, Left: Powder microstructure, the crystallites, and aggregates can be identified. Right: Agglomerates, SEM images of the UO 2

, Pellets of mixed oxides (UO 2 and PuO 2 ) obtained after the manufacturing process. The pellets have a diameter and a height equal to 1 cm

, Illustration of the main steps of the pellet manufacture process. a) Raw material (UO 2 and PuO 2 powders), b) powders blending: co-milling inside a ball mill, c) pellet shaping, and d) pellet sintering

, Laboratory ball mill used for the study of nuclear powders grinding

, Images of a ball mill with lifters filled with the product and steel balls of two different sizes [88]

, Three phases of the granular flow behaving like a gas

, Apparent friction coefficient µ and b) packing fraction ? vs the Inertial number I reported in various numerical and experimental studies on granular flows with different boundary conditions. The dashed line in (a) corresponds to a fit form that follows equation 1.1 [14]

, Flowing regimes in a rotating drum: (a) surging, (b) rolling, (c) cascading, (d) cataracting, (e) centrifuging

, Different dynamic angles of repose ? that can be defined in a rotating drum geometry: a) maximum and minimum, b) average

, Apparent friction coefficient and b) shear stress as a function of the flow thickness (H/d) [214]

, Vorticity fields of shear tests with different heights (H/d) and inertial numbers (I)

, Examples of aspherical particles generated by means of different approaches: a) superellipsoids [69], b) superquadrics [144], c) clumps or glued spheres [195], and d) non-convex polyhedra [195]

, Segregation patterns when considering particles of different sizes. a) DEM simulations in a mixed state and after 25 rotations, vol.48

. .. , 18 LIST OF FIGURES 1.15 Fracture modes in 3D: a) Mode I: opening, b) Mode II: In-plane shear, and c) Mode III: Out-of-plane shear [95]

, Types of breakage that a single particle can undergo under different loading conditions

, Fracture modes of plaster particles submitted to double impact tests at different impact energies [255]

, Breakage of a single particle in 2D by a) FEM [29] and b) Peridynamics [23]. c) Fracture of a conglomerate using LEM [72]

, Modeling particle breakage using a) BPM [233], b) Replacing method with spheres [32], c) Replacing method with polyhedra

. .. , Discrete nature and complex particle shape of a granular material, p.27

, Three different protocols for measuring the principal dimensions L, I, S of a particle [16]: a) Krumbein standard protocol (STD) [130], b) minimum bounding box [25], and c) maximum and minimum area projections on a plane, p.28

, Types of mechanical loading that particles can undergo in a rotating drum, p.30

, Particles generated with different numbers of cells which are represented by different colors

, Interface behavior along (a) normal direction and (b) tangential direction. The solution for each pair (? n , f n ) and (? t , f t ) lies on the thick line. See the text for the definition of the variables

, Frictional contact law defined at the contact framework in the (a) normal direction (b) tangential direction

, Generic contact types between polyhedra

. .. , Snapshots of a particle impacting a rigid plane, and the evolution of particle breakage. This test was performed with an impact velocity of 6 m/s, p.44

, Effect of the number of cells on the number of generated fragments for three different values of the impact velocity

, Particle damage D w as a function of impact velocity v for different values of fracture energy G f and C n = C t = 1 MPa. For each test, the error bar represents standard deviation over 10 independent tests

. .. Mpa, , p.47

, 48 2.10 Fragmentation efficiency ? as a function of the normalized impact energy ?. The dotted line is the fitting form (2.20). The error bars represent standard deviation for 10 independent events

, The error bars represent standard deviation for 10 independent events

, Particle damage D w as a function of the normal stress threshold C n for three values of impact velocity v for G f = 1 J/m 2 . The inset shows the same data for the values of C n normalized by the impulsion mv/(s T ?t), where mv is the change of momentum during collision and ?t is collision time. The error bars represent standard deviation for 10 independent events

, The dotted line is the fitting form (2.21). The error bars represent standard deviation for 10 independent events

, Particle damage D w as a function of friction coefficient µ between cohesionless cells. The dotted line is the fitting form (2.21). The error bars represent standard deviation for 10 independent events

, Signorini relation between normal force f n and normal contact velocity u n , b) Coulomb friction law as the relation between sliding velocity u t and friction force f t , at a contact between two particles, Contact laws used in the contact dynamics method (CDM): a)

, Geometrical parameters of granular flow in a rotating drum at the initial state (left) and in the steady flow state (right)

. .. , Velocity vector fields in drums of different normalized sizes R/r: a) 18.75, b) 37.5, c) 62.5, d) 100. The Froude number is Fr=0.8 in all cases, p.61

, Velocity profile at the center of the drum for different values of drum size R/r at constant rotation speed ? (a) and at constant Froude number (b). The depth, measured in the z direction, is normalized by the bed depth h b . The velocity component V along the mean free surface direction is normalized by R?, p.61

, Maps of local volume-change rates? p in drums of four different size ratios R/r : a) 18.75, b) 37.5, c) 62.5 and d) 100, for Fr = 0

, Maps of local shear rates? q in drums of four different size ratios R/r: a) 18.75, b) 37.5, c) 62.5 and d) 100, for Fr= 0.8

, Wall slip S w as a function of rotation speed ? for two values of Fr and three values of drum width W . The error bars reflect the standard deviations of slip velocities V w

, The thickness h a of the active flowing layer normalized by flow thickness h b as a function of drum size R/r for the tested values of system parameters, p.64

. .. , Average speed V w of the particles at contact with the drum wall normalized by the characteristic velocity ? gd versus the thickness h a of the active flowing layer normalized by particle diameter d for all simulations with different parameter values. Error bars on the data points are smaller than symbol size

. .. , 66 LIST OF FIGURES 3.12 Steepest descent angle ? max (a), secant angle ? m (b) and the ratio ? max /? m (c) as a function of R/r for different parameter values. The error bars represent standard deviation of the values of angles

, as a function of ? max (b), for simulations with different sizes at either constant Fr or ?. The error bars represent standard deviation of the values of ? max

, Contact force network inside drums of different sizes R/r: a) 25, b) 62.5, c) 93.75, d) 125. All drums have constant Froude number Fr=0.8. The thickness of the lines joining the particle centers is proportional to the corresponding normal force, p.70

, Probability density function (pdf) of normal forces inside drums of different sizes (R/r) at constant Froude number Fr = 0.8 (a) and at constant rotation speed ? = 5 rad/s (b)

, Probability density function of the logarithm of normalized forces between colliding particles inside drums of different sizes (R/r) at constant Froude number (a) and at constant rotation speed ? (b)

, in drums of different sizes and values of system parameters. The dashed line is a power-law fit following equation 3

, Fr (a) and drum rotation speed ? (b) for all simulations. The dashed lines are power-law trends with exponents 1/4 and -0.45, respectively. The error bars represent standard deviation of the values of ? max, Slope ratio ? max /? m as a function of the Froude number

, Slope ratio ? max /? m as a function of the scaling parameter ? defined by equation (3.8) with ? = 1/4 and ? = 1/2. The dashed line is the fitting form given by equation (3.9). The error bars represent standard deviation of the values of ? max, p.73

, Normalized active layer thickness (a) and standard deviation of the normal force distribution (b) as a function of the scaling parameter ? defined by (3.8) with ? = 1/4 and ? = 1/2

, Slope ratio as a function of the scaling parameter ? defined by equation (3.8) with a range of values of drum size R, rotation speed ? and filling degree f with ? = 1/4, ? = 1/2, ? = 1. The dashed line is a power-law fitting form. The error bars represent standard deviation of the values of ? max

, Slope ratio as a function of the scaling parameter ? for systems with h 0 < 10d and with h 0 > 10d. The dashed line follows equation 3.9. The error bars represent standard deviation of the values of ? max

?. , Q. , and ?. Text, For the sake of comparison between the curves in the same range of values as ?, Q * and ? are multiplied by prefactors. The dashed line follows equation 3.9. The error bars represent standard deviation of the values of ? max

, Voronoï tessellation applied to a) pentagonal particles (n sides = 5), b) hexagonal particles (n sides = 6), c) nonagonal particles (n sides = 9), d) dodecagonal particles (n sides = 12). The cells are represented by different arbitrary colors, p.85

. .. , Side-side double-bond contact, b) vertex-side single-bond contact

, the normal direction, b) in the tangential direction. is the side length, and ? n and ? t denote the local displacements between the two cells in the normal and tangential directions, respectively, vol.87

. .. , Signorini relation in the normal direction, b) Coulomb friction law in the tangential direction. u n and u t denote the contact relative velocities in the normal and tangential directions, respectively, p.88

, Geometrical, mechanical and kinematic parameters of the simulated drums, p.89

, Snapshots of a rotating drum simulation for different numbers of rotations n for ? = 5.24 rad/s. The color is proportional to the damage, defined by the number of cells detached from a particle, represented on color scale from bright green for intact particles to black for highly-damaged particles

, 075 m, f = 0.51, and increasing rotation velocity ?. By increasing ?, the Froude number varies from 0.02 to 1. The color is proportional to particle damage, from bright green for intact particles to black for highly-damaged fragments, Flow regimes displayed after 13.75 rotations, for R = 0

, Free surface profiles for different values of ? considering only unbreakable particles, p.92

, The dashed lines correspond to a tangent hyperbolic form d / d 0 ? tanh(t). b) Evolution of the specific surface S normalized by the initial specific surface S 0 . The dashed lines are linear fits up to a transition point to nonlinear regime

, Characteristic time t * as a function of rotation speed ?

, and normalized mean particle size (b) as a function of time normalized by the characteristic time t * for drums rotating at different speeds ?

, Maps of local densities of breakage events during the whole simulation for ? =5.24, 7.85 and 10

, This snapshot corresponds to the instants 0.73t * , 0.9t * and 1.16t * , respectively. The particle gray level is proportional to the number of contacts of the particle, Maps of particle connectivity after 13.75 rotations for ? =5.24, 7.85 and 10.47 rad/s

, particle size measured as a function of time for different values of the filling degree f for the same drum size R = 0.075 m and rotation speed ? = 5, p.24

, Normalized specific surface S/S 0 as a function of time. The dashed lines are linear fits up to the transition point

, Free surface profiles for different filling degrees

, Characteristic time t * as a function of f

S. , as a function of normalized time for different filling degrees, p.97

). .. , 97 LIST OF FIGURES 4.19 Normalized specific surface S/S 0 for drums of different sizes R/r for a constant value of ? (a) and for a constant value of the Froude number (b). The dashed lines are linear fits below the transition point

. .. , The rate of increase of the normalized specific surface shown in Fig. 4.19. b) Characteristic time as a function of drum size ratio R/r for the two sets of simulations. The dashed lines are power-law fits to the data, p.98

, The normalized mean particle size d /d 0 (a) and normalized specific surface S/S 0 (b) as a function of time in drum flows composed of regular polygons of different numbers of sides for fixed drum size, rotation speed and filling degree, p.99

, Dimensionless grinding rate as a function of the scaling parameter ? in equation (4.5) with ? = 3/4, ? = ?1, ? = 1/4, and ? = 3/2 for all our simulations with different values of system parameters. The symbols refer to different sets of simulations in which every time a single parameter (filling degree f , rotation speed ?, R/r at constant Froude number or constant rotation speed) is varied, p.101

, Comparison between the proposed scaling law in equation (4.5) and the same data plotted as function of ? [223] and Q * [184]. A prefactor was applied in order to bring the data to the same range

, Each cell is presented in a different color; (b) Geometry of a side-side contact between two cells i and j. Two contact points (1 and 2) and their respective projections on the two cells, are defined for this type of contact

, Purely frictional contact interactions: a) Relationship between normal force f n and relative normal velocity u n at a contact point; b) Coulomb friction law as a relationship between the friction force f t and sliding velocity u t, p.111

, The powder particle colors range from bright green (intact) to black (highly damaged)

, Snapshots of several simulations: a) Systems with ball sizes D b of 5 mm, 15 mm and 25 mm from left to right; b) Systems with numbers of balls N b = 10, 25 and 50, with D b = 15mm constant

, Evolution with the number n of revolutions of a) the mean particle size d normalized by the initial mean diameter, b) the specific surface S normalized by its initial value for different values of ball size D b . The filling degree, total balls volume V b , and powder volume V p are constant. Each plot consists of 1000 data points, p.116

, 25 mm from left to right. The dashed red line represents the ball size of each case, Spatial localization of breakage events in drums filled with balls of variable size D b : 5, 10, vol.15

, Probability density function of the normal force f n between the balls and the powder a) for each powder-ball contact, b) the sum of the forces per ball, for different ball sizes D b normalized by the cohesion force C N d cell, p.117

, Evolution of the normalized mean particle size with the number of revolutions for different numbers of balls N b . The ball size D b and powder volume V p are constant. Each plot consists of 1000 data points

, Evolution of the normalized specific surface, b) slope of the linear trend adjusted to the S 0 evolution, for different number of balls

, Force chains in a simulation with N b = 50. Red line thickness is proportional to normal force

, Time evolution of the volume of each size population normalized by the total volume V for a) D b = 15 and b) N b = 32. The dashed lines are analytical fits obtained from the system of equations 5.8

, Cumulative volume transfers: from big to small (? s b ), from big to medium (? m b ), and from medium to small (? s m ), for a) D b = 15 and b) N b = 32, p.121

, Snapshot of a simulation of crushable particles inside a rotating drum in 3D, p.128

R. , Images séquentielles de la fragmentation d'un grain lors de l'impact avec un plan rigide

, de l'écoulement stationnaire dans des systèmes avec des rapports entre la taille du tambour et la taille du grain R/r= a) 18.5, b) 37.5, c) 62.5, d) 93.75, et e) 125. La taille de particule est gardée constante. Les grains sont colorés en fonction de leur vitesse projetée sur la direction d'écoulement et normalisée par la vitesse de la, p.134

R. , Simulation 2D d'un tambour tournant rempli avec des particules sécables. Le niveau d'endommagement des particules est représenté du vert au noir; les particules noires étant celles ayant subit le plus fort endomagement, p.135

R. , Simulation d'un broyeur à boulets en 2D. Les zooms illustrent les modes de comminution dans différentes zones du broyeur

, Cone crack present at the contact point, view from the impact plane. b) Fissure propagation from the cone crack

, A.2 a) Front view of meridional cracks developed but no fragments generated, only debris from the cone crack at the impact point. b) Front view of a single meridional crack that generates two fragments. c) Top view of a fragmentation in 5 slices generated from the meridional crack development. d) Secondary level of cracking, p.143

, Snapshots taken at the end of the impact of particles at 6 m/s, 8 m/s, and 10 m/s from left to right

, Mean particle size distribution of the fragments for tests performed at different impact speeds with the respective values of ?/? * , a) particle size normalized by d 0 (initial particle size), b) particle size normalized by the maximum fragment size d max , specific for each velocity. The dashed lines correspond to a cummulative weibull fucntion (equation (A.2)). The legend in (b) corresponds also to (a), p.144

, Multiple values of ?/? * representing various impact velocities are included, as well as the black dashed line that represents the power law fitted to the intermediate and small fragments, A.5 Probability density function of the fragments volume

, Evolution of a) coefficient of uniformity (C u ) and b) coefficient of curvature (C c ) regarding the impact velocity. The red dashed lines show the values of C u and C c for a uniform in volume particle size distribution

A. , Fragments with different sizes (d/d 0 ) generated at two different impact energies (?/? * )

A. , Schematic illustration of the measurement of: a) form dimensions and b) ? = ?R/R147

, 10 Evolution of the elongation calculated as the ratio between the longer and intermediate dimension of the oriented bounding box a) mean value and error bars issue of 10 simulations b)

, Evolution of a) sphericity (?) and b) specific surface (SSA) normalized by the specific surface of the initial particle (SSA 0 ), with impact energy ?/? * for different sets of fragment size d/d 0 . The points represent mean values of the fragments generated in 10 independent tests and the blue line correspond to the mean value for each speed. The legend in (a) corresponds also to (b)

, Evolution of (?) mean value and error bars issue of 10 simulations for the different values of ?/? *

, Illustration of a rotating drum with two plans closing the end walls of the cylinder, vol.152

, Some granular material properties evolution regarding the friction coefficient µ: a) average free surface angle, b) packing fraction, c) coordination Number, d) ratio between the particles velocity at the bottom and the drum wall velocity, for test performed under different rotation speeds. The legend in (d) correspond to the other subfigures

, Parameters of the breakage model and material properties of powder particles and balls for all simulations

, 2 Geometrical characteristics of the two case studies

, Values of the model (eq. 5.8) parameters found for the two studied cases in this section

V. Acary and B. Brogliato, Lecture Notes in Applied and Computational Mechanics, 2008.

R. Affes, J. Delenne, Y. Monerie, F. Radjai, and V. Topin, Tensile strength and fracture of cemented granular aggregates, The European Physical Journal E, vol.35, issue.11, p.117, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268264

S. Agrawala, R. Rajamani, P. Songfack, and B. Mishra, Mechanics of media motion in tumbling mills with 3d discrete element method, Minerals Engineering, vol.10, issue.2, pp.215-227, 1997.

A. A. Aissa, C. Duchesne, and D. Rodrigue, Transverse mixing of polymer powders in a rotary cylinder part I: Active layer characterization, Powder Technology, vol.219, pp.193-201, 2012.

A. Alexander, T. Shinbrot, and F. J. Muzzio, Scaling surface velocities in rotating cylinders as a function of vessel radius, rotation rate, and particle size, Powder Technology, vol.126, issue.2, pp.174-190, 2002.

E. Alizadeh, O. Dubé, F. Bertrand, and J. Chaouki, Characterization of Mixing and Size Segregation in a Rotating Drum by a Particle Tracking Method, AIChE Journal, vol.59, issue.6, pp.1894-1905, 2013.

F. N. Altuhafi, M. R. Coop, and V. N. Georgiannou, Effect of particle shape on the mechanical behavior of natural sands, Journal of Geotechnical and Geoenvironmental Engineering, vol.142, issue.12, 2016.

C. Ancey, P. Coussot, and P. Evesque, A theoretical framework for granular suspensions in a steady simple shear flow, Journal of Rheology, vol.43, issue.6, pp.1673-1699, 1999.

C. Andrieux, F. Baqué, B. Bonin, B. Boullis, C. Cabet et al., , 2016.

S. Antonyuk, M. Khanal, J. Tomas, S. Heinrich, and L. Mörl, Impact breakage of spherical granules: Experimental study and dem simulations, Chemical Engineering and Processing: BIBLIOGRAPHY Process Intensification, vol.45, issue.10, pp.838-856, 2006.

B. C. Aschenbrenner, A new method of expressing particle sphericity, Journal of Sedimentary Research, vol.26, issue.1, pp.15-31, 1956.

L. G. Austin, Introduction to the mathematical description of grinding as a rate process, Powder Technology, vol.5, issue.1, pp.1-17, 1971.

L. G. Austin, P. Bagga, and M. Celik, Breakage properties of some materials in a laboratory ball mill, Powder Technology, vol.28, issue.2, pp.235-243, 1981.

E. Azéma and F. Radjai, Internal Structure of Inertial Granular Flows, Physical Review Letters, vol.112, issue.7, p.78001, 2014.

É. Azéma, F. Radjai, and J. N. Roux, Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure, European Physical Journal E, vol.41, issue.1, 2018.

G. H. Bagheri, C. Bonadonna, I. Manzella, and P. Vonlanthen, On the characterization of size and shape of irregular particles, Powder Technology, pp.141-153, 2015.

R. A. Bagnold, Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.225, pp.49-63, 1160.

I. Bailon-poujol, J. Bailon, and G. L&apos;espérance, Ball-mill grinding kinetics of master alloys for steel powder metallurgy applications, Powder Technology, vol.210, issue.3, pp.267-272, 2011.

G. R. Ballantyne, M. S. Powell, and M. Tiang, Proportion of energy attributable to comminution, Proceedings of the 11th Australasian Institute of Mining and Metallurgy Mill Operator's Conference, pp.25-30, 2012.

A. Barkouti, E. Rondet, M. Delalonde, and T. Ruiz, Influence of physicochemical binder properties on agglomeration of wheat powder in couscous grain, Journal of Food Engineering, vol.111, pp.234-240, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267811

M. Barnabé, N. Blanc, T. Chabin, J. Delenne, A. Duri et al., Multiscale modeling for bioresources and bioproducts. Innovative Food Science and Emerging Technologies, vol.46, pp.41-53, 2018.

E. Bilgili, J. Yepes, and B. Scarlett, Formulation of a non-linear framework for population balance modeling of batch grinding: Beyond first-order kinetics, Chemical Engineering Science, vol.61, issue.1, pp.33-44, 2006.

N. Blanc, Étude de la fragmentation de milieux granulaires : Modélisation numérique á l'échelle du grain et analyse expérimentale du broyage de matiéres minérales et végétale, 2018.

P. Blazy, E. Jdid, and J. Yvon, Fragmentation -Technologie. Techniques de l'ingénieur. Procédés chimie -bio -agro | Opérations unitaires. Génie de la réaction chimique, vol.33, 2006.

S. J. Blott and K. Pye, Particle shape: A review and new methods of characterization and classification, Sedimentology, vol.55, issue.1, pp.31-63, 2008.

D. Bonamy, P. H. Chavanis, P. P. Cortet, F. Daviaud, B. Dubrulle et al., Eulerlike modelling of dense granular flows: Application to a rotating drum, European Physical Journal B, vol.68, issue.4, pp.619-627, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00260015

D. Bonamy, F. Daviaud, and L. Laurent, Experimental study of granular surface flows via a fast camera: A continuous description, Physics of Fluids, vol.14, issue.5, pp.1666-1673, 2002.
URL : https://hal.archives-ouvertes.fr/cea-01373869

F. C. Bond, Third theory of comminution. Mining Engineering, 4:484, 1952

P. O. Bouchard, F. Bay, Y. Chastel, and I. Tovena, Crack propagation modelling using an advanced remeshing technique, Computer Methods in Applied Mechanics and Engineering, vol.189, issue.3, pp.723-742, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00677709

E. T. Bowman, K. Soga, and W. Drummond, Particle shape characterisation using Fourier descriptor analysis, Géotechnique, vol.51, issue.6, pp.545-554, 2001.

G. Box, Robustness in the strategy of scientific model building, Robustness in Statistics, pp.201-236, 1979.

J. Bruchmüller, B. Van-wachem, S. Gu, and K. Luo, Modelling discrete fragmentation of brittle particles, Powder Technology, vol.208, issue.3, pp.731-739, 2011.

A. Brunaugh and H. D. Smyth, Process optimization and particle engineering of micronized drug powders via milling, Drug Delivery and Translational Research, vol.8, issue.6, pp.1740-1750, 2018.

R. Brzesowsky, C. Spiers, C. Peach, and S. Hangx, Failure behavior of single sand grains: theory versus experiment, Journal of Geophysical Research: Solid Earth, vol.116, issue.B6, 2011.

M. Cacciuttolo and A. Arunakumari, Scale-Up Considerations for Biotechnology-Derived Products, 2005.

B. Caicedo, M. Ocampo, and L. Vallejo, Modelling comminution of granular materials using a linear packing model and Markovian processes, Computers and Geotechnics, vol.80, pp.383-396, 2016.

D. Cantor, E. Azéma, P. Sornay, and F. Radjai, Three-dimensional bonded-cell model for grain fragmentation, Computational Particle Mechanics, vol.4, issue.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01365037

D. and C. Garcia, Mécanique et génie civil, sous la direction de Radjai, Farhang, 2017.

M. Capece, E. Bilgili, and R. Davé, Insight into first-order breakage kinetics using a particlescale breakage rate constant, Chemical Engineering Science, vol.117, pp.318-330, 2014.

M. Capece, E. Bilgili, and R. N. Davé, Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method, AIChE Journal, vol.60, issue.7, pp.2404-2415, 2014.

M. Capece, R. N. Davé, and E. Bilgili, On the origin of non-linear breakage kinetics in dry milling, Powder Technology, vol.272, pp.189-203, 2015.

M. Capece, R. N. Davé, and E. Bilgili, A pseudo-coupled DEM-non-linear PBM approach for simulating the evolution of particle size during dry milling, Powder Technology, vol.323, pp.374-384, 2018.

H. A. Carmona, A. V. Guimarães, J. S. Andrade, I. Nikolakopoulos, F. K. Wittel et al., Fragmentation processes in two-phase materials, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.91, issue.1, pp.1-7, 2015.

H. A. Carmona, F. K. Wittel, F. Kun, and H. J. Herrmann, Fragmentation processes in impact of spheres, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.77, issue.5, pp.1-10, 2008.

F. Casini, G. M. Viggiani, and S. M. Springman, Breakage of an artificial crushable material under loading. Granular matter, vol.15, pp.661-673, 2013.

C. J. Cawthorn, Several applications of a model for dense granular flows, 2011.

B. Cegeo, K. Saint-cyr, C. Szarf, E. Voivret, V. Azéma et al., Particle shape dependence in 2D granular media, Europhysics Letters), vol.98, issue.4, 2012.

R. Chand, M. A. Khaskheli, A. Qadir, B. Ge, and Q. Shi, Discrete particle simulation of radial segregation in horizontally rotating drum: Effects of drum-length and non-rotating end-plates, Physica A: Statistical Mechanics and its Applications, vol.391, issue.20, pp.4590-4596, 2012.

K. T. Chau, X. X. Wei, R. H. Wong, and T. X. Yu, Fragmentation of brittle spheres under static and dynamic compressions: Experiments and analyses, Mechanics of Materials, vol.32, issue.9, pp.543-554, 2000.

P. Chen, J. M. Ottino, and R. M. Lueptow, Onset mechanism for granular axial band formation in rotating tumblers, Physical Review Letters, vol.104, issue.18, pp.1-4, 2010.

Y. S. Cheong, G. K. Reynolds, A. D. Salman, and M. J. Hounslow, Modelling fragment size distribution using two-parameter Weibull equation, International Journal of Mineral Processing, vol.74, pp.227-237, 2004.

Y. S. Cheong, A. D. Salman, and M. J. Hounslow, Effect of impact angle and velocity on the fragment size distribution of glass spheres, Powder Technology, vol.138, issue.2-3, pp.189-200, 2003.

S. H. Chien, G. Carmona, L. I. Prochnow, and E. R. Austin, Cadmium availability from granulated and bulk-blended phosphate-potassium fertilizers, J Environ Qual, vol.32, issue.5, pp.1911-1914, 2003.

H. T. Chou and C. F. Lee, Cross-sectional and axial flow characteristics of dry granular material in rotating drums, Granular Matter, vol.11, issue.1, pp.13-32, 2009.

S. H. Chou, H. J. Hu, and S. S. Hsiau, Investigation of friction effect on granular dynamic behavior in a rotating drum, Advanced Powder Technology, vol.27, issue.5, pp.1912-1921, 2016.

M. Ciantia, M. Arroyo-alvarez-de-toledo, F. Calvetti, and A. G. Solé, An approach to enhance efficiency of dem modelling of soils with crushable grains, Géotechnique, vol.65, issue.2, pp.91-110, 2015.

P. W. Cleary, Recent advances in DEM modelling of tumbling mills, Minerals Engineering, vol.14, issue.10, pp.1295-1319, 2001.

P. W. Cleary, R. D. Morrison, and G. W. Delaney, Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation, Minerals Engineering, vol.128, pp.56-68, 2018.

C. J. Coetzee, Review: Calibration of the discrete element method, Powder Technology, vol.310, pp.104-142, 2017.

A. Corredor, R. Torres, J. V. Miñana, E. Fernández, C. F. Menéndez et al., Drop test of prototype cube and cubipod armor units, Coastal Engineering Proceedings, vol.1, issue.32, p.43, 2011.

P. P. Cortet, D. Bonamy, F. Daviaud, O. Dauchot, B. Dubrulle et al., Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow, Epl, vol.88, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/cea-01373382

B. N. Cox, H. Gao, D. Gross, and D. Rittel, Modern topics and challenges in dynamic fracture, Journal of the Mechanics and Physics of Solids, vol.53, issue.3, pp.565-596, 2005.

P. A. Cundall, Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, International Journal of Rock Mechanics and Mining Sciences, vol.25, issue.3, pp.107-116, 1988.

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, Géotechnique, vol.29, issue.1, pp.47-65, 1979.

F. Da-conceição-leite, R. Santos-motta, K. L. Vasconcelos, and L. Bernucci, Laboratory evaluation of recycled construction and demolition waste for pavements, Construction and Building Materials, vol.25, pp.2972-2979, 2011.

F. Cruz, Friction and jamming in dry granular flows. Theses, Ecole des Ponts ParisTech, 2004.
URL : https://hal.archives-ouvertes.fr/pastel-00000946

F. Cruz, S. Emam, M. Prochnow, J. N. Roux, and F. Chevoir, Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.72, issue.2, pp.1-17, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01990685

R. M. De-carvalho and L. M. Tavares, Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model, Minerals Engineering, pp.91-101, 2013.

G. W. Delaney and P. W. Cleary, The packing properties of superellipsoids, Europhysics Letters), vol.89, issue.3, pp.1-6, 2010.

G. W. Delaney, P. W. Cleary, M. D. Sinnott, and R. D. Morrison, Novel application of DEM to modelling comminution processes, IOP Conference Series: Materials Science and Engineering, vol.10, issue.1, 2010.

J. Delbecq, B. Carlier, C. Chabert-koralewski, R. Eschbach, D. Favet et al., Cycle du combustible des réacteurs nucléaires : de la 3e à la 4e génération, 2015.

J. Delenne, V. Richefeu, V. Topin, and F. Radjai, Numerical modeling of cohesive interactions, Discrete Numerical Modeling of Granular Materials, ISBN 978 1 84821 260 2. Wiley ISTE, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00688530

J. Delenne, M. S. Youssoufi, F. Cherblanc, and J. C. Bénet, Mechanical behaviour and failure of cohesive granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.28, issue.15, pp.1577-1594, 2004.

Y. L. Ding, R. Forster, J. P. Seville, and D. J. Parker, Granular motion in rotating drums: bed turnover time and slumping-rolling transition, Powder Technology, vol.124, issue.1-2, pp.18-27, 2002.

Y. L. Ding, R. N. Forster, J. P. Seville, and D. J. Parker, Scaling relationships for rotating drums, Chemical Engineering Science, vol.56, issue.12, pp.3737-3750, 2001.

O. Dubé, E. Alizadeh, J. Chaouki, and F. Bertrand, Dynamics of non-spherical particles in a rotating drum, Chemical Engineering Science, vol.101, pp.486-502, 2013.

F. Dubois, M. Jean, M. Renouf, R. Mozul, A. Martin et al., In 10e colloque national en calcul des structures, 2011.

J. Duran, Sables, poudres et grains. Eyrolles, 1997.

C. Dury, G. Ristow, J. Moss, and M. Nakagawa, Boundary effects on the angle of repose in rotating cylinders, Nonlinear, and Soft Matter Physics, vol.57, issue.4, pp.4491-4497, 1998.

C. M. Dury and G. H. Ristow, Competition of mixing and segregation in rotating cylinders, Physics of Fluids, vol.11, issue.6, p.1387, 1999.

J. Eliá?, Simulation of railway ballast using crushable polyhedral particles, Powder Technology, vol.264, pp.458-465, 2014.

A. S. Erdem and S. L. Ergün, The effect of ball size on breakage rate parameter in a pilot scale ball mill, Minerals Engineering, vol.22, issue.7-8, pp.660-664, 2009.

V. P. Esnault, H. Zhou, and D. Heitzmann, New population balance model for predicting particle size evolution in compression grinding, Minerals Engineering, vol.73, pp.7-15, 2015.

G. Félix, Étude de quelques transitions de régime. Application à la ségrégation, 2002.

G. Félix, V. Falk, and U. D&apos;ortona, Granular flows in a rotating drum: The scaling law between velocity and thickness of the flow, European Physical Journal E, vol.22, issue.1, pp.25-31, 2007.

G. Félix and N. Thomas, Evidence of two effects in the size segregation process in dry granular media, Physical Review E -Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol.70, p.16, 2004.

Y. Forterre and O. Pouliquen, Flows Of Dense Granular Media, Annual Review Of Fluid Mechanics, vol.40, issue.1, pp.1-24, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432132

D. M. Francioli, Effect of operational variables on ball milling, 2015.

X. Frank and J. Delenne, Simulation numérique de la fissuration d'un matériau granulaire cimenté par une approche peridynamique, Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 92400, 2013.

D. W. Fuerstenau and A. Z. Abouzeid, The energy efficiency of ball milling in comminution, International Journal of Mineral Processing, vol.67, issue.1-4, pp.161-185, 2002.

S. Galindo-torres, D. Pedroso, D. Williams, and L. Li, Breaking processes in threedimensional bonded granular materials with general shapes, Computer Physics Communications, vol.183, issue.2, pp.266-277, 2012.

R. Ge, M. Ghadiri, T. Bonakdar, and K. Hapgood, 3D printed agglomerates for granule breakage tests, Powder Technology, vol.306, pp.103-112, 2017.

M. Ghadiri and Z. Zhang, Impact attrition of particulate solids. Part 1: A theoretical model of chipping, Chemical Engineering Science, vol.57, issue.17, pp.3659-3669, 2002.

A. Giacomini, O. Buzzi, B. Renard, and G. P. Giani, Experimental studies on fragmentation of rock falls on impact with rock surfaces, International Journal of Rock Mechanics and Mining Sciences, vol.46, issue.4, pp.708-715, 2009.

G. L. Golewski, Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash, Materials, vol.10, issue.12, 2017.

I. Govender, Granular flows in rotating drums: A rheological perspective. Minerals Engineering, vol.92, pp.168-175, 2016.

I. Govender, M. C. Richter, A. N. Mainza, and D. N. De-klerk, A positron emission particle tracking investigation of the scaling law governing free surface flows in tumbling mills, AIChE Journal, vol.63, issue.3, pp.903-913, 2017.

A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, pp.163-198, 1921.

N. Gui, X. Yang, J. Tu, and S. Jiang, Numerical simulation and analysis of mixing of polygonal particles in 2D rotating drums by SIPHPM method, Powder Technology, vol.318, pp.248-262, 2017.

V. K. Gupta, Effect of size distribution of the particulate material on the specific breakage rate of particles in dry ball milling, Powder Technology, vol.305, pp.714-722, 2017.

V. K. Gupta and S. Sharma, Analysis of ball mill grinding operation using mill power specific kinetic parameters, Advanced Powder Technology, vol.25, issue.2, pp.625-634, 2014.

É. Guyon, J. Delenne, and F. Radjai, Matière en grains, 2017.

Y. D. Ha and F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics, Engineering Fracture Mechanics, vol.78, issue.6, pp.1156-1168, 2011.

C. Hare, T. Bonakdar, M. Ghadiri, and J. Strong, Impact breakage of pharmaceutical tablets, International journal of pharmaceutics, vol.536, issue.1, pp.370-376, 2018.

H. Henein, J. K. Brimacombe, and A. P. Watkinson, The modeling of transverse solids motion in rotary kilns, Metallurgical Transactions B, vol.14, issue.2, pp.207-220, 1983.

S. L. Hennart, W. J. Wildeboer, P. Van-hee, and G. M. Meesters, Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances, Chemical Engineering Science, vol.64, issue.19, pp.4123-4130, 2009.

J. Herbst and D. Fuerstenau, Scale-up procedure for continuous grinding mill design using population balance models, International Journal of Mineral Processing, vol.7, issue.1, pp.1-31, 1980.

J. A. Herbst, A microscale look at tumbling mill scale-up using high fidelity simulation, International Journal of Mineral Processing, vol.74, 2004.

J. A. Herbst, Making a discrete grain breakage model practical for comminution equipment performance simulation, Powder Technology, pp.144-150, 2004.

H. J. Herrmann and S. Luding, Modeling granular media with the computer, Continuum Mechanics and Thermodynamics, vol.10, pp.189-231, 1998.

A. Hillerborg, M. Modéer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, vol.6, pp.773-782, 1976.

D. Höhner, S. Wirtz, and V. Scherer, A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method, Powder Technology, vol.253, pp.256-265, 2014.

J. Huang, S. Xu, and S. Hu, Influence of particle breakage on the dynamic compression responses of brittle granular materials, Mechanics of Materials, vol.68, pp.15-28, 2014.

S. Huang, Mechanism of Crushing of Rocks under Dynamic Loading, 2016.

G. Irwin, Linear fracture mechanics, fracture transition, and fracture control, Engineering Fracture Mechanics, vol.1, issue.2, pp.241-257, 1968.

S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review, Powder Technology, vol.117, issue.1, pp.3-39, 2001.

T. Iwasaki, T. Yabuuchi, H. Nakagawa, and S. Watano, Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis, Advanced Powder Technology, vol.21, issue.6, pp.623-629, 2010.

N. Jain, J. M. Ottino, and R. M. Lueptow, An experimental study of the flowing granular layer in a rotating tumbler, Physics of Fluids, vol.14, issue.2, pp.572-582, 2002.

N. Jain, J. M. Ottino, and R. M. Lueptow, Regimes of segregation and mixing in combined size and density granular systems: An experimental study, Granular Matter, vol.7, pp.69-81, 2005.

M. Jean, V. Acary, and Y. Monerie, Non-smooth contact dynamics approach of cohesive materials, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.359, pp.2497-2518, 1789.
URL : https://hal.archives-ouvertes.fr/inria-00423556

N. Jiménez-herrera, G. K. Barrios, and L. M. Tavares, Comparison of breakage models in DEM in simulating impact on particle beds, Advanced Powder Technology, vol.29, issue.3, pp.692-706, 2018.

P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature, vol.441, issue.7094, pp.727-730, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01432178

G. Juarez, P. Chen, and R. M. Lueptow, Transition to centrifuging granular flow in rotating tumblers: A modified Froude number, New Journal of Physics, vol.13, 2011.

J. Katagiri, T. Matsushima, Y. Yamada, A. Tsuchiyama, T. Nakano et al., Investigation of 3D Grain Shape Characteristics of Lunar Soil Retrieved in Apollo 16 Using Image-Based Discrete-Element Modeling, Journal of Aerospace Engineering, vol.28, issue.4, p.4014092, 2015.

F. M. Katubilwa and M. H. Moys, Effect of ball size distribution on milling rate, Minerals Engineering, vol.22, issue.15, pp.1283-1288, 2009.

D. V. Khakhar, J. J. Mccarthy, T. Shinbrot, and J. M. Ottino, Transverse flow and mixing of granular materials in a rotating cylinder, Physics of Fluids, vol.9, issue.1, pp.31-43, 1997.

F. Kick, Das Gesetz der proportionalen Widerstände und seine Anwendungen: Nebst Versuchenüber das Verhalten verschiedener Materialien bei gleichen Formänderungen sowohl unter der Presse als dem Schlagwerk. Felix, 1885

R. Kienzler and W. Schmitt, On single-particle comminution; numerical analysis of compressed spheres, Powder Technology, vol.61, issue.1, pp.29-38, 1990.

S. Kim and J. C. Santamarina, Rock Crushing Using Microwave Pre-Treatment, Geo-Chicago, pp.720-729, 2016.

W. C. Krumbein, Measurement and geological significance of shape and roundness of sedimentary particles, Journal of Sedimentary Research, vol.11, issue.2, pp.64-72, 1941.

F. Kun and H. Herrmann, Transition from damage to fragmentation in collision of solids, Physical Review E, vol.59, issue.3, pp.2623-2632, 1998.

F. Kun and H. J. Herrmann, A study of fragmentation processes using a discrete element method, Computer Methods in Applied Mechanics and Engineering, vol.138, pp.3-18, 1996.

C. C. Kwan, Y. Q. Chen, Y. L. Ding, D. G. Papadopoulos, A. C. Bentham et al., Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders, European Journal of Pharmaceutical Sciences, vol.23, issue.4-5, pp.327-336, 2004.

H. Laubie, Elastic Properties and Failure Behavior of Disordered Porous Solids: a Potentialof-Mean-Force-Based Lattice Element Approach, 2017.

H. Laubie, F. Radjai, R. Pellenq, and F. Ulm, A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method, Journal of the Mechanics and Physics of Solids, vol.105, pp.116-130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720479

H. Laubie, F. Radjai, R. Pellenq, and F. Ulm, Stress transmission and failure in disordered porous media, Physical Review Letters, vol.119, p.75501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720432

H. Lee, H. Cho, and J. Kwon, Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill, Powder Technology, vol.198, issue.3, pp.364-372, 2010.

D. Leguillon, Strength or toughness? a criterion for crack onset at a notch, European Journal of Mechanics A/Solids, vol.21, pp.61-72, 2002.

S. Linero, S. Fityus, J. Simmons, A. Lizcano, and J. Cassidy, Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits, EPJ Web of Conferences, vol.140, p.14005, 2017.

R. P. Linna, J. A. Åström, and J. Timonen, Dimensional effects in dynamic fragmentation of brittle materials, Nonlinear, and Soft Matter Physics, vol.72, issue.1, pp.1-4, 2005.

S. Lobo-guerrero, L. E. Vallejo, and L. F. Vesga, Visualization of Crushing Evolution in Granular Materials under Compression Using DEM, International Journal of Geomechanics, vol.6, issue.3, pp.195-200, 2006.

S. Longo and A. Lamberti, Grain shear flow in a rotating drum, Experiments in Fluids, vol.32, issue.3, pp.313-325, 2002.

G. Lu, J. R. Third, and C. R. Müller, Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder, Particuology, vol.12, issue.1, pp.44-53, 2014.

G. Lu, J. R. Third, and C. R. Müller, Discrete element models for non-spherical particle systems: From theoretical developments to applications, Chemical Engineering Science, vol.127, pp.425-465, 2015.

S. Luding, Cohesive, frictional powders: Contact models for tension, Granular Matter, vol.10, issue.4, pp.235-246, 2008.

A. Lynch and C. Rowland, The History of Grinding. Society for Mining Metallurgy, 2005.

G. Ma, Y. Zhang, W. Zhou, T. T. Ng, Q. Wang et al., The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid, International Journal of Impact Engineering, vol.113, pp.132-143, 2017.

G. Ma, W. Zhou, X. Chang, and M. Chen, A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granular Matter, vol.18, 2016.

G. Ma, W. Zhou, R. A. Regueiro, Q. Wang, and X. Chang, Modeling the fragmentation of rock grains using computed tomography and combined FDEM, Powder Technology, vol.308, pp.388-397, 2017.

H. Ma and Y. Zhao, Modelling of the flow of ellipsoidal particles in a horizontal rotating drum based on DEM simulation, Chemical Engineering Science, vol.172, pp.636-651, 2017.

P. S. Maiya, Surface diffusion, surface free energy, and grain-boundary free energy of Uranium Dioxide, Journal of Nuclear Materials, vol.40, p.57, 1071.

J. E. Maneval, K. M. Hill, B. E. Smith, A. Caprihan, and E. Fukushima, Effects of end wall friction in rotating cylinder granular flow experiments, Granular Matter, vol.7, issue.4, pp.199-202, 2005.

V. Mansard, A. Colin, P. Chaudhuri, and L. Bocquet, A molecular dynamics study of non-local effects in the flow of soft jammed particles, Soft Matter, vol.9, issue.31, pp.7489-7500, 2013.

M. Marigo and E. H. Stitt, Discrete element method (DEM) for industrial applications: Comments on calibration and validation for the modelling of cylindrical pellets, KONA Powder and Particle Journal, vol.32, issue.32, pp.236-252, 2015.

C. Mayer-laigle, N. Blanc, R. K. Rajaonarivony, and X. Rouau, Comminution of dry lignocellulosic biomass, a review: Part i. from fundamental mechanisms to milling behaviour, Bioengineering, vol.5, issue.2, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01869877

G. Mcdowell and O. Harireche, Discrete element modelling of soil particle fracture, Géotechnique, vol.52, issue.2, pp.131-135, 2002.

J. Mellmann, The transverse motion of solids in rotating cylinders-forms of motion and transition behavior, Powder Technology, vol.118, issue.3, pp.251-270, 2001.

M. J. Metzger, S. P. Desai, D. Glasser, D. Hildebrandt, and B. J. Glasser, Using the attainable region analysis to determine the effect of process parameters on breakage in a ball mill, AIChE Journal, vol.58, issue.9, pp.2665-2673, 2012.

M. J. Metzger and B. J. Glasser, Simulation of the breakage of bonded agglomerates in a ball mill, Powder Technology, vol.237, pp.286-302, 2013.

G. Midi, On dense granular flows, The European physical journal. E, Soft matter, vol.14, issue.4, pp.341-65, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000959

B. K. Mishra and C. Thornton, Impact breakage of particle agglomerates, International Journal of Mineral Processing, vol.61, issue.4, pp.225-239, 2001.

J. J. Moreau, New computation methods in granular dynamics, Powders & Grains 93, p.227, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01824750

J. J. Moreau, Some numerical methods in multibody dynamics : application to granular, European journal of mechanics. A. Solids, vol.13, pp.93-114, 1994.

R. Moreno-atanasio and M. Ghadiri, Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy, Chemical Engineering Science, vol.61, issue.8, pp.2476-2481, 2006.

P. Mutabaruka, M. Taiebat, R. Pellenq, and F. Radjai, Effects of size polydispersity on random close-packed configurations of spherical particles, Physical review E, vol.100, p.42906, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02414874

J. Nakayama, Direct Measurement of Fracture Energies of Brittle Heterogeneous Materials, Journal of the American Ceramic Society, vol.48, issue.11, pp.583-587, 1965.

R. M. Nedderman, Statics and kinematics of granular materials, 2005.

D. H. Nguyen, ;. Cea, . Den, . Dec, . Spua et al., Microstructure et comportement mécanique des milieux granulaires polydisperses fragmentables, 2014.

D. Nguyen, E. Azéma, and F. Radjai, Evolution of particle size distributions in crushable granular materials. Geomechanics from Micro to Macro, pp.275-280, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112346

D. H. Nguyen, E. Azéma, F. Radjai, and P. Sornay, Effect of size polydispersity versus particle shape in dense granular media, Nonlinear, and Soft Matter Physics, vol.90, issue.1, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059980

D. Nguyen, E. Azéma, P. Sornay, and F. Radjai, Bonded-cell model for particle fracture, Physical Review E, vol.91, p.22203, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115095

D. H. Nguyen, E. Azéma, P. Sornay, and F. Radjai, Effects of shape and size polydispersity on strength properties of granular materials, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.91, issue.3, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01135285

D. Nguyen, E. Azéma, P. Sornay, and F. Radjai, Rheology of granular materials composed of crushable particles, The European Physical Journal E, vol.41, p.50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01767859

H. R. Norouzi, R. Zarghami, and N. Mostoufi, Insights into the granular flow in rotating drums, Chemical Engineering Research and Design, vol.102, pp.12-25, 2015.

A. Nosrati, J. Addai-mensah, and D. J. Robinson, Drum agglomeration behavior of nickel laterite ore: Effect of process variables, Hydrometallurgy, pp.90-99, 2012.

E. Onate and J. Rojek, Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Computer methods in applied mechanics and engineering, vol.193, pp.3087-3128, 2004.

L. F. Orozco, J. Delenne, P. Sornay, and F. Radjai, Discrete-element model for dynamic fracture of a single particle, International Journal of Solids and Structures, vol.166, pp.47-56, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02414887

L. F. Orozco, D. Nguyen, J. Delenne, P. Sornay, and F. Radjai, Discrete-element simulations of comminution in rotating drums: Effects of grinding media, Powder Technology, vol.362, pp.157-167, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02409236

A. V. Orpe and D. V. Khakhar, Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Physical review. E, Statistical, nonlinear, and soft matter physics, vol.64, p.31302, 2001.

A. V. Orpe and D. V. Khakhar, Rheology of surface granular flows, Journal of Fluid Mechanics, vol.571, p.1, 2007.

N. Ouhbi, C. Voivret, G. Perrin, and J. N. Roux, Railway Ballast: Grain Shape Characterization to Study its Influence on the Mechanical Behaviour, Procedia Engineering, vol.143, pp.1120-1127, 2016.

A. Paluszny, X. Tang, M. Nejati, and R. W. Zimmerman, A direct fragmentation method with Weibull function distribution of sizes based on finite-and discrete element simulations, International Journal of Solids and Structures, vol.80, pp.38-51, 2016.

N. Perez, Introduction to fracture mechanics, Fracture Mechanics, pp.53-77, 2017.

F. Pignatel, C. Asselin, L. Krieger, I. C. Christov, J. M. Ottino et al., Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers, Nonlinear, and Soft Matter Physics, vol.86, issue.1, pp.1-12, 2012.

A. V. Potapov and C. S. Campbell, Computer Simulation of impact-induced particle breakage, Powder Technology, vol.81, pp.207-216, 1994.

O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas, Flow of dense granular material: towards simple constitutive laws, Journal of Statistical Mechanics: Theory and Experiment, issue.07, pp.7020-07020, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01432168

O. Pouliquen and Y. Forterre, Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane, Journal of Fluid Mechanics, vol.453, pp.133-151, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00135182

M. S. Powell, N. S. Weerasekara, S. Cole, R. D. Laroche, and J. Favier, DEM modelling of liner evolution and its influence on grinding rate in ball mills, Minerals Engineering, vol.24, issue.3-4, pp.341-351, 2011.

R. Quey, P. R. Dawson, and F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering, vol.17, issue.20, pp.1729-1745, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00858028

T. Rabczuk and T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering, vol.61, issue.13, pp.2316-2343, 2004.

F. Radjai and F. Dubois, Discrete-element modeling of granular materials, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00691805

F. Radjai and V. Richefeu, Contact dynamics as a nonsmooth discrete element method, Mechanics of Materials, vol.41, issue.6, pp.715-728, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00689866

J. Rajchenbach, Flow in powders: From discrete avalanches to continuous regime, Physical Review Letters, 1990.

J. Rajchenbach, Granular flows, Physics, vol.49, issue.2, pp.229-256, 2000.

A. D. Rakotonirina, J. Delenne, F. Radjai, and A. Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convex shape-Part III: extension to non-convex particles modelled as glued convex particles, Computational Particle Mechanics, vol.6, issue.1, pp.55-84, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02063511

D. C. Rapaport, Radial and axial segregation of granular matter in a rotating cylinder: A simulation study, Nonlinear, and Soft Matter Physics, vol.75, issue.3, 2007.

S. Redner, Fragmentation. In Statistical models for the fracture of disordered media, pp.321-348, 1990.

M. Renouf, D. Bonamy, F. Dubois, and P. Alart, Numerical simulation of two-dimensional steady granular flows in rotating drum: On surface flow rheology, Physics of Fluids, vol.17, issue.10, 2005.

J. Rice, Thermodynamics of the quasi-static growth of griffith cracks, Journal of the Mechanics and Physics of Solids, vol.26, issue.2, pp.61-78, 1978.

V. Richefeu, C. Voivret, F. Radjai, and J. Delenne, Computational granular physics, vol.12, 2013.

G. H. Ristow, Pattern Formation in Granular Materials, volume 164 of Springer Tracts in Modern Physics, 2000.

P. G. Rognon, T. Miller, B. Metzger, and I. Einav, Long-range wall perturbations in dense granular flows, Journal of Fluid Mechanics, vol.764, pp.171-192, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01442051

E. Rougier, E. Knight, S. Broome, A. Sussman, and A. Munjiza, Validation of a threedimensional finite-discrete element method using experimental results of the split hopkinson pressure bar test, International Journal of Rock Mechanics and Mining Sciences, vol.70, pp.101-108, 2014.

R. Bilan-Électrique, , 2018.

H. Rumpf, Physical aspects of comminution and new formulation of a law of comminution, Powder Technology, vol.7, issue.3, pp.145-159, 1973.

S. Sadrai, J. A. Meech, D. Tromans, and F. Sassani, Energy efficient comminution under high velocity impact fragmentation, Minerals Engineering, vol.24, issue.10, pp.1053-1061, 2011.

B. Saint-cyr, Modélisation des matériaux granulaires cohésifs à particules non convexes : Application aà la compaction des poudres d'UO2, 2011.

B. Saint-cyr, J. Delenne, C. Voivret, F. Radjai, and P. Sornay, Rheology of granular materials composed of nonconvex particles, Physical Review E, vol.84, issue.4, p.41302, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00759629

A. D. Salman, C. A. Biggs, J. Fu, I. Angyal, M. Szabó et al., An experimental investigation of particle fragmentation using single particle impact studies, Powder Technology, vol.128, issue.1, pp.36-46, 2002.

A. D. Salman, G. K. Reynolds, J. S. Fu, Y. S. Cheong, C. A. Biggs et al., Descriptive classification of the impact failure modes of spherical particles, Powder Technology, pp.143-144, 2004.

A. Samimi, M. Ghadiri, R. Boerefijn, A. Groot, and R. Kohlus, Effect of structural characteristics on impact breakage of agglomerates, Powder Technology, vol.130, issue.1-3, pp.428-435, 2003.

C. Sammis, G. King, and R. Biegel, The kinematics of gouge deformation. Pure and applied geophysics, vol.125, pp.777-812, 1987.

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, vol.199, pp.177-215, 1989.

P. Schuhmacher, Rhéologie des écoulements granulaires : variables internes et effets d' échelle, 2016.

P. Schuhmacher, F. Radjai, and S. Roux, Wall roughness and nonlinear velocity profiles in granular shear flows, EPJ Web of Conferences, vol.140, p.3090, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01985872

M. Seiss, Etude du broyage de poudres d'oxydes nucleaires, 1995.

F. Shi and T. Kojovic, Validation of a model for impact breakage incorporating particle size effect, International Journal of Mineral Processing, vol.82, issue.3, pp.156-163, 2007.

E. T. Stamboliadis, The energy distribution theory of comminution specific surface energy, mill efficiency and distribution mode, Minerals Engineering, vol.20, issue.2, pp.140-145, 2007.

L. Staron and E. J. Hinch, Study of the collapse of granular columns using two-dimensional discrete-grain simulation, Journal of Fluid Mechanics, vol.545, pp.1-27, 2005.

J. Subero, Z. Ning, M. Ghadiri, and C. Thornton, Effect of interface energy on the impact strength of agglomerates, Powder Technology, vol.105, issue.1-3, pp.66-73, 1999.

H. Sun, Y. Zeng, S. Ren, Y. Ye, and X. Chen, Breakage probability of marble spheres under normal, repeated impacts, International Journal of Impact Engineering, vol.130, pp.68-78, 2019.

T. Vo, P. Mutabaruka, J. Delenne, S. Nezamabadi, and F. Radjai, Strength of wet agglomerates of spherical particles: effects of friction and size distribution, EPJ Web of Conferences, vol.140, p.8021, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01563611

N. Taberlet, P. Richard, and E. Hinch, S shape of a granular pile in a rotating drum, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.73, issue.5, pp.1-4, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00083932

A. Taboada, N. Estrada, and F. Radjai, Additive decomposition of shear strength in cohesive granular media from grain-scale interactions, Physical Review letters, vol.97, issue.9, p.98302, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01425247

M. R. Tamadondar, L. De-martín, and A. Rasmuson, Agglomerate breakage and adhesion upon impact with complex-shaped particles, AIChE Journal, vol.65, issue.6, 2019.

S. Tarasiewicz and P. Radziszewski, Comminution energetics part I : Breakage energy model, Materials Chemistry and Physics, vol.25, issue.1, pp.1-11, 1990.

L. Tavares and R. King, Single-particle fracture under impact loading, International Journal of Mineral Processing, vol.54, pp.1-28, 1998.

L. M. Tavares, Chapter 1 breakage of single particles: Quasi-static, Particle Breakage, vol.12, pp.3-68, 2007.

L. M. Tavares, A review of advanced ball mill modelling, KONA Powder and Particle Journal, vol.2017, pp.106-124, 2017.

L. M. Tavares and R. M. De-carvalho, Modeling breakage rates of coarse particles in ball mills, Minerals Engineering, vol.22, issue.7-8, pp.650-659, 2009.

L. M. Tavares and R. P. King, Modeling of particle fracture by repeated impacts using continuum damage mechanics, Powder Technology, vol.123, issue.2-3, pp.138-146, 2002.

C. Thornton, K. K. Yin, and M. J. Adams, Numerical simulation of the impact fracture and fragmentation of agglomerates, Journal of Physics D: Applied Physics, vol.29, pp.424-435, 1996.

G. Timár, J. Blömer, F. Kun, and H. J. Herrmann, New universality class for the fragmentation of plastic materials, Physical Review Letters, vol.104, issue.9, pp.1-4, 2010.

G. Timár, F. Kun, H. A. Carmona, and H. J. Herrmann, Scaling laws for impact fragmentation of spherical solids, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.86, issue.1, pp.1-7, 2012.

V. Topin, F. Radjai, J. Delenne, and F. Mabille, Mechanical modeling of wheat hardness and fragmentation, Powder Technology, vol.190, issue.1-2, pp.215-220, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02758080

D. Touil, S. Belaadi, and C. Frances, Energy efficiency of cement finish grinding in a dry batch ball mill, Cement and Concrete Research, vol.36, issue.3, pp.416-421, 2006.

D. , Tromans. Mineral comminution: Energy efficiency considerations. Minerals Engineering, vol.21, issue.8, pp.613-620, 2008.

O. Tsoungui, D. Vallet, and J. Charmet, Numerical model of crushing of grains inside two-dimensional granular materials, Powder Technology, vol.105, pp.190-198, 1999.

A. Turon, C. Dávila, P. Camanho, and J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Engineering Fracture Mechanics, vol.74, issue.10, pp.1665-1682, 2007.

E. T. Tuzcu, N. Dhawan, and R. K. Rajamani, Coarse particle fracture with the ultrafast load cell. Mining, Metallurgy & Exploration, vol.28, pp.176-186, 2011.

E. T. Tuzcu and R. K. Rajamani, Modeling breakage rates in mills with impact energy spectra and ultra fast load cell data, Minerals Engineering, vol.24, issue.3-4, pp.252-260, 2011.

B. Van-laarhoven, S. H. Schaafsma, and G. M. Meesters, Development of a new abrasion tester based on planetary motion, Powder Technology, vol.203, issue.2, pp.167-175, 2010.

B. Van-laarhoven, S. H. Schaafsma, and G. M. Meesters, Toward a desktop attrition tester; validation with dilute phase pneumatic conveying, Chemical Engineering Science, vol.73, pp.321-328, 2012.

D. J. Varnes, Landslide types and processes. Landslides and engineering practice, vol.29, pp.20-45, 1958.

L. Vogel and W. Peukert, Breakage behaviour of different materials -Construction of a mastercurve for the breakage probability, Powder Technology, vol.129, issue.1-3, pp.101-110, 2003.

L. Vogel and W. Peukert, Determination of material properties relevant to grinding by practicable labscale milling tests, International Journal of Mineral Processing, vol.74, pp.329-338, 2004.

L. Vogel and W. Peukert, From single particle impact behaviour to modelling of impact mills, Chemical Engineering Science, vol.60, issue.18, pp.5164-5176, 2005.

C. Voivret, Cushioning effect in highly polydisperse granular media, AIP Conference Proceedings, vol.1542, pp.405-408, 2013.

C. Voivret, F. Radjai, J. Delenne, and M. S. Youssoufi, Space-filling properties of polydisperse granular media, Physical Review E, vol.76, p.21301, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00759644

H. , Volume, shape, and roundness of rock particles, The Journal of Geology, vol.40, issue.5, pp.443-451, 1932.

M. H. Wang, R. Y. Yang, and A. B. Yu, DEM investigation of energy distribution and particle breakage in tumbling ball mills, Powder Technology, vol.223, pp.83-91, 2012.

R. Wang and L. Fan, Methods for scaling-up tumbling mixers, Chemical Engineering, vol.81, issue.11, pp.88-94, 1974.

N. S. Weerasekara, L. X. Liu, and M. S. Powell, Estimating energy in grinding using DEM modelling, Minerals Engineering, vol.85, pp.23-33, 2016.

F. K. Wittel, H. A. Carmona, F. Kun, and H. J. Herrmann, Mechanisms in impact fragmentation, International Journal of Fracture, vol.154, issue.1-2, pp.105-117, 2008.

S. Z. Wu and K. T. Chau, Dynamic response of an elastic sphere under diametral impacts, Mechanics of Materials, vol.38, issue.11, pp.1039-1060, 2006.

S. Z. Wu, K. T. Chau, and T. X. Yu, Crushing and fragmentation of brittle spheres under double impact test, Powder Technology, pp.41-55, 2004.

Y. Wu, X. An, Q. Qian, L. Wang, and A. Yu, Dynamic modelling on the confined crystallization of mono-sized cubic particles under mechanical vibration, The European Physical Journal E, vol.41, issue.11, p.139, 2018.

T. Hou, Q. Xu, and J. Wen-zhou, Size distribution, morphology and fractal characteristics of brittle rock fragmentations by the impact loading effect, Acta Mechanica, vol.226, issue.11, pp.3623-3637, 2015.

M. Xu, J. Hong, and E. Song, Dem study on the effect of particle breakage on the macro and micro-behavior of rockfill sheared along different stress paths, Computers and Geotechnics, vol.89, pp.113-127, 2017.

R. Y. Yang, R. P. Zou, and A. B. Yu, Microdynamic analysis of particle flow in a horizontal rotating drum, Powder Technology, vol.130, issue.1-3, pp.138-146, 2003.

S. Yang, A. Cahyadi, J. Wang, and J. W. Chew, DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum, AIChE Journal, vol.62, issue.11, pp.3874-3888, 2016.

F. Yu, S. Zhang, G. Zhou, Y. Zhang, and W. Ge, Geometrically exact discrete-elementmethod (DEM) simulation on the flow and mixing of sphero-cylinders in horizontal drums, Powder Technology, vol.336, pp.415-425, 2018.

Z. Zhang and M. Ghadiri, Impact attrition of particulate solids, Chemical Engineering Science, vol.57, issue.17, pp.3671-3686, 2002.

W. Zhou, K. Xu, G. Ma, and X. Chang, On the breakage function for constructing the fragment replacement modes, Particuology, vol.44, pp.207-217, 2019.

F. Zhu and J. Zhao, A peridynamic investigation on crushing of sand particles. Géotechnique, vol.69, pp.526-540, 2019.

F. Zhu and J. Zhao, Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach, Computer Methods in Applied Mechanics and Engineering, vol.348, pp.334-355, 2019.

A. Zubelewicz and Z. P. Ba?ant, Interface element modeling of fracture in aggregate composites, Journal of engineering mechanics, vol.113, issue.11, pp.1619-1630, 1987.