A. Adler, L. Mola-velasco, S. M. Rosso, P. West, and A. G. , , 2011.

, Wikipedia Vandalism Detection : Combining Natural Language, Metadata, and Reputation Features, vol.6609, p.277288

A. L. Ali, F. Schmid, R. Al-salman, and T. Et-kauppinen, Ambiguity and plausibility : Managing classication quality in volunteered geographic information, Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems -SIGSPATIAL '14, p.143152, 2014.

J. Anderson, R. Soden, B. Keegan, L. Palen, and K. M. Anderson, The crowd is the territory : Assessing quality in peer-produced spatial data during disasters, International Journal of HumanComputer Interaction, vol.34, issue.4, p.310, 2018.

V. Antoniou and A. Skopeliti, Measures and Indicators of VGI Quality : An Overview. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015.

V. Antoniou, A. Skopeliti, G. Foody, L. See, S. Fritz et al., The Impact of the Contribution Microenvironment on Data Quality : The Case of OSM, 2017.

N. Audebert, B. L. Saux, and S. Lefevre, Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), p.15521560, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523573

A. Ballatore, Defacing the Map : Cartographic Vandalism in the Digital Commons, The Cartographic Journal, vol.51, issue.3, p.214224, 2014.

A. Ballatore, A. Zipf, S. I. Fabrikant, M. Raubal, M. Bertolotto et al., A Conceptual Quality Framework for Volunteered Geographic Information, éditeurs : Spatial Information Theory, vol.9368, p.89107, 2015.

C. Barrington-leigh and A. Millard-ball, The world's user-generated road map is more than 80% complete, PLOS ONE, vol.12, issue.8, p.180698, 2017.

C. Barron, P. Neis, and A. Zipf, A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis, Transactions in GIS, vol.18, issue.6, p.877895, 2014.

F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E, vol.89, p.32804, 2014.

M. Batton-hubert, F. Pinet, M. Batton-hubert, E. Desjardin, and F. Pinet, Formalisms and Representations of Imperfect Geographic Objects, vol.1, p.73103, 2019.
URL : https://hal.archives-ouvertes.fr/emse-02267373

D. Bégin, R. Devillers, and S. Roche, Assessing Volunteered Geographic Information (VGI) Quality Based on Contributors' Mapping Behaviours, 8th International Symposium on Spatial Data Quality, vol.149, p.154, 2013.

D. Bégin, R. Devillers, S. Roche, J. Miller, D. O'sullivan et al., The Life Cycle of Volunteered Geographic Information (VGI) Contributors : The OpenStreetMap Example, éditeurs : Short Paper Proceedings of GIScience 2016, p.912, 2016.

D. Bégin, R. Devillers, and S. Roche, The life cycle of contributors in collaborative online communities -the case of OpenStreetMap, International Journal of Geographical Information Science, vol.32, issue.8, p.16111630, 2018.

M. Berlingerio, M. Coscia, and F. Giannotti, Finding and Characterizing Communities in Multidimensional Networks, Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference On, pp.490-494, 2011.

B. Bischke, P. Helber, J. Folz, D. Borth, and A. Dengel, Multi-Task Learning for Segmentation of Building Footprints with Deep Neural Networks, 2017.

M. Bishr and K. Janowicz, Can we Trust Information ? -The Case of Volunteered Geographic Information, Towards Digital Earth : Search, Discover and Share Geospatial Data, Workshop at Future Internet Symposium, 2010.

V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics : Theory and Experiment, issue.10, p.10008, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01146070

J. Brans and B. Et-mareschal, Promethee Methods. In Multiple Criteria Decision Analysis : State of the Art Surveys, vol.78, p.163186, 2005.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classication and Regression Trees, Biometrics, vol.40, issue.3, p.874, 1984.

P. Bródka, A. Chmiel, M. Magnani, and G. Ragozini, Quantifying layer similarity in multiplex networks : A systematic study, Royal Society Open Science, vol.5, issue.8, p.171747, 2018.

M. A. Brovelli, M. Minghini, M. Molinari, and P. Mooney, Towards an Automated Comparison of OpenStreetMap with Authoritative Road Datasets, Transactions in GIS, vol.21, issue.2, p.191206, 2017.

M. A. Brovelli and G. Zamboni, A New Method for the Assessment of Spatial Accuracy and Completeness of OpenStreetMap Building Footprints, ISPRS International Journal of Geo-Information, vol.7, issue.8, p.289, 2018.

B. Bucher, M. Brasebin, E. Buard, E. Grosso, S. Mustière et al., GeOxygene : Built on Top of the Expertise of the French NMA to Host and Share Advanced GI Science Research Results, Bocher, E. et Neteler, M., éditeurs : Geospatial Free and Open Source Software in the 21st Century, p.2133, 2012.

N. R. Budhathoki, Z. Nedovic-budic, and B. Bruce, An Interdisciplinary Frame for Understanding Volunteered Geographic Information, Geomatica, vol.64, issue.1, p.1126, 2010.

R. Castro, A. Tierra, M. Luna, H. Adeli, L. P. Reis et al., Assessing the Horizontal Positional Accuracy in OpenStreetMap : A Big Data Approach, éditeurs : New Knowledge in Information Systems and Technologies, p.513523, 2019.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection : A survey, ACM Computing Surveys, vol.41, issue.3, p.158, 2009.

A. Chehreghan and R. Et-ali-abbaspour, An evaluation of data completeness of VGI through geometric similarity assessment, International Journal of Image and Data Fusion, vol.9, issue.4, p.319337, 2018.

J. Chen and A. Zipf, Deep Learning with Satellite Images and Volunteered Geographic Information, Geospatial Data Science Techniques and Applications, vol.1, p.274, 2017.

S. C. Chin, W. N. Street, P. Srinivasan, and D. Et-eichmann, Detecting Wikipedia vandalism with active learning and statistical language models, Proceedings of the 4th Workshop on Information Credibility, WICOW '10, p.310, 2010.

C. Claramunt and M. Thériault, Toward semantics for modelling spatiotemporal processes within GIS, Advances in GIs Research I, p.2743, 1996.

A. Clauset, M. Newman, and C. Moore, Finding community structure in very large networks, Physical Review E, vol.70, issue.6, p.66111, 2004.

S. Cohen, Property Destruction : Motives and Meanings, p.2353, 1973.

D. J. Coleman, Y. Geogiadou, and J. Labonte, Volunteered Geographic Information : The Nature and Motivation of Produsers, International Journal of Spatial Data Infrastructures Research, vol.4, pp.332-358, 2010.

A. Comber, P. Mooney, R. S. Purves, D. Rocchini, and A. Walz, Crowdsourcing : It Matters Who the Crowd Are. The Impacts of between Group Variations in Recording Land Cover, PLOS ONE, vol.11, issue.7, p.158329, 2016.

B. Costes, Vers la construction d'un référentiel géographique ancien : un modèle de graphe agrégé pour intégrer, qualier et analyser des réseaux géohistoriques, 2016.

D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher et al., Inferring social ties from geographic coincidences, Proceedings of the National Academy of Sciences, vol.107, issue.52, p.2243622441, 2010.

F. Crettaz-de-roten and J. Helbling, Données manquantes et aberrantes : le quotidien du statisticien analyste de données. Revue de Statistique Appliquée, vol.44, p.12, 1996.

F. D'antonio, P. Fogliaroni, and T. Et-kauppinen, VGI Edit History Reveals Data Trustworthiness and User Reputation, Proceedings of the 17th AGILE Conference on Geographic Information Science, 2014.

L. C. Degrossi, J. P. De-albuquerque, R. D. Rocha, and A. Zipf, A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information, Transactions in GIS, vol.22, issue.2, p.542560, 2018.

H. Dorn, T. Törnros, and A. Zipf, Quality Evaluation of VGI Using Authoritative DataA Comparison with Land Use Data in Southern Germany, ISPRS International Journal of Geo-Information, vol.4, issue.3, p.16571671, 2015.

M. Duféal, C. Jonchères, M. Noucher, and . Sur-l'espace--prols, , 2016.

B. Duménieu, Un système d'information géographique pour le suivi d'objets historiques urbains à travers l'espace et le temps, 2015.

M. Ester, H. Kriegel, S. Jorg, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of 2nd International Conference on KDD, p.226231, 1996.

H. Fan, A. Zipf, and Q. Fu, Estimation of Building Types on OpenStreet-Map Based on Urban Morphology Analysis, 1935.

H. Fan, A. Zipf, Q. Fu, and P. Neis, Quality assessment for building footprints data on OpenStreetMap, International Journal of Geographical Information Science, vol.28, issue.4, p.700719, 2014.

F. Fischer, VGI as Big Data : A New but Delicate Geographic Data-Source. GeoInformatics, p.4647, 2012.

S. T. Fiske, A. J. Cuddy, and P. Glick, Universal dimensions of social cognition : Warmth and competence, Trends in Cognitive Sciences, vol.11, issue.2, p.83, 2007.

A. Flanagin and M. Metzger, The credibility of volunteered geographic information, GeoJournal, vol.72, issue.3-4, p.137148, 2008.

B. J. Fogg and H. Tseng, The elements of computer credibility, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems the CHI Is the Limit -CHI '99, p.8087, 1999.

P. Fogliaroni, F. D'antonio, and E. Clementini, Data trustworthiness and user reputation as indicators of VGI quality, Geo-spatial Information Science, vol.21, issue.3, p.213233, 2018.

C. C. Fonte, V. Antoniou, L. Bastin, J. Estima, J. J. Arsanjani et al., Assessing VGI Data Quality, éditeurs : Mapping and the Citizen Sensor, p.137163, 2017.

C. C. Fonte, L. Bastin, L. See, G. Foody, and F. Lupia, Usability of VGI for validation of land cover maps, International Journal of Geographical Information Science, vol.29, issue.7, p.12691291, 2015.

A. M. Forati and F. Et-karimipour, A VGI Quality Assessment Method for VGI based on, Trustworthiness. GI_Forum, vol.1, p.311, 2016.

R. S. Geiger and A. Halfaker, Using edit sessions to measure participation in Wikipedia, Proceedings of the 2013 Conference on Computer Supported Cooperative Work -CSCW '13, CSCW '13, p.861870, 2013.

J. Girres, Modèle d'estimation de l'imprécision des mesures géométriques de données géographiques : Application aux mesures de longueur et de surface, 2012.

J. Girres and G. Et-touya, Quality Assessment of the French OpenStreet-Map Dataset, Transactions in GIS, vol.14, issue.4, p.435459, 2010.

G. Glasze, C. Perkins, A. Zipf, P. Mooney, and M. Helbich, Social and Political Dimensions of the OpenS-treetMap Project : Towards a Critical Geographical Research Agenda, éditeurs : OpenS-treetMap in GIScience, p.143166, 2015.

J. A. Golbeck, Computing and Applying Trust in Web-Based Social Networks, 2005.

M. F. Goodchild, Citizens as Sensors : The World of Volunteered Geography, GeoJournal, vol.69, issue.4, p.211221, 2007.

M. F. Goodchild and L. Li, Assuring the quality of volunteered geographic information, Spatial Statistics, 2012.

G. M. Greco and L. Floridi, The tragedy of the digital commons, Ethics and Information Technology, vol.6, issue.2, p.7381, 2004.

H. Grégoire, Rapport sur les destructions opérées par le Vandalisme, et sur les moyens de le réprimer, 1794.

S. Gröchenig, R. Brunauer, and K. Rehrl, Digging into the history of VGI data-sets : Results from a worldwide study on OpenStreetMap mapping activity, Journal of Location Based Services, vol.8, issue.3, 2014.

M. Haklay, How Good is Volunteered Geographical Information ? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environment and Planning B : Planning and Design, vol.37, p.682703, 2010.

G. Hardin, The Tragedy of the Commons, Science, vol.162, issue.3859, p.12431248, 1968.

B. Heaberlin and S. Dedeo, The Evolution of Wikipedia's Norm Network, Future Internet, vol.8, issue.2, p.14, 2016.

R. Hecht, C. Kunze, and S. Hahmann, Measuring Completeness of Building Footprints in OpenStreetMap over Space and Time, ISPRS International Journal of Geo-Information, vol.2, issue.4, p.10661091, 2013.

S. Heindorf, M. Potthast, B. Stein, and G. Engels, Towards Vandalism Detection in Knowledge Bases, Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval -SIGIR '15, p.831834, 2015.

S. Heindorf, M. Potthast, B. Stein, and G. Engels, Vandalism Detection in Wikidata, Proceedings of the 25th ACM International on Conference on Information and Knowledge Management -CIKM '16, p.327336, 2016.

C. Hess and E. Ostrom, Understanding Knowledge As a Commons : From Theory to Practice, vol.59, 2007.

M. Hmimida and R. Kanawati, Community detection in multiplex networks : A seed-centric approach, Networks and Heterogeneous Media, vol.10, issue.1, p.7185, 2015.

K. L. Huang, S. S. Kanhere, and W. Hu, Are You Contributing Trustworthy Data ? The Case for a Reputation System in Participatory Sensing, vol.14, p.22, 2010.

K. Hung, M. Kalantari, and A. Rajabifard, Methods for assessing the credibility of volunteered geographic information in ood response : A case study in Brisbane, Australia. Applied Geography, vol.68, p.3747, 2016.

C. Iddianozie and G. Mcardle, A Transfer Learning Paradigm for Spatial Networks, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, p.659666, 2019.

K. Ikeda, A. Morishima, H. Rahman, S. B. Roy, S. Thirumuruganathan et al., Collaborative Crowdsourcing with Crowd4U. Proc. VLDB Endow, vol.9, p.14971500, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000557

, Information géographique Qualité des données. Rapport technique, International Organization for Standardization, p.19157, 2003.

F. Issam, H. Manel, and K. Rushed, Une approche centrée graine pour la détection de communautés dans les réseaux multiplexes, EGC, p.377382, 2015.

S. Ivanovic, Une Approche Basée Sur La Qualité Pour Mettre à Jour Les Bases de Données Géographiques de Référence à Partir de Traces GPS Issues de La Foule, 2018.

S. S. Ivanovic, A. Olteanu-raimond, S. Mustière, T. Devogele, D. Hadjimitsis et al., Potential of Crowdsourced Traces for Detecting Updates in Authoritative Geographic Data, Lecture Notes in Geoinformation and Cartography, p.205221, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02269233

K. Jaara, C. Duchêne, and A. Ruas, Preservation and modication of relations between thematic and topographic data throughout thematic data migration process, éditeurs : Cartography from Pole to Pole : Selected Contributions to the XXVIth International Conference of the ICA, p.103117, 2013.

J. Jokar-arsanjani, P. Mooney, A. Zipf, A. ;. Schauss, A. Zipf et al., Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets, éditeurs : OpenStreetMap in GIScience, p.3758, 2015.

D. Jonietz and A. Zipf, Dening Fitness-for-Use for Crowdsourced Points of Interest (POI), ISPRS International Journal of Geo-Information, vol.5, issue.9, p.149, 2016.

L. Juhász, H. Hochmair, S. Qiao, and T. Novack, Exploring the Eects of Pokémon Go Vandalism on OpenStreetMap, Proceedings of the Academic Track, vol.4, 2019.

S. D. Kamvar, M. T. Schlosser, and H. G. Molina, The Eigentrust Algorithm for Reputation Management in P2P Networks, Proceedings of the 12th International Conference on World Wide Web, WWW '03, p.640651, 2003.

P. Kazienko, K. Musial, and T. Kajdanowicz, Multidimensional Social Network in the Social Recommender System, IEEE Transactions on Systems, Man, and Cybernetics -Part A : Systems and Humans, vol.41, issue.4, p.746759, 2011.

C. Kessler, R. T. De-groot, B. Bucher, and J. Crompvoets, Trust as a Proxy Measure for the Quality of Volunteered Geographic Information in the Case of OpenStreetMap, Lecture Notes in Geoinformation and Cartography, p.2137, 2013.

A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi, He says, she says : Conict and coordination in Wikipedia, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '07, p.453462, 2007.

M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno et al., Multilayer networks, Journal of Complex Networks, vol.2, issue.3, p.203271, 2014.

L. Crosnier and H. , Une bonne nouvelle pour la théorie des biens communs, vol.56, p.92, 2011.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, p.436, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Ha, Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 1998.

M. Lesot and A. Et-revault-d'allonnes, Information quality and uncertainty, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615344

M. Lesot, M. Rifqi, B. Bouchon-meunier, H. Bustince, F. Herrera et al., Fuzzy Prototypes : From a Cognitive View to a Machine Learning Principle, éditeurs : Fuzzy Sets and Their Extensions : Representation, Aggregation and Models, vol.220, p.431452, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01072732

C. Lodigiani and M. Melchiori, A PageRank-based Reputation Model for VGI Data, Procedia Computer Science, vol.98, p.566571, 2016.

D. Ma, M. Sandberg, and B. Jiang, Characterizing the Heterogeneity of the OpenStreetMap Data and Community, ISPRS International Journal of Geo-Information, vol.4, issue.2, p.535550, 2015.

L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin et al., Deep learning in remote sensing applications : A meta-analysis and review, ISPRS Journal of Photogrammetry and Remote Sensing, vol.152, pp.166-177, 2019.

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, Can semantic labeling methods generalize to any city ? the inria aerial image labeling benchmark, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), p.32263229, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01468452

S. Maguire and M. Tomko, Ripe for the picking ? Dataset maturity assessment based on temporal dynamics of feature denitions, International Journal of Geographical Information Science, vol.31, issue.7, p.13341358, 2017.

R. Mahabir, A. Stefanidis, A. Croitoru, A. T. Crooks, and P. Et-agouris, Authoritative and Volunteered Geographical Information in a Developing Country : A Comparative Case Study of Road Datasets in, ISPRS International Journal of Geo-Information, vol.6, issue.1, p.24, 2017.

I. Majic, S. Winter, and M. Tomko, Finding equivalent keys in OpenS-treetMap : Semantic similarity computation based on extensional denitions, 1st Workshop on Articial Intelligence and Deep Learning for Geographic Knowledge Discovery, p.2432, 2017.

D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu et al., Classication With an Edge : Improving Semantic Image Segmentation with Boundary Detection, 2016.

J. R. Martinez-rico, J. Martinez-romo, and L. Araujo, Can deep learning techniques improve classication performance of vandalism detection in Wikipedia ? Engineering Applications of Articial Intelligence, vol.78, p.248259, 2019.

G. Mckenzie and K. Janowicz, Coerced Geographic Information : The Not-so-voluntary Side of User-generated Geo-content, GIScience'2014, vol.3, 2014.

H. Mcnair and L. Arnold, Crowd-sorting : Reducing bias in decision making through consensus generated crowdsourced spatial information, International Conference on GIScience Short Paper Proceedings, issue.1, p.1, 2016.

M. Velasco and S. M. , Wikipedia vandalism detection, Proceedings of the 20th International Conference Companion on World Wide Web, WWW '11, p.391396, 2011.

P. Mooney and P. Corcoran, The Annotation Process in OpenStreetMap, Transactions in GIS, vol.16, issue.4, p.561579, 2012.

P. Mooney, P. ;. Corcoran, J. Josselin, D. Vandenbroucke, and D. , How social is OpenStreetMap ? In Gensel, éditeurs : Proceedings of the AGILE'2012 International Conference on Geographic Information Science, 2012.

P. Mooney and P. Corcoran, Analysis of Interaction and Co-editing Patterns amongst OpenStreetMap Contributors, Transactions in GIS, vol.18, issue.5, pp.633-659, 2014.

C. Mülligann, K. Janowicz, M. Ye, and W. Lee, Analyzing the Spatial-Semantic Interaction of Points of Interest in Volunteered Geographic Information, vol.6899, p.350370, 2011.

B. I. Muttaqien, F. O. Ostermann, and R. L. Lemmens, Modeling aggregated expertise of user contributions to assess the credibility of OpenStreetMap features, Transactions in GIS, vol.22, issue.3, p.823841, 2018.

P. Neis, M. Goetz, and A. Zipf, Towards Automatic Vandalism Detection in OpenStreetMap, ISPRS International Journal of Geo-Information, vol.1, issue.3, p.315332, 2012.

P. Neis and D. Zielstra, Recent Developments and Future Trends in Volunteered Geographic Information Research : The Case of OpenStreetMap, Future Internet, vol.6, issue.1, p.76106, 2014.

P. Neis and A. Zipf, Analyzing the Contributor Activity of a Volunteered Geographic Information Project The Case of OpenStreetMap, ISPRS International Journal of Geo-Information, vol.1, issue.2, p.146165, 2012.

J. Nielsen, The 90-9-1 Rule for Participation Inequality in Social Media and Online Communities, 2006.

A. Olteanu-raimond, L. Jolivet, M. Van-damme, T. Royer, L. Fraval et al., , 2018.

, An Experimental Framework for Integrating Citizen and Community Science into Land Cover, Land Use, and Land Change Detection Processes in a National Mapping Agency, vol.7, p.103

A. Olteanu-raimond, M. Laakso, V. Antoniou, C. C. Fonte, A. Fonseca et al., VGI in National Mapping Agencies : Experiences and Recommendations. In Mapping and the Citizen Sensor, p.299326, 2017.

M. Potthast, Crowdsourcing a wikipedia vandalism corpus, Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '10, p.789790, 2010.

M. Potthast, R. Gerling, and B. Stein, Webis Wikipedia Vandalism Corpus, 2007.

K. Rehrl, S. Gröechenig, H. Hochmair, S. Leitinger, R. Steinmann et al., A Conceptual Model for Analyzing Contribution Patterns in the Context of VGI, Krisp, J. M., éditeur : Progress in Location-Based Services, p.373388, 2013.

A. Revault-d'allonnes, Architecture de l'évolution de la conance : Dénition et inuence des dimensions nécessaires à la formation d'une opinion, L'évaluation de l'information, 2013.

E. Rollason, L. J. Bracken, R. J. Hardy, and A. R. Large, The importance of volunteered geographic information for the validation of ood inundation models, Journal of Hydrology, vol.562, p.267280, 2018.

S. R. Safavian and D. Et-landgrebe, A Survey of Decision Tree Classier Methodology, p.50, 1990.

A. Sarabadani, A. Halfaker, and D. Taraborelli, Building Automated Vandalism Detection Tools for Wikidata, Proceedings of the 26th International Conference on World Wide Web Companion -WWW '17 Companion, pp.1647-1654, 2017.

S. E. Schaeffer, Graph clustering, Computer Science Review, vol.1, issue.1, p.2764, 2007.

M. Schmidt and S. Klettner, Gender and Experience-Related Motivators for Contributing to OpenStreetMap, Online Proceedings of the International Workshop on Action and Interaction in Volunteered Geographic Information (ACTIVITY) at the 16th AGILE Conference on Geographic Information Science, 2013.

S. Scholz, P. Knight, M. Eckle, S. Marx, and A. Zipf, Volunteered Geographic Information for Disaster Risk ReductionThe Missing Maps Approach and Its Potential within the Red Cross and Red Crescent Movement, Remote Sensing, vol.10, issue.8, p.1239, 2018.

L. See, P. Mooney, G. Foody, L. Bastin, A. Comber et al., Crowdsourcing, Citizen Science or Volunteered Geographic Information ? The Current State of Crowdsourced Geographic Information, ISPRS International Journal of Geo-Information, vol.5, issue.5, p.55, 2016.

H. Senaratne, A. Mobasheri, A. L. Ali, C. Capineri, and M. M. Haklay, A review of volunteered geographic information quality assessment methods, International Journal of Geographical Information Science, vol.31, issue.1, p.139167, 2017.

S. Servigne, N. Lesage, and T. Libourel, Composantes qualité et métadonnées, Qualité de l'information Géographique, p.213245, 2005.

A. Skarlatidou, M. Haklay, and T. Cheng, Trust in Web GIS : The role of the trustee attributes in the design of trustworthy Web GIS applications, International Journal of Geographical Information Science, vol.25, issue.12, p.19131930, 2011.

S. Srivastava, J. E. Vargas-muñoz, S. Lobry, and D. Tuia, Finegrained landuse characterization using ground-based pictures : A deep learning solution based on globally available data, International Journal of Geographical Information Science, p.120, 2018.

K. Stein and S. Blaschke, Interlocking Communication, Memon, N. et Alhajj, R., éditeurs : From Sociology to Computing in Social Networks, p.231252, 2010.

K. Stein, D. Kremer, C. ;. Schlieder, A. Zipf, P. Mooney et al., Spatial Collaboration Networks of OpenStreetMap, éditeurs : OpenStreetMap in GIScience, Lecture Notes in Geoinformation and Cartography, p.167186, 2015.

J. Suler, The Online Disinhibition Eect, Cyberpsychology & Behavior, vol.7, issue.3, p.7, 2004.

M. Sutton, Dierential Rates of Vandalism in a New Town : Towards a Theory of Relative Place, 1987.

W. R. Tobler, A Computer Movie Simulating Urban Growth in the Detroit Region, Economic Geography, vol.46, p.234, 1970.

G. Touya, V. Antoniou, S. Christophe, and A. Skopeliti, Production of Topographic Maps with VGI : Quality Management and Automation, Mapping and the Citizen Sensor, p.6191, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02177116

G. Touya, V. Antoniou, A. Olteanu-raimond, and M. Et-van-damme, Assessing Crowdsourced POI Quality : Combining Methods Based on Reference Data, History, and Spatial Relations, ISPRS International Journal of Geo-Information, vol.6, issue.3, p.80, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02177107

G. Touya and C. Brando-escobar, Detecting Level-of-Detail Inconsistencies in Volunteered Geographic Information Data Sets. Cartographica : The International Journal for Geographic Information and Geovisualization, vol.48, p.134143, 2013.

G. Touya, X. Zhang, and I. Lokhat, Is deep learning the new agent for map generalization ?, International Journal of Cartography, p.116, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02124904

Q. T. Truong, C. De-runz, G. ;. Touya, É. Kergosien, T. Guyet et al., Analyse du comportement des contributeurs dans l'Information Géographique Volontaire via la construction de réseaux sociaux, éditeurs : 18ème Conférence Internationale Sur l'Extraction et La Gestion Des Connaissances (EGC 2018), p.4454, 2018.

Q. Truong, C. De-runz, and G. Touya, Analysis of collaboration networks in OpenStreetMap through weighted social multigraph mining, International Journal of Geographical Information Science, vol.33, issue.8, p.16511682, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01958435

Q. Truong, G. Touya, C. De-runz, P. Fogliaroni, A. Ballatore et al., Building Social Networks in Volunteered Geographic Information Communities : What Contributor Behaviours Reveal About Crowdsourced Data Quality, éditeurs : Proceedings of Workshops and Posters at the 13th International Conference on Spatial Information Theory (COSIT 2017), p.125131, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117099

Q. T. Truong, G. Touya, and C. De-runz, Le vandalisme dans l'information géographique volontaire : apprendre pour mieux détecter ?, Actes de la conférence, p.6176, 2018.

Q. Truong, G. Touya, C. De-runz, S. Winter, A. Griffin et al., Towards Vandalism Detection in OpenStreetMap Through a Data Driven Approach (Short Paper), de Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany. Schloss DagstuhlLeibniz-Zentrum fuer Informatik, vol.114, 2018.

P. Tubaro and A. A. Casilli, Micro-work, articial intelligence and the automotive industry, Journal of Industrial and Business Economics, vol.46, issue.3, p.345, 2019.

W. Van-vliet, Vandalism : An assessment and agenda, Vandalism, Behaviour and Motivations, 1984.

M. Verleysen, D. François, J. Cabestany, A. Prieto, and F. Sandoval, The curse of dimensionality in data mining and time series prediction, éditeurs : Computational Intelligence and Bioinspired Systems, p.758770, 2005.

V. Walter and D. Fritsch, Matching spatial data sets : A statistical approach, International Journal of Geographical Information Science, vol.13, issue.5, p.473, 1999.

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, vol.393, issue.6684, p.440442, 1998.

Y. Xu, Z. Chen, Z. Xie, and L. Wu, Quality assessment of building footprint data using a deep autoencoder network, International Journal of Geographical Information Science, vol.31, issue.10, p.19291951, 2017.

A. Yang, H. Fan, and N. Jing, Amateur or Professional : Assessing the Expertise of Major Contributors in OpenStreetMap Based on Contributing Behaviors, ISPRS International Journal of Geo-Information, vol.5, issue.2, p.21, 2016.

S. Yang, J. Shen, M. Kone£ný, Y. Wang, R. Tampach et al., Study on the Spatial Heterogeneity of the POI Quality in OpenStreetMap, Proceedings, 2018.

H. Zhang and J. Malczewski, Accuracy Evaluation of the Canadian OpenStreetMap Road Networks, International Journal of Geospatial and Environmental Research, vol.5, issue.2, pp.1-14, 2018.

L. Zhang and D. Pfoser, Using OpenStreetMap point-of-interest data to model urban changeA feasibility study, PLOS ONE, vol.14, issue.2, p.212606, 2019.

X. X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang et al., Deep Learning in Remote Sensing : A Comprehensive Review and List of Resources, IEEE Geoscience and Remote Sensing Magazine, vol.5, issue.4, p.836, 2017.

D. Zielstra, H. Hochmair, P. Neis, and F. Tonini, Areal Delineation of Home Regions from Contribution and Editing Patterns in OpenStreetMap, ISPRS International Journal of Geo-Information, vol.3, issue.4, p.12111233, 2014.

D. Zielstra, H. H. Hochmair, and P. Et-neis, Assessing the Eect of Data Imports on the Completeness of OpenStreetMap -A United States Case Study, Transactions in GIS, vol.17, issue.3, p.315334, 2013.

P. G. Zimbardo, A Social-Psychological Analysis of Vandalism : Making Sense of Senseless Violence, 1971.

M. ,

, > summary(stuhr$chgst_duration_seconds) Min

, Median Mean 3rd Qu. Max. 7634083 96615366 108770129 100034857 109674064 302007693 > summary(stuhr$lifespan_seconds/3600/24) # En jours Min, > summary(stuhr$lifespan_seconds) #En secondes Min. 1st Qu

. .. , Délimitation de l'information géographique volontaire

, Grati is a crime

. .. Vandalisme, Comparaison des typologies de (carto-), p.22

. .. , Typologies des processus spatio-temporels, p.23

, Exemple d'erreur de débutant OSM

, Exemple de carto-vandalisme OSM sur l'île Herald, p.26

. .. I.7-controverse-sur-une-forêt-en-lettonie, , p.27

, Exemple de carto-vandalisme Pokémon Go

, Exemple de carto-vandalisme OSM sur une zone commerciale, p.30

, Exemple de carto-vandalisme repéré par les contributeurs OSM, p.45

, , p.47

, Graphe de co-édition

, Graphe de co-contribution

. .. , 10 Typologies de contributeurs de la littérature, p.51

, Conance et qualité des contributeurs et des contributions, p.54

, Exemple d'un réseau social multiplexe

. .. Osm, Temporalité dans la saisie des données, p.65

. Ii, Graphe de co-location

, 20 Schéma conceptuel de la base de données historiques OSM, p.70

, 22 Communautés OSM détectées par l'algorithme de Louvain, p.72

, Congurations caractéristiques dans les communautés détectées, p.73

, 24 Degrés E/S d'une communauté centrée sur un modérateur, p.74

. .. Degrés-e/s-d'une-communauté-centrée-sur-un-pionnier, , p.76

. .. , Centralité de degré de la couche de co-édition, p.81

, Centralité de degré de la couche de largeur de collaboration, p.81

. .. , Centralité de degré de la couche d'utilisation, p.81

. .. Multiplexe-de-stuhr, , vol.84

. .. Osm, , p.88

, Méthode de calcul de l'enveloppe spatiale

. .. , 39 Fonction de préférence de type gaussienne, p.93

, 41 Comparaison des diérents classements par quartile, p.97

, 42 Comparaison du classement C 1 avec les autres classements, p.98

, 43 Contributeurs qualiés manuellement dans les diérents classements, vol.100

, Modèle conceptuel d'un corpus de carto-vandalisme OSM, p.117

. .. , 13Distribution de l'indicateur d'appariement, p.136

, 18Faux positifs anormaux selon le descripteur topologique, p.139

. .. De-bondy, III.20Anomalies syntaxiques dans les données, p.140

.. .. Iii.24faux-négatifs-sur-stuhr-avec-le-modèle-stuhr-+-aubervilliers, , p.147

. Iii.25vrais, . Faux-positifs-d'aubervilliers, and .. .. De-stuhr,

, 26Faux positif de Heilsbronn détecté avec le modèle RF de Stuhr, p.149

, 28Faux positifs à Lannilis avec le modèle RF Stuhr + Aubervilliers, p.151

, 29Faux positifs à Heilsbronn avec le modèle RF Stuhr + Aubervilliers, p.151

, 30Cas détectés sur Fougères par le modèle RF entraîné sur Stuhr, p.152

. Iii and . .. De-stuhr, , p.157

, 36Faux vrais positifs détectés par le modèle CNN de Stuhr, p.157

, III.37Bâtiments à Aubervilliers classés avec le modèle CNN sur Aubervilliers158

. Iii and . .. Aubervilliers, , p.159

. Iii and . .. Aubervilliers, , p.160

, Bondy et Fougères, vol.163, p.1

, Méthodologie globale de qualication de l'information géographique volontaire

, Liste des tableaux I.1 Historique des tags de l'île Hérald

, Historique des tags de Annin , muiºas meºs / Annin , muiºas parks, p.27

, Historique des tags d'une zone militaire

, Historique des tags de Malishevë/Mali²evo

, Historique des tags de l'objet de la Figure I

, Extrait de l'historique des tags de l'objet de la Figure I.10, p.31

, Contrôle qualité dans les projets cartographiques collaboratifs, p.42

. .. Bassin-rond, , p.45

, Prols de contributeurs identiés par les graphes de collaboration, p.48

. .. Katmandou, Coecients de clustering de Suthr et, p.85

, Poids utilisés pour calculer la moyenne pondérée du score de abilité, p.91

, 10 Paramétrage du modèle de décision multicritère PROMETHEE II, p.94

, Résumé statistique du nombre de contributions des 30 contributeurs étudiés

, 12 Qualication manuelle de la abilité des contributeurs OSM, p.95

, Récapitulatif des méthodes et métriques de détection du vandalisme, p.110

. .. , Corpus de vandalisme issus de l'état de l'art, p.116

, Décompte du carto-vandalisme synthétique dans les zones d'étude, vol.120

, Détection du carto-vandalisme avec DBSCAN sur Aubervilliers, p.129

, Performance de DBSCAN avec diérents indicateurs de contributeur 129

. .. , Inuence de l'indicateur d'appariement sur DBSCAN, p.130

, Résultats de détection avec DBSCAN avec les descripteurs optimaux sur Aubervilliers et Stuhr

. .. Stuhr, III.9 Descripteurs optimaux pour la détection du carto-vandalisme dans les données d'Aubervilliers, p.132

. Iii and . .. Stuhr, , p.132

, III.11Résultats DBSCAN avec les descripteurs optimaux de Stuhr, p.133

, III.12Détection d'anomalies sur les bâtis OSM de Bondy avec DBSCAN, p.140

. Iii, . Stuhr, and . .. Aubervilliers, , p.142

, 15Prédiction des modèles de RF sur les zones d'entraînement, p.146

, 16Résultats avec un modèle RF entraîné sur deux zones, p.146

, 17Détection sur des zones diérentes de la zone d'entraînement, p.147

, 18Détection sur une zone du même pays que la zone d'entraînement, p.149

. Iii.19détection-sur-lannilis, . Heilsbronn, and .. .. Stuhr-+-aubervilliers,

. Iii.20détection-du-carto-vandalisme-sur-bondy and . .. Fougères, , p.152

, 21Nombre d'images utilisées pour l'entraînement des modèles CNN, p.156

, 22Résultats des modèles CNN sur leur zone d'entraînement, p.157

, carto-vandalisme avec un CNN entraîné sur Aubervilliers et Stuhr

. Iii and . .. Stuhr-+-aubervilliers, , p.160

, III.25Détection sur Bondy et Fougères avec un modèle CNN entraîné sur Aubervilliers