V. Bedel, A. Lonjon, É. Dantras, and M. Bouquet, Influence of silver nanowires on thermal and electrical behaviors of a poly(epoxy) coating for aeronautical application: Influence of silver nanowires on thermal and electrical behaviors of a poly(epoxy) coating for aeronautical application, Journal of Applied Polymer Science, vol.135, p.46829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01962096

A. Lonjon, L. Laffont, P. Demont, D. E. Lacabanne, and C. , New Highly Conductive Nickel Nanowire-Filled P(VDF-TrFE) Copolymer Nanocomposites: Elaboration and Structural Study The, Journal of Physical Chemistry C, vol.113, pp.12002-12008, 2009.

L. Cortes, A. Lonjon, E. Dantras, and C. Lacabanne, High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, Journal of Non-Crystalline Solids, vol.391, pp.106-117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00976576

L. Rivière, A. Lonjon, E. Dantras, C. Lacabanne, O. P. Gleizes et al., Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites, European Polymer Journal, vol.85, pp.115-140, 2016.

A. Lonjon, L. Laffont, P. Demont, D. E. Lacabanne, and C. , Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites, Journal of Physics D: Applied Physics, vol.43, p.345401, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569688

S. Kirkpatrick, Percolation and Conduction Reviews of Modern Physics, vol.45, pp.574-88, 1973.

D. Stauffer and A. Aharony, Percolation Theory, vol.9, 1994.

I. Balberg, N. Binenbaum, and N. Wagner, Percolation Thresholds in the Three-Dimensional Sticks System Physical Review Letters, vol.52, pp.1465-1473, 1984.

L. Ramachandran, A. Lonjon, P. Demont, D. E. Lacabanne, and C. , Conduction mechanisms in P(VDF-TrFE)/gold nanowire composites: tunnelling and thermally-activated hopping process near the percolation threshold, Materials Research Express, vol.3, p.85027, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471564

N. Mott, Electrons in disordered structures Advances in Physics, vol.16, pp.49-144, 1967.

S. Baranovski, Charge Transport in Disordered Solids with Applications in Electronics, 2006.

G. Teyssedre and C. Laurent, Charge transport modeling in insulating polymers: from molecular to macroscopic scale, IEEE Transactions on Dielectrics and Electrical Insulation, vol.12, pp.857-75, 2005.

G. Couderchon, Alliages fer-nickel et fer-cobalt -Propriétés magnétiques 27, 1994.

P. Hartemann, Effets et matériaux magnétostrictifs 20, 1999.

O. Geoffroy, Physique des matériaux magnétiques 23, 2006.

T. Saito, H. Adachi, T. Wada, and H. Adachi, Pulsed-Laser Deposition of Ferroelectric NaNbO 3 Thin Films Japanese, Journal of Applied Physics, vol.44, pp.6969-72, 2005.

Y. Yoneda, R. Aoyagi, and D. Fu, Local structure analysis of NaNbO 3 and AgNbO 3 modified by Li substitution, Japanese Journal of Applied Physics, vol.55, pp.10-14, 2016.

T. Nguyen, Elaboration de composites polymère ferroélectriques/fils submicroniques ferromagnétiques : analyse des propriétés magnétoélectriques, 2014.

J. Dubois, Propriétés diélectriques des plastiques, 2001.

M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish et al., BaTiO 3 -based piezoelectrics: Fundamentals, current status, and perspectives, Applied Physics Reviews, vol.4, p.41305, 2017.

B. Guiffard, Elaboration et caractérisation de céramiques ferroélectriques de ytpe PZT fluoré, 1999.

J. Capsal, Elaboration et analyse des propriétés physiques de nanocomposites hybrides ferroelectriques, 2008.

M. Villafuerte-castrejón, E. Morán, A. Reyes-montero, R. Vivar-ocampo, P. Rea-lópez et al., Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge Materials, vol.9, p.21, 2016.

A. Cornogolub, Nouvelles structures à polymères électroactifs, 2016.

N. Hernández, V. González-gonzález, I. Dzul-bautista, N. Ornelas-soto, J. Barandiarán et al., Electrospun poly(vinylidene fluoridetrifluoroethylene) based flexible magnetoelectric nanofibers, European Polymer Journal, vol.109, pp.336-376, 2018.

K. Nakamura and Y. Wada, Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride), J. Polym. Sci. A-2 Polym. Phys, vol.9, pp.161-73, 1971.

P. Martins, A. Lopes, L. , and S. , Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications Progress in, Polymer Science, vol.39, pp.683-706, 2014.

G. Neto, J. , O. O-n, and R. Faria, Influence of phase transitions on the spontaneous voltage in P(VDF/TrFE) copolymers: Applied Physics A Materials Science & Processing, vol.71, pp.267-70, 2000.

, Curie P 1894 Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, Journal de Physique Théorique et Appliquée, vol.3, pp.393-415

V. Vleck and J. , On Dielectric Constants and Magnetic Susceptibilities in the new Quantum Mechanics Part I. A General Proof of the Langevin-Debye Formula Physical Review, vol.29, pp.727-771, 1927.

D. Astrov and . Effect, CHROMIUM OXIDE 5

V. Folen, G. Rado, and E. Stalder, Anisotropy of the Magnetoelectric Effect in Cr 2 O 3, Physical Review Letters, vol.6, pp.607-615, 1961.

W. Brown, R. Hornreich, and S. Shtrikman, Upper Bound on the Magnetoelectric Susceptibility Physical Review, vol.168, pp.574-581, 1968.

S. Suryanarayana, Bulletin of Materials Science, vol.17, pp.1259-70, 1994.

G. Velleaud, M. Mercier, and . Ferrite, , vol.44, p.5

T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima et al., Magnetic control of ferroelectric polarization, Nature, vol.426, pp.55-63, 2003.

F. Bouree, J. Baudour, E. Elbadraoui, J. Musso, L. C. Rousset et al., Crystal and magnetic structure of piezoelectric, ferrimagnetic and magnetoelectric aluminium iron oxide FeAlO 3 from neutron powder diffraction, Acta Crystallographica Section B Structural Science, vol.52, pp.217-239, 1996.

P. Martins and S. Lanceros-méndez, Polymer-Based Magnetoelectric Materials Advanced Functional Materials, vol.23, pp.3371-85, 2013.

T. Harsh, Mapping Local Manifestations of the Strain Mediated Magnetoelectric Effect in Composites Thèse, 2015.

P. Guzdek, M. Sikora, ?. Góra, and K. Cz, The Magnetoelectric Effect of a Ni0.3Zn0.62Cu0.08Fe2O4 -PbFe0.5Nb0.5O3 Multilayer Composite Archives of, Metallurgy and Materials, vol.59, pp.1011-1016, 2014.

P. Guzdek, M. Sikora, ?. Góra, and K. Cz, Magnetic and magnetoelectric properties of nickel ferrite-lead iron niobate relaxor composites, Journal of the European Ceramic Society, vol.32, pp.2007-2018, 2012.

J. Ryu, S. Priya, A. Carazo, U. K. Kim, and H. , Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites, Journal of the American Ceramic Society, vol.84, pp.2905-2913, 2001.

J. Zhai, N. Cai, L. Liu, Y. Lin, and C. Nan, Dielectric behavior and magnetoelectric properties of lead zirconate titanate/Co-ferrite particulate composites, Materials Science and Engineering: B, vol.99, pp.329-360, 2003.

N. Cai, J. Zhai, C. Nan, L. Y. Shi, and Z. , Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites, Physical Review B, vol.68, 2003.

J. Zhang, J. Dai, L. So, C. Sun, C. Lo et al., The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0-3 nanocomposites, Journal of Applied Physics, vol.105, p.54102, 2009.

R. Belouadah, L. Seveyrat, D. Guyomar, B. Guiffard, and F. Belhora, Magnetoelectric coupling in Fe 3 O 4 /P(VDF-TrFE) nanocomposites, Sensors and Actuators A: Physical, vol.247, pp.298-306, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01516764

C. Nan, L. M. Huang, and J. , Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers Physical Review B 63, 2001.

R. Gonçalves, P. Martins, D. Correia, V. Sencadas, J. Vilas et al., Development of magnetoelectric CoFe 2 O 4 /poly(vinylidene fluoride) microspheres RSC Advances 5, pp.35852-35859, 2015.

P. Martins, C. Costa, L. , and S. , Nucleation of electroactive ?phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites, Applied Physics A, vol.103, pp.233-240, 2011.

B. Mandal, K. Vasundhara, E. Abdelhamid, G. Lawes, H. Salunke et al., Improvement of Magnetodielectric Coupling by Surface Functionalization of Nickel Nanoparticles in Ni and Polyvinylidene Fluoride Nanohybrids The, Journal of Physical Chemistry C, vol.118, pp.20819-20844, 2014.

P. Martins, X. Moya, L. Phillips, S. Kar-narayan, N. Mathur et al., Linear anhysteretic direct magnetoelectric effect in Ni 0.5 Zn 0.5 Fe 2 O 4 /poly(vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites, Journal of Physics D: Applied Physics, vol.44, p.482001, 2011.

T. Nguyen, L. Laffont, J. Capsal, P. Cottinet, A. Lonjon et al., Magnetoelectric properties of nickel nanowires-P(VDF-TrFE) composites Materials Chemistry and Physics, vol.153, pp.195-201, 2015.

C. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye et al., A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer, Applied Physics Letters, vol.81, pp.3831-3834, 2002.

D. Carponcin, Compsoite hybride à matrice polymère pour l'amortissement de vibrations par transduction-dissipation locale, 2012.

J. Kaleta, D. Lewandowski, and D. Student, Rafal Mech Identification of Magnetostrictive Composites at Low Frequencies of Magnetic Field Changes FME Transactions, p.40, 2012.

, Bessaguet C Composite hybride à matrice polymère PEKK / Niobate de sodium / graphène ou noir de carbone, pour un amortissement vibratoire passif par transduction-dissipation locale

C. Behera, R. Choudhary, and P. Das, Development of Ni-Ferrite-Based PVDF Nanomultiferroics Journal of Electronic Materials, vol.46, pp.6009-6031, 2017.

A. Kumar and K. Yadav, Magnetic, local ferroelectricity and magnetodielectric properties of NiFe 2 O 4 -poly (vinylidene-fluoride)-BaTiO 3 composite film Materials Research Express, vol.3, p.46401, 2016.

A. Ahlawat, S. Satapathy, M. Shirolkar, J. Li, A. Khan et al., Tunable Magnetoelectric Nonvolatile Memory Devices Based on SmFeO, vol.3, pp.3196-203, 2018.

K. Chau, Y. Wong, and F. Shin, Magnetoelectric effect of polymer electrolyte composites with Terfenol-D and lead zirconate titanate inclusions, Applied Physics Letters, vol.94, p.202902, 2009.

A. Gupta and R. Chatterjee, Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in threephase BaTiO3-CoFe2O4-poly(vinylidene-fluoride) composite, Journal of Applied Physics, vol.106, p.24110, 2009.

D. Guyomar, B. Guiffard, R. Belouadah, and L. Petit, Journal of Applied Physics, vol.104, p.74902, 2008.

H. Lin, Y. Gao, X. Wang, T. Nan, M. Liu et al., Integrated Magnetics and Multiferroics for Compact and Power-Efficient Sensing, Power, RF, and Microwave Electronics IEEE Transactions on Magnetics, vol.52, pp.1-8, 2016.

S. Reis, N. Castro, M. Silva, V. Correia, J. Rocha et al., Fabrication and Characterization of High-Performance Polymer-Based Magnetoelectric DC Magnetic Field Sensors Devices, IEEE Transactions on Industrial Electronics, vol.64, pp.4928-4962, 2017.

N. Castro, S. Reis, M. Silva, V. Correia, S. Lanceros-mendez et al., Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect, Smart Materials and Structures, vol.27, p.65012, 2018.

M. Bibes and A. Barthélémy, Towards a magnetoelectric memory, Multiferroics Nature Materials, vol.7, pp.425-431, 2008.

M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta et al., Tunnel junctions with multiferroic barriers, Nature Materials, vol.6, pp.296-302, 2007.

C. Brosseau and V. Castel, Extrinsic Magnetoelectricity in Barium Titanate/Nickel Nanocomposites: Effect of Compaction Pressure on, Interfacial Anisotropy Spectroscopy Letters, vol.45, pp.471-477, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02289777

V. Castel, C. Brosseau, B. Youssef, and J. , Magnetoelectricity in Piezoelectric/Magnetostrictive Nanocomposites at Microwave Frequencies, IEEE Trans. Magn, vol.45, pp.4321-4325, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01946219

V. Castel, C. Brosseau, B. Youssef, and J. , Magnetoelectric effect in BaTiO3/Ni particulate nanocomposites at microwave frequencies, Journal of Applied Physics, vol.106, p.64312, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01946218

J. Lou, D. Reed, M. Liu, and N. Sun, Electrostatically tunable magnetoelectric inductors with large inductance tunability Applied Physics Letters, vol.94, p.112508, 2009.

P. Li, Y. Wen, P. Liu, L. X. Jia, and C. , A magnetoelectric energy harvester and management circuit for wireless sensor network, Sensors and Actuators A: Physical, vol.157, pp.100-106, 2010.

F. Narita and M. Fox, A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications Advanced Engineering Materials, vol.20, 2018.

G. Teyssedre, A. Bernes, and C. Lacabanne, PVDF Journal of Polymer Science Part B: Polymer Physics, vol.31, pp.2027-2061, 1993.

W. Mead, A. Zachariades, S. T. Porter, and R. , Solid State Extrusion of Poly(vinylidene fluoride). 1. Ram and Hydrostatic Extrusion Macromolecules, vol.12, pp.473-481, 1979.

S. Havriliak, J. Negami, and S. , A complex plane analysis of ?-dispersions in some polymer systems, Journal of Polymer Science Part C: Polymer Symposia, vol.14, pp.99-117, 2007.

S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers Polymer, vol.8, pp.161-210, 1967.

P. Steeman and J. Van-turnhout, A numerical Kramers-Kronig transform for the calculation of dielectric relaxation losses free from Ohmic conduction losses Colloid and Polymer Science, vol.275, pp.106-121, 1997.

A. Doolittle, Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space Journal of Applied Physics, vol.22, pp.1471-1476, 1951.

A. Jonscher, Universal" dielectric response, Nature, vol.267, pp.673-682, 1977.

J. Lenz, A review of magnetic sensors Proceedings of the IEEE, vol.78, pp.973-89, 1990.

M. Kumar, S. A. Kumar, G. Suryanarayana, and S. , BiFeO3-BaTiO3 solid solutions, p.10

, Pousthomis M De la synthèse chimique de nanoparticules aux matériaux magnétiques nanostructurés: une approche pour des aimants permanents sans terre rare

D. Ung, G. Viau, C. Ricolleau, F. Warmont, P. Gredin et al., CoNi Nanowires Synthesized by Heterogeneous Nucleation in Liquid Polyol Advanced Materials, vol.17, pp.338-382, 2005.

D. Ung, Y. Soumare, N. Chakroune, G. Viau, M. Vaulay et al., Growth of Magnetic Nanowires and Nanodumbbells in Liquid Polyol Chemistry of Materials, vol.19, pp.2084-94, 2007.

J. Zhang, X. Qin, T. B. Zeng, H. Xu, and X. , The Dependence of Magnetic Properties on Diameters of One-Dimensional Nickel Nanostructures, IEEE Transactions on Magnetics, vol.50, pp.1-4, 2014.

M. Alagiri, C. Muthamizhchelvan, and S. Ponnusamy, Structural and magnetic properties of iron, Synthetic Metals, vol.161, pp.1776-80, 2011.

F. Fiévet, S. Ammar-merah, R. Brayner, F. Chau, M. Giraud et al., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions Chemical Society Reviews, vol.47, pp.5187-233, 2018.

A. Lonjon, P. Demont, D. E. Lacabanne, and C. , Low filled conductive P(VDF-TrFE) composites: Influence of silver particles aspect ratio on percolation threshold from spheres to nanowires, Journal of Non-Crystalline Solids, vol.358, pp.3074-3082, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864886

M. Ishijima, C. Huaman, J. Yokoyama, S. Shinoda, K. Uchikoshi et al., In situ spectroscopic studies of the one-pot synthesis of composition-controlled Cu-Ni nanowires with enhanced catalytic activity, New J. Chem, vol.42, pp.13044-53, 2018.

J. Qin, J. Nogués, M. Mikhaylova, A. Roig, J. Muñoz et al., Differences in the Magnetic Properties of Co, Fe, and Ni 250?300 nm Wide Nanowires Electrodeposited in Amorphous Anodized Alumina Templates, Chem. Mater, vol.17, pp.1829-1863, 2005.

J. Liao, H. Li, J. Liang, Y. Feng, X. Zhang et al., Facile and large-scale fabrication of Ni nanochains by a chemical reduction method with the assistance of external magnetic field, Nano, vol.08, p.1350005, 2013.

S. Tang, S. Vongehr, H. Ren, and X. Meng, Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties, CrystEngComm, vol.14, p.7209, 2012.

H. Wang, M. Li, X. Li, K. Xie, and L. Liao, Preparation and thermal stability of nickel nanowires via self-assembly process under magnetic field, Bulletin of Materials Science, vol.38, pp.1285-1294, 2015.

R. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji et al., Designed synthesis of cobalt and its alloys by polyol process, Journal of Solid State Chemistry, vol.180, pp.3008-3026, 2007.

K. Takahashi, S. Yokoyama, T. Matsumoto, C. Huaman, J. Kaneko et al., Towards a designed synthesis of metallic nanoparticles in polyols -elucidation of the redox scheme in a cobalt-ethylene glycol system, New J. Chem, vol.40, pp.8632-8674, 2016.

J. Wang, L. Zhang, P. Liu, T. Lan, J. Zhang et al., Nano-Micro Letters, vol.2, 2010.

G. Goh, F. Lange, S. Haile, and C. Levi, Hydrothermal synthesis of KNbO 3 and NaNbO 3 powders, J. Mater. Res, vol.18, pp.338-383, 2003.

H. Zhu, Z. Zheng, X. Gao, Y. Huang, Z. Yan et al., Structural Evolution in a Hydrothermal Reaction between Nb 2 O 5 and NaOH Solution: From Nb 2 O 5 Grains to Microporous Na 2 Nb 2 O 6 · 2 / 3 H 2 O Fibers and NaNbO 3 Cubes, J. Am. Chem. Soc, vol.128, pp.2373-84, 2006.

C. David, J. Laffont, L. , D. E. Lacabanne, and C. , Piezoelectric properties of polyamide 11/NaNbO 3 nanowire composites, J. Phys. D: Appl. Phys, vol.45, p.415305, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00822238

Y. Jiao, L. Deng, S. Yang, and P. Zhang, Cleaner preparation of poly(vinylidene fluoride)/barium titanate composites: Thermal, mechanical, and dielectric properties and relaxation dynamics: Cleaner preparation of poly(vinylidene fluoride)/barium titanate composites: Thermal, mechanical, and dielectric properties and relaxation dynamics, J. Appl. Polym. Sci, vol.136, p.47254, 2019.

Y. Mamunya, V. Davydenko, P. P. Lebedev, and E. , European Polymer Journal, vol.11, 2002.

A. Maaroufi, K. Haboubi, E. Amarti, A. Carmona, and F. , Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders, Journal of Materials Science, vol.39, pp.265-70, 2004.

I. Balberg, C. Anderson, A. S. Wagner, and N. , Excluded volume and its relation to the onset of percolation Physical Review B, vol.30, pp.3933-3976, 1984.

A. Philipse and A. Wierenga, On the Density and Structure Formation in Gels and Clusters of Colloidal Rods and Fibers Langmuir, vol.14, pp.49-54, 1998.

T. Nguyen, Q. Cortes, L. Lonjon, A. Dantras, E. Lacabanne et al., High conductive Ag nanowire-polyimide composites: Charge transport mechanism in thermoplastic thermostable materials, Journal of Non-Crystalline Solids, vol.385, pp.34-43, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01218529

S. Chisca, Dielectric behavior of some aromatic polyimide films, European Polymer Journal, vol.12, 2011.

C. Angell, Relaxation in liquids, polymers and plastic crystalsstrong/fragile patterns and problems Journal of Non-Crystalline Solids, 1991.

L. Ramachandran, Comportement Électrique Large Bande des Composites Polymère -Fils Submicroniques d'Or : Corrélation avec la Structure et les Propriétés Mécaniques, 2017.

C. Chanmal and J. Jog, Dielectric relaxations in PVDF/BaTiO3 nanocomposites Express Polym, Lett, vol.2, pp.294-301, 2008.

H. Tang, Z. Zhou, and H. Sodano, Relationship between BaTiO 3 Nanowire Aspect Ratio and the Dielectric Permittivity of, Nanocomposites ACS Appl. Mater. Interfaces, vol.6, pp.5450-5455, 2014.

S. Nayak, T. Chaki, and D. Khastgir, Development of Flexible Piezoelectric Poly(dimethylsiloxane)-BaTiO 3 Nanocomposites for Electrical Energy Harvesting Ind, Eng. Chem. Res, vol.53, pp.14982-92, 2014.

D. Carponcin, E. Dantras, J. Dandurand, G. Aridon, F. Levallois et al., Electrical and Piezoelectric Behavior of Polyamide/PZT/CNT, Multifunctional Nanocomposites Advanced Engineering Materials, vol.16, pp.1018-1043, 2014.

Q. Xiao, L. Li, Q. Zhang, B. , M. Chen et al., Polyvinylidene fluoride-modified BaTiO3 composites with high dielectric constant and temperature stability, Ceramics International, vol.39, pp.3-7, 2013.

C. Sirisathitkul, P. Jantaratana, and N. Muensit, Dielectric and magnetic properties of polyvinylidene fluoride polymer composites highly loaded with nickel Science and Engineering of Composite Materials 19, 2012.

H. Denver, T. Heiman, E. Martin, A. Gupta, and D. Borca-tasciuc, Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties, Journal of Applied Physics, vol.106, p.64909, 2009.

H. Ranjan, U. Mahto, K. Chandra, A. Kulkarni, P. A. Prasad et al., Electrical and magnetic properties of 0-3 Ba(Fe1? 2Nb1? 2)O 3 /PVDF composites, Journal of Advanced Dielectrics, vol.07, p.1750036, 2017.

G. Zhu, J. Zhang, X. Luo, and Y. X. , Microscopic characterization of polarization fatigue in ferroelectric vinylidene fluoride and trifluoroethylene copolymer films, Organic Electronics, vol.10, pp.753-60, 2009.

G. Zhu, X. Luo, J. Zhang, Y. Gu, and Y. Jiang, Electrical fatigue in ferroelectric P(VDF-TrFE) copolymer films, IEEE Trans. Dielect. Electr. Insul, vol.17, pp.1172-1179, 2010.

I. Guy, A. Limbong, Z. Zheng, and D. Das-gupta, Polarization fatigue in ferroelectric polymers, IEEE Trans. Dielect. Electr. Insul, vol.7, pp.489-92, 2000.

A. Roggero, E. Dantras, and C. Lacabanne, Poling influence on the mechanical properties and molecular mobility of highly piezoelectric P(VDF-TrFE) copolymer, J. Polym. Sci. Part B: Polym. Phys, vol.55, pp.1414-1436, 2017.

A. Lonjon, P. Demont, D. E. Lacabanne, and C. , Mechanical improvement of P(VDF-TrFE) /nickel nanowires conductive nanocomposites: Influence of particles aspect ratio, Journal of Non-Crystalline Solids, vol.358, pp.236-276, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00837755

T. Furukawa, K. Ishida, and E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics, Journal of Applied Physics, vol.50, pp.4904-4916, 1979.

P. Martins, &. Kolen, V. Yu, J. Rivas, L. et al., Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites ACS Applied Materials & Interfaces, vol.7, pp.15017-15039, 2015.

C. Bessaguet, E. Dantras, C. Lacabanne, C. M. Michon, and G. , Piezoelectric and mechanical behavior of NaNbO3/PEKK lead-free nanocomposites, Journal of Non-Crystalline Solids, vol.459, pp.83-90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481093

Y. Lin, N. Cai, J. Zhai, G. Liu, and N. , Giant magnetoelectric effect in multiferroic laminated composites, Phys. Rev. B, vol.72, p.12405, 2005.

M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys, vol.38, p.123, 2005.