Y. Abdelrahman, S. P. Ouellette, R. J. Belland, and J. V. Cox, Polarized Cell Division of Chlamydia trachomatis, PLoS Pathog, vol.12, p.1005822, 2016.

S. Abromaitis and R. S. Stephens, Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase, PLoS Pathog, vol.5, p.1000357, 2009.

P. Abrusci, M. A. Mcdowell, S. M. Lea, and S. Johnson, Building a secreting nanomachine: a structural overview of the T3SS, Curr. Opin. Struct. Biol, vol.25, pp.111-118, 2014.

K. E. Achyuthan and C. S. Greenberg, Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity, J. Biol. Chem, vol.262, pp.1901-1907, 1987.

A. Agah, T. R. Kyriakides, and P. Bornstein, Proteolysis of cell-surface tissue transglutaminase by matrix metalloproteinase-2 contributes to the adhesive defect and matrix abnormalities in thrombospondin-2-null fibroblasts and mice, Am. J. Pathol, vol.167, pp.81-89, 2005.

S. S. Akimov, D. Krylov, L. F. Fleischman, and A. M. Belkin, Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin, J. Cell Biol, vol.148, pp.825-863, 2000.

S. S. Akimov and A. M. Belkin, Opposing roles of Ras/Raf oncogenes and the MEK1/ERK signaling module in regulation of expression and adhesive function of surface transglutaminase, J. Biol. Chem, vol.278, pp.35609-35628, 2003.

M. A. Al-zeer, Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface, Mol. Microbiol, vol.94, pp.1285-97, 2014.

M. A. Al-zeer, Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II, vol.23, pp.100-110, 2017.

S. Altuntas, The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation, vol.6, pp.44941-54, 2015.

D. Anastasiou, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses, vol.334, pp.1278-83, 2011.

H. Ando, Purification and Characteristics of a Novel Transglutaminase Derived from Microorganisms, Agric. Biol. Chem, vol.53, pp.2613-2617, 1989.

M. A. Antonyak, Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells, Proc. Natl. Acad. Sci, vol.108, pp.4852-4857, 2011.

M. A. Antonyak, Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion, J. Biol. Chem, vol.284, pp.17914-17939, 2009.

M. A. Antonyak, Two isoforms of tissue transglutaminase mediate opposing cellular fates, Proc. Natl. Acad. Sci. U. S. A, vol.103, p.18609, 2006.

N. Assrir, Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis, vol.97, pp.39-48, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00912794

T. W. Axelrad, Platelet-activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration, FASEB J, vol.18, pp.568-570, 2004.

K. J. Baek, Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart, J. Biol. Chem, vol.268, pp.27390-27397, 1993.

Z. Balajthy, Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions, vol.108, pp.2045-2054, 2006.

B. L. Balint, Arginine methylation provides epigenetic transcription memory for retinoid-induced differentiation in myeloid cells, Mol. Cell. Biol, vol.25, pp.5648-63, 2005.

Z. Balklava, Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion, J. Biol. Chem, vol.277, pp.16567-75, 2002.

. Bannantine, . Griffiths, . Viratyosin, &. Brown, and . Rockey, A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane, Cell. Microbiol, vol.2, pp.35-47, 2000.

A. G. Barbour, K. Amano, T. Hackstadt, L. Perry, and H. D. Caldwell, Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid, J. Bacteriol, vol.151, pp.420-428, 1982.

P. M. Bavoil, P. X. Marques, R. Brotman, and J. Ravel, Does Active Oral Sex Contribute to Female Infertility?, J. Infect. Dis, vol.216, pp.932-935, 2017.

P. M. Bavoil and G. I. Byrne, Analysis of CPAF mutants: new functions, new questions (The ins and outs of a chlamydial protease), Pathog. Dis, vol.71, pp.287-291, 2014.

E. Becker and J. H. Hegemann, All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function, vol.3, pp.544-56, 2014.

A. M. Belkin, Transglutaminase-mediated oligomerization of the fibrin(ogen) C domains promotes integrin-dependent cell adhesion and signaling, vol.105, pp.3561-3568, 2005.

A. M. Belkin, Extracellular TG2: emerging functions and regulation, FEBS J, vol.278, pp.4704-4720, 2011.

A. M. Belkin, Matrix-dependent Proteolysis of Surface Transglutaminase by Membrane-type Metalloproteinase Regulates Cancer Cell Adhesion and Locomotion, J. Biol. Chem, vol.276, pp.18415-18422, 2001.

A. M. Belkin, Cell-Surface-Associated Tissue Transglutaminase Is a Target of MMP-2 Proteolysis ?, vol.43, pp.11760-11769, 2004.

R. J. Belland, Transcriptome analysis of chlamydial growth during IFN-gammamediated persistence and reactivation, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.15971-15977, 2003.

R. J. Belland, Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.8478-83, 2003.

J. M. Berg, M. Jeremy, J. L. Tymoczko, G. J. Gatto, and L. Stryer, Biochemistry, 2015.

A. M. Bersten, Q. F. Ahkong, T. Hallinan, S. J. Nelson, and J. A. Lucy, Inhibition of the formation of myotubes in vitro by inhibitors of transglutaminase, Biochim. Biophys. Acta -Mol. Cell Res, vol.762, pp.429-436, 1983.

H. J. Betts-hampikian and K. A. Fields, Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development, J. Bacteriol, vol.193, pp.6950-6959, 2011.

H. J. Betts-hampikian and K. A. Fields, The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut, Front. Microbiol, vol.1, p.114, 2010.

P. J. Birckbichler, G. R. Orr, M. K. Patterson, E. Conway, and H. A. Carter, Increase in proliferative markers after inhibition of transglutaminase, Proc. Natl. Acad. Sci. U. S. A, vol.78, pp.5005-5013, 1981.

W. A. Boisvert, Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size, Arterioscler. Thromb. Vasc. Biol, vol.26, pp.563-572, 2006.

G. Boncompain, The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids, PLoS, vol.9, p.86196, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01084394

L. K. Boroughs, M. A. Antonyak, J. L. Johnson, and R. A. Cerione, A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration, J. Biol. Chem, vol.286, pp.37094-107, 2011.

J. M. Bowness, J. E. Folk, and R. Timpl, Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen, J. Biol. Chem, vol.262, pp.1022-1026, 1987.

T. J. Brickman, C. E. Barry, T. Hackstadt, and T. Hackstadt, Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNAbinding activity, J. Bacteriol, vol.175, pp.4274-81, 1993.

T. Cacciamani, Specific methylation of the CpG-rich domains in the promoter of the human tissue transglutaminase gene, vol.297, pp.103-112, 2002.

L. Cai, B. M. Sutter, B. Li, and B. P. Tu, Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes, Mol, vol.42, pp.426-463, 2011.

L. Cai and B. P. Tu, Acetyl-CoA drives the transcriptional growth program in yeast, Cell, vol.10, pp.3045-3051, 2011.

J. Cao and W. Huang, Compensatory Increase of Transglutaminase 2 Is Responsible for Resistance to mTOR Inhibitor Treatment, PLoS, vol.11, p.149388, 2016.

L. Cao, Tissue transglutaminase links TGF-?, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer, vol.31, pp.2521-2534, 2012.

L. Cao, Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling, vol.29, pp.1893-1900, 2008.

R. A. Carabeo and T. Hackstadt, Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process, Infect. Immun, vol.69, pp.5899-904, 2001.

R. A. Carabeo, C. A. Dooley, S. S. Grieshaber, and T. Hackstadt, Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion, Cell. Microbiol, vol.9, pp.2278-2288, 2007.

R. A. Carabeo, S. S. Grieshaber, A. Hasenkrug, C. Dooley, and T. Hackstadt, Requirement for the Rac GTPase in Chlamydia trachomatis Invasion of Non-phagocytic Cells, vol.5, pp.418-425, 2004.

R. A. Carabeo, S. S. Grieshaber, E. Fischer, and T. Hackstadt, Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells, Infect. Immun, vol.70, pp.3793-803, 2002.

N. S. Caron, L. N. Munsie, J. W. Keillor, and R. Truant, Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells, PLoS, vol.7, p.44159, 2012.

V. Carpenter, Y. Chen, L. Dolat, and R. H. Valdivia, The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles. mSphere2, 2017.

R. Casadio, The structural basis for the regulation of tissue transglutaminase by calcium ions, Eur. J. Biochem, vol.262, pp.672-681, 1999.

R. Ceovic and S. J. Gulin, Lymphogranuloma venereum: diagnostic and treatment challenges, Infect. Drug Resist, vol.8, pp.39-47, 2015.

Q. Chang, Phosphorylation of Human Glutamine:Fructose-6-phosphate Amidotransferase by cAMP-dependent Protein Kinase at Serine 205 Blocks the Enzyme Activity, J. Biol. Chem, vol.275, pp.21981-21987, 2000.

D. Chen, Secretion of the chlamydial virulence factor CPAF requires the Secdependent pathway, vol.156, pp.3031-3071, 2010.

Y. Chen, The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling, PLoS Pathog, vol.10, p.1003954, 2014.

I. Choroszy-król, M. Frej-m?drzak, M. Hober, J. Sarowska, and A. Jama-kmiecik, Infections caused by Chlamydophila pneumoniae, Adv. Clin. Exp. Med, vol.23, pp.123-129, 2014.

G. Christiansen, L. B. Pedersen, J. E. Koehler, A. G. Lundemose, and S. Birkelund, Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA, J. Bacteriol, vol.175, pp.1785-95, 1993.

C. Chumduri, R. K. Gurumurthy, P. K. Zadora, Y. Mi, and T. F. Meyer, Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response, Cell Host, vol.13, pp.746-58, 2013.

B. A. Citron, Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration, Neurochem. Int, vol.40, pp.69-78, 2002.

J. D. Clausen, G. Christiansen, H. U. Holst, and S. Birkelund, Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection, Mol. Microbiol, vol.25, pp.441-449, 1997.

D. R. Clifton, A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.10166-71, 2004.

D. R. Clifton, Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin, Infect. Immun, vol.73, pp.3860-3868, 2005.

J. L. Cocchiaro, Y. Kumar, E. R. Fischer, T. Hackstadt, and R. H. Valdivia, Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.9379-84, 2008.

O. R. Colegio, Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, vol.513, pp.559-63, 2014.

M. M. Cossé, R. D. Hayward, and A. Subtil, One Face of Chlamydia trachomatis: The Infectious Elementary Body, 2016.

P. J. Coussons, N. C. Price, S. M. Kelly, B. Smith, and L. Sawyer, Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides, Biochem. J, vol.282, pp.929-959, 1992.

J. V. Cox, N. Naher, Y. M. Abdelrahman, and R. J. Belland, Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth, Cell. Microbiol, vol.14, pp.1497-512, 2012.

J. V. Cox, Y. M. Abdelrahman, J. Peters, N. Naher, and R. J. Belland, Chlamydia trachomatis utilizes the mammalian CLA1 lipid transporter to acquire host phosphatidylcholine essential for growth, Cell. Microbiol, vol.18, pp.305-318, 2016.

J. Cox, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell, vol.13, pp.2513-2539, 2014.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

É. Cs?sz, B. Meskó, and L. Fésüs, Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface, Amino, vol.36, pp.615-617, 2009.

M. Currò, Transglutaminase 2 and phospholipase A2 interactions in the inflammatory response in human Thp-1 monocytes, Amino, vol.46, pp.759-766, 2014.

M. D'eletto, Transglutaminase 2 is involved in autophagosome maturation, vol.5, pp.1145-54, 2009.

W. Dai and Z. Li, Conserved type III secretion system exerts important roles in Chlamydia trachomatis, Int. J. Clin. Exp. Pathol, vol.7, pp.5404-5418, 2014.

M. T. Damiani, J. Gambarte-tudela, and A. Capmany, Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication, Cell. Microbiol, vol.16, pp.1329-1338, 2014.

R. Dardik and A. Inbal, Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): Proposed mechanism for modulation of endothelial cell response to VEGF, Exp. Cell Res, vol.312, pp.2973-2982, 2006.

T. Darville and T. J. Hiltke, Pathogenesis of Genital Tract Disease Due to Chlamydia trachomatis, J. Infect. Dis, vol.201, pp.114-125, 2010.

A. Dautry-varsat, M. E. Balañá, and B. Wyplosz, Chlamydia-Host Cell Interactions: Recent Advances on Bacterial Entry and Intracellular Development, vol.5, pp.561-570, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00166950

E. De-clercq, I. Kalmar, and D. Vanrompay, Animal Models for Studying Female Genital Tract Infection with Chlamydia trachomatis, Infect. Immun, vol.81, pp.3060-3067, 2013.

V. De-laurenzi and G. Melino, Gene disruption of tissue transglutaminase, Mol. Cell. Biol, vol.21, pp.148-55, 2001.

C. Delevoye, SNARE protein mimicry by an intracellular bacterium, PLoS Pathog, vol.4, p.1000022, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00332618

M. S. Denzel, Hexosamine Pathway Metabolites Enhance Protein Quality Control and Prolong Life, vol.156, pp.1167-1178, 2014.

A. Diepold, A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome, Nat. Commun, vol.8, p.15940, 2017.

J. R. Doherty and J. L. Cleveland, Targeting lactate metabolism for cancer therapeutics, J. Clin. Invest, vol.123, pp.3685-92, 2013.

M. Dumoux, A. Menny, D. Delacour, and R. D. Hayward, A Chlamydia effector recruits CEP170 to reprogram host microtubule organization, J. Cell Sci, vol.128, pp.3420-3434, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01265766

L. M. Dyer, The transglutaminase 2 gene is aberrantly hypermethylated in glioma, J. Neurooncol, vol.101, pp.429-469, 2011.

R. L. Eckert, Transglutaminase is a tumor cell and cancer stem cell survival factor, Mol. Carcinog, vol.54, pp.947-58, 2015.

R. L. Eckert, Transglutaminase regulation of cell function, Physiol. Rev, vol.94, pp.383-417, 2014.

R. L. Eckert, M. T. Sturniolo, A. Broome, M. Ruse, and E. A. Rorke, Transglutaminase Function in Epidermis, J. Invest. Dermatol, vol.124, pp.481-492, 2005.

C. A. Elwell, A. Ceesay, J. H. Kim, D. Kalman, and J. N. Engel, RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry, PLoS Pathog, vol.4, p.1000021, 2008.

C. Elwell, K. Mirrashidi, and J. Engel, Chlamydia cell biology and pathogenesis, Nat. Rev. Microbiol, vol.14, pp.385-400, 2016.

J. Erde, R. R. Loo, and J. A. Loo, Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments, J. Proteome Res, vol.13, pp.1885-95, 2014.

C. Esposito, I. Caputo, . Mammalian, and . Transglutaminases, FEBS J, vol.272, pp.615-631, 2005.

C. Esposito, Ubiquitination of tissue transglutaminase is modulated by interferon alpha in human lung cancer cells, Biochem. J, vol.370, pp.205-217, 2003.

K. D. Everett and R. M. Bush, Molecular evolution of the Chlamydiaceae, Int. J. Syst. Evol. Microbiol, vol.51, pp.203-220, 2001.

R. M. Exley, Lactate acquisition promotes successful colonization of the murine genital tract by Neisseria gonorrhoeae, Infect. Immun, vol.75, pp.1318-1342, 2007.

S. Fadel and A. Eley, Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV, J. Med. Microbiol, vol.57, pp.1058-1061, 2008.

P. Falcone, D. Serafini-fracassini, and S. Del-duca, Comparative Studies of Transglutaminase Activity and Substrates in Different Organs of Helianthus tuberosus, J. Plant Physiol, vol.142, pp.265-273, 1993.

A. Fehr, Candidatus Syngnamydia venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle, PLoS, vol.8, p.70853, 2013.

J. Feng, M. Readon, S. P. Yadav, and M. Im, Calreticulin Down-Regulates both GTP Binding and Transglutaminase Activities of Transglutaminase II ?, vol.38, pp.10743-10749, 1999.

B. W. Festoff, Injury-induced 'switch' from GTP-regulated to novel GTPindependent isoform of tissue transglutaminase in the rat spinal cord, J. Neurochem, vol.81, pp.708-718, 2002.

L. Fesus, M. L. Metsis, L. Muszbek, and V. E. Koteliansky, Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments, Eur. J. Biochem, vol.154, pp.371-375, 1986.

K. A. Fields, D. J. Mead, C. A. Dooley, and T. Hackstadt, Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development, Mol. Microbiol, vol.48, pp.671-683, 2003.

J. E. Folk and . Transglutaminases, Annu. Rev. Biochem, vol.49, pp.517-531, 1980.

J. E. Folk, Polyamines as physiological substrates for transglutaminases, J. Biol. Chem, vol.255, pp.3695-700, 1980.

L. Fornelli, A. W. Schmid, L. Grasso, H. Vogel, and Y. O. Tsybin, Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation fourier transform mass spectrometry, vol.17, pp.486-97, 2011.

J. Forsprecher, Z. Wang, V. Nelea, and M. T. Kaartinen, Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin, Amino, vol.36, pp.747-753, 2009.

A. Fox, Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry, Infect. Immun, vol.58, pp.835-842, 1990.

B. M. Fraij, P. J. Birckbichler, M. K. Patterson, K. N. Lee, and R. A. Gonzales, A retinoic acid-inducible mRNA from human erythroleukemia cells encodes a novel tissue transglutaminase homologue, J. Biol. Chem, vol.267, pp.22616-22639, 1992.

B. M. Fraij and R. A. Gonzales, A third human tissue transglutaminase homologue as a result of alternative gene transcripts, Biochim. Biophys. Acta1306, pp.63-74, 1996.

G. Furini, Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys after Unilateral Ureteric Obstruction, J. Am. Soc. Nephrol, vol.29, pp.880-905, 2018.

Y. Furutani, M. Toguchi, R. Shrestha, and S. Kojima, Phenosafranin inhibits nuclear localization of transglutaminase 2 without affecting its transamidase activity, Amino, vol.49, pp.483-488, 2017.

L. Gehre, Sequestration of host metabolism by an intracellular pathogen, vol.5, p.12552, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01397781

W. M. Geisler, R. J. Suchland, D. D. Rockey, and W. E. Stamm, Epidemiology and Clinical Manifestations of Unique Chlamydia trachomatis Isolates That Occupy Nonfusogenic Inclusions, J. Infect. Dis, vol.184, pp.879-884, 2001.

M. D. George, T. M. Vollberg, E. E. Floyd, J. P. Stein, and A. M. Jetten, Regulation of transglutaminase type II by transforming growth factor-beta 1 in normal and transformed human epidermal keratinocytes, J. Biol. Chem, vol.265, pp.11098-104, 1990.

Z. George, The roles of unfolded protein response pathways in Chlamydia pathogenesis, J. Infect. Dis, p.569, 2016.

K. S. Ghanta, MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response, J. Biol. Chem, vol.286, pp.7132-7140, 2011.

Q. Giai-gianetto, Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments, vol.16, pp.29-32, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02191440

D. K. Giles, J. D. Whittimore, R. W. Larue, J. E. Raulston, and P. Wyrick, Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion, Microbes Infect, vol.8, pp.1579-1591, 2006.

F. B. Gordon and A. L. Quan, Occurence Of Glycogen In Inclusions Of The Psittacosis-Lymphogranuloma Venereum-Trachoma Agents, J. Infect. Dis, vol.115, pp.186-96, 1965.

N. A. Grieshaber, E. R. Fischer, D. J. Mead, C. A. Dooley, and T. Hackstadt, Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.7451-7457, 2004.

S. S. Grieshaber, N. A. Grieshaber, T. Hackstadt, C. J. Echeverri, and R. B. Vallee, Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process, J. Cell Sci, vol.116, pp.3793-802, 2003.

C. Guilluy, Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells, J. Biol. Chem, vol.282, pp.2918-2946, 2007.

N. V. Guseva, S. Dessus-babus, C. G. Moore, J. D. Whittimore, and P. B. Wyrick, Differences in Chlamydia trachomatis serovar E growth rate in polarized endometrial and endocervical epithelial cells grown in three-dimensional culture, Infect. Immun, vol.75, pp.553-64, 2007.

T. Hackstadt, D. D. Rockey, R. A. Heinzen, and M. A. Scidmore, Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane, EMBO J, vol.15, pp.964-77, 1996.

T. Hackstadt, W. J. Todd, and H. D. Caldwell, Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?, J. Bacteriol, vol.161, pp.25-31, 1985.

L. M. Hafner, Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections, vol.92, pp.108-115, 2015.

T. S. Hallstrand, Transglutaminase 2, a Novel Regulator of Eicosanoid Production in Asthma Revealed by Genome-Wide Expression Profiling of Distinct Asthma Phenotypes, PLoS, vol.5, p.8583, 2010.

R. B. Hamanaka and N. S. Chandel, Warburg effect and redox balance, vol.334, pp.1219-1239, 2011.

J. A. Han and S. C. Park, Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line, J. Cancer Res. Clin. Oncol, vol.125, pp.89-95, 1999.

G. Hasegawa, A novel function of tissue-type transglutaminase: protein disulphide isomerase, Biochem. J, vol.373, pp.793-803, 2003.

G. M. Hatch and G. Mcclarty, Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell, Infect. Immun, vol.66, pp.3727-3762, 1998.

T. P. Hatch, M. Miceli, and J. E. Sublett, Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis, J. Bacteriol, vol.165, pp.379-85, 1986.

N. Hay, Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?, Nat. Rev, vol.16, pp.635-649, 2016.

C. J. Hedeskov, Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes, Biochem. J, vol.110, pp.373-80, 1968.

J. R. Hernandez-fernaud, Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity, Nat. Commun, vol.8, p.14206, 2017.

D. Heuer, V. Brinkmann, T. F. Meyer, and A. J. Szczepek, Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae, Cell. Microbiol, vol.5, pp.315-337, 2003.

F. Higashikawa, A. Eboshida, and Y. Yokosaki, Enhanced biological activity of polymeric osteopontin, FEBS Lett, vol.581, pp.2697-2701, 2007.

M. Horn, Chlamydiae as symbionts in eukaryotes, Annu. Rev. Microbiol, vol.62, pp.113-144, 2008.

M. Horn and M. Wagner, Bacterial Endosymbionts of Free-living Amoebae, J. Eukaryot. Microbiol, vol.51, pp.509-514, 2004.

S. Hower, K. Wolf, and K. A. Fields, Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development, Mol. Microbiol, vol.72, pp.1423-1437, 2009.

K. Hybiske and R. S. Stephens, Mechanisms of host cell exit by the intracellular bacterium Chlamydia, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.11430-11435, 2007.

S. E. Iismaa, The Core Domain of the Tissue Transglutaminase G h Hydrolyzes GTP and ATP ?, vol.36, pp.11655-11664, 1997.

S. E. Iismaa, B. M. Mearns, L. Lorand, and R. M. Graham, Transglutaminases and Disease: Lessons From Genetically Engineered Mouse Models and Inherited Disorders, Physiol. Rev, vol.89, pp.991-1023, 2009.

E. R. Iliffe-lee and G. Mcclarty, Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited, Mol. Microbiol, vol.33, pp.177-87, 1999.

K. Iwai, Y. Shibukawa, N. Yamazaki, and Y. Wada, Transglutaminase 2-dependent Deamidation of Glyceraldehyde-3-phosphate Dehydrogenase Promotes Trophoblastic Cell Fusion, J. Biol. Chem, vol.289, pp.4989-4999, 2014.

G. Jang, Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-?B activity in hypoxic tumor cells, vol.29, pp.356-367, 2010.

A. Janiak, E. A. Zemskov, and A. M. Belkin, Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway, Mol. Biol. Cell17, pp.1606-1625, 2006.

E. M. Jeong, S-nitrosylation of transglutaminase 2 impairs fatty acid-stimulated contraction in hypertensive cardiomyocytes, Exp. Mol. Med, vol.50, p.9, 2018.

E. M. Jeong, Degradation of transglutaminase 2 by calcium-mediated ubiquitination responding to high oxidative stress, FEBS Lett, vol.583, pp.648-654, 2009.

T. J. Jewett, E. R. Fischer, D. J. Mead, and T. Hackstadt, Chlamydial TARP is a bacterial nucleator of actin, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15599-604, 2006.

P. Jiang, p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase, Nat. Cell Biol, vol.13, pp.310-316, 2011.

S. Jiwani, Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization, Biochem. Biophys. Res. Commun, vol.420, pp.816-837, 2012.

C. M. Johnson, Site-Specific, Insertional Inactivation of incA in Chlamydia trachomatis Using a Group II Intron, PLoS, vol.8, p.83989, 2013.

T. S. Johnson, Transglutaminase Inhibition Reduces Fibrosis and Preserves Function in Experimental Chronic Kidney Disease, J. Am. Soc. Nephrol, vol.18, pp.3078-3088, 2007.

P. Jó?wiak, E. Forma, M. Bry?, and A. Krze?lak, O-GlcNAcylation and Metabolic Reprograming in Cancer, Front. Endocrinol. (Lausanne), vol.5, p.145, 2014.

S. Jung, Identification of transglutaminase 2 kinase substrates using a novel onchip activity assay, Biosens. Bioelectron, vol.82, pp.40-48, 2016.

S. M. Jung, Increased tissue transglutaminase activity contributes to central vascular stiffness in eNOS knockout mice, Am. J. Physiol. Heart Circ. Physiol, vol.305, pp.803-813, 2013.

E. J. Kabeiseman, K. Cichos, T. Hackstadt, A. Lucas, and E. R. Moore, Vesicleassociated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion, Infect. Immun, vol.81, pp.3326-3363, 2013.

A. S. Karyagina, A. V. Alexeevsky, S. A. Spirin, N. A. Zigangirova, and A. L. Gintsburg, Effector Proteins of Chlamydiae, Mol. Biol, vol.43, pp.26-8933, 2009.

J. W. Keillor, K. Y. Apperley, and A. Akbar, Inhibitors of tissue transglutaminase, Trends Pharmacol. Sci, vol.36, pp.32-40, 2015.

Z. Keresztessy, Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2, Protein Sci, vol.15, pp.2466-80, 2006.

S. T. Khew, P. P. Panengad, M. Raghunath, and Y. W. Tong, Characterization of amine donor and acceptor sites for tissue type transglutaminase using a sequence from the Cterminus of human fibrillin-1 and the N-terminus of osteonectin, vol.31, pp.4600-4608, 2010.

M. Kieliszek and A. Misiewicz, Microbial transglutaminase and its application in the food industry. A review, Folia Microbiol. (Praha), vol.59, pp.241-250, 2014.

D. Y. Kim, N-acetylcysteine prevents LPS-induced pro-inflammatory cytokines and MMP2 production in gingival fibroblasts, Arch. Pharm. Res, vol.30, pp.1283-92, 2007.

N. Kim, Inter-molecular crosslinking activity is engendered by the dimeric form of transglutaminase 2, Amino, vol.49, pp.461-471, 2017.

S. Kim, E. Jeong, and P. Steinert, IFN-? Induces Transglutaminase 2 Expression in Rat Small Intestinal Cells, J. Interf. Cytokine Res, vol.22, pp.677-682, 2002.

R. Király, M. Demény, and L. Fésüs, Protein transamidation by transglutaminase 2 in cells: a disputed Ca 2+ -dependent action of a multifunctional protein, FEBS J, vol.278, pp.4717-4739, 2011.

B. Kleba and R. S. Stephens, Chlamydial effector proteins localized to the host cell cytoplasmic compartment, Infect. Immun, vol.76, pp.4842-50, 2008.

B. F. Krasnikov, Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria, vol.44, pp.7830-7873, 2005.

A. Kumar, Evidence That Aberrant Expression of Tissue Transglutaminase Promotes Stem Cell Characteristics in Mammary Epithelial Cells, PLoS, vol.6, p.20701, 2011.

A. Kumar, Tissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells, PLoS, vol.5, p.13390, 2010.

S. Kumar, T. R. Donti, N. Agnihotri, and K. Mehta, Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways, Int. J, vol.134, pp.2798-2807, 2014.

S. Kumar and K. Mehta, Tissue transglutaminase constitutively activates HIF-1? promoter and nuclear factor-?B via a non-canonical pathway, PLoS, vol.7, p.49321, 2012.

Y. Kumar and R. H. Valdivia, Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds, Cell Host, vol.4, pp.159-69, 2008.

Y. Kumar and R. H. Valdivia, Reorganization of the host cytoskeleton by the intracellular pathogen Chlamydia trachomatis, Commun. Integr. Biol, vol.1, pp.175-182, 2008.

G. S. Kuncio, TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells, Am. J. Physiol, vol.274, pp.240-245, 1998.

T. S. Lai, C. Davies, and C. S. Greenberg, Human tissue transglutaminase is inhibited by pharmacologic and chemical acetylation, Protein Sci, vol.19, pp.229-235, 2010.

T. Lai, Y. Liu, W. Li, and C. S. Greenberg, Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells, FASEB J, vol.21, p.4131, 2007.

J. K. Lee, Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis, Nat. Commun, vol.9, p.45, 2018.

J. Lee, Endoplasmic reticulum stress activates transglutaminase 2 leading to protein aggregation, Int. J. Mol. Med, vol.33, pp.849-55, 2014.

K. N. Lee, P. J. Birckbichler, and M. K. Patterson, Colorimetric assay of blood coagulation factor XIII in plasma, Clin. Chem, vol.34, pp.906-916, 1988.

K. N. Lee, M. D. Maxwell, M. K. Patterson, P. J. Birckbichler, and E. Conway, Identification of transglutaminase substrates in HT29 colon cancer cells: use of 5-(biotinamido)pentylamine as a transglutaminase-specific probe, Biochim. Biophys. Acta -Mol. Cell Res, vol.1136, pp.12-16, 1992.

L. Lei, X. Dong, Z. Li, and G. Zhong, Identification of a novel nuclear localization signal sequence in Chlamydia trachomatis-secreted hypothetical protein CT311, PLoS, vol.8, p.64529, 2013.

J. C. Leo, I. Grin, and D. Linke, Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.367, pp.1088-101, 2012.

M. Lesort, K. Attanavanich, J. Zhang, and G. V. Johnson, Distinct nuclear localization and activity of tissue transglutaminase, J. Biol. Chem, vol.273, pp.11991-11995, 1998.

Y. Li, Identification of a Novel Serine Phosphorylation Site in Human Glutamine:Fructose-6-phosphate Amidotransferase Isoform 1, vol.46, pp.13163-13172, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00185879

Z. Li, X. Xu, L. Bai, W. Chen, and Y. Lin, Epidermal growth factor receptor-mediated tissue transglutaminase overexpression couples acquired tumor necrosis factor-related apoptosis-inducing ligand resistance and migration through c-FLIP and MMP-9 proteins in lung cancer cells, J. Biol. Chem, vol.286, pp.21164-72, 2011.

P. Liang, Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation, J. Biol. Chem, vol.293, pp.510-522, 2018.

Y. Liao, M. Zhang, and B. Lönnerdal, Growth factor TGF-? induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop, Genes Nutr, vol.8, pp.69-78, 2013.

G. W. Liechti, A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis, vol.506, pp.507-517, 2014.

G. Liechti, Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division, PLOS Pathog, vol.12, p.1005590, 2016.

D. Liu, Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-?B-mediated MMP-2/9 activation, Oncol. Rep, vol.37, pp.1779-1785, 2017.

J. W. Locasale and L. C. Cantley, Metabolic flux and the regulation of mammalian cell growth, Cell Metab, vol.14, pp.443-51, 2011.

L. Lorand and R. M. Graham, Transglutaminases: crosslinking enzymes with pleiotropic functions, Nat. Rev. Mol. Cell Biol, vol.4, pp.140-156, 2003.

D. C. Love and J. A. Hanover, The hexosamine signaling pathway: deciphering the "O-GlcNAc code, Science2005, p.13, 2005.

C. Lu and C. B. Thompson, Metabolic regulation of epigenetics, Cell Metab, vol.16, pp.9-17, 2012.

S. Lu and P. J. Davies, Regulation of the expression of the tissue transglutaminase gene by DNA methylation, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.4692-4699, 1997.

A. Luciani, Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition, Nat. Cell Biol, vol.12, pp.863-75, 2010.

S. Y. Lunt and M. G. Vander-heiden, Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation, Annu. Rev. Cell Dev. Biol, vol.27, pp.441-464, 2011.

E. I. Lutter, A. C. Barger, V. Nair, and T. Hackstadt, Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms, Cell Rep, vol.3, pp.1921-1952, 2013.

D. Mabey, R. W. Peeling, and . Lymphogranuloma, Sex. Transm. Infect, vol.78, pp.90-92, 2002.

J. P. Mackern-oberti, Chlamydia trachomatis infection of the male genital tract: An update, J. Reprod. Immunol, vol.100, pp.37-53, 2013.

B. Maffei, O. Francetic, and A. Subtil, Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Front, Cell. Infect. Microbiol, vol.7, pp.1-17, 2017.

L. Maiuri, Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation, J. Immunol, vol.180, pp.7697-705, 2008.

M. Majeed, K. H. Krause, R. A. Clark, E. Kihlström, and O. Stendahl, Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis, J. Cell Sci, vol.112, pp.35-44, 1998.

V. Malhotra, Unconventional protein secretion: an evolving mechanism, EMBO J, vol.32, pp.1660-1664, 2013.

W. Malorni, The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis, Cell Death Differ, vol.16, pp.1480-1492, 2009.

P. Mariani, Ligand-Induced Conformational Changes in Tissue Transglutaminase: Monte Carlo Analysis of Small-Angle Scattering Data, Biophys. J, vol.78, pp.3240-3251, 2000.

S. Marshall, V. Bacote, and R. R. Traxinger, Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis. Evidence for rapid turnover of glutamine:fructose-6-phosphate amidotransferase, J. Biol. Chem, vol.266, pp.10155-61, 1991.

P. G. Mastroberardino, Tissue" transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes, Biochim. Biophys. Acta -Bioenerg, vol.1757, pp.1357-1365, 2006.

M. J. Mckuen, K. E. Mueller, Y. S. Bae, and K. A. Fields, Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK, Infect. Immun, vol.85, pp.640-657, 2017.

K. Mehta, High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells, Int. J, vol.58, pp.400-406, 1994.

K. Mehta, G. Lopez-berestein, W. T. Moore, and P. J. Davies, Interferon-gamma requires serum retinoids to promote the expression of tissue transglutaminase in cultured human blood monocytes, J. Immunol, vol.134, pp.2053-2059, 1985.

K. Mehta, A. Kumar, and H. I. Kim, Transglutaminase 2: A multi-tasking protein in the complex circuitry of inflammation and cancer, Biochem. Pharmacol, vol.80, pp.1921-1929, 2010.

B. Mehul, S. Bawumia, and R. Hughes, Cross-linking of galectin 3, a galactosebinding protein of mammalian cells, by tissue-type transglutaminase, FEBS Lett, vol.360, pp.160-164, 1995.

G. Melino, Macrophages Engulfing Apoptotic Cells in Formation of an Efficient Phagocyte Portal Transglutaminase 2 Is Needed for the Transglutaminase 2 Is Needed for the Formation of an Efficient Phagocyte Portal in Macrophages Engulfing Apoptotic Cells 1, J Immunol J. Immunol, vol.182, pp.2084-2092, 2009.

D. Merz, R. Liu, K. Johnson, and R. Terkeltaub, IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation, J. Immunol, vol.171, pp.4406-4421, 2003.

S. Mhaoutykodja, Gh/tissue transglutaminase 2: an emerging G protein in signal transduction, Biol, vol.96, pp.363-367, 2004.

J. F. Miller, J. J. Mekalanos, and S. Falkow, Coordinate regulation and sensory transduction in the control of bacterial virulence, vol.243, pp.916-938, 1989.

B. Min, CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer, vol.35, pp.3718-3728, 2016.

B. Min, Y. Kwon, K. Choe, and K. C. Chung, PINK1 phosphorylates transglutaminase 2 and blocks its proteasomal degradation, J. Neurosci. Res, vol.93, pp.722-735, 2015.

K. M. Mirrashidi, Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection, Cell Host, vol.18, pp.109-130, 2015.

A. Mirza, A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB, Am. J. Physiol, vol.272, pp.281-289, 1997.

S. Mishra, G. Melino, and L. J. Murphy, Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein, J. Biol. Chem, vol.282, pp.18108-18123, 2007.

S. Mishra and L. J. Murphy, Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase, J. Biol. Chem, vol.279, pp.23863-23871, 2004.

S. Mishra and L. J. Murphy, Phosphorylation of transglutaminase 2 by PKA at Ser216 creates 14-3-3 binding sites, Biochem. Biophys. Res. Commun, vol.347, pp.1166-1170, 2006.

S. Mishra and L. J. Murphy, The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity, Biochem. Biophys. Res. Commun, vol.339, pp.726-730, 2006.

S. Mishra, A. Saleh, P. S. Espino, J. R. Davie, and L. J. Murphy, Phosphorylation of histones by tissue transglutaminase, J. Biol. Chem, vol.281, pp.5532-5540, 2006.

J. Mital, E. I. Lutter, A. C. Barger, C. A. Dooley, and T. Hackstadt, Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1), Biochem. Biophys. Res. Commun, vol.462, pp.165-70, 2015.

I. Miyairi, K. H. Ramsey, and D. L. Patton, Duration of Untreated Chlamydial Genital Infection and Factors Associated with Clearance: Review of Animal Studies, J. Infect. Dis, vol.201, pp.96-103, 2010.

M. Mohammadpour, M. Abrishami, A. Masoumi, and H. Hashemi, Trachoma: Past, present and future, J. Curr. Ophthalmol, vol.28, pp.165-169, 2016.

A. Monsonego, Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes, J. Biol. Chem, vol.272, pp.3724-3756, 1997.

E. R. Moore, D. J. Mead, C. A. Dooley, J. Sager, and T. Hackstadt, The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane, vol.157, pp.830-838, 2011.

W. T. Moore, M. P. Murtaugh, and P. J. Davies, Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages, J. Biol. Chem, vol.259, pp.12794-802, 1984.

J. W. Moulder, D. L. Novosel, and J. E. Officier, Inhibition Of The Growth Of Agents Of The Psittacosis Group By D-Cycloserine And Its Specific Reversal By D-Alanine, J. Bacteriol, vol.85, pp.707-718, 1963.

J. W. Moulder, The Biochemistry of Intracellular Parasitism. Science (80-. ), vol.138, pp.25-25, 1962.

K. E. Mueller, K. Wolf, and K. A. Fields, Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis, vol.7, pp.1817-1832, 2016.

B. C. Mulukutla, S. Khan, A. Lange, and W. Hu, Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways, Trends Biotechnol, vol.28, pp.476-484, 2010.

L. Nagy, Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter, J. Biol. Chem, vol.271, pp.4355-65, 1996.

Y. Nakaishi, Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes, FEBS Lett, vol.583, pp.163-167, 2009.

Y. Nakano, W. N. Addison, and M. T. Kaartinen, ATP-mediated mineralization of MC3T3-E1 osteoblast cultures, vol.41, pp.549-61, 2007.

Y. Nakano, J. Forsprecher, and M. T. Kaartinen, Regulation of ATPase activity of transglutaminase 2 by MT1-MMP: Implications for mineralization of MC3T3-E1 osteoblast cultures, J. Cell. Physiol, vol.223, 2009.

H. Nakaoka, Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function, vol.264, pp.1593-1599, 1994.

A. Nans, M. Kudryashev, H. R. Saibil, and R. D. Hayward, Structure of a bacterial type III secretion system in contact with a host membrane in situ, Nat. Commun, vol.6, p.10114, 2015.

A. Nans, H. R. Saibil, and R. D. Hayward, Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography, Cell. Microbiol, vol.16, pp.1457-72, 2014.

V. Nelea, Y. Nakano, and M. T. Kaartinen, Size Distribution and Molecular Associations of Plasma Fibronectin and Fibronectin Crosslinked by Transglutaminase 2, Protein J, vol.27, pp.223-233, 2008.

Z. Nemes, Transglutaminase-mediated intramolecular cross-linking of membranebound alpha-synuclein promotes amyloid formation in Lewy bodies, J. Biol. Chem, vol.284, pp.27252-64, 2009.

L. Newman, Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting, PLoS, vol.10, p.143304, 2015.

B. D. Nguyen and R. H. Valdivia, Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.1263-1271, 2012.

P. H. Nguyen, E. I. Lutter, and T. Hackstadt, Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation, PLOS Pathog, vol.14, p.1006911, 2018.

T. L. Nicholson, L. Olinger, K. Chong, G. Schoolnik, and R. S. Stephens, Global stagespecific gene regulation during the developmental cycle of Chlamydia trachomatis, J. Bacteriol, vol.185, pp.3179-89, 2003.

A. A. Novo and . Norm, Analysis of multivariate normal datasets with missing values. R Packag. version 1.0-9, 2013.

A. Nunes and J. P. Gomes, Evolution, phylogeny, and molecular epidemiology of Chlamydia, Infect. Genet. Evol, vol.23, pp.49-64, 2014.

A. Nunes, P. J. Nogueira, M. J. Borrego, and J. P. Gomes, Chlamydia trachomatis diversity viewed as a tissue-specific coevolutionary arms race, Genome Biol, vol.9, p.153, 2008.

M. Nurminskaya, K. E. Beazley, E. P. Smith, and A. M. Belkin, Transglutaminase 2 promotes PDGF-mediated activation of PDGFR/Akt1 and ?-catenin signaling in vascular smooth muscle cells and supports neointima formation, J. Vasc. Res, vol.51, pp.418-446, 2014.

K. Oh, Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells, Breast Cancer Res, vol.13, p.96, 2011.

D. M. Ojcius, H. Degani, J. Mispelter, and A. Dautry-varsat, Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells, J. Biol. Chem, vol.273, pp.7052-7060, 1998.

K. C. Olsen, Transglutaminase 2 and Its Role in Pulmonary Fibrosis, Am. J. Respir. Crit. Care Med, vol.184, pp.699-707, 2011.

A. Omsland, J. Sager, V. Nair, D. E. Sturdevant, and T. Hackstadt, Developmental stagespecific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.19781-19786, 2012.

A. Omsland, B. S. Sixt, M. Horn, and T. Hackstadt, Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities, FEMS Microbiol. Rev, vol.38, pp.779-801, 2014.

S. Orrù, I. Caputo, A. D'amato, M. Ruoppolo, and C. Esposito, Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease, J. Biol. Chem, vol.278, pp.31766-73, 2003.

S. P. Ouellette, Feasibility of a Conditional Knockout System for Chlamydia-Based on CRISPR Interference, Front. Cell. Infect. Microbiol, vol.8, p.59, 2018.

M. Packiam, B. Weinrick, W. R. Jacobs, A. T. Maurelli, and A. T. Maurelli, Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves 'chlamydial anomaly, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.11660-11665, 2015.

S. V. Pais, C. Milho, F. Almeida, and L. J. Mota, Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis, PLoS, vol.8, p.56292, 2013.

I. Palucci, Transglutaminase type 2 plays a key role in the pathogenesis of Mycobacterium tuberculosis infection, J. Intern. Med, vol.283, pp.303-313, 2018.

C. Pardin, I. Roy, W. D. Lubell, and J. W. Keillor, Reversible and Competitive Cinnamoyl Triazole Inhibitors of Tissue Transglutaminase, Chem. Biol. Drug Des, vol.72, pp.189-196, 2008.

D. Park, S. S. Choi, and K. Ha, Transglutaminase 2: a multi-functional protein in multiple subcellular compartments, Amino, vol.39, pp.619-631, 2010.

S. Y. Park, Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition, EMBO J, vol.29, pp.3787-96, 2010.

G. Pascual, A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma, vol.437, pp.759-63, 2005.

M. J. Patton, Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation, vol.7, 2016.

B. Paul, Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis, vol.6, 2017.

N. Paulmann, Intracellular Serotonin Modulates Insulin Secretion from Pancreatic ?-Cells by Protein Serotonylation. PLoS Biol, vol.7, p.1000229, 2009.

F. Paumet, Intracellular bacteria encode inhibitory SNARE-like proteins, PLoS, vol.4, p.7375, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00435522

B. Peng, Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum, BMC Infect. Dis, vol.11, p.347, 2011.

M. E. Pennini, S. Perrinet, A. Dautry-varsat, and A. Subtil, Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis, PLoS Pathog, vol.6, p.1000995, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00531755

V. M. Phatak, Expression of transglutaminase-2 isoforms in normal human tissues and cancer cell lines: dysregulation of alternative splicing in cancer, Amino, vol.44, pp.33-44, 2013.

M. Piacentini, The expression of tissue transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis), Eur. J. Cell Biol, vol.54, pp.246-54, 1991.

M. Piacentini, Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states, Cell Tissue Res, vol.358, pp.793-805, 2014.

J. H. Pincus and H. Waelsch, The specificity of transglutaminase: I. Human hemoglobin as a substrate for the enzyme, Arch. Biochem. Biophys, vol.126, pp.34-43, 1968.

D. M. Pinkas, P. Strop, A. T. Brunger, and C. Khosla, Transglutaminase 2 undergoes a large conformational change upon activation, PLoS Biol, vol.5, p.327, 2007.

N. M. Plugis, B. A. Palanski, C. Weng, M. Albertelli, and C. Khosla, Thioredoxin-1 Selectively Activates Transglutaminase 2 in the Extracellular Matrix of the Small Intestine, J. Biol. Chem, vol.292, 2000.

I. D. Pokrovskaya, Chlamydia trachomatis hijacks intra-Golgi COG complexdependent vesicle trafficking pathway, Cell. Microbiol, vol.14, pp.656-68, 2012.

W. L. Poteat and W. J. Bo, The interaction of clomiphene, estradiol, and progesterone in the control of rat uterine glycogen metabolism, Am. J. Anat, vol.149, pp.153-163, 1977.

S. Pounds and C. Cheng, Robust estimation of the false discovery rate, vol.22, pp.1979-87, 2006.

B. K. Prusty, Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection, PLoS, vol.7, p.47427, 2012.

M. Puzan, S. Hosic, C. Ghio, and A. Koppes, Enteric Nervous System Regulation of Intestinal Stem Cell Differentiation and Epithelial Monolayer Function, Sci. Rep, vol.8, p.6313, 2018.

G. Quan, J. Choi, D. Lee, and S. Lee, TGF-?1 up-regulates transglutaminase two and fibronectin in dermal fibroblasts: a possible mechanism for the stabilization of tissue inflammation, Arch. Dermatol. Res, vol.297, pp.84-90, 2005.

M. Raghunath, Cross-linking of the dermo-epidermal junction of skin regenerating from keratinocyte autografts, J. Clin. Invest, vol.98, pp.1174-1184, 1996.

K. Rajeeve, S. Das, B. K. Prusty, and T. Rudel, Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response, Nat. Microbiol, vol.3, pp.824-835, 2018.

J. Raji?, Chlamydia trachomatis Infection Is Associated with E-Cadherin Promoter Methylation, Downregulation of E-Cadherin Expression, and Increased Expression of Fibronectin and ?-SMA-Implications for Epithelial-Mesenchymal Transition, Front. Cell. Infect. Microbiol, vol.7, p.253, 2017.

S. J. Rasmussen, Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis, J. Clin. Invest, vol.99, pp.77-87, 1997.

N. Rathor, S. R. Wang, E. T. Chang, and J. N. Rao, Differentiated intestinal epithelial cells express high levels of TGF-? receptors and exhibit increased sensitivity to growth inhibition, Int. J. Clin. Exp. Med, vol.4, pp.299-308, 2011.

T. D. Read, Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39, Nucleic Acids Res, vol.28, pp.1397-406, 2000.

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

S. J. Ritter and P. J. Davies, Identification of a transforming growth factor-beta1/bone morphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissue transglutaminase gene promoter, J. Biol. Chem, vol.273, pp.12798-806, 1998.

D. K. Robertson, L. Gu, R. K. Rowe, and W. L. Beatty, Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis, PLoS Pathog, vol.5, p.1000664, 2009.

C. Rodolfo, Tissue transglutaminase is a multifunctional BH3-only protein, J. Biol. Chem, vol.279, pp.54783-92, 2004.

F. Rossin, M. D'eletto, D. Macdonald, M. G. Farrace, and M. Piacentini, TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy. Amino Acids42, pp.1793-1802, 2012.

F. Rossin, TG2 regulates the heat-shock response by the post-translational modification of HSF1, EMBO Rep, vol.19, p.45067, 2018.

A. Roth, Hypoxia abrogates antichlamydial properties of IFN-? in human fallopian tube cells in vitro and ex vivo, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.19502-19509, 2010.

M. Rother, Combined Human Genome-wide RNAi and Metabolite Analyses Identify IMPDH as a Host-Directed Target against Chlamydia Infection, Cell Host Microbe, 2018.

N. Salamin, C. Bertelli, G. Greub, and T. Pillonel, Taxogenomics of the order Chlamydiales, Int. J. Syst. Evol. Microbiol, vol.65, pp.1381-1393, 2015.

M. Sandkvist, Type II secretion and pathogenesis, Infect. Immun, vol.69, pp.3523-3558, 2001.

L. Santhanam, D. E. Berkowitz, and A. M. Belkin, Nitric oxide regulates non-classical secretion of tissue transglutaminase, Commun. Integr. Biol, vol.4, pp.584-590, 2011.

L. Santhanam, Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness, Circ. Res, vol.107, pp.117-142, 2010.

N. K. Sarkar, D. D. Clarke, and H. Waelsch, An enzymically catalyzed incorporation of amines into proteins, Biochim. Biophys. Acta25, pp.451-452, 1957.

M. Satpathy, Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase, Cancer Res, vol.67, pp.7194-202, 2007.

M. Satpathy, M. Shao, R. Emerson, D. B. Donner, and D. Matei, Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity, J. Biol. Chem, vol.284, pp.15390-15399, 2009.

A. Scarpellini, Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2, J. Biol. Chem, vol.284, pp.18411-18434, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00502392

M. Schnoor, Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migration, J. Immunol, vol.194, pp.3535-3576, 2015.

C. Schwöppe, H. H. Winkler, and H. E. Neuhaus, Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC), J. Bacteriol, vol.184, pp.2108-2123, 2002.

M. A. Scidmore, Cultivation and Laboratory Maintenance of Chlamydia trachomatis, Current Protocols in Microbiology, 2005.

K. F. Scott, F. L. Meyskens, and D. H. Russell, Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chinese hamster ovary cells and in melanoma cells stimulated to differentiate, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.4093-4100, 1982.

B. Seiving, K. Ohlsson, C. Linder, and P. Stenberg, Transglutaminase differentiation during maturation of human blood monocytes to macrophages, Eur. J. Haematol, vol.46, pp.263-71, 1991.

H. Sellami, Chlamydia trachomatis infection increases the expression of inflammatory tumorigenic cytokines and chemokines as well as components of the Tolllike receptor and NF-?B pathways in human prostate epithelial cells, Mol. Cell, vol.28, pp.147-154, 2014.

L. Shan, Structural basis for gluten intolerance in celiac sprue, vol.297, pp.2275-2284, 2002.

M. Shao, Epithelial-to-Mesenchymal Transition and Ovarian Tumor Progression Induced by Tissue Transglutaminase, Cancer Res, vol.69, pp.9192-9201, 2009.

M. Sharma, HIF-1? is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells, Cell. Microbiol, vol.13, pp.1573-1585, 2011.

E. I. Shaw, Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle, Mol. Microbiol, vol.37, pp.913-925, 2000.

J. H. Shaw, A. R. Behar, T. A. Snider, N. A. Allen, and E. I. Lutter, Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In vivo, Front. Cell. Infect. Microbiol, vol.7, p.18, 2017.

A. M. Sherrid and K. Hybiske, Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells, Infect. Immun, vol.85, 2017.

A. A. Shestov, Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step, Elife3, 2014.

K. Shima, Interferon-? interferes with host cell metabolism during intracellular Chlamydia trachomatis infection, Cytokine, 2018.

A. V. Shinde, Pharmacologic inhibition of the enzymatic effects of tissue transglutaminase reduces cardiac fibrosis and attenuates cardiomyocyte hypertrophy following pressure overload, J. Mol. Cell. Cardiol, vol.117, pp.36-48, 2018.

R. Shrestha, Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells, Cell Death Dis, vol.6, p.2002, 2015.

C. Siegl, B. K. Prusty, K. Karunakaran, J. Wischhusen, and T. Rudel, Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection, Cell Rep, vol.9, pp.918-929, 2014.

U. S. Singh and R. A. Cerione, Biochemical effects of retinoic acid on GTP-binding Protein/Transglutaminases in HeLa cells. Stimulation of GTP-binding and transglutaminase activity, membrane association, and phosphatidylinositol lipid turnover, J. Biol. Chem, vol.271, pp.27292-27300, 1996.

B. S. Sixt, The Chlamydia trachomatis Inclusion Membrane Protein CpoS Counteracts STING-Mediated Cellular Surveillance and Suicide Programs, Cell Host, vol.21, pp.113-121, 2017.

T. F. Slaughter, K. E. Achyuthan, T. Lai, and C. S. Greenberg, A microtiter plate transglutaminase assay utilizing 5-(biotinamido)pentylamine as substrate, Anal. Biochem, vol.205, pp.166-171, 1992.

G. K. Smyth and . Limma, Linear Models for Microarray Data, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, vol.397, issue.420, 2005.

J. Sohn, J. B. Chae, S. Y. Lee, S. Kim, and J. Kim, A novel therapeutic target in inflammatory uveitis: transglutaminase 2 inhibitor, Korean J. Ophthalmol, vol.24, pp.29-34, 2010.

K. E. Spaeth, Y. Chen, and R. H. Valdivia, The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex, PLoS Pathog, vol.5, p.1000579, 2009.

T. A. Spurlin, K. Bhadriraju, K. Chung, A. Tona, and A. L. Plant, The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling, vol.30, pp.5486-5496, 2009.

J. Stamnaes, B. Fleckenstein, and L. M. Sollid, The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions, Biochim. Biophys. Acta1784, pp.1804-1815, 2008.

J. Stamnaes, R. Iversen, M. F. Du-pré, X. Chen, and L. M. Sollid, Enhanced B-Cell Receptor Recognition of the Autoantigen Transglutaminase 2 by Efficient Catalytic Self-Multimerization, PLoS, vol.10, p.134922, 2015.

J. Stamnaes, D. M. Pinkas, B. Fleckenstein, C. Khosla, and L. M. Sollid, Redox regulation of transglutaminase 2 activity, J. Biol. Chem, vol.285, pp.25402-25411, 2010.

R. Stanhope, E. Flora, C. Bayne, and I. Derré, IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.12039-12044, 2017.

R. S. Stephens, K. Koshiyama, E. Lewis, and A. Kubo, Heparin-binding outer membrane protein of Chlamydiae, Mol. Microbiol, vol.40, pp.691-700, 2001.

R. S. Stephens, Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis. Science (80-. ), vol.282, pp.754-759, 1998.

R. S. Stephens and A. Kubo, Substrate-specific diffusion of select dicarboxylates through Chlamydia trachomatis PorB, vol.147, pp.3135-3140, 2001.

H. Su, A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.11143-11151, 1996.

A. Subtil, A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Mol. Microbiol, vol.56, pp.1636-1683, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021366

Y. Sugimura, Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA, J. Biol. Chem, vol.281, pp.17699-706, 2006.

Z. Szondy, Transglutaminase 2-/-mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.7812-7817, 2003.

H. J. Tarbet, Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton, vol.7, p.31807, 2018.

H. R. Taylor, M. J. Burton, D. Haddad, S. West, H. Wright et al., Lancet, vol.384, pp.2142-52, 2014.

D. Telci, R. J. Collighan, H. Basaga, and M. Griffin, Increased TG2 expression can result in induction of transforming growth factor beta1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide, J. Biol. Chem, vol.284, pp.29547-58, 2009.

D. Telci, Fibronectin-Tissue Transglutaminase Matrix Rescues RGD-impaired Cell Adhesion through Syndecan-4 and ? 1 Integrin Co-signaling, J. Biol. Chem, vol.283, pp.20937-20947, 2008.

F. Tokunaga, Limulus hemocyte transglutaminase. Its purification and characterization, and identification of the intracellular substrates, J. Biol. Chem, vol.268, pp.252-61, 1993.

J. Tucholski, M. Lesort, and G. V. Johnson, Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells, vol.102, pp.481-91, 2001.

M. Tuffrey, P. Falder, and D. Taylor-robinson, Genital-tract infection and disease in nude and immunologically competent mice after inoculation of a human strain of Chlamydia trachomatis, Br. J. Exp. Pathol, vol.63, pp.539-585, 1982.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc, vol.11, pp.2301-2319, 2016.

M. Unemo, Sexually transmitted infections: challenges ahead, Lancet. Infect. Dis, vol.17, pp.235-279, 2017.

J. Van-den-akker, Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation, Amino, vol.42, pp.961-73, 2012.

M. E. Van-strien, Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration, Brain. Behav. Immun, vol.50, pp.141-154, 2015.

B. B. Vandahl, S. Birkelund, and G. Christiansen, Genome and proteome analysis of Chlamydia, vol.4, pp.2831-2873, 2004.

E. A. Verderio, T. Johnson, and M. Griffin, Tissue transglutaminase in normal and abnormal wound healing: Review article, Amino, vol.26, pp.387-404, 2004.

E. A. Verderio, D. Telci, A. Okoye, G. Melino, and M. Griffin, A Novel RGDindependent Cell Adhesion Pathway Mediated by Fibronectin-bound Tissue Transglutaminase Rescues Cells from Anoikis, J. Biol. Chem, vol.278, pp.42604-42614, 2003.

E. Verderio, Regulation of Cell Surface Tissue Transglutaminase: Effects on Matrix Storage of Latent Transforming Growth Factor-? Binding Protein-1, J. Histochem. Cytochem, vol.47, pp.1417-1432, 1999.

A. Verma, Tissue Transglutaminase Regulates Focal Adhesion Kinase/AKT Activation by Modulating PTEN Expression in Pancreatic Cancer Cells, Clin. Cancer Res, vol.14, 1997.

A. Verma, Increased Expression of Tissue Transglutaminase in Pancreatic Ductal Adenocarcinoma and Its Implications in Drug Resistance and Metastasis, Cancer Res, vol.66, pp.10525-10533, 2006.

P. Vizán, Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29, Int. J, vol.124, pp.2789-2796, 2009.

T. M. Vollberg, M. D. George, C. Nervi, and A. M. Jetten, Regulation of Type I and Type II Transglutaminase in Normal Human Bronchial Epithelial and Lung Carcinoma Cells, Am. J. Respir. Cell Mol. Biol, vol.7, pp.10-18, 1992.

F. Vromman, M. Laverrière, S. Perrinet, A. Dufour, and A. Subtil, Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry, PLoS, vol.9, p.99197, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01448137

D. J. Walther, Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release, vol.115, pp.851-62, 2003.

D. J. Walther, S. Stahlberg, and J. Vowinckel, Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases, FEBS J, vol.278, pp.4740-4755, 2011.

L. Wang, Nonpathogenic Colonization with Chlamydia in the Gastrointestinal Tract as Oral Vaccination for Inducing Transmucosal Protection, Infect. Immun, vol.86, pp.630-647, 2018.

X. Wang, K. Hybiske, and R. S. Stephens, Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity, Pathog. Dis, vol.75, 2017.

Y. Wang, Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector, PLoS Pathog, vol.7, p.1002258, 2011.

O. Warburg, On the origin of cancer cells, vol.123, pp.309-323, 1956.

S. W. Watts, J. R. Priestley, and J. M. Thompson, Serotonylation of vascular proteins important to contraction, PLoS, vol.4, p.5682, 2009.

M. M. Weber, L. D. Bauler, J. Lam, and T. Hackstadt, Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis, Infect. Immun. IAI, pp.1075-1090, 2015.

M. M. Weber, Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death, Cell Rep, vol.19, pp.1406-1417, 2017.

U. Welge-lüssen, C. A. May, and E. Lütjen-drecoll, Induction of tissue transglutaminase in the trabecular meshwork by TGF-beta1 and TGF-beta2, Invest. Ophthalmol. Vis. Sci, vol.41, pp.2229-2267, 2000.

J. Wesolowski, Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning. MBio8, 2017.

S. Wieczorek, DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics, vol.33, pp.135-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02191349

Y. Yamamoto and R. B. Gaynor, I?B kinases: key regulators of the NF-?B pathway, Trends Biochem. Sci, vol.29, pp.72-79, 2004.

H. Yasueda, Y. Kumazawa, and M. Motoki, Purification and Characterization of a Tissuetype Transglutaminase from Red Sea Bream Pagrus major, Biosci. Biotechnol. Biochem, vol.58, pp.2041-2045, 1994.

E. A. Zemskov, Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase, J. Biol. Chem, vol.284, pp.16693-703, 2009.

E. A. Zemskov, I. Mikhailenko, D. K. Strickland, and A. M. Belkin, Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1, J. Cell Sci, vol.120, pp.3188-99, 2007.

E. A. Zemskov, I. Mikhailenko, R. Hsia, L. Zaritskaya, and A. M. Belkin, Unconventional Secretion of Tissue Transglutaminase Involves Phospholipid-Dependent Delivery into Recycling Endosomes, PLoS, vol.6, p.19414, 2011.

J. P. Zhang and R. S. Stephens, Mechanism of C. trachomatis attachment to eukaryotic host cells, vol.69, pp.861-869, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00254094

G. Zhong, P. Fan, H. Ji, F. Dong, and Y. Huang, Identification of a chlamydial proteaselike activity factor responsible for the degradation of host transcription factors, J. Exp. Med, vol.193, pp.935-977, 2001.

G. Zhong, Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract -A Two-Hit Hypothesis, Trends Microbiol, 2017.

D. Zibrova, GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis, Biochem. J, vol.474, pp.983-1001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02366087

X. L. Zu and M. Guppy, Cancer metabolism: facts, fantasy, and fiction, Biochem. Biophys. Res. Commun, vol.313, pp.459-65, 2004.

M. Zuck, T. Ellis, A. Venida, and K. Hybiske, Extrusions are phagocytosed and promote Chlamydia survival within macrophages, Cell. Microbiol, vol.19, p.12683, 2017.

. Who-|-report, Of The 18th Meeting Of The WHO Alliance For The Global Elimination Of Trachoma By, WHO, 2014.

, WHO | Global health sector strategy on Sexually Transmitted Infections, 2016.