J. Vincent, S. M. Opal, J. C. Marshall, and K. J. Tracey, Sepsis definitions: time for change, Lancet, vol.381, p.774, 2013.

J. Vincent, Y. Sakr, C. L. Sprung, and V. M. Ranieri, Sepsis in European intensive care units: results of the SOAP study, Critical care medicine, vol.34, pp.344-353, 2006.

R. S. Hotchkiss, L. L. Moldawer, S. M. Opal, and K. Reinhart, Sepsis and septic shock, Nature reviews Disease primers, vol.2, p.16045, 2016.

R. S. Hotchkiss and I. E. Karl, The pathophysiology and treatment of sepsis, New England Journal of Medicine, vol.348, pp.138-150, 2003.

T. Van-der-poll, F. L. Van-de, B. P. Veerdonk, M. G. Scicluna, and . Netea, The immunopathology of sepsis and potential therapeutic targets, Nature Reviews Immunology, vol.17, p.407, 2017.

E. Rivers, B. Nguyen, S. Havstad, and J. Ressler, Early goal-directed therapy in the treatment of severe sepsis and septic shock, New England Journal of Medicine, vol.345, pp.1368-1377, 2001.

D. F. Gaieski, M. E. Mikkelsen, R. A. Band, and J. M. Pines, Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department, Critical care medicine, vol.38, pp.1045-1053, 2010.

V. M. Ranieri, P. M. Suter, C. Tortorella, and R. De-tullio, Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial, Jama, vol.282, pp.54-61, 1999.

K. J. Tracey, Y. Fong, D. G. Hesse, and K. R. Manogue, Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia, Nature, vol.330, p.662, 1987.

J. C. Fisher, S. M. Opal, J. Dhainaut, and S. T. Stephens, Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group, Critical care medicine, vol.21, pp.318-327, 1993.

E. Abraham, R. Wunderink, H. Silverman, and T. M. Perl, Efficacy and safety of monoclonal antibody to human tumor necrosis factor ? in patients with sepsis syndrome: a randomized, controlled, double-blind, multicenter clinical trial, Jama, vol.273, pp.934-941, 1995.

W. Schumer, Steroids in the treatment of clinical septic shock, Annals of surgery, vol.184, p.13, 1976.

C. L. Sprung, P. V. Caralis, E. H. Marcial, and M. Pierce, The effects of high-dose corticosteroids in patients with septic shock: a prospective, controlled study, New England Journal of Medicine, vol.311, pp.1137-1143, 1984.

E. Lachman, S. Pitsoe, and S. Gaffin, Anti-lipopolysaccharide immunotherapy in management of septic shock of obstetric and gynaecological origin. The Lancet, vol.323, pp.981-983, 1984.

E. J. Ziegler, J. A. Mccutchan, J. Fierer, and M. P. Glauser, Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli, New England Journal of Medicine, vol.307, pp.1225-1230, 1982.

E. Abraham, K. Reinhart, S. Opal, and I. Demeyer, Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial, Jama, vol.290, pp.238-247, 2003.

G. Bernard, J. Vincent, P. Laterre, and S. P. Larosa, for the recombinant human activated protein C worldwide evaluation in severe sepsis (PROWESS) study group, N Engl J Med, vol.344, pp.699-709, 2001.

A. Putzu, A. Daems, J. C. Lopez-delgado, and V. F. Giordano, The Effect of Vitamin C on Clinical Outcome in Critically Ill Patients: A Systematic Review With Meta-Analysis of Randomized Controlled Trials, Critical care medicine, vol.47, pp.774-783, 2019.

V. Mishra, Oxidative stress and role of antioxidant supplementation in critical illness, Clinical laboratory, vol.53, pp.199-209, 2007.

M. P. Fink and H. S. Warren, Strategies to improve drug development for sepsis, Nature Reviews Drug Discovery, vol.13, p.741, 2014.

R. Kohen and A. Nyska, Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology, vol.30, pp.620-650, 2002.

H. R. López-mirabal and J. R. Winther, Redox characteristics of the eukaryotic cytosol, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1783, pp.629-640, 2008.

P. De-paepe, F. M. Belpaire, and W. A. Buylaert, Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock, Clinical pharmacokinetics, vol.41, p.24, 2002.

S. Harbarth, J. Garbino, J. Pugin, and J. A. Romand, Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. The American journal of medicine, vol.115, pp.529-535, 2003.

L. F. Thompson, H. K. Eltzschig, J. C. Ibla, and C. J. Van-de-wiele, Crucial role for ecto-5?-nucleotidase (CD73) in vascular leakage during hypoxia, Journal of Experimental Medicine, vol.200, p.26, 2004.

G. W. Sullivan, D. D. Lee, W. G. Ross, and J. A. Divietro, Activation of A2A adenosine receptors inhibits expression of ?4/?1 integrin (very late antigen-4) on stimulated human neutrophils, Journal of leukocyte biology, vol.75, pp.127-134, 2004.

D. A. Bullough, M. J. Magill, G. S. Firestein, and K. M. Mullane, Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes, The Journal of Immunology, vol.155, pp.2579-2586, 1995.

G. Haskó, B. Csóka, Z. H. Németh, and E. S. Vizi, A2B adenosine receptors in immunity and inflammation, Trends in immunology, vol.30, pp.263-270, 2009.

B. S. Zolnik, A. Gonzalez-fernandez, N. Sadrieh, and M. A. Dobrovolskaia, Minireview: nanoparticles and the immune system, Endocrinology, vol.151, pp.458-465, 2010.

J. Du, Y. S. Zhang, D. Hobson, and P. Hydbring, Nanoparticles for immune system targeting. Drug discovery today, vol.22, pp.1295-1301, 2017.

S. Spence, M. K. Greene, F. Fay, and E. Hams, Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation, Science translational medicine, vol.7, p.32, 2015.

Z. Wang, J. Li, J. Cho, and A. B. Malik, Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils, Nature nanotechnology, vol.9, p.204, 2014.

K. Nakatani, S. Takeshita, H. Tsujimoto, and Y. Kawamura, Regulation of the expression of Fc? receptor on circulating neutrophils and monocytes in Kawasaki disease, Clinical and experimental immunology, vol.117, p.418, 1999.

C. Y. Zhang, J. Gao, and Z. Wang, Bioresponsive Nanoparticles Targeted to Infectious Microenvironments for Sepsis Management, Advanced Materials, vol.30, p.1803618, 2018.

C. A. Dinarello, Anti-inflammatory agents: present and future, Cell, vol.140, pp.935-950, 2010.

A. F. Radovic-moreno, T. K. Lu, V. A. Puscasu, and C. J. Yoon, Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics, ACS nano, vol.6, pp.4279-4287, 2012.

M. Xiong, Y. Bao, X. Yang, and Y. Wang, Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery, Journal of the American Chemical Society, vol.134, p.38, 2012.

N. Terrasini and V. Lionetti, Exosomes in critical illness, Critical care medicine, vol.45, pp.1054-1060, 2017.

J. Wu, Y. Wang, and L. Li, Functional significance of exosomes applied in sepsis: A novel approach to therapy, Biochimica et Biophysica Acta, vol.1863, pp.292-297, 2017.

M. Alexander, R. Hu, M. C. Runtsch, and D. A. Kagele, Exosome-delivered microRNAs modulate the inflammatory response to endotoxin, Nature communications, vol.6, p.7321, 2015.

X. Wang, H. Gu, D. Qin, and L. Yang, Exosomal miR-223 contributes to mesenchymal stem cellelicited cardioprotection in polymicrobial sepsis, Scientific reports, vol.5, p.13721, 2015.

I. L. Colao, R. Corteling, D. Bracewell, and I. Wall, Manufacturing exosomes: a promising therapeutic platform, Trends in molecular medicine, vol.24, pp.242-256, 2018.

J. N. Buie, Y. Zhou, A. J. Goodwin, and J. A. Cook, Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis, Inflammation, vol.42, pp.170-184, 2019.

B. D. Henry, D. R. Neill, K. A. Becker, and S. Gore, Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice, Nature biotechnology, vol.33, p.45, 2015.

C. J. Hu, R. H. Fang, J. Copp, and B. T. Luk, A biomimetic nanosponge that absorbs pore-forming toxins, Nature nanotechnology, vol.8, p.336, 2013.

C. J. Hu, L. Zhang, S. Aryal, and C. Cheung, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform, Proceedings of the National Academy of Sciences, vol.108, pp.10980-10985, 2011.

S. Thamphiwatana, P. Angsantikul, T. Escajadillo, and Q. Zhang, Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management, Proceedings of the National Academy of Sciences, vol.114, pp.11488-11493, 2017.

S. Shen, F. Han, A. Yuan, and L. Wu, Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and preventing endotoxemia, Biomaterials, vol.189, pp.60-68, 2019.

N. Abed and P. Couvreur, Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections, International journal of antimicrobial agents, vol.43, pp.485-496, 2014.

A. J. Huh and Y. J. Kwon, Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, Journal of controlled release, vol.156, p.51, 2011.

Z. Drulis-kawa and A. Dorotkiewicz-jach, Liposomes as delivery systems for antibiotics, International journal of pharmaceutics, vol.387, pp.187-198, 2010.

G. Baier, A. Cavallaro, K. Vasilev, and V. Maila?nder, Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection, Biomacromolecules, vol.14, pp.1103-1112, 2013.

J. R. Fitzgerald, T. J. Foster, and D. Cox, The interaction of bacterial pathogens with platelets, Nature Reviews Microbiology, vol.4, p.445, 2006.

C. J. Hu, R. H. Fang, K. Wang, and B. T. Luk, Nanoparticle biointerfacing by platelet membrane cloaking, Nature, vol.526, p.118, 2015.

S. J. Lam, N. M. O'brien-simpson, N. Pantarat, and A. Sulistio, Combating multidrug-resistant Gramnegative bacteria with structurally nanoengineered antimicrobial peptide polymers, Nature microbiology, vol.1, p.16162, 2016.

C. K. Kim, T. Kim, I. Y. Choi, and M. Soh, Ceria nanoparticles that can protect against ischemic stroke, Angewandte Chemie International Edition, vol.51, pp.11039-11043, 2012.

J. Chen, S. Patil, S. Seal, and J. F. Mcginnis, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides, Nature nanotechnology, vol.1, p.142, 2006.

M. Soh, D. W. Kang, H. G. Jeong, and D. Kim, Ceria-Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment, Angewandte Chemie International Edition, vol.56, p.59, 2017.

Y. Ikeda, K. Shoji, C. P. Feliciano, and S. Saito, Antioxidative nanoparticles significantly enhance therapeutic efficacy of an antibacterial therapy against Listeria monocytogenes infection, Molecular pharmaceutics, vol.15, pp.1126-1132, 2018.

E. E. Voest, E. Van-faassen, and J. J. Marx, An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO. Free Radical Biology and Medicine, vol.15, p.61, 1993.

H. D. Black, W. Xu, E. Hortle, and S. I. Roberston, The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets, Free Radical Biology and Medicine, 2019.

A. Galano, On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals, Physical Chemistry Chemical Physics, vol.13, pp.7178-7188, 2011.

E. A. De-almeida, G. R. Martinez, C. F. Klitzke, and M. H. De-medeiros, Oxidation of melatonin by singlet molecular oxygen (O2 (1?g)) produces N1-acetyl-N2-formyl-5-methoxykynurenine, Journal of pineal research, vol.35, pp.131-137, 2003.

K. J. Kwon, J. N. Kim, M. K. Kim, and J. Lee, Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection, Journal of pineal research, vol.50, pp.110-123, 2011.

W. Szaroma and K. Dziubek, Changes in the amount of reduced glutathione and activity of antioxidant enzymes in chosen mouse organs influenced by zymosan and melatonin administration, Acta Biologica Hungarica, vol.62, pp.133-141, 2011.

V. Dubey, D. Mishra, A. Asthana, and N. K. Jain, Transdermal delivery of a pineal hormone: melatonin via elastic liposomes, Biomaterials, vol.27, pp.3491-3496, 2006.

H. Volt, J. A. García, C. Doerrier, and M. E. Díaz-casado, Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin, Journal of pineal research, vol.60, pp.193-205, 2016.

G. L. Volti, T. Musumeci, R. Pignatello, and P. Murabito, Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis, Experimental Biology and Medicine, vol.237, pp.670-677, 2012.

G. Chen, H. Deng, X. Song, and M. Lu, Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice, Biomaterials, vol.144, pp.30-41, 2017.

L. D. Shultz, F. Ishikawa, and D. L. Greiner, Humanized mice in translational biomedical research, Nature Reviews Immunology, vol.7, p.118, 2007.

K. Laudanski, N. Lapko, M. Zawadka, and B. X. Zhou, The clinical and immunological performance of 28 days survival model of cecal ligation and puncture in humanized mice, PloS one, vol.12, p.180377, 2017.

E. Whalley, J. Solomon, D. Modafferi, and K. Bonham, CP-0127, a novel potent bradykinin antagonist, increases survival in rat and rabbit models of endotoxin shock, Agents and actions. Supplements, vol.38, pp.413-420, 1992.

A. M. Van-ton, M. Kox, W. F. Abdo, and P. Pickkers, Precision immunotherapy for sepsis, Frontiers in immunology, vol.9, 2018.

F. Dormont, M. Rouquette, C. Mahatsekake, and F. Gobeaux, Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles, Journal of Controlled Release, vol.307, pp.302-314, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02294923

J. C. Leroux, Drug delivery: too much complexity, not enough reproducibility?, Angewandte Chemie International Edition, vol.56, pp.15170-15171, 2017.

M. Miksa, R. Wu, W. Dong, and H. Komura, Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor VIII, The Journal of immunology, vol.183, pp.5983-5990, 2009.

M. O. Guler and A. B. Tekinay, Nanomaterials for Medicine. Therapeutic Nanomaterials, vol.1, 2016.

D. T. Bui, J. Nicolas, A. Maksimenko, and D. Desmaele, Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy, Chem Commun (Camb), vol.50, pp.5336-5338, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01325230

F. Caruso, Nanoengineering of particle surfaces, Advanced Materials, vol.13, pp.11-22, 2001.

H. Fessi, F. Puisieux, J. P. Devissaguet, and N. Ammoury, Nanocapsule formation by interfacial polymer deposition following solvent displacement, International journal of pharmaceutics, vol.55, pp.1-4, 1989.

R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly (lactide-coglycolide)(PLGA) devices, Biomaterials, vol.21, pp.2475-2490, 2000.

R. Karnik, F. Gu, P. Basto, and C. Cannizzaro, Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano letters, vol.8, pp.2906-2912, 2008.

K. Landfester, The generation of nanoparticles in miniemulsions, Advanced Materials, vol.13, pp.765-768, 2001.

Y. Lee, J. Lee, C. J. Bae, and J. G. Park, Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Advanced Functional Materials, vol.15, pp.503-509, 2005.

J. Park, K. An, Y. Hwang, and J. Park, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature materials, vol.3, pp.891-895, 2004.

C. Vauthier and K. Bouchemal, Methods for the preparation and manufacture of polymeric nanoparticles, Pharmaceutical research, vol.26, pp.1025-1058, 2009.

A. D. Bangham, M. M. Standish, and N. Miller, Cation permeability of phospholipid model membranes: effect of narcotics, Nature, vol.208, pp.1295-1297, 1965.

A. D. Bangham, M. M. Standish, and J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J Mol Biol, vol.13, pp.238-252, 1965.

A. D. Bangham, M. M. Standish, and G. Weissmann, The action of steroids and streptolysin S on the permeability of phospholipid structures to cations, J Mol Biol, vol.13, pp.253-259, 1965.

V. P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat Rev Drug Discov, vol.4, pp.145-160, 2005.

X. Y. Lu, D. C. Wu, Z. J. Li, and G. Q. Chen, Polymer nanoparticles, Prog Mol Biol Transl Sci, vol.104, pp.299-323, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02402169

Y. Barenholz, Doxil(R)--the first FDA-approved nano-drug: lessons learned, J Control Release, vol.160, pp.117-134, 2012.

F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, Journal of Controlled Release, vol.132, pp.171-183, 2008.

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities, Nature Reviews Cancer, vol.17, pp.20-37, 2016.

V. Weissig, T. K. Pettinger, and N. Murdock, Nanopharmaceuticals (part 1): products on the market, Int J Nanomedicine, vol.9, pp.4357-4373, 2014.

N. Bertrand and J. Leroux, The journey of a drug-carrier in the body: An anatomo-physiological perspective, Journal of Controlled Release, vol.161, pp.152-163, 2012.

C. D. Mathers and D. Loncar, Projections of global mortality and burden of disease from 2002 to 2030, PLoS Med, vol.3, p.442, 2006.

J. A. Finegold, P. Asaria, and D. P. Francis, Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations, Int J Cardiol, vol.168, p.23, 2013.

J. F. Bentzon, F. Otsuka, R. Virmani, and E. Falk, Mechanisms of plaque formation and rupture, Circ Res, vol.114, pp.1852-1866, 2014.

K. J. Moore and I. Tabas, Macrophages in the pathogenesis of atherosclerosis, Cell, vol.145, p.25, 2011.

C. Silvestre-roig, M. P. De-winther, C. Weber, and M. J. Daemen, Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies, Circ Res, vol.114, p.26, 2014.

C. Weber and H. Noels, Atherosclerosis: current pathogenesis and therapeutic options, Nat Med, vol.17, pp.1410-1422, 2011.

B. Furie and B. C. Furie, Mechanisms of thrombus formation, N Engl J Med, vol.359, pp.938-949, 2008.

M. Varna, M. Juenet, R. Bayles, and M. Mazighi, Nanomedicine as a strategy to fight thrombotic diseases, Future Science OA, vol.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02438607

D. J. Hausenloy and D. M. Yellon, Myocardial ischemia-reperfusion injury: a neglected therapeutic target, J Clin Invest, vol.123, pp.92-100, 2013.

C. P. Baines, The mitochondrial permeability transition pore and ischemia-reperfusion injury, Basic Res Cardiol, vol.104, pp.181-188, 2009.

E. Bruckert and D. Rosenbaum, Lowering LDL-cholesterol through diet: potential role in the statin era, Curr Opin Lipidol, vol.22, pp.43-48, 2011.

O. S. Descamps, J. Sutter, M. Guillaume, and L. Missault, Where does the interplay between cholesterol absorption and synthesis in the context of statin and/or ezetimibe treatment stand today?, Atherosclerosis, vol.217, pp.308-321, 2011.

C. Baigent, A. Keech, P. M. Kearney, and L. Blackwell, Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins, Lancet, vol.366, pp.1267-1278, 2005.

K. H. Bonaa, J. Mannsverk, R. Wiseth, and L. Aaberge, Drug-Eluting or Bare-Metal Stents for Coronary Artery Disease, N Engl J Med, vol.375, pp.1242-1252, 2016.

O. Ovchinnikova, A. Gylfe, L. Bailey, and A. Nordstrom, Osteoprotegerin Promotes Fibrous Cap Formation in Atherosclerotic Lesions of ApoE-Deficient Mice--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, pp.1478-1480, 2009.

J. S. Smolen, A. Beaulieu, A. Rubbert-roth, and C. Ramos-remus, Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. The Lancet, vol.371, pp.987-997, 2008.

J. Rolin and A. A. Maghazachi, Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis, Journal of Leukocyte Biology, vol.95, pp.575-585, 2014.

R. Klingenberg and G. K. Hansson, Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies, European Heart Journal, vol.30, pp.2838-2844, 2009.

D. Atar, H. Arheden, A. Berdeaux, and J. L. Bonnet, Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results, Eur Heart J, vol.36, pp.112-119, 2015.

D. J. Hausenloy, H. E. Botker, G. Condorelli, and P. Ferdinandy, Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology, Cardiovasc Res, vol.98, pp.7-27, 2013.

V. Sharma, R. M. Bell, and D. M. Yellon, Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy, Expert Opin Pharmacother, vol.13, p.42, 2012.

A. M. Gotto, Antioxidants, statins, and atherosclerosis, Journal of the American College of Cardiology, vol.41, pp.1205-1210, 2003.

S. R. Steinhubl, Why have antioxidants failed in clinical trials?, Am J Cardiol, vol.101, p.44, 2008.

F. Krotz, H. Y. Sohn, and V. Klauss, Antiplatelet drugs in cardiological practice: established strategies and new developments. Vasc Health Risk Manag, vol.4, pp.637-645, 2008.

W. H. Jong, W. I. Hagens, P. Krystek, and M. C. Burger, Particle size-dependent organ distribution of gold nanoparticles after intravenous administration, Biomaterials, vol.29, pp.1912-1919, 2008.

E. Blanco, H. Shen, and M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nature biotechnology, vol.33, pp.941-951, 2015.

J. A. Champion and S. Mitragotri, Role of target geometry in phagocytosis, Proc Natl Acad Sci U S A, vol.103, pp.4930-4934, 2006.

M. K. Lee, S. J. Lim, and C. K. Kim, Preparation, characterization and in vitro cytotoxicity of paclitaxelloaded sterically stabilized solid lipid nanoparticles, Biomaterials, vol.28, pp.2137-2146, 2007.

R. Collins, C. Reith, J. Emberson, and J. Armitage, Interpretation of the evidence for the efficacy and safety of statin therapy, Lancet, vol.388, pp.2532-2561, 2016.

M. S. Hamza, C. Kumar, S. M. Chia, and V. Anandalakshmi, Alterations in the hepatic transcriptional landscape after RNAi mediated ApoB silencing in cynomolgus monkeys, Atherosclerosis, vol.242, pp.383-395, 2015.

T. S. Zimmermann, A. C. Lee, A. Akinc, and B. Bramlage, RNAi-mediated gene silencing in nonhuman primates, Nature, vol.441, pp.111-114, 2006.

D. Semizarov, L. Frost, A. Sarthy, and P. Kroeger, Specificity of short interfering RNA determined through gene expression signatures, Proceedings of the National Academy of Sciences, vol.100, pp.6347-6352, 2003.

I. Dunham, A. Kundaje, S. F. Aldred, and P. J. Collins, An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

J. F. Gohy and Y. Zhao, Photo-responsive block copolymer micelles: design and behavior, Chem Soc Rev, vol.42, pp.7117-7129, 2013.

J. M. Williford, J. Wu, Y. Ren, and M. M. Archang, Recent advances in nanoparticle-mediated siRNA delivery, Annu Rev Biomed Eng, vol.16, pp.347-370, 2014.

H. J. Kim, A. Kim, K. Miyata, and K. Kataoka, Recent progress in development of siRNA delivery vehicles for cancer therapy, Adv Drug Deliv Rev, vol.104, pp.61-77, 2016.

D. Urban, J. Pöss, M. Böhm, and U. Laufs, Targeting the Proprotein Convertase Subtilisin/Kexin Type 9 for the Treatment of Dyslipidemia and Atherosclerosis, Journal of the American College of Cardiology, vol.62, pp.1401-1408, 2013.

M. Frank-kamenetsky, A. Grefhorst, N. N. Anderson, and T. S. Racie, Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates, Proceedings of the National Academy of Sciences, vol.105, pp.11915-11920, 2008.

K. Fitzgerald, M. Frank-kamenetsky, S. Shulga-morskaya, and A. Liebow, Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebocontrolled, phase 1 trial. The Lancet, vol.383, pp.60-68, 2014.

H. Wang, J. Wang, X. Deng, and H. Sun, Biodistribution of carbon single-wall carbon nanotubes in mice, J Nanosci Nanotechnol, vol.4, pp.1019-1024, 2004.

J. J. Badimon, L. Badimon, and V. Fuster, Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit, J Clin Invest, vol.85, pp.1234-1241, 1990.

J. J. Badimon, L. Badimon, A. Galvez, and R. Dische, High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits, Lab Invest, vol.60, pp.455-461, 1989.

S. E. Nissen, T. Tsunoda, E. M. Tuzcu, and P. Schoenhagen, Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial, JAMA, vol.290, pp.2292-2300, 2003.

B. L. Sanchez-gaytan, F. Fay, M. E. Lobatto, and J. Tang, HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages, Bioconjugate Chemistry, vol.26, pp.443-451, 2015.

A. J. Murphy, S. Funt, D. Gorman, and A. R. Tall, Pegylation of High-Density Lipoprotein Decreases Plasma Clearance and Enhances Antiatherogenic Activity, vol.113, pp.1-9, 2013.

M. Back, C. Weber, and E. Lutgens, Regulation of atherosclerotic plaque inflammation, J Intern Med, vol.278, pp.462-482, 2015.

P. M. Ridker and T. F. Luscher, Anti-inflammatory therapies for cardiovascular disease, Eur Heart J, vol.35, pp.1782-1791, 2014.

F. K. Swirski, M. Nahrendorf, M. Etzrodt, and M. Wildgruber, Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites, Science, vol.325, pp.612-616, 2009.

F. Leuschner, P. Dutta, R. Gorbatov, and T. I. Novobrantseva, Therapeutic siRNA silencing in inflammatory monocytes in mice, Nature Biotechnology, vol.29, pp.1005-1010, 2011.

M. E. Maulik, D. Majmudar, . Phd;-timo, M. Heidt, . Leuschner et al., Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice. Circulation, 2013.

I. Manduteanua, M. Bota, C. , M. Enachescu, C. et al., VCAM-1 directed target-sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes.pdf, European Journal of Pharmateucis and Biopharmaceutics, 2015.

Z. M. Dong, S. M. Chapman, A. A. Brown, and P. S. Frenette, The combined role of P-and E-selectins in atherosclerosis, J Clin Invest, vol.102, pp.145-152, 1998.

J. E. Dahlman, C. Barnes, O. F. Khan, and A. Thiriot, In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight, Nat Nanotechnol, vol.9, pp.648-655, 2014.

H. B. Sager, P. Dutta, J. E. Dahlman, and M. Hulsmans, RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction, Science Translational Medicine, vol.8, p.11, 2016.

S. Steffens and F. Mach, Drug Insight: immunomodulatory effects of statins-potential benefits for renal patients?, Nature Clinical Practice Nephrology, vol.2, pp.378-387, 2006.

D. X. Bu, G. Griffin, and A. H. Lichtman, Mechanisms for the anti-inflammatory effects of statins, Curr Opin Lipidol, vol.22, pp.165-170, 2011.

R. Duivenvoorden, J. Tang, D. P. Cormode, and A. J. Mieszawska, A statin-loaded reconstituted highdensity lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation, Nat Commun, vol.5, p.3065, 2014.

J. Tang and M. E. Lobatto, , vol.1, p.3

S. Katsuki, T. Matoba, S. Nakashiro, and K. Sato, Nanoparticle-Mediated Delivery of Pitavastatin Inhibits Atherosclerotic Plaque Destabilization/Rupture in Mice by Regulating the Recruitment of Inflammatory Monocytes, Circulation, vol.129, pp.896-906, 2013.

K. Nagaoka, T. Matoba, Y. Mao, and Y. Nakano, A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model, PLoS One, vol.10, p.132451, 2015.

P. J. Barnes, Glucocorticosteroids: current and future directions, Br J Pharmacol, vol.163, pp.29-43, 2011.

S. Chono, Y. Tauchi, Y. Deguchi, and K. Morimoto, Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice, Journal of drug targeting, vol.13, pp.267-276, 2005.

Z. A. Mark, *. Lobatto, S. Silvera, ?. Vucic, V. M. Claudia-calcagno et al.,

?. Dickson, ?. Klaas-nicolay, R. M. Banciu, §. Josbert, M. Metselaar et al.,

|. Bloois, T. John, J. H. Fallon, ?. Rudd, #. Valentin-fuster et al., Multimodal Clinical Imaging To Longitudinally Assess a Nanomedical Anti-Inflammatory Treatment in Experimental Atherosclerosis.pdf, Molecular Pharmaceutics, 2010.

J. Koga, T. Matoba, and K. Egashira, Anti-inflammatory Nanoparticle for Prevention of Atherosclerotic Vascular Diseases, J Atheroscler Thromb, vol.23, pp.757-765, 2016.

B. , C. J. Kastrupa, M. Nahrendorfc, J. L. Figueiredoc, H. Leed et al., Andersona,I, <Painting blood vessels and atherosclerotic plaques with an adhesive drug depot.pdf>, Proc Natl Acad Sci, 2012.

A. Ortega-gómez, M. Perretti, and O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Molecular Medicine, vol.5, pp.661-674, 2013.

L. V. Norling, M. Spite, R. Yang, and R. J. Flower, Cutting Edge: Humanized Nano-Proresolving Medicines Mimic Inflammation-Resolution and Enhance Wound Healing, The Journal of Immunology, vol.186, pp.5543-5547, 2011.

I. Tabas and C. K. Glass, Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities, Science, vol.339, pp.166-172, 2013.

M. A. Sugimoto, J. P. Vago, M. M. Teixeira, and L. P. Sousa, Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance, Journal of Immunology Research, pp.1-13, 2016.

G. F. Nazila-kamaly, M. Subramanianb, S. Gaddea, A. Pesica, L. Cheunga et al., Zahi Adel Fayadc, Ira Tabas, and Omid Cameron Farokhzad, Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles.pdf, Proc Natl Acad Sci, 2013.

G. Fredman, N. Kamaly, S. Spolitu, and J. Milton, Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice, Science Translational Medicine, vol.7, pp.275-220, 2015.

N. Kamaly, G. Fredman, J. J. Fojas, and M. Subramanian, Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis, ACS Nano, vol.10, pp.5280-5292, 2016.

T. Kawamura, N. Nara, M. Kadosaki, and K. Inada, Prostaglandin E1 reduces myocardial reperfusion injury by inhibiting proinflammatory cytokines production during cardiac surgery, Crit Care Med, vol.28, pp.2201-2208, 2000.

S. Feld, G. Li, A. Wu, and P. Felli, Reduction of canine infarct size by bolus intravenous administration of liposomal prostaglandin E1: comparison with control, placebo liposomes, and continuous intravenous infusion of prostaglandin E1, Am Heart J, vol.132, pp.747-757, 1996.

J. H. Li, P. Yang, A. L. Li, and Y. Wang, Cardioprotective effect of liposomal prostaglandin E1 on a porcine model of myocardial infarction reperfusion no-reflow, J Zhejiang Univ Sci B, vol.12, pp.638-643, 2011.

L. Y. Wei, X. H. Fu, W. Li, and X. L. Bi, Effect of Intravenous Administration of Liposomal Prostaglandin E1 on Microcirculation in Patients with ST Elevation Myocardial Infarction Undergoing Primary Percutaneous Intervention, Chin Med J (Engl), vol.128, pp.1147-1150, 2015.

P. Van-der-meer, E. Lipsic, R. H. Henning, and K. Boddeus, Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction, J Am Coll Cardiol, vol.46, pp.125-133, 2005.

C. Moon, M. Krawczyk, D. Paik, and E. G. Lakatta, Cardioprotection by recombinant human erythropoietin following acute experimental myocardial infarction: dose response and therapeutic window, Cardiovasc Drugs Ther, vol.19, pp.243-250, 2005.

I. Ott, S. Schulz, J. Mehilli, and S. Fichtner, Erythropoietin in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomized, double-blind trial, Circ Cardiovasc Interv, vol.3, pp.408-413, 2010.

S. S. Najjar, S. V. Rao, C. Melloni, and S. V. Raman, Intravenous erythropoietin in patients with STsegment elevation myocardial infarction: REVEAL: a randomized controlled trial, JAMA, vol.305, pp.1863-1872, 2011.

F. Prunier, L. Biere, M. Gilard, and J. Boschat, Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial, Am Heart J, vol.163, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811692

Y. Yamada, H. Kobayashi, M. Iwasa, and S. Sumi, Postinfarct active cardiac-targeted delivery of erythropoietin by liposomes with sialyl Lewis X repairs infarcted myocardium in rabbits, Am J Physiol Heart Circ Physiol, vol.304, pp.1124-1133, 2013.

T. Harel-adar, T. Ben-mordechai, Y. Amsalem, and M. S. Feinberg, Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair, Proc Natl Acad Sci U S A, vol.108, pp.1827-1832, 2011.

P. G. Steg, S. K. James, and D. Atar, ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation, Eur Heart J, vol.33, pp.2569-2619, 2012.

G. De-luca, H. Suryapranata, and P. Marino, Reperfusion strategies in acute ST-elevation myocardial infarction: an overview of current status, Prog Cardiovasc Dis, vol.50, pp.352-382, 2008.

Y. M. Fortenberry, Plasminogen activator inhibitor-1 inhibitors: a patent review (2006-present), Expert Opin Ther Pat, vol.23, pp.801-815, 2013.

B. Van-de-craen, P. J. Declerck, and A. Gils, The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo, Thromb Res, vol.130, pp.576-585, 2012.

J. C. Copin, D. J. Bengualid, R. F. Silva, and O. Kargiotis, Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse, Eur J Neurosci, vol.34, pp.1085-1092, 2011.

V. J. Caride and B. L. Zaret, Liposome accumulation in regions of experimental myocardial infarction, Science, vol.198, pp.735-738, 1977.

T. M. Mueller, M. L. Marcus, H. E. Mayer, and J. K. Williams, Liposome concentration in canine ischemic myocardium and depolarized myocardial cells, Circ Res, vol.49, pp.405-415, 1981.

O. R. Nguyen, P. , J. A. Patterson, E. , A. B. Whitsett et al., Accelerated Thrombolysis and Reperfusion in a Canine Model of Myocardial Infarction by Liposomal Encapsulation of Streptokinase, Circulation Research, vol.66, pp.875-878, 1990.

A. C. Silva, C. M. Lopes, J. M. Lobo, and M. H. Amaral, Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles, vol.16, pp.940-954, 2015.

J. K. Leach, E. Patterson, and E. A. O&apos;rear, Encapsulation of a plasminogen activator speeds reperfusion, lessens infarct and reduces blood loss in a canine model of coronary artery thrombosis, Thromb Haemost, vol.91, pp.1213-1218, 2004.

H. J. Jin, H. Zhang, M. L. Sun, and B. G. Zhang, Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo, J Thromb Thrombolysis, vol.36, pp.458-468, 2013.

B. Vaidya, G. P. Agrawal, and S. P. Vyas, Platelets directed liposomes for the delivery of streptokinase: development and characterization, Eur J Pharm Sci, vol.44, pp.589-594, 2011.

S. Absar, K. Nahar, Y. M. Kwon, and F. Ahsan, Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy, Pharm Res, vol.30, pp.1663-1676, 2013.

J. Zhou, D. Guo, Y. Zhang, and W. Wu, Construction and evaluation of Fe(3)O(4)-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis, ACS Appl Mater Interfaces, vol.6, pp.5566-5576, 2014.

Y. Uesugi, H. Kawata, Y. Saito, and Y. Tabata, Ultrasound-responsive thrombus treatment with zincstabilized gelatin nano-complexes of tissue-type plasminogen activator, J Drug Target, vol.20, pp.224-234, 2012.

A. V. Alexandrov, Ultrasound identification and lysis of clots, Stroke, vol.35, pp.2722-2725, 2004.

Y. H. Ma, S. Y. Wu, T. Wu, and Y. J. Chang, Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles, Biomaterials, vol.30, pp.3343-3351, 2009.

H. W. Yang, M. Y. Hua, K. J. Lin, and S. P. Wey, Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis, Int J Nanomedicine, vol.7, pp.5159-5173, 2012.

J. P. Chen, P. C. Yang, Y. H. Ma, and T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator, Carbohydrate Polymers, vol.84, pp.364-372, 2011.

S. D. Caruthers, T. Cyrus, P. M. Winter, and S. A. Wickline, Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.1, pp.311-323, 2009.

S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nat Biotechnol, vol.21, pp.1171-1178, 2003.

P. C. Hsieh, M. E. Davis, J. Gannon, and C. Macgillivray, Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers, J Clin Invest, vol.116, pp.237-248, 2006.

H. D. Guo, G. H. Cui, J. J. Yang, and C. Wang, Sustained delivery of VEGF from designer selfassembling peptides improves cardiac function after myocardial infarction, Biochem Biophys Res Commun, vol.424, pp.105-111, 2012.

Y. D. Lin, C. Y. Luo, Y. N. Hu, and M. L. Yeh, Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair, Sci Transl Med, vol.4, pp.146-109, 2012.

H. Yin, R. L. Kanasty, A. A. Eltoukhy, and A. J. Vegas, Non-viral vectors for gene-based therapy, Nat Rev Genet, vol.15, pp.541-555, 2014.

Y. Zhang, W. Li, L. Ou, and W. Wang, Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration, PLoS One, vol.7, p.39490, 2012.

J. W. Yockman, A. Kastenmeier, H. M. Erickson, and J. G. Brumbach, Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction, J Control Release, vol.132, pp.260-266, 2008.

M. Y. Rincon, T. Vandendriessche, and M. K. Chuah, Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation, Cardiovasc Res, vol.108, pp.4-20, 2015.

F. Yi, H. Wu, and G. L. Jia, Formulation and characterization of poly (D,L-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery, J Clin Pharm Ther, vol.31, pp.43-48, 2006.

A. Paul, A. Hasan, H. A. Kindi, and A. K. Gaharwar, Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair, ACS Nano, vol.8, pp.8050-8062, 2014.

K. Goszcz, S. J. Deakin, G. G. Duthie, and D. Stewart, Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med, vol.2, p.29, 2015.

D. V. Ratnam, D. D. Ankola, V. Bhardwaj, and D. K. Sahana, Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective, J Control Release, vol.113, pp.189-207, 2006.

A. Ayer, P. Macdonald, R. Stocker, and C. , ) Function and Role in Heart Failure and Ischemic Heart Disease, Annu Rev Nutr, vol.35, issue.1, pp.175-213, 2015.

K. Niibori, H. Yokoyama, J. A. Crestanello, and G. J. Whitman, Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury, J Surg Res, vol.79, pp.141-145, 1998.

D. D. Verma, W. C. Hartner, V. Thakkar, and T. S. Levchenko, Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction, Pharm Res, vol.24, pp.2131-2137, 2007.

B. A. Khaw, V. P. Torchilin, I. Vural, and J. Narula, Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes, Nat Med, vol.1, pp.1195-1198, 1995.

Y. H. Looi, D. J. Grieve, A. Siva, and S. J. Walker, Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction, Hypertension, vol.51, pp.319-325, 2008.

I. Somasuntharam, A. V. Boopathy, R. S. Khan, and M. D. Martinez, Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction, Biomaterials, vol.34, pp.7790-7798, 2013.

D. D. Verma, W. C. Hartner, T. S. Levchenko, and E. A. Bernstein, ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction, Pharm Res, vol.22, pp.2115-2120, 2005.

D. D. Verma, T. S. Levchenko, E. A. Bernstein, and D. Mongayt, ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model, J Drug Target, vol.14, pp.273-280, 2006.

D. D. Verma, T. S. Levchenko, E. A. Bernstein, and V. P. Torchilin, ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model, J Control Release, vol.108, pp.460-471, 2005.

J. L. Gordon, Extracellular ATP: effects, sources and fate, Biochem J, vol.233, pp.309-319, 1986.

H. K. Eltzschig, M. V. Sitkovsky, and S. C. Robson, Purinergic signaling during inflammation, N Engl J Med, vol.367, pp.2322-2333, 2012.

F. Puisieux, E. Fattal, M. Lahiani, and J. Auger, Liposomes, an interesting tool to deliver a bioenergetic substrate (ATP). in vitro and in vivo studies, J Drug Target, vol.2, pp.443-448, 1994.

W. Liang, T. S. Levchenko, and V. P. Torchilin, Encapsulation of ATP into liposomes by different methods: optimization of the procedure, J Microencapsul, vol.21, pp.251-261, 2004.

G. X. Xu, X. H. Xie, F. Y. Liu, and D. L. Zang, Adenosine triphosphate liposomes: encapsulation and distribution studies, Pharm Res, vol.7, pp.553-557, 1990.

J. P. Headrick, B. Hack, and K. J. Ashton, Acute adenosinergic cardioprotection in ischemic-reperfused hearts, Am J Physiol Heart Circ Physiol, vol.285, pp.1797-1818, 2003.

H. K. Eltzschig, Adenosine: an old drug newly discovered, Anesthesiology, vol.111, pp.904-915, 2009.

M. V. Cohen and J. M. Downey, Adenosine: trigger and mediator of cardioprotection, Basic Res Cardiol, vol.103, pp.203-215, 2008.

R. A. Kloner, M. B. Forman, R. J. Gibbons, and A. M. Ross, Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial, Eur Heart J, vol.27, pp.2400-2405, 2006.

A. M. Ross, R. J. Gibbons, G. W. Stone, and R. A. Kloner, A randomized, double-blinded, placebocontrolled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II), J Am Coll Cardiol, vol.45, pp.1775-1780, 2005.

J. Wang, Y. D. Chen, G. Zhi, and Y. Xu, Beneficial effect of adenosine on myocardial perfusion in patients treated with primary percutaneous coronary intervention for acute myocardial infarction, Clin Exp Pharmacol Physiol, vol.39, pp.247-252, 2012.

H. Takahama, T. Minamino, H. Asanuma, and M. Fujita, Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats, J Am Coll Cardiol, vol.53, pp.709-717, 2009.

M. Galagudza, D. Korolev, V. Postnov, and E. Naumisheva, Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles, Int J Nanomedicine, vol.7, pp.1671-1678, 2012.

A. Nemmar, S. Albarwani, S. Beegam, and P. Yuvaraju, Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation, Int J Nanomedicine, vol.9, pp.2779-2789, 2014.

C. Guo, Y. Xia, P. Niu, and L. Jiang, Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling, Int J Nanomedicine, vol.10, pp.1463-1477, 2015.

S. Masuda, K. Nakano, K. Funakoshi, and G. Zhao, Imatinib mesylate-incorporated nanoparticleeluting stent attenuates in-stent neointimal formation in porcine coronary arteries, J Atheroscler Thromb, vol.18, pp.1043-1053, 2011.

N. Tsukie, K. Nakano, T. Matoba, and S. Masuda, Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model, J Atheroscler Thromb, vol.20, pp.32-45, 2013.

J. Margolis, J. Mcdonald, R. Heuser, and P. Klinke, Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis I (SNAPIST-I): a first-in-human safety and dose-finding study, Clin Cardiol, vol.30, pp.165-170, 2007.

G. Mcdowell, M. Slevin, and J. Krupinski, Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective, Vasc Cell, vol.3, 2011.

R. X. Yin, D. Z. Yang, and J. Z. Wu, Nanoparticle drug-and gene-eluting stents for the prevention and treatment of coronary restenosis, Theranostics, vol.4, pp.175-200, 2014.

K. M. Lekshmi, H. L. Che, C. S. Cho, and I. K. Park, Drug-and Gene-eluting Stents for Preventing Coronary Restenosis, Chonnam Med J, vol.53, pp.14-27, 2017.

A. Mozid, C. Yeo, S. Arnous, and E. Ako, Safety and feasibility of intramyocardial versus intracoronary delivery of autologous cell therapy in advanced heart failure: the REGENERATE-IHD pilot study, Regen Med, vol.9, pp.269-278, 2014.

J. H. Houtgraaf, W. K. Dekker, B. M. Van-dalen, and T. Springeling, First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction, J Am Coll Cardiol, vol.59, pp.539-540, 2012.

B. Assmus, V. Schachinger, C. Teupe, and M. Britten, Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI), Circulation, vol.106, pp.3009-3017, 2002.

X. Gu, Y. Xie, J. Gu, and L. Sun, Repeated intracoronary infusion of peripheral blood stem cells with G-CSF in patients with refractory ischemic heart failure--a pilot study, Circ J, vol.75, pp.955-963, 2011.

R. R. Makkar, R. R. Smith, K. Cheng, and K. Malliaras, Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial, Lancet, vol.379, pp.895-904, 2012.

L. Ye, H. Haider, C. Guo, and E. K. Sim, Cell-based VEGF delivery prevents donor cell apoptosis after transplantation, Ann Thorac Surg, vol.83, pp.1233-1234, 2007.

C. J. Teng, J. Luo, R. C. Chiu, and D. Shum-tim, Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty, J Thorac Cardiovasc Surg, vol.132, pp.628-632, 2006.

J. Terrovitis, R. Lautamaki, M. Bonios, and J. Fox, Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery, J Am Coll Cardiol, vol.54, pp.1619-1626, 2009.

W. J. Kang, H. J. Kang, H. S. Kim, and J. K. Chung, Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction, J Nucl Med, vol.47, pp.1295-1301, 2006.

A. C. Vandergriff, T. M. Hensley, E. T. Henry, and D. Shen, Magnetic targeting of cardiospherederived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction, Biomaterials, vol.35, pp.8528-8539, 2014.

J. Cores, T. G. Caranasos, and K. Cheng, Magnetically Targeted Stem Cell Delivery for Regenerative Medicine, J Funct Biomater, vol.6, pp.526-546, 2015.

Y. Amsalem, Y. Mardor, M. S. Feinberg, and N. Landa, Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium, Circulation, vol.116, pp.38-45, 2007.

Z. Huang, Y. Shen, A. Sun, and G. Huang, Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction, Stem Cell Res Ther, vol.4, p.149, 2013.

A. Chaudeurge, C. Wilhelm, A. Chen-tournoux, and P. Farahmand, Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention?, Cell Transplant, vol.21, pp.679-691, 2012.

Y. J. Kim, Y. M. Huh, K. O. Choe, and B. W. Choi, In vivo magnetic resonance imaging of injected mesenchymal stem cells in rat myocardial infarction; simultaneous cell tracking and left ventricular function measurement, Int J Cardiovasc Imaging, vol.25, issue.1, pp.99-109, 2009.

E. Kustermann, W. Roell, M. Breitbach, and S. Wecker, Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation, NMR Biomed, vol.18, pp.362-370, 2005.

J. Terrovitis, M. Stuber, A. Youssef, and S. Preece, Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart, Circulation, vol.117, pp.1555-1562, 2008.

I. Y. Chen, J. M. Greve, O. Gheysens, and J. K. Willmann, Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation, Mol Imaging Biol, vol.11, pp.178-187, 2009.

M. Mahmoudi, A. Tachibana, A. B. Goldstone, and Y. J. Woo, Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes, Sci Rep, vol.6, p.26960, 2016.

K. Cheng, T. S. Li, K. Malliaras, and D. R. Davis, Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction, Circ Res, vol.106, pp.1570-1581, 2010.

K. Cheng, K. Malliaras, T. S. Li, and B. Sun, Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion, Cell Transplant, vol.21, pp.1121-1135, 2012.

K. Cheng, D. Shen, M. T. Hensley, and R. Middleton, Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting, Nat Commun, vol.5, p.4880, 2014.

Q. L. Wang, H. J. Wang, Z. H. Li, and Y. L. Wang, Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium, J Cell Mol Med, 2017.

M. E. Davis, P. C. Hsieh, T. Takahashi, and Q. Song, Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction, Proc Natl Acad Sci U S A, vol.103, pp.8155-8160, 2006.

Y. D. Lin, M. L. Yeh, Y. J. Yang, and D. C. Tsai, Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs, Circulation, vol.122, pp.132-141, 2010.

K. Wei, V. Serpooshan, C. Hurtado, and M. Diez-cunado, Epicardial FSTL1 reconstitution regenerates the adult mammalian heart, Nature, vol.525, pp.479-485, 2015.

D. Castellano, M. Blanes, B. Marco, and I. Cerrada, A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair, Stem Cells Dev, vol.23, pp.1479-1490, 2014.

K. L. Fujimoto, J. Guan, H. Oshima, and T. Sakai, In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures, Ann Thorac Surg, vol.83, pp.648-654, 2007.

J. Jin, S. I. Jeong, Y. M. Shin, and K. S. Lim, Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model, Eur J Heart Fail, vol.11, pp.147-153, 2009.

D. Kai, Q. L. Wang, H. J. Wang, and M. P. Prabhakaran, Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model, Acta Biomater, vol.10, pp.2727-2738, 2014.

H. Piao, J. S. Kwon, S. Piao, and J. H. Sohn, Effects of cardiac patches engineered with bone marrowderived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model, Biomaterials, vol.28, pp.641-649, 2007.

T. Dvir, B. P. Timko, M. D. Brigham, and S. R. Naik, Nanowired three-dimensional cardiac patches, Nat Nanotechnol, vol.6, pp.720-725, 2011.

M. Shevach, S. Fleischer, A. Shapira, and T. Dvir, Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering, Nano Lett, vol.14, pp.5792-5796, 2014.

P. Baei, S. Jalili-firoozinezhad, S. Rajabi-zeleti, and M. Tafazzoli-shadpour, Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering, Mater Sci Eng C Mater Biol Appl, vol.63, pp.131-141, 2016.

R. Feiner, L. Engel, S. Fleischer, and M. Malki, Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function, Nat Mater, vol.15, pp.679-685, 2016.

M. M. Nguyen, N. C. Gianneschi, and K. L. Christman, Developing injectable nanomaterials to repair the heart, Curr Opin Biotechnol, vol.34, pp.225-231, 2015.

J. Han, J. Park, and B. S. Kim, Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction, Adv Drug Deliv Rev, vol.95, pp.15-28, 2015.

S. Pascual-gil, E. Garbayo, P. Diaz-herraez, and F. Prosper, Heart regeneration after myocardial infarction using synthetic biomaterials, J Control Release, vol.203, pp.23-38, 2015.

R. Amezcua, A. Shirolkar, C. Fraze, and D. A. Stout, , 2016.

J. J. Chong and C. E. Murry, Cardiac regeneration using pluripotent stem cells--progression to large animal models, Stem Cell Res, vol.13, pp.654-665, 2014.

F. M. Van-der, D. F. Valk, M. E. Van-wijk, H. J. Lobatto, and . Verberne, Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration, Nanomedicine, vol.11, pp.1039-1046, 2015.

D. J. Lundy, K. H. Chen, E. K. Toh, and P. C. Hsieh, Distribution of Systemically Administered Nanoparticles Reveals a Size-Dependent Effect Immediately following Cardiac Ischaemia-Reperfusion Injury, Sci Rep, vol.6, p.25613, 2016.

J. Szebeni, Complement activation-related pseudoallergy caused by liposomes, micellar carriers of intravenous drugs, and radiocontrast agents, Crit Rev Ther Drug Carrier Syst, vol.18, pp.567-606, 2001.

J. Szebeni, Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity, Toxicology, vol.216, pp.106-121, 2005.

U. Bulbake, S. Doppalapudi, N. Kommineni, and W. Khan, Liposomal Formulations in Clinical Use: An Updated Review, Pharmaceutics, vol.9, 2017.

H. B. Bostan, R. Rezaee, M. G. Valokala, and K. Tsarouhas, Cardiotoxicity of nano-particles, Life Sci, vol.165, pp.91-99, 2016.

C. E. Guerrero-beltran, J. Bernal-ramirez, O. Lozano, and Y. Oropeza-almazan, Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes, Am J Physiol Heart Circ Physiol, vol.312, pp.645-661, 2017.

A. Gaudin, M. Yemisci, H. Eroglu, and S. Lepetre-mouelhi, Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nat Nanotechnol, vol.9, pp.1054-1062, 2014.

A. Maksimenko, F. Dosio, J. Mougin, and A. Ferrero, A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity, Proc Natl Acad Sci U S A, vol.111, pp.217-226, 2014.

H. Gomez, C. Ince, D. De, P. Backer, and . Pickkers, A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury, Shock, vol.41, p.3, 2014.

F. Dormont, M. Varna, and P. Couvreur, Nanoplumbers: biomaterials to fight cardiovascular diseases. Materials Today, vol.21, pp.122-143, 2018.

R. B. Goodman, J. Pugin, J. S. Lee, and M. A. Matthay, Cytokine-mediated inflammation in acute lung injury, Cytokine & growth factor reviews, vol.14, pp.523-535, 2003.

T. Van-der-poll, F. L. Van-de, B. P. Veerdonk, M. G. Scicluna, and . Netea, The immunopathology of sepsis and potential therapeutic targets, Nature Reviews Immunology, vol.17, p.407, 2017.

C. A. Prauchner, Oxidative stress in sepsis: pathophysiological implications justifying antioxidant cotherapy, Burns, vol.43, pp.471-485, 2017.

S. K. Biswas, Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative medicine and cellular longevity, 2016.

J. Lugrin, N. Rosenblatt-velin, R. Parapanov, and L. Liaudet, The role of oxidative stress during inflammatory processes, Biological chemistry, vol.395, pp.203-230, 2014.

A. Dandekar, R. Mendez, and K. Zhang, Cross talk between ER stress, oxidative stress, and inflammation in health and disease, Stress Responses, pp.205-214, 2015.

B. Gibbison, J. A. López-lópez, J. P. Higgins, and T. Miller, Corticosteroids in septic shock: a systematic review and network meta-analysis, Critical Care, vol.21, p.78, 2017.

B. N. Cronstein and G. Haskó, Regulation of inflammation by adenosine, Frontiers in immunology, vol.4, p.85, 2013.

G. Hasko, C. Szabó, Z. H. Németh, and V. Kvetan, Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice, The Journal of Immunology, vol.157, pp.4634-4640, 1996.

U. Söderbäck, A. Sollevi, and B. Fredholm, The disappearance of adenosine from blood and platelet suspension in relation to the platelet cyclic AMP content, Acta physiologica scandinavica, vol.129, pp.189-194, 1987.

L. Belardinelli, J. Linden, and R. M. Berne, The cardiac effects of adenosine, Progress in cardiovascular diseases, vol.32, pp.73-97, 1989.

H. Mangge, K. Becker, D. Fuchs, and J. M. Gostner, Antioxidants, inflammation and cardiovascular disease, World journal of cardiology, vol.6, p.462, 2014.

H. F. Goode, H. C. Cowley, B. E. Walker, and P. D. Howdle, Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction, Critical care medicine, vol.23, pp.646-651, 1995.

M. M. Berger and R. L. Chioléro, Antioxidant supplementation in sepsis and systemic inflammatory response syndrome, Critical care medicine, vol.35, pp.584-590, 2007.

E. Borrelli, P. Roux-lombard, G. E. Grau, and E. Girardin, Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk, Critical care medicine, vol.24, pp.392-397, 1996.

M. É. Andrades, A. Morina, S. Spasi?, and I. Spasojevi?, Bench-to-bedside review: sepsis-from the redox point of view, Critical Care, vol.15, p.230, 2011.

P. E. Marik, V. Khangoora, R. Rivera, and M. H. Hooper, Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study, Chest, vol.151, pp.1229-1238, 2017.

N. Lane, A unifying view of ageing and disease: the double-agent theory, Journal of Theoretical Biology, vol.225, pp.531-540, 2003.

F. Dormont, M. Rouquette, C. Mahatsekake, and F. Gobeaux, Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles, Journal of Controlled Release, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02294923

B. Shrum, R. V. Anantha, S. X. Xu, and M. Donnelly, A robust scoring system to evaluate sepsis severity in an animal model, BMC research notes, vol.7, p.233, 2014.

D. Desmaële, R. Gref, and P. Couvreur, Squalenoylation: a generic platform for nanoparticular drug delivery, Journal of controlled release, vol.161, pp.609-618, 2012.

H. Esterbauer, M. Dieber-rotheneder, G. Striegl, and G. Waeg, Role of vitamin E in preventing the oxidation of low-density lipoprotein. The American journal of clinical nutrition, vol.53, p.25, 1991.

L. Hakanpaa, E. A. Kiss, G. Jacquemet, and I. Miinalainen, Targeting ?1-integrin inhibits vascular leakage in endotoxemia, Proceedings of the National Academy of Sciences, vol.115, p.26, 2018.

E. A. Azzopardi, E. L. Ferguson, and D. W. Thomas, The enhanced permeability retention effect: a new paradigm for drug targeting in infection, Journal of Antimicrobial Chemotherapy, vol.68, p.27, 2012.

B. Halliwell and J. M. Gutteridge, Free radicals in biology and medicine, 2015.

A. Gaudin, O. Tagit, D. Sobot, and S. Lepetre-mouelhi, Transport mechanisms of squalenoyladenosine nanoparticles across the blood-brain barrier, Chemistry of Materials, vol.27, pp.3636-3647, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02399979

H. F. Galley, Bench-to-bedside review: targeting antioxidants to mitochondria in sepsis, Critical care, vol.14, p.230, 2010.

M. Rouquette, S. Lepetre-mouelhi, O. Dufrançais, and X. Yang, Squalene-adenosine nanoparticles: ligands of adenosine receptors or adenosine prodrug?, Journal of Pharmacology and Experimental Therapeutics, vol.369, pp.144-151, 2019.

D. J. Wadleigh, S. T. Reddy, E. Kopp, and S. Ghosh, Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages, Journal of Biological Chemistry, vol.275, pp.6259-6266, 2000.

A. T. Jacobs and L. J. Ignarro, Lipopolysaccharide-induced expression of interferon-? mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages, Journal of Biological Chemistry, vol.276, pp.47950-47957, 2001.

R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, Nitric oxide production and signaling in inflammation, Current Drug Targets-Inflammation & Allergy, vol.4, pp.471-479, 2005.

R. Paoletti, A. M. Gotto, and D. P. Hajjar, Inflammation in atherosclerosis and implications for therapy, Circulation, vol.109, 2004.

N. Kamaly, G. Fredman, J. J. Fojas, and M. Subramanian, Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis, ACS nano, vol.10, pp.5280-5292, 2016.

P. M. Winter, A. M. Morawski, S. D. Caruthers, and R. W. Fuhrhop, Molecular imaging of angiogenesis in early-stage atherosclerosis with ?v?3-integrin-targeted nanoparticles, vol.108, pp.2270-2274, 2003.

G. Fredman, N. Kamaly, S. Spolitu, and J. Milton, Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice, Science translational medicine, vol.7, pp.275-220, 2015.

M. E. Lobatto, C. Calcagno, A. Millon, and M. L. Senders, Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging, ACS nano, vol.9, pp.1837-1847, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850477

J. C. Frias, K. J. Williams, E. A. Fisher, and Z. A. Fayad, Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques, Journal of the American Chemical Society, vol.126, pp.16316-16317, 2004.

M. E. Lobatto, V. Fuster, Z. A. Fayad, and W. J. Mulder, Perspectives and opportunities for nanomedicine in the management of atherosclerosis, Nature Reviews Drug Discovery, vol.10, p.835, 2011.

B. L. Sanchez-gaytan, F. Fay, M. E. Lobatto, and J. Tang, HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages, Bioconjugate chemistry, vol.26, pp.443-451, 2015.

M. F. Linton, P. G. Yancey, S. S. Davies, and W. G. Jerome, The role of lipids and lipoproteins in atherosclerosis, 2019.

D. Sobot, S. Mura, S. O. Yesylevskyy, and L. Dalbin, Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery, Nature communications, vol.8, p.15678, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666114

D. Sobot, S. Mura, M. Rouquette, and B. Vukosavljevic, Circulating lipoproteins: a Trojan horse guiding squalenoylated drugs to LDL-accumulating cancer cells, Molecular Therapy, vol.25, pp.1596-1605, 2017.

J. Kzhyshkowska, C. Neyen, and S. Gordon, Role of macrophage scavenger receptors in atherosclerosis, Immunobiology, vol.217, pp.492-502, 2012.

A. S. Plump, J. D. Smith, T. Hayek, and K. Aalto-setälä, Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells, Cell, vol.71, pp.343-353, 1992.

Y. Nakashima, A. S. Plump, E. W. Raines, and J. L. Breslow, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and thrombosis: a journal of vascular biology, vol.14, pp.133-140, 1994.

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature materials, vol.12, p.991, 2013.

A. Kakkar, G. Traverso, O. C. Farokhzad, and R. Weissleder, Evolution of macromolecular complexity in drug delivery systems, Nature Reviews Chemistry, vol.1, p.63, 2017.

V. J. Venditto and F. C. Szoka, Cancer nanomedicines: so many papers and so few drugs! Advanced drug delivery reviews, vol.65, pp.80-88, 2013.

J. Coty and C. Vauthier, Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success, Journal of controlled release, 2018.

J. Seiffert, F. Hussain, C. Wiegman, and F. Li, Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain, PloS one, vol.10, p.119726, 2015.

H. Wang, Z. Zuo, J. Du, and Y. Wang, Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines, Nano Today, vol.11, pp.133-144, 2016.

S. Qin, Y. Cheng, Z. Jiang, and Y. Ma, Morphology control of self-deliverable nanodrug with enhanced anticancer efficiency, Colloids and Surfaces B: Biointerfaces, vol.165, pp.345-354, 2018.

S. T. Stern, J. B. Hall, L. Y. Lee, and L. J. Wood, Translational considerations for cancer nanomedicine, Journal of Controlled Release, vol.146, pp.164-174, 2010.

N. Bertrand, P. Grenier, M. Mahmoudi, and E. M. Lima, Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics, Nature communications, vol.8, p.777, 2017.

R. N. Mamidi, S. Weng, S. Stellar, and C. Wang, Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products? Cancer chemotherapy and pharmacology, vol.66, pp.1173-1184, 2010.

H. Ragelle, F. Danhier, V. Préat, and R. Langer, Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures, Expert opinion on drug delivery, vol.14, pp.851-864, 2017.

R. M. Crist, J. H. Grossman, A. K. Patri, and S. T. Stern, Common pitfalls in nanotechnology: lessons learned from NCI's Nanotechnology Characterization Laboratory, Integrative Biology, vol.5, p.13, 2012.

D. Desmaële, R. Gref, and P. Couvreur, Squalenoylation: a generic platform for nanoparticular drug delivery, Journal of controlled release, vol.161, pp.609-618, 2012.

E. Lepeltier, B. Loretz, D. Desmae?le, and J. Zapp, Squalenoylation of chitosan: a platform for drug delivery?, Biomacromolecules, vol.16, pp.2930-2939, 2015.

P. Couvreur, Squalenoylation: a novel technology for anticancer and antibiotic drugs with enhanced activity, Nanosciences and Nanotechnology, pp.253-272, 2016.

L. H. Reddy, H. Khouri, A. Paci, and A. Deroussent, Squalenoylation favourably modifies the in vivo pharmacokinetics and biodistribution of gemcitabine in mice, Drug Metabolism and Disposition, 2008.

A. Maksimenko, J. Mougin, S. Mura, and E. Sliwinski, Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer letters, vol.334, pp.346-353, 2013.

A. Gaudin, M. Yemisci, H. Eroglu, and S. Lepetre-mouelhi, Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nature nanotechnology, vol.9, p.1054, 2014.

J. Feng, S. Lepetre-mouelhi, A. Gautier, and S. Mura, A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine, Science Advances, vol.5, p.5148, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02463466

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, nature, vol.227, p.680, 1970.

E. Van-tamelen and T. Curphey, The selective in vitro oxidation of the terminal double bonds in squalene, Tetrahedron Letters, vol.3, pp.121-124, 1962.

M. Ceruti, F. Viola, F. Dosio, and L. Cattel, Stereospecific synthesis of squalenoid epoxide vinyl ethers as inhibitors of 2, 3-oxidosqualene cyclase, Journal of the Chemical Society, vol.1, pp.461-469, 1988.

J. L. Abad, J. Casas, F. Sanchez-baeza, and A. Messeguer, Dioxidosqualenes: characterization and activity as inhibitors of 2, 3-oxidosqualene-lanosterol cyclase, The Journal of Organic Chemistry, vol.58, pp.3991-3997, 1993.

W. S. Johnson, L. Werthemann, W. R. Bartlett, and T. J. Brocksom, Simple stereoselective version of the Claisen rearrangement leading to trans-trisubstituted olefinic bonds. Synthesis of squalene, Journal of the American Chemical Society, vol.92, pp.741-743, 1970.

E. Buchy, S. Valetti, S. Mura, and J. Mougin, Synthesis and Cytotoxic Activity of Self-Assembling Squalene Conjugates of 3-[(Pyrrol-2-yl) methylidene]-2, 3-dihydro-1H-indol-2-one Anticancer Agents, European Journal of Organic Chemistry, pp.202-212, 2015.

S. M. Schrier, E. W. Van-tilburg, H. Van-der-meulen, and A. P. Ijzerman, Extracellular adenosineinduced apoptosis in mouse neuroblastoma cells studies on involvement of adenosine receptors and adenosine uptake1, Biochemical pharmacology, vol.61, pp.417-425, 2001.

M. F. Ethier, V. Chander, and J. G. Dobson, Adenosine stimulates proliferation of human endothelial cells in culture, American Journal of Physiology-Heart and Circulatory Physiology, vol.265, pp.131-138, 1993.

P. Fishman, S. Bar-yehuda, and L. Vagman, Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer research, vol.58, pp.3181-3187, 1998.

V. Shneyvays, K. Jacobson, A. Li, and H. Nawrath, Induction of apoptosis in rat cardiocytes by A3 adenosine receptor activation and its suppression by isoproterenol, Experimental cell research, vol.257, pp.111-126, 2000.

Y. Kohno, Y. Sei, M. Koshiba, and H. O. Kim, Induction of Apoptosis in HL-60 Human Promyelocytic Leukemia Cells by Adenosine A3Receptor Agonists. Biochemical and biophysical research communications, vol.219, pp.904-910, 1996.

S. Bès, B. Ponsard, M. E. Asri, and C. Tissier, Assessment of the cytoprotective role of adenosine in an in vitro cellular model of myocardial ischemia, European journal of pharmacology, vol.452, pp.145-154, 2002.

V. Ramkumar, D. M. Hallam, and Z. Nie, Adenosine, oxidative stress and cytoprotection, The Japanese Journal of Pharmacology, vol.86, pp.265-274, 2001.

J. Barankiewicz, A. M. Danks, E. Abushanab, and L. Makings, Regulation of adenosine concentration and cytoprotective effects of novel reversible adenosine deaminase inhibitors, Journal of Pharmacology and Experimental Therapeutics, vol.283, pp.1230-1238, 1997.

K. A. Jacobson, Adenosine A3 receptors: novel ligands and paradoxical effects, Trends in pharmacological sciences, vol.19, pp.184-191, 1998.

T. Imura and S. Shimohama, Opposing effects of adenosine on the survival of glial cells exposed to chemical ischemia, Journal of neuroscience research, vol.62, pp.539-546, 2000.

M. Rouquette, S. Lepetre-mouelhi, O. Dufrancais, and X. Yang, Squalene-adenosine nanoparticles: ligands of adenosine receptors or adenosine prodrug? The Journal of pharmacology and experimental therapeutics, 2019.

M. P. Monopoli, C. Åberg, A. Salvati, and K. A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials, Nature nanotechnology, vol.7, p.779, 2012.

P. Grenier, I. M. De-oliveira, E. M. Viana, N. Lima, and . Bertrand, Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo, Journal of controlled release, vol.287, pp.121-131, 2018.

C. D. Walkey, J. B. Olsen, F. Song, and R. Liu, Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles, ACS nano, vol.8, pp.2439-2455, 2014.

A. Bigdeli, S. Palchetti, D. Pozzi, and M. R. Hormozi-nezhad, Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties, ACS nano, vol.10, pp.3723-3737, 2016.

R. Liu, W. Jiang, C. D. Walkey, and W. C. Chan, Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties, Nanoscale, vol.7, pp.9664-9675, 2015.

R. Hauptfleisch and B. Franck, Stereoselective syntheses of 1, 24-dihydroxy squalene 2, 3; 22, 23-dioxides by double sharpless epoxidation, Tetrahedron letters, vol.38, pp.383-386, 1997.

T. Hoshino, S. Nakano, T. Kondo, and T. Sato, Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3 R, S)-2, 3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring, Organic & biomolecular chemistry, vol.2, pp.1456-1470, 2004.

A. Peramo, S. Mura, S. O. Yesylevskyy, and B. Cardey, Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?, Comptes Rendus Chimie, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349745

D. Sobot, S. Mura, S. O. Yesylevskyy, and L. Dalbin, Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery, Nature communications, vol.8, p.15678, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666114

A. Gaudin, O. Tagit, D. Sobot, and S. Lepetre-mouelhi, Transport mechanisms of squalenoyladenosine nanoparticles across the blood-brain barrier, Chemistry of Materials, vol.27, pp.3636-3647, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02399979

A. P. Leonov, J. Zheng, J. D. Clogston, and S. T. Stern, Detoxification of gold nanorods by treatment with polystyrenesulfonate, ACS nano, vol.2, pp.2481-2488, 2008.

J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, Controlled release of biologically active silver from nanosilver surfaces, ACS nano, vol.4, pp.6903-6913, 2010.

S. Zhu, E. Oberdörster, and M. L. Haasch, Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow, Marine Environmental Research, vol.62, p.50, 2006.

R. Cortesi, E. Esposito, E. Menegatti, and R. Gambari, Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA, International Journal of Pharmaceutics, vol.139, pp.69-78, 1996.

E. Oberdörster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environmental health perspectives, vol.112, p.1058, 2004.

J. C. Leroux, Drug delivery: too much complexity, not enough reproducibility?, Angewandte Chemie International Edition, vol.56, pp.15170-15171, 2017.

M. Davenport, Closing the gap for generic nanomedicines, Chemical Engineering News, vol.92, pp.10-13, 2014.

G. Haskó, B. Csóka, Z. H. Németh, and E. S. Vizi, A2B adenosine receptors in immunity and inflammation, Trends in immunology, vol.30, pp.263-270, 2009.

M. Y. Zuidema and C. Zhang, Ischemia/reperfusion injury: the role of immune cells, World journal of cardiology, vol.2, p.325, 2010.

U. Flögel, S. Burghoff, P. L. Van-lent, and S. Temme, Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis, Science translational medicine, vol.4, pp.146-108, 2012.

K. A. Jacobson and Z. Gao, Adenosine receptors as therapeutic targets, Nature reviews Drug discovery, vol.5, p.247, 2006.

A. Tsuchida, T. Miura, T. Miki, and K. Shimamoto, Role of adenosine receptor activation in myocardial infarct size limitation by ischaemic preconditioning, Cardiovascular research, vol.26, pp.456-461, 1992.

G. Haskó and B. N. Cronstein, Adenosine: an endogenous regulator of innate immunity, Trends in immunology, vol.25, pp.33-39, 2004.

G. Haskó, J. Linden, B. Cronstein, and P. Pacher, Adenosine receptors: therapeutic aspects for inflammatory and immune diseases, Nature reviews Drug discovery, vol.7, p.759, 2008.

I. Biaggioni, J. Onrot, A. S. Hollister, and D. Robertson, Cardiovascular effects of adenosine infusion in man and their modulation by dipyridamole. Life sciences, vol.39, pp.2229-2236, 1986.

S. Ganta and M. Amiji, Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells, Molecular pharmaceutics, vol.6, pp.928-939, 2009.

Y. Patil, T. Sadhukha, L. Ma, and J. Panyam, Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance, Journal of Controlled Release, vol.136, pp.21-29, 2009.

P. E. Marik, V. Khangoora, R. Rivera, and M. H. Hooper, Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study, Chest, vol.151, pp.1229-1238, 2017.

E. J. Lesnefsky, S. Moghaddas, B. Tandler, and J. Kerner, Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure, Journal of molecular and cellular cardiology, vol.33, pp.1065-1089, 2001.

K. A. Kaminski, T. A. Bonda, J. Korecki, and W. J. , Oxidative stress and neutrophil activation-the two keystones of ischemia/reperfusion injury, International journal of cardiology, vol.86, pp.41-59, 2002.

M. A. Daemen, C. Van&apos;t-veer, G. Denecker, and V. H. Heemskerk, Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation, The Journal of clinical investigation, vol.104, pp.541-549, 1999.

C. Szabó, The pathophysiological role of peroxynitrite in shock, inflammation, and ischemiareperfusion injury, Shock, vol.6, pp.79-88, 1996.

J. Li, C. Xie, J. Zhuang, and H. Li, Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-?B signaling pathway, Molecular medicine reports, vol.11, pp.1120-1126, 2015.

D. Verma, T. Levchenko, E. Bernstein, and V. Torchilin, ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model, Journal of controlled release, vol.108, pp.460-471, 2005.

D. Sobot, S. Mura, S. O. Yesylevskyy, and L. Dalbin, Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery, Nature communications, vol.8, p.15678, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666114

D. Sobot, S. Mura, M. Rouquette, and B. Vukosavljevic, Circulating lipoproteins: a Trojan horse guiding squalenoylated drugs to LDL-accumulating cancer cells, Molecular Therapy, vol.25, pp.1596-1605, 2017.

M. F. Linton, P. G. Yancey, S. S. Davies, and W. G. Jerome, The role of lipids and lipoproteins in atherosclerosis, 2019.

R. Ross, Atherosclerosis-an inflammatory disease, New England journal of medicine, vol.340, pp.115-126, 1999.

D. Chu, Q. Zhao, J. Yu, and F. Zhang, Nanoparticle targeting of neutrophils for improved cancer immunotherapy, Advanced healthcare materials, vol.5, pp.1088-1093, 2016.

D. Chu, J. Gao, and Z. Wang, Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection, ACS nano, vol.9, p.24, 2015.

L. Hakanpaa, E. A. Kiss, G. Jacquemet, and I. Miinalainen, Targeting ?1-integrin inhibits vascular leakage in endotoxemia, Proceedings of the National Academy of Sciences, vol.115, p.25, 2018.

W. L. Lee and A. S. Slutsky, Sepsis and endothelial permeability, vol.363, p.689, 2010.

J. Huynh, N. Nishimura, K. Rana, and J. M. Peloquin, Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration, Science translational medicine, vol.3, pp.112-122, 2011.

M. Friedman and S. Byers, Endothelial permeability in atherosclerosis, Arch. Pathol, vol.76, pp.99-105, 1963.