complementary views on trees and forest
canopies.Both techniquescanbe incorporated
into themodel–data fusion cycle, as formalised
by Approximate Bayesian Computation
(ABC). Increasingly diverse data can therefore
be used to improve model representation and
allometric parameter inference. Such
improvement can be a benefit to DGVMs,
whose simulations typically reach larger
extents than IBMs, butwhich are currently run
at coarse resolution, preventing them from
making direct comparisonswith data provided
at finer spatial resolution.
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predictor of tree biomass obtained from destructive harvesting
(Chave et al., 2014). This holds true across a wide range of values
for the predictor variables and broad bioclimatic gradients, from
dry forest woodlands to tropical rainforests. Recent work based on
an extensive destructive harvest experiment in African tropical
forests suggests that relatively simple biomass models are transfer-
able (Fayolle et al., 2018), and could therefore be useful in biomass
assessments across the tropics.

However, in most cases, allometries are influenced by environ-
mental factors, both abiotic and biotic, and are not easily
transferable. The scaling of tree height with trunk diameter, for
example, depends on bioclimatic constraints (Lines et al., 2012;
Olson et al., 2018), and tree growth is shaped by interactions with
other trees (Coomes et al., 2011; Jucker et al., 2015). Furthermore,
allometries typically have a multiplicative error structure. Residual
standard deviations for predictions translate into large absolute
errors for the biggest individuals and result in inflated uncertainty
in the predicted variables.

To quantify variation in scaling of tree shape, remote sensing
offers new perspectives. Terrestrial laser scanning (TLS), for
example, provides accurate estimates of tree dimensions without
requiring destructive harvesting (MomoTakoudjou et al., 2017). It
therefore holds great potential for exploring geometric scaling
properties in forest trees and their dependence on environmental
conditions (Disney, 2019).

III. Condensing the point cloud: allometry from space

Where TLS is a type of remote sensing ‘from the ground’, airborne
LiDAR scanning extends the 3D-mapping capacity of forest and
tree structure to the landscape scale. The technology and its
application to forest scanning have been developed for over 3
decades (Schreier et al., 1985;Nelson et al., 1988), and studies now
commonly cover several 1000 hectares of forest at high point
densities, that is high resolution. As a result, individual tree shapes
can be measured in open woodlands, allowing researchers to
monitor the growth anddeathof individual plants (Levick&Asner,
2013; Duncanson & Dubayah, 2018). Even more impressively,
clustering algorithms have been developed to segment ALS point
clouds into individual tree crowns in closed-canopy forests (Ferraz
et al., 2016). As tree trunk diameter was recently found to be
correlated with the product of tree height and crown size, the
segmented crowns can then be used to estimate ground-based
measurements (Jucker et al., 2017); this technology is being
increasingly used in routine forest monitoring programmes.

Tree-delineation from ALS is not without its problems,
however. Trees often have irregular crowns, they may partly
overlap, and the sharp light attenuationwithin dense canopymeans
that understorey trees are sparsely scanned, rendering the direct
retrieval of tree dimensions difficult. IBMs such as TROLL
(Mar"echaux & Chave, 2017) offer an indirect, yet powerful
alternative.

The spatially explicit rendering of treefalls and the competition
for light resources introduce ecological constraints on the simulated
forest structure, limiting tree density and dimensions across size
classes. Instead of translating point clouds back into individual tree
dimensions, we can create better fits between virtual and empirical
canopies by adjusting vital rates and allometric parameters that can
therefore be derived from mechanistic principles – even for trees
that are difficult to observe directly from ALS. As TROLL’s virtual
canopies have a high spatial resolution (m3), they compare naturally
to ALS data and a few statistics are often suffice to link them. For
example, Fig. 3 shows the match between top-canopy height
obtained by ALS and a TROLL-based reconstruction. In the future
it would be critical to extend this approach to other data sources,
including TLS and spaceborne missions. Examples are the
spaceborne laser scanner GEDI, a LiDAR now on board the
International Space Station, and the BIOMASS synthetic aperture
radar satellite, scheduled for launch in 2022, that will both provide
a radically new view of the world’s forests.

Because vegetation models and remote sensing have long proven
mutually informative (Sellers et al., 1997), the available approaches
for data-model fusion have been well tested. Possibilities include the
derivation of tree-level data from ALS for model parameterisation,
the comparison of outputs with observed canopies for model
validation (Seidl et al., 2012, Fig. 3), and so-called model inversion,
inwhichmodels are runwith awide rangeof parameter combinations
and systematically compared with remotely derived metrics (Fig. 1).
A hybrid between these approaches – partly inversemodelling, partly
initialisation – was developed early on and has recently been applied
to derive biomass maps across Amazonia using spaceborne LiDAR
(Hurtt et al., 2004; R€odig et al., 2017). Moreover, when models
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Fig. 2 Empirical allometric relations between tree height and trunk diameter
(DBH).Michaelis!Menten typeallometricmodelswere fittedwithnonlinear
least squares and a heteroscedastic error structure at six sites, typical of
tropical forests, as follows: (a) Ulu Ulu National Park, Brunei (4.54°N,
115.15°E); (b) Parque Estadual Cristalino, Mato Grosso, Brazil (9.06°S,
55.94°W); (c) GreboNational Forest, southeast Liberia (5.4°N, 7.62°W); (d)
Nouragues Ecological Research Station, French Guiana (4.09°N, 52.67°W);
(e) Dja Faunal Reserve, Cameroon (1.89°S, 13.22°E); (f) Tambopata
National Reserve, Peru (12.84S, 69.29W). Data are from Sullivan et al.
(2018), and metadata can be accessed on the forestplots.net data portal.
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provide realistic representations of forest structure, virtual ALS data
can be produced and tested before using empirically observed
canopies (Fassnacht et al., 2018; Knapp et al., 2018).

IV. Bayesian merging of data in IBMs

One efficient way to merge data and models is offered by Bayesian
approaches such as Approximate Bayesian Computation (ABC), a
widespread method in biological and ecological applications
(Beaumont, 2010; Hartig et al., 2011). Fig. 4 illustrates the
inference of crown allometry parameters based on ABC. In
qualitative terms, the approach is as follows: large numbers of
simulations are performed with variations in crown allometry
parameters (the prior in Bayesian statistics), the resulting virtual
canopies are then compared with an empirically observed canopy
(through statistics such as canopy height; Fig. 3) and, finally, the
parameter values of the best-performing simulations are selected
(the posterior). Inference on tree allometries is therefore turned into
a parameter optimisation problem, and uncertainty around the
parameter estimate reflects how informative is the data regarding a

particular allometry. In the example given in Fig. 4, the inference is
considerably improved by using ALS data in addition to ground
data, providing more precise estimates for allometry parameters
across diameter-size classes.

When harmonising high-dimensional data, as obtained from
ALS and IBMs such as TROLL, some issues emerge. Inferences can
be markedly different, depending on how virtual and empirical
canopies are compared, and dimension reduction and cross-
validation techniques are needed to find an appropriate set of
statistics (Csill"ery et al., 2012; Nunes & Prangle, 2015). But even
when summary statistics are well chosen, a pattern (for example a
virtual canopy) can be the result of several parameter combinations
or ways to represent processes (for example allometries). In this
case, inference methods such as ABC are not well posed. This type
of uncertainty, usually referred to as ‘equifinality’ (Luo et al., 2009),
cannot always be avoided, but it can be mitigated. Additional data
sources can help to narrow down the parameter space (Fig. 4).
Furthermore, it is desirable to implement mechanistic models over
statistical ones, because mechanistic simulations are restricted to a
generally smaller universe of possibilities. They therefore
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complement machine-learning techniques that are increasingly
popular across science, including forest modelling, but are
especially prone to the equifinality problem.

Another approach to narrow down the parameter space for
models such asTROLL is the construction of an initial canopy state
whose spatial arrangement is consistent with both the mechanistic
principles of TROLL and the ALS-derived canopy structure. One
method to produce such an initial state consists in sequentially
assigning trees to spatial positions such that they receive enough
light and that their size matches ALS observations. A space-filling
rule is then iterated until all available space in the scene has been
filled by trees (Taubert et al., 2015). This initialisation can be useful
to explore the range of validity of forest structure parameters
(canopy gaps, crown exposure) and, therefore, yields both priors for
the IBM and an evaluation of summary statistics. The IBM can
then use this information to focus on ecological dynamics and
provide distributions for tree trunks, crowndimensions andheights
that represent a predictive check on ecological inferences and a new
prior for the parameterisation of DGVMs (Fig. 1).

V. Challenges and perspectives

In this paper we argue that the explicit merging of plant allometry,
forest observations, and individual-based modelling contributes to
a unified vision of forest ecology. A fully spatially explicit IBM,
when used for Bayesian data-model fusion, can inform quantities
such as crown size and shape that are difficult to measure in dense
canopies, but to which spatially explicit models are highly sensitive.
The approach also helps to gain an understanding of ecological

processes, as it captures the fine-grained structure of forest canopies.
It could, therefore, better explain tree regeneration and simulate the
dynamics of nontree life forms, including lianas and epiphytes or
even canopy-dwelling animals. This challenge is one of the greatest
in biodiversity research today (Singer et al., 2016). Further
ecological insights can be gained regarding submodels, such as
the tree growth equations implemented in gap models (Shugart
et al., 2018), or the autotrophic respiration equation (Atkin et al.,
2015). The obtained information could then constrain the
parameters of physiological models that are usually prescribed in
DGVMs (but seeWang et al., 2017), and offer a direct benchmark
of upscaling simplifications of canopy structure, such as the perfect
plasticity approximation (Purves et al., 2008).

Where the focus of DGVMs has traditionally been on satellite
data, forest IBMs have instead been developed for and from ground
inventories, with trunk diameters and their growth the main
predictors of all simulated ecological processes. The remote-sensing
revolution calls, however, for a new paradigm in forest modelling,
including new data sets, and new approaches to model building.
This mirrors the larger change of direction in global forest research
in which remotely sensed metrics are increasingly used to predict
ground metrics (Jucker et al., 2017). This also represents a timely
challenge because spaceborne missions such as GEDI and
BIOMASS will acquire global forest structure datasets, but it is
likely that a correct interpretation of these datasets will require an
explicit linkage with models (Fisher et al., 2018). Model upscaling
raises the question of spatial model transferability. It is crucial to
test this by validating the model at places where it has not been
calibrated.
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Fig. 4 Crown radius allometries inferred by Approximate Bayesian Computation (ABC) in TROLL. (a) Shape of the crown-radius allometry included in the
TROLLmodel. Two posterior distributions of crown-radius allometry are shown, one constrained by ground data only (orange), the other also constrained by
dataderived fromairborne laser scanning (ALS, red). The thick lines represent theposteriormode, the colouredareas the70%highest-density intervals, and the
dotted lines the extent of the prior distribution. (b, c) Cuts through the allometric distribution at 0.5m in trunk diameter (DBH), for both simulations,with priors
indicated by dotted lines. The addition of ALS data in ABC inference considerably narrows down the crown allometry parameters. The inference is based on
20 000 simulations, with a posterior composed of the best 200 simulations. Summary statistics included tree diameter-size distributions and ALS-derived
canopy-height distributions. The overlap between simulated and empirical distributions was quantified and, to determine the posterior, we used the rejection
scheme implemented in the R package ABC (Csill"ery et al., 2012) with an acceptance rate of 1%.
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The assimilation of global remote-sensing data will be greatly
helped by recent advances in computing technology that have
shifted the limits of what forest extent can be simulated at tree level
(Shugart et al., 2015). For calibration, which requires 1000s of
simulations for data-model fusion, computational cost can be
reduced by classic assimilation techniques (Hurtt et al., 2004).
Future increases in computational power and emulatorswill further
speed up inference (Fer et al., 2018), turning IBMs into Bayesian
data integrators that create a common vision of forest functioning
and structure and the allometric relationships that link both across
scales.

Complementary to this effort is the need to explain allometries
from evolutionary optimisation arguments, for plant form
(Enquist & Niklas, 2002), plant function (Wolf et al., 2016),
and forest structure (Farrior et al., 2016). A better fundamental
knowledge on allometric relationships can only improve our
confidence in the parameters and simplify model calibration. This
can only be achieved if theory is consistent with the known
constraints of plant physiology. In return, data-model fusion, as
explained here, provides a strong validation for theory.
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J"erôme Chave https://orcid.org/0000-0002-7766-1347
Fabian J€org Fischer https://orcid.org/0000-0003-2325-9886
Isabelle Mar"echaux https://orcid.org/0000-0002-5401-0197

References

Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, B€onisch
G, Bradford MG, Cernusak LA, Cosio EG et al. 2015.Global variability in leaf
respiration in relation to climate, plant functional types and leaf traits. New
Phytologist 206: 614–636.

Beaumont MA. 2010. Approximate Bayesian computation in evolution and
ecology. Annual Review of Ecology, Evolution, and Systematics 41: 379–406.

Chave J, R"ejou-M"echainM, B"urquez A, Chidumayo E, ColganMS,DelittiWBC,
Duque A, Eid T, Fearnside PM, Goodman RC et al. 2014. Improved allometric
models to estimate the aboveground biomass of tropical trees. Global Change
Biology 20: 3177–3190.

ChenG,Hobbie SE, Reich PB, Yang Y, RobinsonD. 2019.Allometry of fine roots
in forest ecosystems. Ecology Letters 22: 322–331.

Coomes DA, Lines ER, Allen RB. 2011.Moving on from Metabolic Scaling
Theory: hierarchical models of tree growth and asymmetric competition for light.
Journal of Ecology 99: 748–756.

Csill"ery K, Franc!ois O, Blum MGB. 2012. Abc: an R package for approximate
Bayesian computation (ABC).Methods in Ecology and Evolution 3: 475–479.

DeAngelis DL, Grimm V. 2014. Individual-based models in ecology after four
decades. F1000Prime Reports 6: 39.

DisneyM. 2019.Terrestrial LiDAR: a three-dimensional revolution in howwe look
at trees. New Phytologist 222: 1736–1741.

Duncanson L, Dubayah R. 2018.Monitoring individual tree-based change with
airborne lidar. Ecology and Evolution 8: 5079–5089.

Enquist BJ, Niklas KJ. 2002. Global allocation rules for patterns of biomass
partitioning in seed plants. Science 295: 1517–1520.

Farrior CE, Bohlman SA, Hubbell S, Pacala SW. 2016. Dominance of the
suppressed: power-law size structure in tropical forests. Science 351: 155–157.

Fassnacht FE, LatifiH,Hartig F. 2018.Using synthetic data to evaluate the benefits
of large field plots for forest biomass estimation with LiDAR. Remote Sensing of
Environment 213: 115–128.

Fayolle A, Ngomanda A, Mbasi M, Barbier N, Bocko Y, Boyemba F, Couteron P,
Fonton N, Kamdem N, Katembo J et al. 2018. A regional allometry for the
Congo basin forests based on the largest ever destructive sampling. Forest Ecology
and Management 430: 228–240.

Fer I, Kelly R, Moorcroft PR, Richardson AD, Cowdery EM, Dietze MC. 2018.
Linking big models to big data: efficient ecosystem model calibration through
Bayesian model emulation. Biogeosciences 15: 5801–5830.

Ferraz A, Saatchi S,Mallet C,Meyer V. 2016.Lidar detection of individual tree size
in tropical forests. Remote Sensing of Environment 183: 318–333.

FisherRA,KovenCD,AndereggWR,ChristoffersenBO,DietzeMC, FarriorCE,
Holm JA, Hurtt GC, Knox RG, Lawrence PJ et al. 2018. Vegetation
demographics in Earth SystemModels: a review of progress and priorities.Global
Change Biology 24: 35–54.

Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A. 2011. Statistical
inference for stochastic simulationmodels–theory and application. Ecology Letters
14: 816–827.

Fischer R, Bohn F, Dantas de Paula M, Dislich C, Groeneveld J, Guti"errez AG,
Kazmierczak M, Knapp N, Lehmann S, Paulick S et al. 2016. Lessons learned
from applying a forest gap model to understand ecosystem and carbon dynamics
of complex tropical forests. Ecological Modelling 326: 124–133.

Hurtt GC, Dubayah R, Drake J, Moorcroft PR, Pacala SW, Blair JB, FearonMG.
2004. Beyond potential vegetation: combining lidar data and a height-structured
model for carbon studies. Ecological Applications 14: 873–883.

Jucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize
canopy packing in mixed-species forests. Functional Ecology 29: 1078–1086.

Jucker T, Caspersen J, Chave J, Antin C, Barbier N, Bongers F, Dalponte M, van
Ewijk KY, Forrester DI, Haeni M et al. 2017. Allometric equations for
integrating remote sensing imagery into forest monitoring programmes. Global
Change Biology 23: 177–190.

Knapp N, Fischer R, Huth A. 2018. Linking lidar and forest modeling to assess
biomass estimation across scales and disturbance states. Remote Sensing of
Environment 205: 199–209.

Levick SR, Asner GP. 2013. The rate and spatial pattern of treefall in a savanna
landscape. Biological Conservation 157: 121–127.

Lines ER, Zavala MA, Purves DW, Coomes DA. 2012. Predictable changes in
aboveground allometry of trees along gradients of temperature, aridity and
competition. Global Ecology and Biogeography 21: 1017–1028.

Luo Y, Weng E, Wu X, Gao C, Zhou X, Zhang L. 2009. Parameter identifiability,
constraint, and equifinality in data assimilationwith ecosystemmodels.Ecological
Applications 19: 571–574.

Mar"echaux I, Chave J. 2017. An individual-based forest model to jointly simulate
carbon and tree diversity in Amazonia: description and applications. Ecological
Monographs 87: 632–664.

Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR. 2009.
Mechanistic scaling of ecosystem function and dynamics in space and time:
ecosystem Demography model version 2. Journal of Geophysical Research:
Biogeosciences 114: G01002.

Momo Takoudjou S, Ploton P, Sonk"e B, Hackenberg J, Griffon S, Coligny F,
Kamdem NG, Libalah M, Mofack GII, Le Mogu"edec G et al. 2017. Using
terrestrial laser scanning data to estimate large tropical trees biomass and calibrate
allometric models: a comparison with traditional destructive approach.Methods
in Ecology and Evolution 9: 905–916.

Mori S, Yamaji K, Ishida A, Prokushkin SG, Masyagina OV, Hagihara A, Rafiqul
Hoque ATM, Suwa R, Osawa A, Nishizono T et al. 2010.Mixed-power scaling
of whole-plant respiration from seedlings to giant trees.Proceedings of theNational
Academy of Sciences, USA 107: 1447–1451.

New Phytologist (2019) 223: 1159–1165 ! 2019 The Authors
New Phytologist! 2019 New Phytologist Trustwww.newphytologist.com

Review Tansley insights
New
Phytologist1164



Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA,
Bunyavejchewin S,Davies S, Foster R, Gunatilleke S, GunatillekeN et al. 2006.
Testing metabolic ecology theory for allometric scaling of tree size, growth and
mortality in tropical forests. Ecology Letters 9: 575–588.

Nelson R, Krabill W, Tonelli J. 1988. Estimating forest biomass and volume using
airborne laser data. Remote Sensing of Environment 24: 247–267.

Niklas KJ. 1994.Morphological evolution through complex domains of fitness.
Proceedings of the National Academy of Sciences, USA 91: 6772–6779.

Nunes MA, Prangle D. 2015. abctools: an R package for tuning approximate
Bayesian computation analyses. R Journal 7: 1–16.

OlsonME, Soriano D, Rosell JA, Anfodillo T, DonoghueMJ, Edwards EJ, Le"on-
G"omez C, Dawson T, Camarero Mart"ınez JJ, Castorena M et al. 2018. Plant
height and hydraulic vulnerability to drought and cold.Proceedings of theNational
Academy of Sciences, USA 115: 7551 LP-7556.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL,
Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon
sink in the world’s forests. Science 333: 988 LP-993.

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass
allocation to leaves, stems and roots: meta-analyses of interspecific variation and
environmental control. New Phytologist 193: 30–50.

Purves DW, Lichstein JW, Strigul N, Pacala SW. 2008. Predicting and
understanding forest dynamics using a simple tractable model. Proceedings of the
National Academy of Sciences, USA 105: 17018–17022.

R€odig E, Cuntz M, Heinke J, Rammig A, Huth A. 2017. Spatial heterogeneity of
biomass and forest structure of the Amazon rain forest: linking remote sensing,
forest modelling and field inventory. Global Ecology and Biogeography 26: 1292–
1302.

Rogers A,Medlyn BE,Dukes JS, BonanG, von Caemmerer S, DietzeMC, Kattge
J, Leakey ADB, Mercado LM, Prentice IC. 2017. A roadmap for improving the
representation of photosynthesis in Earth system models. New Phytologist 213:
22–42.

Sato H, Itoh A, Kohyama T. 2007. SEIB-DGVM: a new Dynamic Global
VegetationModel using a spatially explicit individual-based approach. Ecological
Modelling 200: 279–307.

Schreier H, Lougheed J, Tucker C, Leckie D. 1985. Automated measurements of
terrain reflection and height variations using an airborne infrared laser system.
International Journal of Remote Sensing 6: 101–446.

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H,
Buckley TN, McElrone AJ, Sack L. 2017. Leaf vein xylem conduit diameter
influences susceptibility to embolism and hydraulic decline.New Phytologist 213:
1076–1092.

Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K. 2012.Multi-scale
drivers of spatial variation in old-growth forest carbon density disentangled with
Lidar and an individual-based landscape model. Ecosystems 15: 1321–1335.

Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ,
Denning AS, Mooney HA, Nobre CA et al. 1997.Modeling the exchanges of
energy, water, and carbon between continents and the atmosphere. Science 275:
502–509.

Shugart HH, Asner GP, Fischer R, Huth A, Knapp N, Le Toan T, Shuman JK.
2015.Computer and remote-sensing infrastructure to enhance large-scale testing
of individual-based forest models. Frontiers in Ecology and the Environment 13:
503–511.

Shugart HH, Wang B, Fischer R, Ma J, Fang J, Yan X, Huth A, Armstrong AH.
2018. Gap models and their individual-based relatives in the assessment of the
consequences of global change. Environmental Research Letters 13: 033001.

Singer A, Johst K, Banitz T, Fowler MS, Groeneveld J, Guti"errez AG, Hartig F,
Krug RM, Liess M, Matlack G et al. 2016. Community dynamics under
environmental change: how can next generation mechanistic models improve
projections of species distributions? Ecological Modelling 326: 63–74.

Smith B, W€arlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S. 2014.
Implications of incorporatingN cycling andN limitations on primary production
in an individual-based dynamic vegetation model. Biogeosciences 11: 2027–2054.

Sullivan MJP, Lewis SL, Hubau W, Qie L, Baker TR, Banin LF, Chave J, Cuni-
Sanchez A, Feldpausch TR, Lopez-Gonzalez G et al. 2018. Field methods for
sampling tree height for tropical forest biomass estimation.Methods in Ecology and
Evolution 9: 1179–1189.

Taubert F, Jahn MW, Dobner H-J, Wiegand T, Huth A. 2015. The structure of
tropical forests and sphere packings. Proceedings of the National Academy of
Sciences, USA 112: 15125–15129.

WangH,Prentice IC,KeenanTF,Davis TW,Wright IJ, CornwellWK,Evans BJ,
Peng C. 2017. Towards a universal model for carbon dioxide uptake by plants.
Nature Plants 3: 734–741.

Wenger SJ, Olden JD. 2012. Assessing transferability of ecological models: an
underappreciated aspect of statistical validation.Methods in Ecology and Evolution
3: 260–267.

Wolf A, Anderegg WRL, Pacala SW. 2016.Optimal stomatal behavior with
competition for water and risk of hydraulic impairment. Proceedings of the
National Academy of Sciences, USA 113: E7222–E7230.

Wolf A, Ciais P, Bellassen V, Delbart N, Field CB, Berry JA. 2011. Forest biomass
allometry in global land surface models. Global Biogeochemical Cycles 25:
GB3015.

New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated
to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews and Tansley insights.

Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. 
We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time
to decision is <26 days. There are no page or colour charges and a PDF version will be provided for each article. 

The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table
of contents email alerts.

If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient,
our USA Office (np-usaoffice@lancaster.ac.uk)

For submission instructions, subscription and all the latest information visit www.newphytologist.com

! 2019 The Authors
New Phytologist! 2019 New Phytologist Trust

New Phytologist (2019) 223: 1159–1165
www.newphytologist.com

New
Phytologist Tansley insights Review 1165



	



Chapter	2:	A	new	method	to	infer	forest	structure	

and	tree	allometry	from	airborne	laser	scanning	

and	forest	inventories	

(Target	Journal:	Remote	Sensing	of	the	Environment,	to	be	submitted	October	30,	2019)	

	

Chapter	 2	 builds	 on	 the	 approach	 outlined	 in	 Chapter	 1	 and,	 using	 the	 geometric	

principles	of	the	TROLL	model,	develops	a	new	method	called	the	Canopy	Constructor.	

The	Canopy	Constructor	uses	a	combination	of	field	inventory	data	and	Airborne	Lidar	

scans	to	create	virtual	3D	representations	of	forest	stands.	The	approach	consists	of	two	

steps:	At	 the	plot	scale,	 the	Canopy	Constructor	creates	3D	scenes	 that	best	 fit	ground	

and	 airborne	 data	 and	 then	 infers	 the	 underlying	 forest	 structure	 (allometry,	 crown	

packing	density).	In	a	second	step,	the	results	of	the	first	step	are	extrapolated	over	the	

whole	 lidar	 scene	 to	 create	 virtual	 tree	 inventories	 across	 thousands	 of	 hectares	 in	 a	

spatially	 explicit	 way.	 In	 the	 paper,	 we	 present	 results	 from	 an	 application	 to	 two	

tropical	rain	forests,	one	in	French	Guiana	and	one	in	Gabon,	where	we	used	the	Canopy	

Constructor	 to	 infer	 forest	 structure,	 created	 high	 resolution	 maps	 of	 above-ground	

biomass	and	tree	abundance,	and	validated	both	steps	against	ground	data.		
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1.	Introduction	

Tropical	forests	sequester	large	amounts	of	carbon	and	thus	play	a	pivotal	role	in	carbon	

mitigation	strategies	(Chazdon	et	al.,	2016;	Grassi	et	al.,	2017).	Of	particular	importance	

to	 biomass	 stocks	 and	 ecosystem	 functioning	 is	 forest	 structure,	 i.e.	 the	 vertical	 and	

horizontal	 arrangement	 of	 tree	 stems	 and	 crowns	 (Shugart	 et	 al.,	 2010).	 In	 order	 to	

improve	carbon	mitigation	strategies,	we	need	methods	to	quantify	forest	structure	that	

account	for	local	heterogeneities	and	are	also	applicable	over	the	large	areas	covered	by	

tropical	forests	(Fischer,	R.,	et	al.,	2019).	Here,	we	propose	a	new	method	for	quantifying	

forest	structure	by	constraining	an	individual-based	model	with	airborne	lidar	data.	

	

Field-based	 inventories	 provide	 detailed	 description	 of	 three-dimensional	 forest	

structure	 across	 time	 and	 space	 and	 form	 the	 bedrock	 of	 research	 in	 forest	 ecology.	

However,	they	are	often	limited	to	a	few	hectares	in	sampled	area,	and	typically	involve	

mapping,	 measuring	 and	 identifying	 all	 trees	 above	 a	 trunk	 diameter	 threshold	 (e.g.	

above	 10cm)	 within	 the	 sampled	 area.	 Furthermore,	 reliable	 measurement	 of	 tree	

height	and	other	crown	dimensions	from	the	ground	is	difficult	(Feldpausch	et	al.,	2012;	

Sullivan	 et	 al.,	 2018).	 Therefore,	 detailed	 description	 of	 the	 three-dimensional	 forest	

structure	has	long	been	limited	to	drawings	illustrating	the	stratification	of	tropical	rain	

forests	(Oldeman,	1974).		

	

Much	has	changed,	however,	with	the	advent	of		laser	scanning.	Aircraft-mounted	laser	

scanning	 devices	 (aerial	 laser	 scanning,	 ALS),	 are	 now	 commonly	 used	 to	 survey	

thousands	of	hectares	of	forest,	and	to	obtain	information	such	as	canopy	height	and	leaf	

density	 at	 centimetric	 resolution	 (Riaño	 et	 al.,	 2004;	 Rosette	 et	 al.,	 2008).	 In	 some	

situations,	 individual	 tree	dimensions	–	especially	 tree	height,	crown	area	and	depth	–	



	

	 73	

can	be	deduced	from	dense	ALS	point	clouds	by	segmentation	methods		(Morsdorf	et	al.,	

2004;	Ferraz	et	al.,	2016).	However,	in	multistoried	forests,	many	trees	are	overtopped	

and	often	difficult	to	delineate,	so	a	large	part	of	the	individual	tree	size	information	is	

veiled.	Here	we	propose	an	alternative	model-based	strategy	that	assimilates	ALS	data	

together	 with	 tree	 inventories.	 Our	 method,	 which	 we	 call	 "Canopy	 Constructor",	 is	

related	to	the	canopy-filling	algorithms	published	recently	(Taubert	et	al.,	2015;	Bohn	&	

Huth,	2017).	

	

The	method	consists	of	constructing	simulated	forest	canopies	using	the	assumptions	of	

a	 spatially	 explicit	 individual-based	 forest	 model,	 here	 the	model	 TROLL	 (Maréchaux	

and	 Chave	 2017),	 then	 optimizing	 the	 model	 structural	 parameters	 to	 match	 the	

observations,	 using	 a	 Bayesian	 inversion	 technique	 (see	 e.g.,	 Hartig	 et	 al.,	 2011).	 Our	

method	 specifically	 infers	 the	 static	 three-dimensional	 structure	 of	 a	 forest	 from	 a	

combination	of	three	basic	elements:	(1)	forest	inventories	collected	over	a	few	ha,	(2)	

ALS	surveys	collected	over	a	 few	hundred	to	 thousand	ha,	 (3)	allometric	relationships	

relating	tree	dimensions,	such	as	tree	height,	 trunk	diameter,	and	crown	size.	Building	

on	a	 few	simple	assumptions	about	 space-filling	and	 scaling	 relationships,	 the	Canopy	

Constructor	 builds	 up	 canopies	 from	 below,	 tree	 by	 tree.	 Importantly,	 it	 includes	

interindividual	variation	 in	 tree	architecture,	and,	 in	an	 iterative	process,	redraws	and	

shifts	tree	crown	dimensions	until	reaching	a	high	similarity	between	an	empirical,	ALS-

derived	 canopy	and	 the	 simulated	 canopy.	 	The	Canopy	Constructor	 thus	 infers	 forest	

structure,	 as	quantified	 through	allometric	equations,	 from	a	 field	 inventory	and	a	 co-

registered	ALS	campaign.	In	addition,	it	is	also	used	to	extrapolate	forest	structure	over	

the	whole	ALS-observed	area.		
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We	 explored	 the	 performance	 of	 Canopy	Constructor	 on	 two	 tropical	 rain	 forest	 sites	

with	 extensive	 ground	 inventory	 data	 (>	 20ha)	 and	 ALS	 surveys	 of	 several	 thousand	

hectares	in	total	–	one	at	the	Nouragues	field	station	in	French	Guiana,	the	other	at	the	

Rabi	site	in	Gabon	(Labriere	et	al.,	2018).	For	both	sites,	we	tested	the	predictive	quality	

of	 the	 algorithm,	 compared	 results	 to	 empirical	measurements,	 and	 analyzed	biomass	

predictions	 with	 regard	 to	 previous	 estimates.	 	 Specifically,	 we	 asked	 the	 following	

questions:	 (1)	 how	well	 can	 the	 allometric	 relationships	 between	 trunk	 diameter	 and	

tree	dimensions	be	inferred	based	on	the	combined	knowledge	of	tree	inventories	and	

airborne	lidar	scanning;	(2)	how	well	can	we	predict	tree	diameters	and	biomass	from	

purely	 ALS-based	 metrics	 and	 how	 does	 local	 forest	 heterogeneity	 affect	 these	

predictions;	 (3)	 what	 are	 the	 predictions	 of	 the	 individual-based	 tree	 reconstruction	

approach	 regarding	 aboveground	 biomass	 stocks	 at	 landscape	 scale	 and	 how	do	 they	

compare	to	simpler	regression	models?	

	

2.	Materials	and	Methods	

2.1	Data	

Two	sites	were	chosen	based	on	availability	of	large	(≥	10	ha)	field-based	measurements	

and	co-registered	ALS	campaigns	(Labriere	et	al.,	2018).		

	

Part	of	the	study	was	conducted	at	the	Nouragues	Ecological	Research	Station	in	French	

Guiana	 (4.06°N,	 52.68°W).	 The	 site	 is	 characterised	 by	 a	 lowland	 tropical	 rainforest	

(except	for	a	granitic	outcrop	at	430m	asl),	ca.	2900	mm	rain	per	year	and	one	3-month	

dry	season,	in	September-November	and	a	shorter	one	in	March.	Field	inventories	have	

been	carried	out	on	a	regular	basis	since	the	early	1990s	(Chave	et	al.,	2008;	Labriere	et	

al.,	2018),	and	several	ALS	surveys	have	been	conducted	since	2008	(Réjou-Méchain	et	
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al.,	 2015).	 We	 here	 use	 a	 ground	 inventory	 at	 two	 plots	 (a	 10ha	 plot	 called	 "Grand	

Plateau"	and	a	12ha	plot	called	"Petit	Plateau")	together	with	an	ALS	campaign.	The	field	

inventory	 was	 conducted	 at	 the	 end	 of	 2012,	 	 with	 trees	 mapped	 on	 both	 plots,	

measured	 at	 a	 height	 of	 1.30m	 dbh	 (diameter	 at	 breast	 height)	 and	 identified	 at	 the	

species	 level.	 ALS	 acquisition	 was	 done	 with	 a	 Riegl	 laser	 rangefinder	 (LMS-Q560)	

earlier	in	March	of	2012	and	covers	2,400	ha	(Réjou-Méchain	et	al.,	2015)	at	an	average	

pulse	 density	 of	 ~12	 per	 m2	 (based	 on	 density	 of	 last	 returns)	 and	 an	 overall	 point	

density	of	~18	per	m2	(all	returns).		

	

The	second	site,	Rabi,	is	in	Gabon	(1.92°S,	9.88°E)		and	is	part	of	the	AfriSAR	campaign	

(Fatoyinbo	et	al.,	2017;	Labriere	et	al.,	2018).	 It	 is	characterised	by	a	 lowland	tropical	

rain	 forest	–	partly	disturbed	by	oil	operation.	The	plot	 is	 located	 in	 southwestern	

Gabon's	 Gamba	 Complex,	 and	 is	 representative	 of	 the	 Guineo-Congolian	 rainforest	

that	contains	a	diverse	mix	of	upland	and	wet-forest	habitats.	Annual	rainfall	is	of	ca.	

2300	mm	per	year	on	average.	A	 forest	 inventory,	 covering	25ha	and	 including	all	

trees	≥	1	 cm	dbh,	was	conducted	between	2010-2012.	An	airborne	 lidar	 campaign	

was	carried	out	three	years	later,	using	a	helicopter-based	RIEGL	VQ-480i,	with	point	

densities	of	2.5	per	m2.	 For	 validation	purposes	 (cf.	 2.3	below),	we	 split	 the	25-ha	

plot	 into	 two	 rectangular	 strips	 of	 10ha	 and	 15ha	 respectively,	 corresponding	

roughly	to	the	10ha	and	12ha	sizes	at	Nouragues.	

	

ALS	observations	were	converted	 into	canopy	height	models	(CHMs)	to	minimize	site-

specific	biases.	CHMs	are	defined	as	the	top-of-canopy	height	above	ground	for	a	given	

grid	cell,	here	at	a	1m2	resolution.	CHMs	provide	a	robust	baseline,	since	they	are	not	too	
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sensitive	 to	 the	 technical	 specifications	 of	 lidar	 instruments.	 To	 create	 the	 CHMs,	 the	

lidar	data	were	classified	via	TerraScan	and	then	post-processed	with	LAStools	to	obtain	

pit-free	CHMs	(Khosravipour	et	al.,	2014;	Isenburg,	2018).		

	

2.2	Model	description	

We	now	describe	 the	 core	 forest	 reconstruction	 and	 fitting	 algorithm	 implemented	 in	

the	 Canopy	 Constructor.	 We	 proceed	 from	 a	 forest	 inventory,	 a	 co-registered	 ALS	

canopy-height	model,	 and	a	 set	of	allometries,	 and	convert	 them	 into	spatially	explicit	

tree	 reconstructions.	 For	 each	 tree,	 variation	 around	 allometric	 means	 is	 assigned	

following	a	prescribed	distribution,	and	the	Canopy	Constructor	then	seeks	to	optimize	

tree	 dimensions	 spatially	 by	 moving	 or	 redrawing	 tree	 crowns,	 until	 	 virtual	 and	

empirical	canopy	are	sufficiently	similar.	Via	model	inversion,	the	final	reconstructions	

can	 then	 be	 used	 for	 allometric	 inference.	 Optionally,	 the	 results	 can	 serve	 as	 a	

calibration	step	 to	predict	a	wall-to-wall	 forest	 inventory	over	 the	 full	area	of	 the	ALS	

survey.	 This	 virtual	 inventory	 is	 inferred	 from	 an	 ALS-only	 model	 and	 space-filling	

principles	(cf.	Section	3,	"Extrapolating	forest	surveys	across	landscapes").		

	

All	 simulations	 were	 developed	 in	 C++.	 Statistical	 analysis	 and	 visualization	 were	

carried	out	 in	R	 (R	Development	Core	Team,	2019),	 including	 the	packages	data.table,	

raster,	ggplot2,	and	viridis	 (Wickham,	2011;	Hijmans,	2016;	Dowle	&	Srinivasan,	2018;	

Garnier,	2018).	
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Allometric	relationships	

In	 the	 initial	 step,	 the	Canopy	Constructor	 inputs	 tree	diameters	 and	 locations	 from	a	

forest	 inventory.	 Tree	 heights	 and	 crown	 shape	 and	 size	 are	 simulated	 through	

allometry,	 as	explained	below.	Using	 these	crown	shapes,	 as	well	 as	 the	allometrically	

predicted	tree	dimensions,	we	then	fill	up	the	3D-canopy	(resolution	of	1m3).		

	

First	we	 assign	 each	 tree	 to	 a	 grid	with	1m2	 cell	 size.	 If	 several	 trees	 co-occur	 on	 the	

same	1m2	grid	cell,	a	single	effective	tree	is	retained,	with	an	effective	stem	diameter	at	

breast	 height	 (dbh)	 equal	 to	!"ℎ!"" = !"ℎ!!! .	 For	 simplicity,	we	 refer	 to	!"ℎ!""	as	

dbh.	 If	the	field	inventory	has	a	cutoff	value	above	1cm	(e.g.,	10cm),	the	non-measured	

trees	are	 filled	up.	 In	 this	study,	 the	Rabi	plots	had	all	 trees	≥	1	cm	measured,	but	 the	

Nouragues	plots	had	to	be	gap-filled	and	we	parameterized	the	dbh-size	distribution	as	

follows	! !"ℎ = exp −!"ℎ/4.2 .	While	power	laws	or	Weibull	distributions	generally	

provide	 a	 better	 fit	 for	 small	 trees	 (Muller-Landau	 et	 al.,	 2006),	 this	 simple	

parameterization	 of	 an	 exponential	 function	 yielded	 overall	 tree	 densities	 (>=	 1cm	 in	

dbh)	upwards	of	4,500	ha-1	consistent	with	observations	at	the	site	and	sufficient	for	the	

purposes	 of	 the	Canopy	Constructor	 (data	 not	 shown).	 The	 gap-filled	 trees	were	 then	

placed	on	the	grid	randomly.		

	

The	 Canopy	 Constructor	 then	 predicts	 the	 tree	 dimensions	 through	 the	 following	

allometric	models:	

	 ℎ = ℎ!"# × !"ℎ
!! + !"ℎ

 × exp (!!)	 (	1	)	
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	 !" = exp !!" + !!" ×!"ℎ!!" 	 (	2	)	

	

Here,	 h	 is	 tree	 height,	 dbh	 diameter	 at	 breast	 height,	 hmax	 and	 ah	 Michaelis	 Menten	

coefficients.	Similarly,	cr	is	the	tree's	crown	radius,	and	acr	and	bcr	are	the	intercept	and	

slope	 of	 a	 log-log	 regression,	 i.e.	 a	 power	 law	model.	 For	 tree	 height,	 Equation	 (1)	 is	

chosen	instead	of	a	power	model	to	better	capture	the	saturating	relationships	typically	

found	in	tropical	rain	forests	(Cano	et	al.,	2019).		The	!!	and	!!"  are	the	respective	error	

terms	–	i.e.	the	natural	variation	in	allometry	–,	given	by:	

	 !! ~ !(0,!!)	 (	3	)	

and	

	 !!"  ~ !(0,!!")	 (	4	)	

In	 both	 cases,	 they	 are	 exponentiated	 to	 yield	 a	multiplicative	 error	 structure	 that	 is	

more	relevant	biologically	and	accounts	for	the	heteroscedasticity	in	crown	and	height	

allometries	 (Molto	 et	 al.,	 2014).	 Here,	 we	 assume	 that	 allometric	 variation	 does	 not	

depend	on	species	identity,	that	there	is	no	covariance	between	tree	height	and	crown	

radius,	 and	 that	 crown	depth	 can	 be	 simply	 calculated	 as	 a	 proportion	 of	h,	 as	 in	 the	

TROLL	model	(Maréchaux	&	Chave,	2017).		

	

We	also	modelled	variation	in	crown	shape.	We	defined	the	ratio	!	between	the	radius	

at	 the	 top	 of	 the	 crown	 and	 its	 base,	 with	 a	 linear	 slope	 linking	 both	 layers.	!	varies	

between	 0	 and	 1:	 if	! = 0,	 the	 tree	 crown	 is	 a	 cone,	while	 if	! = 1,	 it	 is	 a	 cylinder,	 as	

assumed	in	the	TROLL	model.	For	the	purposes	of	 this	study,	we	set	!	to	0.8.	We	have	

chosen	 this	parameterization	 to	account	 for	 the	 less	 clear-cut	edges	 found	empirically	

and	the	fact	that	tree	crown	volume	is	always	smaller	than	a	cylindric	envelope.		
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Optimization	algorithm	

Once	 the	 trees	 are	 reconstructed	 to	 create	 an	 initial	 forest	 mockup,	 we	 improve	 its	

overlap	with	the	ALS-derived	canopy	by	reshuffling	the	tree	crowns	 in	space.	We	 loop	

through	all	trees	on	the	grid,	in	random	order,	and	adjust	their	crown	dimensions	on	a	

tree-by-tree	basis.		

	

Because	this	optimization	step	can	be	time-consuming,	we	here	choose	to	perform	the	

following	 	 algorithm.	 For	 the	majority	 of	 trees,	we	 pick	 pairs	 of	 trees	 and	 swap	 their	

respective	values	of	!!	(deviation	in	height)	and	!!" 	(deviation	in	crown	radius).	We	then	

recalculate	 the	 new	 dimensions	 of	 both	 trees	 and	 keep	 the	 change	 if	 it	 results	 in	 an	

increase	 in	 the	 overall	 goodness	 of	 fit	when	 compared	with	 the	ALS-derived	CHM.	To	

keep	the	overall	variance	structure,	trees	are	binned	in	logarithmic	dbh	classes	and	we	

only	pick	pairs	of	trees	within	the	same	dbh	class.	This	procedure	rapidly	redistributes	

deviations	 from	 the	 allometric	 means	 across	 the	 population	 of	 trees	 so	 as	 to	 create	

better	 spatial	 fits,	 all	 the	 while	 preserving	 the	 initial,	 randomly	 drawn,	 allometric	

structure.		

	

A	special	case	are	trunk	diameter	classes	that	contain	only	a	small	number	of	trees	(here	

set	 to	<	10	 trees	 for	 the	whole	plot).	Unless	plots	have	been	heavily	disturbed,	 this	 is	

typically	 the	 case	 for	 the	 largest	diameter	 classes	 (e.g.	 >	1m).	 Since	 low	 tree	numbers	

mean	 that	 there	 are	 limited	 opportunities	 to	 swap	 tree	 dimensions,	 we	 redraw	

altogether	new	values	!!	and	!!" .	If	the	new	draw	creates	a	better	fit	to	empirical	data,	it	

is	retained.	Each	new	draw	must	preserve	the	allometric	mean	within	the	dbh	 class.	 If	

trees	within	a	class	are,	for	example,	smaller	on	average	than	their	expected	allometric	

height,	the	newly	drawn	deviations	are	accepted	only	if	they	exceed	the	mean	height	and	
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thus	 compensate	 for	 the	 negative	 bias.	 Another	 special	 case	 are	 trees	 that	 have	 been	

randomly	placed,	such	as	gap-filled	trees	<	10cm	dbh.	Since	their	 initial	positions	have	

been	chosen	at	random,	we	do	not	change	the	trees'	dimensions,	but	only	their	position:	

a	 tree	 is	 moved	 at	 random	 within	 a	 radius	 equal	 to	 its	 height.	 If	 the	 new	 location	

increases	the	goodness	of	fit,	the	change	is	accepted.		

	

This	 loop	 across	 all	 trees	 is	 iterated	 several	 times,	 until	 improvements	 in	 canopy	

structure	become	marginal,	i.e.	low	acceptance	rates	are	reached	(<	1%).	This	part	of	the	

algorithm	is	similar	 to	 the	one	described	 in	Taubert	et	al.	 (2015).	 In	practice,	we	have	

observed	that	a	small	number	of	iterations	(~100-200)	are	sufficient.		

	

We	 considered	 the	 issue	 of	 boundary	 conditions	 within	 tree	 inventories	 (see	 also	

Mascaro	 et	 al.,	 2011).	 For	 each	 tree	 i,	 we	 calculated	 the	 crown	 area	 outside	 the	

plot !"!!"#	and	 the	 total	 crown	 area !!! ,	 summed	 across	 the	 n	 inventoried	 trees	 to	

compute	the	whole	plot	ratio	! =  !"!!"#!
!!!

!!!!
!!!

.	During	optimization	procedure,	we	forced	R	

to	remain	constant,	close	to	the	starting	value.	If	during	the	fitting	process,	R	exceeds	its	

initial	value,	then	the	next	fitting	at	the	edge	for	tree	i	is	only	accepted	if	it	decreases	R,	

and	 vice	 versa.	 We	 also	 ruled	 out	 cases	 of	 trees	 with	 small	 crown	 radius,	 but	 large	

height,	 growing	 through	 trees	with	 large	 crown	radius,	but	 small	height.	To	do	so,	 for	

every	newly	 fitted	crown,	we	circled	 through	all	 trees	within	a	distance	dist	 =	CRtree	 +	

CRtreemax,	 where	CRtree	 is	 the	 current	 tree's	 crown	 radius	 and	CRtreemax	 is	 the	maximum	

crown	 radius	 of	 trees	 allowed.	 This	 gives	 the	 maximum	 distance	 within	 which	 the	

current	crown	could	theoretically	overlap	with	another	crown.	We	then	determined	the	
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2D-overlap	of	the	crown	areas,	and	reject	crown	fittings	that	create	a	forest	patch	where	

the	crown	of	a	taller	tree	is	fully	encompassed	by	the	crown	of	a	smaller	tree.		

	

Goodness-of-fit	metrics	

In	 the	 algorithm,	 each	 time	 a	 tree	 crown	 is	 updated,	 we	 test	 whether	 this	 change	

increases	 the	match	with	 empirical	 values.	 To	 assess	 the	 goodness	 of	 the	 fit	 between	

virtual	 and	 empirical	 CHMs,	 we	 use	 two	 metrics.	 The	 first	 one	 is	 the	 mean	 of	 the	

absolute	errors:	

	
!"# = 1

!"#$!  !ℎ!!"# ! − !ℎ!!"# !
!"#$!

!!!
 	

(	5	)	

where	 each	 s	represents	 a	 1m2	 grid	 cell	 of	 forest,	 chmemp	and	 chmsim	 the	 empirical	 and	

simulated	 canopy	 heights	 of	 that	 grid	 cell	 and	 sites	 the	 total	 number	 of	 grid	 cells,	

respectively.	This	metric	adjusts	trees	locally	to	reproduce	canopy	height	patterns.	We	

opt	 for	 the	mean	 absolute	 error	 instead	 of	 a	mean	 squared	 error,	 because	 it	 is	more	

robust	with	regard	to	outliers	(Hill	&	Holland,	1977).	Such	outliers	are	frequent	in	our	

procedure,	 since	 real	 tree	 crowns	 tend	 to	have	gaps	 and	crown	 irregularities	 that	 can	

create	large	deviations	from	the	idealized	crown	shapes	(cylinders,	cones)	presupposed	

here.		

	

Since	large	trees	are	important	to	forest	structure	and	biomass	estimates,	but	would	be	

underestimated	by	shrinkage	towards	the	mean	from	the	optimization	of	MAE,	we	also	

constrain	by	the	dissimilarity	index	of	the	canopy	height	distributions:	

	
 ! = 1

2  d!"# ℎ − d!"# ℎ  
!!!!"#

!!!
	

(	6	)	
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where	 h	 is	 a	 discrete	 height	 index	 (in	 m),	 and	d!"#	and	d!"#	are	 the	 densities	 of	 the	

empirical	and	simulated	height	histogram	across	the	surveyed	area,	i.e.	total	number	of	

height	 occurrences,	 normalized	 by	 the	 number	 of	 1m2	 grid	 cells.	 This	 index	 can	 be	

interpreted	 as	 a	 measure	 of	 distribution	 overlap,	 i.e.	 the	 lower	 the	 dissimilarity,	 the	

higher	the	overlap.	In	the	limit	of	D	=	0,	both	distributions	are	identical.		Formally,	if	OVL	

is	the	distribution	overlap,	then	D	=	1	–	OVL,	with	!"# = min !!"# ℎ ,!!"# ℎ!!"#
!!! 	

(Inman	&	Bradley,	1989).		

	

To	combine	the	metrics,	we	first	fit	the	tree	crowns	using	each	metric	separately,	until	a	

low	 acceptance	 rate	 is	 achieved	 for	 each	 metric	 (<	 1%,	 typically	 reached	 within	 50	

iterations	for	the	MAE	metric,	and	within	5	iterations	for	the	dissimilarity	metric).	This	

gives	us	a	maximum	(initial)	and	minimum	(fitted)	value	 for	both	metrics,	and	we	use	

the	 difference	 of	 these	 values	 to	 normalize	 each	 metric.	 The	 normalized	 values	 are	

combined	to	an	overall	error	as	follows:		

	 ! =  !"!!"#$! + !!"#$! 	 (	7	)	

	

	We	then	run	a	final	number	of	 iterations	to	minimize	!.	 In	using	the	combined	metric,	

we	 ensure	 that	 crowns	 do	 not	 only	 fit	 spatially	 at	 local	 scales,	 encapsulated	 by	 a	 low	

MAE,	 but	 also	 preserve	 the	 overall	 canopy	 height	 model	 distribution	 and	 prevent	

shrinkage	towards	the	mean,	encapsulated	by	a	low	dissimilarity	D.			

	

Forest	structure	characterization	

Once	the	canopy	has	been	reconstructed,	we	calculate	the	aboveground	biomass	(in	kg)	

for	 each	 tree	 as	 in	 Chave	 et	 al.	 (2014):	!"# = 0.0673 × ! × !"ℎ! × ℎ !.!"# .	 Here	ρ	
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represents	wood	density	and	is	either	directly	assigned	from	the	field	census	or	drawn	

from	a	local	distribution	of	wood	densities.	We	also	calculate	crown	packing	density,	an	

important	 descriptor	 of	 forest	 structure	 that	 summarizes	 the	 proportion	 of	 space	

occupied	by	 tree	crowns	within	 the	canopy	 (Taubert	et	al.,	 2015).	Our	algorithm	does	

not	restrict	crown	overlap,	so	a	useful	definition	of	packing	density	 is	 the	ratio	of	unit	

crown	volume	to	unit	canopy	volume	(m3	per	m3).	This	value		can	be	locally	larger	than	

1.0,	 if	 two	or	more	 tree	crowns	overlap,	but	 is	equivalent	 to	 the	Taubert	et	al.	 (2015)	

definition	 in	 the	 limiting	 case	 of	 no	 crown	 overlap.	 Particularly	 useful	 for	 the	

characterization	 of	 forest	 structure	 is	 the	 crown	 packing	 density	 at	 height	 h,	 with	

0 ≤ ℎ ≤ ℎ!"# ,	 and	 with	ℎ!"#	top-of-canopy	 height.	 The	 result	 is	 best	 described	 by	 a	

matrix,	 where	 columns	 represent	 top-of-canopy	 height	 and	 rows	 represent	 within-

canopy	height	layers	(cf.	Figure	1,	 left	panel).	We	call	this	quantity	the	packing	density	

matrix.		

	

2.3	Model	calibration	and	prediction		

Inferring	Allometric	Parameters	by	Approximate	Bayesian	Computation	

The	core	routine	of	the	Canopy	Constructor	finds	the	best	canopy	reconstruction,	given	a	

certain	 set	 of	 allometric	 parameters.	 Here,	 we	 used	 this	 routine	 to	 solve	 the	 inverse	

problem:	which	 combination	 of	 allometric	 parameters	 is	 the	most	 likely	 to	match	 the	

observed	data?	

	

To	provide	an	answer	to	the	question,	we	used	an	Approximate	Bayesian	Computation	

rejection	scheme	(Csilléry	et	al.,	2010;	Hartig	et	al.,	2014;	Fischer,	FJ,	et	al.,	2019).	We	

drew	10,000	combinations	for	a	set	of	six	allometric	parameters:	(hmax,	ah,	acr,	bcr)	and	

the	 two	 variance	 terms	 (!! ,!!").	We	 used	 these	 to	 approximate	 the	 prior	 probability	
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distribution	over	all	parameters.	We	then	applied	the	Canopy	Constructor	to	all	10,000	

allometric	 parameter	 combinations,	 reconstructed	 a	 best	 fit	 canopy	 for	 each	 and	

retained	 only	 the	 results	 close	 enough	 to	 the	 empirical	 ones.	 The	 retained	 parameter	

values	 provided	 a	 posterior	 probability	 distribution	 over	 credible	 allometric	

parameterizations	given	the	data.	

	

We	 chose	 flat	 priors	 by	 drawing	 from	 uniform	 distributions	 within	 ranges	 of	 tree	

allometry	 observed	 globally	 (Jucker	 et	 al.,	 2017).	 Parameters	 were	 drawn	 on	 the	

logscales	 they	were	 described	 at,	 except	 for	 the	 crown	 allometry	 intercept	acr,	 drawn	

from	 a	 uniform	 distribution	 on	 the	 back-transformed	 scale.	 We	 applied	 a	 Latin	

Hypercube	 scheme,	 and	 accounted	 for	 correlation	 between	 allometric	 coefficients	 as	

described	 in	 the	R	package	 'pse'	 (Chalom	et	al.,	2013),	but	rewritten	 in	C++	 for	speed.	

Covariance	coefficients	were	also	taken	from	the	data	set	 in	Jucker	et	al.,	(2017).	Since	

crown	depth	does	 not	 influence	 canopy	height	 –	 and	 thus	 does	 not	 directly	 affect	 the	

fitting	procedure	–,	it	was	fixed	to	20%	of	tree	height.	

	

As	summary	statistics	 to	assess	each	simulation's	 fit	with	 the	empirical	CHM,	we	used	

the	 same	metrics	 as	 for	 the	 Canopy	 Constructor	 fitting	 procedure,	 i.e.	 mean	 absolute	

error	 (MAE)	 and	 the	 dissimilarity	D.	 We	 used	 the	 difference	 between	 maximum	 and	

minimum	values	across	all	simulations	to	normalize	them	(instead	of	within-simulation	

minimum	 and	 maximum)	 and	 combined	 them	 as	 before	 to		

!!"# =  !"!!"#$%&'! + !!"#$%&'! .	 Only	 the	 best	 1%	 of	 reconstructions	 (i.e.	 100	

parameter	sets)	were	retained	(Csilléry	et	al.,	2010).		
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ALS-based	extrapolation	of	forest	surveys	across	landscapes	

Once	the	allometries	were	inferred,	we	used	the	Canopy	Constructor	to	extend	the	tree-

by-tree	 reconstructions	 over	 the	 whole	 ALS-covered	 area.	 To	 do	 so,	 we	 essentially	

created	 a	 second	 model	 of	 forest	 structure,	 based	 only	 on	 ALS-data	 and	 a	 few	

assumptions	 concerning	 forest	 structure:	 (1)	 Stem	 diameter	 distributions	 across	 the	

whole	 area	 are	 similar	 to	 the	 field	 inventory;	 (2)	 The	 allometric	 parameters	 inferred	

locally	 can	 be	 extrapolated	 the	whole	 area;	 (3)	 The	 local	 crown	packing	 densities	 are	

representative	of	the	whole	lidar-covered	area.		

	

We	 implemented	 the	 following	 routine:	 For	 each	 posterior	 simulation	 from	 the	

calibration	 step,	 we	 extracted	 the	 packing	 density	 matrix	 (cf.	 2.2.4),	 extrapolated	 it	

across	 the	 whole	 ALS-covered	 area	 (assumption	 3)	 and	 could	 thus	 infer	 the	 average	

crown	packing	densities	at	any	height	underneath	any	 top-of-canopy	height.	To	speed	

up	the	calculation,	we	divided	the	ALS	scans	into	400m	x	400m	patches	and	ran	the	full	

suite	of	100	posterior	draws	on	each	patch's	CHM.	Areas	at	the	edges	of	the	ALS-scans	

(with	 an	 area	 <	 400m	 x	 400m)	 were	 discarded.	 Based	 on	 the	 measured	 CHM	

distribution,	we	calculated	an	average	crown	packing	density	 for	each	canopy	voxel	of	

the	 chosen	 patch	 and	 then	 summed	 across	 the	 whole	 canopy	 height	 distribution	 to	

obtain	 the	 total	 crown	 volume	 per	 height	 layer.	 This	 procedure	 can	 be	 implemented	

efficiently	as	a	matrix	multiplication:	

! = !!	

Where	 P	 is	 the	 n	 x	 n	 crown	 packing	 density	 matrix,	!	the	 patch's	 CHM	 distribution,	

formalized	as	a	row	vector	of	top-of-canopy	height	frequencies	(from	0	to	n,	in	m),	and	!	

a	 column	 vector,	 summarizing	 total	 volume	 per	 height	 layer	 (also	 from	 0	 to	n,	 in	m)	

across	the	whole	patch	(for	a	visual	demonstration	cf.	Figure	1).	The	dimension	n	is	the	
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number	 of	 height	 bins	 into	 which	 the	 canopy	 is	 discretized,	 from	 0m	 to	 maximum	

canopy	height.	We	here	chose	a	discretization	step	of	1m,	so	that	n	corresponds	to	the	

maximum	canopy	height.	If	the	maximum	height	of	the	calibration	plot	was	lower	than	

the	maximum	 height	 of	 the	 patch	where	we	 predicted	 (i.e.	 nmatrix	 <	 nvector),	 the	 crown	

packing	matrix	had	to	be	extrapolated	by	rescaling	and	averaging	across	top-of-canopy	

heights	immediately	below	the	missing	top-of-canopy	height	value.	

	

The	distribution	of	total	crown	volume	per	height	layer	was	then	used	as	a	reference	for	

space-filling	within	the	forest	patch	under	consideration.	To	fill	the	forest	with	trees,	we	

drew	 random	 stem	 diameters	 from	 the	 local	 distribution	 (assumption	 1),	 applied	 the	

locally	 calibrated	 allometries	 (assumption	 2),	 and	 randomly	 placed	 trees	 on	 the	 grid	

until	the	distribution	over	crown	volume	per	height	layer	corresponded	to	the	reference	

distribution.	 As	 a	 stopping	 rule,	 we	 determined	 by	 how	 much	 the	 newly	 added	 tree	

improved	the	overlap	for	every	height	layer	(i.e.	filling	volume	underneath	its	reference	

value)	and	by	how	much	it	reduced	the	overlap	(i.e.	filling	volume	beyond	its	reference	

value).	If	the	reduction	in	overlap	was	greater	than	the	improvements,	we	rejected	the	

tree.	 If	 after	 one	 full	 cycle	 through	 the	 stem	 diameter	 distribution,	 the	 rejection	 rate	

reached	100%,	we	stopped	the	procedure.		

	

This	procedure	results	in	a	virtual	forest	inventory	with	random	allometric	variation,	as	

required	 as	 starting	 point	 for	 the	 Canopy	 Constructor	 algorithm.	 Given	 that	 all	 trees	

were	placed	randomly,	we	could	simply	move	the	trees	until	an	optimal	spatial	fit	was	

achieved,	as	described	above	(cf.	"Optimization	Algorithm").	This	process	was	repeated	

for	 all	 of	 the	posterior	draws,	 i.e.	 for	 a	100	distinct	 sets	 of	 allometric	parameters	 and	
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crown	packing	densities,	 thus	turning	the	posterior	 from	step	1	 into	a	prior	 for	step	2	

and	propagating	uncertainties	across	the	whole	procedure.	

	

Inference	and	validation	at	the	two	sample	sites	

In	 this	paper,	we	explored	 the	procedure	at	 two	sites,	at	Nouragues	 in	French	Guiana,	

and	 Rabi	 in	 Gabon.	 To	 assess	 within-site	 heterogeneity	 and	 test	 the	 accuracy	 of	 our	

predictions,	we	split	the	field	inventories	into	two	parts,	corresponding	to	roughly	half	

of	the	data	at	each	site.	At	Nouragues	we	used	the	already	geographically	separated	Petit	

Plateau	(12	ha)	and	Grand	Plateau	(10	ha)	plots,	at	Rabi	the	contiguous	10-ha	and	15-ha	

subplots	of	the	25-ha	plot.	We	used	large	subplots	rather	than	representative	samples,	

because	 non-random	 splitting	 of	 data	 is	 often	 better-suited	 for	 transferability	

assessments	(Wenger	&	Olden,	2012).	Furthermore,	plot	sizes	of	>	10ha	allowed	us	to	

minimize	 edge	 effects	 and	 keep	 a	 balance	 between	 the	 computational	 burden	 of	 the	

procedure	and	the	sample	sizes	needed	to	swap	variance	between	crowns.	

	

On	 all	 of	 the	 four	 plots,	 we	 separately	 inferred	 tree	 allometries	 and	 forest	 structure	

properties	(crown	packing	densities).	To	validate	the	allometric	inference,	we	used	data	

and	estimates	that	had	not	been	used	in	the	fitting	procedure	("predictive	check").	These	

included	 allometric	 relationships	 derived	 from	 field	measurements	 of	 tree	 height	 and	

diameter	(Labriere	et	al.,	2018;	Sullivan	et	al.,	2018)	as	well	as	plot	biomass	estimates	

for	both	sites,	reported	in	Labriere	et.	al.	(2018).	For	Nouragues,	two	separate	allometric	

relationships	were	available	for	Petit	Plateau	and	Grand	Plateau.	For	Rabi,	we	compared	

both	plots	to	the	overall	site	allometry.		
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The	ground-reconstructed	forest	was	then	used	to	validate	the	extrapolation	step.	First	

we	 compared	 the	 ALS-based	 predictions	 for	 all	 four	 plots	 against	 their	 own	 ground-

based	data,	 i.e.	we	treated	the	plot	 from	which	we	had	obtained	packing	densities	and	

allometric	 parameters	 as	 if	 we	 needed	 to	 extrapolate	 to	 it	 ("local	 validation").	 This	

allowed	us	to	estimate	how	well	inferred	allometries	and	packing	densities	summarized	

forest	structure	and	the	error	introduced	by	inference	"from	above".	We	then	assessed	

the	 effects	 of	 between-plot	 heterogeneity	 in	 forest	 structure	 and	 the	 transferability	 of	

the	 extrapolation	model	 by	 using	 plots	 as	 training	 and	 validation	 data	 for	 each	 other	

("crossvalidation").	As	metrics	we	chose	stem	diameter	distributions	and	above-ground	

biomass	 estimates.	We	 computed	 aboveground	 biomass	 estimates	 on	 1ha	 and	 0.25ha	

grid	cells,	and	quantified	predictive	accuracy	through	the	overall	RMSE	(given	in	t/ha)	

across	all	four	plots.		

	

Finally,	we	used	the	larger	calibration	plots	at	both	sites	(i.e.	Petit	Plateau	and	the	15ha	

Rabi	plot)	to	predict	tree	positions	and	biomass	across	the	landscape.	We	then	reported	

how	 above-ground	biomass	 scaled	 up	 to	 the	whole	 area	 and	 compared	 our	 results	 to	

biomass	estimates	from	Labriere	et	al.,	2018,	in	terms	of	precision	and	accuracy.	

	

3.	Results	

The	overall	approach	of	the	Canopy	Constructor	is	summarized	in	Figure	2,	applied	on	

the	 Nouragues	 site	 (Petit	 Plateau	 plot).	 Figure	 2	 shows	 that	 the	 initial	 draw	 already	

depicts	the	mean	canopy	structure,	but	not	the	spatial	location	of	features.	Swapping	the	

trees	 (‘final	 fit’)	 greatly	 improved	 the	 spatial	 structure.	 Although	 the	 match	 was	 not	

perfect	at	metric	resolution,	the	final	mean	error	was	typically	<	0.5m	and	the	final	mean	
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absolute	error	<	3m,	or	10%	of	the	mean	canopy	height,	mainly	due	to	crown	gaps	and	

large	deviations	from	idealized	geometric	shapes	at	the	crown	edges.	

	

In	terms	of	allometric	inference,	height	allometries	were	better	constrained	than	crown	

radius	allometries	(cf.	Figure	3	for	an	example	at	Petit	Plateau,	compare	top	and	bottom	

panels,	 also	 Table	 1).	 In	 both	 cases,	 we	 found	 substantial	 covariation	 between	 the	

allometric	parameters	(cf.	Table	2,	and	Figure	3,	left	panels).	High	within-site	similarity	

was	 found	 for	 height	 allometries	 at	 both	 Nouragues	 and	 Rabi	 (Figure	 4).	 Crown	

allometries,	 on	 the	other	hand,	 showed	a	divergence	 at	Nouragues,	with	 larger	 crown	

radii	 predicted	 at	 Petit	 Plateau	 than	 at	 Grand	 Plateau.	 Between	 sites,	 the	 Rabi	 and	

Nouragues	 site	 were	 clearly	 separated	 by	 their	 height	 allometries,	 but	 not	 by	 their	

crown	allometries	(cf.	Figure	4,	righthand	panels).	

	

Compared	to	empirical	results,	 the	Canopy	Constructor	produced	parameter	estimates	

very	close	 to	previously	obtained	allometries	at	both	sites	 (cf.	Figure	4,	 top	row),	also	

mirroring	qualitative	patterns	at	Nouragues,	 i.e.	the	slightly	larger	heights	predicted	at	

Petit	 Plateau	 compared	 to	 Grand	 Plateau	 (cf.	 Figure	 4,	 lefthand	 column).	 Similarly,	

biomass	 estimates	 of	 355.4	 and	438.7	 t	 ha-1	 for	Grand	Plateau	 and	Petit	 Plateau,	 or	 a	

combined	400.8	t	ha-1,	matched	very	closely	previous	estimates	of	404.6	t	ha-1	(Labriere	

et	al.,	2018).	The	combined	302.2	t	ha-1	at	Rabi,	on	the	other	hand,	was	lower	by	~12	t	

ha-1	 than	the	AfriSAR	reference	estimates	(314.6	t	ha-1),	 in	keeping	with	slightly	 lower	

height	allometry	estimates	(Figure	4,	upper	middle	panel).	

	

When	validating	the	extrapolation	step,	i.e.	the	inference	of	tree	diameters	and	positions	

from	 ALS-data,	 against	 ground-informed	 reconstructions,	 the	model	 reproduced	 stem	
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diameter	 distributions	 very	 well,	 both	 at	 the	 plots	 where	 packing	 densities	 and	

allometries	have	been	 inferred	 (local	 validation	 from	"above",Figure	5,	 blue	bars)	 and	

when	 the	model	was	 transferred	 from	 one	 plot	 to	 another	 (crossvalidation,	 Figure	 5,	

green	bars).	In	terms	of	biomass	inference,	the	model	exhibited	good	overall	predictive	

quality	as	well.	We	obtained	an	RMSE	of	53.2	t	ha-1	at	the	one-hectare	scale,	and	87.3	t	

ha-1	at	0.25	ha	scale,	with	a	mean	bias	error	(MBE)	of	-16.1	t	ha-1,	or	roughly	5%	of	the	

total	 biomass	 	 (cf.	 Figure	 6,	 and	 also	 Table	 3).	 Between-plot	 heterogeneity	 did	 not	

greatly	 affect	 the	 quality	 of	 ALS-based	 inference,	 as	 can	 be	 seen	 from	model	 transfer,	

where	we	obtained	nearly	identical	predictions,	with	highly	similar	bias	(MBE	of	-17.1	t	

ha-1)	and	RMSEs	(53.73	t	ha1	at	the	one-hectare	scale,	and	87.59	at	the	0.25	ha	scale).		

	

At	 landscape	 level,	 the	model	 predicted	 overall	 stem	densities	 of	 443.4	 trees	 ha-1	 and	

aboveground	biomass	of	299.8	t	ha-1	at	Nouragues,	and	418.8	trees	ha-1	and	251.8	t	ha-1	

at	 Rabi,	 both	 lower	 than	 at	 the	 calibration	 plots,	 due	 to	 heterogeneity	 in	 vegetation	

features	(cf.	Figure	7,	top	panels,	for	maps	at	the	0.25	ha	scale).	Posterior	uncertainty,	as	

quantified	 by	 the	 coefficient	 of	 variation,	 was	 highest	 at	 vegetation	 edges	 and	 low	

biomass	 areas,	 and	 generally	 higher	 at	 Rabi	 (median	 CV	 of	~0.24)	 than	 at	Nouragues	

(~0.16,	cf.	also	Figure	7,	middle	panels).	At	both	Nouragues	and	Rabi,	biomass	reached	

similar	 extreme	 values,	 of	 over	 1100	 t	 ha-1	 at	 the	 0.25-ha	 scale,	 but	 with	 differently	

shaped	distributions.	Compared	to	regression-based	estimates,	our	approach	resulted	in	

a	much	larger	variation	in	aboveground	biomass	density	(Figure	7,	lower	panels).	

	

4.	Discussion	

In	this	study	we	have	developed	a	method,	called	the	Canopy	Constructor,	to	assimilate	

forest	 inventory	 information	 and	 airborne	 lidar	 scanning	 data,	 so	 as	 to	 (i)	 infer	 the	
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allometric	relationships	among	tree	dimensiosn,	 (ii)	recreate	3D	canopies	 from	simple	

assumptions	 about	 tree	 geometry,	 and	 (iii)	 provide	 large-scale	 inference	 of	 tree	

dimensions	 for	 further	 uses,	 such	 as	 aboveground	 biomass	mapping.	 The	 initial	 tests	

with	the	Canopy	Constructor	presented	here	are	promising.	

	

First,	we	were	able	to	successfully	infer	the	allometric	parameters.	Such	parameters	are	

difficult	to	obtain	in	the	field	(Sullivan	et	al.,	2018),	but	are	crucial	for	biomass	estimates	

(Feldpausch	et	al.,	2012).	Conceptually,	our	method	differs	 from	individual	 tree	crown	

segmentation	 using	 ALS	 datasets	 (Dalponte	 &	 Coomes	 	 2016),	 where	 tree	 crown	

dimensions	 are	 individually	 isolated	 from	 an	 ALS	 point	 cloud	 and	 then	 used	 for	 the	

construction	 of	 tree	 allometries.	 Here	 we	 rather	 assumed	 that	 tree	 shapes	 and	

distributions	emerge	 from	the	space-filling	 rules	of	 the	canopy,	and	 that	 the	empirical	

forest	 can	 be	 gradually	 approximated	 by	 a	 virtual	 reconstruction.	 By	 assuming	

predefined	 functional	 forms	 of	 the	 allometric	 equations,	 we	 were	 able	 to	 reduce	 the	

inference	 of	 tree	 dimensions	 to	 a	 parameter	 optimization	 problem,	 which	 we	 solved	

through	an	approximate	Bayesian	computing	(ABC)	approach.	We	applied	our	method	

to	 two	 study	 sites	 where	 tree	 allometric	 data	 were	 available	 and	 where	 we	 were	

therefore	able	to	validate	the	approach.	

	

For	 the	 sake	 of	 simplicity	 and	 to	 reduce	 computational	 efforts,	 we	 assumed	 fixed	

functional	forms	for	the	allometries;	we	also	assumed	fixed	parameters	for	crown	shape	

and	crown	depth.	An	extension	of	the	ABC	routine	to	include	these	parameters	should	be	

considered	 in	 future	applications.	The	description	of	 crown	shape	 could	also	be	made	

more	 complex	 if	 needed.	 Furthermore,	 we	 did	 not	 impose	 any	 restrictions	 on	 crown	

overlap,	 which	 is	 at	 odds	 with	 observations	 (Goudie	 et	 al.,	 2009).	 Also,	 crown	
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overlapping	may	be	 responsible	 for	 the	uncertainty	 in	 crown	radius	allometries,	 since	

crowns	can	be	more	easily	hidden	within	other	tree	crowns.		

	

Second,	 our	 approach	 showed	 good	 predictive	 quality	 and	 spatial	 transferability	 for	

forest	 structure	 at	 the	 study	 plots.	 Crucially,	 the	 metrics	 we	 used	 to	 quantify	 and	

extrapolate	 forest	 structure,	 i.e.	 stem	 diameter	 distributions,	 and	 canopy	 packing	

densities,	appeared	to	remain	relatively	constant	within	sites.	This	was	even	true	for	the	

Nouragues	plots	 that	 are	 characterized	by	very	different	 canopy	height	models.	While	

some	of	our	assumptions	might	not	hold	across	all	latitudes	and	biomes	(Spriggs	et	al.,	

2019),	we	 successfully	 decomposed	 forest	 structure	 into	horizontal	 aspects	 that	were	

highly	 variable	 across	 the	 landscape,	 for	 example	 different	 disturbance	 regimes	

encapsulated	by	larger	and	more	frequent	gaps,	and	vertical	aspects	of	forest	structure	

that	 were	 more	 homogeneous,	 most	 likely	 due	 to	 physiological	 constraints	 or	

evolutionary	 history	 (Niklas,	 1994).	 This	 suggests	 that	 our	 approach,	 once	 calibrated	

with	local	forest	inventories,	can	generally	be	extrapolated	across	entire	landscapes.			

	

As	 seen	 from	 the	 striking	 similarity	 between	 ALS-only	 predictions	 at	 plots	 used	 for	

allometric	inference	and	at	crossvalidation	plots	(Figure	6,	 left	panels	vs.	right	panels),	

the	major	source	of	uncertainty	and	bias	 is	not	 forest	structure	heterogeneity,	but	 the	

loss	 of	 ground-based	 information	 on	 exact	 tree	 locations	 and	 stem	 diameter	

distributions.	 While	 there	 is	 a	 natural	 limit	 on	 predictive	 accuracy	 of	 canopy	 height	

models,	this	suggests	that	there	is	still	room	for	improvement	regarding	the	prediction	

of	stem	diameter	distributions	from	CHMs.	Especially	in	the	largest	diameter	classes	we	

found	that	the	algorithm	was	the	least	accurate	due	to	low	sampling	intensity.	For	these	

largest	 diameter	 classes,	 individual	 tree	 crown	 segmentation	 methods	 could	 be	 used	
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during	a	pre-processing	step	to	isolate	individuals	that	can	be	clearly	delineated.	This	is	

particularly	 promising,	 because	 large	 canopy	 trees	 could	 also	 provide	 natural	

constraints	on	possible	allometric	laws	and	the	most	appropriate	crown	shapes.	We	will	

return	 to	 this	 possible	 improvement	 in	 the	 future.	 Furthermore,	 so	 far,	we	 have	 used	

mainly	 summary	 statistics	 of	 static	quantities	 at	 the	1-ha	 and	0.25-ha	 scale,	 but	other	

applications	 could	 include	 the	 inference	 of	 more	 complex	 variables,	 such	 as	 species-

specific	 allometric	 equations	with	 intraspecific	 variation,	 or	 the	 inclusion	 of	 repeated	

ALS	 acquisitions	 to	 yield	 estimates	 of	 tree	 mortality	 and	 growth	 for	 top-of-canopy	

layers.		

	

Third,	a	major	insight	of	this	analysis	were	the	benefits	of	the	individual-based	approach	

for	biomass	mapping.	While	overall,	the	Canopy	Constructor	showed	similar	patterns	of	

high-	and	 low-biomass	areas	as	 in	regression-based	methods	of	biomass	 inference,	we	

here	were	able	to	detect	a	much	 larger	variation.	Our	new	method	better	accounts	 for	

natural	variation	in	biomass,	since	it	does	not	suffer	from	regression	towards	the	mean.	

Indeed,	 in	 statistical	models	 such	 as	 the	AGB	=	 f(MCH)	 it	 is	 assumed	 that	 variation	 in	

biomass	is	a	random	error	term	and	thus	locally	high	or	low	biomass	values	are	replaced	

by	a	mean	value.	Our	method	thus	has	the	potential	to	be	more	widely	applicable	across	

biomes	and	environmental	conditions	 than	area-based	regression-models	 that	need	 to	

be	locally	calibrated	(Coomes	et	al.,	2017).	In	the	future,	our	approach	would	provide	an	

efficient	model-based	 approach	 to	 assimilate	 forest	 inventories	 and	 ALS	 surveys	 into	

high-resolution	 aboveground	 biomass	 maps	 that	 could	 be	 used	 in	 the	 validation	 of	

remote-sensing	biomass	missions	(Le	Toan	et	al.,	2011;	Chave	et	al.,	2019;	Duncanson	et	

al.,	2019).		
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A	general	challenge	concerns	the	typical	ground	plot	sizes	found	across	the	tropics.	For	

this	study,	we	have	selected	two	sites	with	inventories	in	large	continuous	forest	areas	

and	 subdivided	 these	 inventories	 into	 simple	 rectangular	 plots.	 This	 allowed	 us	 to	

largely	ignore	edge	effects,	i.e.	trees	reaching	into	the	considered	plot	from	outside,	and	

trees	 within	 the	 plot	 having	 parts	 of	 their	 crown	 outside	 of	 the	 plot	 (Mascaro	 et	 al.,	

2011).	In	the	tropics,	field	inventories	are	typically	of	smaller	area	(0.25	ha	or	1	ha)	with	

a	large	number	of	plots	to	better	sample	environmental	variation	(Chave	et	al.,	2019).	It	

would	be	useful	to	improve	the	Canopy	Constructor	to	allow	the	inclusion	of	a	collection	

of	small,	non-contiguous	plots	–	and	with	non-rectangular	shapes.	This	would	imply	that	

we	would	have	to	account	for	edge	effects,	but	would	help	make	the	Canopy	Constructor	

operational	across	data	sets,	environmental	gradients	and	biomes.		

	

To	 conclude,	 the	 Canopy	 Constructor	 is	 a	 model-based	 approach	 which	 simulates	

assemblies	 of	 individual	 trees.	 Further	 data	 sources	 such	 as	 topography	 or	 other	

remote-sensing	 products	 could	 be	 integrated.	 In	 particular,	 due	 to	 its	 high	 spatial	

resolution,	modelling	 every	 individual	 tree	down	 to	1cm	dbh,	 the	Canopy	Constructor	

can	be	used	 to	 initialize	 individual-based	models	 of	 forests,	 such	 as	 the	TROLL	model	

(Maréchaux	&	Chave,	 2017),	 or	 other	 similar	models.	Once	 these	 leaf-on	 canopies	 are	

constructed,	 the	 Canopy	 Constructor	 can	 provide	 forest	 structure	 descriptions	 to	

process-based	vegetation	models,	infer	initial	canopy	constructions	for	individual-based	

models	of	forest	dynamics	or	mockups	for	radiative	transfer	models.		
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 ah hmax !! aCR bCR !!" 

	 	 	 	 	 	 	GP	 0.41	 56.88	 0.39	 2.19	 0.55	 0.24	

PP	 0.39	 58.38	 0.23	 2.29	 0.56	 0.22	

Rabi10	 0.32	 47.52	 0.37	 2.2	 0.53	 0.25	

Rabi15	 0.28	 43.67	 0.35	 2.23	 0.55	 0.27	

Table	1:	Inferred	parameters:	Mean	of	posterior	distributions	for	the	tested	allometric	parameters	at	

the	two	sites.	Plots	are	Grand	Plateau	(GP)	and	Petit	Plateau	(PP)	at	Nouragues,	as	well	as	the	10-ha	and	

15-ha	rectangular	strips	at	Rabi	(Rabi10	and	Rabi15,	respectively).		 	
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	 ah	 hmax	 !!	 aCR	 bCR	 !!"	

ah	 1	 	 	 	 	 	

hmax	 0.95	 1	 	 	 	 	

!!	 -0.31	 -0.52	 1	 	 	 	

aCR	 0.42	 0.19	 0.27	 1	 	 	

bCR	 0.15	 0.06	 0.02	 0.65	 1	 	

!!" 	 0.13	 0.22	 -0.30	 -0.34	 -0.30	 1	

Table	2:	Correlation	structure	of	the	allometric	parameters	after	inference:	This	shows	the	

correlation	between	the	allometric	parameters	after	inference	for	the	Petit	Plateau	plot.		
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Table	3:	 Prediction	of	 above-ground	biomass	 across	 the	 four	 (sub-)plots.	Shown	are	overall	mean	

AGB	values	in	t	ha-1,	calculated	by	summing	over	all	trees	>	10cm	in	dbh.	Trees	below	that	threshold	are	

not	 included	 to	 ensure	 comparability	 with	 previous	 estimates.	 Given	 are	 values	 for	 ground-based	

inference	 (treesground,	 AGBground),	 for	 inference	 from	 ALS	 data	 alone	 (treesabove,	 AGBabove),	 and	 for	

crossvalidation	with	the	respective	other	plot	from	the	same	site	(treescrossval,	AGBcrossval).	

	 	

 GP	 PP !"#$%& Rabi15 

	     

treesground	 478.3 512.1 452.5 461.7 

treesabove	 468.1 499.5 445.2 454.1 

treescrossval	 471.5 477.1 457.2 441.7 

AGBground		 355.4 438.7 311.9 295.8 

AGBabove 337.8 419.4 299.9 280.7 

AGBcrossval 324.8 430.0 301.1 276.3 
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Figure	 1:	 Converting	 packing	 densities	 into	 crown	 volume	 distributions:	 The	 figure	 displays	 the	

crown	packing	 density	matrix	 for	 a	 sample	 run	 at	Nouragues	 (Petit	 Plateau)	 as	well	 as	 two	 10ha	 CHM	

distributions	 (middle	panels,	derived	 from	 the	Grand	Plateau	and	Petit	Plateau	plots,	 respectively),	 and	

the	result	of	a	multiplication	with	the	packing	density	matrix.	Packing	densities	are	given	as	unit	crown	

volume	per	unit	canopy	volume	(m3	m-3).	When	a	particular	canopy	height	(i.e.	column)	occurs	less	than	

1000	 times	within	 the	 sampled	 canopy,	 values	 represent	 an	 average	 over	 neighboring	 canopy	 heights,	

obtained	from	rescaling	of	all	heights	involved	to	percentage	of	top-of-canopy	height	and	then	converting	

back	 to	absolute	height	values.	For	both	plots,	we	obtain	a	distribution	of	 total	 crown	volume	(in	 cubic	

meter)	 per	 height	 layer	 (in	m),	which	 can	 then	 be	 filled	 up	with	 random	 draws	 from	 a	 stem	 diameter	

distribution	and	allometric	predictions.		
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Figure	2.	Results	 of	 canopy	 fitting	 at	 the	Petit	 Plateau	plot	 at	Nouragues	 Field	 Station,	 based	on	

both	 field	 inventory	and	canopy	height	model:	Upper	panels:	The	left	image	shows	the	initial	canopy	

height	 model	 (CHM)	 for	 Petit	 Plateau	 where	 tree	 dimensions	 are	 randomly	 drawn	 from	 site-specific	

allometries	 and	 an	 empirical	 diameter	 distribution	 ("initial/random	 fit").	 The	middle	 image	 shows	 the	

corresponding	 empirically	 derived	 canopy,	 and	 the	 righthand	 image	 shows	 the	 final	 reconstruction	

("spatial	 fit")	 of	 the	 Canopy	 Constructor.	 Similarities	 between	 the	 initial	 fit	 and	 the	 empirical	 canopy	

height	model,	particularly	in	gappy	areas,	are	due	to	known	tree	diameters	and	positions.	Divergences	are	

due	 to	 random	 variation	 around	 allometric	 means.	 The	 Canopy	 Constructor	 improves	 upon	 this	 by	

swapping	deviations	between	 trees	 or	drawing	 alternative	 tree	dimensions	 from	 the	 allometric	models	

until	a	better	fit	is	created.	Lower	panels:	Shown	are	the	two	summary	statistics	used	to	create	a	better	fit.	

The	 left	 panel	 shows	 the	 canopy	 height	 distribution	 of	 the	 Petit	 Plateau	 field	 plot,	 overlaid	 by	 a	 fitted	

canopy	 height	 distribution	 (in	 orange).	 The	 dissimilarity	 D	 between	 the	 two	 normalized	 distributions	

(where	D	=	1	–	the	overlapping	area)	is	used	to	quantify	goodness	of	fit.	The	righthand	panel	shows	the	

distribution	of	per-pixel	 deviations,	 here	 rescaled	with	 the	mean	empirical	 canopy	height.	 In	 the	 fitting	

algorithm,	we	convert	the	devations	to	absolute	values	and	take	their	mean	(mean	absolute	error,	MAE).		 	
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Figure	 3:	 Parameter	 inference	 at	 Petit	 Plateau,	 Nouragues,	 with	 a	 1%	 cutoff.	 Results	 of	 the	 ABC	

rejection	scheme,	for	the	Petit	Plateau	plot	retaining	only	the	best	1%	of	simulations.	The	top	row	shows	

the	parameter	space	for	the	Michaelis	Menten	parameters	of	the	height	allometry	(left	panel,	prior	in	light	

blue,	with	2,000	out	of	10,000	reconstructions	displayed,	posterior,	 i.e.	 the	best	100	reconstructions,	 in	

dark	blue),	the	prior	and	posterior	allometries	(middle	panel)	and	the	prior	and	posterior	distribution	of	

the	 variance	 term	 (right	 panel).	 The	 bottom	 row	 shows	 the	 same	 information	 for	 the	 crown	 radius	

intercept	 and	 slope	 (aCR	 and	 bCR),	 i.e.	 the	 parameter	 space,	 the	 corresponding	 prior	 and	 posterior	

distributions	 (prior	 in	 light	 green,	 posterior	 in	 dark	 green)	 and	 the	 variance	 term.	 The	 best	 simulation	

(mean	 parameter	 combination)	 is	 given	 as	 dark	 blue/green	 line	 in	 the	 middle	 panels,	 the	 uncertainty	

interval	is	derived	from	the	75%	highest	density	intervals	of	the	joint	posterior	distribution,	with	best-fit	

allometric	equations	smoothing	the	upper	and	lower	limits	of	the	interval.		
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Figure	4:	 Inferred	allometries	at	Nouragues	and	Rabi.	The	panels	show	height	allometries	(top	row)	

and	 crown	 allometries	 (bottom	 row),	 as	 inferred	 by	 the	 Canopy	 Constructor,	 for	 Nouragues	 (lefthand	

side),	Rabi	(middle	panels)	and	both	sites	combined	(righthand	side).	The	grey	background	indicates	the	

prior	 range.	 Mean	 and	 75%	 highest	 density	 intervals	 are	 given	 for	 each	 plot	 separately,	 i.e.	 for	 Grand	

Plateau	(blue)	and	Petit	Plateau	(red)	at	Nouragues,	and	for	the	10ha	(green)	and	15ha	(orange)	plot	at	

Rabi.	As	comparison,	we	have	plotted	ground-inferred	height	allometries	for	both	Grand	Plateau	(dotted)	

and	Petit	Plateau	 (dashed)	 in	 the	 top	panels,	 as	well	 as	 a	 single	 ground-inferred	allometry	at	Rabi.	The	

grey	background	indicates	the	prior	range.		
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Figure	5:	Stem	diameter	distributions	(trees	>	10cm	in	diameter),	as	inferred	"from	above":	Shown	

are	 log-transformed	 stem	 diameter	 distributions	 starting	 at	 a	 diameter	 at	 breast	 height	 of	 10cm,	

compared	across	 inference	procedures.	The	black	bars	are	reference	values	(from	field	 inventories),	 the	

blue	 bar	 represents	 ALS-based	 inference	 of	 the	 stem	 diameter	 distribution	 at	 the	 local	 plot	 where	

allometries	 and	 packing	 densities	 were	 inferred	 (local	 validation	 from	 "above"),	 and	 the	 green	 bar	

represents	 inference	 when	 the	 model	 is	 transferred	 between	 plots	 at	 the	 same	 site	 (crossvalidation).	

Crossvalidation	 is	 visible	 in	how	patterns	 from	 the	 ground	distribution	 in	 the	 lefthand	panels	 translate	

into	patterns	of	the	"crossval"	distribution	on	the	righthand	site,	and	vice	versa.		
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Figure	6:	Aboveground	biomass	predictions,	as	inferred	"from	above":	Shown	are	the	predictions	of	

aboveground	biomass	(median	of	100	posterior	simulations,	given	in	t	ha-1)	from	ALS-derived	CHMs	only,	

both	at	the	hectare	scale	(top	panels)	and	quarterhectare	scale	(bottom	panels).	The	left	column	describes	

the	 results	 when	 the	 Canopy	 Constructor	 inversion	 is	 applied	 to	 the	 local	 plot	 where	 allometries	 and	

packing	 densities	 were	 calibrated,	 the	 right	 column	 the	 results	 from	 crossvalidation.	 We	 see	 the	 two	

Nouragues	 plots	 in	 red	 and	 orange,	 and	 the	 two	 Rabi	 plots	 in	 dark	 and	 light	 green.	 RMSE	 (root	mean	

squared	 error),	MAE	 (mean	 absolute	 error)	 and	MBE	 (mean	bias	 of	 the	 error)	 are	 given	 in	 the	 top-left	

corner	of	 the	panels.	MBE	does	not	 change	between	hectare	and	quarterhectare	 scales	and	 is	 thus	only	

given	 in	 the	 top	 panels.	 For	 visualization	 purposes,	 we	 only	 plot	 error	 bars	 at	 the	 hectare	 scale,	

representing	the	interquartile	ranges	of	estimates	from	100	posterior	simulations.		
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Figure	7:	Aboveground	biomass	predictions	for	ALS	campaign	at	Nouragues	 	(2,016	ha)	and	Rabi	

(832	 ha).	Maps	 show	 the	mean	predicted	aboveground	biomass	values	 (t	 ha-1)	 across	 the	ALS	 covered	

areas	(left	panels,	Nouragues	upper	panel,	Rabi	lower	panel),	the	respective	coefficient	of	variation	across	

100	 simulations	 (middle	 panels,	 dimensionless),	 and	 the	 overall	 distributions	 of	 aboveground	 biomass	

(right	panels,	 red	distributions,	 in	 t	ha-1).	Also	given	are	 the	 reference	estimates	 (in	yellow),	 as	derived	

from	 a	 regression-based	 approach	 (Labrière	 et	 al.	 2018).	 Clearly	 evident	 is	 the	 shrinkage	 towards	 the	

mean	in	the	regression-based	approach,	as	opposed	to	much	stronger	variation	in	the	Canopy	Constructor	

approach.	Please	note	that	the	geographic	extent	of	the	maps	has	been	rescaled	for	visualization	purposes.	

	

	

	



	



Chapter	3:	Calibrating	the	short-term	dynamics	

of	the	TROLL	individual-based	model	in	an	old-

growth	tropical	forest	

(Target	Journal:	Ecological	Modelling)	

	

Chapter	3	extends	the	new	method	developed	in	Chapter	2	to	create	not	only	geometric	

tree	 representations,	 but	 also	 leaf-filled	 canopies,	 and	 then	 couples	 it	 with	 the	

individual-based	 forest	 model	 TROLL.	 Based	 on	 a	 new,	 improved	 version	 of	 TROLL,	

TROLL	 v.2.5,	 and	 an	 adapted	 version	 of	 the	 Canopy	 Constructor	 we	 reconstructed	 a	

physiologically	 realistic	 old-growth	 forest	 on	 a	 plot	 in	 French	 Guiana,	 simulated	 its	

dynamics	 over	 a	 400	 year	 period,	 and	 calibrated	 parameters	 related	 to	mortality	 and	

carbon	allocation.	We	studied	the	stability	of	 the	 inferred	ecosystem	structure	 in	time,	

inferred	 mortality	 rates,	 qualitatively	 assessed	 trunk	 diameter	 growth	 and	 canopy	

dynamics	 with	 regard	 to	 empirically	 derived	 values	 and	 compared	 overall	 stand	

development	to	forest	regrowth	from	bare	ground.		
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1.	Introduction	22	

Tropical	forests	are	a	crucial	component	of	the	global	carbon	cycle	(Pan	et	al.,	2011;	23	

Malhi,	2012),	but	are	changing	rapidly	under	the	influence	of	climate	change	and	24	

anthropogenic	pressures	such	as	deforestation	(Hansen	et	al.,	2013).	As	a	result,	their	25	

future	as	well	as	the	feedback	on	the	global	carbon	cycle	remain	highly	uncertain.		26	

	 Vegetation	models	are	essential	to	explore	the	impact	of	global	change	on	the	27	

terrestrial	carbon	cycle	by	simulating	matter	and	energy	exchange	from	the	vegetation	28	

and	the	atmosphere.	Such	large-scale	models	have	long	been	parameterized	for	the	29	

tropical	biome	(Cramer	et	al.	2000,	Cox	et	al.	2000).	However,	a	detailed	account	of	30	

carbon	allocation	into	woody	components	of	forests	requires	to	simulate	demographic	31	

processes	(Fisher	et	al.,	2018).	This	challenge	has,	for	example,	been	addressed	by	32	

cohort-based	plant	demography	models	that	describe	coarse-grained	dynamics	on	33	

average	forest	patches	(Moorcroft	et	al.,	2001;	Medvigy	et	al.,	2009).		34	

In	recent	years,	there	has,	however,	been	a	renewed	interest	for	the	development	35	

of	individual-based	models	(IBMs),	because	these	models	represent	forest	dynamics	36	

tree	by	tree	and	thus	allow	for	a	more	explicit	simulation	of	demographic	processes	37	

(Pacala	et	al.,	1996).	In	particular,	since	every	individual	is	explicitly	accounted	for,	field	38	

data	such	as	stem	diameter	or	functional	trait	measurements	are	more	easily	39	

assimilated	for	calibration	or	validation	purposes.	At	the	same	time,	innovative	40	

strategies	are	required	to	deal	with	high	model	complexity,	spatial	extent	and	41	

computational	costs	(Grimm	&	Railsback,	2012;	Fischer	et	al.,	2019).	They	are	42	

particularly	important	for	the	inference	of	mortality	processes	that	are	often	coarsely	43	

represented,	but	have	a	strong	impact	on	simulated	dynamics	(Bugmann	et	al.,	2019).		44	

Previously,	we	have	shown	how	forest	plot	inventories	and	airborne	lidar	can	be	45	

used	together	to	reconstruct	detailed	3D-forest	scenes	(the	Canopy	Constructor	46	
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algorithm;	Fischer	et	al.,	in	preparation).	The	approach	provides	a	key	connection	47	

between	field	data	and	fine	resolution	forest	dynamic	models,	and	a	move	towards	48	

generating	locally	parameterized	tropical	forest	simulators.	Here,	we	describe	how	49	

these	static	reconstructions	of	tropical	rainforests	can	be	translated	into	dynamically	50	

evolving	forests,	using	the	spatially-explicit	and	individual-based	forest	simulator	model	51	

TROLL	(Maréchaux	&	Chave,	2017).		52	

To	do	so,	we	first	revisit	some	crucial	features	of	the	TROLL	model	and	improve	53	

model	stability	and	transferability	(sensu	Wenger	&	Olden,	2012).	Notable	54	

improvements	of	this	version	of	the	TROLL	model	include	the	consideration	of	intra-55	

specific	variability	in	traits,	a	more	detailed	description	of	within-crown	variation	of	56	

photosynthetic	assimilation,	and	the	development	of	a	method	to	account	for	the	plastic	57	

response	to	light	gradients.		58	

We	then	extend	the	Canopy	Constructor	algorithm	to	provide	biologically	viable	59	

representations	of	an	old-growth	forest	in	French	Guiana	and	initialise	TROLL	directly	60	

from	these	best-fit	reconstructions.	We	vary	its	dynamic	parameters	and	calibrate	them	61	

by	imposing	the	condition	that	the	initial	forest	structure	be	largely	preserved.	Finally,	62	

we	assess	the	simulated	old-growh	forest	and	compare	our	predictions	both	to	63	

simulations	from	bare	ground	and	to	empirical	data	from	repeated	inventories	and	64	

airborne	lidar	acquisitions.		65	

We	ask:	(1)	How	well	can	we	reconstruct	viable,	leaf-filled	canopies	and	how	66	

does	the	inclusion	of	leaf	physiology	impact	on	allometric	inference?	(2)	Is	the	67	

parameter	space	well-constrained?	How	do	estimates	of	mortality	and	growth	compare	68	

to	empirical	data?	(3)	How	stable	is	the	old-growth	forest	ecosystem	and	how	does	it	69	

compare	to	forest	regrowth	from	bare	ground?		70	

	71	
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2.	Methods	72	

2.1	The	TROLL	model	v.2.5	73	

Our	study	uses	the	spatially	explicit	and	individual-based	forest	growth	simulator	74	

TROLL	(Chave,	1999,	2001;	Maréchaux	&	Chave,	2017).	Here	we	provide	the	context	of	75	

the	model,	and	improvements	included	in	the	latest	version	2.5,	compared	with	76	

previously	released	version	2.3.1	(Maréchaux	&	Chave,	2017).		77	

The	TROLL	model	simulates	individual	trees	≥	1	cm	in	trunk	diameter	within	a	78	

voxel	space	of	1	m3	spatial	resolution.	Tree	crowns	occupy	the	voxel	space,	assimilate	79	

carbon	and	shade	other	plants.	Each	individual	tree	is	assigned	a	species,	its	mean	plant	80	

functional	traits	(leaf	nutrients,	leaf	mass	per	area,	wood	density),	and	allometric	81	

relationships.	When	maturity	is	reached,	each	tree	has	the	potential	to	disperse	82	

propagules	in	the	neighborhood	and	to	recruit	seedlings	into	the	community.	83	

	 Every	month,	tree	growth	and	mortality	are	calculated.	Photosynthesis	or	gross	84	

primary	production	is	based	on	the	FvCB-model	(Farquhar	et	al.,	1980),	with	the	main	85	

parameters	(Jmax,	Vcmax,	Ci)	estimated	from	species	traits	(Domingues	et	al.,	2010;	86	

Medlyn	et	al.,	2011),	and	dark	respiration	from	an	equation	for	broadleaf	trees	(Atkin	et	87	

al.,	2015).	To	calculate	the	vertical	change	in	the	environmental	variables	–	88	

photosynthetic	photon	flux	density	(PPFD),	temperature	(T),	and	water	vapour	pressure	89	

deficit	(VPD)	–,	the	Beer-Lambert	extinction	law	is	applied	(Maréchaux	&	Chave,	2017).	90	

Once	carbon	losses	from	leaf	and	stem	respiration	are	deducted,	primary	productivity	is	91	

translated	into	biomass	gain,	and	allocated	to	various	plant	organs	according	to	preset	92	

ratios.	Tree	mortality	is	simulated	through	a	baseline	mortality	that	declines	linearly	93	

with	wood	density	(Kraft	et	al.,	2010),	carbon	starvation	when	respiration	exceeds	94	

photosynthesis	for	prolonged	periods,	and	treefall	–	typically	simulated	with	a	simple	95	

height	threshold,	although	more	complex	formulations	are	available	(Chave,	1999).		96	
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	 In	version	2.5	of	TROLL,	traits	are	allowed	to	vary	among	individuals	within	97	

species.	For	every	trait	i,	we	assume	a	lognormal	distribution,	i.e.	a	multiplicative	factor	98	

!!! ,	where	!!  ~ !(0,!!).	For	wood	specific	gravity,	we	assume	normal	variation	around	99	

the	mean,	or	an	additive	error	term	!!"# ~ !(0,!!"#),	as	observed	in	empirical	data	sets	100	

(Kattge	et	al.,	2011).	Traits	are	then	drawn	from	a	multivariate	Gaussian	distribution,	101	

preserving	intraspecific	covariance	(cf.	covariance	matrix	in	Supplementary	Material	1	102	

and	a	previous	study,	Fischer	et	al.,	in	preparation).		103	

	 In	TROLL	v.2.5,	the	light	flux	is	not	computed	at	the	top	of	a	each	layer	in	the	3D	104	

voxel	space	as	in	the	previous	version.	Rather,	the	absorbed	photons	per	m2	of	leaf	area	105	

are	calculated.	In	a	layer	of	thickness	!	at	canopy	height	z,	the	absorbed	photosynthetic	106	

photon	flux	density	(PPFD,	in	μmol	m−2	s−1)	is:	!!"# ! !"# = !!"# ! + ! −107	

!!"#(!) /!"#$(!),	where	dens	is	the	average	leaf	area	density	(m2/m2)	in	layer	!.	We	108	

define	!!"# ! = exp (−!!"#∗  × !"# ! )	where	LAI	is	the	leaf	area	index	at	height	z	(in	109	

m2/m2)	and		!!"#∗ 	the	Beer-Lambert	extinction	factor	multiplied	by	!	that	represents	leaf	110	

absorptance:	!!"#∗ =  ! × !.	With	this	definition,	the	quantum	yield	parameter	!	does	111	

not	need	to	be	converted	to	absorptance-based	values	anymore	(Medlyn	et	al.,	2002).	In	112	

the	new	equation,	an	increase	in	transmitted	radiation	at	low	k	is	balanced	out	by	a	113	

decrease	in	intercepted	radiation	from	leaves.	Temperature	T	and	water	vapour	114	

pressure	deficit	VPD	are	now	averaged	across	each	layer	instead	of	being	taken	from	the	115	

top	of	each	layer	(details	on	the	equations	cf.	Supplementary	Material	S2).		116	

	 TROLL	v.2.5	also	proposes	a	new	concept	to	model	leaf	lifespan	based	on	leaf	117	

turnover	optimization	(Kikuzawa,	1991).	The	Kikuzawa	model	assumes	that	leaf	area	is	118	

limited,	construction	cost	is	incurred	once	in	a	leaf's	lifetime	and	photosynthesis	119	

declines	with	leaf	age.	Leaf	lifespan	is	computed	as	the	condition	at	which	a	leaf	120	

represents	the	optimal	investment	(Kikuzawa,	1991),	a	relationship	validated	against	121	



	

	 119	

empirical	data	(Kitajima	et	al.,	1997,	2002;	Kikuzawa	&	Lechowicz,	2006).	The	major	122	

uncertainty	in	this	model	is	b,	the	maximum	potential	lifespan.	Recently,	Xu	et	al.	(2017)	123	

have	compiled	b	values	from	the	literature	and	found	a	good	correlation	with	Vcmax	124	

values.	Given	that	Vcmax	is	also	strongly	related	to	LMA,	we	derived	a	direct	relationship	125	

between	LMA	and	b.	from	values	in	Xu	et	al.	(2017).	Our	formula	is:	126	

! =  !!.!"#!!.!"" × !"# (!"#),	and	the	modified	Kikuzawa	formula	reads:		127	

!!" = 1.0+  130  × 2.0 × !! × !"# × !
!""#$% 	

Where	NPPmax	is	the	net	primary	production	at	full	leaf	expansion,	CC	the	construction	128	

costs	of	the	leaf	(typically	assumed	to	be	1.5	g/g	to	account	for	growth	respiration,	cf.	129	

Kikuzawa,	1991)	and	the	factor	1/30	the	conversion	factor	into	monthly	LLS.	One	month	130	

is	added	to	account	for	leaf	lifespan	before	full	expansion.	131	

	 Another	improvement	of	TROLL	v.2.5	is	the	representation	of	plasticity	to	light,	a	132	

crucial	feature	of	plant	growth	(Bloor	&	Grubb,	2004;	Curt	et	al.,	2005;	Niinemets,	2010)	133	

with	considerable	influences	on	ecosystem	functioning	(Williams	et	al.,	2017).	We	134	

hypothesize	that	leaf	allocation	balances	leaf	litterfall,	and	that	leaves	are	not	allocated	135	

beyond	their	light	compensation	point	LCP,	i.e.	the	incident	light	at	which	carbon	gains	136	

from	leaf	photosynthesis	equals	carbon	losses	through	leaf	respiration	(Kitajima	et	al.,	137	

2005).	To	calculate	the	LCP,	we	inverse	the	FvCB-model	(Farquhar	et	al.,	1980)	and	138	

calculate	the	maximum	amount	of	leaves	trees	can	support	under	mean	climatic	139	

conditions	at	the	study	site.	Excess	carbon	–	i.e.	carbon	that	cannot	be	allocated	to	leaves	140	

–	is	stored	in	a	pool	of	non-structural	carbohydrates	(set	to	10%	of	total	carbon,	half	of	141	

which	is	accessible,	cf.	Martínez-Vilalta	et	al.,	2016)	and	is	allocated	to	stem	growth	only	142	

once	the	storage	pool	is	saturated.	At	periods	when	net	primary	productivity	is	negative,	143	

the	storage	pool	is	used	for	maintenance.		144	
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	 Finally,	in	TROLL	v.2.5,	a	crown	shape	parameter	!	describes	the	ratio	between	145	

radius	at	the	top	and	the	bottom	of	the	crown.	This	was	motivated	by	the	development	146	

of	the	Canopy	Constructor	and	the	need	to	create	more	realistic	crown	surfaces	and	147	

volumes	(cf.	Fischer	et	al.,	in	preparation).	We	also	define	a	new	gap	fraction,	i.e.	a	148	

fraction	of	each	tree	crown's	pixels	that	will	not	be	or	only	partially	filled	with	leaves.	149	

This	simulates	physiological	constraints	on	the	trees'	ability	to	fill	up	the	canopy	space	150	

and	has	important	consequences	on	ecological	dynamics,	as	the	light	penetrating	151	

through	tree	crown	gaps	is	crucial	to	recruitment	and	regeneration	(Way	&	Pearcy,	152	

2012).	Because	empirical	canopies	display	high	variation	in	tree	leaf	area	index,	153	

sometimes	well	below	their	maximal	capacity,	we	set	this	gap	fraction	to	0.4,	with	some	154	

inter-individual	variation	due	to	variation	in	crown	radius	(Further	details	cf.	155	

Supplementary	Material	S4).	156	

	157	

2.2	Initial	conditions	and	calibration	of	the	TROLL	model	158	

We	used	the	Canopy	Constructor	algorithm	to	create	an	initial	forest	state	and	to	infer	159	

the	allometric	relationships	that	underlie	the	TROLL	model	(Fischer	et	al.,	in	160	

preparation).	We	adapted	the	Canopy	Constructor	to	jointly	optimize	the	spatial	tree	161	

configurations	that	reflect	forest	structure	and	to	ensure	tree	viability.	To	determine	162	

biological	viability,	we	kept	track	of	the	overall	carbon	balance	of	trees	>	10cm	in	163	

diameter	and	optimized	the	3D	assembly	of	tree	so	that	only	a	minimal	fraction	of	trees	164	

experienced	a	negative	carbon	balance	(cf.	Supplementary	Material	S3).	As	before,	we	165	

used	a	simple	Approximate	Bayesian	Computation	approach	and	selected	the	best	166	

reconstructions	to	infer	parameters	(Fischer	et	al.,	in	preparation).	Including	tree	167	

viability	as	an	additional	constraint	was	predicted	to	constrain	the	relationship	between	168	

trunk	diameter	and	crown	radius	because	trees	must	have	a	large	enough	crown	to	169	
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ensure	positive	carbon	balance,	but	small	enough	to	not	interfere	to	much	with	the	170	

crowns	of	other	trees,	particularly	in	the	understorey.		171	

The	Canopy	Constructor	uses	ALS	data	only	through	a	canopy	height	model	172	

(CHM).	Lidar	scans	contain,	however,	a	substantial	amount	of	information	on	plant	173	

densities	(Vincent	et	al.,	2017).	Provided	that	the	effects	of	the	previous	CHM	fitting	are	174	

separated	out,	this	information	can	serve	as	a	source	of	validation	for	the	reconstructed	175	

leaf-on	canopies.	Since	CHMs	essentially	describe	the	ratio	of	voxels	within	the	canopy	176	

to	voxels	outside	of	the	canopy	at	a	particular	height	level	(i.e.	the	number	of	voxels	177	

above	which	is	vegetation	vs.	those	above	which	is	no	vegetation),	we	separated	this	178	

information	out	by	considering	only	the	properties	of	within-canopy	voxels.	Specifically,	179	

we	compared	the	number	of	leaf-filled	voxels	inside	the	canopy	as	well	as	the	mean	180	

transmittance	of	these	voxels.	To	account	for	effects	introduced	by	the	ALS	acquisition	181	

procedure	–	i.e.	lower	sampling	densities	and	energy	fraction	in	the	understorey,	182	

resulting	in	higher	uncertainties	and	potential	bias	–,	the	comparison	was	based	on	a	183	

virtual	lidar	scan	(details	for	the	simplified	lidar	scan	cf.	S5).	184	

To	translate	the	static	inference	of	forest	structure	into	dynamic	forest	growth,	185	

we	picked	the	ten	best	Canopy	Constructor	reconstructions	and	initialised	the	TROLL	186	

model	from	them,	relying	on	the	allometric	relationships	of	each	reconstruction.	We	187	

parameterized	all	species	that	had	been	taxonomically	identified	within	the	study	plot,	188	

including	morphospecies	(622	species	overall).	Unidentified	trees	(ca.	5%	in	our	189	

empirical	dataset)	were	assigned	to	one	of	the	identified	species	proportionally	to	the	190	

species'	relative	abundances.	To	infer	the	most	likely	trait	values	at	species	and	genus	191	

level,	we	used	a	local	trait	collection	(Baraloto	et	al.,	2010)	and	hierarchical	Bayesian	192	

modelling	with	the	package	rstan	(Stan	Development	Team,	2019),	assuming	lognormal	193	

distributions	for	leaf-level	traits	and	normal	distributions	for	wood	density.	Where	no	194	
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data	was	available	for	a	particular	species,	we	assumed	traits	to	be	phylogenetically	195	

conserved,	and	used	genus	means.	Where	no	genus-level	data	was	available,	we	196	

assigned	community-weighted	plot	means.		197	

To	infer	stand	dynamics,	we	varied	three	parameters	relating	to	the	trees'	vital	198	

rates	and	to	whom	TROLL's	dynamics	are	particularly	sensitive	(Maréchaux	&	Chave,	199	

2017).	These	include	the	baseline	mortality	rate	as	well	as	allocation	rules	for	newly	200	

produced	biomass	to	either	canopy	or	trunk	biomass.	Since	we	hypothesized	treefall	to	201	

have	a	strong	impact	on	dynamics,	we	further	included	the	treefall	threshold	parameter	202	

for	calibration.	For	each	of	the	best	10	reconstructions,	we	ran	100	simulations	of	old-203	

growth	dynamics	for	400	years,	with	random	combinations	of	the	parameters	within	204	

realistic	prior	ranges	(cf.	Table	1).		205	

Out	of	the	resulting	1000	simulations,	we	again	selected	the	best	simulations	206	

based	on	a	simple	rejection	scheme.	We	assumed	that	a	realistic	rendering	of	dynamics	207	

would	require	the	old-growth	forest	structure	to	be	largely	preserved	over	400	years	of	208	

growth.	To	quantify	stability,	we	recorded	stand	characteristics	every	ten	years,	209	

including	stand-level	aboveground	biomass,	trunk	diameter	distributions	and	canopy	210	

height	distributions.	At	each	timestep	t,	we	assessed	the	overlap	between	the	211	

distributions	and	their	initial	shape	and	calculated	dissimilarity	metrics	!!"! !  	and	212	

!!!!(!),	with	dissimilarity	between	distributions	defined	as	in	our	previous	study	213	

(Fischer	et	al.,	in	preparation).	Furthermore,	dissimilarity	between	aboveground	214	

biomass	AGB(t)	at	timestep	t	and	initial	AGBi	was	calculated	as	!!"# ! =  1 –  !"#(!)/215	

!"!!  	when	AGB(t)	<	AGBi	and	!!"# ! = 	1	–	AGBi/	AGB(t)	when	AGB(t)	>	AGBi.	All	216	

dissimilarity	metrics	thus	ranged	between	0	and	1	and	could	be	merged	to	form	a	217	

combined	dissimilarity	index	!!"#$(!) = !!"!(!)! +  !!!!(!)! +  !!"#(!)!.	To	assess	218	

the	stability	of	the	inferred	forest,	we	calculated	the	coefficient	of	variation	of	Dcomb	over	219	
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the	entire	400	year	span	(40	samples	in	total,	excluding	the	initial	state)	and	selected	the	220	

10%	of	simulations	that	had	the	lowest	coefficient	of	variation	(i.e.	did	not	vary	strongly	221	

in	their	similarity	to	the	initial	state).	We	hypothesized	that	this	would	exclude	both	222	

highly	unstable	simulations	and	simulations	that	remained	stable	in	the	long	term,	but	223	

were	very	dissimilar	from	the	initial	configuration,	since	they	would	show	large	224	

deviations	in	the	initial	decades	until	reaching	equilibrium.	To	further	test	this	225	

assumption,	we	compared	our	results	to	a	second	calibration,	based	on	mean	226	

dissimilarity	over	400	years.		227	

Based	on	the	best	simulations,	we	then	assessed	overall	tree	mortality	and	228	

qualitatively	compared	the	dynamics	simulated	by	the	TROLL	model	to	changes	in	229	

canopy	height	from	successive	ALS	campaigns	and	trunk	diameter	growth	from	230	

successive	forest	inventories.	Since	measurement	error	in	trunk	diameter	considerably	231	

alters	the	distribution	of	empirical	diameter	growth	rates	(resulting	in	spurious	232	

decreases	in	diameter	growth)	and	thus	renders	comparisons	between	empirical	and	233	

virtual	data	difficult,	we	applied	a	measurement	error	model	to	the	true	diameter	values	234	

in	TROLL	(Chave	et	al.,	2004;	Réjou-Méchain	et	al.,	2017).		235	

Finally,	we	assessed	the	overall	stability	of	the	simulated	old-growth	dynamics	by	236	

comparing	initial	and	final	trunk	diameter	and	canopy	height	distributions	and	reran	the	237	

10	best	simulations	over	400	years	from	bare	ground	to	compare	old-growth	dynamics	238	

and	forest	regeneration.		239	

	240	

2.3	Data	241	

All	data	used	in	this	study	were	obtained	at	the	Nouragues	Ecological	Research	Station	242	

in	French	Guiana	(4.06°N,	52.68°W),	a	site	with	a	lowland	tropical	rainforest,	rainfall	of	243	

ca.	2900	mm	per	year	and	with	a	2-mo	dry	season	from	September	to	November	and	a	244	
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shorter	one	in	March.	Forest	inventories	have	been	conducted	since	the	early	1990s	245	

(Chave	et	al.,	2008b;	Labrière	et	al.,	2018),	with	several	ALS	surveys	conducted	since	246	

2007	(Réjou-Méchain	et	al.,	2015).	We	here	use	two	successive	ground	inventories	at	247	

the	12ha	"Petit	Plateau"	plot,	one	carried	out	in	november		2012	and	a	partial	248	

reinventory	in	october	2015.	All	trees	were	tagged,	mapped,	and	their	dbh	was	249	

measured	when	above	10	cm.	Trunk	dbh	was	measured	130	cm	above	ground,	or	50	cm	250	

above	buttresses	or	deformities.	They	were	also	identified	to	the	species	level	for	about	251	

95%	of	the	stems.	We	also	used	data	from	two	corresponding	ALS	campaigns,	one	with	a	252	

Riegl	laser	rangefinder	(LMS-Q560)	earlier	in	March	of	2012	(Réjou-Méchain	et	al.,	253	

2015)	at	an	average	pulse	density	of	~12	per	m2	(based	on	density	of	last	returns)	and	254	

an	overall	point	density	of	~18	per	m2	(all	returns),	and	one	in	October	2015,	using	a	255	

Riegl	laser	rangefinder	(LMS-Q780)	at	an	average	pulse	density	of	23	per	m2	and	an	256	

overall	point	density	of	37	per	m2.	For	both	lidar	campaigns,	we	derived	spike-free	257	

canopy	height	models,	based	on	the	LAStools	software	(Isenburg,	2018)	at	m2	258	

resolution.	For	validation	of	model	outputs,	we	further	relied	on	local	field	and	259	

fluxtower	data	(Chave	et	al.,	2008;	Aguilos	et	al.,	2018).		260	

Statistical	analysis	and	visual	rendering	were	conducted	in	the	R	software	(R	261	

Development	Core	Team,	2019),	including	the	packages	data.table	(Dowle	&	Srinivasan,	262	

2018),	ggplot2	(Wickham,	2011),	viridis	(Garnier,	2018),	hdi	(Meredith	&	Kruschke,	263	

2018),	rstan	(Stan	Development	Team,	2019)	and	coda	(Plummer	et	al.,	2006).	264	

	 	265	
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3.	Results	266	

In	general,	the	modified	Canopy	Constructor	was	highly	successful	in	creating	267	

viable	canopies.	Gross	primary	productivity	of	the	best	leaf-on	canopies	was	46.7	MgC	268	

ha-1	yr-1	[45.0-47.8	MgC	ha-1	yr-1].	Mean	net	primary	productivity	amounted	to	17.0	MgC	269	

ha-1	yr-1		[16.2-17.7	MgC	ha-1	yr-1].	Furthermore,	a	comparison	between	empirical	and	270	

simulated	leaf	densities	and	transmittances	shows	that	the	inferred	forest	271	

reconstructions	represented	well	observations,	both	quantitatively	and	qualitatively	272	

(Figure	1).			273	

As	hypothesized,	the	viability	constraint	in	allometric	inference	affected	the	274	

inferred	crown	allometry	parameters,	compared	to	previous	results	from	the	Canopy	275	

Constructor	algorithm	(Fischer	et	al.,	in	preparation).	Crown	diameters	were	generally	276	

inferred	to	be	smaller	and	showed	less	dispersion	than	when	inferred	merely	from	277	

geometric	principles.	Variance	around	mean	crown	diameter,	in	particular,	showed	a	278	

clear	peak,	compared	to	an	uninformative	posterior	for	the	purely	geometric	fitting.		279	

Height	allometries,	on	the	other	hand,	were	nearly	identical,	with	75%	highest	density	280	

intervals	of	both	methods	overlapping	almost	completely	over	the	whole	range	(cf.	281	

Supplementary	Material,	Figure	S1).		282	

	 The	dynamic	constraint	imposed	by	the	dissimilarity	index	was	efficient	for	283	

mortality	rate	and	the	treefall	threshold	vC,	with	strong	correlation	between	both	284	

parameters,	but	had	no	clear	effect	on	the	allocation	parameters	(Figure	2,	cf.	also	285	

Supplementary	Material,	Figure	S2	for	correlation	matrices).	Inferred	tree	mortality	was	286	

0.015	yr-1	[0.011-0.02	yr-1].	Yearly	treefall	estimates	were	more	variable,	with	a	mean	of	287	

0.005	yr-1	[0.001-0.011	yr-1],	responsible	for	10-50%	of	annual	mortality.	These	patterns	288	

were	very	stable,	irrespective	of	whether	the	model	was	constrained	by	the	coefficient	289	
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of	variation	of	the	dissimilarity	index	or	its	mean	(cf.	Supplementary	Material,	Figures	290	

S2	and	S3).		291	

A	qualitative	comparison	between	the	best	model	calibration	and	empirical	data	292	

showed	that	changes	in	the	canopy	height	model	due	to	treefall	were	consistent	with	293	

obervations	(Figure	3)	and	diameter	growth	patterns	were	also	similar	to	observed	ones	294	

(Figure	4).		295	

Finally,	overall	canopy	structure	was	well-preserved	in	the	old-growth	forest,	as	296	

can	be	seen	from	comparisons	between	initial	and	final	trunk	diameter	distributions	and	297	

canopy	height	distributions	(Figure	5).	Stand	metrics	such	as	above-ground	biomass	or	298	

tree	numbers	were	stable,	suggesting	that	the	fundamental	dynamics	were	rendered	299	

accurately	(Figure	6).	Forest	regeneration	from	bare	ground	quickly	reached	similar	300	

tree	numbers,	but	converged	much	more	slowly	towards	a	stable	aboveground	biomass	301	

configuration,	sometimes	not	even	reaching	it	within	the	400	years	of	simulation.			302	

	303	

4.	Discussion	304	

4.1	Model	calibration	and	validation	305	

Here	we	have	shown	how	to	infer	and	predict	ecosystem	functioning	from	a	306	

combination	of	successive	forest	inventories,	airborne	lidar	data	and	individual-based	307	

modelling.	A	step-wise	inference	procedure,	constraining	forest	structure	first,	then	the	308	

dynamics	of	forest	growth,	enabled	us	to	simulate	the	dynamics	of	an	old-growth	forest	309	

in	French	Guiana.		This	represents	a	significant	advance	in	the	predictive	modelling	of	310	

vegetation	dynamics.				311	

	312	

We	have	demonstrated	that	initial	forest	reconstructions	by	the	Canopy	Constructor	313	

rendered	adequately	the	leaf	distribution	of	canopies,	with	gross	primary	productivity	314	
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and	its	ratio	to	net	primary	productivity	(~1/3)	close	to	empirical	values	(Malhi	et	al.,	315	

2011;	Aguilos	et	al.,	2018).		The	simulated	short-term	forest	dynamics	mirrored	empirial	316	

dynamics	quantitatively,	with	estimates	of	mortality	rates	of	1-2%	per	year	and	treefall	317	

rates	of	around	0.5%	close	to	empirical	estimates	(Chave	et	al.,	2008)	and	good	318	

qualitative	agreement	with	treefall	patterns	and	diameter	growth.	Importantly,	we	319	

found	that	the	simulations	were	stable	over	the	whole	400	year	period,	with	good	320	

preservation	of	the	underlying	stand	metrics,	indicating	that	the	model	does	not	need	an	321	

extended	spin-up	phase.	Growth	parameters	were	not	well-constrained,	but	there	was	322	

substantial	covariation	between	mortality	parameters,	indicating	that	mortality	rates	323	

can	be	efficiently	narrowed	down	by	the	model.			324	

	325	

4.2	Towards	large-scale	predictions	of	tropical	forest	dynamics	326	

The	‘divide-and-conquer’	approach	presented	here	is	a	powerful	tool	for	prediction	of	327	

ecosystem	dynamics.	We	applied	the	method	at	a	site	where	both	repeated	ground	328	

inventories	and	ALS-derived	CHMs	are	available,	i.e.	a	"supersite"	(Fischer	et	al.,	2011;	329	

Chave	et	al.,	2019).	However,	it	can	be	adapted	to	less	ideal	circumstances.	In	cases	330	

where	only	ground	data	is	available,	the	Canopy	Constructor	could,	for	example,	still	use	331	

some	basic	assumptions	about	allometric	scaling	to	reconstruct	a	viable	old-growth	332	

forest	for	TROLL	initialisation.	Conversely,	a	CHM-model	together	with	limited	333	

information	about	diameter	distributions	and	leaf	densities	(LAI,	crown	packing	334	

densities,	GPP)	would	also	allow	to	infer	a	3D-reconstruction,	even	in	the	absence	of	335	

ground	data.		336	

	337	

The	fact	that	TROLL	seems	to	be	able	to	translate	such	reconstructions	almost	338	

seemlessly	into	forest	growth	dynamics	–	i.e.	with	little	to	no	spin-up	time	–,	not	only	339	
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suggests	that	the	dynamics	are	rendered	well,	but	also	opens	up	the	possibility	of	340	

creating	a	standardized	approach	where	remotely	sensed	forest	canopies	are	converted	341	

into	individual	tree	assemblies,	which	in	turn	can	be	projected	into	the	future.	Here,	we	342	

have	used	successive	inventories	and	ALS-observed	canopies	only	for	broad,	qualitative	343	

validation.	In	the	future	they	could,	however,	be	incorporated	in	a	more	stringent	way,	344	

either	for	quantitative	assessments	of	transferability	(Wenger	&	Olden,	2012)	or	for	the	345	

calibration	procedure	itself	and	thus	further	inform	the	modelled	dynamics.		346	

	347	

Most	importantly,	however,	we	have	kept	environmental	conditions	stable	in	this	study.	348	

TROLL	is	a	mechanistic	model	where	community	dynamics	and	diameter	growth	349	

emerge	directly	from	the	underlying	physiology	of	individual	trees	and	their	350	

interactions	in	space.	This	makes	it	well-suited	for	predictive	purposes	under	changing	351	

conditions	(Railsback,	2001).	With	increasing	airborne	lidar	coverage,	new	remote	352	

sensing	missions	and	wider	availability	of	trait	data	(Kattge	et	al.,	2011),	fine-scale	353	

individual-based	predictions	of	environmental	change	could	thus	be	extended	to	large	354	

geographic	areas	and	either	be	incorporated	or	serve	as	validations	for	global	vegetation	355	

models.	356	

	357	

4.3	Improvements	for	the	future.		358	

This	study	offers	a	number	of	opportunities	for	improving	this	approach	further.	First,	359	

the	initial	forest	reconstructions	from	the	Canopy	Constructor	currently	assume	that	all	360	

tree	species	follow	broadly	the	same	allometry	(with	individual	variation	around	the	361	

mean).	This	translates	into	similar	growth-	and	maturation	trajectories.	However,	we	362	

could	also	assume	that	tree	species'	allometries	align	with	their	ecological	roles,	as	363	

suggested	empirically	(King,	1996;	Bohlman	&	O’Brien,	2006;	Thomas	et	al.,	2015).	364	
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Much	of	the	species-specific	information	contained	in	our	forest	reconstructions,	365	

particularly	on	the	relation	between	diameter	and	height,	is	thus	not	yet	transformed	366	

into	ecological	knowledge	and	could	be	used	for	future	TROLL	modelling	efforts	–	as	367	

long	as	care	is	taken	to	avoid	overparameterization.		368	

	369	

Furthermore,	TROLL	v.2.5	proposes	a	more	flexible	representation	of	tree	crown	370	

geometry,	including	crown	heterogeneity	and	plasticity	to	its	environment.	Such	crown	371	

plasticity	is	a	well-documented	feature	of	natural	forests	(Purves	et	al.,	2007;	Jucker	et	372	

al.,	2015).	In	the	future,	a	more	natural	concept	of	modelling	tree	crowns	would	be	a	373	

fully	plastic	tree	growth	into	empty	space,	that	is	to	say	a	"light-foraging"	model.	Trees	374	

would	be	allowed	to	dynamically	expand	toward	voxel	cells	–	if	connected	to	the	trunk	375	

and	if	not	too	costly	energetically.	Observations	at	the	Nouragues	field	station,	for	376	

example,	suggests	rapid	lateral	growth	in	tree	crowns	that	TROLL	does	not	capture	377	

adequately.	If	modular	growth	was	to	be	combined	with	the	assumption	of	crown	378	

shyness	(Franco,	1986),	this	new	approach	would	also	likely	result	in	a	reduction	of	the	379	

computational	burden	of	TROLL.		380	

	381	

Finally,	when	simulating	the	dynamics	of	an	old-growth	forest	directly	from	the	initial	382	

condition,	we	kept	track	only	of	stand-scale	patterns	and	did	not	analyze	the	underlying	383	

community	patterns	or	patchy	aggregation	of	trees	in	space.	This	touches	directly	on	384	

important	ecological	dynamics	such	as	seed	dispersal	(Price	et	al.,	2001)	and	385	

disturbances	(Bugmann	et	al.,	2019).	Some	of	these	issues,	such	as	the	mortality	of	386	

canopy	trees	could,	for	example,	be	investigated	by	applying	the	Canopy	Constructor	to	387	

two	successive	lidar	scans,	directly	estimating	treefall	rates	and	assess	how	canopy	388	

dynamics	differ	compared	to	the	TROLL	modules.			389	
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All	in	all,	the	study	at	hand	has	laid	the	foundations	to	turn	TROLL	into	a	model	that	can	390	

be	calibrated	with	minimal	data	requirements,	project	the	dynamics	of	old-growth	391	

forests	into	the	future	and	thus	contribute	to	a	predictive	ecology	necessary	in	the	face	392	

of	a	changing	environment.		393	
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	 m0	 vC	 fallocwood	 falloccanopy	
prior	range	 0.0	–	0.05	 0.0	–	0.15	 0.2	–	0.4	 0.2	–	0.4	
posterior	
range	

0.0001	–	0.0231	 0.0438	–	
0.1498	

0.2163	–	
0.3948	

0.2489	–	
0.3977	

best	
simulation	

0.0161	 0.0567	 0.2209	 0.3295	

	
Table	 1:	 Prior	 and	 posterior	 distributions:	 Indicated	 are	 the	 prior	 (1,000	

simulations)	and	posterior	ranges	(best	10%	simulations).	Since	the	priors	were	chosen	

as	 uniform	 distributions,	 we	 show	 the	minimum	 and	maximum	 values.	 The	marginal	

posterior	distributions	were	not	informative	(hence	we	show	only	the	ranges),	but	there	

was	substantial	covariation	between	mortality	parameters	(cf.	Figure	2).		
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Figure	 1:	 Comparison	 of	modelled	 and	 observed	 leaf	 densities	 inside	 the	 forest	

canopy	at	Petit	Plateau,	Nouragues.	This	figure	shows	two	metrics	that	quantify	how	

well	 the	physiological	version	of	 the	Canopy	Constructor	represents	 leaf	densities	and	

crown	packing	at	Nouragues	field	station.	Plotted	is	the	ratio	of	leaf-filled	voxels	inside	

the	 canopy	 to	 the	 total	 number	 of	 voxels	 inside	 the	 canopy	 (i.e.	 how	densely	 space	 is	

filled	by	crowns),	as	well	as	the	average	transmittance	of	these	leaf-filled	voxels	(i.e.	how	

densely	 crowns	 are	 filled	 with	 leaves).	 The	 coloured	 lines	 represent	 mean	 estimates	

from	a	synthetic	lidar	run	on	the	ten	best	forest	canopy	reconstructions,	surrounded	by	

75%	 credibility	 intervals.	 The	 dotted	 lines	 are	 respective	 empirical	 estimates	 from	 a	

2012	 airborne	 lidar	 campaign.	 Both	 metrics	 show	 good	 correspondence,	 both	

qualitatively	and	quantitatively,	with	a	tendency	for	the	modelled	forest	to	have	higher	

densities	 in	 the	 upper	 layers	 than	 empirically	 observed	 and	 lower	 densities	 than	

observed	in	the	lower	layers.		
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Figure	2:	Mortality-parameter	calibration	of	the	TROLL	model.	Shown	are	the	prior	

parameter	distribution	(light	orange	dots)	for	two	mortality	related	parameters	(treefall	

threshold	 parameter	 vC,	 and	 minimum	 deathrate),	 as	 well	 the	 10%	 best	 posterior	

simulations	 (dark	 blue	 dots).	 While	 the	 parameters	 are	 not	 well-constrained	

individually,	 they	 are	 inversely	 correlated,	 indicating	 lower	 and	 upper	 limits	 on	 tree	

mortality	imposed	by	the	Approximate	Bayesian	Calibration	procedure.		
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Figure	3:	Canopy	dynamics	at	Nouragues,	Petit	Plateau,	observed	and	simulated.	

Comparison	 between	 ALS-observed	 canopy	 height	 changes	 between	March	 2012	 and	

October	2015	(upper	panel)	and	TROLL-simulated	height	changes	over	a	time	period	of	

the	same	length	(~42	months,	lower	panel).	The	TROLL-run	is	based	on	a	representative	

simulation	 from	the	posterior	after	calibration.	Treefall	gaps	are	 light	specks,	whereas	

dark	 spots	 indicate	 large	height	growth.	The	 latter	 is	 typically	due	 to	 crowns	growing	
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sideways	 into	 gaps.	 Particularly	 noticeable	 is	 how	 TROLL	 replicates	 well	 the	 patchy	

treefall	dynamics	observed	empirically.	Lateral	crown	growth,	on	the	other	hand	is	less	

well	modelled,	as	can	be	seen	from	a	lack	of	large	height	increases	in	the	lower	panel.	
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Figure	 4:	 Stem	 diameter	 growth	 at	 Nouragues,	 Petit	 Plateau,	 observed	 and	

simulated.	 Comparison	 between	 observed	 (orange	 distribution,	 background)	 and	

TROLL	diameter	growth	rates	(light	blue	distribution)	for	trees	>	10cm	in	stem	diameter	

at	Petit	Plateau	between	2012	and	2015.	The	TROLL	simulation	is	based	on	the	previous	

calibration.	 A	measurement	 error	model	 (Chave	 et	 al.	 2004)	 has	 been	 applied	 to	 the	

simulated	 stem	 diameters	 to	 account	 for	 similar	 sources	 of	 error	 as	 in	 empirical	

inventories.		
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Figure	5:	Overall	preservation	of	canopy	structure	after	400	years	of	old-growth	

forest	 dynamics,	 as	 simulated	 by	 TROLL.	 	 The	 lefthand	panels	 show	a	 comparison	

between	initial	trunk	diameter	distribution	(blue)	and	final	trunk	diameter	distribution	

(orange),	 with	 both	 diameter	 bins	 and	 frequencies	 plotted	 logarithmicallly,	 for	 three	
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sample	 simulations	 from	 the	 posterior	 parameter	 distribution.	 The	 righthand	 panels	

show	a	comparison	between	the	initially	inferred	canopy	height	distribution	(blue)	and	

the	final	canopy	height	distribution	(orange),	plotted	on	the	original	scales,	for	the	same	

three	simulations.		
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Figure	 6:	 Comparison	 between	 400	 years	 of	 old-growth	 forest	 dynamics	 to	 400	

years	of	regeneration	from	bare	soil.	Shown	are	the	number	of	trees	>	30cm	in	trunk	

diameter	(left)	and	aboveground	biomass	per	hectare	(right)	 for	 the	10	best	posterior	

simulations	with	the	forest	growth	model	TROLL.	Simulations	are	either	initialised	from	

an	inferred	old-growth	forest	(solid	lines)	or	from	bare	ground	(dashed	lines).	From	the	

picture,	 it	 can	 be	 seen	 that	 tree	 numbers	 quickly	 reach	 similar	 levels,	 irrespective	 of	

initial	 state,	 but	 that	 aboveground	 biomass	 growth	 takes	 much	 longer	 to	 recuperate,	

with	only	some	of	the	simulations	reaching	the	equilibrium	state	after	400	years.		
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Supplementary	Material	to		
Calibrating	the	short-term	dynamics	of	the	
TROLL	individual-based	model	in	an	old-growth	
tropical	forest	
	
	
S1:	Covariance	matrix	for	leaf	traits	

	
		 N	 P	 LMA	
N	 0.0144	 	 	
P	 0.01872	 0.0576	 	
LMA	 -0.012384	 -0.022464	 0.0576	
	

S2:	Calculations	for	VPD	and	Temperature	

We	use	the	equations	for	VPD	and	temperature	

	

!"#(!)!"# = !"#!"#×  0.25+ max(0; 0.08035714 × (7− !"#(!))  	

	

!(!)!"# = !!"#  −  0.4285714 ×  min(7;  !"#(!))	

	

,	integrate	over	a	layer	and	obtain	the	following	equations:		

	

!"#(!)!"# = !"#!"#

×   0.25

+ 0.188982!"#$  × (7 −  !"#(!))!/!  −  (7 −  !"#(!)  −  !"#$(!)!/!  	

	

!(!)!"# = !!"#  −  0.4285714 × !"#(!)  +  0.5 × !"#$(!) 	
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Special	 cases	 are	 empty	voxels	where	 the	 average	values	 across	 the	 layer	 are	 just	 the	

values	at	the	top	of	the	layer	–	i.e.	the	original	equations:	

	

!"#(!)!"# = !"#!"#×  0.25+ max(0.0; 0.08035714 × (7.0− !"#(!))  	

	

!(!)!"# = !!"#  −  0.4285714 ×  min(7.0, !"#(!))	

	

Where	LAI	exceeds	the	critical	value	of	7,	our	equations	reduce	to:	

	

!"#(!)!"# = !"#!"#×  0.25 	

	

!(!)!"# = !!"# − 3.0	

	

The	 latter	 equations	 will	 also	 be	 used	 for	 any	 voxel	 where	 the	 LAI	 reaches	 7	m2/m3	

within	 the	 voxel,	 i.e.	 the	 cutoff	 values	 introduced	 in	 an	 earlier	 version	 of	 TROLL	

(Maréchaux	 and	 Chave	 2017).	 The	 discontinuity	 in	 the	 first	 derivative	 would	

theoretically	 necessitate	 a	 more	 complex	 integral,	 but	 the	 errors	 introduced	 by	 our	

simplifications	are	negligible.		

	

S3:	Crown	heterogeneities	

While	the	crown	gap	fraction	is	given	irrespective	of	species	identity,	we	modify	the	gap	

fraction	for	trees	with	large	variation	in	crown	radius	so	that,	for	a	given	dbh,	all	trees	

have	the	same	leafarea.	This	means	that	trees	with	larger	crowns	than	typical	for	their	

diameter	 class	 will	 increase	 their	 gap	 fraction	 and	 have	 more	 porous	 crowns,	 while	
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smaller	crowns	will	have	 lower	gap	 fractions,	be	denser	and	 intercept	more	 light.	Our	

reasoning	is	based	on	theories	of	plant	functioning	(Shinozaki	et	al.	1964)	that	hold	that	

leafarea	 should	 scale	 with	 by	 stem	 diameter	 and	 thus	 be	 largely	 independent	 of	

variations	 of	 crown	 radius	 at	 a	 given	dbh.	 This	 is	 largely	 confirmed	by	 empirical	 data	

(Falster	et	al.,	 2015;	 Sirri	et	al.,	 2019,	 unpublished	data	 from	Piste	 Sainte-Elie,	 French	

Guiana).	While	 the	 inclusion	 of	 crown	 extent	 and	 crown	depth	 as	 predictors	 typically	

results	in	improved	models,	the	improvement	is	often	small	and	most	of	the	variance	is	

usually	already	explained	by	the	dbh	alone.	

	

S4	Canopy	Constructor	modification	
	
The	basic	 fitting	procedure	 is	explained	 in	a	separate	paper	 (Fischer	et	al.,	2019).	The	

updated	 fitting	 procedure	 works	 as	 follows:	 All	 trees	 in	 the	 Canopy	 Constructor	 are	

assigned	 the	 same	 functional	 traits	 as	 trees	 in	TROLL,	 either	based	on	measurements,	

species	 labels	 or	 through	 a	 trait	 distribution.	 These	 values	 are	 then	 converted	 into	

estimates	 of	 the	 light	 compensation	 point	 LCP,	 as	 in	 TROLL	 v.2.5.	 After	 the	 initial	

assignment	of	height	and	crown	dimensions,	we	determine	the	maximum	amount	of	leaf	

area	that	the	tree	can	allocate	based	on	its	 light	environment,	again	as	 in	TROLL	v.2.5,	

and	calculate	photosynthesis	and	respiration	(Maréchaux	and	Chave	2017).	This	serves	

as	an	initial	estimate	of	all	trees'	carbon	balances.	Whenever	a	new	tree	crown	is	fit,	we	

update	the	maximum	leaf	area	as	well	as	gross	and	net	primary	productivity	of	all	 the	

trees	 affected	 by	 the	 change	 and	 calculate	 the	 changes	 to	 the	 trees'	 carbon	 balances.	

Since	we	do	not	have	data	on	trees	<	10cm	in	stem	diameter,	we	only	calculate	changes	

in	photosynthesis	and	respiration	for	trees	above	the	10cm	threshold.	This	also	reduces	

the	computational	burden.	
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A	 tree	 crown	 is	 accepted	 as	 a	 better	 fit	when	 it	 simultaneously	 better	 fits	 the	 canopy	

height	 model	 geometrically	 and	 reduces	 the	 number	 of	 trees	 with	 a	 negative	 carbon	

balance.	This	 is	based	on	 the	assumption	 that	only	a	small	 fraction	of	 trees	>	10cm	 in	

stem	diameter	would	experience	shading	so	extreme	as	to	be	under	prolonged	negative	

carbon	 balance.	 Accordingly,	 we	 calculate	 the	 new	 goodness-of-fit	 metric	 in	 the	

following	way:	

! =  !"!!"#$! + !!"#$! +  !!",!"#$	

where	MAE	 and	D	 are	 the	 previously	 used	mean	 absolute	 error	 and	 the	 dissimilarity	

index	of	the	canopy	height	model	distributions	and	!!"	the	newly	added	fraction	of	trees	

under	 negative	 carbon	 balance	 (cs	 for	 "carbon	 starvation").	 All	 three	 metrics	 are	

normalized	by	the	difference	between	maximum	and	minimum	values	obtained	through	

first	fitting	them	separately	(cf.	Fischer	et	al.,	in	preparation).	As	before,	we	then	run	this	

algorithm	 a	 large	 number	 of	 times	 (10,000	 typically)	 and	 select	 the	 best	 100	 forest	

reconstructions.		

	

S5:	Simulated	lidar	

When	 validating	 models,	 there	 are	 often	 additional	 sources	 of	 error	 or	 variation	 in	

empirical	 data	 sets	 that	 make	 difficult	 comparisons	 to	 model	 output,	 where	 the	 true		

value	is		given.	To	allow	for	better	comparison	between	TROLL	and	airborne	lidar	data,	

we	include	a	simulation	of	a	simplified	synthetic	laser	scan	on	the	reconstructed	forest	

scene.	 As	 input	 the	 lidar	model	 takes	 a	 pulse	 density	 (mean	 and	 standard	 deviation),	

draws	 a	 number	 of	 beams	!!"#$! ,	 and,	 consistent	with	 TROLL's	 light	model,	 simulates	

vertical	beam	extinction	with	 the	Beer-Lambert	 law.	The	probability	of	a	hit/return	 is	

calculated	 as:	!!!" = !!"#$ ∗ (1.0− exp(−! × !"# ! )).	Where	k	 is	 the	 same	k	 as	 used	
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before	 and	!!"#$	the	 number	 of	 laser	 beams	 reaching	 the	 voxel.	 A	 binomial	 model	

ℬ(!!"#$ ,!!!") 	then	 calculates	 the	 number	 of	 intercepted	 beams.	 Given	 a	 high	

transmittance	of	leaves	in	the	near-infrared	spectrum,	a	probability	of	getting	secondary	

returns	!!"#$%& = 0.4	is	given.	This	results	in	a	lower	effective	!!"#∗  than	for	visible	light.	

Assuming,	for	example,	! = 0.5,	we	obtain	!!"#∗ ≅ 0.3	as	opposed	to	!!"#∗ ≅ 0.45.	These	

factors	are	in	agreement	with	observations	and	have	been	used	in	previous	simulation	

studies	(Knapp	et	al.	2018).	The	ratioes	for	second	and	third	returns	(~0.4	and	~0.16,	

respectively)	 are	 also	 close	 to	 empirical	 lidar	 surveys	 at	 the	 Nouragues	 field	 station	

(~0.45	and	~0.1,	respectively,	data	not	shown).		
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Figure	 S1:	 Inference	 of	 allometric	 parameters	 with	 the	 Canopy	 Constructor	 –	

geometric-only	 vs.	 physiological	 reconstruction.	 This	 figure	 compares	 inference	of	

allometric	scaling	with	two	versions	of	 the	Canopy	Constructor	algorithm.	Light	colors	

(skyblue	in	top	panels	and	orange	in	bottom	panels)	depict	inferences	based	on	a	purely	

geometric	 fitting	with	 empirically	 derived	Canopy	Height	Models	 (CHMs).	Dark	 colors	

(darkblue	 and	 darkred)	 depict	 the	 results	 of	 extending	 the	 approach	 to	 physiological	

principles,	i.e.	including	leaf	densities.	The	top	row	shows	the	relation	between	the	two	

posterior	 distribution	 of	 height	 allometric	 parameters	 (left	 panel),	 the	 prior	 and	

posterior	 allometries	 (middle	 panel)	 and	 the	 prior	 and	 posterior	 distribution	 of	 the	

variance	term	(right	panel).	The	bottom	row	shows	the	same	information	for	the	crown	

radius	intercept	and	slope,	 i.e.	the	posterior	distributions,	allometries	and	the	variance	

term.	 The	 best	 simulation	 (mean	 parameter	 combination)	 is	 given	 dark	 line	 in	 the	

middle	 panels,	 the	 uncertainty	 interval	 is	 derived	 from	 the	 75%	 highest	 density	
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intervals	of	the	joint	posterior	distribution,	with	best-fit	allometric	equations	smoothing	

the	 upper	 and	 lower	 limits	 of	 the	 interval.	 Prior	 ranges	 are	 indicated	 as	 white	

background	in	the	left	and	middle	panels	and	through	a	dashed	line	in	the	righthand	side	

panel.	As	can	be	seen	from	the	figure,	the	addition	of	physiological	information	does	not	

change	 inference	 about	 tree	 height,	 but	 clearly	 impacts	 and	 narrows	 down	 crown	

allometric	parameters.	
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Figure	 S2:	 Correlation	 between	 parameters,	 as	 inferred	 through	 Approximate	

Bayesian	Computation,	based	on	two	measures	of	canopy	stability.	The	two	panels	

show	the	inferred	covariation	between	process-related	parameters	of	the	TROLL	model,	

when	successive	old-growth	forest	states	are	compared	to	a	reconstructed	initial	state.	

The	left-hand	panel	shows	results	when	the	coefficient	of	variation	of	the	dissimilarity	

index	 is	 applied,	 the	 righthand	 panel	 the	 results	 when	 the	 mean	 of	 the	 dissimilarity	

index	is	applied.	
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Figure	 S3:	 Overall	 canopy	 statistics,	 based	 on	 inference	 with	 two	 different	

measures	 of	 canopy	 stability.	The	panels	show	the	results	of	dynamic	 inference	(10	

best	 simulations)	 in	 terms	 of	 aboveground	 biomass	 (upper	 panels)	 and	 overall	 tree	

numbers	 (lower	 panels).	 The	 left	 column	 shows	 results	 from	 inference	 based	 on	 the	

coefficient	 of	 variation	of	 the	dissimilarity	 index,	 the	 right	 column	 the	 same	 inference	

based	on	the	mean	of	the	dissimilarity	index.	It	can	be	seen	that	both	types	of	inference	

lead	to	very	similar	results.	Constraining	the	variation	improves	slightly	overall	stability	

in	terms	of	aboveground	biomass,	but	leads	to	a	larger	spread	in	overall	tree	numbers.	
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Chapter	4:	The	importance	of	considering	inter-

individual	variation	in	allometric	and	functional	

traits	in	an	individual-based	forest	model	

(Target	Journal:	TBD)	

	

Chapter	4	builds	on	the	previous	results	from	Chapter	3	and	uses	the	newly	developed	

and	calibrated	TROLL	v.2.5	model	to	investigate	the	effect	of	crown	plasticity	and	inter-

individual	variation	in	traits	on	overall	ecosystem	functioning	and	structure	in	a	tropical	

rainforest	 in	 French	 Guiana.	 By	 gradually	 reducing	 inter-individual	 variation	 	 from	

empirically	 calibrated	 values	 and	 testing	 the	 resulting	 simulations	 with	 and	 without	

plasticity	 in	 crown	 leaf	 area,	 we	 were	 able	 to	 demonstrate	 that	 crown	 plasticity	 and	

concomitant	 inter-individual	 variation	 in	 crown	 radii	 had	 a	 strong	 effect	 on	 overall	

ecosystem	and	structure,	augmenting	stand	biomass	by	more	than	10%	and	improving	

the	 efficiency	 of	 carbon	 uptake	 by	 trees.	 Inter-individual	 variation	 in	 leaf	 and	woody	

traits,	 on	 the	 other	 hand,	 did	 not	 substantially	 change	 ecosystem	 functioning,	 and	

ontogenetic	changes	in	trait	distributions	were	not	substantially	affected.	
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1.	Introduction	

Ecological	 communities	 are	 complex	 adaptive	 systems	 (Levin,	 1998),	 and	 as	 such,	

system	 dynamics	 emerge	 from	 the	 interaction	 of	 individual	 organisms.	 In	 forest	

canopies,	 individual	plants	display	widely	varying	shapes	and	physiological	properties.	

Some	of	 the	 variation	 in	 tree	 architecture	 and	 traits	 is	 found	 among	 species	 and	 thus	

reflects	differences	related	to	their	evolutionary	history	and	ecological	roles	within	the	

community	 (Paine	 et	 al.,	 2011).	 Another	 part	 of	 the	 variation	 is	 found	 at	 the	 inter-

individual	or	within-species	level	(Messier	et	al.,	2010;	Vieilledent	et	al.,	2010;	Baraloto	

et	 al.,	 2010b)	 and	 can	 be	 genetic,	 reflect	 ontogenetic	 changes	 or	 be	 due	 to	 plastic	

responses	to	the	environment	(Sterck	&	Bongers,	2001;	Bolnick	et	al.,	2003;	Rozendaal	

et	al.,	2006).		

Despite	 its	 importance	 in	 forest	 ecosystems,	 vegetation	 models	 have	 rarely	

incorporated	 individual-level	 variation.	 While	 Dynamic	 Global	 Vegetation	 Models	

(DGVMs),	 designed	 to	 reflect	 the	 interactions	 between	 atmosphere	 and	 biosphere,	

increasingly	 take	 into	account	 the	demography	of	 forest	 communities	and	 incorporate	

individual-based	 approaches	 (Moorcroft	 et	 al.,	 2001;	 Sato	 et	 al.,	 2007;	Medvigy	 et	 al.,	

2009;	Smith	et	al.,	2014),	most	representations	of	canopy	structure	take	the	approach	of	

a	 mean	 representative	 plant	 per	 size	 class	 (Fisher	 et	 al.,	 2018).	 A	 few	 studies	 have	

explored	 some	 forms	 of	 variability	 in	 tree	 dimensions	 or	 traits	 (Purves	 et	 al.,	 2007;	

Vincent	 &	 Harja,	 2008;	 Fyllas	 et	 al.,	 2014),	 however	 even	 highly	 detailed	 individual-

based	 models	 of	 forest	 growth	 that	 have	 emerged	 from	 the	 gap-modelling	 tradition	

(Fischer	et	al.,	2016)	ignore	variation	in	traits	or	architecture	beyond	that	encapsulated	

in	plant	functional	type	concepts,	i.e.	groupings	of	plants	that	share	the	same	physiology	

and	ecological	strategy	(but	see	Pacala	et	al.,	1996).		
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The	problem	when	 individual	 variability	 and	 the	organism's	unique	position	 in	

space	 and	 time	 is	 ignored	 from	 community	 dynamic	 models	 is	 that	 the	 dynamics	 of	

ecological	 systems	 can	 be	 seriously	misrepresented	 (Chesson,	 1986;	 Clark,	 2003;	 Des	

Roches	et	al.,	2018).	 If	ecological	processes,	 for	example,	are	not	related	 to	each	other	

linearly,	then	they	cannot	be	reliably	predicted	from	average	individuals	(Bolnick	et	al.,	

2011).	 In	 forests,	 in	 particular,	 crown	 plasticity	 results	 in	 an	 optimization	 of	 crown	

packing	and	thus	influences	stand	productivity	(Strigul,	2012;	Pretzsch,	2014;	Jucker	et	

al.,	2015;	Williams	et	al.,	2017).	It	is	thus	important	to	explore	the	impact	of	individual-

level	variation	on	ecological	processes.	

Here,	we	study	the	effect	of	individual	variation	in	functional	traits,	crown	extent	

and	plasticity	with	a	spatially	explicit,	individual-	and	trait-based	forest	simulator,	called	

TROLL	(Maréchaux	&	Chave,	2017).	We	build	on	the	recent	model	version	TROLL	v.2.5,	

calibrated	for	622	species	at	the	Nouragues	field	station	(Fischer	et	al.,	in	preparation),	

and	 focus	on	a	suite	of	 leaf-	and	stem-level	 traits,	as	well	as	variation	 in	crown	radius	

allometry	and	crown	plasticity,	simulated	through	dynamically	regulated	leaf	densities.	

In	 our	 study,	 we	 considered	 various	 representations	 of	 variability	 in	 traits	 from	 the	

field-inferred	 values	 to	 mean	 species	 values,	 then	 simulated	 growth	 both	 with	 and	

without	 crown	plasticity,	 and	 linked	 the	 variability	 to	 changes	 in	 ecosystem	 structure	

and	 functioning.	 To	 illucidate	 the	 underlying	 mechanism,	 we	 examined	 changes	 in	

demographic	rates	and	trait	distributions	for	the	most	extreme	scenarios.		
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2.	Methods	

2.1	The	TROLL	model	

We	here	rely	on	TROLL	v.2.5,	parameterized	for	an	old-growth	tropical	forest	in	French	

Guiana	 (Fischer	et	al.,	 in	preparation).	The	TROLL	model	 is	 an	 individual-based	 forest	

growth	simulator	that	simulates	tree	growth	in	three-dimensional	space	(m3	resolution).	

Species	are	represented	through	combinations	of	traits	(leaf	nutrients	and	leaf	mass	per	

area,	wood	density).	 	Trees	>	1cm	 in	 stem	diameter	 are	 grown	 from	seed	equivalents	

(Maréchaux	&	Chave,	2017),	assimilate	carbon	through	photosynthesis	(Farquhar	et	al.,	

1980),	and	if	their	gross	primary	production	exceeds	respiration,	they	allocate	biomass	

to	 tissues	 to	grow	and	extend	their	 leaf	area.	Above	a	given	 trunk	diameter	 threshold,	

tree	are	considered	mature	and	they	produce	new	seeds.	Mortality	is	modelled	through	

a	 baseline	 mortality,	 with	 higher	 risks	 for	 low-wood	 density	 species,	 and	 additional	

mortality	 risks	 through	 carbon	 starvation	or	 treefall	 (details	 cf.	Maréchaux	and	Chave	

2017).		

TROLL	v.2.5.	includes	intraspecific	variation.	Every	trait	i,	except	wood	density,	is	

assumed	 to	 follow	 a	 lognormal	 distribution,	 i.e.	 a	 multiplicative	 factor	!!! ,	 where	

!!  ~ !(0,!!).	 Intraspecific	 variation	 in	 wood	 density	 is	 assumed	 to	 have	 an	 additive	

error	term	!!"# ~ !(0,!!"#).	Scaling	laws	that	govern	crown	and	height	dimensions	are	

also	modified	with	multiplicative	factors.	

In	 TROLL	 v.2.5,	 an	 important	 assumption	 is	 that	 trees	 adjust	 their	 leaf	 area	 so	

that	they	remain	viable	under	typical	climatic	conditions	(Fischer	et	al.,	in	preparation).		

This	crown	plasticity	 is	achieved	by	calculating	 the	average	 leaf	density	above	a	 tree's	

crown	at	every	timestep,	and	adjusting	the	total	leaf	area	of	a	tree	so	that	no	leaves	are	

allocated	beyond	their	light	compensation	point.	The	latter	is	obtained	by	inversing	the	

photosynthesis	equations	for	an	average	day	at	the	study	site	(Farquhar	et	al.,	1980)	and	



162	

determines	 the	 light	 intensity	 level	 below	 which	 leaves	 are	 unable	 to	 balance	 their	

carbon	expenditure.	Trees	will	 thus	only	allocate	 resources	 into	 leaf	production	when	

this	improves	their	net	carbon	balance.		

A	detailed	 field	calibration	based	on	physiological	 traits,	permanent	 inventories	

and	airborne	lidar	is	described	elsewhere		(Fischer	et	al.,	in	preparation).		

	

2.2	Levels	of	individual	variation	and	plasticity	

To	 explore	 the	 effect	 of	 individual	 variation	 and	 crown	 plasticity	 on	 the	 dynamics	 in	

TROLL,	we	carried	out	the	following	test.	Our	baseline	simulation	was	a	fully	calibrated	

model	with	 intraspecific	 variation	 in	 leaf	 and	wood	 traits	 and	 full	 variation	 in	 crown	

radius	allometry		(values	cf.	Table	1).	We	then	ran	several	simulations	where	we	jointly		

lowered	the	variation	in	all	 leaf	and	wood	traits	from	100%	to	0%	in	steps	of	10%.	To	

explore	 the	 influence	 of	 variation	 on	 tree	 geometry,	 we	 applied	 the	 same	 scheme	 to	

variation	in	crown	radius,	running	simulations	with	variation	ranging	from	100%	to	0%	

of	the	empirically	calibrated	variation.		

We	then	combined	these	simulations	with	two	levels	of	crown	plasticity.	 In	one	

suite	 of	 simulations	 ("no	 plasticity"),	 crowns	 allocate	 leaves	 up	 to	 their	 theoretical	

maximum	leaf	area,	irrespective	of	the	amount	of	light	they	receive.	In	the	other	suite	of	

simulations	 ("plasticity"),	 they	 use	 the	 crown	 plasticity	 module	 as	 implemented	 in	

TROLL	v.2.5	and	only	allocate	leaves	up	to	their	light	compensation	point.		

This	simulation	strategy	resulted	in	11	x	11	x	2	=	242	parameter	combinations.		

For	 each	of	 the	parameter	 combinations,	we	 carried	out	 5	 simulations	 for	 a	 total	 400	

simulated	years	of	 forest	growth	to	account	for	stochasticity.	Simulations	were	started	

from	bare	ground	to	provide	the	same	initial	conditions	for	all	parameter	combinations.	
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	 For	 lognormally	 distributed	 traits,	 a	 reduction	 in	 variance	 changes	 the	 mean	

value	 of	 the	 variable.	 If	 a	 variable	 v	 follows	 a	 lognormal	 distribution	 then	

!"#(!) ~ !(!,!),	i.e.	the	logarithm	of	v	follows	a	normal	distribution	with	mean	m	and	

a	 standard	 deviation	! .	 It	 can	 be	 shown	 that	 the	 mean	 of	 variable	 v	 is	 given	 by	 the	

formula	!!!!!/!	(Baskerville,	1972).	 If	we	reduce	variation	 to	a	new	!! 	which	 is	only	a	

fraction	i	of	the	original	!,	then	the	mean	of	v	would	be	lowered	as	well.	To	avoid	this,	a	

compensation	 factor	 C	 can	 be	 calculated	 as	 follows:	!!!/! =  !!!!/! × !.	 It	 follows	 that	

! =  !(!!! !!!)/!. We	 applied	 this	 compensation	 factor	 to	 all	 varied	 traits	 except	 wood	

density,	since	the	latter	is	normally	distributed.	

	

2.3	Tree	growth	and	trait	distributions	

Finally,	 since	we	 expected	 changes	 in	 trait	 variation	 and	 crown	 plasticity	 to	 not	 only	

affect	 ecosystem	 functioning,	 but	 also	 community	 dynamics,	 we	 analyzed	 ontogenetic	

shifts	 in	 traits	 as	well	 as	 individual-level	 resource	 acquisition	 across	 simulations.	We	

picked	 the	 most	 extreme	 scenarios,	 i.e.	 varying	 crown	 extent	 vs.	 non-varying	 crown	

extent,	 varying	 traits	 vs.	 non-varying	 traits	 and	 crown	 plasticity	 vs.	 no	 plasticity	 (8	

simulations	 in	 total,	 10	 replicates),	 and	 simulated	 another	 400-yr	 period	 of	 forest	

growth.	In	order	to	separate	out	successional	effects,	we	did	not	start	from	bare	ground,	

but	from	the	already	simulated	old-growth	forests.	In	year	one,	we	selected	the	cohort	of	

newly	recruited	saplings	and	followed	their	development	for	the	following	400	years.	In	

particular,	we	recorded	their	productivity,	the	light	environment	they	experienced	and	

their	relative	growth	rates,	defined	as	
!"# !"!! !!"# (!"!!)

!!!!!
	where	t1	and	t2	are	the	times	of	

recording	 and	 AGB1	 and	 AGB2	 the	 respective	 above-ground	 biomass	 values.	 We	 then	
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compared	 these	 quantities,	 their	 relation	 to	 individual	 traits	 and	 the	 community-level	

shifts	in	trait	distributions	from	the	sapling	to	adult	stage	across	scenarios.	

	

2.4	Study	site	

The	simulations	were	parameterized	for	a	lowland	tropical	rainforest	at	the	Nouragues	

Ecological	Research	Station	in	French	Guiana	(4.06°N,	52.68°W).	This	forest	experiences	

2900	mm	rainfall	per	year	as	well	as	a	two	month	 long	dry	season	from	September	to	

November	and	a	shorter	one	in	March.	Forest	inventories	have	been	conducted	since	the	

early	1990s	(Chave	et	al.,	2008b;	Labrière	et	al.,	2018),	and	several	ALS	surveys	 	have	

been	 conducted	 since	 2007	 (Réjou-Méchain	 et	 al.,	 2015).	 The	 TROLL	 model	 was	

calibrated	 for	 the	Petit	Plateau	site	 so	 that	 it	 simulates	all	622	species	 that	have	been	

measured	there.		Traits	were	assigned	based	on	a	large	local	trait	collection	(Baraloto	et	

al.,	2010a).	If	no	traits	were	available	for	a	particular	species,	we	assigned	values	either	

based	on	genera,	and	if	that	was	not	possible,	we	assigned	mean	community	traits.	More	

details	can	be	found	in	a	previous	study	(Fischer	et	al.,	in	preparation).		

Statistical	 analysis	 and	 visual	 rendering	 were	 conducted	 in	 the	 R	 software	 (R	

Development	Core	Team,	2019),	including	the	packages	data.table	(Dowle	&	Srinivasan,	

2018),	ggplot2	(Wickham,	2011),	viridis	(Garnier,	2018).	

	 	



	 165	

3.	Results	

Crown	 plasticity	 had	 a	 strong	 effect	 on	 overall	 forest	 structure	 after	 400	 years	 of	

simulation	 (Figure	 1).	 Mean	 abundance	 of	 trees	 >	 10cm	 dbh	 increased	 across	 all	

simulations	 with	 crown	 plasticity	 from	 418	 ha-1	 [383,	 462]	 to	 465	 ha-1	 [425,518].	

Likewise	mean	aboveground	biomass	(AGB)	increased	from	396	Mg	ha-1	[381.8,	410.2]	

to	436	Mg	ha-1	[420,	451.6]	under	crown	plasticity,		while	there	was	a	decrease	in	both	

litterfall	 from	6.1	Mg	ha-1	yr-1	 [5.9,6.3]	 to	5.4	Mg	ha-1	yr-1	 [5.3,5.47]	and	gross	primary	

productivity	(GPP)	from	49.6	MgC	ha-1	yr-1	[48.9,	50.3]	to		47.7	MgC	ha-1	yr-1	[47.2,	48.2].	

Distributions	of	stand-scale	statistics	exhibited	a	clear	shift	with	the	inclusion	of	crown	

plasticity	and	were	well	separated,	except	for	tree	numbers.	Both	GPP	and	litterfall	had	

narrower	distributions	when	crown	plasticity	was	simulated.		

The	 effects	 of	 inter-individual	 variation	 in	 traits	 and	 crown	 extent	 on	 forest	

structure	and	functioning	were	less	uniform	than	those	of	crown	plasticity.	 	Increasing	

variation	in	crown	extent	resulted	in	higher	numbers	of	trees	per	hectare	(cf.	Figure	2,	

upper	panels)	and	higher	GPP	(cf.	Figure	2,	lower	panels),	both	in	the	case	of	simulations	

without	crown	plasticity	and	in	simulations	with	crown	plasticity.	The	effect	on	AGB	was	

more	subtle,	with	no	clear	pattern	discernible	 in	simulations	without	crown	plasticity,	

but	 a	 tendency	 towards	 higher	 AGB	 in	 simulations	 with	 plasticity	 (Figure	 2,	 middle	

panels).	Increasing	intra-specific	variation	in	leaf	and	wood	traits	led	to	a	slight	decrese	

in	GPP,	but	no	effect	on	overall	tree	density	or	AGB	(cf.	 	S1	and	Figure	S1	therein	for	a	

more	detailed	regression	analysis).		

	 In	the	mature	forest,	out	of	an	average	of	3,805	[3,725	-	3,922]	simulated	saplings	

ha-1	yr-1,	only	2.8	[1.75	-	4.25]	ever	reached	maturity,	indicating	a	massive	mortality	rate	

due	 to	 competition	 for	 light.	We	 selected	 individual	 trees	when	 they	 reached	10cm	 in	

trunk	diameter	and	analyzed	their	relative	growth	rates	(RGR)	from	sapling	stage	up	to	
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that	 point.	 Overall,	 growth	 rates	 uniformly	 increased	 with	 GPP	 and	 decreased	 with	

shading.	 Higher	 wood	 density	 values	 also	 led	 to	 a	 decrease	 in	 growth,	 but	 explained	

much	less	variance	(Figure	3).	Among	the	scenarios,	crown	plasticity	led	to	consistently	

stronger	effects	–	higher	efficiency	in	transforming	GPP	into	growth,	lower	susceptibility	

to	shading	and	a	ratio	between	net	and	gross	primary	productivity	that	increased	from	

0.299	[0.266	-	0.361]	to	0.321	[0.280	–	0.384]	(Figure	3,	upper	panels).	Consistent	with	

ecosystem-wide	 patterns,	 variation	 in	 crown	 extent	 or	 traits	 had	 less	 or	 no	 effect	 (cf.	

Figure	3,	where	relations	are	mostly	overlapping).		

Overall,	 there	 were	 also	 few	 differences	 between	 the	 trait	 distributions	 of	

saplings	and	trees	that	reached	maturity,	indicating	little	selection	across	tree	ontogeny.	

However	 we	 did	 notice	 a	 few	 shifts,	 most	 notably	 towards	 lower	 leaf	 mass	 per	 area	

(LMA)	and	lower	wood	density	in	mature	trees,	as	well	as	subtle	shifts	towards	higher	

phosphorus	 (cf.	 Figure	 4,	 as	well	 as	 Figure	 S2	 in	 the	 Supplementary	Material).	 These	

patterns	were	generally	found	both	with	and	without	intra-specific	variation	and	crown	

plasticity.	

	

4.	Discussion	

This	 study	 explored	 the	 role	 of	 inter-individual	 variation	 in	 functional	 traits	 on	 the	

emergent	 properties	 of	 a	 forest,	 especially	 with	 respect	 to	 stand	 productivity	 and	

biomass.	We	modelled	crown	plasticity	through	adaptive	leaf	densities,	and	showed	that	

the	 ibnclusion	 of	 this	 model	 had	 a	 strong	 effect	 on	 overall	 forest	 characteristics,	

increasing	 the	 stand	biomass	by	 roughly	10%.	This	 effect	was	even	more	pronounced	

when	 inter-individual	 variation	 in	 crown	 diameter	 around	 allometric	 means	 was	

allowed.	 Overall	 carbon	 ecosystem	 turnover	 decreased	with	 increased	 trait	 plasticity,	

with	 both	 lower	 primary	 productivity	 and	 lower	 leaf	 litterfall.	While	 the	 reduction	 in	
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litterfall	is	linked	to	both	lower	primary	productivity	and	more	plastic	plant	growth,	the	

decrease	 in	 gross	 primary	 productivity	 with	 plasticity	 is	 likely	 due	 to	 trees	

overregulating	when	in	the	shade	of	other	trees.	Our	assumption	in	TROLL	v.2.5	is	that	

trees	adjust	their	leaf	area	so	that	they	remain	viable	under	average	climatic	conditions.	

Since	photosynthesis	is,	however,	non-linearly	dependent	on	environmental	conditions	

(Farquhar	et	al.,	 1980),	monthly	 changes	 can	 cause	 significant	 upwards	 departures	 in	

photosynthetic	 production	 and	 thus	 trees	 could	 potentially	 allocate	more	 leaves	 than	

they	currently	do.		

The	effect	of	 individual	variation	 in	crown	extent	also	 led	to	notable	changes	 in	

ecosystem	 functioning,	 such	 as	 higher	 tree	 numbers	 and	 higher	 gross	 primary	

productivity,	as	would	be	expected	from	improved	crown	packing	due	to	heterogeneity	

in	 crown	 shapes	 (Pretzsch,	 2014;	 Jucker	 et	 al.,	 2015).	 There	 also	 was	 influence	 on	

overall	 biomass,	 but	 only	 when	 trees	 had	 plastic	 crowns.	 Otherwise,	 there	 was	 no	

discernible	 effect	 –	 presumably,	 because	 improved	 crown	 packing	 decreases	

competition	mainly	 for	small	 trees	with	 low	biomass.	On	the	other	hand,	 intra-specific	

variation	 in	 leaf	 traits	and	wood	density,	did	not	show	any	substantial	effect	on	 forest	

structure.	 There	was	 a	 decrease	 in	 overall	 productivity	with	 increasing	 variation,	 but	

this	 did	 not	 translate	 into	 similar	 reductions	 in	 biomass.	 That	 effects	 were	 marginal	

might	 be	 partly	 due	 to	 the	 fact	 that	 important	 mechanisms	 such	 as	 hydrology	 and	

nutrient	 cycling	 are	 not	 yet	 represented	 in	 TROLL,	 meaning	 that	 high-dimensional	

trade-offs	are	likely	not	adequately	represented	(Clark	et	al.,	2010).	

Increases	 in	 aboveground	 biomass	 with	 plasticity	 were	 also	 confirmed	 at	 the	

individual	 tree	 level,	 where	 crown	 plasticity,	 but	 not	 trait	 variation,	 led	 to	 increased	

efficiency	 in	 the	 conversion	of	 photosynthates	 into	biomass	 growth,	 lower	 respiration	

loads	on	plastic	crowns	and	generally	higher	growth	rates.	General	patterns	such	as	trait	



168	

shifts	 towards	 lower	 leaf	 mass	 per	 area	 from	 the	 sapling	 stage	 to	 adult	 stage	 were,	

however,	not	changed,	irrespective	of	underlying	variation,	and	similar,	although	much	

subtler	changes	were	observed	towards	 lower	wood	densities	and	higher	 leaf	nutrient	

contents.	Although	we	restricted	our	analysis	to	saplings	regrowing	in	a	mature	forests,	

this	 would	 indicate	 that	 faster-growing	 strategies	 had	 a	 slight	 competitive	 advantage	

over	shade	tolerant	strategies	in	our	simulations.	

Together	 with	 the	 fact	 that	 the	 light	 environment	 experienced	 by	 trees	 was	 a	

more	 important	determinant	of	relative	growth	rates	than	traits	such	as	wood	density	

(cf.	Figure	3),		the	lack	of	strong	shifts	in	trait	patterns	suggests	that	the	randomness	of	

an	individual	tree's	life	history,	i.e.	its	spatial	location	and	the	temporal	patterns	creating	

its	micro-environment,	 plays	 a	 crucial	 role	 in	 determining	 tree	 growth.	 This	 offers	 an	

explanation	 for	 why	 functional	 traits	 often	 leave	 a	 lot	 of	 variation	 in	 tree	 vital	 rates	

unexplained	(Poorter	et	al.,	2008;	Paine	et	al.,	2015;	Visser	et	al.,	2016).			

Overall,	we	have	shown	that	 individual	variability,	particularly	crown	plasticity,	

plays	an	 important	role	 in	predicting	 forest	structure	and	 functioning.	We	also	related	

individual	 variability	 to	 the	 underlying	 tree-level	 growth	 rates.	 This	 suggests	 that	

individual	variation,	at	least	in	architectural	traits,	is	necessary	to	adequately	assess	the	

effects	of	changing	environments	on	tropical	forests.	

	Global	 climate	 change	 does	 not	 only	 affect	 the	 ecological	 dynamics	 of	 plant	

communities,	 but	 also	 has	 evolutionary	 consequences	 (Aitken	 et	 al.,	 2008).	 Since	

selection	 is	 mediated	 through	 individual	 variation	 in	 traits,	 its	 incorporation	 into	

vegetation	models	 opens	 up	 the	 possibility	 of	 propagating	 traits	 from	parent	 trees	 to	

their	offspring	–	allowing	for	the	modelling	of	microgeographic	adaptations	(Richardson	

et	 al.,	 2014)	 and	 an	 integrated	 modelling	 framework	 for	 ecological	 and	 evolutionary	
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dynamics.	In	the	future,	it	would	thus	be	possible	to	use	the	TROLL	model	to	explore	the	

micro-evolutionary	implications	of	environmental	changes.	
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Nitrogen		SD	
(log	scale)	

Phosphorus	SD		
(log	scale)	

Leaf	mass	
per	area	SD		
(log	scale)	

Wood	specific	
gravity	SD	
(orig.	scale,	g/g)	

Crown	radius	SD	
(log	scale)	
	
	

0.12	 0.24	 0.24	 0.06	 0.28	

	

Table	1:	Variation	around	traits	in	calibrated	TROLL	v.2.5.	The	standard	deviation	is	

given	on	logscales	for	all	traits	except	wood	density	(additive	error).	Leaf	and	wood	trait	

variation	 reflects	 variation	 around	 species	 means,	 whereas	 crown	 radius	 variation	

reflects	variation	around	a	global	mean	allometry.		
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Figure	1:	Comparisons	of	simulated	ecosystem	structure	and	functioning	with	and	

without	 crown	plasticity:	Here	we	show	the	frequency	distribution	of	all	simulations	

regarding	tree	numbers	per	hectare	(>	10cm	in	trunk	diameter),	aboveground	biomass	

(in	Mg	ha-1),	 gross	primary	productivity	 (MgC	ha1	yr-1)	 and	 leaf	 litterfall	 (Mg	ha1	yr-1)			

after	 400	 years	 of	 forest	 growth.	 Simulations	 are	 divided	 only	 according	 to	 whether	

plasticity	in	leaf	dynamics	was	considered	or	not.	Simulations	with	crown	plasticity	are	

clearly	 separated	 from	 simulations	 without	 plasticity	 across	 all	 four	 metrics,	 with	

generally	increased	biomass	(~	40	Mg	ha-1)	and	tree	numbers	(~	75	ha-1),	accompanied	
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by	 lower	 turnover	 in	 biomass,	 as	 evidenced	 by	 reduced	 productivity	 and	 sharply	

reduced	leaf	litterfall.	
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Figure	2:	The	effect	of	 increasing	levels	of	trait	variation	on	forest	structure	and	

functioning.	 Shown	 are	 5-simulation	 averages	 of	 forest	 structure	 and	 functioning	

metrics	 across	 increasing	 levels	 of	 trait	 variation	 (in	 percentage	 of	 the	 empirically	

parameterized	 values)	 after	 400	 years	 of	 forest	 growth.	 These	 include	 mean	 tree	

numbers	per	hectare	(upper	panels),	mean	aboveground	biomass	(in	Mg	ha-1)	and	mean	
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GPP	(MgC	ha-1	yr-1).	To	separate	out	crown	plasticity	effects,	panels	are	subdivided	(no	

plasticity	 left,	 crown	 plasticity	 right).	 Note	 that	 color	 scales	 differ	 etween	 left	 and	

righthand	panels	to	better	visualize	the	effects	of	gradual	differences	in	trait	variation.	
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Figure	3:	Relationship	between	relative	growth	rates	and	 individual	 life	history.	

Shown	are,	from	left	to	right,	how	individual	trees'	relative	growth	rates	(yr-1)	relate	to	

gross	primary	productivity	(kg	tree-1	yr-1),	mean	local	leaf	area	index	(m2	m-2)	and	wood	

specific	 gravity	 (g	 g-1),	 separated	 according	 to	 whether	 individual	 variability	 is	

considered	(red)	or	not	(purple).	From	top	to	bottom,	we	separate	according	to	crown	

plasticity,	 variability	 in	 crown	 extent	 and	 variability	 in	 leaf	 and	 woody	 traits.	 The	

histograms	to	the	right	show	the	ratio	of	net	to	gross	primary	productivity,	a	measure	of	

how	efficiently	trees	convert	photosynthetic	assimilates	into	growth	of	leaves	and	stem	

biomass.	Coloured	lines	are	linear	regression	lines	fit	on	logscales	and	backtransformed	

to	 the	 original	 scales.	 Only	 in	 the	 case	 of	 crown	 plasticity	 (upper	 panels),	 a	 clear	

separation	of	the	fitted	relationships	is	visible.	Every	point	represents	one	tree,	all	trees	
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that	are	plotted	have	just	surpassed	10cm	in	trunk	diameter,	all	quantities	are	calculated	

for	the	trees'	whole	lifetime.		 	



	

182	

	



	

	 183	

Figure	 4:	 Ontogenetic	 changes	 in	 trait	 distributions	 for	 leaf	 mass	 per	 area	 and	

wood	 specific	 gravity.	 Shown	 is	 ontogenetic	 trait	 variation	 between	 the	 sapling	 and	

tree	 stages	 across	 a	 range	of	 scenarios	 (simulating	 crown	plasticity	 or	not,	 simulating	

intra-specific	 trait	variation	or	not).	Clearly	visible	are	minor,	but	generally	consistent	

shifts	towards	lower	leaf	mass	per	area	and	lower	wood	densities	between	sapling	and	

adult	 stages,	 suggesting	 that	 trees	with	 low	 leaf	mass	 per	 area	 and	 low	wood	density	

have	a	slight	competitive	advantage.	
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Supplementary	material	to:		

The	importance	of	considering	inter-individual	

variation	in	allometric	and	functional	traits	in	an	

individual-based	forest	model	

S1:	Trends	in	biomass	with	increasing	intra-specific	variation	

To	separate	out	 the	effect	of	 crown	extent	on	aboveground	biomass	 from	the	effect	of	

increasing	variation	in	leaf	and	wood	traits,	we	normalized	aboveground	biomass	by	the	

mean	biomass	across	all	simulations	with	the	same	variation	in	crown	extent	and	then	

plotted	 it	against	 increasing	 levels	of	 trait	variation.	There	was	no	clear	effect	without	

crown	plasticity	and	a	small	decrease	in	biomass	when	crown	plasticity	was	included	in	

the	 model.	 	 The	 regression	 slopes	 were	−9.3 ×10!! 	without	 crown	 plasticity	 and	

−8.9 ×10!!.	The	 latter	 corresponds	 to	a	 reduction	of	not	even	1%	 from	0	 to	100%	of	

intraspecific	 trait	 variation,	 or,	 given	 that	 mean	 aboveground	 biomass	 in	 case	 of	

plasticity	is	436	ha-1	Mg,	of	3.9	Mg	ha-1.	
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Figure	S1:	Trends	of	increasing	intra-specific	variation	on	aboveground	biomass.	

This	figure	shows	the	regression	lines	described	in	Supplementary	Material	S1.	

	

	 	

0.92

0.96

1.00

1.04

0 25 50 75 100

Trait variation (% of empirical)A
bo

ve
 g

ro
un

d 
bi

om
as

s 
(n

or
m

al
iz

ed
) No plasticity

0.96

1.00

1.04

0 25 50 75 100

Trait variation (% of empirical)A
bo

ve
 g

ro
un

d 
bi

om
as

s 
(n

or
m

al
iz

ed
) Crown plasticity



	

186	

	



	

	 187	

Figure	 S2:	 Ontogenetic	 changes	 in	 trait	 distributions	 for	 leaf	 nitrogen	 and	

phosphorus.	 	 This	 figure	 is	 equivalent	 to	 Figure	 4	 from	 the	 main	 text,	 only	 for	 leaf	

phosphorus	and	leaf	nitrogen.	Shown	is	ontogenetic	trait	variation	between	the	sapling	

and	 tree	 stages	 across	 a	 range	 of	 scenarios	 (simulating	 crown	 plasticity	 or	 not,	

simulating	intra-specific	trait	variation	or	not).		

	

	



	



Chapter	5:	Global	patterns	and	evolutionary	

trends	in	wood	density	

(Target	Journal:	Nature	Plants)	

	

Functional	 traits	play	an	 important	part	 in	 the	assessment	of	ecosystem	structure	and	

function,	 such	 as	 biomass	 estimations	 in	 Chapter	 2,	 and	 in	 predictive	 ecoystem	

modelling,	as	carried	out	in	Chapter	3.	In	Chapter	5,	we	depart	from	the	strictly	model-

based	 approaches	 of	 the	 previous	 chapters,	 focus	 on	 a	 single	 trait,	wood	 density,	 and	

update	a	large	trait	data	base,	the	Global	Wood	Density	Database.	Assembling	a	wealth	

of	new	data	and	using	improved	conversion	factors	between	various	woody	quantities,	

we	increase	the	number	of	records	from	ca.	14,000	to	over	70,000,	and	the	number	of	

species	 covered	 from	 ~8,000	 to	 ~15,000.	 	 We	 then	 use	 the	 assemblied	 data	 base	 to	

examine	 within-species	 variation	 of	 wood	 density,	 merge	 it	 with	 recently	 published	

phylogenies	of	seed	plants	to	estimate	which	evolutionary	lineages	contributed	most	to	

the	 functional	distinctiveness	 in	current	woody	diversity,	and	finally,	match	records	to	

GBIF	tree	occurrences	world	wide	to	derive	a	global	map	of	wood	density.	
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Main	

Wood	 is	 a	 global	 store	 of	 carbon1	 and	 understanding	 how	 plants	 build	 and	maintain	

woody	 organs	 is	 essential	 biogeochemistry,	 with	 great	 significance	 for	 ecology2.	

Coordination	of	woody	traits,	arising	from	selective	pressures,	has	played	a	major	role	in	

the	 evolution	 of	 trees3,4.	 One	 of	 the	major	 axis	 of	 woody	 variation	 is	 specific	 gravity,	

weight	 of	 an	 anhydrous	 sample	 divided	 by	 its	 water-saturated	 volume.	 Trees	 with	

denser	woods	tend	to	be	more	resistant	to	compression,	bending,	breaking,	and	to	shear	

stress,	 so	 wood	 specific	 gravity	 is	 a	 summary	 trait	 for	 wood	mechanical	 properties5.	

Wood	 density	 has	 also	 been	 attributed	 to	 an	 increased	 resistance	 to	 pathogens	 and	

xylophagous	 insects6.	 Finally,	 while	 the	 relation	 between	 wood	 ultrastructure	 and	

hydraulic	properties	is	complex,	there	is	some	evidence	for	increased	hydraulic	safety	at	

high	 wood	 densities7–9.	 Thus,	 woody	 plants	 with	 higher	 wood	 density	 tend	 to	 have	

higher	 survival	 rates10.	 Increased	 allocation	 to	 to	 the	 construction	 of	 woody	 organs	

comes,	however,	at	higher	costs,	resulting	in	a	trade-off	of	ecological	strategies11,12.		

	 We	here	explore	global	patterns	in	wood	density.	In	particular,	we	evaluate	how	

wood	density	as	a	plant	trait	has	evolved	along	the	history	of	seed	plants.	We	do	so	by	

testing	which	plant	clades	contribute	the	most	to	the	extant	variation	in	wood	density.	

Furthermore,	 we	 assess	 global	 coverage	 of	 wood	 density	 measurements	 and	 explore	

how	wood	density	varies	across	continents	and	across	plant	organs.	These	advances	are	

based	 on	 the	 building	 and	 careful	 verification	 of	 a	 global	wood	 density	 database,	 the	

GWDD	v.2,	which	superseeds	a	previously	published	compilation	of	trait	values5,13.		

	 	



	194	

The	Global	Wood	Density	Database	v.2	

The	new	wood	density	database	contains	71,028	records,	of	which	66,685	are	identified	

at	the	species	level,	comprising	13,124	accepted	species	and	2,933	genera,	and	a	further	

1,575	species	that	have	not	been	taxonomically	resolved.	This	new	effort	has	resulted	in	

an	 increase	 of	 56%	 of	 the	 species	 coverage	 and	 of	 74%	 of	 the	 genus	 coverage.	 The	

GWDD	v.2	includes	20%	of	the	existing	tree	species14,	and	59%	of	the	tree	genera.	For	

8,006	species,	more	than	one	record	is	available,	including	records	from	several	sources	

in	 5,878	 species.	 Globally,	 our	 database	 has	 a	 mean	 wood	 density	 of	 0.589	 and	 a	

standard	deviation	of	0.163.	From	546	species	where	we	had	more	than	15	 individual	

plant	 records,	we	 observed	 twice	 as	much	 between-species	 variation	 as	 intra-specific	

variation,	with	standard	deviations	of	0.145	and	0.073,	respectively.		

Species	coverage	of	the	GWDD	v.2		varied	geographically,	reaching	up	75-85%	for	

European	 countries.	 In	 Amazonia,	 the	 database	matched	 30%	 of	 the	 tree	 species	 and	

75%	 of	 the	 genera	 in	 a	 recent	 taxonomically	 verified	 database15.	 In	 tropical	 Africa,	 it	

matched	 40%	 of	 the	 tree	 species	 and	 80%	 of	 the	 genera16.	 Three	 regions	 had	 low	

coverage:	 the	 South	 Pacific,	 the	 Caribbean,	 and	 the	 Arabic	 Peninsula	 (cf.	 also	

Supplementary	Material	S3	and	Figures	S1-S3).		

	

Evolutionary	and	geographic	patterns	

In	 terms	of	 evolutionary	history,	 the	GWDD	v.2	matches	13,185	species	 from	a	 recent	

phylogenetic	 tree	 including	 all	 land	 plants17.	 Based	 on	 a	 test	 of	 functional	

distinctiveness18,	Eudicotyledons	were	identified	as	the	most	distinctive	clade,	followed	

–	 in	 descending	 order	 –	 by	 Myrtaceae,	 the	 genus	 Ficus,	 and	 Fabales	 and	 Ericales	 (cf.	

Figure	 1,	 upper	 panel).	 All	 distinctive	 clades	 identified	 showed	 clear	 shifts	 towards	
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higher	 wood	 densities,	 except	 the	 genus	 Ficus,	 which	 diverged	 strongly	 towards	 low	

wood	densities	(cf.	Figure	1,	lower	panel).		

We	 further	 combined	 the	 GWDD	 v.2	 	 with	 occurrence	 data	 from	 the	 Global	

Biodiversity	Information	Facility19,	and	inferred	a	global	map	of	wood	density	by	linking	

these	occurrence	records	with	several	layers	of	remote	sensing,	climate	and	topography	

through	random	forest	modelling.	Our	analysis	revealed	broad	patterns	of	wood	density	

variation	across	the	globe	(Figure	2).	While	low	wood	density	wood	dominates	at	high	

latitude,	high	wood	densities	were	found	in	Amazonia,	across	the	African	continent	and	

particularly	 high	 values	 in	 Australia.	 While	 we	 found	 a	 gradient	 of	 increasing	 wood	

density	 from	Western	 to	 Eastern	 South	 America,	 we	 did	 not	 find	 particularly	 strong	

increases	within	Amazonia20.		

Major	 axis	 regression	 furthermore	 indicated	 that	 branch	 and	 trunk	 wood	

densities	 were	 well	 correlated,	 with	 branch	 wood	 density	 slightly	 lower	 than	 trunk	

wood	density	across	 the	data	set,	 and	a	correlation	coefficient	of	0.77	 (n=749	species,	

Figure	3).	Furthermore,	wood	density	is	well-preserved	within	species	that	occur	across	

contintents,	with	correlation	coefficients	of	ca.	0.85	(cf.	Figure	S4).		

	

Discussion	

Our	 study	 provides	 an	 integrative	 picture	 of	 wood	 density	 across	 time	 and	 space,	

revealing	broad	patterns	in	variation	in	woodiness,	adaptations	to	the	environment	and	

how	they	have	shaped	their	evolutionary	history.	

First,	 our	 study	 indicates	 an	 early	 shift	 towards	 high	 wood	 densities	 in	

angiosperms	that	far	predated	the	Cenozoic21.	A	strong	shift	towards	high	wood	density	

was	 also	 found	due	 to	 the	 speciation	of	Myrtaceae	and	a	 similar,	 albeit	 lesser,	 shift	 in	

Fabales.	Both	Myrtaceae	and	Fabales	thought	to	have	diversified	in	dry	environments22–
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25	and	the	high	wood	density	 in	the	 lineages	may	be	attributable	to	drought	tolerance.	

This	stands	in	stark	contrast	to	the	genus	Ficus	that	has	much	lower	wood	density.	Part	

of	the	strong	downwards	shift	here	may	be	driven	by	functional	specialisation	due	to	a	

tight	mutualistic	relationship	with	fig	wasps	and	resulting	physiological	constraints	on	

transpiration	and	water	 storage26,27.	 For	Ericales,	 also	among	 the	 five	most	distinctive	

clades,	previous	studies	on	evolution	of	vessel	characteristics	have	indicated	two	major	

types	 of	 wood	 structure	 –	 one	 "primitive"	 type	 derived	 from	 cornalean-ericalean	

ancestors	 found	 in	 temperate	 and	 montane	 tropical	 regions,	 and	 a	 derived	 wood	

structure	type	due	to	shifts	into	lowland	tropical	rainforests28.	Our	results	mirror	these	

patterns,	with	a	close	match	in	low	wood	densities	between	Cornales	and	the	so-called	

primitive	 type,	 and	 high	 wood	 densities	 in	 tropical	 families	 such	 as	 Sapotaceae	 (cf.	

Figure	S5).	This	indicates	that	a	large	part	of	their	functional	distinctiveness	has	evolved	

as	 a	 result	 of	 migration	 into	 and	 adaptation	 to	 the	 environments	 of	 lowland	 tropical	

forests.		

	The	 underlying	 causes	 for	 adaptations	 in	 wood	 density	 are	 changes	 in	 wood	

composition	that	reflect	mechanical	resistance5,29	or	varying	demands	on	transpiration	

and	 embolism	 resistance	 between	 climates30.	 This	 is	 reflected	 in	 changes	 of	 wood	

density	 with	 environmental	 conditions,	 such	 as	 a	 decrease	 with	 elevation	 and	

decreasing	 temperatures31,32.	 Several	 studies	 have	 also	 found	 a	 negative	 correlation	

between	 precipitation	 and	 wood	 density33–37,	 but	 it	 might	 not	 be	 as	 universal	 as	

temperature	dependence32.		

Our	global	wood	density	map	provides	evidence	for	environmental	determinants	

of	wood	density,	with	notable	decreases	of	wood	density	in	high-altitude	regions	across	

continents	 and	 towards	 Northern	 latitudes,	 high	 wood	 densities	 in	 lowland	 tropical	

forests	 and	 particularly	 high	 wood	 densities	 in	 the	 arid	 or	 semi-arid	 climates	 of	
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Australia.	 Previously	 found	 patterns	 such	 as	 notable	 shifts	 in	 wood	 density	 across	

Amazonia20	could,	however,	not	be	confirmed.	Part	of	this	might	be	due	to	our	estimates	

being	 derived	 from	mean	 species	 values	 and	 an	 aggregation	 procedure	 that	 relies	 on	

taxonomic	records,	but	does	not	reflect	the	local	abundance	or	biomass	of	species.		

While	 we	 thus	 expect	 our	 map	 to	 reveal	 broad	 patterns,	 some	 of	 the	 local	

variation	might	be	lost	(cf.	Figure	S6	for	a	correlation	between	different	types	of	wood	

density	 aggregates).	 Future	 studies	might	 substantially	 improve	 on	 our	wood	 density	

map	by	also	 considering	 the	 respective	abundances	and	 sizes	of	 species,	 but	 attaining	

vast	geographic	coverage	of	field	sampling	and	precise	estimates	of	local	abundances	at	

the	same	time	will	remain	a	considerable	challenge.	Recently,	several	procedures	have,	

for	 example,	 been	 proposed	 to	 create	 global	 trait	 maps,	 relying	 on	 broad	 functional	

types	 to	 scale	 local	measurements	up,	but	 the	delimitation	of	plant	 functional	 types	 is	

likely	introducing	considerable	error	of	its	own38,39.		

Finally,	intra-specific	variation	in	wood	density	is	an	important	factor	to	consider.		

Estimates	 were	 generally	 lower	 in	 branch	 wood	 than	 in	 trunk	 wood,	 but	 there	 was	

considerable	variation,	presumably	due	to	whole-tree	morphology	and	changes	in	wood	

anatomy	between	branch	and	trunk	wood40–43.	A	limiting	factor	in	our	study	is	the	fact	

that	we	relied	on	measurements	of	branch	and	trunk	wood	from	different	individuals	of	

the	 same	 species,	 thus	 not	 taking	 into	 account	 individual-level	 variation	 and	

coordination	between	traits.	 In	species	with	amphi-Atlantic	or	global	distributions,	we	

also	 observed	 strong	 correlations	 of	 wood	 density	 across	 continents,	 indicating	 an	

important	phylogenetic	component	in	variation.		
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Methods		

Data	Assembly		

To	 update	 the	 data	 base,	 we	 merged	 records	 from	 the	 previous	 compilation5,13	 with	

wood	density	values	assembled	from	a	wide	variety	of	sources,	including	published	and	

unpublished	 data,	 and	 added	 additional	 columns	 to	 reflect	 a	 new	 variety	 of	

measurements	 (such	 as	 intra-specific	 and	 intra-individual	 variation).	 Entries	 from	 the	

GWDD	 v.1.	 were	 transformed	 into	 the	 new	 format,	 reviewed	 and,	 when	 approved,	

transferred	 into	 the	new	database.	 Species	names	 for	 the	whole	data	base	were	 spell-

checked	and	taxonomically	resolved	with	The	Plant	List	v.1.144.	For	more	details	on	the	

data	assembly	process,	please	refer	to	S1.	

	

Data	harmonization	

Wood	 density	 is	 defined	 as	 basic	 density,	 i.e.	 weight	 of	 the	 anhydrous	 sample	 (P0)	

divided	 by	 the	 volume	 of	 the	 water-saturated	 sample	 (Vs).45.	 Many	 wood	 density	

measurements	 have	 been	 published	 in	 agroforestry	 studies,	 and	 wood	 density	 at	 a	

reference	water	content	(w)	is	generally	reported	(Dw),	where	conventionally	w	=	12%	

or	w	=	15%.	To	harmonize	the	large	range	of	wood	density	measurements	collated	from	

the	 literature,	 we	 converted	 air-dried	 values	 of	 wood	 density	 (Dw)	 into	 basic	 density	

(Db).	 Recent	 research,	 based	 on	 a	 standardized	 set	 of	 measurements,	 indicates	 that	

simple	conversion	factors	can	be	used	across	seed	plants,	such	that	!! =  0.828 × !!"46,	

where	!!" is	 the	 wood	 density	 measured	 at	 a	 reference	 12%	 moisture,	 the	 most	

frequent	 reference	 in	 the	 forestry	 industry.	 This	 choice	 has	 serious	 implications	 for	

quantitative	assessments	and	we	were	therefore	led	to	correct	some	of	the	values	in	the	

original	database.	More	details,	 including	conversion	factors	for	other	moisture	values,	

are	available	in	S2.		
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Identifying	functionally	distinctive	lineages	

A	recent	study	has	used	a	phylogenetic	tree	together	with	plant	trait	data	to	estimate	the	

most	influential	lineages	in	the	distribution	of	traits18.	 	Influential	lineages	are	lineages	

without	whom	present	day	trait	distributions	would	be	very	different.	We	here	extended	

this	approach	to	wood	density	values.	We	used	a	recently	published	phylogenetic	tree	of	

all	seedplants	17,	resolved	it	taxonomically	with	The	Plant	List	v.1.144	and	computed	the	

Kolmogorov–Smirnov	 Importance	 index	 (KSI)	 as	 implemented	 in	 the	 package	 ksi47	 to	

find	 the	 five	 most	 functionally	 distinctive	 lineages.	 To	 match	 nodes	 to	 taxonomic	

categories,	we	used	the	package	taxonlookup48.		

	

Mapping	wood	density	based	on	taxonomic	records	

Finally,	we	analyzed	how	wood	density	 is	distributed	across	the	world's	 forests.	To	do	

so,	 we	 extracted	 all	 records	 for	 gymnosperms	 and	 angiosperms	 from	 the	 Global	

Biodiversity	 Information	Facility	 (GBIF).	We	 downsampled	 the	 data	 set	 to	 include	 only	

one	 species	 occurrence	 per	 squarekilometer,	which	 avoids	 oversampling	 of	 particular	

species	due	 to	 local	 trait	 collections,	 and	applied	 the	CoordinateCleaner	 package49.	We	

then	aggregated	the	resulting	data	set	to	a	resolution	of	25km,	selected	several	layers	of	

biophysical,	 climatic	 variables	 and	 soil	 and	 topographic	 variables	 and	 used	 random	

forest	modelling50	to	predict	grid	cells	where	no	wood	density	information	was	available	

(more	details	are	provided	in	S4	and	Table	S2).				

	

Analyzing	intraspecific	variation	in	traits	

To	analyze	 the	 relationship	of	densities	across	plant	organs,	we	compared	 the	 species	

mean	 values	 of	 branch	 and	 trunk	 densities.	 We	 used	 Major	 Axis	 regression,	 as	
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implemented	 in	 the	 lmodel2	 package51.	 Furthermore,	 since	 our	 data	 set	 also	 includes	

species	with	amphi-Atlantic	distributions	 (	Ceiba	pentandra,	Symphonia	globulifera)	or	

species	planted	globally	(e.g.	Eucalyptus	globulus,	Casuarina	equisetifolia,	Albizia	lebbeck,	

Melia	azedarach),	we	grouped	species	with	three	or	more	measurements	per	continent	

and	analyzed	how	their	values	varied	across	continents.		
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Figure	1:	The	five	functionally	most	distinctive	clades	based	on	wood	density	from	

the	 GWDD	 v.2.	 In	 the	upper	panel,	we	show	the	Smith	&	Brown	(2018)	phylogenetic	

tree	 for	 seedplants,	 matched	 to	 the	 GWDD	 v.2	 on	 13,184	 extant	 species.	 The	 most	

functionally	 distinctive	 clades	 given	 in	 the	 following	 order:	 Eudicotyledons	 (1),	
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Myrtaceae	 (2),	 Ficus	 (3),	 Fabales	 (4),	 Ericales	 (5).	 Taxonomic	 orders	 are	 provided,	

matched	 to	 species	 and	 jittered	 for	 better	 visualization.	 In	 the	 lower	 panel,	 the	

corresponding	shifts	in	wood	density	are	shown,	ranked	from	left	to	right	in	functional	

distinctiveness.	Note	that	histogram	densities	are	normalized	to	1.	
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Figure	2:	A	global	map	of	wood	density	based	on	taxonomic	records.	Shown	is	the	

predicted	distribution	of	wood	density	across	the	globe	(upper	map)	as	well	as	standard	

deviation	around	the	predicted	means	(lower	map).	Wood	density	information	is	based	

on	 the	 GWDD	 and	 occurrence	 records	 derive	 from	 the	Global	Biodiversity	 Information	

Facility	(GBIF).	 	Values	have	been	averaged	across	25	sqkm	grid	cells.	Where	no	values	

were	 available,	 they	were	 predicted	 from	 a	 random	 forest	model	 relying	 on	multiple	

environmental	layers	(biophysical,	climate,	soil	and	topography,	cf.	S4	and	Table	S2).		
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Figure	3:	Intraspecific	variability	in	wood	density	–	branch	and	trunk	wood.	Shown	

are	mean	branch	wood	densities	plotted	against	mean	trunk	densities	on	a	per-species	

basis.	The	geographic	origin	of	the	species	is	indicated	through	the	colors	of	each	point.	

The	red	 line	shows	the	result	of	a	Major	Axis	regression,	with	the	coefficients	given	 in	

the	upper	 left	of	 the	panel	and	Pearson's	 correlation	coefficient	provided	 in	 the	 lower	

right	of	the	panel.	The	black	line	is	the	reference	line	(intercept	of	zero,	slope	of	1).	
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Supplementary	Information	to		
Global	patterns	and	evolutionary	trends	in	wood	
density	
	
	
S1:	Assembling	the	GWDD	v.2	

New	compilation	

A	key	part	in	assembling	the	new	data	base	was	the	inclusion	of	new	records.	To	do	so,	

we	contacted	a	 large	number	of	colleagues	who	were	 involved	 in	plant	 trait	or	carbon	

assessment	research,	and	invited	them	to	collaborate	on	improving	the	coverage	of	the	

GWDD.	 We	 thus	 assembled	 wood	 density	 data	 from	 a	 wide	 range	 of	 novel	 sources,	

including	published	records,	but	also	unpublished	data.	Recent	publications	provided	a	

greater	diversity	of	data.	To	reflect	this	high	diversity,	we	documented	additional	fields		

(Table	S1).		

	

Species	names	were	harmonized	by	correcting	spelling-errors	via	online	resources	such	

as	Tropicos,	based	on	the	taxize	package1,	and	taxonomic	name	resolution	via	The	Plant	

List	v.1.12,	 as	 embedded	 in	 the	package	 taxonstand3.	Where	names	 could	not	be	 found	

with	The	Plant	List,	we	carried	out	an	additional	manual	search	and	correction.	Finally,	

we	 updated	 the	 taxonomic	 classification,	 indicating	 the	 status	 of	 each	 record	 via	

Accepted	and	Unresolved.		

	

Airdry	 and	 ovendry	 densities	 were	 then	 converted	 via	 the	 conversion	 factors	 at	 the	

respective	water	content.	When	the	water	content	of	airdry	densities	was	not	reported,	

we	assumed	w	=	12%.	While	this	might	introduce	biases	in	the	case	of	higher	or	lower	
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water	 contents,	 these	 biases	 will	 likely	 have	 little	 impact	 on	 the	 overall	 estimates,	

because	differences	are	typically	less	than	5%.			

	

Each	record	was	assigned	a	weight	 that	corresponds	 to	 the	number	of	 trees	 that	have	

been	sampled.	Where	the	wood	density	value	represents	an	aggregate	sample,	but	 the	

exact	 sampling	numbers	are	not	known	(such	as	values	provided	by	wood	 technology	

compendia),	we	assume	an	average	weight	of	4.	This	will	underestimate	 the	weight	of	

some	well-tested	tree	species	and	overestimate	the	weight	for	species	where	only	one	or	

two	 specimen	 have	 been	 tested,	 but	 provides	 a	 useful	 rule	 of	 thumb	 for	 aggregating	

species	records.		

	

Correction	of	GWDD	v.1	

We	corrected	the	values	of	GWDD	v.1	when	necessary.	We	reported	the	original	Dw	and	

the	 corresponding	 w	 values.	 Wherever	 other	 conversion	 factors,	 based	 on	 local	

estimates,	 had	 been	 used,	 we	 backconverted	 with	 these	 factors.	 To	 improve	 the	

reproducibility	of	conversions,	the	GWDD	v.2	provides	the	new	and	old	and	values.		

	

We	also	thoroughly	checked	the	reference	list	and	removed	minor	inconsistencies.	Some	

records	 in	 GWDD	 v.1	 were	 obtained	 via	 the	 ICRAF	 data	 base	

(http://db.worldagroforestry.org/wd,	 last	accessed	on	29	July	2019),	 itself	a	collection	

of	primary	 resources.	More	 recent	 versions	of	 the	 ICRAF	data	base	have	 incorporated	

and	 overwritten	 records	 using	 the	 GWDD	 v.1.	 Since	 this	 introduces	 a	 circularity,	 we	

remove	records	where	the	quality	of	the	original	data	could	not	be	ascertained.	We	also	

replaced	in	full	the	Sallenave	data	base	and	related	data4,5,	included	in	GWDD	v.1,	by	the	

more	comprehensive	CIRAD	wood	technology	data	base6.	
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S2:	Conversion	factors	

In	a	nutshell,	the	explanation	of	the	conversion	factors	is	as	follows	6:	Wood	is	composed	

of	a	variable	fraction	of	water,	some	of	which	is	free	to	move	in	the	vessels,	and	the	rest	

associated	 to	wood	 fibers	 and	 cells.	 During	 drying,	 free	water	 is	 fully	 lost	 at	 the	 fiber	

saturation	point.	Beyond	this	point,	volume	shrinks.	The	moisture	at	fiber	saturation	is	

quite	variable	across	species	from	ca	10%	to	50%,	with	a	typical	value	of	~30%6,7.	If	Vs	

is	the	volume	of	the	sample	at	fiber	saturation	S,	and	V0	is	the	volume	when	the	sample	

has	lost	all	of	its	water,	the	volumetric	shrinkage,	or	retractability,	is	the	percent	loss	in	

volume	RT	=	(Vs-V0)/Vs	x	100,	which	varies	from	5%	to	25%	across	species	(Vieilledent	

et	al.,	2018).	This	analysis	results	in	the	following	conversion	formula:	

!! =  1− ! 100 ×(! − !)
1+ !/100  × !! 	

	

The	verified	data	base	contains	measurements	of	S,	R,	and	D12	for	3,832	individual	trees,	

based	 on	 >10	 samples	 per	 individual	 and	 measurements	 at	 four	 different	 moisture	

contents	 w	 (from	 18%	 to	 0%).	 Using	 these	 measurements	 and	 the	 formula,	 it	 was	

possible	to	obtain	Db	and	D12	for	each	sampled	tree,	and	also	to	derive	Dw	for	any	w.	Each	

Dw	 	 was	 regressed	 against	 Db,	 and,	 by	 forcing	 the	 regression	 through	 zero,	 obtained	

simple	conversion	factors	for	any	w.	In	particular,	we	obtained	the	following	conversion	

factors:		0.819	for	airdry	densities	w	=	15%,	0.828	for	airdry	densities	at	w	=	12%,	0.840	

at	airdry	densities	w	=	8%,	and	0.868	for	ovendry	densities	(or	w	=	0%).	These	various	

conditions	span	the	range	of	the	published	values	of	wood	density	
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S3:	Geographic	coverage	(details)	
	
The	GWDD	 v.2	 contains	 71,028	 records,	 of	which	 66,685	 are	 identified	 at	 the	 species	

level,	 comprising	 14,698	 taxa	 (Figure	 S1).	 Of	 these,	 13,124	 of	 the	 species	 names	 are	

accepted	as	of	The	Plant	List	1.1,	a	further	1,326	species	are	unresolved,	and	249	species	

missed	 a	 reference	 in	 The	 Plant	 List.	 For	 8,006	 species,	 more	 than	 one	 record	 is	

available,	 including	 records	 from	 several	 sources	 in	 5,878	 species.	 The	 GWDD	 v.2	

comprises	 2,933	 genera.	 Accounting	 for	 a	 further	 4,343	 records	 identified	 only	 at	 the	

genus	 level,	 the	 data	 base	 gains	 an	 additional	 38	 genus-level	 records	 and	 thus	 has	

records	 on	 2,951	 genera.	 The	 majority	 of	 wood	 density	 measurements	 are	 either	

directly	Db	(>	45%	of	records),	or	airdry	densities	Dw	with	a	water	content	w	of	8-15%	

(also	>45%	of	records).	Ovendry	densities	amounted	to	7%	of	 the	records,	with	green	

densities	and	dry	fraction	accounting	for	<	1%	of	the	records.		

	

The	GWDD	v.2.	matches	11,838	species	out	of	 the	60,011	 tree	species	recorded	 in	 the	

GlobalTreeSearch	 database8,	 or	 ~20%,	 and	 2,509	 out	 of	 the	 4,277	 genera,	 or	 ~60%	

(Figure	 S3).	 Sampling	 coverage	 varied	 geographically	 reaching	 75-85%	 for	 most	

European	 countries,	 from	 Scandinavia	 down	 to	 the	 Balkan	 states.	 Sample	 coverage	

decreased	at	low	latitudes.	Three	regions	had	coverage	~20%:	1)	the	South	Pacific	(Fiji,	

Papua	 New	 Guinea,	 New	 Caledonia,	 French	 Polynesia),	 2)	 the	 Caribbean	 (Cuba,	 Haiti,	

Dominican	Republic),	and	3)	the	Arab	Peninsula	(Yemen	and	Oman).	Sampling	coverage	

also	varied	regionally.	In	Amazonia,	the	Guiana	Shield	had	higher	coverage	(~50%)	than	

Brazil	 (~29%).	 Similarly,	 in	 tropical	 Africa,	West	 African	 species	 are	 generally	 better	

sampled	(50-60%)	than	East	African	species	(~30%).		
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These	tendencies	were	confirmed	by	local	data	bases.	In	Amazonia,	a	plant	checklist	was	

recently	published9,	the	GWDD	v.2	matched	2,011	out	of	6,727	tree	species	records,	or	

~30%	 (or	 75%	 at	 genus	 level).	 Genera	 such	 as	 Platycarpus	 and	Kutchubaea,	 with	 11	

species	 each,	 are	 the	 largest	 missing	 genera.	 The	 highest	 sample	 coverage	 for	

Amazonian	 trees	 was	 in	 the	 Guiana	 Shield	 (with	 ~60%	 of	 species	 covered)	 and	 the	

lowest	coverage	in	Brazil	(with	~36%	of	species	covered).			

	

For	tropical	Africa,	we	also	used	a	recent	checklist10.	Our	database	matched	1,479	out	of	

3,662	tree	species	records	(80%	of	the	genera).	The	largest	missing	genera	are	Raphia	

and	Uvariodendron.	West	African	forests	were	better	explored	in	terms	of	wood	density	

(80%	coverage)	than	East	African	ones	(coverage	varying	between	20-50%).	GWDD	v.2	

represents	 a	 particularly	 high	 improvement	 in	 African	 countries	 where	 sampling	

coverage	went	up	by	>40%,	and	Madagascar,	from	only	3%	of	species	to	26%.		

	

S4:	Mapping	wood	density	with	random	forest	algorithm	

Environmental layers	

To	predict	wood	density	from	environmental	variables,	we	assembled	54	environmental	

layers,	 including	 7	 biophysical,	 26	 climatic,	 and	 21	 soil	 and	 topographic	 layers	 (Table	

S2).	All	covariate	layers	were	aggregated	to	25km	resolution	using	GRASS	GIS.		

We	used	the	ClustOfVar	R	package	to	select	the	most	relevant	layers	for	each	of	the	three	

layer	 groups11,12.	 The	 ClustOfVar	 identifies	 the	 environmental	 layers	 which	maximize	

the	variations	in	the	GBIF	observed	wood	density	values	in	the	environmental	space.	3	

biophysical	 layers	(Modis	PET,	GPP,	and	PALSAR2	HH	polarization	signals),	 	4	climatic	

layers	 (bioclimatic	 variable	 5,	 6,	 16	 and	 17),	 and	 5	 topographic	 and	 soil	 layers	
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(probability	of	occurrence	of	R	horizon,	Soil	organic	carbon	density,	soil	pH,	silt	content,	

and	slope)	were	selected.	

	

Modelling	

We	used	 the	 random	 forest	modelling	 technique13	 to	predict	wood	density	 at	 a	 global	

scale.	 The	 10-fold	 cross-valiation	 approach	 was	 used	 to	 test	 the	 goodness	 of	

performance	of	the	model.	To	this	end,	the	GBIF	observed	dataset	was	randomly	divided	

into	 10	 subsets.	 10	 RF	 models	 were	 built,	 each	 time	 using	 nine	 subsets	 for	 model	

building	and	one	for	validation.	The	performance	of	the	RF	approach	was	validated	by	

regressing	all	predicted	and	observed	values	(S7).		
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Field	 Description	 Typical	values	

species	 the	species	binomial,	after	spell-checking	and	taxonomic	name	
resolution	

		

genus	 the	genus,	after	spell-checking	and	taxonomic	name	resolution	 		

epithet	 the	species	epithet,	after	spell-checking	and	taxonomic	name	
resolution	

		

family	 the	family,	after	spell-checking	and	taxonomic	name	resolution	 		

authority	 the	taxonomic	authority,	after	spell-checking	and	taxonomic	name	
resolution	

		

wsg	 the	basic	wood	density	value,	as	obtained	from	conversion	or	
direct	measurement	(unitless)	

		

species_reference	 the	species	binomial	supplied	to	the	GWDD	v.2	 		

value_reference	 the	wood	density	value	supplied	to	the	GWDD	v.2	 		

backtransformed	 is	the	value	backconverted	from	the	GWDD	v.1	 0	or	1	

quantity_referenc
e	

the	type	of	wood	density	that	was	measured	 "Airdry","Ovendry","Basic"		

moisture_airdry	 the	moisture	at	which	wood	was	considered	airdry		(%)	 		

wsg_conversion	 the	conversion	factor	used	to	convert	airdry	or	ovendry	densities	 		

tree_agg	 is	the	wood	density	measurement	aggregated	across	several	trees	
or	not?	

0	or	1	

trees_sampled	 the	number	of	trees	sampled	for	the	measurement	 		

weight_value	 the	weight	for	averaging	density	values	across	measurements	 equal	to	trees_sampled,	if	
trees_sampled	is	NA,	then	set	to	4	to	
reflect	an	average	sampling	value	of	
3-5	trees	

location_sample	 the	within-tree	location	of	the	sample	 "root","bole","branch","twig",	or	
combinations	thereof	

type_tissue	 the	type	of	woody	tissue	sampled	 "sapwood","heartwood","bark",	

"total	(bark	to	pith)",	or	
combinations	thereof	

type_sample	 the	type	of	sample	 "core"	or	"disk"	

instrument	 the	instrument	used	to	obtain	wood	density	 		

temperature_dryi
ng	

the	temperature	at	which	samples	have	been	dried	 		

source_short	 the	short	name	of	the	source	 		

source_long	 the	full	name	of	the	source	 		

site	 site	of	measurement,	at	various	levels	of	precision	 		

latitude/longitude	 coordinates	of	the	site	of	measurement	 		

country	 country	of	measurement	 		

region	 one	of	nine	regions		 "South	America",	"Central	America	
and	West	Indies",	"North	America",	
"Africa","Indian	Ocean",	"Europe",	
"Asia",	"South-East	Asia",	"Oceania"	

type_forest	 type	of	forest	 	local	ecological	descriptors	

id_dboriginal	 the	id	of	the	sample	in	the	original	database	 		

id_plant/age/dbh	 individual-plant	level	information	on	IDs	in	the	source	data,	plant	
age	and	plant	diamaeter	

		

experiment	 if	the	data	have	been	collected	during	an	experiment	1,	else	0,	
details	in	the	next	field	

0	or	1	

experiment	design	 the	design	of	the	experiment	 		

	
Table	S1.	Fields	of	the	GWDD	v.2.	Given	are	the	names	of	the	fields,	as	they	appear	in	

the	GWDD	v.2,	a	short	description	of	the	field,	and	–	if	applicable	–,	the	number	of	typical	

and	possible	values	that	the	field	can	contain.		
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ID Layer	name Explanation Source 
1 MOD	ET	2000-2013	mean MODIS	evapotranspiration,	2000-2013	yearly	mean 

 2 MOD	LE		2000-2013	mean MODIS	evaporation,	2000-2013	yearly	mean 
 

3 MOD	PET	2000-2013	mean 
MODIS	potential	evapotranspiration,	2000-2013	

yearly	mean 
 4 MOD	GPP	2000-2015	mean MODIS	GPP,	2000-2015	yearly	mean 
 5 MOD	NPP	2000-2015	mean MODIS	NPP,	2000-2015	yearly	mean 
 

6 PALSAR2	HH	20172018	man 
PALSAR2	radar	data,	HH	polarization	signal,	2017-

2018	yearly	mean 
 

7 PALSAR2	HV	20172018	man 
PALSAR2	radar	data,	HV	polarization	signal,	2017-

2018	yearly	mean 
 1 CWD Climatic	water	deficit Chave	et	al.	2015.	GCB 

2 WC2.0,	srad12mean world	climate2,	solar	radiance,	12	months	mean 
 3 WC2.0,	srad12std world	climate2,	solar	radiance,	12	months	std 
 4 WC2.0,	vapr12mean world	climate2,	vapor	pressure,	12	months	mean 
 5 WC2.0,	vapr12std world	climate2,	vapor	pressure,	12	months	std 
 6 WC2.0,	wind12mean world	climate2,	wind	speed,	12	months	mean 
 7 WC2.0,	wind12std world	climate2,	wind	speed,	12	months	std 
 8 WC2.0,	bio1 world	climate2,	bioclimatic	1 
 9 WC2.0,	bio2 world	climate2,	bioclimatic	2 
 10 WC2.0,	bio3 world	climate2,	bioclimatic	3 
 11 WC2.0,	bio4 world	climate2,	bioclimatic	4 
 12 WC2.0,	bio5 world	climate2,	bioclimatic	5 
 13 WC2.0,	bio6 world	climate2,	bioclimatic	6 
 14 WC2.0,	bio7 world	climate2,	bioclimatic	7 
 15 WC2.0,	bio8 world	climate2,	bioclimatic	8 
 16 WC2.0,	bio9 world	climate2,	bioclimatic	9 
 17 WC2.0,	bio10 world	climate2,	bioclimatic	10 
 18 WC2.0,	bio11 world	climate2,	bioclimatic	11 
 19 WC2.0,	bio12 world	climate2,	bioclimatic	12 
 20 WC2.0,	bio13 world	climate2,	bioclimatic	13 
 21 WC2.0,	bio14 world	climate2,	bioclimatic	14 
 22 WC2.0,	bio15 world	climate2,	bioclimatic	15 
 23 WC2.0,	bio16 world	climate2,	bioclimatic	16 
 24 WC2.0,	bio17 world	climate2,	bioclimatic	17 
 25 WC2.0,	bio18 world	climate2,	bioclimatic	18 
 26 WC2.0,	bio19 world	climate2,	bioclimatic	19 
 1 BDRICM_M_250m_ll.tif Depth	to	bedrock	(R	horizon)	up	to	200	cm https://soilgrids.org 

2 BDRLOG_M_250m_ll.tif Probability	of	occurrence	of	R	horizon https://soilgrids.org 
3 BDTICM_M_250m_ll.tif Absolute	depth	to	bedrock	(in	cm) https://soilgrids.org 

4 BLDFIE_M_sl1_250m_ll.tif 
Bulk	density	(fine	earth,	oven	dry)	in	kg	/	cubic-meter	

at	depth	0-2	m	mean https://soilgrids.org 

5 CECSOL_M_sl1_250m_ll.tif 
Cation	exchange	capacity	of	soil	in	cmolc/kg	at	depth	

0-2m	mean https://soilgrids.org 

6 CLYPPT_M_sl1_250m_ll.tif 
Clay	content	(0-2	micro	meter)	mass	fraction	in	%	at	

depth	0-2m	mean https://soilgrids.org 

7 CRFVOL_M_sl1_250m_ll.tif 
Coarse	fragments	volumetric	in	%	at	depth	0-2m	

mean https://soilgrids.org 

8 OCDENS_M_sl1_250m_ll.tif 
Soil	organic	carbon	density	in	kg	per	cubic-m	at	

depth	0-2m	mean https://soilgrids.org 

9 OCSTHA_M_100cm_250m_ll.tif 
Soil	organic	carbon	stock	in	tons	per	ha	for	depth	

interval	0-1m https://soilgrids.org 
10 PHIHOX_M_sl1_250m_ll.tif Soil	pH	x	10	in	H2O		at	depth	0-2m	mean https://soilgrids.org 
11 PHIKCL_M_sl1_250m_ll.tif Soil	pH	x	10	in	KCl	at	depth	0-2m	mean https://soilgrids.org 

12 SLTPPT_M_sl1_250m_ll.tif 
Silt	content	(2-50	micro	meter)	mass	fraction	in	%	at	

depth	0-2m	mean https://soilgrids.org 
13 SNDPPT_M_sl1_250m_ll.tif Sand	content	(50-2000	micro	meter)	mass	fraction	in	 https://soilgrids.org 
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%	at	depth	0-2m	mean 
14 TAXNWRB_250m_ll.tif Predicted	WRB	2006	subgroup	classes	(as	integers) https://soilgrids.org 
15 TAXOUSDA_250m_ll.tif Predicted	USDA	2014	suborder	classes	(as	integers) https://soilgrids.org 
16 aspect_cosin Topographic	aspect,	calculated	using	cosin	method https://www.earthenv.org/texture 
17 aspect_eastness Topographic	aspect,	eastness https://www.earthenv.org/texture 
18 aspect_northness Topographic	aspect,	northness https://www.earthenv.org/texture 
19 elevation Elevation https://www.earthenv.org/texture 
20 roughness Roughness https://www.earthenv.org/texture 
21 slope Slope https://www.earthenv.org/texture 

Table	 S2:	 Layers	 used	 for	 creation	 of	 global	 wood	 density	 map.	 Shown	 are	

biophysical	 layers	 (blue),	 climate	 layers	 (orange)	 and	 soil	 and	 topographic	 layers	

(green).	 Layers	 that	 have	 been	 retained	 after	 a	 preliminary	 analysis	 are	 marked	 in	

darker	colors	and	in	bold.		 	
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Figure	S1.	Geographic	distribution	of	records	and	species:	Shown	is	the	geographic	

distribution	of	measured	or	converted	basic	density	values	 in	the	GWDD	v.2.	Excluded	

are	 records	 identified	 only	 at	 the	 genus	 level.	 The	 lefthand	 panel	 describes	 the	

repartition	of	 all	 records	across	 continents	and	subcontinental	 regions,	 irrespective	of	

sampling	 size,	 the	 righthand	 panel	 the	 same	 distribution	 in	 terms	 of	 species.	 A	 small	

number	 of	 records	 could	 not	 be	 clearly	 attributed	 to	 a	 region	 ("Unknown").	 In	 the	

righthand	panel,	these	records	are	taken	together	with	species	that	occur	across	several	

of	the	displayed	regions	("GLOBAL")	and	reflect	the	continuity	between	regions	such	as	

South	America	and	Central	America	or	South-East	Asia	and	the	rest	of	Asia.		 	
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Figure	S2:	Estimated	wood	density	sampling	coverage	of	tree	species	around	the	

world	 in	 the	 GWDD	 v.2.	 This	 figure	 shows	 estimates	 of	 wood	 density	 sampling	

coverage	of	tree	species	on	a	per-country	level.	Estimates	are	based	on	a	comparison	of	

the	 GWDD	 v.2	 with	 three	 recently	 published	 lists	 of	 tree	 species,	 one	 for	 Amazonia	

(Cardoso	 et	 al.	 2017),	 one	 covering	 mainly	 tropical	 Africa	 (Gilles	 et	 al.	 2016),	 and	 a	

global	compilation	 that	uses	a	wider	definition	of	what	constitutes	a	 tree	 (Beech	et	al.	

2017).	 In	order	 to	avoid	artificially	high	or	 low	sampling	numbers,	countries	with	 less	

than	 10	 recorded	 tree	 species	 have	 been	 excluded	 from	 the	 figure	 in	 the	 upper	 right	
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panel	(African	database).	While	there	is	a	clear	difference	in	absolute	numbers	between	

regional	databases	and	the	global	tree	list,	with	the	GWDD	v.2.	covering	the	regional	lists	

and	 their	 more	 narrow	 tree	 density	 definitions	 better,	 similar	 qualitative	 pictures	

emerge	 across	 databases.	 We	 find,	 for	 example,	 higher	 sampling	 coverage	 in	 the	

Guyanas,	compared	to	the	rest	of	Amazonia,	and	higher	coverage	in	West	Africa	than	in	

East	Africa.		
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Figure	 S3:	 Improvement	 of	 wood	 density	 sampling	 coverage	 of	 tree	 species	

around	the	world	from	GWDD	v.1	to	GWDD	v.2.	This	figure	shows	estimates	of	how	

wood	 density	 sampling	 coverage	 of	 tree	 species	 has	 improved	 between	 the	 original	

GWDD	 and	 the	 newest	 update,	 based	 on	 a	 comparison	with	 three	 recently	 published	

lists	 of	 tree	 species,	 one	 for	 Amazonia	 (Cardoso	 et	 al.	 2017),	 one	 covering	 mainly	

tropical	Africa	(Gilles	et	al.	2016),	and	a	global	compilation	that	uses	a	wider	definition	

of	what	constitutes	a	tree	(Beech	et	al.	2017).	 In	order	to	avoid	artificially	high	or	 low	

sampling	 numbers,	 countries	 with	 less	 than	 10	 recorded	 tree	 species	 have	 been	

excluded	 from	 the	 figure	 in	 the	 upper	 right	 panel	 (African	database).	 Improvement	 is	
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given	in	percentage	with	respect	to	the	total	number	of	species	recorded	in	each	of	the	

three	data	bases.		
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Figure	 S4:	 Pairwise	 comparison	 of	 mean	 species	 densities	 between	 three	

continents.	 This	 figure	 shows	 a	 pairwise	 plot	 of	wood	densities	 averaged	 for	 species	

that	 occur	 across	 at	 least	 two	 of	 the	 following	 three	 (sub-)continents:	 Africa,	 South	

America,	South-East	Asia	and	have	at	 least	3	measurements	recorded	on	each	of	them.	

For	 the	 purposes	 of	 this	 comparison,	 South	 America	 is	 considered	 to	 include	 Central	

America	 and	 the	 Carribbean,	 and	 South-East	 Asia	 is	 supplemented	with	 species	 from	

Oceania.	 Each	dot	 represents	 one	 species.	 The	 colored	 lines	 are	major	 axis	 regression	

fits,	 the	 obtained	 formula	 is	 provided	 in	 the	 upper	 left	 of	 each	 panel,	 the	 Pearson	

correlation	coefficient	in	the	lower	right	of	each	panel.	Also	shown	is	the	reference	line	

in	black	(intercept	of	zero,	slope	of	one).	
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Figure	 S5:	 Wood	 density	 variation	 within	 the	 order	 Ericales,	 compared	 to	

variation	within	 Cornales.	 Shown	are	wood	density	values	of	different	clades	within	

Ericales	 (red	 in	 the	 upper	 panel	 and	 blue	 in	 the	 lower	 panel)	 compared	 to	 the	 order	

Cornales	(in	yellow).	The	upper	panel	shows	genera	belonging	to	the	so-called	primitive	

wood	structure	type	that	has	developed	in	temperate	and	tropical	montane	forests	and	

largely	conserves	woody	properties	compared	to	the	common	ancestor	of	Ericales	and	

Cornales	 14,	 and	 the	 lower	 panel	 the	 remaining	 clades	 that	 have	 spread	 to	 lowland	

tropical	forests.	A	clear	shift	towards	higher	wood	density	values	is	visible	in	the	lower	

panel.		
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Figure	 S6:	 Relation	 between	 taxonomic,	 community	 weighted	 and	 basal-area	

weighted	 wood	 density.	 Shown	 is	 the	 relationship	 between	 taxonomically	 averaged	

wood	 density,	 community-weighted	 wood	 density	 and	 basal-area	 weighted	 wood	

density	 for	 trees	>	10cm	in	 trunk	diameter,	as	 inferred	 from	a	 large	collection	of	plot-

and	 transect-based	 wood	 density	 measurements.	 Colouring	 shows	 the	 number	 of	

species	 per	 plot	 or	 transect	 (on	 log	 scales).	 The	 plots	 and	 transects	 data	 have	 been	

accumulated	from	our	own	field	data	and	various	openly	available	sources15,16,25–30,17–24.		 	
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Figure	S7:	10-fold	cross-validation	of	random	forest	modelling.	Shown	are	observed	

vs.	predicted	wood	density	values	from	the	ten	folds,	as	well	as	R2.		
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DISCUSSION	

A.	Individual-level	variation	and	a	predictive	ecology	at	global	scale	

As	 has	 been	 shown	 in	 the	 thesis	 at	 hand,	 individual-based	 approaches	 can	 contribute	

greatly	 to	 a	 more	 predictive	 forest	 ecology.	 In	 particular,	 they	 provide	 a	 means	 to	

translate	 remotely	 sensed	data	 into	highly	detailed	 representations	of	 forest	 structure	

across	thousands	of	hectares	of	forest	canopy	(Chapter	1	and	2).	These	virtual	mockups	

of	forests,	in	turn,	can	serve	as	the	initial	conditions	for	the	inference	of	vital	rates	and	

the	prediction	of	old-growth	 forest	dynamics	at	 fine	spatial	scales	(Chapter	3).	Finally,	

individual-based	 models	 of	 forest	 growth	 can	 investigate	 ecological	 questions	 at	 the	

level	of	the	individual	that	would	elude	coarser-grained	vegetation	models,	such	as	the	

role	of	plasticity	and	inter-individual	variation	on	forest	structure	and	function	(Chapter	

4).	 All	 of	 this	 would,	 however,	 not	 be	 possible	 without	 the	 detailed,	 individual-	 and	

species-based	trait	measurements	that	have	been	and	are	currently	collected	across	the	

globe.	Mapping	these	traits	and	understanding	their	evolutionary	history	will	thus	be	an	

important	pillar	in	the	further	development	of	predictive	modelling	(Chapter	5).	

To	 achieve	 the	 overall	 goal,	 however,	 of	 predicting	 the	 fate	 of	 the	 world's	

vegetation,	including	the	highly	diverse	tropical	forests,	a	large	synthesis	is	needed	that	

is	 still	 in	 the	making.	 Trait-based	 ecology,	 for	 example,	 has	 opened	 up	 one	 promising	

avenue.	Based	on	the	idea	that	every	trait	comes	at	a	cost	and	thus	involves	trade-offs,	

particularly	 between	 construction	 costs	 and	 growth	 rate	 (Chave	 et	 al.,	 2009;	 Reich,	

2014),	 it	 offers	 a	 promising	 framework	 for	 the	 quantitative	 assessment	 of	 ecological	

strategies.	 Plant	 or	 animal	 traits	 (such	 as	 leaf	 nutrients)	 can	 be	 directly	 related	 to	

ecological	 strategies	 (i.e.	 faster	 or	 slower	 growth)	 and	 environmental	 conditions	 (i.e.	

either	 responding	 to	 environmental	 variation	 or	 influencing	 it,	 cf.	 Lavorel	 &	 Garnier,	
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2002)	 and	 can	 ultimately	 be	 scaled	 up	 to	 the	 functioning	 of	 whole	 ecosystems	 (i.e.	

higher	or	 lower	primary	productivity).	 In	particular,	 it	 has	been	 shown	 that	 there	 are	

trade-offs	and	relationships	with	demography	and	plant	competition	that	hold	at	global	

scales	(Díaz	et	al.,	2016;	Kunstler	et	al.,	2016).		

At	 the	 same	 time,	 some	 of	 trait-based	 ecology's	 underlying	 assumptions	 will	

likely	 require	 renewed	 examination	 (Shipley	 et	 al.,	 2016;	Worthy	 &	 Swenson,	 2019).	

Among	 them	 is	 the	 transfer	 of	 globally	 observed	 trait	 dimensions	 	 to	 local	 scales	

(Messier	et	al.,	2017),	and	 the	predictive	power	of	 traits	 for	demographic	 rates.	While	

the	 latter	 is	 critical	 to	 functional	 ecology	 (Salguero-Gómez	 et	 al.,	 2018),	 plant	

communities	 have	 not	 always	 shown	 strong	 relationships	 between	 traits	 and	

demography	(Paine	et	al.,	2015;	Poorter	et	al.,	2018;	Yang	et	al.,	2018)	and	the	relative	

importance	 of	 traits	may	 vary	 across	 the	 ontogenetic	 trajectory	 (Falster	 et	al.,	 2018).	

Furthermore,	 even	 well-established	 relationships	 such	 as	 the	 relation	 between	 wood	

density	and	mortality	(Kraft	et	al.,	2010)	come	with	large	variation	around	mean	values	

and	 are	 not	 easily	 transformed	 into	 predictive	 tools	 (Visser	 et	 al.,	 2016).	 Since	 most	

trait-relationships	 are	 correlative	 and	 leave	 much	 variance	 unexplained,	 robust	 tests	

against	large	data	sets	are	needed	to	assess	transferability	(Wenger	&	Olden,	2012).	

Remote	sensing,	on	the	other	hand,	offers	exciting	new	possibilities	for	describing	

trees	 and	 forest	 quantitatively	 and	 non-destructively	 (Disney,	 2019),	 providing	

ecologists	with	 a	wealth	 of	 data	 that	 can	 help	with	 testing	 predictions	 or	 derive	 new	

models	of	ecosystem	functioning.	The	many	different	tools,	ranging	from	lidar	scanning	

(terrestrial,	airborne,	spaceborne)	over	hyperspectral	imaging	to	radar	technology	come	

together	 to	 create	 a	 three-dimensional,	 if	 not	higher-dimensional,	 picture	of	 the	Earth	

across	 all	 scales.	 They	 are	 routinely	 used	 to	 quantify	 forest	 structure	 and	 functioning	

from	the	local	to	global	scales	(Le	Toan	et	al.,	1992;	Frankenberg	et	al.,	2011;	Simard	et	
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al.,	2011)	and	have	become	"flux	towers	 in	the	sky"	(Schimel	&	Schneider,	2019).	As	a	

result,	 ecology	 has	 now	 an	 unprecedented	 amount	 of	 information	 at	 its	 disposal,	 and	

increasingly	so	in	large,	collaborative,	open-access	projects.		

To	transform	remotely	sensed	information,	however,	 into	ecological	knowledge,	

integrative	 approaches	 are	 needed.	 The	 basic	 units	 of	 ecology	 have	 traditionally	 been	

individual	 organisms,	 from	 which	 populations	 and	 communities	 emerge	 (Railsback,	

2001;	Begon	et	al.,	2005),	but	this	is	not	the	case	for	remote	sensing	products.	While	at	

fine	 to	medium	 scales,	 the	 isolation	 of	 individual	 organisms,	 such	 as	 trees	 is	 entirely	

possible	 and	 can	 provide	 quantitative	 estimates	 that	 are	 more	 precise	 than	 those	

obtained	with	 traditional	 ecological	methods	 (Ferraz	et	al.,	 2016;	Disney	et	al.,	 2018),	

the	translation	of	waveforms	or	point	clouds	into	individual-level	structure	or	dynamics	

is	 not	 always	 possible.	 It	 poses	 a	 particular	 challenge	 in	 the	 dense,	 multistoried	 and	

hyperdiverse	tropical	forests.		

It	is	here	that	the	integration	with	individual-based	models	is	a	highly	promising	

field	(Shugart	et	al.,	2015).	One	such	approach,	for	example,	allows	for	the	translation	of	

remotely	 sensed	 metrics	 into	 individual	 organisms	 via	 model	 inversion,	 as	 shown	 in	

Chapters	1	to	3	of	this	PhD.	The	TROLL-based	simulation	approach,	laid	out	in	this	work,	

naturally	incorporates	understorey	layers	that	are	otherwise	difficult	to	penetrate,	and,	

when	 coupled	 with	 physiological	 principles,	 can	 even	 rely	 on	 additional	 sources	 of	

information	–	such	as	trait	distributions	and	light	extinction	imposed	by	overtopping	–	

to	produce	narrower	estimates.	

	While	these	are	important	steps	towards	a	global	synthesis,	the	ultimate	aim	of	

individual-based	models	and	 their	 relatives	(Moorcroft	et	al.,	2001)	will	be	prediction.	

Synthesizing	 trait-based	 approaches	 with	 remotely	 sensed	 data	 and	 field	 inventories,	

they	provide	a	unique	opportunity	to	assess	how	well	we	actually	understand	forests.			
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B.	Future	improvements	for	predictive	modelling		

The	 keystone	 for	 any	 predictive	 science	 ist	 the	 testing	 of	 models	 against	 new	 data	

(Houlahan	 et	 al.,	 2017)	 and	 benchmarking	 models	 against	 each	 other	 (Fisher	 et	 al.,	

2018).	 Improved	 protocols	 and	 pattern-oriented	 modelling,	 for	 example,	 provide	

important	 routes	 to	 improved	understanding	 (Grimm	et	al.,	2010;	Grimm	&	Railsback,	

2012).	 If	models	 reproduce	and	predict	a	 large	number	of	patterns	well	 across	 scales,	

then	we	 should	be	 able	 to	be	 confident	 about	 their	 forecasting	 abilities.	What	 exactly,	

however	 constitutes	 a	 good	 prediction,	 is	 not	well-defined	 –	 apart	 from	 a	 consensus,	

that,	in	general,	the	prediction	of	patterns	should	follow	the	purposes	and	spatial	scales	

of	 the	model	 –	 i.e.	 highly	 detailed	 local	models	 should	 reproduce	well	 local	 patterns,	

Dynamic	Global	Vegetation	Models	should	reproduce	well	global	patterns.		

Due	 to	 the	 complexity	 of	 the	modelled	 systems	 and	 the	 selective	 availability	 of	

data,	 many	 models,	 including	 individual-based	 and	 gap	 models,	 often	 use	 different	

statistics	 to	 demonstrate	 their	 ability	 to	 predict	 patterns,	 rendering	 comparisons	

between	 models	 difficult.	 One	 desirable	 is	 therefore	 a	 benchmark	 of	 fundamental	

patterns	 that	 vegetation	models	 should	 reproduce	 (Kelley	 et	al.,	 2013;	 Rammig	 et	al.,	

2014).	A	good	integration	of	remotely	sensed	data	and	field	surveys	would	provide	the	

natural	counterpart	to	this	benchmarking	system	(Chave	et	al.,	2019).		

A	number	of	challenges	stand	out.	While	some	processes	such	as	competition	for	

light,	have	been	simulated	for	years	and	with	relatively	high	confidence	(Shugart,	1984;	

Purves	et	al.,	2007),	a	number	of	other	processes	are	unsatisfyingly	represented	in	most	

models.	 These	 include	 tree	 mortality	 (Bugmann	 et	 al.,	 2019),	 often	 included	 either	

empirically	or	with	 semi-mechanistic	 approaches	 (Seidl	et	al.,	 2014),	but	 rarely	 tested	

against	 empirical	 patterns,	 seed	 dispersal	 (Price	 et	 al.,	 2001)	 and	 nutrient	 cycling	
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(Prentice	et	al.,	2007).	All	of	these	areas,	together	with	hydrology,	are	also	areas	where	

the	forest	growth	simulator	TROLL	could	be	massively	improved	in	the	future.	Some	of	

these	areas	have	been	underexplored,	because	data	are	rarely	available	at	large	scales	or	

empirical	 relationships	 between	 variables	 are	 not	 well	 known	 across	 environmental	

gradients.	In	TROLL,	in	particular,	the	amount	of	sapwood	fraction,	a	crucial	component	

of	respiration	(Ryan	et	al.,	1994),	plays	an	important	role	in	determining	how	much	of	

gross	 primary	 productivity	 is	 ultimately	 made	 available	 for	 growth	 (i.e.	 net	 primary	

productivity).	 While	 its	 relationship	 with	 leaf	 area	 has	 been	 well-documented	 and	 is	

often	 used	 in	 forest	 growth	models	 of	 the	 gap	model	 tradition	 (Fyllas	 et	al.,	 2014),	 a	

better	quantification	at	the	species	and	within-species	level	would	be	highly	desirable.		

A	 much	 more	 general	 challenge	 is,	 however,	 posed	 by	 community	 dynamics.	

Plants,	 when	 regarded	 in	 their	 local	 environments,	 often	 have	 integrated	 phenotypes	

(Messier	 et	 al.,	 2017),	 i.e.	 their	 ecological	 strategies	 are	 reflected	 by	 a	 network	 of	

individual	traits	that	do	not	align	along	trait	axes,	even	if	these	axes	are	well-constrained	

globally	(Díaz	et	al.,	2016).	Furthermore,	they	are	highly	modular	and	plastic	organisms,	

with	often	 important	consequences	 for	ecosystem	functioning,	as	shown	 in	 the	PhD	at	

hand.	 Acclimation	 and	 small-scale	 variation,	 for	 example,	 even	 affects	 processes	 as	

thoroughly	 represented	 in	 vegetation	models	 as	 photosynthesis	 (Dietze,	 2014).	 Taken	

together,	 plasticity	 and	 the	 integration	 of	 phenotypic	 characteristics	 poses	 a	 range	 of	

challenges	to	modellers,	including	the	question	of	how	to	accurately	model	mechanistic	

relationships	when	underlying	traits	are	subject	to	variation.		

In	 this	 context,	 the	 relationship	between	what	constitutes	data	 for	 initialisation	

and	 what	 constitutes	 simulated	 vegetation	 dynamics	 warrants	 re-examination.	 Many	

models,	such	as	TROLL,	use	plant	traits	as	parameterization	of	species	specific	strategies	

(Maréchaux	 &	 Chave,	 2017).	 Since	 these	 traits	 are,	 however,	 not	 only	 measured	 on	
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seedlings	or	sapling,	but	also	on	adult	 individuals	–	wood	density	 in	particular	–,	 then	

the	trait	distributions	we	find	in	forest	ecosystems	are	already	the	result	of	competition,	

facilitation	 and	 plastic	 responses,	 and	 thus	 an	 emergent	 property	 of	 the	 system	 (cf.	

Chapter	4	in	this	manuscript).	While	there	are	ways	to	tackle	this	problem,	i.e.	either	by	

focussing	more	strictly	on	sapling	data	or	by	constraining	not	against	 trait	patterns	at	

initialisation,	 but	 within	 the	 already	 assembled	 community	 (i.e.	 through	 inverse	

modelling),	 this	 poses	 a	 number	 of	 fascinating	 challenges	 to	 the	 understanding	 of	

community	dynamics	via	model-based	approaches.		

	

C.	The	integration	of	predictive	science	with	society	

Although	historical	vagaries	such	as	 the	printing	press	cannot	be	dissociated	 from	the	

rise	 to	 dominance	 of	 science	 since	 the	 17th	 century,	 it	 is	 likely	 that	 the	 predictive	

component	of	scientific	activities	–	already	seen	in	lunar	calendars	and	the	computation	

of	 the	 length	 of	 daylight	 in	 early	 Mesopotamian	 astronomy	 (Rochberg,	 2011)	 –	 has	

played	an	important	role	in	making	scientific	research	such	a	prominent	component	of	

the	modern	world	 (Dear,	 2005).	 In	 gradually	merging	pre-modern	natural	 philosophy	

with	 problem-oriented	 mathematical	 calculations,	 scientific	 inquiry	 has	 become	 an	

important	 part	 of	modern	 societies,	 providing	 cognitive	 values	 such	 as	 'objectivity'	 or	

'impartiality'	 for	 human	 activity	 (Gaukroger,	 2007)1	and	 transforming	 human	 lives	

through	technology,	medical	discoveries	and	the	restructuring	of	production	processes	

and	public	policy	(Krige	&	Pestre,	1997).	

																																																								
1	Science's	dominant	status	also	seems	to	put	pressure	on	other	forms	of	knowledge.	This	can	not	only	be	
seen	 in	 academic	 disciplines	 such	 as	 sociology	 and	 political	 studies	 that	 have	 been	 under	 pressure	 to	
become	"more	scientific"	since	their	inception	(Oren,	2006),	but	also	reaches	into	the	pop-cultural	realm	
where	comic	books	or	films	recast	old	myths	and	the	supernatural	in	scientific	terms	–	turning	the	Nordic	
realm	of	the	gods	Asgard	into	a	planetoid	and	superhuman	abilities	into	genetic	mutations.		
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Planetary	challenges	such	as	the	future	of	tropical	and	non-tropical	forests	under	

climate	change	have	given	new	importance	and	responsibility	to	scientific	disciplines,	in	

particular	 to	 ecology.	 They	 thus	 also	 resuscitate	 important	 questions	 about	 science's	

role	with	regard	to	society.	

This	PhD,	 for	example,	has	 largely	 focussed	on	the	 improvement	of	a	predictive	

approach	 to	 understand	 and,	 ultimately,	 forecast	 tropical	 forest	 dynamics	 into	 the	

future.	 This	 is	 crucial	 for	 informed	 political	 decision-making	 and	 has	 important	

repercussions	 for	 societal	 change	 (Dietze	 et	 al.,	 2018).	 At	 the	 same	 time,	 science's	

principal	 mode	 of	 reasoning	 –	 the	 problem-solving,	 instrumental	 approach–,	 though	

attractive	 and	 powerful,	 does	 not	 automatically	 align	 with	 other	 forms	 of	 human	

reasoning,	such	as	ethical	and	collective	decision	making	(Habermas,	1971).	Questions	

about	societal	structures	–	What	is	a	just	distribution	of	goods?	How	do	we	want	to	live	

as	a	society?	Which	future	do	we	want	for	our	children?	–	may	be	informed	by,	but	can	

rarely	be	 transferred	 into	quantitative	reasoning	–	By	how	much	will	average	 lifespan	

increase	or	decrease?	Does	income	increase?		

On	 the	 one	 hand,	 this	 means	 that	 scientific	 insights,	 no	 matter	 how	 clear	 and	

powerful,	 do	 not	 necessarily	 translate	 into	 public	 appreciation.	 On	 the	 other	 hand,	

scientific	 approaches	 that	 turn	political	 challenges	 into	 technological	 problems	 can	be	

counterproductive,	 insofar	 as	 some	 of	 the	 global	 challenges	we	 face	 today	 have	 been	

created	by	technological	progress	in	the	first	place2.		

																																																								
2	While	science	is	a	very	complex	and	diverse	institution	that	defies	easy	categorization,	the	relationship	
between	 scientific	 theory	 and	 practice	 and	 the	 natural	 world	 that	 it	 investigates	 has	 not	 always	 been	
characterized	by	appreciation	and	curiosity	alone.	A	trend	towards	technological	dominance	can	be	traced	
throughout	the	past	two	centuries,	starting	from	Kant's	dictum	that	a	scientist	needs	to	treat	nature	as	if	
he	or	she	was	"an	appointed	judge	who	compels	witnesses	to	answer	the	questions	he	puts	to	them"(Kant,	
1787),	over	the	"divide-and-conquer"	metaphoric	that	this	PhD	itself	has	made	use	of,	and	is	still	echoed	
in	today's	"ecosystem	services"	that,	while	highlighting	important	facets	of	the	relation	between	humans	
and	their	environments,	frame	the	relation	as	one	between	a	client	and	a	service-provider.	This	link	is	not	
confined	 to	 language	 alone,	 but	 mirrored	 in	 the	 close	 relationship	 between	 science	 and	 technological	
progress,	 such	 as	 the	 rise	 of	 thermodynamics	 or	 nuclear	 energy.	 A	 particularly	 prominent	 example	 are	
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For	climate	change	and	ecological	research,	 this	means	that,	even	 if	we	develop	

models	that	reliably	predict	future	dynamcs	and	help	us	identify	technological	and	non-

technological	solutions,	societal	questions	need	to	be	incorporated	into	these	solutions.	

Large-scale	 reforestation	 projects,	 for	 example,	 are	 an	 exciting	 prospect	 to	 create	 a	

larger-scale	carbon	stock	and	generate	negative	climate	feedback	(Griscom	et	al.,	2017).	

But	 should	 we	 use	 such	 solutions,	 for	 example,	 on	 previously	 undisturbed	 grassland	

ecosystems,	 especially	 when	 the	 intactness	 of	 forests	 in	 the	 future	 cannot	 be	

guaranteed?	Similarly,	Carbon	Capture	and	Storage	(CCS),	i.e.	the	conversion	of	gaseous	

carbon	 dioxide	 into	 storeable	 carbon	 compounds	 (a	 technological	 pendant	 to	

photosynthesis),	 could	 one	 day	 provide	 a	 powerful	 engineering	 solution	 to	 reducing	

carbon	 emissions	 or	 even	 producing	 "negative	 emissions",	 i.e.	 recuperating	 past	

emissions	(Keith,	2009).	At	the	same	time,	a	substantial	part	of	current	research	is	spent	

on	creating	hydrocarbon	fuels	(Keith	et	al.,	2018),	thus	neither	storing	nor	recuperating	

carbon,	but	 re-releasing	 it.	While	 such	 technologies	would	 still	be	 carbon-neutral,	 it	 is	

not	 far-fetched	 to	 imagine	 scenarios	 in	 which	 global	 demand	 for	 fossil	 fuels	 would	

increase	 and	 such	 a	 technology,	 financed	 to	 slow	 down	 climate	 change	 by	 storing	

carbon,	would	ultimately	only	be	used	for	the	purpose	of	re-emission.	

Despite	 these	 caveats,	 it	 is	 also	 abundantly	 clear	 that	 political	 decision-making	

about	 climate	 change	and	 the	 fate	of	our	 forests	will	not	be	possible	without	 a	 strong	

predictive	science	and	a	good	understanding	of	the	ecological	systems	that	are	affected	

by	 it.	Recent	decades	have	seen	enormous	progress	 in	 this	direction	and	offer	a	 lot	of	

promise	for	future	endeavours.	We	have	now	an	increasing	number	of	metastudies	and	

large-scale	data	bases	at	our	disposal	that	showcase	global	patterns	of	plant	functioning	

and	ecology.	We	have	also	access	to	a	wide	range	of	remotely	sensed	products	across	all	
																																																																																																																																																																													
modern	 statistical	methods,	 based	 around	Monte	 Carlo	methods,	 that	were	made	 possible	 by	military-
industrial	research	on	the	atomic	bomb	(Robert	&	Casella,	2011).	
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scales	 that	 allow	 for	 the	 discovery	 and	 prediction	 of	 patterns	 globally.	 And	 finally,	 a	

large	 number	 of	 vegetation	 models	 are	 developed,	 with	 increasingly	 detailed	

representations	of	ecosystem	functioning	that	can	integrate	these	data,	and	provide	an	

important,	if	not	the	only,	way	forward	to	understand	and	predict	climate	change.		

While	it	 is	unclear	whether	we	will	ever	be	able	to	predict	the	exact	patterns	of	

trees	on	the	"Indian	ruins"	that	Darwin	observed,		we	might	at	least	develop	the	tools	to	

make	it	possible	for	future	generations	to	still	wonder	how	the	trees	grow	on	the	ruins	

that	 the	 21st	 century	has	 left	 behind,	 how	 they	disperse	 and	 interact	with	 each	 other,	

how	they	evolve	over	centuries	and	milennia,	and	how	they	come	together	with	all	the	

other	organisms	and	human	beings	to	form	the	biosphere.				
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Inferring	the	structure	and	dynamics	of	tropical	rain	forests	with	individual-based	forest	
growth	models	
	
Climate	change	presents	society	and	science	with	a	challenge	that	goes	beyond	the	temporal	and	
spatial	 scales	 of	 most	 practical	 problems.	 It	 therefore	 requires	 approaches	 that	 reflect	 the	
complexity	 of	 the	 Earth's	 system.	 This	 holds	 particularly	 true	 for	 the	 biosphere	 and	 forest	
ecosystems,	one	of	the	most	important	sources	of	uncertainty	in	climate	projections.	Concerted	
data	collection	efforts,	such	as	forest	inventories,	trait	data	bases,	and	new	technologies,	such	as	
remote	sensing,	have	considerably	increased	our	ability	to	observe	and	analyze	the	current	state	
of	 the	Earth's	vegetation.	However,	 to	extrapolate	 findings	 into	 the	 future	and	understand	 the	
feedbacks	between	vegetation	and	climate	change,	models	are	needed	that	assimilate	these	data	
and	 translate	 them	 into	 ecosystem	 dynamics.	Mechanistic	 and	 individual-based	 forest	models	
are	 a	 particular	 promising	 approach,	 since	 they	 simulate	 dynamics	 bottom-up,	 reconstruct	
forests	 tree	 by	 tree,	 and	 are	 thus	 able	 to	 predict	 patterns	 across	 scales.	 This	 PhD	 further	
develops	the	trait-	and	individual-based	forest	growth	simulator	TROLL,	including	intraspecific	
variation	and	plasticity	 in	 tree	growth,	derives	a	new	method	 to	 translate	Airborne	Lidar	data	
into	 virtual	 forest	 inventories	 and	uses	 it	 to	 infer	 forest	 structure	 and	 ecosystem	dynamics	 in	
tropical	 rain	 forests.	 Finally,	 in	 line	with	 TROLL's	 trait-based	 approach,	 an	 update	 to	 a	 global	
trait	 base,	 the	 Global	 Wood	 Density	 Database	 is	 presented,	 exploring	 the	 contribution	 of	
evolutionary	lineages	to	wood	density	variation	and	mapping	wood	density	across	the	globe.	
	
Key	 words:	 individual-based	 modelling,	 biomass,	 wood	 density,	 remote	 sensing,	 ecosystem	
functioning	
	
	
Inférence	 de	 la	 structure	 et	 dynamique	 des	 forêts	 tropicales	 humides	 avec	 un	 modèle	
individu-centré	
	
Le	changement	climatique	constitue	un	défi	qui	dépasse	les	échelles	temporelles	et	spatiales	de	
la	plupart	des	problèmes.	Il	nécessite	donc	des	approches	qui	reflètent	la	complexité	du	système	
terrestre.	 Cela	 est	 particulièrement	 vrai	 pour	 la	 biosphère	 et	 les	 écosystèmes	 forestiers,	 l'une	
des	principales	sources	d'incertitude	dans	 les	projections	climatiques.	Les	efforts	concertés	de	
collecte	 de	 données,	 tels	 que	 les	 inventaires	 forestiers,	 les	 bases	 de	 données	 des	 traits	 et	 les	
nouvelles	technologies,	telles	que	la	télédétection,	ont	considérablement	accru	notre	capacité	à	
observer	 et	 à	 analyser	 l'état	 actuel	 de	 la	 végétation	 de	 la	 Terre.	 Cependant,	 pour	 estimer	 les	
développements	 futurs	 et	 comprendre	 les	 feedbacks	 entre	 la	 végétation	 et	 le	 changement	
climatique,	 des	 modèles	 sont	 nécessaires	 pour	 assimiler	 ces	 données	 et	 les	 traduire	 en	
dynamique	 des	 écosystèmes.	 Les	 modèles	 forestiers	 mécanistes	 et	 individu-centrés	 sont	 une	
approche	particulièrement	prometteuse,	 car	 ils	 simulent	 la	dynamique	 forestière	 "bottom-up",	
reconstruisent	 les	 forêts	 arbre	 par	 arbre,	 et	 sont	 donc	 capables	 de	 prédire	 des	 patrons	 à	
différentes	 échelles.	 Cette	 thèse	 continue	 le	 développement	 du	 simulateur	 de	 dynamique	
forestière	TROLL,	rajoute	la	variation	intraspécifique	et	la	plasticité	de	la	croissance	des	arbres,	
dérive	 une	 nouvelle	 méthode	 pour	 traduire	 les	 données	 de	 télédétection	 en	 inventaires	
forestiers	 virtuels	 et	 l'utilise	 pour	 inférer	 la	 structure	 forestière	 et	 la	 dynamique	 des	
écosystèmes	dans	les	régions	tropicales.	Enfin,	conformément	à	l'approche	de	TROLL,	basée	sur	
les	 traits,	 une	mise	 à	 jour	 d'une	 base	 mondiale	 de	 traits,	 la	 base	 de	 données	 mondiale	 de	 la	
densité	 du	 bois	 est	 présentée,	 explorant	 la	 contribution	 des	 changements	 évolutives	 et	
cartographiant	la	densité	du	bois	à	travers	le	monde.	
	
Mots-clés:	modèle	individu-centré,	biomasse,	densité	du	bois,	télédétection,	fonctionnement	des	
ecosystèmes	
	


