A. M. Abdel-haleem, N. E. Lewis, N. Jamshidi, K. Mineta, X. Gao et al., , 2017.

, The Emerging Facets of Non-Cancerous Warburg Effect. Front. Endocrinol, vol.8

I. S. Afonina, Z. Zhong, M. Karin, and R. Beyaert, Limiting inflammation-the negative regulation of NF-?B and the NLRP3 inflammasome, Nat. Immunol, vol.18, pp.861-869, 2017.

F. Aktan, iNOS-mediated nitric oxide production and its regulation, Life Sci, vol.75, pp.639-653, 2004.

M. S. Alam, T. Akaike, S. Okamoto, T. Kubota, J. Yoshitake et al., Role of Nitric Oxide in Host Defense in Murine Salmonellosis as a Function of Its Antibacterial and Antiapoptotic Activities, Infect. Immun, vol.70, pp.3130-3142, 2002.

J. Alexander and F. Brombacher, T Helper1/T Helper2 Cells and Resistance/Susceptibility to Leishmania Infection: Is This Paradigm Still Relevant? Front, 2012.

E. Amiel, B. Everts, D. Fritz, S. Beauchamp, B. Ge et al., , 2014.

, Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function, J. Immunol, vol.193, pp.2821-2830

G. Arango-duque and A. Descoteaux, Macrophage Cytokines: Involvement in Immunity and Infectious Diseases, Front. Immunol, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01134410

W. P. Arend, The balance between IL-1 and IL-1Ra in disease, Cytokine Growth Factor Rev, vol.13, pp.323-340, 2002.

A. Ariel, I. Maridonneau-parini, P. Rovere-querini, J. S. Levine, and H. Mühl, , 2012.

, Macrophages in inflammation and its resolution. Front. Immunol, vol.3

M. Arita, T. Ohira, Y. Sun, S. Elangovan, N. Chiang et al., Resolvin E1 Selectively Interacts with Leukotriene B4 Receptor BLT1 and ChemR23 to Regulate Inflammation, J. Immunol, vol.178, pp.3912-3917, 2007.

R. J. Arts, L. A. Joosten, and M. G. Netea, Immunometabolic circuits in trained immunity, Semin. Immunol, vol.28, pp.425-430, 2016.

N. T. Ashley, Z. M. Weil, and R. J. Nelson, Inflammation: Mechanisms, Costs, and Natural Variation, Annu. Rev. Ecol. Evol. Syst, vol.43, pp.385-406, 2012.

J. Assreuy, F. Q. Cunha, M. Epperlein, A. Noronha-dutra, C. A. O'donnell et al., Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major, Eur. J. Immunol, vol.24, pp.672-676, 1994.

A. Badirzadeh, T. Taheri, Y. Taslimi, Z. Abdossamadi, M. Heidari-kharaji et al., Arginase activity in pathogenic and nonpathogenic species of Leishmania parasites, PLoS Negl. Trop. Dis, vol.11, p.5774, 2017.

J. Bagnall, C. Boddington, H. England, R. Brignall, P. Downton et al., Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the propagation of macrophage activation, Sci Signal, vol.11, p.3998, 2018.

M. Bambouskova, L. Gorvel, V. Lampropoulou, A. Sergushichev, E. Loginicheva et al., Electrophilic properties of itaconate and derivatives regulate the I?B?-ATF3 inflammatory axis, Nature, vol.556, pp.501-504, 2018.

E. Barak, S. Amin-spector, E. Gerliak, S. Goyard, N. Holland et al., Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response, Mol. Biochem. Parasitol, vol.141, pp.99-108, 2005.

M. C. Basil and B. D. Levy, Specialized pro-resolving mediators: endogenous regulators of infection and inflammation, Nat. Rev. Immunol, vol.16, pp.51-67, 2016.

E. Bazzan, M. Saetta, G. Turato, E. M. Borroni, C. Cancellieri et al., Expression of the Atypical Chemokine Receptor D6 in Human Alveolar Macrophages in COPD, Chest, vol.143, pp.98-106, 2013.

C. Béchade, S. Colasse, M. A. Diana, M. Rouault, and A. Bessis, NOS2 expression is restricted to neurons in the healthy brain but is triggered in microglia upon inflammation, Glia, vol.62, pp.956-963, 2014.

K. Bedard and K. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev, vol.87, pp.245-313, 2007.

Y. Belkaid, B. Butcher, and D. L. Sacks, Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level: selective impairment of IL-12 induction in Leishmania-infected cells, Eur. J. Immunol, vol.28, pp.1389-1400, 1998.

Y. Belkaid, S. Mendez, R. Lira, N. Kadambi, G. Milon et al., A Natural Model of Leishmania major Infection Reveals a Prolonged "Silent" Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity, J. Immunol, vol.165, pp.969-977, 2000.

Y. Belkaid, K. F. Hoffmann, S. Mendez, S. Kamhawi, M. C. Udey et al., The Role of Interleukin (IL)-10 in the Persistence of Leishmania major in the Skin after Healing and the Therapeutic Potential of Anti-IL-10 Receptor Antibody for Sterile Cure, J. Exp. Med, vol.194, pp.1497-1506, 2001.

Y. Belkaid, E. V. Stebut, S. Mendez, R. Lira, E. Caler et al., CD8+ T Cells Are Required for Primary Immunity in C57BL/6 Mice Following Low-Dose, Intradermal Challenge with Leishmania major, J. Immunol, vol.168, pp.3992-4000, 2002.

Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, CD4 + CD25 + regulatory T cells control Leishmania major persistence and immunity, Nature, vol.420, pp.502-507, 2002.

J. M. Berg, J. L. Tymoczko, L. Stryer, J. M. Berg, J. L. Tymoczko et al., , 2002.

(. Biochemistry and . Freeman,

W. L. Biffl, E. E. Moore, F. A. Moore, J. Barnett, and C. Carlton, Nitric Oxide Reduces Endothelial Expression of Intercellular Adhesion Molecule (ICAM)-1, J. Surg. Res, vol.63, pp.328-332, 1996.

R. M. Bingisser, P. A. Tilbrook, P. G. Holt, and U. R. Kees, Macrophage-Derived Nitric Oxide Regulates T Cell Activation via Reversible Disruption of the Jak3/STAT5 Signaling Pathway, J. Immunol, vol.160, pp.5729-5734, 1998.

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell Metab, vol.15, pp.432-437, 2012.

J. Blanchette, I. Abu-dayyeh, K. Hassani, L. Whitcombe, and M. Olivier, Regulation of macrophage nitric oxide production by the protein tyrosine phosphatase Src homology 2 domain phosphotyrosine phosphatase 1 (SHP-1), Immunology, vol.127, pp.123-133, 2009.

E. Blasi, L. Pitzurra, A. Bartoli, M. Puliti, and F. Bistoni, Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to Candida albicans, Infect. Immun, vol.62, pp.1199-1206, 1994.

C. Bogdan, Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example, Cell. Microbiol, vol.10, pp.1221-1234, 2008.

C. Bogdan, Natural killer cells in experimental and human leishmaniasis, Front. Cell. Infect. Microbiol, vol.2, 2012.

C. Bogdan, Nitric oxide synthase in innate and adaptive immunity: an update, Trends Immunol, vol.36, pp.161-178, 2015.

C. Bogdan and M. Röllinghoff, The immune response to Leishmania: mechanisms of parasite control and evasion, Int. J. Parasitol, vol.28, pp.121-134, 1998.

R. Bonecchi and G. J. Graham, Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response, Front. Immunol, vol.7, 2016.

J. Braverman and S. A. Stanley, Nitric Oxide Modulates Macrophage Responses to Mycobacterium tuberculosis Infection through Activation of HIF-1? and Repression of NF-?B, 2017.

, J. Immunol. Baltim. Md, pp.1805-1816, 1950199.

N. Brewig, A. Kissenpfennig, B. Malissen, A. Veit, T. Bickert et al., Priming of CD8+ and CD4+ T Cells in Experimental Leishmaniasis Is Initiated by Different Dendritic Cell Subtypes, J. Immunol, vol.182, pp.774-783, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407769

S. K. Bromley, T. R. Mempel, and A. D. Luster, Orchestrating the orchestrators: chemokines in control of T cell traffic, Nat. Immunol, vol.9, pp.970-980, 2008.

G. C. Brown, Nitric oxide and mitochondrial respiration, Biochim. Biophys. Acta BBA -Bioenerg, vol.1411, pp.351-369, 1999.

G. C. Brown, Nitric oxide and mitochondria, Front. Biosci. J. Virtual Libr, vol.12, pp.1024-1033, 2007.

P. Broz and V. M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling, Nat. Rev. Immunol, vol.16, pp.407-420, 2016.

G. J. Buchan, G. Bonacci, M. Fazzari, S. R. Salvatore, G. Wendell et al., Nitrofatty acid formation and metabolism, Nitric Oxide, vol.79, pp.38-44, 2018.

A. B. Caldwell, Z. Cheng, J. D. Vargas, H. A. Birnbaum, and A. Hoffmann, Network dynamics determine the autocrine and paracrine signaling functions of TNF, Genes Dev, vol.28, pp.2120-2133, 2014.

T. C. Calegari-silva, R. M. Pereira, L. D. De-melo, E. M. Saraiva, D. C. Soares et al., NF-?B-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection, Immunol. Lett, vol.127, pp.19-26, 2009.

M. Calvani, G. Comito, E. Giannoni, and P. Chiarugi, Time-Dependent Stabilization of Hypoxia Inducible Factor-1? by Different Intracellular Sources of Reactive Oxygen Species, PLOS ONE, vol.7, p.38388, 2012.

P. Cameron, A. Mcgachy, M. Anderson, A. Paul, G. H. Coombs et al., Inhibition of Lipopolysaccharide-Induced Macrophage, 2004.

, Production by Leishmania mexicana Amastigotes: The Role of Cysteine Peptidases and the NF-?B Signaling Pathway, J. Immunol, vol.173, pp.3297-3304

L. Carrera, R. T. Gazzinelli, R. Badolato, S. Hieny, W. Muller et al., Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrowderived macrophages from susceptible and resistant mice, J. Exp. Med, vol.183, pp.515-526, 1996.

P. Casgrain, C. Martel, W. R. Mcmaster, J. C. Mottram, M. Olivier et al.,

, Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression, PLOS Pathog, vol.12, 1005658.

D. Chakraborty, S. Banerjee, A. Sen, K. K. Banerjee, P. Das et al., Leishmania donovani Affects Antigen Presentation of Macrophage by Disrupting Lipid Rafts, J. Immunol, vol.175, pp.3214-3224, 2005.

K. Chang and B. S. Mcgwire, Molecular determinants and regulation of Leishmania virulence, Kinetoplastid Biol. Dis, vol.1, p.1, 2002.

R. H. Chang, M. H. Feng, W. H. Liu, and M. Z. Lai, Nitric oxide increased interleukin-4 expression in T lymphocytes, Immunology, vol.90, pp.364-369, 1997.

M. Charmoy, S. Brunner-agten, D. Aebischer, F. Auderset, P. Launois et al., Neutrophil-Derived CCL3 Is Essential for the Rapid Recruitment of Dendritic Cells to the Site of Leishmania major Inoculation in Resistant Mice, PLOS Pathog, vol.6, p.1000755, 2010.

M. Charmoy, B. P. Hurrell, A. Romano, S. H. Lee, F. Ribeiro-gomes et al., The Nlrp3 inflammasome, IL-1?, and neutrophil recruitment are required for susceptibility to a non-healing strain of Leishmania major in C57BL/6 mice, Eur. J. Immunol, vol.46, pp.897-911, 2016.

T. Charpentier, A. Hammami, and S. Stäger, Hypoxia inducible factor 1?: A critical factor for the immune response to pathogens and Leishmania, Cell. Immunol, vol.309, pp.42-49, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01350854

S. Cheng, J. Quintin, R. A. Cramer, K. M. Shepardson, S. Saeed et al., mTOR-and HIF-1?-mediated aerobic glycolysis as metabolic basis for trained immunity, Science, vol.345, p.1250684, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02875426

A. Chiarugi, E. Rovida, P. Dello-sbarba, and F. Moroni, Tryptophan availability selectively limits NO-synthase induction in macrophages, J. Leukoc. Biol, vol.73, pp.172-177, 2003.

S. Z. Chong, M. Evrard, and L. G. Ng, Lights, Camera, and Action: Vertebrate Skin Sets the Stage for Immune Cell Interaction with Arthropod-Vectored Pathogens, 2013.

K. Chughtai and R. M. Heeren, Mass Spectrometric Imaging for Biomedical Tissue Analysis, Chem. Rev, vol.110, pp.3237-3277, 2010.

M. W. Cleeter, J. M. Cooper, V. M. Darley-usmar, S. Moncada, and A. H. Schapira, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide, FEBS Lett, vol.345, pp.50-54, 1994.

E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7631-7636, 1998.

M. Comalada, A. Yeramian, M. Modolell, J. Lloberas, and A. Celada, Arginine and Macrophage Activation, Leucocytes, pp.223-235, 2012.

T. Cordes, M. Wallace, A. Michelucci, A. S. Divakaruni, S. C. Sapcariu et al., Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels, J. Biol. Chem, vol.291, pp.14274-14284, 2016.

S. M. Crusz and F. R. Balkwill, Inflammation and cancer: advances and new agents, Nat. Rev. Clin. Oncol, vol.12, pp.584-596, 2015.

C. Csonka, T. Páli, P. Bencsik, A. Görbe, P. Ferdinandy et al., Measurement of NO in biological samples, Br. J. Pharmacol, vol.172, pp.1620-1632, 2015.

S. Daff, NO synthase: Structures and mechanisms, Nitric Oxide, vol.23, pp.1-11, 2010.

C. Dai, J. Wang, Y. Fu, H. Zhou, and Q. Song, Selective and Real-Time Detection of Nitric Oxide by a Two-Photon Fluorescent Probe in Live Cells and Tissue Slices, Anal. Chem, vol.89, pp.10511-10519, 2017.

J. Daintith, A Dictionary of Chemistry, 2008.

D. Dal-secco, J. A. Paron, S. H. De-oliveira, S. H. Ferreira, J. S. Silva et al., Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis, Nitric Oxide, vol.9, pp.153-164, 2003.

D. Dal-secco, A. P. Moreira, A. Freitas, J. S. Silva, M. A. Rossi et al., Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: Role of soluble guanylate cyclase, Nitric Oxide, vol.15, pp.77-86, 2006.

D. Dal-secco, J. Wang, Z. Zeng, E. Kolaczkowska, C. H. Wong et al., A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury, J. Exp. Med, vol.212, pp.447-456, 2015.

R. A. Daynes and D. C. Jones, Emerging roles of PPARS in inflammation and immunity, Nat. Rev. Immunol, vol.2, pp.748-759, 2002.

R. A. Dean, J. H. Cox, C. L. Bellac, A. Doucet, A. E. Starr et al., , 2008.

M. Metalloelastase, MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx, vol.112, pp.3455-3464

E. R. Derbyshire and M. A. Marletta, Structure and Regulation of Soluble Guanylate Cyclase, Annu. Rev. Biochem, vol.81, pp.533-559, 2012.

J. Dermine, S. Scianimanico, C. Privé, A. Descoteaux, and M. Desjardins, , 2000.

, Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis, Cell. Microbiol, vol.2, pp.115-126

F. Dotiwala, S. Mulik, R. B. Polidoro, J. A. Ansara, B. A. Burleigh et al., Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites, Nat. Med, vol.22, pp.210-216, 2016.

J. G. Egen, A. G. Rothfuchs, C. G. Feng, M. A. Horwitz, A. Sher et al., , 2011.

, Intravital Imaging Reveals Limited Antigen Presentation and T Cell Effector Function in Mycobacterial Granulomas, Immunity, vol.34, pp.807-819

S. Eickhoff, A. Brewitz, M. Y. Gerner, F. Klauschen, K. Komander et al., Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions, Cell, vol.162, pp.1322-1337, 2015.

A. Eigler, J. Moeller, and S. Endres, Exogenous and endogenous nitric oxide attenuates tumor necrosis factor synthesis in the murine macrophage cell line RAW 264.7, J. Immunol. Baltim. Md, vol.154, pp.4048-4054, 1950.

S. Ekmekcioglu, E. A. Grimm, and J. Roszik, Targeting iNOS to increase efficacy of immunotherapies, Hum. Vaccines Immunother, vol.13, pp.1105-1108, 2017.

K. C. El-kasmi and K. R. Stenmark, Contribution of Metabolic Reprogramming to Macrophage Plasticity and Function, Semin. Immunol, vol.27, pp.267-275, 2015.

C. N. El-hani, V. M. Borges, J. L. Wanderley, and M. A. Barcinski, Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective, Front. Cell. Infect. Microbiol, 2012.

A. J. Freemerman, A. R. Johnson, G. N. Sacks, J. J. Milner, E. L. Kirk et al., Metabolic Reprogramming of Macrophages GLUCOSE TRANSPORTER 1 (GLUT1)-MEDIATED GLUCOSE METABOLISM DRIVES A PROINFLAMMATORY PHENOTYPE, J. Biol. Chem, vol.289, pp.7884-7896, 2014.

J. M. De-freitas-balanco, M. E. Costa-moreira, A. Bonomo, P. T. Bozza, G. Amarante-mendes et al., Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity, Curr. Biol, vol.11, pp.1870-1873, 2001.

C. Fritzsche, U. Schleicher, B. , and C. , Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis, Immunobiology, vol.215, pp.826-832, 2010.

L. Gabry?ová, K. S. Nicolson, H. B. Streeter, J. Verhagen, C. A. Sabatos-peyton et al., Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells, J. Exp. Med, vol.206, pp.1755-1767, 2009.

S. Galván-peña and L. A. Neill, Metabolic Reprograming in Macrophage Polarization, Front. Immunol, vol.5, 2014.

K. Ganeshan and A. Chawla, Metabolic Regulation of Immune Responses, Annu. Rev. Immunol, vol.32, pp.609-634, 2014.

S. Gannavaram, P. Bhattacharya, N. Ismail, A. Kaul, R. Singh et al., Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules, Front. Immunol, vol.7, 2016.

G. Gautier, M. Humbert, F. Deauvieau, M. Scuiller, J. Hiscott et al., A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells, J. Exp. Med, vol.201, pp.1435-1446, 2005.

X. Geeraerts, E. Bolli, S. Fendt, and J. A. Van-ginderachter, Macrophage Metabolism As Therapeutic Target for Cancer, Atherosclerosis, and Obesity. Front. Immunol, 2017.

S. Ghosh, S. Bhattacharyya, M. Sirkar, G. S. Sa, T. Das et al., Leishmania donovani suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: involvement of extracellular signalregulated kinase, Infect. Immun, vol.70, pp.6828-6838, 2002.

P. M. Gillespie, C. M. Beaumier, U. Strych, T. Hayward, P. J. Hotez et al., Status of vaccine research and development of vaccines for leishmaniasis, Vaccine, vol.34, pp.2992-2995, 2016.

M. L. Giustizieri, C. Albanesi, C. Scarponi, O. De-pità, and G. Girolomoni, Nitric Oxide Donors Suppress Chemokine Production by Keratinocytes in Vitro and in Vivo, Am. J. Pathol, vol.161, pp.1409-1418, 2002.

C. K. Glass and G. Natoli, Molecular control of activation and priming in macrophages, Nat. Immunol, vol.17, pp.26-33, 2016.

N. D. Glennie, V. A. Yeramilli, D. P. Beiting, S. W. Volk, C. T. Weaver et al., , 2015.

, Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection, J. Exp. Med, vol.212, pp.1405-1414

N. D. Glennie, S. W. Volk, P. Scott, C. Godson, S. Mitchell et al., Cutting Edge: Lipoxins Rapidly Stimulate Nonphlogistic Phagocytosis of Apoptotic Neutrophils by Monocyte-Derived Macrophages, PLOS Pathog, vol.13, pp.1663-1667, 2000.

K. J. Gollob, L. R. Antonelli, and W. O. Dutra, Insights into CD4+ memory T cells following Leishmania infection, Trends Parasitol, vol.21, pp.347-350, 2005.

R. Goncalves, X. Zhang, H. Cohen, A. Debrabant, and D. M. Mosser, Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection, J. Exp. Med, vol.208, pp.1253-1265, 2011.

E. R. Greene, S. Huang, C. N. Serhan, and D. Panigrahy, Regulation of inflammation in cancer by eicosanoids, Prostaglandins Other Lipid Mediat, vol.96, pp.27-36, 2011.

D. J. Gregory, M. Godbout, I. Contreras, G. Forget, and M. Olivier, A novel form of NF-?B is induced by Leishmania infection: Involvement in macrophage gene expression, Eur. J. Immunol, vol.38, pp.1071-1081, 2008.

J. W. Griffith, C. L. Sokol, and A. D. Luster, Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity, Annu. Rev. Immunol, vol.32, pp.659-702, 2014.

M. J. Grimm, R. R. Vethanayagam, N. G. Almyroudis, C. G. Dennis, A. N. Khan et al., Monocyte-and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice, J. Immunol. Baltim. Md, pp.4175-4184, 2013.

S. I. Grivennikov, F. R. Greten, K. , and M. , Immunity, Inflammation, and Cancer. Cell, vol.140, pp.883-899, 2010.

G. Guarda, C. Dostert, F. Staehli, K. Cabalzar, R. Castillo et al., T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes, Nature, vol.460, pp.269-273, 2009.

G. Guarda, M. Braun, F. Staehli, A. Tardivel, C. Mattmann et al., Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation, Immunity, vol.34, pp.213-223, 2011.

M. Guilliams, C. Dutertre, C. L. Scott, N. Mcgovern, D. Sichien et al., Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species, Immunity, vol.45, pp.669-684, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01376187

G. Gupta, S. Oghumu, and A. R. Satoskar, Chapter Five -Mechanisms of Immune Evasion in Leishmaniasis, Advances in Applied Microbiology, pp.155-184, 2013.

P. Gurung, R. Karki, P. Vogel, M. Watanabe, M. Bix et al.,

, An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis, J. Clin. Invest, vol.125, pp.1329-1338

O. Harari and J. K. Liao, Inhibition of MHC II Gene Transcription by Nitric Oxide and Antioxidants, Curr. Pharm. Des, vol.10, pp.893-898, 2004.

D. G. Hardie, J. W. Scott, D. A. Pan, and E. R. Hudson, Management of cellular energy by the AMP-activated protein kinase system, FEBS Lett, vol.546, pp.113-120, 2003.

M. Hartley, S. Drexler, C. Ronet, S. M. Beverley, and N. Fasel, The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis, Trends Parasitol, vol.30, pp.412-422, 2014.

A. Haschemi, P. Kosma, L. Gille, C. R. Evans, C. F. Burant et al., The Sedoheptulose Kinase CARKL Directs Macrophage Polarization through Control of Glucose Metabolism, Cell Metab, vol.15, pp.813-826, 2012.

D. E. Hatzigeorgiou, J. Geng, B. Zhu, Y. Zhang, K. Liu et al., Lipophosphoglycan from Leishmania suppresses agonist-induced interleukin 1 beta gene expression in human monocytes via a unique promoter sequence, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.14708-14713, 1996.

C. A. Henard and A. Vázquez-torres, Nitric Oxide and Salmonella Pathogenesis, Front. Microbiol, vol.2, 2011.

S. Herbst, U. E. Schaible, and B. E. Schneider, Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis, PLOS ONE, vol.6, p.19105, 2011.

C. Hernández-chinea, L. Maimone, Y. Campos, W. Mosca, and P. J. Romero, , 2017.

, Apparent isocitrate lyase activity in Leishmania amazonensis, Acta Parasitol, vol.62, pp.701-707

E. Hernandez-cuellar, K. Tsuchiya, H. Hara, R. Fang, S. Sakai et al., Cutting Edge: Nitric Oxide Inhibits the NLRP3 Inflammasome, J. Immunol, vol.189, pp.5113-5117, 2012.

D. T. Hess, A. Matsumoto, S. Kim, H. E. Marshall, and J. S. Stamler, Protein Snitrosylation: purview and parameters, Nat. Rev. Mol. Cell Biol, vol.6, pp.150-166, 2005.

M. J. Hickey, Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment, Clin. Sci, vol.100, pp.1-12, 2001.

K. Hirotatsu, N. Nakatsubo, K. Kikuchi, Y. Urano, T. Higuchi et al., Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA, NeuroReport, vol.9, p.3345, 1998.

S. A. Hobson-gutierrez and C. Carmona-fontaine, The metabolic axis of macrophage and immune cell polarization, Dis. Model. Mech, vol.11, p.34462, 2018.

C. Hölscher, G. Köhler, U. Müller, H. Mossmann, G. A. Schaub et al., , 1998.

, Defective Nitric Oxide Effector Functions Lead to Extreme Susceptibility of Trypanosoma cruzi-Infected Mice Deficient in Gamma Interferon Receptor or Inducible Nitric Oxide Synthase, Infect. Immun, vol.66, pp.1208-1215

P. Holzmuller, R. Bras-gonçalves, and J. Lemesre, Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania, Parasitology, vol.132, pp.19-32, 2006.

F. Huang, W. Niedbala, X. Wei, D. Xu, G. Feng et al., Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages, Eur. J. Immunol, vol.28, pp.4062-4070, 1998.

S. Ibiza and J. M. Serrador, The role of nitric oxide in the regulation of adaptive immune responses, Inmunología, vol.27, pp.103-117, 2008.

S. Ibiza, V. M. Víctor, I. Boscá, A. Ortega, A. Urzainqui et al., Endothelial Nitric Oxide Synthase Regulates T Cell Receptor Signaling at the Immunological Synapse, Immunity, vol.24, pp.753-765, 2006.

E. Inbar, V. K. Hughitt, L. A. Dillon, K. Ghosh, N. M. El-sayed et al., , 2017.

, The Transcriptome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector, MBio, vol.8, pp.29-46

V. Infantino, P. Convertini, L. Cucci, M. A. Panaro, M. A. Di-noia et al., The mitochondrial citrate carrier: a new player in inflammation, Biochem. J, vol.438, pp.433-436, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00617325

V. Iniesta, L. C. Gómez-nieto, and I. Corraliza, The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages, J. Exp. Med, vol.193, pp.777-784, 2001.

W. K. Ip, N. Hoshi, D. S. Shouval, S. Snapper, and R. Medzhitov, Antiinflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages, Science, vol.356, pp.513-519, 2017.

C. Ito, Y. Saito, T. Nozawa, S. Fujii, T. Sawa et al., Endogenous Nitrated Nucleotide Is a Key Mediator of Autophagy and Innate Defense against Bacteria, Mol. Cell, vol.52, pp.794-804, 2013.

H. Jamaati, E. Mortaz, Z. Pajouhi, G. Folkerts, M. Movassaghi et al., Nitric Oxide in the Pathogenesis and Treatment of, Tuberculosis. Front. Microbiol, vol.8, 2017.

J. Jantsch, V. Schatz, D. Friedrich, A. Schröder, C. Kopp et al., Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense, Cell Metab, vol.21, pp.493-501, 2015.

P. Kubes, M. Suzuki, and D. N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc. Natl. Acad. Sci, vol.88, pp.4651-4655, 1991.

R. Kumar and C. Engwerda, Vaccines to prevent leishmaniasis, Clin. Transl. Immunol, vol.3, p.13, 2014.

L. Flamme, A. C. Kharkrang, M. Stone, S. Mirmoeini, S. Chuluundorj et al.,

, Type II-Activated Murine Macrophages Produce IL-4, PLoS ONE, vol.7

M. Lamkanfi and V. M. Dixit, Mechanisms and Functions of Inflammasomes, Cell, vol.157, pp.1013-1022, 2014.

T. Lämmermann, P. V. Afonso, B. R. Angermann, J. M. Wang, W. Kastenmüller et al., Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo, Nature, vol.498, pp.371-375, 2013.

V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E. E. Vincent et al., Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation, Cell Metab, vol.24, pp.158-166, 2016.

J. R. Lancaster, A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide, Nitric Oxide, vol.1, pp.18-30, 1997.

C. Langlet, S. Tamoutounour, S. Henri, H. Luche, L. Ardouin et al., CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization, J. Immunol, vol.188, pp.1751-1760, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685822

P. K. Langston, M. Shibata, and T. Horng, Metabolism Supports Macrophage Activation. Front. Immunol, vol.8, 2017.

T. Laskay, G. Zandbergen, and W. Solbach, Neutrophil granulocytes -Trojan horses for Leishmania major and other intracellular microbes?, Trends Microbiol, vol.11, pp.210-214, 2003.

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: Apoptosis as infection-promoting factor, Immunobiology, vol.213, pp.183-191, 2008.

S. J. Lawless, N. Kedia-mehta, J. F. Walls, R. Mcgarrigle, O. Convery et al., Glucose represses dendritic cell-induced T cell responses, Nat. Commun, vol.8, p.15620, 2017.

S. Lee, H. Choi, S. Eun, S. Fukuyama, and M. Croft, Nitric Oxide Modulates TGF-?-Directive Signals To Suppress Foxp3+ Regulatory T Cell Differentiation and Potentiate Th1 Development, J. Immunol. Baltim. Md, vol.186, pp.6972-6980, 1950.

D. J. Lefer, S. P. Jones, W. G. Girod, A. Baines, M. B. Grisham et al., Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice, Am. J. Physiol, vol.276, pp.1943-1950, 1999.

J. Lemesre, D. Sereno, S. Daulouède, B. Veyret, N. Brajon et al., , 1997.

. Leishmaniaspp, Nitric Oxide-Mediated Metabolic Inhibition of Promastigote and Axenically Grown Amastigote Forms, Exp. Parasitol, vol.86, pp.58-68

B. León, M. López-bravo, A. , and C. , Monocyte-Derived Dendritic Cells Formed at the Infection Site Control the Induction of Protective T Helper 1 Responses against Leishmania, Immunity, vol.26, pp.519-531, 2007.

J. J. Letterio and A. B. Roberts, REGULATION OF IMMUNE RESPONSES BY TGF?, Annu. Rev. Immunol, vol.16, pp.137-161, 1998.

M. V. Liberti and J. W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells?, Trends Biochem. Sci, vol.41, pp.211-218, 2016.

F. Y. Liew, S. Millott, C. Parkinson, R. M. Palmer, and S. Moncada, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J. Immunol, vol.144, pp.4794-4797, 1990.

D. S. Lima-junior, D. L. Costa, V. Carregaro, L. D. Cunha, A. L. Silva et al., Inflammasomederived IL-1? production induces nitric oxide-mediated resistance to Leishmania, Nat. Med, vol.19, pp.909-915, 2013.

D. Liu and J. E. Uzonna, The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response, Front. Cell. Infect. Microbiol, vol.2, 2012.

L. Liu, Y. Lu, J. Martinez, Y. Bi, G. Lian et al., Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1?-dependent, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.1564-1569, 2016.

Q. Liu, L. Xue, D. Zhu, G. Li, and H. Jiang, Highly selective two-photon fluorescent probe for imaging of nitric oxide in living cells, Chin. Chem. Lett, vol.25, pp.19-23, 2014.

M. Llovera, J. D. Pearson, C. Moreno, and V. Riveros-moreno, Impaired response to interferon-? in activated macrophages due to tyrosine nitration of STAT1 by endogenous nitric oxide, Br. J. Pharmacol, vol.132, pp.419-426, 2001.

S. K. Lo, L. Bovis, R. Matura, B. Zhu, S. He et al., , 1998.

, Leishmania lipophosphoglycan reduces monocyte transendothelial migration: Modulation of cell adhesion molecules, intercellular junctional proteins, and chemoattractants, J. Immunol, vol.160, pp.1857-1865

R. Lodge, T. O. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cell. Microbiol, vol.8, pp.1922-1931, 2006.

C. Loeuillet, A. Bañuls, and M. Hide, Study of Leishmania pathogenesis in mice: experimental considerations, Parasit. Vectors, vol.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01942627

M. C. Lorenz and G. R. Fink, Life and Death in a Macrophage: Role of the Glyoxylate Cycle in Virulence, Eukaryot. Cell, vol.1, pp.657-662, 2002.

C. J. Lowenstein and E. Padalko, iNOS (NOS2) at a glance, J. Cell Sci, vol.117, pp.2865-2867, 2004.

G. Lu, R. Zhang, S. Geng, L. Peng, P. Jayaraman et al., Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization, Nat. Commun, vol.6, p.6676, 2015.

V. Lukacs-kornek, D. Malhotra, A. L. Fletcher, S. E. Acton, K. G. Elpek et al., Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes, Nat. Immunol, vol.12, pp.1096-1104, 2011.

S. Y. Lunt and M. G. Vander-heiden, Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation, Annu. Rev. Cell Dev. Biol, vol.27, pp.441-464, 2011.

H. Maarsingh, J. Zaagsma, and H. Meurs, Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives, Br. J. Pharmacol, vol.158, pp.652-664, 2009.

J. D. Machado, F. Segura, M. A. Brioso, and R. Borges, Nitric Oxide Modulates a Late Step of Exocytosis, J. Biol. Chem, vol.275, pp.20274-20279, 2000.

J. D. Macmicking, Interferon-inducible effector mechanisms in cell-autonomous immunity, Nat. Rev. Immunol, vol.12, pp.367-382, 2012.

J. D. Macmicking, C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher et al., Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase, Cell, vol.81, pp.641-650, 1995.

J. D. Macmicking, R. J. North, R. Lacourse, J. S. Mudgett, S. K. Shah et al., Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci, vol.94, pp.5243-5248, 1997.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione et al., Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages, J. Invest. Dermatol, vol.134, pp.2339-2346, 2014.

L. Malherbe, C. Filippi, V. Julia, G. Foucras, M. Moro et al., Selective Activation and Expansion of High-Affinity CD4+ T Cells in Resistant Mice upon Infection with Leishmania major, Immunity, vol.13, pp.771-782, 2000.

B. Malissen, S. Tamoutounour, H. , and S. , The origins and functions of dendritic cells and macrophages in the skin, Nat. Rev. Immunol, vol.14, pp.417-428, 2014.

M. A. Mandell and S. M. Beverley, Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts, Proc. Natl. Acad. Sci, vol.114, pp.801-810, 2017.

A. Mantovani, R. Bonecchi, and M. Locati, Tuning inflammation and immunity by chemokine sequestration: decoys and more, Nat. Rev. Immunol, vol.6, pp.907-918, 2006.

K. Mao, S. Chen, M. Chen, Y. Ma, Y. Wang et al., Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock, Cell Res, vol.23, pp.201-212, 2013.

T. Marth and B. L. Kelsall, Regulation of Interleukin-12 by, Complement Receptor, vol.3, 1997.

. Signaling, J. Exp. Med, vol.185, 1987.

A. S. Martín, S. Ceballo, I. Ruminot, R. Lerchundi, W. B. Frommer et al., , 2013.

, A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer Cells, PLOS ONE, vol.8, p.57712

A. S. Martín, S. Ceballo, F. Baeza-lehnert, R. Lerchundi, R. Valdebenito et al., Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate, PLOS ONE, vol.9, p.85780, 2014.

F. O. Martinez, G. , and S. , The M1 and M2 paradigm of macrophage activation: time for reassessment, 1000.

M. Martínez-lópez, M. Soto, S. Iborra, S. , and D. , Leishmania Hijacks Myeloid Cells for Immune Escape, Front. Microbiol, vol.9, 2018.

A. Martiny, J. R. Meyer-fernandes, W. De-souza, and M. A. Vannier-santos, Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes, Mol. Biochem. Parasitol, vol.102, pp.1-12, 1999.

D. Matheoud, N. Moradin, A. Bellemare-pelletier, M. T. Shio, W. J. Hong et al., Leishmania Evades Host Immunity by Inhibiting Antigen Cross-Presentation through Direct Cleavage of the SNARE VAMP8, Cell Host Microbe, vol.14, pp.15-25, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01131970

K. Matsushita, C. N. Morrell, B. Cambien, S. Yang, M. Yamakuchi et al., Nitric Oxide Regulates Exocytosis by S-Nitrosylation of N-ethylmaleimide-Sensitive Factor, Cell, vol.115, pp.139-150, 2003.

C. Matte, G. Maion, W. Mourad, and M. Olivier, Leishmania donovani-induced macrophages cyclooxygenase-2 and prostaglandin E2 synthesis, Parasite Immunol, vol.23, pp.177-184, 2001.

J. R. Matthews, C. H. Botting, M. Panico, H. R. Morris, and R. T. Hay, Inhibition of NF-kappaB DNA binding by nitric oxide, Nucleic Acids Res, vol.24, pp.2236-2242, 1996.

J. Mauël and A. Ransijn, Leishmaniaspp.: Mechanisms of Toxicity of Nitrogen Oxidation Products, Exp. Parasitol, vol.87, pp.98-111, 1997.

A. Mazzoni, V. Bronte, A. Visintin, J. H. Spitzer, E. Apolloni et al., Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism, J. Immunol, vol.168, pp.689-695, 2002.

M. J. Mcconville and T. Naderer, Metabolic Pathways Required for the Intracellular Survival of Leishmania, Annu. Rev. Microbiol, vol.65, pp.543-561, 2011.

M. J. Mcconville, D. De-souza, E. Saunders, V. A. Likic, and T. Naderer, Living in a phagolysosome; metabolism of Leishmania amastigotes, Trends Parasitol, vol.23, pp.368-375, 2007.

G. A. Mcquibban, J. Gong, J. P. Wong, J. L. Wallace, I. Clark-lewis et al., Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo, Blood, vol.100, pp.1160-1167, 2002.

R. Medzhitov, Origin and physiological roles of inflammation, 2008.

C. L. Meier, M. Svensson, and P. M. Kaye, Leishmania-Induced Inhibition of Macrophage Antigen Presentation Analyzed at the Single-Cell Level, J. Immunol, vol.171, pp.6706-6713, 2003.

A. F. Mendes, A. P. Carvalho, M. M. Caramona, and M. C. Lopes, Role of nitric oxide in the activation of NF-?B, AP-1 and NOS II expression in articular chondrocytes, Inflamm. Res, vol.51, pp.369-375, 2002.

S. Mendez, S. K. Reckling, C. A. Piccirillo, D. Sacks, and Y. Belkaid, Role for CD4+ CD25+ Regulatory T Cells in Reactivation of Persistent Leishmaniasis and Control of Concomitant Immunity, J. Exp. Med, vol.200, pp.201-210, 2004.

S. Menezes, D. Melandri, G. Anselmi, T. Perchet, J. Loschko et al., The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells, Immunity, vol.45, pp.1205-1218, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01439253

M. M. Meredith, K. Liu, G. Darrasse-jeze, A. O. Kamphorst, H. A. Schreiber et al., Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage, J. Exp. Med, vol.209, pp.1153-1165, 2012.

A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling et al., Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.7820-7825, 2013.

A. Mildner, J. , and S. , Development and Function of Dendritic Cell Subsets, Immunity, vol.40, pp.642-656, 2014.

A. Mildner, G. Marinkovic, J. , and S. , Murine Monocytes: Origins, Subsets, Fates, and Functions. Microbiol, 2016.

M. B. Miller and B. L. Bassler, Quorum Sensing in Bacteria, Annu. Rev. Microbiol, vol.55, pp.165-199, 2001.

P. Millet, V. Vachharajani, L. Mcphail, B. Yoza, and C. E. Mccall, GAPDH Binding to TNF-? mRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism, J. Immunol, vol.196, pp.2541-2551, 2016.

E. Mills and L. A. Neill, Succinate: a metabolic signal in inflammation, Trends Cell Biol, vol.24, pp.313-320, 2014.

E. L. Mills, B. Kelly, A. Logan, A. S. Costa, M. Varma et al., Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, pp.457-470, 2016.

E. L. Mills, D. G. Ryan, H. A. Prag, D. Dikovskaya, D. Menon et al., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1, Nature, vol.556, pp.113-117, 2018.

B. B. Mishra, V. A. Rathinam, G. W. Martens, A. J. Martinot, H. Kornfeld et al., Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1?, Nat. Immunol, vol.14, pp.52-60, 2013.

B. B. Mishra, R. R. Lovewell, A. J. Olive, G. Zhang, W. Wang et al., Nitric oxide prevents a pathogenpermissive granulocytic inflammation during tuberculosis, Nat. Microbiol, vol.2, p.17072, 2017.

C. Montaudouin, M. Anson, Y. Hao, S. V. Duncker, T. Fernandez et al., Quorum Sensing Contributes to Activated IgM-Secreting B Cell Homeostasis, J. Immunol, vol.190, pp.106-114, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00771602

K. W. Moore, R. De-waal-malefyt, R. L. Coffman, and A. Garra, Interleukin-10 and the Interleukin-10 Receptor, Annu. Rev. Immunol, vol.19, pp.683-765, 2001.

W. M. Moore, R. K. Webber, G. M. Jerome, F. S. Tjoeng, T. P. Misko et al., L-N6-(1-Iminoethyl)lysine: A Selective Inhibitor of Inducible Nitric Oxide Synthase, J. Med. Chem, vol.37, pp.3886-3888, 1994.

N. Moradin and A. Descoteaux, Leishmania promastigotes: building a safe niche within macrophages, Front. Cell. Infect. Microbiol, vol.2, 2012.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.8, pp.958-969, 2008.

D. M. Mosser and X. Zhang, Interleukin-10: new perspectives on an old cytokine, Immunol. Rev, vol.226, pp.205-218, 2008.

E. Mougneau, F. Bihl, and N. Glaichenhaus, Cell biology and immunology of Leishmania, Immunol. Rev, vol.240, pp.286-296, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00726034

D. Moyo, L. Beattie, P. S. Andrews, J. W. Moore, J. Timmis et al., Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling, 2018.

H. M. Muleme, R. M. Reguera, A. Berard, R. Azinwi, P. Jia et al., Infection with Arginase-Deficient Leishmania major Reveals a Parasite Number-Dependent and Cytokine-Independent Regulation of Host Cellular Arginase Activity and Disease Pathogenesis, J. Immunol, vol.183, pp.8068-8076, 2009.

A. J. Müller, O. Filipe-santos, G. Eberl, T. Aebischer, G. F. Späth et al., , 2012.

. Cd4+-t-cells, Rely on a Cytokine Gradient to Control Intracellular Pathogens beyond Sites of Antigen Presentation, Immunity, vol.37, pp.147-157

A. J. Müller, S. Aeschlimann, R. Olekhnovitch, M. Dacher, G. F. Späth et al., Photoconvertible Pathogen Labeling Reveals Nitric Oxide Control of Leishmania major Infection In Vivo via Dampening of Parasite Metabolism, Cell Host Microbe, vol.14, pp.460-467, 2013.

D. H. Munn, E. Shafizadeh, J. T. Attwood, I. Bondarev, A. Pashine et al., Inhibition of T cell proliferation by macrophage tryptophan catabolism, J. Exp. Med, vol.189, pp.1363-1372, 1999.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J, vol.417, pp.1-13, 2009.

P. J. Murray, Macrophage Polarization, Annu. Rev. Physiol, vol.79, pp.541-566, 2017.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol, vol.11, pp.723-737, 2011.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines, Immunity, vol.41, pp.14-20, 2014.

Y. R. Na, S. Je, and S. H. Seok, Metabolic features of macrophages in inflammatory diseases and cancer, Cancer Lett, vol.413, pp.46-58, 2018.

S. Nagaraj, K. Gupta, V. Pisarev, L. Kinarsky, S. Sherman et al., Altered recognition of antigen is a novel mechanism of CD8+ T cell tolerance in cancer, Nat. Med, vol.13, pp.828-835, 2007.

G. Nagy, A. Koncz, P. , and A. , T Cell Activation-Induced Mitochondrial Hyperpolarization Is Mediated by Ca2+-and Redox-Dependent Production of Nitric Oxide, J. Immunol. Baltim. Md, vol.171, pp.5188-5197, 1950.

S. Naik, N. Bouladoux, C. Wilhelm, M. J. Molloy, R. Salcedo et al., Compartmentalized Control of Skin Immunity by Resident Commensals. Science, vol.337, pp.1115-1119, 2012.

C. Nathan and A. Ding, Nonresolving Inflammation. Cell, vol.140, pp.871-882, 2010.

M. G. Netea, F. Balkwill, M. Chonchol, F. Cominelli, M. Y. Donath et al., A guiding map for inflammation, 2017.

B. M. Neves, R. Silvestre, M. Resende, A. Ouaissi, J. Cunha et al., Activation of Phosphatidylinositol 3-Kinase/Akt and Impairment of Nuclear Factor-?B: Molecular Mechanisms Behind the Arrested Maturation/Activation State of Leishmania infantum-Infected Dendritic Cells, Am. J. Pathol, vol.177, pp.2898-2911, 2010.

L. G. Ng, A. Hsu, M. A. Mandell, B. Roediger, C. Hoeller et al., Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites, PLOS Pathog, vol.4, p.1000222, 2008.

T. H. Ng, G. J. Britton, E. V. Hill, J. Verhagen, B. R. Burton et al., Regulation of Adaptive Immunity; The Role of Interleukin-10, 2013.

W. Niedbala, X. Wei, D. Piedrafita, D. Xu, and F. Y. Liew, Effects of nitric oxide on the induction and differentiation of Th1 cells, Eur. J. Immunol, vol.29, pp.2498-2505, 1999.

W. Niedbala, X. Wei, C. Campbell, D. Thomson, M. Komai-koma et al., , 2002.

, Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor ?2 expression via cGMP, Proc. Natl. Acad. Sci, vol.99, pp.16186-16191

W. Niedbala, B. Cai, and F. Y. Liew, Role of nitric oxide in the regulation of T cell functions, Ann. Rheum. Dis, vol.65, pp.37-40, 2006.

W. Niedbala, B. Cai, H. Liu, N. Pitman, L. Chang et al., Nitric oxide induces CD4+CD25+ Foxp3? regulatory T cells from CD4+CD25? T cells via p53, IL-2, and OX40, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.15478-15483, 2007.

H. Niiro, T. Otsuka, S. Kuga, Y. Nemoto, M. Abe et al., IL-10 inhibits prostaglandin E2 production by lipopolysaccharide-stimulated monocytes, Int. Immunol, vol.6, pp.661-664, 1994.

H. Niiro, T. Otsuka, T. Tanabe, S. Hara, S. Kuga et al., Inhibition by interleukin-10 of inducible cyclooxygenase expression in lipopolysaccharide-stimulated monocytes: its underlying mechanism in comparison with interleukin-4, Blood, vol.85, pp.3736-3745, 1995.

E. Nisoli and M. O. Carruba, Nitric oxide and mitochondrial biogenesis, J Cell Sci, vol.119, pp.2855-2862, 2006.

M. Nomura, J. Liu, I. I. Rovira, E. Gonzalez-hurtado, J. Lee et al., Fatty acid oxidation in macrophage polarization, Nat. Immunol, vol.17, pp.216-217, 2016.

S. Nylén and L. Eidsmo, Tissue damage and immunity in cutaneous leishmaniasis, Parasite Immunol, vol.34, pp.551-561, 2012.

L. Oburoglu, S. Tardito, V. Fritz, S. C. De-barros, P. Merida et al., Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification, Cell Stem Cell, vol.15, pp.169-184, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191586

R. Olekhnovitch and P. Bousso, Induction, Propagation, and Activity of Host Nitric Oxide: Lessons from Leishmania Infection, Trends Parasitol, vol.31, pp.653-664, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01410102

R. Olekhnovitch, B. Ryffel, A. J. Müller, and P. Bousso, Collective nitric oxide production provides tissue-wide immunity during Leishmania infection, J. Clin. Invest, vol.124, pp.1711-1722, 2014.

M. Olivier, D. J. Gregory, and G. Forget, Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View, Clin. Microbiol. Rev, vol.18, pp.293-305, 2005.

M. Olivier, V. D. Atayde, A. Isnard, K. Hassani, and M. T. Shio, Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect, vol.14, pp.1377-1389, 2012.

L. A. O'neill, A critical role for citrate metabolism in LPS signalling, Biochem. J, vol.438, pp.5-6, 2011.

L. A. O'neill, P. , and E. J. , Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med, vol.213, pp.15-23, 2016.

L. A. O'neill, R. J. Kishton, and J. Rathmell, A guide to immunometabolism for immunologists, Nat. Rev. Immunol, vol.16, pp.553-565, 2016.

A. Ortega-gómez, M. Perretti, and O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Mol. Med, vol.5, pp.661-674, 2013.

M. Osman, A. Mistry, A. Keding, R. Gabe, E. Cook et al., A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH, PLoS Negl. Trop. Dis, vol.11, p.5527, 2017.

M. Ouimet, H. N. Ediriweera, U. M. Gundra, F. J. Sheedy, B. Ramkhelawon et al., MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis, J. Clin. Invest, vol.125, pp.4334-4348, 2015.

M. Ouimet, S. Koster, E. Sakowski, B. Ramkhelawon, C. Solingen et al., Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism, Nat. Immunol, vol.17, pp.677-686, 2016.

W. Ouyang, S. Rutz, N. K. Crellin, P. A. Valdez, and S. G. Hymowitz, Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease, Annu. Rev. Immunol, vol.29, pp.71-109, 2011.

A. Oyler-yaniv and O. Krichevsky, Imaging Cytokine Concentration Fields Using PlaneView Imaging Devices, vol.8, 2018.

A. Oyler-yaniv, J. Oyler-yaniv, B. M. Whitlock, Z. Liu, R. N. Germain et al., A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System, Immunity, vol.46, pp.609-620, 2017.

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease, Physiol. Rev, vol.87, pp.315-424, 2007.

E. M. Palmieri, W. A. Baseler, L. C. Davies, M. Gonzalez-cotto, B. Ghesquiere et al., Nitric oxide dictates the reprogramming of carbon flux during M1 macrophage polarization, J. Immunol, vol.200, pp.18-170, 2018.

E. M. Palsson-mcdermott, A. M. Curtis, G. Goel, M. A. Lauterbach, F. J. Sheedy et al.,

, Pyruvate Kinase M2 Regulates Hif-1? Activity and IL-1? Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages, Cell Metab, vol.21, pp.65-80

A. Pautz, J. Art, S. Hahn, S. Nowag, C. Voss et al., Regulation of the expression of inducible nitric oxide synthase, Nitric Oxide, vol.23, pp.75-93, 2010.

E. L. Pearce, P. , and E. J. , Metabolic Pathways in Immune Cell Activation and Quiescence, Immunity, vol.38, pp.633-643, 2013.

A. G. Peniche, D. L. Bonilla, G. I. Palma, P. C. Melby, B. L. Travi et al., A secondary wave of neutrophil infiltration causes necrosis and ulceration in lesions of experimental American cutaneous leishmaniasis, PLOS ONE, vol.12, 2017.

C. Peteranderl, L. Morales-nebreda, B. Selvakumar, E. Lecuona, I. Vadász et al., Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection, J. Clin. Invest, vol.126, pp.1566-1580, 2016.

N. C. Peters, J. G. Egen, N. Secundino, A. Debrabant, N. Kimblin et al., Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies, vol.321, pp.970-974, 2008.

N. C. Peters, A. J. Pagán, P. G. Lawyer, T. W. Hand, E. H. Roma et al., Chronic Parasitic Infection Maintains High Frequencies of Short-Lived Ly6C+CD4+ Effector T Cells That Are Required for Protection against Re-infection, PLOS Pathog, vol.10, 2014.

D. Piedrafita, L. Proudfoot, A. V. Nikolaev, D. Xu, W. Sands et al., Regulation of macrophage IL-12 synthesis by Leishmania phosphoglycans, Eur. J. Immunol, vol.29, pp.235-244, 1999.

M. D. Pluth, E. Tomat, and S. J. Lippard, Biochemistry of Mobile Zinc and Nitric Oxide Revealed by Fluorescent Sensors, Annu. Rev. Biochem, vol.80, pp.333-355, 2011.

M. Polonsky, J. Rimer, A. Kern-perets, I. Zaretsky, S. Miller et al., Induction of CD4 T cell memory by local cellular collectivity, Science, vol.360, p.1853, 2018.

C. Privé and A. Descoteaux, Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signalregulated kinase-1/2 during infection of naive macrophages, Eur. J. Immunol, vol.30, pp.2235-2244, 2000.

A. Ptasinska, S. Wang, J. Zhang, R. A. Wesley, and R. L. Danner, Nitric oxide activation of peroxisome proliferator-activated receptor gamma through a p38 MAPK signaling pathway, FASEB J, vol.21, pp.950-961, 2006.

J. E. Qualls, G. Neale, A. M. Smith, M. Koo, A. A. Defreitas et al., Arginine Usage in Mycobacteria-Infected Macrophages Depends on Autocrine-Paracrine Cytokine Signaling, Sci Signal, vol.3, pp.62-62, 2010.

V. Rapozzi, E. Della-pietra, and B. Bonavida, Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy, Redox Biol, vol.6, p.311, 2015.

K. J. Rayner, C. C. Esau, F. N. Hussain, A. L. Mcdaniel, S. M. Marshall et al., Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides, Nature, vol.478, pp.404-407, 2011.

A. Reboldi, E. V. Dang, J. G. Mcdonald, G. Liang, D. W. Russell et al., , 2014.

, Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon, Science, vol.345, pp.679-684

R. Reithinger, J. Dujardin, H. Louzir, C. Pirmez, B. Alexander et al., , 2007.

, Cutaneous leishmaniasis, Lancet Infect. Dis, vol.7, pp.581-596

G. Ren, L. Zhang, X. Zhao, G. Xu, Y. Zhang et al., , 2008.

, Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide, Cell Stem Cell, vol.2, pp.141-150

B. Rethi and L. Eidsmo, FasL and TRAIL signaling in the skin during cutaneous leishmaniasis -implications for tissue immunopathology and infectious control, Front. Immunol, vol.3, 2012.

F. L. Ribeiro-gomes, N. C. Peters, A. Debrabant, and D. L. Sacks, Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response, PLOS Pathog, vol.8, 2012.

F. L. Ribeiro-gomes, E. H. Roma, M. B. Carneiro, N. A. Doria, D. L. Sacks et al., Site-Dependent Recruitment of Inflammatory Cells Determines the Effective Dose of Leishmania major, Infect. Immun, vol.82, pp.2713-2727, 2014.

U. Ritter, H. Moll, T. Laskay, E. Bröcker, O. Velazco et al., , 1996.

, Differential Expression of Chemokines in Patients with Localized and Diffuse Cutaneous American Leishmaniasis, J. Infect. Dis, vol.173, pp.699-709

U. Ritter, A. Meißner, C. Scheidig, and H. Körner, CD8?-and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis, Eur. J. Immunol, vol.34, pp.1542-1550, 2004.

U. Ritter, F. Frischknecht, and G. Van-zandbergen, Are neutrophils important host cells for Leishmania parasites?, Trends Parasitol, vol.25, pp.505-510, 2009.

B. S. Rizi, A. Achreja, and D. Nagrath, Nitric Oxide: The Forgotten Child of Tumor Metabolism, Trends Cancer, vol.3, pp.659-672, 2017.

P. C. Rodriguez, A. H. Zea, K. S. Culotta, J. Zabaleta, J. B. Ochoa et al., Regulation of T Cell Receptor CD3? Chain Expression byl-Arginine, J. Biol. Chem, vol.277, pp.21123-21129, 2002.

P. C. Rodriguez, A. H. Zea, J. Desalvo, K. S. Culotta, J. Zabaleta et al., l-Arginine Consumption by Macrophages Modulates the Expression of CD3? Chain in T Lymphocytes, J. Immunol, vol.171, pp.1232-1239, 2003.

P. C. Rodriguez, D. G. Quiceno, and A. C. Ochoa, l-arginine availability regulates Tlymphocyte cell-cycle progression, Blood, vol.109, pp.1568-1573, 2007.

J. Rodríguez-prados, P. G. Través, J. Cuenca, D. Rico, J. Aragonés et al., Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation, J. Immunol, vol.185, pp.605-614, 2010.

O. Rom, N. K. Khoo, Y. E. Chen, and L. Villacorta, Inflammatory signaling and metabolic regulation by nitro-fatty acids, Nitric Oxide, vol.78, pp.140-145, 2018.

A. Romano, M. B. Carneiro, N. A. Doria, E. H. Roma, F. L. Ribeiro-gomes et al., Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major, PLOS Pathog, vol.13, p.1006479, 2017.

M. Roncarolo and S. Gregori, Is FOXP3 a bona fide marker for human regulatory T cells?, Eur. J. Immunol, vol.38, pp.925-927, 2008.

C. Rosales and E. Uribe-querol, Phagocytosis: A Fundamental Process in Immunity, BioMed Res. Int, 2017.

D. Sacks and S. Kamhawi, Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis, Annu. Rev. Microbiol, vol.55, pp.453-483, 2001.

D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to Leishmania major in mice, Nat. Rev. Immunol, vol.2, pp.845-858, 2002.

S. Saeed, J. Quintin, H. H. Kerstens, N. A. Rao, A. Aghajanirefah et al., Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity, Science, vol.345, p.1251086, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02875420

S. Saha, I. N. Shalova, and S. K. Biswas, Metabolic regulation of macrophage phenotype and function, Immunol. Rev, vol.280, pp.102-111, 2017.

D. Sancho, M. Enamorado, and J. Garaude, Innate Immune Function of Mitochondrial Metabolism, Front. Immunol, vol.8, 2017.

C. Santos, S. Da, V. Boaventura, C. Ribeiro-cardoso, N. Tavares et al., CD8+ Granzyme B+-Mediated Tissue Injury vs. CD4+IFN?+-Mediated Parasite Killing in Human Cutaneous Leishmaniasis, J. Invest. Dermatol, vol.133, pp.1533-1540, 2013.

T. M. Scharton and P. Scott, Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice, J. Exp. Med, vol.178, pp.567-577, 1993.

T. M. Scharton-kersten, G. Yap, J. Magram, and A. Sher, Inducible Nitric Oxide Is Essential for Host Control of Persistent but Not Acute Infection with the Intracellular Pathogen Toxoplasma gondii, J. Exp. Med, vol.185, pp.1261-1274, 1997.

V. Schatz, Y. Strüssmann, A. Mahnke, G. Schley, M. Waldner et al., Myeloid Cell-Derived HIF-1? Promotes Control of Leishmania major, J. Immunol, vol.197, pp.4034-4041, 2016.

V. Schatz, P. Neubert, F. Rieger, J. , and J. , Hypoxia, Hypoxia-Inducible Factor-1?, and Innate Antileishmanial Immune Responses. Front. Immunol. 9, 2018.

U. Schleicher, K. Paduch, A. Debus, S. Obermeyer, T. König et al., TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection, Cell Rep, vol.15, pp.1062-1075, 2016.

M. Schmid, A. K. Wege, and U. Ritter, Characteristics of "Tip-DCs and MDSCs" and Their Potential Role in Leishmaniasis, 2012.

F. Scialò, D. J. Fernández-ayala, and A. Sanz, Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease, Front. Physiol, vol.8, 2017.

P. Scott and F. O. Novais, Cutaneous leishmaniasis: immune responses in protection and pathogenesis, Nat. Rev. Immunol, vol.16, pp.581-592, 2016.

E. Segura, A. , and S. , Inflammatory dendritic cells in mice and humans, Trends Immunol, vol.34, pp.440-445, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00846095

I. M. Sektioglu, R. Carretero, N. Bender, C. Bogdan, N. Garbi et al., Macrophage-derived nitric oxide initiates T-cell diapedesis and tumor rejection, 2016.

D. Senyilmaz and A. A. Teleman, Chicken or the egg: Warburg effect and mitochondrial dysfunction, 1000.

N. V. Serbina and E. G. Pamer, Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nat. Immunol, vol.7, pp.311-317, 2006.

N. V. Serbina, T. P. Salazar-mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer, , 2003.

, TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection, Immunity, vol.19, pp.59-70

N. V. Serbina, T. Jia, T. M. Hohl, and E. G. Pamer, Monocyte-Mediated Defense Against Microbial Pathogens, Annu. Rev. Immunol, vol.26, pp.421-452, 2008.

C. N. Serhan, Pro-resolving lipid mediators are leads for resolution physiology, Nature, vol.510, pp.92-101, 2014.

C. N. Serhan and J. Savill, Resolution of inflammation: the beginning programs the end, Nat. Immunol, vol.6, pp.1191-1197, 2005.

S. Shalapour, K. , and M. , Immunity, inflammation, and cancer: an eternal fight between good and evil, J. Clin. Invest, vol.125, pp.3347-3355, 2015.

A. K. Shalek, R. Satija, J. Shuga, J. J. Trombetta, D. Gennert et al., Single-cell RNA-seq reveals dynamic paracrine control of cellular variation, Nature, vol.510, pp.363-369, 2014.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat. Rev. Immunol, vol.11, pp.762-774, 2011.

S. Siegert, H. Huang, C. Yang, L. Scarpellino, L. Carrie et al., Fibroblastic Reticular Cells From Lymph Nodes Attenuate T Cell Expansion by Producing Nitric Oxide, PLOS ONE, vol.6, 2011.

M. W. Simon, E. Martin, and A. J. Mukkada, Evidence for a functional glyoxylate cycle in the leishmaniae, J. Bacteriol, vol.135, pp.895-899, 1978.

O. Soehnlein, L. Lindbom, and C. Weber, Mechanisms underlying neutrophilmediated monocyte recruitment, Blood, vol.114, pp.4613-4623, 2009.

O. Soehnlein, S. Steffens, A. Hidalgo, and C. Weber, Neutrophils as protagonists and targets in chronic inflammation, Nat. Rev. Immunol, vol.17, pp.248-261, 2017.

S. De-souza-leao, T. Lang, E. Prina, R. Hellio, A. et al., Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells, J. Cell Sci, vol.108, pp.3219-3231, 1995.

G. F. Späth, L. A. Garraway, S. J. Turco, and S. M. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proc. Natl. Acad. Sci, vol.100, pp.9536-9541, 2003.

C. L. Speyer, T. A. Neff, R. L. Warner, R. Guo, J. V. Sarma et al., Regulatory effects of iNOS on acute lung inflammatory responses in mice, Am. J. Pathol, vol.163, pp.2319-2328, 2003.

S. Srivastav, S. Kar, A. G. Chande, R. Mukhopadhyaya, and P. K. Das, Leishmania donovani Exploits Host Deubiquitinating Enzyme A20, a Negative Regulator of TLR Signaling, To Subvert Host Immune Response, J. Immunol, vol.189, pp.924-934, 2012.

S. Stäger and S. Rafati, CD8+ T Cells in Leishmania Infections: Friends or Foes? Front. Immunol. 3, 2012.

J. S. Stamler, S. Lamas, and F. C. Fang, Nitrosylation: The Prototypic Redox-Based Signaling Mechanism, Cell, vol.106, pp.675-683, 2001.

E. Stebut, Y. Belkaid, T. Jakob, D. L. Sacks, and M. C. Udey, Uptake of Leishmania major Amastigotes Results in Activation and Interleukin 12 Release from Murine Skin-derived Dendritic Cells: Implications for the Initiation of Anti-Leishmania Immunity, J. Exp. Med, vol.188, pp.1547-1552, 1998.

E. Von-stebut and S. Tenzer, Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major, Int. J. Med. Microbiol, vol.308, pp.206-214, 2018.

S. Stenger, H. Thüring, M. Röllinghoff, B. , and C. , Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major, J. Exp. Med, vol.180, pp.783-793, 1994.

S. Stenger, N. Donhauser, H. Thüring, M. Röllinghoff, B. et al., Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase, J. Exp. Med, vol.183, pp.1501-1514, 1996.

M. A. Sugimoto, L. P. Sousa, V. Pinho, M. Perretti, and M. M. Teixeira, Resolution of Inflammation: What Controls Its Onset? Front. Immunol. 7, 2016.

Y. Surh, H. Na, J. Park, H. Lee, W. Kim et al., , 2011.

-. , 14-prostaglandin J2, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling, Biochem. Pharmacol, vol.82, pp.1335-1351

F. S. Sutterwala, G. J. Noel, P. Salgame, and D. M. Mosser, Reversal of Proinflammatory Responses by Ligating the Macrophage Fc? Receptor Type I, J. Exp. Med, vol.188, pp.217-222, 1998.

J. P. Sypek, C. L. Chung, S. E. Mayor, J. M. Subramanyam, S. J. Goldman et al., Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response, J. Exp. Med, vol.177, pp.1797-1802, 1993.

C. Szabó, H. Ischiropoulos, and R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics, Nat. Rev. Drug Discov, vol.6, pp.662-680, 2007.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1? through HIF-1?, Nature, vol.496, pp.238-242, 2013.

M. Tantama, J. R. Martínez-françois, R. Mongeon, Y. , and G. , Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio, Nat. Commun, vol.4, p.2550, 2013.

C. T. Taylor and S. P. Colgan, Regulation of immunity and inflammation by hypoxia in immunological niches, Nat. Rev. Immunol, vol.17, pp.774-785, 2017.

C. T. Taylor, G. Doherty, P. G. Fallon, and E. P. Cummins, Hypoxia-dependent regulation of inflammatory pathways in immune cells, J. Clin. Invest, vol.126, pp.3716-3724, 2016.

A. W. Taylor-robinson, Inhibition of IL-2 production by nitric oxide: A novel selfregulatory mechanism for Th1 cell proliferation, Immunol. Cell Biol, vol.75, pp.167-175, 1997.

T. Thepen, A. J. Vuuren, . Van, R. C. Kiekens, C. A. Damen et al., Resolution of cutaneous inflammation after local elimination of macrophages, Nat. Biotechnol, vol.18, pp.48-51, 2000.

, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Rep, vol.17, pp.684-696

J. Van-den-bossche, L. A. O'neill, and D. Menon, Macrophage Immunometabolism: Where Are We (Going)?, Trends Immunol, vol.38, pp.395-406, 2017.

F. Vannini, K. Kashfi, and N. Nath, The dual role of iNOS in cancer, Redox Biol, vol.6, pp.334-343, 2015.

M. J. Veer, . De, J. M. Curtis, T. M. Baldwin, J. A. Didonato et al., MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling, Eur. J. Immunol, vol.33, pp.2822-2831, 2003.

F. Veglia, M. Perego, and D. Gabrilovich, Myeloid-derived suppressor cells coming of age, Nat. Immunol, vol.19, pp.108-119, 2018.

J. K. Verma, R. Rastogi, and A. Mukhopadhyay, Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR, 2017.

, PLOS Pathog, vol.13, p.1006459

M. Vig, S. Srivastava, U. Kandpal, H. Sade, V. Lewis et al., Inducible nitric oxide synthase in T cells regulates T cell death and immune memory, J. Clin. Invest, vol.113, pp.1734-1742, 2004.

D. Voet and J. G. Voet, Biochemistry, 2010.

V. Stebut and E. , Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity, Eur. J. Dermatol. EJD, vol.17, pp.115-122, 2007.

J. L. Wanderley, M. E. Moreira, A. Benjamin, A. C. Bonomo, and M. A. Barcinski, Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts, J. Immunol. Baltim. Md, vol.176, pp.1834-1839, 1950.

M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. Vries et al., Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients, Science, vol.339, pp.328-332, 2013.

S. Wecksler, A. Mikhailovsky, and P. C. Ford, Photochemical Production of Nitric Oxide via Two-Photon Excitation with NIR Light, J. Am. Chem. Soc, vol.126, pp.13566-13567, 2004.

X. Wei, I. G. Charles, A. Smith, J. Ure, G. Feng et al., Altered immune responses in mice lacking inducible nitric oxide synthase, Nature, vol.375, pp.408-411, 1995.

F. Werner, M. K. Jain, M. W. Feinberg, N. E. Sibinga, A. Pellacani et al., Transforming Growth Factor-?1 Inhibition of Macrophage Activation Is Mediated via Smad3, J. Biol. Chem, vol.275, pp.36653-36658, 2000.

N. C. Williams and L. A. Neill, A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation, Front. Immunol, vol.9, 2018.

A. J. Wolf, C. N. Reyes, W. Liang, C. Becker, K. Shimada et al., Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan, Cell, vol.166, pp.624-636, 2016.

D. Wu, D. E. Sanin, B. Everts, Q. Chen, J. Qiu et al., Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function, Immunity, vol.44, pp.1325-1336, 2016.

X. Xie, J. Fan, M. Liang, Y. Li, X. Jiao et al., A two-photon excitable and ratiometric fluorogenic nitric oxide photoreleaser and its biological applications, Chem. Commun, vol.53, pp.11941-11944, 2017.

H. Xiong and E. G. Pamer, Monocytes and infection: Modulator, messenger and effector, Immunobiology, vol.220, pp.210-214, 2015.

W. Xu, L. Z. Liu, M. Loizidou, M. Ahmed, C. et al., The role of nitric oxide in cancer, Cell Res, vol.12, pp.311-320, 2002.

Q. Yao, Z. Song, B. Wang, and J. Zhang, Emerging roles of microRNAs in the metabolic control of immune cells, Cancer Lett, vol.433, pp.10-17, 2018.

W. Yau, T. Blisnick, J. Taly, M. Helmer-citterich, C. Schiene-fischer et al., Cyclosporin A Treatment of Leishmania donovani Reveals Stage-Specific Functions of Cyclophilins in Parasite Proliferation and Viability, PLoS Negl. Trop, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433566

A. Yeramian, L. Martin, L. Arpa, J. Bertran, C. Soler et al., Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation, Eur. J. Immunol, vol.36, pp.1516-1526, 2006.

C. Zaph, J. Uzonna, S. M. Beverley, and P. Scott, Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites, Nat. Med, vol.10, pp.1104-1110, 2004.

H. Zhang, J. Chen, X. Guo, H. Wang, and H. Zhang, Highly Sensitive Low-Background Fluorescent Probes for Imaging of Nitric Oxide in Cells and Tissues, Anal. Chem, vol.86, pp.3115-3123, 2014.

N. Zhang, A. Weber, B. Li, R. Lyons, P. R. Contag et al., , 2003.

, An Inducible Nitric Oxide Synthase-Luciferase Reporter System for In Vivo Testing of Antiinflammatory Compounds in Transgenic Mice, J. Immunol, vol.170, pp.6307-6319

E. Zigmond, C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy et al., Ly6Chi Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells, Immunity, vol.37, pp.1076-1090, 2012.

E. Amiel, B. Everts, D. Fritz, S. Beauchamp, B. Ge et al., Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function, J Immunol, vol.193, pp.2821-2830, 2014.

J. Bagaitkar, N. K. Pech, S. Ivanov, A. Austin, M. Y. Zeng et al., NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1alpha/G-CSF axis, Blood, vol.126, pp.2724-2733, 2015.

P. D. Banick, Q. Chen, Y. A. Xu, and S. R. Thom, Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis, J Cell Physiol, vol.172, pp.12-24, 1997.

Y. Belkaid, S. Mendez, R. Lira, N. Kadambi, G. Milon et al., A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity, J Immunol, vol.165, pp.969-977, 2000.

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell Metab, vol.15, pp.432-437, 2012.

C. Bogdan, Nitric oxide and the immune response, Nature immunology, vol.2, pp.907-916, 2001.

C. Bogdan, Nitric oxide synthase in innate and adaptive immunity: an update, Trends Immunol, vol.36, pp.161-178, 2015.

J. Braverman and S. A. Stanley, Nitric Oxide Modulates Macrophage Responses to Mycobacterium tuberculosis Infection through Activation of HIF-1alpha and Repression of NF-kappaB, J Immunol, vol.199, pp.1805-1816, 2017.

G. C. Brown, Nitric oxide and mitochondrial respiration, Biochim Biophys Acta, vol.1411, pp.351-369, 1999.

G. C. Brown, Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase, Biochim Biophys Acta, vol.1504, pp.46-57, 2001.

E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione, Proc Natl Acad Sci U S A, vol.95, pp.7631-7636, 1998.

T. Cordes, M. Wallace, A. Michelucci, A. S. Divakaruni, S. C. Sapcariu et al., Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels, J Biol Chem, vol.291, pp.14274-14284, 2016.

D. Dal-secco, J. Wang, Z. Zeng, E. Kolaczkowska, C. H. Wong et al., A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury, J Exp Med, vol.212, pp.447-456, 2015.

C. De-trez, S. Magez, S. Akira, B. Ryffel, Y. Carlier et al., iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice, PLoS pathogens, vol.5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00591434

A. Eigler, J. Moeller, and S. Endres, Exogenous and endogenous nitric oxide attenuates tumor necrosis factor synthesis in the murine macrophage cell line RAW 264.7, J Immunol, vol.154, pp.4048-4054, 1995.

B. Everts, E. Amiel, G. J. Van-der-windt, T. C. Freitas, R. Chott et al., Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells, Blood, vol.120, pp.1422-1431, 2012.

M. L. Giustizieri, C. Albanesi, C. Scarponi, O. De-pita, and G. Girolomoni, Nitric oxide donors suppress chemokine production by keratinocytes in vitro and in vivo, Am J Pathol, vol.161, pp.1409-1418, 2002.

C. J. Harbort, P. V. Soeiro-pereira, H. Bernuth, A. M. Kaindl, B. T. Costa-carvalho et al., Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis, Blood, vol.126, pp.2842-2851, 2015.

Y. Kobayashi, The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation, J Leukoc Biol, vol.88, pp.1157-1162, 2010.

D. Kreisel, R. G. Nava, W. Li, B. H. Zinselmeyer, B. Wang et al., In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation, Proc Natl Acad Sci U S A, vol.107, pp.18073-18078, 2010.

P. Kubes, M. Suzuki, and D. N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc Natl Acad Sci U S A, vol.88, pp.4651-4655, 1991.

T. Lammermann, P. V. Afonso, B. R. Angermann, J. M. Wang, W. Kastenmuller et al., Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo, Nature, vol.498, pp.371-375, 2013.

V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E. E. Vincent et al., Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation, Cell Metab, vol.24, pp.158-166, 2016.

B. Leon, M. Lopez-bravo, A. , and C. , Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania, Immunity, vol.26, pp.519-531, 2007.

F. Y. Liew, S. Millott, C. Parkinson, R. M. Palmer, and S. Moncada, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J Immunol, vol.144, pp.4794-4797, 1990.

G. Lu, R. Zhang, S. Geng, L. Peng, P. Jayaraman et al., Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization, Nat Commun, vol.6, p.6676, 2015.

J. R. Matthews, C. H. Botting, M. Panico, H. R. Morris, and R. T. Hay, Inhibition of NF-kappaB DNA binding by nitric oxide, Nucleic Acids Res, vol.24, pp.2236-2242, 1996.

R. Medzhitov, Origin and physiological roles of inflammation, Nature, vol.454, pp.428-435, 2008.

F. Meissner, K. Molawi, and A. Zychlinsky, Superoxide dismutase 1 regulates caspase-1 and endotoxic shock, Nat Immunol, vol.9, pp.866-872, 2008.

A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling et al., Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production, Proc Natl Acad Sci U S A, vol.110, pp.7820-7825, 2013.

M. B. Miller and B. L. Bassler, Quorum sensing in bacteria, Annu Rev Microbiol, vol.55, pp.165-199, 2001.

E. L. Mills, B. Kelly, A. Logan, A. S. Costa, M. Varma et al., Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, pp.457-470, 2016.

B. B. Mishra, R. R. Lovewell, A. J. Olive, G. Zhang, W. Wang et al., Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis, Nat Microbiol, vol.2, p.17072, 2017.

B. B. Mishra, V. A. Rathinam, G. W. Martens, A. J. Martinot, H. Kornfeld et al., , 2013.

, Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta, Nat Immunol, vol.14, pp.52-60

C. Montaudouin, M. Anson, Y. Hao, S. V. Duncker, T. Fernandez et al., Quorum sensing contributes to activated IgM-secreting B cell homeostasis, J Immunol, vol.190, pp.106-114, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00771602

D. E. Morgenstern, M. A. Gifford, L. L. Li, C. M. Doerschuk, and M. C. Dinauer, Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus, J Exp Med, vol.185, pp.207-218, 1997.

A. J. Muller, S. Aeschlimann, R. Olekhnovitch, M. Dacher, G. F. Spath et al., Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism, Cell host & microbe, vol.14, pp.460-467, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01410262

Y. R. Na, S. Je, and S. H. Seok, Metabolic features of macrophages in inflammatory diseases and cancer, Cancer Lett, vol.413, pp.46-58, 2018.

R. Olekhnovitch and P. Bousso, Induction, Propagation, and Activity of Host Nitric Oxide: Lessons from Leishmania Infection, Trends in parasitology, vol.31, pp.653-664, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01410102

R. Olekhnovitch, B. Ryffel, A. J. Muller, and P. Bousso, Collective nitric oxide production provides tissue-wide immunity during Leishmania infection, The Journal of clinical investigation, vol.124, pp.1711-1722, 2014.

A. Ortega-gomez, M. Perretti, and O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Mol Med, vol.5, pp.661-674, 2013.

D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to Leishmania major in mice, Nat Rev Immunol, vol.2, pp.845-858, 2002.

D. Sancho, M. Enamorado, and J. Garaude, Innate Immune Function of Mitochondrial Metabolism, Front Immunol, vol.8, p.527, 2017.

P. Scott and F. O. Novais, Cutaneous leishmaniasis: immune responses in protection and pathogenesis, Nat Rev Immunol, vol.16, pp.581-592, 2016.

A. K. Shalek, R. Satija, J. Shuga, J. J. Trombetta, D. Gennert et al., Single-cell RNA-seq reveals dynamic paracrine control of cellular variation, Nature, vol.510, pp.363-369, 2014.

C. L. Speyer, T. A. Neff, R. L. Warner, R. F. Guo, J. V. Sarma et al., Regulatory effects of iNOS on acute lung inflammatory responses in mice, Am J Pathol, vol.163, pp.2319-2328, 2003.

M. A. Sugimoto, L. P. Sousa, V. Pinho, M. Perretti, and M. M. Teixeira, Resolution of Inflammation: What Controls Its Onset? Front Immunol 7, p.160, 2016.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, pp.238-242, 2013.

M. Tantama, J. R. Martinez-francois, R. Mongeon, Y. , and G. , Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio, Nat Commun, vol.4, p.2550, 2013.

M. J. Thomassen, L. T. Buhrow, M. J. Connors, F. T. Kaneko, S. C. Erzurum et al., Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages, Am J Respir Cell Mol Biol, vol.17, pp.279-283, 1997.

P. M. Thwe, A. , and E. , The role of nitric oxide in metabolic regulation of Dendritic cell immune function, Cancer Lett, vol.412, pp.236-242, 2018.

J. Van-den-bossche, J. Baardman, N. A. Otto, S. Van-der-velden, A. E. Neele et al., Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Rep, vol.17, pp.684-696, 2016.

J. Van-den-bossche, L. A. O'neill, and D. Menon, Macrophage Immunometabolism: Where Are We (Going)?, Trends Immunol, vol.38, pp.395-406, 2017.

A. Warnatsch, T. D. Tsourouktsoglou, N. Branzk, Q. Wang, S. Reincke et al., Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size, Immunity, vol.46, pp.421-432, 2017.

X. Q. Wei, I. G. Charles, A. Smith, J. Ure, G. J. Feng et al., Sapphire Laser (Coherent) tuned at 920 nm. Emitted fluorescence was split with dichroic mirrors (Semrock) and filtered with appropriate filters (Semrock) for each channel before collection with nondescanned detectors. Typically, images from 15 to 20 z planes spaced by 5 µm were collected every 2 minutes for up to 3 hours. For in vitro analysis of PercevalHR-expressing BMDMs, two-photon imaging was performed using a 25X/1.05 NA objective (Olympus) installed into a FVMPE-RS upright microscope (Olympus) equipped with an Insight deep see dual laser (Spectra physics) and a resonant scanner. PercevalHR excitation was achieved using llow = 830 nm and lhigh = 1040 nm. Emitted fluorescence, collected sequentially for each l, was split with dichroic mirrors (Semrock) and filtered with a 520/35 filter (PercevalHR signal) and a 483/32 filter (background) before collection with GaAsP detectors. Images in a single plan were collected every 15 s for 5 to 10 min. Data collected were analyzed and processed using Fiji (ImageJ) and Imaris software. Quantification and statistical analysis Data are reported as the mean ± SD, and numbers of experiments are reported in figure legends. For in vitro analyses, statistical differences between two groups were evaluated using a two-tailed unpaired Student's t-test with Welch's correction or using an ordinary one-way ANOVA with post hoc Holm-Sidak test for multiple comparison. For in vivo analyses, unless indicated otherwise, statistical differences between two groups were evaluated using a Mann-Whitney U test. Correlation between the density of iNOS competent cell and cellular respiration and cytokine production was further analyzed in vitro and in vivo by exponential one-phase decay regression, Nature, vol.375, pp.408-411, 1995.

, Key Resources Table REAGENT or RESOURCE SOURCE IDENTIFIER Antibodies Purified anti-mouse CD16/32 (Fc-block) (clone: 93) BioLegend Cat#101302; RRID: AB_312801 Biotin anti-mouse TER-119/Erythroid cells (clone: TER-119) BioLegend Cat#116203, vol.RRID, p.313705

, RRID: AB_2651134 BV421 anti-mouse MHC II (I-A/I-E) (clone: M5/114.15.2) BioLegend Cat#107632; RRID: AB_2650896 BV510 anti-mouse Ly-6G/Ly-6C (Gr-1) (clone: RB6-8C5) BioLegend Cat#108438; RRID: AB_2562215 BV510 anti-mouse Ly-6G (clone: 1A8) BioLegend Cat#127633, RRID: AB_2562937 BV605 anti-mouse Ly-6C, pp.30-41, 128036.

, Alexa Fluor 488 anti-mouse TNF-a (clone: MP6-XT12) BioLegend Cat#506313, vol.RRID, p.493328

, Alexa Fluor 488 anti-mouse Ly-6G (clone: 1A8) BioLegend Cat#127626; RRID: AB_2561340 PE anti-mouse/rat/human MCP-1 (clone: 2H5) BioLegend Cat#505904, vol.RRID, p.315410

. Percp/cy5, 5 anti-mouse/human CD11b (clone: M1/70) BioLegend Cat#101228; RRID: AB_893232 PE anti-mouse CCL3 (MIP-1alpha) (clone: DNT3CC) Invitrogen Cat#12-7532-80, vol.RRID, p.2572661

, 1 (clone: A20) BioLegend Cat#110730; RRID: AB_1134168 eFluor 660 anti-mouse CCL3 (MIP-1 alpha) (clone: DNT3CC) eBioscience Cat#50-7532-82, PE/Cy7 anti-mouse CD45, vol.RRID, p.2574295

, BioLegend Cat#117310; RRID: AB_313779 APC anti-mouse IL-1b Pro-form (clone: NJTEN3) eBioscience Cat#17-7114-80, APC anti-mouse CD11c (clone: N418), vol.RRID, p.1272175

, APC-eFluor 780 anti-mouse MHC II (I-A/I-E) (clone: M5/114.15.2) eBioscience Cat#47-5321-82, vol.RRID, p.1548783

, Alexa Fluor 488 Rat IgG1, kappa isotype ctrl (clone: RTK2071) BioLegend Cat#400417, vol.RRID, p.389319

. Pe-armenian and . Hamster, IgG isotype ctrl (clone: HTK888) Biolegend Cat#400908; RRID: AB_326593 PE Rat IgG2a, kappa isotype ctrl (clone: RTK2758) Biolegend Cat#400508, vol.RRID, p.326529

. Misslitz, APC Rat IgG1 isotype ctrl (clone: eBRG1) eBioscience Cat#17-4310-82; RRID: AB_470178 Biological Samples Leishmania major, strain: LRC-L137 V121, DsRedexpressing parasites, 2000.

. Sörensen, , 2003.

, Chemicals, peptides, or recombinant proteins Lipopolysaccharide from Escherichia coli O26:B6 Sigma-Aldrich Cat#L2654

, Mouse IFN gamma Recombinant Protein Carrier-Free eBisocience Cat#34-8311-85

C. Id, , pp.98059-61

L. , Cayman Chemical Cat#80310, CAS, vol.ID, pp.159190-159235

. Oligomycin-a-cayman, Chemical Cat#11342; CAS ID: 579-13-5 SNAP Cayman Chemical Cat#82250, CAS, vol.ID, pp.67776-67782

, Oligomycin A Cayman Chemical Cat#11342, CAS, vol.ID, pp.579-592

, MitoTracker Green FM Molecular Probes Cat#M7514, CAS, vol.ID, pp.201860-201877

, Sodium azide 10% solution Interchim Uptima Cat#NJK63A, CAS, vol.ID, pp.26628-26650

, MitoTracker Red CMXRos Molecular Probes Cat#M7512 Liberase TL Research Grade 10 mg Sigma, p.05401020001

. Bd-golgiplug, Protein Transport Inhibitor) BD Biosciences Cat#555029 2-NBDG Sigma-Aldrich Cat#72987, CAS, vol.ID, pp.186689-186696

, PBS Gibco Cat#13151014 Perm/Wash Buffer BD Biosciences Cat#554723 RIPA buffer Sigma-Aldrich Cat#R0278 cOmplete TM Protease Inhibitor Cocktail Sigma-Aldrich Cat#11697498001 XF Base Medium Minimal DMEM Seahorse Bioscience

, Recombinant Murine SCF Peprotech Cat#250-03

, Recombinant Murine Flt3-ligand Peprotech Cat#250-31L

, Recombinant Murine IL-3 Peprotech Cat#213-13

, Polybrene Transfection Reagent Merck Millipore Cat#TR-1003-G Freund's Adjuvant, Incomplete Sigma-Aldrich Blue Dead Cell Stain Kit Invitrogen Cat#L23105 jetPRIME Polyplus-transfection Cat#114, p.7

, Zombie Violet FM Fixable Viability Kit BioLegend Cat#423114 CD11c MicroBeads UltraPure, mouse Miltenyi Biotec, pp.130-108

, Seahorse XF96e FluxPak mini Seahorse Bioscience

, Seahorse XF Cell Mito Stress Test Kit Seahorse Bioscience Cat#103015-100

X. F. Seahorse and . Glycolysis, Stress Test Kit Seahorse Bioscience

. Komuro, Experimental Models: Cell Lines HEK 293 cells N/A N/A Experimental Models: Cell strains Mouse: C57BL/6J Charles River France JAX:000664 Mouse: C57BL/6J-Ptprc, 1975.

N. Id, 2654931 Mouse: C57BL/6-Tg(Csf1r-EGFP

. Burnett, , p.3051865, 2004.

/. Laubach, Mouse: B6.129P2-Nos2 tm1Lau, p.1857228, 1995.

D. Recombinant and . Gw1-percevalhr-plasmid-;-tantama, Addgene plasmid #49082 pCL, Image J) Schindelin et al, vol.10, 2012.

, GraphPad Software

, WT or Nos2 -/-BMDMs were activated 24 h with LPS+IFN-? either alone (ratios 100:0 and 0:100) or mixed at different ratios (50:50 and 10:90). (D-E) WT (CD45.1) or Nos2 -/-(CD45.2) BMDMs were activated 24 h with LPS+IFN-? either alone (ratios 100:0 and 0:100) or mixed at different ratios (50:50 and 10:90) and loaded with MitoTracker GreenFM and MitoTracker CMXRos. (D) Mitochondrial activity was normalized to the value of activated WT (100:0 ratio) for each group and graphed as a function of the density of iNOS competent cells in the culture. (E) Bar plots showing the normalized mitochondrial activity for the different mixed culture conditions. The inset shows the analysis of WT (CD45.1) and Nos2 -/-(CD45.2) cells in mixed cultures at the indicated ratio. (F-G) Percentages of cytokine-producing cells were assessed by intracellular cytokine staining for pro-IL-1b and CCL2. (F) Percentages of cytokine producing cells were graphed as a function of the density of iNOS competent cells in the culture. (G) Bar plots showing the percentages of producing cells for pro-IL-1b (top panel) and CCL2 (bottom panel) for the different mixed culture conditions, The ratio between MitoTracker CMXRos gMFI and MitoTracker GreenFM gMFI was calculated for each condition. Results are shown as fold change for the activated compared to the unactivated condition for (A) WT and Nos2 -/-cells or (B) untreated or L-NIL-treated WT cells. (C)

, 3D volume reconstruction was used to determine GFP + cell numbers and the corresponding cell densities at the site of infection. (D) CD45.1 WT recipient mice were lethally irradiated and reconstituted with CD45.1 WT and CD45.2 Nos2 -/-bone marrow cells, mixed at different ratios to modulate the tissue density of iNOS competent cells. Chimeras were infected 6 weeks later with DsRed-expressing L. major. Monocyte-derived cells activity was assessed 17 days later by intracellular cytokine staining on extracted ear cells. Percentages (top) and gMFI (bottom) of pro-IL-1b-, TNF-a-and CCL3-producing Ly6C + MHC-II + monocyte-derived cells, GFP + cells used to reconstitute chimera recipients. (C)