. .. Monomères-:-sphères,

. .. Dimères-:-noeuds-papillons, 125 10.2.1 Évolution de la résonance plasmon d'absorption en fonction de la taille L 125 10.2.2 Évolution de la résonance plasmon d'absorption en fonction de l'angle d'ouverture ?

, Évolution de la résonance plasmon d'absorption en fonction du gap, p.128

. N-mères, Chaîne d'ellipses

M. Excitatrice,

, Les cubes d'or ont été fabriqués par voie chimique par Sylvie Marguet. Des images MEB de ces cubes sont données en figure 10.3. Les spectres PEEM ont été obtenus dans des conditions similaires à celles employées dans le cas des sphères. L'évolution des maxima d'absorption PEEM (RPSL du mode dipolaire) en fonction de la taille des cubes est donnée en figure 10.4. Des spectres d'extinction expérimentaux de cubes d'or d'arête a = 46, Des spectres d'absorption PEEM ont été acquis sur des cubes individuels en or d'arêtes a =, vol.46

, La résonance d'extinction subit un décalage significatif vers le rouge lorsque la taille des cubes augmente (Figure 10.5), a contrario, la variation dans la position des maxima d'absorption est faible (léger décalage vers le rouge suivit d'un décalage vers le bleu) (Figure 10.4)

, 3 -Images MEB de nanocubes d'or d'arêtes a = 46, et 166 nm. Les nanocubes ont été synthétisés par voie colloïdale par Sylvie Marguet, vol.10, p.115

, Marienfeld cover glasses borosilicate D263 2. Thorlabs : PS905-N-BK7 Right-Angle Prism, p.3

E. Colles, , vol.1, p.509

L. A. Manipulation-de, . Lumière, . Plasmons, and . De-surface, un disque central de diamètre D = 1 µm entouré de quatre anneaux concentriques (l'intensité du point chaud au centre du disque est proportionnelle au nombre d'anneaux)

, La période p est ajustée de telle sorte que pour une onde lumineuse de longueur d'onde ? inc , p = ? SP P ?LP ou p = ? SP P ?CP . ? SP P ?LP et ? SP P ?CP sont déterminées a partir des courbes de dispersion des modes PPS-LP et PPS-CP. Ces courbes ont été calculées pour un film d'or de, p.20

, 2 -Courbes de dispersion des modes PPS-LP et PPS-CP pour un film d'or de 20 nm d'épaisseur sur un substrat, Figure, vol.12

, Nous avons fabriqué des structures de périodes p = 126, vol.163, p.506

, 850 et 900 nm et aux modes PPS-LP excités à 550 et 600 nm respectivement. Des points chauds devraient être sélectivement adressés au sein de ces réseaux en variant la longueur d'onde du faisceau excitateur. L'objectif est de manipuler le champ proche optique en ayant recours à des PPS et à l'énergie de l'onde lumineuse excitatrice. Des images LEEM de ces structures sont données en figure 12.3. Cependant, les analyses PEEM n'ont pas pu être menées car les membranes de Si 3 N 4 support n, et 564 nm correspondant aux modes PPS-CP excités aux longueurs d'onde ? incident = 550, vol.600

M. A. Garcia, Surface plasmons in metallic nanoparticles : fundamentals and applications, Journal of Physics D : Applied Physics, vol.44, issue.28, p.283001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00633991

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, vol.330, pp.377-445, 1908.

I. Angelini, G. Artioli, P. Bellintani, V. Diella, M. Gemmi et al., Chemical analyses of bronze age glasses from frattesina di rovigo, northern italy, Journal of Archaeological Science, vol.31, issue.8, pp.1175-1184, 2004.

C. Philippe, M. Grégory, M. Léo, K. Tijani, A. Naceur et al., Raman identification of materials used for jewellery and mosaics in ifriqiya, Journal of Raman Spectroscopy, vol.34, issue.3, pp.205-213, 2003.

P. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass : Solid state chemistry, spectroscopy and nanostructure, Journal of Nano Research, vol.8, pp.109-132, 2009.

M. José-yacamán, L. Rendón, J. Arenas, and M. C. Puche, Maya blue paint : An ancient nanostructured material, Science, vol.273, issue.5272, pp.223-225, 1996.

C. Philippe and T. Catherine, Non-destructive raman study of the glazing technique in lustre potteries and faience (9-14th centuries) : silver ions, nanoclusters, microstructure and processing, Journal of Raman Spectroscopy, vol.35, issue.3, pp.195-207, 2004.

N. Izumi, N. Chiya, H. Hideo, and Y. Kazuo, Origin of the red color of satsuma copper-ruby glass as determined by exafs and optical absorption spectroscopy, Journal of the American Ceramic Society, vol.82, issue.3, pp.689-695, 1999.

B. D. and F. I. , An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy, Archaeometry, vol.32, issue.1, pp.33-45, 1990.

K. Xiang-tian, W. Zhiming, and G. A. , Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination, Advanced Optical Materials, vol.5, issue.15, 2016.

H. Wei and H. Xu, Hot spots in different metal nanostructures for plasmon-enhanced raman spectroscopy, Nanoscale, vol.5, pp.10794-10805, 2013.

Z. Yuqing, U. Kosei, M. Yuko, S. Xu, O. Tomoya et al., Plasmon-assisted water splitting using two sides of the same srtio3 single-crystal substrate : Conversion of visible light to chemical energy, Angewandte Chemie International Edition, vol.53, issue.39, pp.10350-10354, 2014.

O. Tomoya, U. Kosei, and M. Hiroaki, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation, Angewandte Chemie International Edition, vol.53, issue.37, pp.9802-9805, 2014.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi et al., Seeing protein monolayers with naked eye through plasmonic fano resonances, Proceedings of the National Academy of Sciences, vol.108, issue.29, pp.11784-11789, 2011.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert et al., An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media, Nano Letters, vol.10, issue.12, pp.4962-4969, 2010.

Y. Jin, Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine, Advanced materials, vol.24, issue.38, pp.5153-65, 2012.

X. Huang, P. K. Jain, I. H. El-sayed, and M. A. El-sayed, Plasmonic photothermal therapy (pptt) using gold nanoparticles, Lasers in Medical Science, vol.23, p.217, 2007.

S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nature Photonics, vol.3, pp.388-394, 2009.

E. Ozbay, Plasmonics : Merging photonics and electronics at nanoscale dimensions, Science, vol.311, issue.5758, pp.189-193, 2006.

L. Douillard and F. Charra, Photoemission electron microscopy, a tool for plasmonics, Journal of Electron Spectroscopy and Related Phenomena, vol.189, pp.24-29, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01478989

T. Kitazawa, S. Miyanishi, Y. Murakami, K. Kojima, and A. Takahashi, Snom observations of surface plasmon polaritons on metal heterostructures, Chinese Physics Letters, vol.24, issue.10, p.2827, 2007.

S. Ikeda, Y. Cai, Q. Meng, T. Yokoyama, K. Shinozaki et al., Imaging of localized surface plasmon by apertureless scanning near-field optical microscopy, Sensors and Materials, vol.27, 2015.

F. J. García-de-abajo and A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics, Phys. Rev. B, vol.65, p.115418, 2002.

P. Jain, X. Huang, I. El-sayed, and M. El-sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, Plasmonics, vol.2, pp.107-118, 2007.

J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Frontiers of Optoelectronics, vol.7, issue.3, p.320, 2014.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, 2006.

S. Maier, Plasmonics : Fundamentals and Applications, 2007.

B. M. Ross and L. P. Lee, Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles, Opt. Lett, vol.34, pp.896-898, 2009.

M. Hamidi, Modélisation par la méthode FDTD des plasmons de surface localisés, Theses, 2012.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, The Journal of Chemical Physics, vol.116, issue.15, pp.6755-6759, 2002.

J. Li, H. Guo, and Z. Li, Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures, Photon. Res, vol.1, pp.28-41, 2013.

M. Lahmani, C. Dupas, and P. Houdy, Les nanosciences (Tome 1) -Nanotechnologies et nanophysique. Les nanosciences, 2006.

, Nettoyage des surfaces par lumière uv

G. Hlawacek, V. Veligura, R. Van-gastel, and B. Poelsema, Helium Ion Microscopy, 2013.

N. K. Mohtaram, Liquid metal ion source, 2011.

, Focused ion beam -Wikipedia, the free encyclopedia, Wikipedia contributors, 2017.

A. Belkhir, Extension de la modélisation par FDTD en nano-optique. Theses, 2008.

M. Ney, Simulation electromagnetique, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02400246

A. Taflove and S. Hagness, Computational Electrodynamics : The Finite-difference Timedomain Method. Artech House Antennas and Prop, 2005.

J. Parsons, C. Burrows, J. Sambles, and W. Barnes, A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures, Journal of Modern Optics, vol.57, issue.5, pp.356-365, 2010.

V. Myroshnychenko, J. Rodriguez-fernandez, I. Pastoriza-santos, A. M. Funston, C. Novo et al., Modelling the optical response of gold nanoparticles, Chem. Soc. Rev, vol.37, pp.1792-1805, 2008.

A. Trügler, Optical Properties of Metallic Nanoparticles : Basic Principles and Simulation, Springer Series in Materials Science, 2016.

V. Myroshnychenko, E. Carbó-argibay, I. Pastoriza-santos, J. Pérez-juste, L. M. Liz-marzán et al., Modeling the optical response of highly faceted metal nanoparticles with a fully 3d boundary element method, Advanced Materials, vol.20, issue.22, pp.4288-4293

J. Waxenegger, A. Trügler, and U. Hohenester, Plasmonics simulations with the mnpbem toolbox : Consideration of substrates and layer structures, Computer Physics Communications, vol.193, pp.138-150, 2015.

U. Hohenester and A. Trügler, Mnpbem -a matlab toolbox for the simulation of plasmonic nanoparticles, Computer Physics Communications, vol.183, issue.2, pp.370-381, 2012.

R. Vogelgesang and A. Dmitriev, Real-space imaging of nanoplasmonic resonances, Analyst, vol.135, pp.1175-1181, 2010.

E. Bauer, Surface Microscopy with Low Energy Electrons, 2014.

R. Haight, F. Ross, and J. Hannon, Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, 2012.

H. Kawano, Effective work functions for ionic and electronic emissions from mono-and polycrystalline surfaces, Progress in Surface Science, vol.83, issue.1, pp.1-165, 2008.

H. L. Skriver and N. M. Rosengaard, Surface energy and work function of elemental metals, Phys. Rev. B, vol.46, pp.7157-7168, 1992.

L. Douillard and F. Charra, High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies, Journal of Physics D : Applied Physics, vol.44, issue.46, p.464002, 2011.

P. Alonso-gonzález, P. Albella, F. Neubrech, C. Huck, J. Chen et al., Experimental verification of the spectral shift between near-and far-field peak intensities of plasmonic infrared nanoantennas, Phys. Rev. Lett, vol.110, p.203902, 2013.

R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society of London Series A, vol.119, pp.173-181, 1928.

O. Richardson, Thermionic Emission from Hot Bodies. WATCHMAKER PUB, 2003.

W. Gautreau and R. Savin, Modern Physics. Schaum's Outline Series, 1999.

G. Baffou and H. Rigneault, Femtosecond-pulsed optical heating of gold nanoparticles, Phys. Rev. B, vol.84, p.35415, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00729077

I. Tamm and S. Schubin, Zur theorie des photoeffektes an metallen, Zeitschrift für Physik, vol.68, pp.97-113, 1931.

V. E. Babicheva, S. V. Zhukovsky, R. S. Ikhsanov, I. E. Protsenko, I. V. Smetanin et al., Hot electron photoemission from plasmonic nanostructures : The role of surface photoemission and transition absorption, ACS Photonics, vol.2, issue.8, pp.1039-1048, 2015.

F. and A. Cotton, Chemical Applications of Group Theory, 2015.

W. Zhang, B. Gallinet, and O. J. Martin, Symmetry and selection rules for localized surface plasmon resonances in nanostructures, Phys. Rev. B, vol.81, p.233407, 2010.

F. Volatron and P. Chaquin, La théorie des groupes en chimie. LMD Chimie, 2017.

C. , Application de la théorie des groupes à la chimie, tech. rep., Département de chimie Pérolles CH-1700 Fribourg, 2001.

C. Crespos, Symétrie moléculaire et théorie des groupes, tech. rep

. Wikilivres, Cristallographie géométrique/groupes ponctuels de symétrie -wikilivres, 2018.

N. Kawasaki, S. Meuret, R. Weil, H. Lourenço-martins, O. Stéphan et al., Extinction and scattering properties of high-order surface plasmon modes in silver nanoparticles probed by combined spatially resolved electron energy loss spectroscopy and cathodoluminescence, ACS Photonics, vol.3, issue.9, pp.1654-1661, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02059630

J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-santos et al., Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss eftem imaging, Opt. Lett, vol.34, pp.1003-1005, 2009.

E. Mårsell, R. Svärd, M. Miranda, C. Guo, A. Harth et al., Direct subwavelength imaging and control of near-field localization in individual silver nanocubes, Applied Physics Letters, vol.107, issue.20, p.201111, 2015.

P. Schwerdtfeger, L. N. Wirz, and J. Avery, The topology of fullerenes, Wiley Interdisciplinary Reviews : Computational Molecular Science, vol.5, issue.1, pp.96-145, 2015.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron et al., Selective excitation of plasmon resonances of single au triangles by polarization-dependent light excitation, The Journal of Physical Chemistry C, vol.116, issue.27, pp.14591-14598, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02369945

D. Kim, J. Heo, S. Ahn, S. W. Han, W. S. Yun et al., Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Letters, vol.9, issue.10, pp.3619-3625, 2009.

S. Mitiche, S. Marguet, F. Charra, and L. Douillard, Near-field localization of single au cubes : A group theory description, The Journal of Physical Chemistry C, vol.121, issue.8, pp.4517-4523, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01507472

M. Aeschlimann, T. Brixner, A. Fischer, M. Hensen, B. Huber et al., Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled lorentzian oscillator models, Applied Physics B, vol.122, p.199, 2016.

J. Yang, Q. Sun, H. Yu, K. Ueno, H. Misawa et al., Spatial evolution of the nearfield distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes, Photon. Res, vol.5, pp.187-193, 2017.

S. Derom, R. Vincent, A. Bouhelier, and G. C. Des-francs, Resonance quality, radiative/ohmic losses and modal volume of mie plasmons, Europhysics Letters), vol.98, issue.4, p.47008, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703527

J. M. Mclellan, Z. Li, A. R. Siekkinen, and Y. Xia, The sers activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization, Nano Letters, vol.7, issue.4, pp.1013-1017, 2007.

J. Katyal and R. K. Soni, Field enhancement around al nanostructures in the duv-visible region, Plasmonics, vol.10, pp.1729-1740, 2015.

J. Yang, Q. Sun, H. Yu, K. Ueno, H. Misawa et al., Spatial evolution of the nearfield distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes, Photon. Res, vol.5, pp.187-193, 2017.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev et al., Short range plasmon resonators probed by photoemission electron microscopy, Nano Letters, vol.8, issue.3, pp.935-940, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00268202

F. Wang and Y. R. Shen, General properties of local plasmons in metal nanostructures, Phys. Rev. Lett, vol.97, p.206806, 2006.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Resonant light scattering from metal nanoparticles : Practical analysis beyond rayleigh approximation, Applied Physics Letters, vol.83, issue.22, pp.4625-4627, 2003.

A. I. Dolinnyi, Nanometric rulers based on plasmon coupling in pairs of gold nanoparticles, The Journal of Physical Chemistry C, vol.119, issue.9, pp.4990-5001, 2015.

P. K. Jain and M. A. El-sayed, Plasmonic coupling in noble metal nanostructures, Chemical Physics Letters, vol.487, issue.4, pp.153-164, 2010.

W. L. Barnes, Particle plasmons : Why shape matters, American Journal of Physics, vol.84, issue.8, pp.593-601, 2016.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. De-abajo, Plasmons in nearly touching metallic nanoparticles : singular response in the limit of touching dimers, Opt. Express, vol.14, pp.9988-9999, 2006.

R. S. Pavlov, A. G. Curto, and N. F. Van-hulst, Log-periodic optical antennas with broadband directivity, Special Issue : Sub-wavelength Light Localization and Focusing, vol.285, pp.3334-3340, 2012.

M. J. Zheng, D. Y. Lei, K. Yakubo, and K. W. Yu, Asymmetric propagation of optical signals in graded plasmonic chains, Plasmonics, vol.6, pp.19-27, 2011.

A. V. Malyshev, V. A. Malyshev, and J. Knoester, Frequency-controlled localization of optical signals in graded plasmonic chains, Nano Letters, vol.8, issue.8, pp.2369-2372, 2008.

E. N. Economou, Surface plasmons in thin films, Phys. Rev, vol.182, pp.539-554, 1969.

J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films, Phys. Rev. B, vol.33, pp.5186-5201, 1986.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein et al., Short-range surface plasmonics : Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface, Science Advances, vol.3, issue.7, 2017.

T. Kaiser, M. Falkner, J. Qi, A. Klein, M. Steinert et al., Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy, Applied Physics B, vol.122, p.53, 2016.