R. Falkner, The paris agreement and the new logic of international climate politics, International Affairs, vol.92, issue.5, pp.1107-1125, 2016.

D. Zhang, The concept of 'community of common destiny'in china's diplomacy: Meaning, motives and implications, Asia & the Pacific Policy Studies, vol.5, issue.2, pp.196-207, 2018.

R. Secretariat, Global status report, REN21 Secretariat, 2018.

G. W. Crabtree and N. S. Lewis, Solar energy conversion, Physics today, vol.60, issue.3, pp.37-42, 2007.

. "renewable-energy,

, Energy Output

J. Starkiewicz, L. Sosnowski, and O. Simpson, Photovoltaic effects exhibited in high-resistance semi-conducting films, Nature, vol.158, issue.4001, p.28, 1946.

A. Harb, Energy harvesting: State-of-the-art, Renewable Energy, vol.36, issue.10, pp.2641-2654, 2011.

C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, issue.156, pp.465-472, 1883.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, vol.2, issue.5, p.17032, 2017.

F. Schindler, B. Michl, P. Krenckel, S. Riepe, J. Benick et al., Optimized multicrystalline silicon for solar cells enabling conversion efficiencies of 22%, Solar Energy Materials and Solar Cells, vol.171, pp.180-186, 2017.

M. Stuckelberger, R. Biron, N. Wyrsch, F. Haug, and C. Ballif, Progress in solar cells from hydrogenated amorphous silicon, Renewable and Sustainable Energy Reviews, vol.76, pp.1497-1523, 2017.

Y. Miyamoto and M. Hirata, Role of agents in filamentary growth of amorphous silicon, Japanese Journal of Applied Physics, vol.15, issue.6, p.1159, 1976.

V. Schmidt, S. Senz1, and U. Gösele1, UHV chemical vapour deposition of silicon nanowires, Zeitschrift für Metallkunde, vol.96, issue.5, pp.427-428, 2005.

L. Yu, F. Fortuna, B. O'donnell, T. Jeon, M. Foldyna et al., Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells, Nano letters, vol.12, issue.8, pp.4153-4158, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757353

V. Schmidt, J. V. Wittemann, S. Senz, and U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties, Advanced Materials, vol.21, pp.2681-2702, 2009.

T. B. Massalski and J. Murray, Binary phase diagrams, 1990.

C. D. Thurmond, Equilibrium thermochemistry of solid and liquid alloys of germanium and of silicon. i. the solubility of ge and si in elements of groups iii, iv and v, The Journal of Physical Chemistry, vol.57, issue.8, pp.827-830, 1953.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima et al., Silicon nanowire solar cells, Applied Physics Letters, vol.91, issue.23, p.233117, 2007.

C. E. Kendrick, H. P. Yoon, Y. A. Yuwen, G. D. Barber, H. Shen et al.,

J. M. Mayer and . Redwing, Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth, Applied Physics Letters, vol.97, issue.14, p.143108, 2010.

L. Yu, B. O'donnell, P. Alet, and P. R. Cabarrocas, All-in-situ fabrication and characterization of silicon nanowires on tco/glass substrates for photovoltaic application, Solar Energy Materials and Solar Cells, vol.94, issue.11, pp.1855-1859, 2010.

C. Y. Kuo, C. Gau, and B. T. Dai, Photovoltaic characteristics of silicon nanowire arrays synthesized by vapor-liquid-solid process, Solar Energy Materials and Solar Cells, vol.95, issue.1, pp.154-157, 2011.

Q. Peng and Y. Qin, Zno nanowires and their application for solar cells, Nanowires-Implementations and Applications, InTech, 2011. indium catalysts, vol.20, p.225604, 2009.

J. Tang, J. Maurice, F. Fossard, I. Florea, W. Chen et al., Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by a plasma-assisted vapour-liquid-solid method, Nanoscale, vol.9, issue.24, pp.8113-8118, 2017.

M. Amato, T. Kaewmaraya, A. Zobelli, M. Palummo, and R. Rurali, Crystal phase effects in si nanowire polytypes and their homojunctions, Nano letters, vol.16, issue.9, pp.5694-5700, 2016.

L. Yu, P. Alet, G. Picardi, I. Maurin, and P. R. Cabarrocas, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on sno2 substrates, Nanotechnology, vol.19, issue.48, p.485605, 2008.

P. Alet, L. Yu, G. Patriarche, S. Palacin, and P. R. Cabarrocas, In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ito, Journal of Materials Chemistry, vol.18, issue.43, pp.5187-5189, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056562

M. Al-ghzaiwat, M. Foldyna, T. Fuyuki, W. Chen, E. V. Johnson et al., Large area radial junction silicon nanowire solar mini-modules, Scientific reports, vol.8, issue.1, p.1651, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908687

M. Al-ghzaiwat, Fabrication and study of solar cell modules based on silicon nanowire based radial junction solar cells, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01980182

L. Yu, B. O'donnell, M. Foldyna, and P. R. Cabarrocas, Radial junction amorphous silicon solar cells on pecvd-grown silicon nanowires, Nanotechnology, vol.23, issue.19, p.194011, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757361

S. Misra, L. Yu, W. Chen, and P. Roca-i-cabarrocas, Wetting layer: the key player in plasmaassisted silicon nanowire growth mediated by tin, The Journal of Physical Chemistry C, vol.117, issue.34, pp.17786-17790, 2013.

K. Suematsu, Y. Shin, Z. Hua, K. Yoshida, M. Yuasa et al., Nanoparticle cluster gas sensor: controlled clustering of sno2 nanoparticles for highly sensitive toluene detection, ACS applied materials & interfaces, vol.6, issue.7, pp.5319-5326, 2014.

E. Leite, T. Giraldi, F. Pontes, E. Longo, A. Beltran et al., Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Applied Physics Letters, vol.83, issue.8, pp.1566-1568, 2003.

H. A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille et al.,

T. Boilot and . Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films, ACS applied materials & interfaces, vol.1, issue.12, pp.2738-2746, 2009.
URL : https://hal.archives-ouvertes.fr/cea-01807224

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard et al., Plasmoninduced modification of fluorescent thin film emission nearby gold nanoparticle monolayers, Langmuir, vol.26, issue.11, pp.8842-8849, 2010.

K. Sabat, P. Rajput, R. Paramguru, B. Bhoi, and B. Mishra, Reduction of oxide minerals by hydrogen plasma: an overview, Plasma Chemistry and Plasma Processing, vol.34, pp.1-23, 2014.

Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui et al., Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization, Journal of Magnetism and Magnetic Materials, vol.320, issue.19, pp.2350-2355, 2008.

M. Elimelech, J. Gregory, and X. Jia, Particle deposition and aggregation: measurement, modelling and simulation, 2013.

Y. Sun, X. Li, W. Zhang, and H. P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.308, issue.1-3, pp.60-66, 2007.

J. Jiang, G. Oberdörster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, vol.11, issue.1, pp.77-89, 2009.

M. Kosmulski, Compilation of pzc and iep of sparingly soluble metal oxides and hydroxides from literature, Advances in colloid and interface science, vol.152, issue.1-2, pp.14-25, 2009.

S. Zhan, D. Li, S. Liang, X. Chen, and X. Li, A novel flexible room temperature ethanol gas sensor based on sno2 doped poly-diallyldimethylammonium chloride, Sensors, vol.13, issue.4, pp.4378-4389, 2013.

T. Laaksonen, P. Ahonen, C. Johans, and K. Kontturi, Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size, ChemPhysChem, vol.7, issue.10, pp.2143-2149, 2006.

V. Salgueiriño-maceira, L. M. Liz-marzán, and M. Farle, Water-based ferrofluids from fe x pt1-x nanoparticles synthesized in organic media, Langmuir, vol.20, issue.16, pp.6946-6950, 2004.

P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles, Langmuir, vol.15, issue.6, pp.1945-1951, 1999.

L. Babes, B. Denizot, G. Tanguy, J. J. Le-jeune, and P. Jallet, Synthesis of iron oxide nanoparticles used as mri contrast agents: a parametric study, Journal of colloid and interface science, vol.212, issue.2, pp.474-482, 1999.

S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard et al., Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants, Langmuir, vol.17, issue.10, pp.2900-2906, 2001.

Z. Arslan, M. Ates, W. Mcduffy, M. S. Agachan, I. O. Farah et al., Probing metabolic stability of cdse nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to cdse nanoparticles, Journal of hazardous materials, vol.192, issue.1, pp.192-199, 2011.

, Chr6. zeta potential measurements, 2019.

D. Mootz and R. Seidel, Polyhedral clathrate hydrates of a strong base: phase relations and crystal structures in the system tetramethylammonium hydroxide-water, Journal of inclusion phenomena and molecular recognition in chemistry, vol.8, issue.1-2, pp.139-157, 1990.

M. Filella, J. Zhang, M. E. Newman, and J. Buffle, Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.120, issue.1-3, pp.27-46, 1997.

N. Fahim, Z. Ouyang, Y. Zhang, B. Jia, Z. Shi et al., Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process, Optical Materials Express, vol.2, issue.2, pp.190-204, 2012.

L. Xu, R. G. Karunakaran, J. Guo, and S. Yang, Transparent, superhydrophobic surfaces from onestep spin coating of hydrophobic nanoparticles, ACS applied materials & interfaces, vol.4, issue.2, pp.1118-1125, 2012.

C. J. Brinker, G. Frye, A. Hurd, and C. Ashley, Fundamentals of sol-gel dip coating, Thin solid films, vol.201, issue.1, pp.97-108, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00249179

Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker et al., Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating, Nature, vol.389, issue.6649, p.364, 1997.

D. Meyerhofer, Characteristics of resist films produced by spinning, Journal of Applied Physics, vol.49, issue.7, pp.3993-3997, 1978.

Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. Mannsfeld et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nature communications, vol.5, p.3005, 2014.

Y. Ma, H. Zhang, J. Shen, and C. Che, Electroluminescence from triplet metal-ligand chargetransfer excited state of transition metal complexes, Synthetic Metals, vol.94, issue.3, pp.245-248, 1998.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao et al., Evaluation of solutionprocessed reduced graphene oxide films as transparent conductors, ACS nano, vol.2, issue.3, pp.463-470, 2008.

D. Lu, Y. Zhang, L. Wang, S. Lin, C. Wang et al., Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly (diallyldimethylammonium chloride)-functionalized graphene nanocomposite film, Talanta, vol.88, pp.181-186, 2012.

D. Lu, Y. Zhang, S. Lin, L. Wang, and C. Wang, Sensitive detection of esculetin based on a CdSe nanoparticles-decorated poly (diallyldimethylammonium chloride)-functionalized graphene nanocomposite film, Analyst, vol.136, issue.21, pp.4447-4453, 2011.

L. Dong, X. Zhang, S. Ren, T. Lei, X. Sun et al., Poly (diallyldimethylammonium chloride)-cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing, RSC Advances, vol.6, issue.8, pp.6436-6442, 2016.

L. Yu, M. Shi, X. Yue, and L. Qu, Detection of allura red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode, Sensors and Actuators B: Chemical, vol.225, pp.398-404, 2016.

L. Hong, J. Zhao, Y. Lei, R. Yuan, and Y. Zhuo, Efficient Electrochemiluminescence from Ru (bpy) 32+ Enhanced by Three-Layer Porous Fe3O4@ SnO2@ Au Nanoparticles for Label-Free and Sensitive Bioanalysis, Electrochimica Acta, vol.241, pp.291-298, 2017.

F. Omar, H. A. Aziz, and S. Stoll, Aggregation and disaggregation of zno nanoparticles: Influence of ph and adsorption of suwannee river humic acid, The Science of the total environment, pp.195-201, 2013.

S. Kittaka and T. Morimoto, Isoelectric point of metal oxides and binary metal oxides having spinel structure, Journal of Colloid and Interface Science, vol.75, issue.2, pp.398-403, 1980.

J. Cloarec, C. Chevalier, J. Genest, J. Beauvais, H. Chamas et al., pH driven addressing of silicon nanowires onto si3n4/SiO2micro-patterned surfaces, Nanotechnology, vol.27, p.295602, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01895315

J. Cloarec, C. Chevalier, J. Genest, J. Beauvais, H. Chamas et al., ph driven addressing of silicon nanowires onto si3n4/sio2 micro-patterned surfaces, Nanotechnology, vol.27, issue.29, p.295602, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01895315

A. Degen and M. Kosec, Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution, Journal of the European Ceramic Society, vol.20, issue.6, pp.667-673, 2000.

F. Qu and P. Morais, The pH dependence of the surface charge density in oxide-based semiconductor nanoparticles immersed in aqueous solution, IEEE transactions on magnetics, vol.37, issue.4, pp.2654-2656, 2001.

J. Tang, J. Maurice, W. Chen, S. Misra, M. Foldyna et al., Plasma-assisted growth of silicon nanowires by sn catalyst: step-by-step observation, Nanoscale research letters, vol.11, issue.1, p.455, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401083

J. Lalancette, G. Rollin, and P. Dumas, Metals intercalated in graphite. i. reduction and oxidation, Canadian Journal of Chemistry, vol.50, issue.18, pp.3058-3062, 1972.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes, Nature nanotechnology, vol.7, issue.6, p.394, 2012.

C. Xu, X. Wang, and J. Zhu, Graphene-metal particle nanocomposites, The Journal of Physical Chemistry C, vol.112, issue.50, pp.19-841, 2008.

M. Orlandi, P. Suman, R. Silva, and E. Arlindo, Carbothermal reduction synthesis: an alternative approach to obtain single-crystalline metal oxide nanostructures, Recent Advances in Complex Functional Materials, pp.43-67, 2017.

K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, and S. Lalvani, Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics, Fuel Processing Technology, vol.86, issue.1, pp.33-47, 2004.

J. Wu, A. Gross, and H. Yang, Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent, Nano letters, vol.11, issue.2, pp.798-802, 2011.

J. Dang and K. Chou, A model for the reduction of metal oxides by carbon monoxide, ISIJ International, vol.58, issue.4, pp.585-593, 2018.

G. B. Taylor and H. W. Starkweather, Reduction of metal oxides by hydrogen, Journal of the American Chemical Society, vol.52, issue.6, pp.2314-2325, 1930.

M. Sastri, R. Viswanath, and B. Viswanathan, Studies on the reduction of iron oxide with hydrogen, International Journal of Hydrogen Energy, vol.7, issue.12, pp.951-955, 1982.

W. Jozwiak, E. Kaczmarek, T. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Applied Catalysis A: General, vol.326, issue.1, pp.17-27, 2007.

S. Misra, L. Yu, W. Chen, M. Foldyna, and P. Roca-i-cabarrocas, A review on plasma-assisted vls synthesis of silicon nanowires and radial junction solar cells, Journal of Physics D: Applied Physics, vol.47, issue.39, p.393001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083484

B. Kim, J. Lee, H. Yoon, and S. Kim, Reduction of sno2 with hydrogen, Materials Transactions, vol.52, issue.9, pp.1814-1817, 2011.

J. Wallinga, W. Arnoldbik, A. Vredenberg, R. Schropp, and W. Van-der-weg, Reduction of tin oxide by hydrogen radicals, The Journal of Physical Chemistry B, vol.102, issue.32, pp.6219-6224, 1998.

K. Sabat, P. Rajput, R. Paramguru, B. Bhoi, and B. Mishra, Reduction of oxide minerals by hydrogen plasma: an overview, Plasma Chemistry and Plasma Processing, vol.34, pp.1-23, 2014.

M. Al-ghzaiwat, Fabrication and study of solar cell modules based on silicon nanowire based radial junction solar cells, Ecole Polytechnique, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01980182

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nih image to imagej: 25 years of image analysis, Nature methods, vol.9, issue.7, p.671, 2012.

M. Al-ghzaiwat, M. Foldyna, T. Fuyuki, W. Chen, E. V. Johnson et al., Large area radial junction silicon nanowire solar mini-modules, Scientific reports, vol.8, issue.1, p.1651, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908687

L. Yu, B. O'donnell, P. Alet, S. Conesa-boj, F. Peiro et al., Plasmaenhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts, Nanotechnology, vol.20, issue.22, p.225604, 2009.

R. Olesinski and G. Abbaschian, The si-sn (silicon-tin) system, Journal of Phase Equilibria, vol.5, issue.3, pp.273-276, 1984.

R. Puglisi, G. Mannino, S. Scalese, A. L. Magna, and V. Privitera, Silicon nanowires obtained by low temperature plasma-based chemical vapor deposition, MRS Online Proceedings Library Archive, vol.1408, 2012.

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, Catalytic decomposition of SiH4 on a hot filament, Thin Solid Films, vol.395, issue.1-2, pp.42-46, 2001.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition, Japanese journal of applied physics, vol.45, issue.10S, p.8388, 2006.

H. Fujiwara, M. Kondo, and A. Matsuda, Depth profiling of silicon-hydrogen bonding modes in amorphous and microcrystalline si: H thin films by real-time infrared spectroscopy and spectroscopic ellipsometry, Journal of applied physics, vol.91, issue.7, pp.4181-4190, 2002.

J. A. Woollam-company, , vol.15, 2019.

S. Misra, L. Yu, M. Foldyna, and P. R. Cabarrocas, High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on vls-grown silicon nanowires, Solar Energy Materials and Solar Cells, vol.118, pp.90-95, 2013.

.. D. Ph and . Dissertation,

J. Tang, From Silicon to Germanium Nanowires: growth processes and solar cell structures, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01531870

J. Tang, J. Maurice, F. Fossard, I. Florea, W. Chen et al., Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by a plasma-assisted vapour-liquid-solid method, Nanoscale, vol.9, issue.24, pp.8113-8118, 2017.

M. Adachi, M. Anantram, and K. Karim, Core-shell silicon nanowire solar cells, Scientific reports, vol.3, p.1546, 2013.

S. Misra, Single and tandem radial junction silicon thin film solar cells based on pecvd grown crystalline silicon nanowire arrays, Ecole Polytechnique, 2015.

, Deltapsi2 software -a platform for HORIBA scientific ellipsometers," (Date last accessed 15, 2019.

N. Shin and M. A. Filler, Controlling silicon nanowire growth direction via surface chemistry, Nano letters, vol.12, issue.6, pp.2865-2870, 2012.

W. Chen, L. Yu, S. Misra, Z. Fan, P. Pareige et al., Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth, Nature communications, vol.5, p.4134, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01230709

V. Schmidt, J. Wittemann, and U. Gosele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chemical reviews, vol.110, issue.1, pp.361-388, 2010.

C. Zhang, X. Miao, P. K. Mohseni, W. Choi, and X. Li, Site-controlled vls growth of planar nanowires: yield and mechanism, Nano letters, vol.14, issue.12, pp.6836-6841, 2014.

J. Tang, J. Maurice, W. Chen, S. Misra, M. Foldyna et al., Plasma-assisted growth of silicon nanowires by sn catalyst: step-by-step observation, Nanoscale research letters, vol.11, issue.1, p.455, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401083

L. Dai, I. Maurin, M. Foldyna, J. Alvarez, W. Wang et al., Tin dioxide nanoparticles as catalyst precursors for plasma-assisted vapor-liquidsolid growth of silicon nanowires with well-controlled density, Nanotechnology, vol.29, issue.43, p.435301, 2018.

S. Misra, Cellules solairesà jonction radialeà base de nanofils de silicium cristallin obtenus par croissance vls assistée par plasma, Ecole Polytechnique, 2015.

J. Sporre, D. Elg, D. Andruczyk, T. Cho, D. N. Ruzic et al., In-situ sn contamination removal by hydrogen plasma, Extreme Ultraviolet (EUV) Lithography III, vol.8322, p.83222, 2012.

.. D. Ph and . Dissertation,

D. Abou-ras, T. Kirchartz, and U. Rau, Advanced characterization techniques for thin film solar cells, 2011.

M. Akagawa and H. Fujiwara, High-precision characterization of textured a-si: H/sno2: F structures by spectroscopic ellipsometry, Journal of Applied Physics, vol.110, issue.7, p.73518, 2011.

B. Fodor, T. Defforge, E. Agócs, M. Fried, G. Gautier et al., Spectroscopic ellipsometry of columnar porous si thin films and si nanowires, Applied Surface Science, vol.421, pp.397-404, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01792014

S. Usui and M. Kikuchi, Properties of heavily doped gd si with low resistivity, Journal of Non-Crystalline Solids, vol.34, issue.1, pp.1-11, 1979.

A. Matsuda, Microcrystalline silicon.: Growth and device application, Journal of Non-Crystalline Solids, vol.338, pp.1-12, 2004.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh et al., Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry, Solar energy materials and solar cells, vol.78, issue.1-4, pp.143-180, 2003.

J. Meier, R. Flückiger, H. Keppner, and A. Shah, Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior?, Applied Physics Letters, vol.65, issue.7, pp.860-862, 1994.

M. Fonrodona, D. Soler, F. Villar, J. Escarré, J. Asensi et al., Progress in single junction microcrystalline silicon solar cells deposited by Hot-Wire CVD, Thin solid films, vol.501, issue.1-2, pp.247-251, 2006.

K. Chan, D. Knipp, A. Gordijn, and H. Stiebig, High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth, Journal of Applied Physics, vol.104, issue.5, p.54506, 2008.

A. Khosropour and A. Sazonov, Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Applications, IEEE Electron Device Letters, vol.38, issue.2, pp.225-227, 2017.

C. Lee, A. Sazonov, and A. Nathan, High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.86, issue.22, p.222106, 2005.

M. Stuckelberger, R. Biron, N. Wyrsch, F. Haug, and C. Ballif, Progress in solar cells from hydrogenated amorphous silicon, Renewable and Sustainable Energy Reviews, vol.76, pp.1497-1523, 2017.

H. Sai, T. Matsui, and K. Matsubara, Key points in the latest developments of high-efficiency thinfilm silicon solar cells, physica status solidi (a), vol.214, p.1700544, 2017.

H. Sai, T. Matsui, H. Kumagai, and K. Matsubara, Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond, Applied Physics Express, vol.11, issue.2, p.22301, 2018.

T. Matsui, A. Matsuda, and M. Kondo, High-rate microcrystalline silicon deposition for p-i-n junction solar cells, Solar energy materials and solar cells, vol.90, pp.3199-3204, 2006.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay et al., Potential of amorphous and microcrystalline silicon solar cells, Thin Solid Films, vol.451, pp.518-524, 2004.

K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda et al., A high efficiency thin film silicon solar cell and module, Solar energy, vol.77, issue.6, pp.939-949, 2004.

S. Kim, J. Chung, H. Lee, J. Park, Y. Heo et al., Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Solar Energy Materials and Solar Cells, vol.119, pp.26-35, 2013.

H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo et al., Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%, Applied Physics Letters, vol.106, issue.21, p.213902, 2015.

H. Sai, T. Matsui, and K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell, Applied Physics Letters, vol.109, issue.18, p.183506, 2016.

M. Adachi, M. Anantram, and K. Karim, Core-shell silicon nanowire solar cells, Scientific reports, vol.3, p.1546, 2013.

E. Givargizov, Fundamental aspects of VLS growth, Vapour Growth and Epitaxy, pp.20-30, 1975.

C. M. Lieber, Nanoscale science and technology: building a big future from small things, MRS bulletin, vol.28, issue.7, pp.486-491, 2003.

W. Lu and C. M. Lieber, Semiconductor nanowires, Journal of Physics D: Applied Physics, vol.39, issue.21, p.387, 2006.

R. Rurali, Colloquium: Structural, electronic, and transport properties of silicon nanowires, Reviews of Modern Physics, vol.82, issue.1, p.427, 2010.

L. Yu, P. Alet, G. Picardi, I. Maurin, and P. R. Cabarrocas, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on sno2 substrates, Nanotechnology, vol.19, issue.48, p.485605, 2008.

L. Yu, B. O'donnell, P. Alet, S. Conesa-boj, F. Peiro et al., Plasmaenhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts, Nanotechnology, vol.20, issue.22, p.225604, 2009.

L. Yu, B. O'donnell, J. Maurice, and P. Roca-i-cabarrocas, Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires, Applied Physics Letters, vol.97, issue.2, p.23107, 2010.

L. Yu, F. Fortuna, B. O'donnell, G. Patriache, and P. Roca-i-cabarrocas, Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires, Applied Physics Letters, vol.98, issue.12, p.123113, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00596147

P. Alet, L. Yu, G. Patriarche, S. Palacin, and P. R. Cabarrocas, In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ito, Journal of Materials Chemistry, vol.18, issue.43, pp.5187-5189, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056562

I. Zardo, L. Yu, S. Conesa-boj, S. Estradé, P. J. Alet et al., Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires, Nanotechnology, vol.20, issue.15, p.155602, 2009.

I. Zardo, S. Conesa-boj, S. Estradé, L. Yu, F. Peiro et al., Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition, Applied Physics A, vol.100, issue.1, pp.287-296, 2010.

L. Yu, F. Fortuna, B. O'donnell, T. Jeon, M. Foldyna et al., Bismuthcatalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells, Nano letters, vol.12, issue.8, pp.4153-4158, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757353

S. Misra, L. Yu, M. Foldyna, and P. R. Cabarrocas, New approaches to improve the performance of thin-film radial junction solar cells built over silicon nanowire arrays, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.40-45, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230111

S. Qian, S. Misra, J. Lu, Z. Yu, L. Yu et al., Full potential of radial junction si thin film solar cells with advanced junction materials and design, Applied Physics Letters, vol.107, issue.4, p.43902, 2015.

P. Roca-i-cabarrocas, J. Chévrier, J. Huc, A. Lloret, J. Parey et al., A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.4, pp.2331-2341, 1991.

R. E. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology, vol.8, 1998.

J. Wang, P. Bulkin, I. Florea, J. Maurice, and E. Johnson, Microcrystalline silicon thin films deposited by matrix-distributed electron cyclotron resonance plasma enhanced chemical vapor deposition using an SiF4/H2 chemistry, Journal of Physics D: Applied Physics, vol.49, issue.28, p.285203, 2016.

G. Cicala, P. Capezzuto, and G. Bruno, From amorphous to microcrystalline silicon deposition in SiF4-H2-He plasmas: in situ control by optical emission spectroscopy, Thin Solid Films, vol.383, issue.1-2, pp.203-205, 2001.

H. J. Lim, B. Y. Ryu, J. I. Ryu, and J. Jang, Structural and electrical properties of low temperature polycrystalline silicon deposited using SiF4-SiH4-H2, Thin Solid Films, vol.289, issue.1-2, pp.227-233, 1996.

H. Shirai, Y. Sakuma, Y. Moriya, C. Fukai, and H. Ueyama, Fast deposition of microcrystalline silicon using high-density SiH4 microwave plasma, Japanese Journal of Applied Physics, vol.38, issue.12R, p.6629, 1999.

W. Kessels, R. Severens, A. Smets, B. Korevaar, G. Adriaenssens et al., Hydrogenated amorphous silicon deposited at very high growth rates by an expanding Ar-H2-SiH4 plasma, Journal of Applied Physics, vol.89, issue.4, pp.2404-2413, 2001.

J. Dornstetter, J. Wang, B. Bruneau, E. V. Johnson, and P. Roca-i-cabarrocas, Material and growth mechanism studies of microcrystalline silicon deposited from SiF4/H2/Ar gas mixtures, Canadian Journal of Physics, vol.92, issue.7/8, pp.740-743, 2014.

J. Dornstetter, B. Bruneau, P. Bulkin, E. V. Johnson, and P. Roca-i-cabarrocas, Understanding the amorphous-to-microcrystalline silicon transition in SiF4/H2/Ar gas mixtures, The Journal of chemical physics, vol.140, issue.23, p.234706, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01230708

J. Dornstetter, S. Kasouit, and P. R. Cabarrocas, Deposition of high-efficiency microcrystalline silicon solar cells using SiF4/H2/Ar mixtures, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, pp.1-6, 2012.

C. Smit, R. Van-swaaij, H. Donker, A. Petit, W. Kessels et al., Determining the material structure of microcrystalline silicon from raman spectra, Journal of applied physics, vol.94, issue.5, pp.3582-3588, 2003.

B. Strahm, A. Howling, L. Sansonnens, and C. Hollenstein, Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges, Plasma Sources Science and Technology, vol.16, issue.1, p.80, 2006.

P. R. Cabarrocas, Deposition techniques and processes involved in the growth of amorphous and microcrystalline silicon thin films," in Physics and technology of amorphous-crystalline heterostructure silicon solar cells, pp.131-160, 2012.

J. A. Woollam-company, , vol.15, 2019.

H. Dyalsingh and J. Kakalios, Thermopower and conductivity activation energies in hydrogenated amorphous silicon, MRS Online Proceedings Library Archive, vol.420, 1996.

A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-gap semiconductor photodiodes, vol.77, 2000.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied photovoltaics. Routledge, 2013.

W. A. Shenstone, Justus von Liebig: His Life and Work, p.1895

A. N. Gorban, L. I. Pokidysheva, E. V. Smirnova, and T. A. Tyukina, Law of the minimum paradoxes, Bulletin of mathematical biology, vol.73, issue.9, pp.2013-2044, 2011.

L. Mazzarella, Y. Lin, S. Kirner, A. B. Morales-vilches, L. Korte et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%, Advanced Energy Materials, p.1803241, 2019.

Y. Jiang, X. Zhang, and Y. Zhao, Optimized nanocrystalline silicon oxide emitter and back surface field for silicon heterojunction solar cells, ECS Journal of Solid State Science and Technology, vol.7, issue.10, pp.524-528, 2018.

P. Cuony, D. T. Alexander, I. Perez-wurfl, M. Despeisse, G. Bugnon et al., Silicon filaments in silicon oxide for next-generation photovoltaics, Advanced Materials, vol.24, issue.9, pp.1182-1186, 2012.

M. Klingsporn, S. Kirner, C. Villringer, D. Abou-ras, I. Costina et al., Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline siox layers for application in solar cells, Journal of Applied Physics, vol.119, issue.22, p.223104, 2016.

A. Lambertz, V. Smirnov, T. Merdzhanova, K. Ding, S. Haas et al., Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules, Solar Energy Materials and Solar Cells, vol.119, pp.134-143, 2013.

M. Labrune, Silicon surface passivation and epitaxial growth on c-si by low temperature plasma processes for high efficiency solar cells, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00611652

K. Kim, Hydrogenated polymorphous silicon: establishing the link between hydrogen microstructure and irreversible solar cell kinetics during light soaking, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00747463

L. Kroely, S. K. Ram, P. Bulkin, and P. R. Cabarrocas, Microcrystalline silicon films and solar cells deposited at high rate by matrix distributed electron cyclotron resonance (mdecr) plasma, physica status solidi c, vol.7, issue.3-4, pp.517-520, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00913541

A. S. Togonal, M. Foldyna, W. Chen, J. X. Wang, V. Neplokh et al., Core-shell heterojunction solar cells based on disordered silicon nanowire arrays, The Journal of Physical Chemistry C, vol.120, issue.5, pp.2962-2972, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401074

K. Kim, E. V. Johnson, and P. R. Cabarrocas, Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination, Japanese Journal of Applied Physics, vol.55, issue.7, p.72302, 2016.

D. E. Aspnes, Optical properties of thin films, Thin solid films, vol.89, issue.3, pp.249-262, 1982.

T. Kang, H. Lee, S. Park, J. Jang, and S. Lee, Microcrystalline silicon thin films studied using spectroscopic ellipsometry, Journal of applied physics, vol.92, issue.5, pp.2467-2474, 2002.

R. Biron, C. Pahud, F. Haug, J. Escarré, K. Söderström et al., Window layer with p doped silicon oxide for high v oc thin-film silicon nip solar cells, Journal of applied physics, vol.110, issue.12, p.124511, 2011.

A. Limmanee, T. Sugiura, H. Yamamoto, T. Sato, S. Miyajima et al., Borondoped microcrystalline silicon oxide film for use as back surface field in cast polycrystalline silicon solar cells, Japanese Journal of Applied Physics, vol.47, issue.12R, p.8796, 2008.

E. Yablonovitch, T. Gmitter, R. Swanson, and Y. Kwark, A 720 mv open circuit voltage sio x: c-si: Sio x double heterostructure solar cell, Applied Physics Letters, vol.47, issue.11, pp.1211-1213, 1985.

K. Ding, U. Aeberhard, F. Finger, and U. Rau, Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers, physica status solidi (RRL)-Rapid Research Letters, vol.6, issue.5, pp.193-195, 2012.

J. Sritharathikhun, F. Jiang, S. Miyajima, A. Yamada, and M. Konagai, Optimization of p-type hydrogenated microcrystalline silicon oxide window layer for high-efficiency crystalline silicon heterojunction solar cells, Japanese Journal of Applied Physics, vol.48, issue.10R, p.101603, 2009.

H. Tan, P. Babal, M. Zeman, and A. H. Smets, Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells, Solar Energy Materials and Solar Cells, vol.132, pp.597-605, 2015.

P. Grabitz, U. Rau, and J. Werner, Modeling of spatially inhomogeneous solar cells by a multi-diode approach, physica status solidi (a), vol.202, pp.2920-2927, 2005.

U. Malm and M. Edoff, Simulating material inhomogeneities and defects in cigs thin-film solar cells, Progress in Photovoltaics: Research and Applications, vol.17, pp.306-314, 2009.

M. Python, E. Vallat-sauvain, J. Bailat, D. Dominé, L. Fesquet et al., Relation between substrate surface morphology and microcrystalline silicon solar cell performance, Journal of Non-Crystalline Solids, vol.354, pp.2258-2262, 2008.

T. Söderström, F. Haug, V. Terrazzoni-daudrix, and C. Ballif, Optimization of amorphous silicon thin film solar cells for flexible photovoltaics, Journal of Applied Physics, vol.103, issue.11, p.114509, 2008.

H. B. Li, R. H. Franken, J. K. Rath, and R. E. Schropp, Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.3, pp.338-349, 2009.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony et al., Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate, Applied Physics Letters, vol.96, issue.7, p.73507, 2010.

M. Goetz, P. Torres, P. Pernet, J. Meier, D. Fischer et al., nip micromorph solar cells on aluminium substrates, MRS Online Proceedings Library Archive, vol.452, 1996.

A. J. Lynch and C. A. Rowland, The history of grinding, 2005.

D. Michel, E. Gaffet, and P. Berthet, Structure of nanosized refractory oxde powders, Nanostructured Materials, vol.6, issue.5-8, pp.667-670, 1995.

R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, Journal of nanoparticle research, vol.2, issue.2, pp.123-131, 2000.

J. Lim, S. P. Yeap, H. X. Che, and S. C. Low, Characterization of magnetic nanoparticle by dynamic light scattering, Nanoscale research letters, vol.8, issue.1, p.381, 2013.

P. Alet, L. Yu, G. Patriarche, S. Palacin, and P. R. Cabarrocas, In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ito, Journal of Materials Chemistry, vol.18, issue.43, pp.5187-5189, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056562

L. Yu, P. Alet, G. Picardi, I. Maurin, and P. R. Cabarrocas, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on sno2 substrates, Nanotechnology, vol.19, issue.48, p.485605, 2008.

L. Yu, P. Alet, G. Picardi, and P. R. Cabarrocas, An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires, Physical review letters, vol.102, issue.12, p.125501, 2009.

L. Yu, M. Oudwan, O. Moustapha, F. Fortuna, and P. Roca-i-cabarrocas, Guided growth of in-plane silicon nanowires, Applied physics letters, vol.95, issue.11, p.113106, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00681386

L. Yu, W. Chen, B. O'donnell, G. Patriarche, S. Bouchoule et al., Growth-in-place deployment of in-plane silicon nanowires, Applied Physics Letters, vol.99, issue.20, p.203104, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00671028

L. Yu, B. O'donnell, P. Alet, S. Conesa-boj, F. Peiro et al., Plasmaenhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts, Nanotechnology, vol.20, issue.22, p.225604, 2009.

S. Misra, L. Yu, W. Chen, and P. Roca-i-cabarrocas, Wetting layer: the key player in plasmaassisted silicon nanowire growth mediated by tin, The Journal of Physical Chemistry C, vol.117, issue.34, pp.17786-17790, 2013.

S. Misra, Single and tandem radial junction silicon thin film solar cells based on PECVD grown crystalline silicon nanowire arrays, 2015.

P. Roca-i-cabarrocas, J. Chévrier, J. Huc, A. Lloret, J. Parey et al., A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.4, pp.2331-2341, 1991.

L. Dai, I. Maurin, M. Foldyna, J. Alvarez, W. Wang et al., Tin dioxide nanoparticles as catalyst precursors for plasma-assisted vapor-liquid-solid growth of silicon nanowires with well-controlled density, Nanotechnology, vol.29, issue.43, p.435301, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908717

I. Gozhyk, L. Dai, Q. Hérault, R. Lazzari, S. Grachev et al., Plasma emission correction in reflectivity spectroscopy during sputtering deposition, Conference proceedings, vol.52, p.95202, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01981672

L. Dai, M. Al-ghzaiwat, W. Chen, M. Foldyna, I. Maurin et al.,

J. Alvarez, J. Kleider, J. Maurice, P. Roca-i-cabarrocas, and T. Gacoin, Optimizing tin dioxide nanoparticles distribution for silicon nanowires growth, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632957

L. Dai, M. Al-ghzaiwat, W. Chen, M. Foldyna, I. Maurin et al.,

T. Gacoin and P. Roca-i-cabarrocas, Une cellule solaireà jonction radiale (RJ pour radial junction) est une cellule solaire en couche mince utilisant des nanofils, dans lesquels les semiconducteurs sont séparés radialement. Des cellules solairesà jonction radialeà base de nanofils de silicium avec a-Si:H comme absorbeur ontété développées par le passé; elles ont atteint des valeurs de rendement de 9, vol.7, 2017.

, Pour fabriquer une telle cellule tandem il est nécessaire de développer et d'étudier dans un premier temps des cellulesà jonction radialeà base de µc-Si:H comme absorbeur, Nous nous sommes intéressésà combiner la structure tandem a-Si:H / µc-Si:H avec des nanofils de silicium avec comme objectif de réaliser des cellules tandem a-Si:H / µc-Si:Hà jonctions radiales

, Plusieurs paramètres des nanofils de silicium peuvent affecter la performance des cellules solairesà jonction radiale. Parmi ceux-ci on peut citer la densité des nanofils, leur longueur, leur diamètre, le type de dopage (c.-à-d. type p ou type n), le niveau de dopage, etc. Le premier défi est de trouver une approche pour contrôler la densité des nanofils de silicium. Nous avons utilisé des nanoparticules (NP) de dioxyde d'étain (SnO 2 ) d'un diamètre moyen de 55 nm, disponibles dans le commerce, comme précurseurs du catalyseur Sn pour la croissance des nanofils de silicium. Après un broyage des poudres de dioxyde d'étain en présense de diéthylène glycol (DEG), le mélange obtenu DEG / SnO 2 NPs aété dilué dans une solution aqueuse d'hydroxyde de tétraméthylammonium (TMAOH), Nous avons fabriqué des cellules solairesà jonction radiale sur des nanofils de silicium (SiNW) avec du silicium microcristallin hydrogéné (µc-Si:H) comme absorbeur par dépôt chimique en phase vapeur assisté plasmaà basse température (PECVD)

, Cette distribution de la taille aété contrôlée par la vitesse et la durée de la centrifugation

, SnO 2 ont alorsété déposées avec succès sur le substrat en l'immergeant dans le colloïde obtenu après centrifugation. La densité des NPs de SnO 2 immobiliées sur le substrat aété contrôlée par centrifugation et dilution du colloïde de SnO 2 , en combinaison avec la fonctionnalisation du substrat, Nous avons réussià REFERENCE

C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use

, American Journal of Science, issue.156, pp.465-472, 1883.

F. Dimroth, T. N. Tibbits, M. Niemeyer, F. Predan, P. Beutel et al.,

P. Lackner and . Fuß-kailuweit, Four-junction wafer-bonded concentrator solar cells, IEEE Journal of Photovoltaics, vol.6, issue.1, pp.343-349, 2015.

T. Matsui, H. Sai, A. Bidiville, H. Hsu, and K. Matsubara, Progress and limitations of thin-film silicon solar cells, Solar Energy, vol.170, pp.486-498, 2018.

S. Misra, L. Yu, M. Foldyna, and P. R. Cabarrocas, New approaches to improve the performance of thin-film radial junction solar cells built over silicon nanowire arrays, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.40-45, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230111

A. Lambertz, F. Finger, R. E. Schropp, U. Rau, and V. Smirnov, Preparation and measurement of highly efficient a-Si:H single junction solar cells and the advantages of µc-SiOx:H n-layers, Progress in Photovoltaics: Research and Applications, vol.23, pp.939-948, 2015.

M. Adachi, M. Anantram, and K. Karim, 5 (a) Zeta potential of SnO 2 NPs after dilution 100-time, Scientific reports, vol.3, issue.2, p.1546, 2013.

, TMAOH solutions of different pH values and centrifugation at 3500 g-force for 5 min. Measurements were performed on the supernatant part.(b) Normalized size distribution of

, SnO 2 NPs inside the supernatants from the 1000-time diluted solutions with pH from 9 to 13 after a centrifugation at 3500 g-force for 5 min

, 6 (a) Normalized size distribution of SnO 2 NPs from the 100-time diluted TMAOH solution at pH 12 for centrifugation at 1000, 3500, 7000 and 11000 g-force for 5 min; (b) Schematic picture of the original colloids and the supernatants after centrifugation at 1000, 3500, 7000 and 11000 g-force for 5 min, vol.2

, Z-average size of SnO 2 NPs in the supernatant as a function of the duration of centrifugation for three accelerations. This study was performed for the 100-time diluted TMAOH solution at pH 12. (b) Z-average size of SnO 2 NPs in the supernatants as a function of the duration and the acceleration of centrifugation. The line is just a guide for the eye, p.32

, Normalized size distribution of SnO 2 NPs in the supernatant from the 100-time diluted solution with pH 12 and 1000-time diluted solution with pH 10 after a centrifugation at 3500 g-force for 5 min

. Si, PDDAc substrate in colloidal solutions centrifuged at: (a) 1000; (b) 3500; (c), p.7000

, 36 2.10 SEM image of the distribution of SnO 2 NPs after 5 min immersion of the Si/PDDAc substrate in colloidal solutions centrifuged at 7000 g-force at a larger area (30.2 µm 2 ). Scale bar is 2 µm

, /100) and (b) 1000-time diluted solution (v/v = 1/1000) of the initial DEG/SnO 2 NP mixture and the same immersion time of 5 min. A preliminary centrifugation at 3500 g for 5 min were performed before grafting. Scale bar marks are 1 µm in (a) and (b). (c) Density of the SnO 2 NPs for dilutions (a) and (b), with 10 nm bin size. Solid lines are fit by lognormal function fit, SEM images of SnO 2 NPs grafted onto functionalized PDDAc/Si surfaces using (a) 100-time diluted solution

, SnO 2 NPs deposited from the 100-time diluted solution after centrifugation at 3500 g-force for 5 min with a rather large density (? 9×10 8 /cm 2 ) (c) before and (d) after plasma reduction

, 4 (a) STEM-HAADF image of a SnO 2 NP; (b) EDS spectrum corresponding to the region surrounded by the purple line in (a); (c) STEM-HAADF image of H 2 plasma reduced Sn NP after storage in air for one month; (d) EDS spectrum (green solid line) recorded in the shell part of the particle shown in (c) and spectrum (red dashed line) recorded in the central part; (e) Element mapping of Sn (green) and O (pink) in STEM image (c); (f) Chart of quantitative results for Sn (green) and O (pink) in the central and shell parts. Scale bars in (a), (c) and (e) correspond to 50 nm, NPs with lower density (? 8 × 10 7 /cm 2 ) obtained from the 1000-time diluted solution after centrifugation at 11000 g for 5 min (e) before and (f) after plasma reduction. Scale bars: 200 nm (a-b), vol.3

, 5 (a) STEM-HAADF image of a H 2 plasma reduced Sn NP after storage in air for one month

, The pink line represents the intensity signal of the oxygen K ? 1 along the yellow line across the NP; (c) Plot of the intensity of the oxygen K ? 1 signal as a function of position from (b), Oxygen distribution in the same NP analyzed by the software INCA

, SEM images of (a) nominal thickness of ? 2 nm Sn on Si wafer, the sample of Si wafer coated by a nominal thickness ? 2 nm Sn after a H 2 plasma treatment at a temperature (b)

, 356°C and (d) 410°C, respectively. Scale bars in (a-d) correspond 500 nm, 298°C, p.61

, Size distribution of Sn droplets in Figure 3.6, analyzed by ImageJ software and fitted by Log-normal function. (b) Zoom of the blue region in (a) for a better view on the size distribution of Sn droplets, p.61

, Top view SEM image of the same aggregate of SnO 2 particles (a) before and (b) after a hydrogen plasma treatment at a temperature of 298°C (nominal 400°C)

. .. , 62 , a constant TMB gas flow rate of 2 sccm, and H 2 gas flow rate (with partial pressure of H 2 ): (a) 200 sccm (2 mbar); (b) 150 sccm (1.6 mbar), SEM images of FTO/glass sample treated by H 2 plasma treatment with the partial pressure of H 2 of 0, pp.50-50

, Scale bar is 2 µm for (a)-(e). (f) The density and the length of SiNWs were statistically measured as function of the partial pressure of H 2, mbar) and (e) 0 sccm (0 mbar

, 21 (a) Raw data of ex-situ ellisometry measurements for the samples a-Si:H/Cg at the same duration 12 minutes of Si NWs growth in Figures 3.20 (a-e); (b) Thickness of a-Si:H on Cg analyzed by the optical modeling in the software DeltaPsi 2. The duration of deposition is 12 min

, Real-time measurements of SE intensity signal at photon energy of 5.5 eV during the growth of SiNWs followed by the deposition of intrinsic and n-type a-Si:H layers in a one-pump-down process in PLASFIL reactor

, 45 eV during the growth of SiNWs on the sample with ? 1 nm Sn on ZnO:Al/Cg substrate with the condition shown in Table 3.2.1. (b) In-situ intensity of SE signal at the photon energy of 5.5 eV during the growth stage of (a). (c) SEM image of SiNWs after the growth of 10 min with the length of 685 ± 97 nm. Scale bar 1 µm. (d) The intensity as a function of the average length of SiNWs calibrated by the deposition rate of 68.5 ± 9, -situ measurements of SE intensity spectra with the range of 0, pp.73-79

, 24 (a) Normalized intensity signal at photon energy of 5.5 eV during the growth of SiNWs in real-time for the conditions with the gas flow rate of H 2 from 0 to 200 sccm (the same experiments shown in Figure 3.20(a-e)). (b) Normalized intensity of SE signal at photon energy of 5.5 eV as a function of the average length of SiNWs. Using the grow rate of SiNWs, the X axis is changing from time to the average length of SiNWs

. .. , Intensity-Length-Density figure about the normalized intensity of SE signal as a function of density of SiNWs with a given length from 100 to 600 nm. The details of each points are shown in Figure 3.4.1. The dashed lines are just the guides for the eye, p.88

, 26 (a) Real-time measurement of Delta (?) acquired by in-situ spectroscopic ellisometry on samples of ZnO:Cg coated by evaporated Sn with a thickness of ? 1 nm for the growth of SiNWs with different gas flow rate of H 2 . (b) Zoom-in figure in the green region in (a), p.89

. .. , Raman spectra of amorphous (dotted line), low crystallinity (28%) (dashed line) and high crystallinity (70%) (solid line) silicon film. The spectra is cited from [44], p.99

, medium crystallinity (? 58%) (ratio = 200/2) and high crystallinity (? 72%) (ratio = 200/1 and 200/0.7) silicon film deposited on Cg in "PLASFIL" at RF power (25 W), working pressure (2.6 mbar) and temperature (174°C). (b) Raman spectra of amorphous (ratio = 200/4), low crystallinity (? 40%) (ratio = 200/3), medium crystallinity (? 65.6%) (ratio = 200/2) and high crystallinity (? 78.5%) (ratio = 200/1) silicon film deposited on Cg in "PLASFIL" at RF power (15 W), working pressure (2.6 mbar) and temperature (174°C)

, PLASFIL" with the ratio of H 2 to SiH 4 of 200/2, RF plasma power of 25 W (power density ? 250 mW/cm 2 ), a working pressure of ? 2.6 mbar, a temperature of substrate of 174°C. The spectra are vertically displaced for clarity, -situ ellipsometry of µc-Si:H layer deposited on Cg

. Thickness-of-?c-si, H layer determined by the optical model on the in-situ spectroscopic ellipsometry measurement in the same case as shown in Figure 4.3. Courtesy: The optical model was made by Dr. Halagacka Lukas and Dr

, The parameters V, I, a, b, t are corresponding the same parameters in Equation 4.2. (b) Photo of one sample µc-Si:H/Cg coated with a thick layer of aluminum (? 500 nm), with a length a 10 mm, and the distance between two closed aluminum electrode b 1 2 mm, b 2 1 mm, Schematic drawing of the conductivity measurement for the sample µc-Si:H on Cg coated with aluminum electrodes

, Arrhenius plot of the conductivity of the undoped µc-Si:H

, Raman spectra of p-type doped and undoped µc-Si:H (or a-Si:H) prepared from mixtures of SiH 4 , H 2 with adding the gas flow rate of TMB (1% diluted in H 2 ) from 0 to 0.5 sccm, p.105

, Raman spectra of n-type doped and undoped µc-Si:H prepared from mixtures of SiH 4 , H 2 with adding the gas flow rate of PH 3 (0.1% diluted in H 2 ) from 0 to 5 sccm, p.106

, Arrhenius plots of the conductivity of the p-type and the n-type samples (µc-Si:H or a-Si:H) mentioned above

J. Standard, curve for a solar cell with the short-circuit density J sc , the open-circuit voltage V oc , current density J max and voltage V max at the maximum output power point P max , and fill factor FF

, Schematic drawing of the structure for typical µc-Si:H planar junction solar cells, p.110

, Schematic drawing of the structure for typical µc-Si:H planar junction solar cells, p.111

J. Details-of-the and . Measurement, include (a) Open-circuit voltage V oc , (b) Short-circuit current density J sc , (c) Fill factor FF, (d) Parallel resistance R p , (e) Series resistance R s , and (f) Power conversion efficiency, vol.12

, /200), a given RF power of 25 W (power density ? 250 mW/cm 2 ), a working pressure of ? 2.6 mbar, a substrate temperature of 174°C (nominal 200°C)

, A standard process flow of fabrication from SnO 2 NPs to µc-Si:H RJ solar cells, including the reduction process; the growth of SiNWs; the deposition of doped and undoped layers

.. .. ,

, SEM images of µc-Si:H RJs with the density of

, 18 (a) Light J-V measurement, (b) EQE measurement and (c) dark J-V measurement of the structure for µc

. .. , × 10 8 /cm 2 . (d) Table of the solar cell parameters of these samples, p.116

, (a) Light J-V measurement, (b) EQE measurement and (c) dark J-V measurement of the structure for µc-Si:H RJ solar cells based on SiNWs with the length of ? 1000 nm and ? 500 nm. (d) Table of the solar cell parameters of these samples, SEM cross-section images of µc-Si:H RJs on silicon wafer with the density of (a) ? 3 × 10 8 /cm 2 and (b) ? 3 × 10 7 /cm 2

, SEM cross-section images of (a) bare SiNWs, and NWs coated with p-typed doped layer, an intrinsic layer (thickness of (b) 450 nm and (c) 1000 nm measured on flat substrate, respectively), n-typed doped layer and ITO layer. Scale bars are 2 µm, p.120

J. Light, J-V measurements of the structure for µc-Si:H RJ solar cells coated by an intrinsic layer with an equivalent thickness of 450 and 1000 nm measured on flat substrate. (c) Table of the solar cell parameters of these samples, p.121

, Schematic drawing of typical µc-Si:H RJ structure with p-type doped SiNW core, intrinsic µc-Si:H, n-type doped µc

. Raman-spectra-of-?c-si, RF plasma power (10 W), working pressure (2 Torr), electrode distance (d = 22 mm), temperature (150°C). (b) Plot of crystallinity as a function of the gas flow rate of SiH 4, H on Cg prepared with different gas flow rate of SiH 4 varying from 2.5 sccm to 5.5 sccm and given gas flow rate of H 2 (500 sccm)

, RF plasma power (10 W), working pressure (2 Torr), electrode distance (d = 22 mm), temperature (150°C). (b) Zoom of UV part of the spectra of imaginary part of epsilon in the red region in (a), Imaginary part of pseudo-dielectric function of µc-Si:H on Cg prepared with different gas flow rate of SiH 4 varying from 2.5 sccm to 5.5 sccm and given gas flow rate of H 2 (500 sccm)

, The deposition condition is gas flow rate of SiH 4 (4 sccm) and H 2 (500 sccm), RF plasma power (10 W), working pressure (2 Torr), electrode distance (d = 22 mm), and temperature (150°C). The activation energy is 621 ± 30 meV, Arrhenius plot of the conductivity of intrinsic µc-Si:H prepared at 4 sccm SiH 4 flow rate in "ARCAM

, Raman spectra of p-type or n-type µc-Si:H and µc-SiO x :H on Cg, p.126

, ARCAM" as function of photon energy with the conditions shown in Table 4.3.1. (b) Zoom of UV part of the spectra of imaginary part of epsilon in the red region in (a), Imaginary part of pseudo-dielectric function of p-type or n-type doped µc-Si:H and µc-SiO x :H on Cg

, Arrhenius plot of conductivity of p-type or n-type µc-Si:H and µc-SiO x :H on Cg

, 31 (a) Light J-V measurement, (b) EQE measurement and (c) dark J-V measurement of the structure for µc-Si:H planar junction solar cells using µc-Si:H or µc-SiO x :H as the bottom doped layer. (d) Table of the solar cell parameters of these samples, Transmission of the same undoped µc-Si:H shown in Figure 4.26 and doped µc-Si:H or µc-SiO x :H on Cg prepared in "ARCAM" with the conditions shown in Table 4.3.1. The arrow indicates larger band gap energy for µc-SiO x :H

, cross-section view of µc-Si:H RJ solar cells based on SiNWs grown on silicon wafer, SEM image of (a) top-view and (b)

. .. , Process flow of fabricating the µc-Si:H RJ solar cells in "ARCAM", p.133

J. Light and . Measurement-and-(b)-dark-j-v-measurement-of-the-structure-for-?c-si, H RJ solar cells with either n-type doped µc-Si:H or n-type doped µc-SiO x :H. (c) Table of the solar cell parameters of these samples

, Schematic drawing of equilibrium band diagram of the n-i-p (from bottom to top) junction with the n-type µc-SiO x :H as the bottom doped layer

J. Light, EQE measurement of the structure for µc-Si:H RJ solar cells based on SiNWs substrate with or without a Ag back reflector. (c) Table of the solar cell parameters of these samples

J. Light, EQE measurement of the structure for µc-Si:H RJ solar cells based on SiNWs with the length of either 800 nm or 500 nm with Ag back reflector. (c) Table of the solar cell parameters of these samples

, Summary of solar cell performances and the relative enhancement (comparing with the previous one)

, Schematic drawing of the structure of tandem a-Si:H/µc-Si:H radial junction solar cells, p.139

.. .. ,

, Scale bar of (a), (d) and (g) is 500 nm. (b), (e) and (h) are single a-Si:H RJ, single µc-Si:H RJ and tandem RJ based on the substrate with SiNWs of density ? 15 × 10 8 /cm 2 , respectively. (c), (f) and (i) are single a-Si:H RJ, single µc-Si:H RJ and tandem RJ based on the substrate with SiNWs of density ? 7 × 10 8 /cm 2 , respectively. Scale bar of (c), (d), (e), (f), (h) and (i) is 2 µm, SEM images of (a) single a-Si:H RJ, (d) single µc-Si:H RJ and (g) tandem a-Si:H/µc-Si:H RJ, with diameter of 128 ± 8 nm, 560 ± 21 nm, and 641 ± 32 nm, respectively

, EQE measurement of tandem a-Si:H/µc-Si:H radial junction solar cells under two different light biases

J. Light, 15 × 10 8 /cm 2 and (b) ? 7 × 10 8 /cm 2 . Dark J-V measurement of three types of RJs solar cells based on SiNWs with a density of (c) ? 15 × 10 8 /cm 2 and (d) ? 7 × 10 8 /cm 2 . Normalized EQE of a-Si:H RJs solar cells and µc-Si:H RJ solar cells based on SiNWs with a density of (e) ? 15 × 10 8 /cm 2 and (f) ? 7 × 10 8 /cm 2

, Process flow from SnO 2 powders to SnO 2 colloidal solutions : it involves a disaggregation of the raw powder by ball-milling, dispersion in a TMAOH aqueous solution at controlled pH, followed by centrifugation steps for size selection. The size distribution of SnO 2 NPs in the supernatant is monitored by dynamic light scattering (DLS)

. Image and . .. Plasfil",

, The temperature of the surface of substrate Cg as a function of the temperature of heater (nominal temperature) in the PECVD reactor named "PLASFIL". Version measured in year 2019

, TMB (1% dilution in H 2 ), PH 3 (0.1% dilution in H 2 ) as a function of gas flow rate at a temperature of 174°C and a pumping rate at 1%, vol.4

, 49 (a) Normalized intensity of SE signal at photon energy of 5.5 eV during the growth of SiNWs and the deposition of p doped and intrinsic µc-Si:H layers for the density of, p.7

, the normalized SE spectra from 0.73 to 6.45 eV of sample at the moment (b) before the growth of SiNWs, (c) after growth of SiNWs and (d) after deposition of µc-Si:H layers

, 50 (a) Normalized intensity of SE signal at photon energy of 5.5 eV during the growth of SiNWs and the deposition of p-type doped and intrinsic µc-Si:H layers for the density of NWs of 3

, × 10 8 /cm 2 . (b) Zoom of part in the blue region in (a) to show the increase of intensity, p.163

, 2 × 10 8 /cm 2 and (b) ? 1.2 × 10 8 /cm 2 . The scale bar is 5 µm and 100 nm for outset and inset image, respectively, SEM images of RJs with the same deposition of µc-Si:H based on NWs with the density of (a) ? 7

, nm, (c) 200 nm, (d) 300 nm, and (e) 400 nm. Scale bars correspond 500 nm. (f) The black and blue curves are the plots of the diameter of NWs and of the thickness of a-Si, SEM images of (a) a bare SiNW, and NWs coated by a-Si:H with the thickness (b), vol.100

, SiNW with length ? 2.5 µm, and (b) NWs coated by a-Si:H with the thickness 400 nm. Scale bar is 500 nm, SEM images of (a) bare

, nm, (c) 200 nm, (d) 300 nm, and (e) 400 nm. Scale bars correspond 500 nm. (f) The black and blue curves are the plots of the diameter of NWs and of the thickness of µc, Si:H coating on NWs as the function of the thickness of thin µc-Si:H coating on flat Corning glass, vol.100

. Image and . .. Arcam",

, SiH 4 and H 2 ) as a function of gas flow rate in "ARCAM". The ratio of pressure with the same gas flow rate between SiH 4 and H 2 is ? 3, Pressure of gases

, The thickness of p-type doped µc-Si:H is 30 nm and 75 nm, respectively, Schematic drawing of the NIP structure for µc-Si:H planar junction solar cells with p-type doped µc-Si:H between intrinsic µc-Si:H and ITO

, 58 (a) J-V measurement and (b) EQE measurement of the NIP structure for µc-Si:H planar junction solar cells using p-type doped layer with a thickness of 30 nm and 75 nm between intrinsic µc-Si:H and ITO. (c) Table of the solar cell parameters of these samples, p.172

J. , EQE measurement of the µc-Si:H PJ and RJ solar cells with the same process conditions. (c) Table of the solar cell parameters of these samples. (d) SEM image of µc-Si:H RJ solar cells with the process conditions the same as the N-I-P structure shown in the Figure 4, vol.57

, (a) with a density of ? 4 × 10 8 /cm 2 and RJ diameter of ? 500 nm; (b) with a density of ? 1 × 10 8 /cm 2 and RJ diameter of ? 500 nm; (c) with a density of ? 1 × 10 8 /cm 2 and RJ diameter of ? 1000 nm, Schematic drawing of µc-Si:H RJ solar cells based on the SiNWs, p.174

J. Light and . Measurement, Normalized EQE measurement and (c) dark J-V measurement of the structure for µc-Si:H planar junction solar cells using µc-Si:H or µc-SiO x :H as the bottom doped layer. (d) Table of the solar cell parameters of these samples, p.176

, SiNWs with the density of (a) ? 6.6 × 10 6 /cm 2 , (b) ? 1.6 × 10 7 /cm 2 , and (c) ? 6.6 × 10 8 /cm 2 . Scale bar is 5 µm, SEM images of µc-Si:H RJ solar cells based on, p.177

J. Light and . Measurement-and-(b)-dark-j-v-measurements-of-?c-si, H RJ solar cells using based on SiNWs

, Table of the solar cell parameters of these samples