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Résumé

L’imagerie de réonance magnétique nucléaire pondérée par di�usion (dMRI) est
une technique expérimentale qui a pour but d’identi�er les propriétés micro-
structurales d’un échantillon bien en-dessous de la résolution conventionnelle de
l’IRM “classique”. Cette technique repose sur la mesure de la dispersion de phase
de spins portés par des molécules qui di�usent dans un champ magnétique inho-
mogène. Bien que la trajectoire individuelle de chaque molécule soit inaccessible
expérimentalement, la dispersion de phase qui en résulte conduit à une diminu-
tion du signal d’IRM qui, à son tour, permet de remonter aux caractéristiques des
trajectoires di�usives. Bien que cette technique ait été introduite et appliquée
dans divers contextes depuis plusieurs décennies, de nombreux éléments théo-
riques restent à élucider, et ce d’autant plus avec l’amélioration constante des
appareils d’imagerie et des techniques expérimentales. Notablement, les méca-
nismes de formation du signal d’IRM aux forts gradients sont encore largement
incompris, malgré une tendance “naturelle” à l’augmentation des gradients pour
sonder des échelles structurales de plus en plus �nes.

Nous revisitons dans un premier temps les e�ets d’anisotropie géométrique.
Tandis que l’anisotropie aux échelles micro- et macroscopiques a été l’objet de
beaucoup d’attention ces dernières années, l’échelle intermédiaire, “mésosco-
pique”, n’avait pas encore été étudiée systématiquement. Dans ce régime, l’e�et
des frontières du domaine se traduit par une diminution apparente du coe�cient
de di�usion proportionnelle au rapport surface-volume du domaine. Ce résultat
classique depuis près de trente ans a été énoncé sous la forme de la formule de
Mitra, qui ignore les e�ets d’anisotropie et se restreint à un pro�l de gradient
très particulier. Nous avons obtenu une généralisation de la formule de Mitra
qui tient compte de ces e�ets. Ainsi, elle permet d’améliorer signi�cativement
l’estimation du rapport surface-volume de domaines arbitraires quelle que soit
la séquence de gradient utilisée. De plus, elle nous a permis de mettre à jour un
nouveau critère d’isotropie pour les séquences de gradient, qui di�ère du critère
réalisé par les séquences dites d’encodage sphérique.

Dans un second temps, nous étudions les e�ets de perméabilité, qui sont
cruciaux pour les applications biomédicales. Une première situation est celle
de petits compartiments plongés dans un milieu homogène, avec des frontières
perméables. Nous proposons une analyse critique de trois modèles classiques
de l’e�et de l’échange sur le signal d’IRM de di�usion. Puis nous étudions une
deuxième situation où le milieu est segmenté par une collection de membranes
perméables parallèles. Nous formulons une méthode numérique et théorique
générale et �exible pour étudier la di�usion à travers ces membranes et nous
mettons en évidence plusieurs lois d’échelles.
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Le dernier chapitre constitue le coeur de la thèse et aborde l’étude non per-
turbative de l’équation de Bloch-Torrey qui régit l’évolution du signal d’IRM de
di�usion. Aux forts gradients, nous montrons théoriquement, numériquement,
et expérimentalement l’universalité du phénomène de localisation, qui ouvre des
perspectives prometteuses pour augmenter la sensibilité du signal d’IRM à la mi-
crostructure. Ce phénomène de localisation est encore largement ignoré dans la
communauté scienti�que, probablement à cause de la technicité mathématique
associée et de ses conséquences paradoxales au regard des phénomènes qui se
produisent aux faibles gradients. Nous proposons une explication qualitative du
régime localisation, point qui jusqu’alors manquait et témoignait de notre impar-
faite compréhension de ce régime. Par ailleurs, nous présentons une extension de
résultats déjà connus et clari�ons certaines questions théoriques. Un des résul-
tats les plus inattendus au vu de l’état actuel des connaissances est l’existence du
régime de localisation dans des milieux non bornés (dans la thèse nous étudions
en détail le cas des milieux périodiques). Tous ces résultats suggèrent la nécessité
d’un changement de paradigme dans les approches théoriques actuelles, majo-
ritairement basées sur le régime des faibles gradients, a�n de tirer pleinement
parti des possibilités o�ertes par l’IRM de di�usion.
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Abstract
Di�usion magnetic resonance imaging (dMRI) is an experimental technique which
aims at unraveling the microstructural properties of a sample well below the con-
ventional spatial resolution of “classic” MRI. This technique relies on the mea-
surement of phase dispersion of spins carried by molecules which di�use in an
inhomogeneous magnetic �eld. The individual trajectory of molecules is itself
inaccessible experimentally, however the resulting phase dispersion leads to a
reduced MRI signal which in turn allows one to recover some properties of di�u-
sive motion. Although this technique has been proposed and applied in various
contexts for several decades, many theoretical points remain to be clari�ed, even
more with the permanent improvement of MRI scanners and experimental pro-
tocols. Notably, the understanding of the signal formation at high gradients is
largely incomplete, in spite of the “natural” tendency to increase the gradient in
order to probe �ner and �ner structural scales.

We �rst revisit anisotropy e�ects. While micro- and macroscopic anisotropy
have been largely studied over past years, the intermediate, “mesocopic” scale
had not been investigated systematically. In this regime, the boundaries of the
domain produce an apparent reduction of the di�usion coe�cient which is pro-
portional to the surface-to-volume ratio of the domain. This result is well-known
and was formulated through Mitra formula, while ignoring anisotropy e�ects
and focusing on a particular gradient pro�le. We have obtained a generalized
Mitra formula which improves signi�cantly surface-to-volume ratio estimations
for arbitrary domains and gradient waveforms. Moreover, this generalization
allowed us to exhibit a new isotropy criterion for gradient waveforms, which
di�ers from the one realized by “spherical encoding” sequences.

In a second chapter, we investigate permeability e�ects, that are crucial for
biomedical applications. We �rst treat the situation of small compartments con-
tained in a homogeneous medium and exchanging through permeable bound-
aries. We critically revise three classical models of exchange for dMRI. Then we
turn to a second situation where a medium is segmented by an array of parallel
planar boundaries. We formulate a general numerical and theoretical method to
study di�usion trough these membranes and we exhibit several scaling laws.

The last chapter is the heart of the thesis and contains a non-perturbative
study of Bloch-Torrey equation governing the dMRI signal. At high gradient
strength, we reveal theoretically, numerically, and experimentally the univer-
sality of the localization phenomenon, which opens promising perspectives to
improve the sensitivity of the signal to the microstructure. The localization phe-
nomenon is still largely ignored in the scienti�c community, probably because of
mathematical technicity and “anormal” behavior compared to the low-gradient



v

case. We propose a qualitative explanation for the localization regime. To us, this
point was missing and re�ects the current lack of understanding of the localiza-
tion regime. Moreover, we extend several results and clarify important theoreti-
cal points regarding the localization regime. One of the most unexpected (given
the present knowledge in the �eld) results is the existence of the localization
regime even in unbounded domains (we treat the case of periodic domains in full
detail). Our results suggest the need of a paradigm shift in the current theoretical
approaches, mostly based on perturbative low-gradient expansions, in order to
take full advantage of the possibilities of di�usion MRI.



vi

Foreword
During three years of PhD, a student has two main goals: to understand the
scienti�c �eld around his subject, and to produce original research works. The
outline of this thesis follows these two goals. It begins with a presentation of the
�eld of di�usion magnetic resonance imaging (dMRI), with increasing details and
technicity. This presentation is neither comprehensive, nor objective. Rather, it
re�ects my own interests and the viewpoint of a theoretical physicist. I wrote it
while having in mind my �rst steps into the �eld of dMRI. In a second part, re-
search works, in which some speci�c aspects of dMRI are explored and studied in
much detail, are presented in a thematic order. With my supervisor, we explored
several interesting questions that form independent chapters of this thesis. In a
sense, the aforementioned two goals merged as one: me trying to understand the
�eld of dMRI led us to revisit various areas in the classical theoretical knowledge
of the �eld.
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List of notations
As a general rule, bold symbols (r, J, etc.) denote vectors in real space, sans-
serif symbols (D, S, etc.) denote matrices and tensors, calligraphic symbols (B,
G, etc.) denote di�erential operators and their Green functions, tilded symbols
(�̃ , r̃, etc.) denote quantities that have been rescaled to be dimensionless. The
symbol ∼ shall be used as “is proportional to”, and ≈ means “is approximately
equal to”. The notation mG stands for partial derivative with respect to G .

In the table below, we give a short description of each symbol, its unit (1
means dimensionless, – means no unit), and a reference to a part of the text
where it is de�ned (generally its �rst occurrence in the text).

Symbol Description Unit Reference

0 Lattice step of a discrete random walk m Sec. 3.1.1

0G , 0~ , 0I Spatial period of a periodic medium m Sec. 4.4

0= Zeroes of the derivative of Airy function 1 Sec. 4.2.1

�(C, G) Amplitude of magnetization in an
amplitude-phase representation

1 Sec. 4.1

A(�̃) Projection of the Bloch-Torrey operator at
a spectral bifurcation

– Sec. 4.3

1 Di�usion weighting strength s/m2 Eq.
(1.46b)

B0, B1 Magnetic �elds employed in magnetic res-
onance

T Sec. 1.1.3

BG , B~ , BI ,
B~,? , BI,?

Matrices employed for numerical solu-
tion of Bloch-Torrey equation by spectral
method

m Sec. 1.1.5
and App.
C.10

B Bloch-Torrey operator s−1 Sec. 1.2.4

B Di�usion weighting tensor s/m2 Sec. 2.2.1

2 Semi-axis along the revolution axis of a
spheroid

m Sec. A.2

2=,=′ Coe�cients of spectral decomposition m3/2 Sec. 4.3.3

2: (5 , ℎ) Coe�cients of short-time expansion of
heat kernel

[5 ] [ℎ]m−: Sec. A.1

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

�latt(q),
�pore(q)

Structure factor of lattice and pore 1 Sec. 1.2.3

�?,= (@) Generalized structure factor in a periodic
medium

1 Sec. 4.4

�

(
C−C ′
gn

)
Two-point correlation function of noise 1 App. D

C Set of complex numbers – –

3 Dimensionality of the medium under
study

1 Sec. 1.1.2

d(·, mΩ) Distance to the boundary of the domain m Sec. 2.3.1

�0 Intrinsic di�usion coe�cient m2/s Sec. 1.1.2

D0 Intrinsic di�usion tensor m2/s Sec. 2.1

� E�ective di�usion coe�cient probed by
dMRI

m2/s Sec. 1.2.2

�∞ E�ective di�usion coe�cient in the long-
time (tortuosity) limit

m2/s Sec. 1.2.2

�MSD E�ective di�usion coe�cient de�ned
through mean-squared displacement

m2/s Sec. 2.1

DMSD E�ective di�usion tensor de�ned through
mean-squared displacement

m2/s Sec. 2.1

D Time-evolution operator of the di�usion
equation

1 Sec. 4.3.3

ex, ey, ez Unit vectors associated to Cartesian coor-
dinates G,~, I

1 Sec. 1.1.4

er, e\ , eq Unit vectors associated to spherical coor-
dinates A, \, q

1 App. A.2

ez, ed , e\ Unit vectors associated to cylindrical coor-
dinate I, A, \

1 App. A.2

e Gradient direction 1 Sec. 2.2.2

erf Error function 1 Sec. 2.3.1

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

erfcx Scaled complementary error function 1 Sec. 3.1.2

E[·] Expectation value – –

�+, �− Zeeman energy levels of a spin J Sec. 1.1.3

5
Generic intensive quantity carried by dif-
fusing particles

[5 ] Sec. 1.1.2

Correction to the mean-squared displace-
ment near a planar boundary

1 Sec. 2.3.1

51, . . . , 5: Basis functions to optimize a gradient se-
quence with linear or bilinear conditions

1 Sec. 2.3.4

F Dawson function 1 Sec. 2.3.3

�c(C) Fraction of particles that has crossed a per-
meable boundary

1 Sec. 3.1.2

� (_) = 0 Transcendental eigenvalue equation – Sec. 3.4.2

�r(G̃), �l(G̃) Fundamental solutions of the one-
dimensional time-independent dimen-
sionless Bloch-Torrey equation

1 Sec. 4.2.1

F (), G0, G) Green function of one-dimensional Bloch-
Torrey equation

m−d App. C.2

F̂ (), G0, G) Green function of one-dimensional Bloch-
Torrey equation in Laplace domain

m−ds App. C.2

6 Magnetic �eld gradient T/m Sec. 1.1.4

6;1 (~1) Lateral eigenmode of Bloch-Torrey opera-
tor at a curved boundary

m−1/2 Sec. 4.2.2

G, � Larmor precession rate gradient s−1m−1 Sec. 1.1.4

�̃ Dimensionless gradient 1 Sec. 4.3

�̂ (C) Sampled gradient pro�le s−1m−1 Sec. 4.4

G(), r0, r) Di�usion propagator from r0 to r at time) m−3 Sec. 1.1.2

Ĝ(B, G0, G) Di�usion propagator in Laplace domain m−ds Sec. 3.4.2

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

ℎ;2 (~2) Lateral eigenmode of Bloch-Torrey opera-
tor at a curved boundary

m−1/2 Sec. 4.2.2

ℎ Relative precision of numerical computa-
tions

1 Sec. 4.4.4

� (G) Heaviside function (integrated Dirac dis-
tribution)

1 Sec. 3.4.2

�; (I) Hermite polynomial 1 Sec. 4.2.2

H Hamiltonian of �eld-spin interaction J Sec. 1.1.3

� Mean curvature m−1 Sec. 4.2.2

8
Imaginary unit 1 –

Generic index – –

I Unit (or identity) matrix 1 Sec. 2.1

I Indicator function of a set 1 Sec. 3.1.1

�1, �2, . . . Nested subintervals – App.
B.2.2

9 Generic index – –

J, � Di�usive �ux of the intensive quantity 5 [5 ]m/s Sec. 1.1.2

�a (I) Bessel function of the �rst kind 1 Sec. 1.2.3

:� Boltzmann constant J/K Sec. 1.1.3

: Generic index – –

 Parameter of Watson distribution 1 Sec. 2.3.3

K, K8,8+1 Matrix associated to a permeable barrier 1 Sec. 3.4.2

K Integral operator associated to temporal
tensors

s1/2 App. A.3

 (C − C ′) Kernel of the integral operator K s−1/2 App. A.3

 ̂ (l) Fourier transform of the kernel  s1/2 App. A.3

ℓmfp Mean free path of di�using particles m Sec. 1.1.2

ℓd, ℓX , ℓΔ Di�usion length m Sec. 1.1.2

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

ℓs Structural length of the medium m Sec. 1.2

ℓ6 Gradient length m Sec. 1.2

ℓ@ Phase pattern period m Sec. 1.2

ℓ̂ Permeability length m Sec. 3.1.2

; Generic index – –

;8 , ;a, ;h Barrier spacings, arithmetic mean value,
harmonic mean value

m Sec. 3.4.2

! Slab width, spacing between localization
pockets

m Sec. 4.3.3

L A�ne mapping related to to micro-
anisotropy

1 Sec. 2.3.6

L: Fourier transform vector m Sec. 3.4.5

<(), r) Transverse magnetization density 1 (a) Sec. 1.1.4

m Projection of the magnetization onto the
Laplacian eigenbasis

m3/2 (a) Sec. 1.1.5

< Number of subintervals 1 Sec. 3.4.2

M Magnetic moment of a spin A.m2 Sec. 1.1.3

M Transition matrix of a subinterval 1 Sec. 3.4.2

" Subperiod of a bi-periodic geometry 1 App.
B.3.3

= Generic index – –

n Inward (from boundary to pore space) nor-
mal vector at the boundary of the domain

1 Sec. 1.1.2

# Generic counter – –

N A nilpotent matrix 1 App. C.5

$ (·) At most of the same order as · – –

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

?

Structural disorder exponent 1 Sec. 1.2.2

Generic index – –

Pseudo-periodicity wavenumber m−1 Sec. 4.4

?8 (r) Projection along ei m App. A.1

% Fine sampling parameter 1 Sec. 4.4

PG Generic G-parity transformation 1 Sec. 1.2.4

P(·) Probability – –

% (Δ, r) Averaged propagator m−3 Sec. 1.2.3

%G (C̃ , ˜̂) Scaled �rst exit time tail distribution 1 App. B.2

% (·) Tail distribution of a random variable 1 App.
B.1.2

% (- ) Polynomial function 1 App.
B.3.5

q, @, @0 Wavevector/wavenumber associated to a
gradient pulse

m−1 Sec. 1.2.3

q̃, @̃ Rescaled wavevector/wavenumber 1 Sec. 3.4.5

@(C/) ) Rescaled &-pro�le m−1 App. A.3

Q, & Time-integrated gradient pro�le m−1 Sec. 1.1.4

&̂ Sampled &-pro�le m−1 Sec. 4.4

& (- ) Polynomial function 1 Sec. B.3.5

r Position vector m Sec. 1.1.2

rC Random di�usive trajectory m Sec. 1.1.2

A8 , A4 Intra- and extra-cellular decay rates of
magnetization

s−1 Sec. 3.2

A , A8,8+1 Permeable barrier resistance (inverse per-
meability)

s/m Sec. 3.4.2

Ã Rescaled barrier resistance 1 Sec. 3.4.2

to be continued on following page



xv

table continued from previous page

Symbol Description Unit Reference

R Displacement vector m Sec. 1.2.3

Ri Lattice vector m Sec. 1.2.3

' Radius of a cylinder, sphere, curvature ra-
dius

m Sec. 1.2.3

R, R8 Rotation matrix 1 Sec. 2.1

'(- ) Polynomial function 1 App.
B.3.5

R Set of real numbers – –

B

Non-normalized signal m3 (a) Sec. 1.1.4

Laplace variable s−1 Sec. 3.4.2

Generic integration variable – –

sinc Sinus cardinal function 1 Sec. 1.2.3

surf (·) Area of a (two-dimensional) surface m2 Sec. 2.3.2

S Spin kg.m2/s Sec. 1.1.3

( Normalized signal 1 Sec. 1.1.4

S Symmetry matrix 1 Sec. 3.4.2

C Generic time variable s –

C̃ Rescaled time 1 Sec. 3.4.5

)
Echo time s Sec. 1.1.3

Temperature K Sec. 1.1.3

)1, )2, )
†
2 Magnetic resonance relaxation times s Sec. 1.1.3

T Tortuosity factor 1 Sec. 1.2.2

T(<) Temporal tensors 1 Sec. 2.3.2

T Transition matrix associated to a perme-
able barrier array

1 Sec. 3.4.2

)G Random �rst exit time s App. B.2

to be continued on following page
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table continued from previous page

Symbol Description Unit Reference

D Generic variable – –

D= Laplacian eigenmodes m−3/2 Sec. 1.1.5

D
(:)
= Small-�̃ expansion coe�cient of BT eigen-

modes
1 Sec. 4.3.1

D?,= ?-Pseudo-periodic Laplacian eigenmodes m−3/2 Sec. 4.4

u Orientation of microdomain 1 Sec. 2.1

* ,*< Energy potential for Langevin equation J App. D

vC Velocity of di�using particles m/s Sec. 1.1.2

E= Bloch-Torrey eigenmodes m−3/2 Sec. 1.2.4

vol(·) Volume of a (three-dimensional) domain m3 Sec. 1.1.4

V[·] Variance – –

F Generic complex variable – –

WC Brownian motion (Wigner process) s1/2 Sec. 1.1.2

W Wronskian matrix 1 Sec. 3.4.2
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Chapter 1

Presentation of di�usion
magnetic resonance imaging

1.1 Introduction

1.1.1 General description

Di�usion magnetic resonance imaging (dMRI) is an experimental technique that
relies on the magnetic resonance (MR) phenomenon and magnetic resonance
imaging (MRI) devices to probe di�usion. In other words, it is an imaging tech-
nique where di�usion plays the role of a contrast mechanism. The baseline is
that areas where di�usion of the spin-bearing molecules is fast appear darker
(i.e., less signal) than areas where di�usion is slow. Beyond the intrinsic interest
of measuring di�usion coe�cients, this technique aims to go beyond the spatial
resolution of MRI images and infer microstructural properties of the medium.

Let us explain the reasoning behind this goal on the example of water inside
a kitchen sponge. A sponge, as one can easily check at home, is a porous mate-
rial made of multiple round cavities of various sizes that are mostly connected
together. If the pores are smaller than the spatial resolution of the MRI image
(for most scanners this is about 1 mm but it depends on many acquisition pa-
rameters), it is simply impossible to observe the pores, measure their sizes and
their distribution, study their connectivity, and so on. How can the measurement
of di�usion solve this issue? The di�usion of water inside the sponge is directly
related to the microstructural properties of the sponge: at short times, water dif-
fuses inside individual pores and the di�usion motion is controlled by the pore
diameter; at long times, water di�uses across several pores and the di�usion mo-
tion is controlled by the distance between pores and overall connectivity of the
medium. Thus, measuring the di�usive properties of water inside the sponge
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gives informations about its microstructure (that could be interesting to infer its
water absorption capabilities, for example). In practice, this example is unrealis-
tic because the pores would have to be 10 to 100 times smaller to be probed by
water di�usion, as we shall see. With this intuitive picture of a sponge, one can
imagine many other porous media such as sedimentary rocks from which oil is
extracted, or biological organs such as lungs or liver, whose microstructure can
be accessed by dMRI.

Figure 1.1: Illustration of the separation between the microscopic, mesoscopic, and
macroscopic scales in the brain, from Ref. [10].

We stress that, as in the above example, the motivation behind the di�u-
sion MRI technique is that the microstructural details are �ner than the spatial
resolution of the image so that one cannot see them directly. More precisely, dif-
fusion MRI involves an important separation of scales that is illustrated on Fig.
1.1 (reproduced from [10]). The di�usion length traveled by particles de�nes a
“mesoscopic” scale at which microstructure is probed. This scale is intermediate
between the molecular scale and the macroscopic scale de�ned by the spatial res-
olution of images (i.e., the voxel size). For the same reason, one cannot observe
directly the di�usive motion of spin-bearing particles.

By applying a di�usion-weighting protocol, one measures the MR signal in-
side one voxel (volumic equivalent of a pixel) as a function of various experimen-
tal parameters (for example, the di�usion time). The dependence of the signal on
those parameters, combined with a model for the medium, yields the desired mi-
crostructural properties. In the above example of the sponge, one would model
the medium as, say, a lattice of spherical pores connected by channels or by ran-
dom hopping. If the measured signal �ts well with this model, one can extract the
diameter of the pores and their spacing. A more sophisticated model could ac-
count for e.g. non-spherical pore shape or structural disorder, but would require
more experimental data to extract all model parameters and would be more likely
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Brownian motion

Random walk

Diffusion equation
Feynman-Kac formula

i,j i+1,j

i,j+1

i-1,j

i,j-1

𝜕𝑡𝑓 = 𝐷0𝛻
2𝑓𝔼 𝒗𝑡 ⋅ 𝒗𝑡′ = 2𝐷0𝛿(𝑡 − 𝑡′)

Figure 1.2: Schematic representation of di�erent models of di�usion and their relations.

to fail compared to a coarser model that somewhat averages the complexity of
the medium.

In the following subsections we are going to present the dMRI technique in
more details. First, we recall some basic properties of di�usion, which makes
up one half of the story. The second half, namely MRI, is then presented. We
mainly focus on magnetic resonance itself and not imaging. Finally both parts
are combined to give the Bloch-Torrey equation that governs the dynamics of
dMRI.

1.1.2 Di�usion
The phenomenon of di�usion can be understood from two di�erent points of
view, the “molecular” point of view and the “continuum” point of view. These
two points of view lead to two di�erent but equivalent mathematical descrip-
tions of the same phenomenon, which is very useful. Throughout this thesis we
shall switch between molecular and continuum points of view depending on our
needs.

At the molecular scale, particles are in constant motion due to thermal equi-
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librium and they interact with each other through “collisions”. By collision one
means a short-duration, short-range interaction between two particles. Thus the
trajectory of a given molecule can be approximated as a sequence of straight lines
(free motion), separated by abrupt changes in direction (collisions). The number
of collisions in the typical time scales of interest is very large: about 108 colli-
sions in 1 ms, and most dMRI experiments involve di�usion times longer than
1 ms. Therefore the random walk rC becomes in the continuous limit a Brownian
motion (or Wiener process) WC scaled by a di�usion coe�cient determined by
the mean free path ℓmfp and the time between two collisions gmfp [275, 281]:

rC =
√
2�micWC , (1.1)

�mic =
ℓ2mfp

gmfp
. (1.2)

The fundamental property of the Brownian motion rC is that its velocity vC =

drC/dC is a Gaussian white noise, i.e. a Gaussian stochastic process with no time-
correlations:

E[vC ⊗ vC ′] = 2�micIX (C − C ′) , (1.3)

where we have introduced the notation for outer product: if a and b are vectors,
then a ⊗ b is a matrix with elements

(a ⊗ b)8 9 = a8b 9 . (1.4)

Furthermore, X (·) denotes here the Dirac distribution and I is the identity matrix.
For a liquid with low viscosity such as water, the above relation (1.2) yields�mic ∼
1 `m2/ms. In a gas, the mean free path is much larger that yields a value about
104 times larger, that is �mic ∼ 0.01 mm2/ms. As we will see throughout this
thesis, these orders of magnitude are essential to understand the scales that are
probed by dMRI. In the following, we always use the notation rC to denote the
stochastic trajectory of a di�using particle.

On the other hand, at the continuum scale, the random motion of all particles
is averaged and one describes any intensive quantity 5 “carried” by the di�us-
ing particles (particle density, temperature, or magnetization, for example) as a
continuous function. Let us denote by Ω a spatial domain representing a voxel
of interest. The evolution of 5 is then governed by a partial di�erential equation
(“di�usion equation”) on Ω [12, 13]:

mC 5 = �mac∇25 , (1.5)

where �mac is the di�usion coe�cient of the particles under study inside the
domain Ω. The above equation may be written in the form of a conservation
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equation that makes the di�usive �ux J appear explicitly

mC 5 + ∇ · J = 0 , J = −�0∇5 . (1.6)

The molecular and continuum points of view coincide because the proba-
bility density function of a Brownian motion and the propagator of Eq. (1.5) in
free space (i.e., its solution with a Dirac peak as initial condition) are the same
function

G(), r0, r) =
1

(4c�0) )3/2
exp

(
−(r − r0)

2

4�0)

)
, (1.7)

where 3 is the dimensionality of the domain where di�usion takes place and
�0 = �mic = �mac uni�es both values of the di�usion coe�cient. Furthermore,
as depicted in Fig. 1.2, one can derive both the Brownian motion and the di�u-
sion equation descriptions from a random walk description where particles make
discrete jumps on a lattice. Finally, using the mathematical formalism of stochas-
tic di�erential equations, one can derive the Feynman-Kac formula that makes
a bridge between stochastic processes such as the Brownian motion and partial
di�erential equations such as the di�usion equation [280].

The above Gaussian distribution depends on a single parameter

ℓd =
√
�0) , (1.8)

that can be interpreted as the typical length traveled by di�using particles during
the measurement time ) . For instance, the variance of displacement of particles
is V [r) ] = 23ℓ2d and the variance of displacement along a given direction e is
V [(e · r) )] = 2ℓ2d , whereas its mean value is equal to its initial position: E [r) ] =
r0. For liquid or gas di�usion and typical experimental times, one obtains

liquid : 1 ms ≤ ) ≤ 100 ms → 1 `m ≤ ℓd ≤ 10 `m , (1.9a)
gas : 1 ms ≤ ) ≤ 100 ms → 0.1 mm ≤ ℓd ≤ 1 mm . (1.9b)

Note the considerable upscaling (by a factor of about 100) of gas di�usion com-
pared to liquid di�usion, due to the much larger di�usion coe�cient.

In the presence of miscrostructure (obstacles, boundaries), the stochastic mo-
tion rC becomes a re�ected Brownian motion that introduces time-correlations
in the velocity vC :

E[vC ⊗ vC ′] = 2�0IX (C − C ′) + 2�0Ψ( |C − C ′|) , (1.10)

where Ψ(·) is a matrix of smooth functions that decay at ∞ and that depend on
the geometry of the medium. In turn, the formula for the di�usion propagator
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G(), r0, r) is modi�ed compared to the free space result (1.7). In parallel, the
di�usion equation (1.5) has to be supplemented with boundary conditions over
mΩ. One often assumes perfectly re�ecting boundaries, that yields the no-�ux or
Neumann boundary condition:

n · �0∇5 |mΩ = 0 , (1.11)

where n is the inward normal vector at the boundary (from boundary to pore
space). Other boundary conditions that take into account relaxation or perme-
ation will be discussed later in the text.

1.1.3 Magnetic Resonance
In this section we recall some basic results about nuclear magnetic resonance
(refer to books [1, 2] for a complete introduction). The phenomenon of mag-
netic resonance results from the interaction between magnetic �elds and spins.
Particles with a spin S indeed possess a magnetic moment M given by

M = WS , (1.12)

where W is the gyromagnetic ratio of the particle. The theoretical value of the
gyromagnetic ratio of a given particle involves sophisticated quantum electrody-
namics computations, however one usually gets a reasonable order of magnitude
with the classical formulaW = @/(2<) for a rotating particle of charge @ and mass
<. For example, the gyromagnetic ratio of the proton isW = 2.675 ·108 T−1s−1 and
the classical formula yields @/(2<) = 0.479 · 108 T−1s−1. Throughout this thesis,
we consider only nuclear magnetic resonance, i.e. spins from nuclei. Among all
spin-bearing nuclei, the hydrogen nucleus is probably the most common one, es-
pecially because of its abundance in biological and mineral samples in the form
of water or hydrocarbon molecules. Additionnally, we restrict ourselves to 1/2-
spins that represent most of experimental works in the �eld, including the ones
presented in this thesis. In fact, water di�usion probed by hydrogen resonance
and gas di�usion probed by Xenon 129 resonance both involve 1/2-spins.

Thus, the interaction of a spin S and a magnetic �eld B0 results from the
Hamiltonian

H = −M · B0 = −WS · B0 . (1.13)

with eigenvalues
�± = ±Wℏ�0/2 (1.14)

corresponding to a spin aligned with the �eld (�−) or anti-aligned with the �eld
(�+).
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For example, protons in a 10 T �eld yield the energy splitting:

�+ − �− = Wℏ�0 ≈ 1.4 · 10−25 J ≈ 3.3 · 10−5:�) (1.15)

at room temperature () = 300 K). Thus, a strong magnetic �eld produces a rel-
atively weak magnetization, very far from saturation. More precisely, the small
energy splitting compared to :�) implies that the magnetization density <0 of
a population of spin is proportional to the external magnetic �eld according to
Curie’s Law

<0 =
=W2ℏ2�0

4:�)
, (1.16)

where = is the density of spin-bearing particles. As the density of a gas is about
103 smaller than that of a liquid, the magnetization produced by a gas at ther-
mal equilibrium is generally very close to the noise level that would prevent
any experiments on gas di�usion. To circumvent this di�culty, the technique of
spin-exchange optical pumping is used to “hyperpolarize” the gas and reach mag-
netization levels up to 104 higher than at thermal equilibrium [133–135]. Thus,
the signal from hyperpolarized gas is of the same order of magnitude than liquids
at thermal equilibrium. In practice, the gas is hyperpolarized then injected into
the sample of interest (for example, inhaled by a patient to probe the structure
of his/her lungs) and the measurement is then performed. This technique is a
priori limited by the time (usually denoted by )1) after which the magnetization
of the sample returns to its thermal equilibrium value (1.16). In Xenon 129 gas,
relaxation times )1 are generally of the order of dozens of minutes (it depends
on the chemical composition of the gas, its pressure, the applied magnetic �eld)
that is much longer than the typical duration of one measurement (< 1 s).

Now we turn to the out-of-equilibrium situation and study the dynamics of a
spin inside the external magnetic �eld B0. We will adopt a “semi-classical” point
of view where the quantum operator S is replaced by a vector that represents its
expectation value. There are three main reasons for this choice: (i) it provides the
correct result for the evolution of the expectation value of the operator, which
is su�cient if the detailed knowledge of each quantum states is not required; (ii)
for 1/2 spins, there is an equivalence between the quantum description and the
geometrical description (Bloch sphere); (iii) the evolution of the spin is expressed
in terms of the evolution of a vector instead of a quantum operator, which is
geometrically more intuitive. In this geometrical description, one can show that
the evolution of a spin follows the laws of mechanics on angular momentum

3S
3C

= M × B0 = WS × B0 . (1.17)



8 1. Presentation of di�usion magnetic resonance imaging

Figure 1.3: Schematic representation of magnetic resonance

The solution of this equation is a precession motion around B0 at the Larmor
angular frequency

l0 = W�0 . (1.18)

This means that the component of the magnetization along the �eld B0 remains
constant whereas its transverse component rotates at the angular frequency l0.
In most MR devices, �0 is of the order of several teslas, so that l0 is in the ra-
diofrequency range.

Let us switch on another magnetic �eld B1, orthogonal to B0 and rotating
at the Larmor frequency l0. In the rotating frame attached to B1, the Larmor
precession of S around B0 is cancelled and the motion of S is merely a precession
around the (�xed) �eld B1 at angular frequency l1 = W�1. Going back to the
laboratory frame, the motion of S is the superposition of a precession around B0
at angular frequency l0 and a nutation at angular frequency l1, hence a typical
spiralling motion (see �gure). The duration during which B1 is switched on con-
trols directly the nutation angle of S with respect to the main �eld B0 so that one
can apply a “U-pulse” for any desired angle U (experimentally, the most common
angles are U = 90◦ and U = 180◦). In particular, from the thermal equilibrium
situation where the net magnetization is aligned with the magnetic �eld, one can
apply a 90◦-pulse to �ip the magnetization to the transverse plane and detect its
precession by induction in a nearby coil.

If one applies a 180◦-pulse, then the magnetization is �ipped so that the in-
teraction energy with the external �eld goes from negative (aligned spins) to
positive (anti-aligned spins). In other words, there is an energy transfer from the
oscillating �eld B1 to the spin population, thus the name magnetic resonance. In
the language of quantum mechanics, the splitting between two eigenstates of the
hamiltonian (1.13) corresponds to an angular frequency (�+ − �−)/ℏ = W�0, i.e.
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the Larmor frequency associated with the �eld �0. Thus, it is possible to trigger
a transition between the “aligned” and “anti-aligned” state by applying a pertur-
bation at angular frequency l0. The consistency between the purely quantum
description and the semi-classical one con�rms the validity of the latter.

In the above description, the interaction between spins was discarded. It is
interesting to compute an order of magnitude of the magnetic �eld created by
the spin magnetization (1.16) in the case of water (where the spin-bearing parti-
cles are hydrogen nuclei) at room temperature: �spin = `0<0 ≈ 2 · 10−9�0. This
computation indicates that spin-spin interactions are a very weak correction to
the hamiltonian (1.13). In a liquid or a gas, the dipole interaction between spins
is modulated by the fast rotational tumbling of molecules that creates a time-
dependent perturbation of the Hamiltonian (1.13) and therefore leads to the re-
laxation of magnetization towards its thermal equilibrium state. This relaxation
mechanism actually involves two processes with di�erent rates. The �rst one is
longitudinal relaxation that governs the return to thermal equilibrium magneti-
zation parallel to the applied magnetic �eld. As we mentioned above, one usu-
ally denotes the associated relaxation time by )1. The second relaxation process
is transverse relaxation that governs the decay of magnetization perpendicular
to the applied magnetic �eld, with relaxation time denoted by )2. In the early
days of NMR, Bloembergen, Purcell and Pound [16] computed the theoretical
relaxation rates from the combined e�ect of dipole interaction and molecular
tumbling. They showed that )2 < )1 in general, and that they coincide in the
limit of very fast tumbling rate compared to Larmor precession rate.

A complete theory of relaxation involves many additional mechanisms that
we shall not describe here [1]. However, it is interesting to draw a distinc-
tion between so-called “homogeneous” and “inhomogeneous” relaxation e�ects.
Whereas the former are caused by short-range and �uctuating interactions be-
tween spins, the latter are caused by magnetic �eld inhomogeneities that broaden
the spectrum of Larmor frequencies (1.18) and destroy transverse magnetization
by fast dephasing between spins. One usually emphasizes this distinction by
writing the total transverse relaxation rate as 1/) ∗2 = 1/)2 + 1/) †2 , where 1/)2
denotes the homogeneous relaxation rate and 1/) †2 the inhomogeneous one.

Two typical examples of inhomogeneous broadening are chemical shift and
magnetic impurities. In the �rst example, the chemical environment surrounding
a spin slightly changes the magnetic �eld felt by the spin. For instance, for a given
applied magnetic �eld B0, the Larmor frequency of water hydrogens is not the
same as the one of fatty acids hydrogens. Therefore, the chemical composition
of a sample may a�ect its relaxation properties. In the second example, magnetic
impurities, e.g. iron atoms, are polarized by the external �eld B0 and produce a
relatively strong local perturbation to this �eld, therefore causing neighboring
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spins to precess at a di�erent rate. The same phenomenon occurs with internal
gradient or susceptibility di�erences in the medium. Contrary to homogeneous
relaxation e�ects, inhomogeneous broadening involves no increase in entropy
and can be “negated” by spin echoes, as we shall see in the next section.

Throughout this thesis, we discard all relaxation e�ects except when stated
otherwise. Despite their importance, we focus here on di�erent aspects such
as interplay between microstructure, di�usion, and phase encoding. We shall
mention relaxation times occasionnally because they may impose limitations on
the duration of di�usion experiments.

1.1.4 Di�usion + magnetic resonance, Bloch-Torrey
equation

Now we shall see how one can probe the di�usive motion of spin-bearing parti-
cles with magnetic resonance. From a population of spins initially aligned with
the constant magnetic �eld B0, we apply a 90◦-pulse so that all spins are �ipped
to the transverse plane at time C = 0. In this plane, spins can be represented by a
complex number

" = "04
8q , (1.19)

where q denotes the angle that they have turned from their initial position at
time C = 0. Therefore, the measured MR signal, which is proportional to the net
magnetization in the sample, can be represented as a sum over all spins

B =
∑

"04
8q . (1.20)

In the following, except when explicitly said otherwise, we will always normalize
the signal with respect to its value at time C = 0, when all spins are aligned with
the same angle q = 0. Therefore the normalized signal can be represented as

( = E[48q] . (1.21)

The notation for expectation value instead of a spatial average may be unex-
pected at this point. As we shall see in the next paragraph, the combination
of di�usion and precession implies that the phase of a spin q is a random vari-
able that depends on the random trajectory of the spin-bearing particle. Because
of the very large number of particles, the sum over all spins can be replaced
by the average over all possible di�usive trajectories in the medium, hence Eq.
(1.21). We emphasize that this average is computed at a �xed time ) , at which
the measurement is performed. Throughout the text, we keep the convention of
lower-case B for non-normalized signal and upper-case ( for normalized signal.
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The fundamental ingredient of dMRI is an inhomogeneous B0 �eld, and the
most common case is a magnetic �eld gradient that is generally time-dependent:

B0 = (�0 + g(C) · r)ez , (1.22)

where the direction of the magnetic �eld is unchanged and its amplitude is a
linear function of position. Note that the null-divergence property of magnetic
�elds would constrain the gradient to be orthogonal to the direction of the mag-
netic �eld. In practice, since |B0 |/|g| is much larger than the voxel size, the gra-
dient can take any direction by allowing a slight variation of the magnetic �eld
direction. The magnetic �eld gradient (1.22) translates into a Larmor precession
rate gradient G(C) = Wg(C):

l (r) = l0 + G(C) · r . (1.23)

In the following, we discard the constant l0 as it is a constant precession e�ect
that has no e�ect on the measured signal. Because of the gradient G, spins in
di�erent positions precess at di�erent angular frequencies and a phase di�erence
is accumulated as time increases

q1 − q2 =
∫ )

0
G(C) · (r1C − r2C ) dC . (1.24)

Let us denote by ! the size of the voxel in which the experiment is performed.
We recall that the voxel is much larger than the length explored by di�using
particles over the time ) , i.e. ! � ℓd. Therefore, under a constant gradient G,
the width Δq of the phase distribution over the voxel can be estimated simply by
considering two particles at opposite ends of the voxel, that yields

Δq = �!) . (1.25)

This behavior is unwanted for two main reasons. First, because of this increas-
ing dephasing, the signal (1.21) decays very rapidly with increasing time and/or
gradient strength. In particular, any uncontrolled magnetic �eld inhomogeneity
leads to a fast decay of the signal even in the absence of externally applied mag-
netic �eld gradient. The second point is that the decay of the signal is not related
to di�usion of particles but simply to their di�erence in position. In other words,
in this setting, the constant gradient G is a position-encoding mechanism and not
a motion-encoding mechanism. As a side remark, magnetic resonance imaging is
essentially based on this principle.

An elegant solution to both of these issues is the use of spin echoes, that
were invented in 1950 by Hahn [17] and have been at the heart of magnetic
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G(t)
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Figure 1.4: (left) A schematic gradient sequence with a refocusing 180◦ pulse at C = ) /2.
(right) The e�ective gradient description takes into account the e�ect of refocusing 180◦

pulses into the sign of the gradient by reversing the gradient before the pulse.

resonance ever since. The principle of spin echo is to apply a 180◦-pulse at time
) /2 that reverses all spins with respect to the q = 0 axis. In other words, this
pulse reverses the sign of all phases q , i.e., it e�ectively reverses the e�ect of all
magnetic �elds applied between C = 0 and C = ) /2. One can see immediately that
it solves the �rst issue of signal decay due to �eld inhomogeneity. Indeed, the
uncontrolled e�ect of �eld inhomogeneities is reversed at time ) /2 and cancels
exactly at time ) . Experimentally, the signal that is destroyed by fast dephasing
of spins is reformed at time ) and forms an “echo”. About the second issue of
position-encoding versus motion-encoding, it is useful to introduce the notion
of “e�ective” gradient that takes into account the e�ect of the refocusing 180◦

pulse through a sign change in the gradient (see Fig. 1.4). In the following, the
gradient G(C) is implicitly the e�ective gradient. One can see that the e�ect of
the recofusing pulse is equivalent to imposing∫ )

0
G(C) dC = 0 . (1.26)

With this condition, the phase of spins become independent of their absolute
position, i.e., a particle that does not move is not dephased by the gradient. A
particle that di�uses gets dephased by

q =

∫ )

0
G(C) · rC dC (1.27a)

=

∫ )

0
G(C) · (rC − r0) dC =

∫ )

0
G(C) · (rC − r) ) dC (1.27b)

= −
∫ )

0
Q(C) · vC dC , (1.27c)

where we have introduced the integrated gradient pro�le

Q(C) =
∫ C

0
G(C ′) dC ′ . (1.28)
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∼ ℓdT/2 T

Figure 1.5: Illustration of di�usion encoding by the gradient. Two particles that meet
each other at position r at the measurement time ) have di�erent histories that lead to
di�erent accumulated phases q1 and q2 (see Eq. (1.27b)). In turn, the resulting phase
dispersion leads to signal decay according to Eq. (1.21).

The formulas (1.27b) and (1.27c) stress that a particle dephases because of its
motion during the gradient sequence. Because of time-reversal symmetry, any
trajectory going from the position r1 to the position r2 is equally probable to the
trajectory traveled in opposite sense, going from r2 to r1, therefore

E[q] = 0 . (1.29)

and more generally all odd moments of q are zero, and the signal (1.21) is real.
All previous results hold for any gradient pro�le that satis�es the refocusing
condition (1.26).

To summarize, to any random trajectory rC is associated a random phase q
through Eq. (1.27b) because of encoding by the gradient (see Fig. 1.5). The mea-
sured signal is the superposition of all possible phases according to Eq. (1.21)
and can be seen as the characteristic function of the random variable q . This
molecular point of view leads one to study individual random trajectories and
derive the behavior of the signal from the properties of q .

Now we turn to the continuum point of view where one studies the dynamics
of the local transverse magnetization density <(C, r). In complex notation, the
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e�ect of the magnetic �eld gradient without di�usion is simply:

mC< = 8 (G(C) · r)< . (1.30)

The joint e�ect of di�usion and precession is then the superposition of both ef-
fects and yields the Bloch-Torrey (BT) equation introduced by Torrey in 1956
[19]:

mC< = �0∇2< + 8 (G(C) · r)< . (1.31)

If one takes into account surface relaxation due to magnetic impurities or sus-
ceptibility induced internal gradients, the boundary condition on mΩ takes the
general Robin form

n · �0∇< − ^< |mΩ = 0 , (1.32)

where ^ is the surface relaxivity of the boundary. Neumann boundary condition
(1.11) corresponds to no relaxivity, i.e. ^ = 0 and the opposite limit of in�nite
relaxivity yields Dirichlet boundary condition: < |mΩ = 0. Finally, one often as-
sumes that the transverse magnetization at C = 0 (i.e. right after the 90◦-pulse) is
uniform, that yields the initial condition:

<(C = 0, r) = 1 . (1.33)

Due to lack of spatial resolution, the transverse magnetization is not accessible
experimentally, and one measures its average value over the voxel Ω at the echo
time ) :

( =
1

vol(Ω)

∫
Ω
<(), r) d3r . (1.34)

In this representation, one studies the behavior of the signal through a partial
di�erential equation. The Feynmann-Kac formula shows that both representa-
tions coincide: Eqs. (1.21) and (1.27a) are equivalent to Eqs. (1.31) to (1.34). Note
that one can de�ne the local magnetization in terms of q through

<(), r) = E
[
48q |r) = r

]
, (1.35)

where the average is performed only on trajectories that end at position r at time
) .

Having two representations of the same phenomenon is very helpful from a
theoretical point of view because it provides more mathematical tools and more
insight into the phenomenon.

1.1.5 Numerical techniques
In this section we provide a brief overview of three main numerical schemes to
solve the Bloch-Torrey equation (1.31).
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PDE solving by �nite element or �nite di�erence method

The Bloch-Torrey equation may be solved with standard numerical PDE solver
using �nite di�erence (regular mesh) or �nite element (geometry-adapted mesh)
methods [30–33, 195, 272]. The main limitations of this technique is the size of
the mesh (i.e., number of nodes) that may become extremely large, especially in
three dimensions.

Monte-Carlo simulations

By adopting the “molecular” point of view, i.e. Eq. (1.21), the solution of the
Bloch-Torrey equation may be simulated with Monte-Carlo simulations [34, 35,
58, 192]. One draws randomly # particles inside the domain, and simulates for
each particle a random walk, where the phase q is accumulated at each time step
according to Eq. (1.27a). Interestingly, this numerical method gives directly ac-
cess to the phase distribution. In turn, the computation of the signal from the
numerical phase distribution may be inaccurate if the signal is very low, because
of the slow 1/

√
# convergence of the empirical average to the mathematical ex-

pectation value.

Spectral methods (matrix formalism)

The idea behind this third class of numerical techniques is that the complexity of
the Bloch-Torrey equation is mainly contained in the Laplace operator and the
boundary condition (1.32). Therefore, one solves the equation in two steps: (i) to
solve the Laplace equation with the same boundary conditions; (ii) to incorporate
the e�ect of the gradient [3, 36–38, 40]. .

Step (i) is performed by looking for Laplacian eigenmodesD= and eigenvalues
_= over the domain Ω of interest, i.e.

− �0∇2D= = _=D= , (1.36a)
n · �0∇D= − ^D= |mΩ = 0 . (1.36b)

Step (ii) is achieved by projecting the gradient term 8 (G ·r) onto the Laplacian
eigenbasis, i.e. by computing the matrix elements

[BG ]=,=′ =
∫
Ω
G D= (r)D=′ (r) d3r , (1.37a)

[B~]=,=′ =
∫
Ω
~ D= (r)D=′ (r) d3r , (1.37b)

[BI]=,=′ =
∫
Ω
I D= (r)D=′ (r) d3r . (1.37c)
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This allows one to project the Bloch-Torrey equation onto the Laplacian eigen-
basis:

mCm =
[
−Λ + 8 (�G (C)BG +�~ (C)B~ +�I (C)BI)

]
m , (1.38)

where m is a vector with components<= (C) =
∫
Ω
<D= and Λ is a diagonal matrix

with elements _=. Note that the boundary condition is “automatically” ensured
by the choice of the basis {D= (r)}. Since the Laplacian eigenbasis is complete, the
knowledge of<(C, r) is equivalent to the knowledge of the (in�nite-dimensional)
vector m(C). For numerical purpose, a �nite truncation threshold = ≤ # has to
be chosen. Since Λ and BG ,B~,BI matrices do not commute, one cannot integrate
Eq. (1.38) straightforwardly if �G (C),�~ (C),�I (C) are not constant. In order to
solve the equation, two main approximations were proposed.

1. The continuous-time gradient pro�le is replaced by narrow and intense
pulses during which di�usion may be neglected [36, 38]. The evolution
of the magnetization results from the succession of gradient pulses with-
out di�usion and di�usion without gradient. The application of a gradient
pulse corresponds to left-multiplication by a matrix of the general form
exp(8g [�GBG +�~B~ +�IBI]), where g is the pulse duration. In turn, di�u-
sion without gradient corresponds to left-multiplication by a matrix of the
general form exp(−gΛ), where g is the di�usion step duration. We shall see
a new application of this idea for simulating the Bloch-Torrey equation in
periodic media in Sec. 4.4.

2. The continuous-time gradient pro�le is replaced by a piecewise-constant
pro�le [3, 37, 40]. A step with constant gradient �G ,�~,�~ and duration g
corresponds then to left-multiplication by the matrix exp(g [−Λ+ 8 (�GBG +
�~B~ +�IBI)]). This method is more general and accurate than the above
one because it is better suited to extended gradient pulses while being able
to deal with narrow and intense gradient pulses.

Once the matrices Λ, BG ,B~,BI are known, the computation of the magne-
tization requires only matrix multiplications, which are very fast and accurate.
Computing the Laplacian eigenbasis is generally a di�cult and time-consuming
numerical problem, except in some basic shapes (slab, disk, sphere, annulus, etc.)
[14] where they are explicitly known. In such domains, spectral methods are
extremely fast and accurate compared to other methods.

Note on numerical simulations in unbounded domains

Unbounded domains (that can model extracellular space or connected porous
media, for example) often present a numerical challenge. In fact, numerical sim-
ulations in unbounded domains require adding a virtual outer boundary to the



1.1. Introduction 17

domain with convenient boundary conditions (e.g., Dirichlet boundary condi-
tion). To ensure that the e�ect of this boundary is negligible, the boundary should
be su�ciently far away from the area of interest so that very few particles can
di�use from one to the other. As such, the computational domain can be much
bigger than the area of interest, especially in long di�usion time simulations,
which makes the technique ine�cient. In Sec. 4.4 we will present a numerical
technique to solve the Bloch-Torrey equation in a periodic medium without this
limitation.

1.1.6 Empirical versus theoretical approach to the problem
The aim of dMRI is to infer microstructural properties of the medium Ω from
the signal ( . In the Bloch-Torrey formulation, the microstructure of the medium
enters through the boundary condition (1.32). Therefore, there is no explicit de-
pendence of the signal on the properties of Ω and one is faced with an inverse
problem. The existence of this thesis more than 60 years after the �rst publica-
tion of the Bloch-Torrey equation is probably a good indication of the di�culty
of this problem.

Although a bit arti�cial, one can draw a distinction between two general
attitudes in front of such a problem (see e.g. Ref. [111]). The �rst one would
be the one of theoretical physicists. By studying simple geometries, one can
identify and understand the main regimes of dMRI. In turn, this understanding
may give rise to experimental protocols that allow one to recover interesting
microstructural properties. The second attitude would be that of radiologists.
Because of the overwhelming complexity of real-life samples (biological tissues
for example), one adopts an empirical or statistical approach to the problem. For
instance, if a signi�cant di�erence in the signal behavior between healthy and
sick people is measured, then the protocol can be used to detect the disease,
regardless of the mechanisms at play.

In essence, these two attitudes re�ect the di�erence between fundamental
science and applications. Both have advantages and drawbacks but above all
they have di�erent short-term priorities. Naturally, this distinction is arti�cial
because scientists are often somewhat between the two. The �eld of dMRI is
special in that regard because the spectrum of researchers in the �eld is extremely
broad, ranging from mathematicians to physicians and MRI engineers. As it is
mentioned in the foreword, this thesis is written from the sole point of view of
a theoretical physicist, with a strong focus on the understanding of fundamental
mechanisms.
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1.2 Main theoretical approaches and regimes

The main experimental parameter in the BT equation (1.31) is the gradient se-
quence. By changing the gradient sequence (duration, amplitude, pro�le) and
measuring the variation in the signal, one aims at recovering microstructural
information about the medium. Because of intrinsic mathematical di�culties as-
sociated to this equation, several theoretical approaches have been developed.
We present them below, from perturbative (i.e., the gradient term is treated as a
perturbation of a di�usion problem) to non-perturbative ones. To these theoret-
ical approaches are associated various regimes of the dMRI signal that we will
discuss and explain.

Naturally, these regimes depend on the geometry (domain Ω and boundary
conditions (1.32)) in which di�usion takes place and it would take too much space
and too much patience from the reader to provide here a comprehensive list of all
theoretical knowledge and results in the �eld for all possible geometries (see Refs
[2–5, 7, 9, 111, 116]). For this reason, we make the choice to base the discussion
on a sponge-like porous medium, where we assume that pores have a typical
diameter ℓs. The surface-to-volume ratio of the domain, that we denote by f ,
scales therefore asf ∼ ℓ−1s . As we shall see, at long di�usion times the behavior of
the magnetization in bounded and unbounded domains may di�er signi�cantly.
When it is the case, we shall discuss separately the case of isolated pores (i.e.,
bounded domain) and connected pores (i.e., unbounded domain).

This simpli�ed setting allows us to discuss the competition between a single
“structural” length scale ℓs and two experimental length scales, namely (i) the
di�usion length ℓd and (ii) the gradient length ℓ6 (for extended-gradient pulses)
or the phase pattern period ℓ@ (for narrow-gradient pulses). Multiscale domains
with a wide spectrum of geometrical lengths {_} are much harder to study and
to classify. Often, one performs a cut-o�, or coarse-graining, that averages the
e�ect of any length scale below the “mesoscopic scale” _ � ℓd. In this way, one
can reduce a complex medium to a simpler one where our discussion may be
valid.

The aim of this section is to give a partial overview of the state of theoretical
knowledge in dMRI. It is also the occasion to introduce fundamental concepts
that will be deepened in the second part of this thesis devoted to research works.
First, we introduce the length scales ℓ6 and ℓ@ and provide physical interpretations
for these quantities, then we turn to a more systematic description of theoretical
approaches and results.
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Figure 1.6: Schematic representation of the pulsed-gradient spin-echo (PGSE) sequence
with conventional notations for the pulse and inter-pulse durations [20].

1.2.1 Length scales associated to the gradient
In this subsection, we introduce with qualitative arguments two fundamental
length scales associated to the gradient, the gradient length ℓ6 and the phase
pattern period ℓ@. These two length scales have di�erent physical interpretation
and are somewhat “exclusive”: while ℓ6 is better suited to discuss the behavior
of extended-gradient pulse experiments, ℓ@ is better suited to the opposite case
of narrow-gradient pulse experiments. The case of arbitrary gradient pro�les is
brie�y discussed at the end of this subsection.

Gradient length ℓ6

Let us consider two particles that meet each other at time) and position r. There-
fore, they are initially spaced by a distance of the order of the di�usion length ℓd
(see Fig. 1.5). We assume that the pore diameter is much larger than this distance,
i.e. ℓd � ℓs, and that the particles di�use far away from the boundaries of the
medium so that we neglect their in�uence. Furthermore, we assume a constant
gradient amplitude� . The random phase di�erence (1.24) accumulated by these
two particles until they meet is of the order

|q2 − q1 | ∼ �)ℓd = (ℓd/ℓ6)3 , (1.39)

where we have introduced the so-called gradient length

ℓ6 = �
1/3
0 �−1/3 . (1.40)

Equivalently, the variance of q at position r scales as

V[q |r) = r] ∼ �0�
2) 3 = (ℓd/ℓ6)6 . (1.41)
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This quantity describes the phase dispersion at a given position, note that is
position-independent because of the hypothesis of negligible in�uence of bound-
aries. If ℓd � ℓ6 the typical phase di�erence is small so that the spins have
strongly correlated phases. In other words, two di�erent trajectories yield close
values of q and we call this situation weak di�usion encoding. In contrast, if
ℓd & ℓ6, the typical phase di�erence is large and the spins have almost uncorre-
lated phases. This is the opposite regime of strong di�usion encoding where two
di�erent trajectories yield very di�erent values of q .

Therefore, one can interpret the gradient length ℓ6 as the typical length trav-
eled by particles under the gradient� before they have decorrelated phases with
other spins at the same position, provided that they do not reach any boundary.
At this point, one understands that the signal attenuation after an extended-
gradient pulse depends strongly on the competition between ℓ6, ℓd, and the con-
�ning length ℓs. This interplay and the resulting regimes are detailed in Sec.
1.2.4. For liquid or gas di�usion and typical magnetic �eld gradient strengths,
one obtains the following orders of magnitude for ℓ6:

liquid : 1 mT/m ≤ 6 ≤ 1 T/m → 20 `m ≥ ℓ6 ≥ 2 `m , (1.42a)
gas : 1 mT/m ≤ 6 ≤ 1 T/m → 1 mm ≥ ℓ6 ≥ 0.1 mm , (1.42b)

where inequalities are reversed because the gradient length decreases with in-
creasing gradient strength. Similarly to the di�usion length (see Eqs. (1.9a) and
(1.9b)), there is a considerable upscaling with gas experiments because of the
much larger di�usion coe�cient. Note that the transition between medical imag-
ing scanners and research scanners is around 50 mT/m.

The above reasoning is still valid if the gradient pro�le is made of two extended-
gradient pulses with no di�usion time inbetween them, such as the pro�le shown
on Fig. 1.6 with Δ − X = 0. Indeed, the �rst (positive) gradient pulse induces a
stronger dephasing than the second (negative) one because particles are further
apart during the �rst pulse. However, it fails if the pulses are separated by a dif-
fusion time that is signi�cantly longer than the duration of the pulses, i.e., Δ � X

with the notations of Fig. 1.6. Indeed, the di�usion step with no gradient mixes
particles from di�erent areas and thus increases dephasing between spins at a
given position. This is especially the case in the narrow-gradient regime where
the length ℓ@, that we describe below, provides more insight into the formation
of the signal.

Phase pattern period ℓ@

The gradient length is an e�ective way of quantifying the dephasing acquired by
di�using particles because of their random motion, in other words, the variance
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of q . In contrast, let us consider the average phase at a given position r after
a single gradient pulse of amplitude � and duration X , such as on Fig. 1.6. We
assume again that the e�ect of boundaries can be neglected. To compute the av-
erage value of q , one cannot use Eq. (1.27b) or (1.27c) because they were derived
under the hypothesis of a refocused gradient sequence, whereas we consider here
a single constant-gradient pulse. Therefore, one uses Eq. (1.27a) and gets

E[q] = XG · r0 . (1.43)

This implies that the gradient pulse produces a phase pattern with wavevector q
or equivalently with period ℓ@ (up to a 2c factor):

q = XG , and ℓ@ = @
−1 . (1.44)

Note that in addition to this phase pattern, one should take into account the
random dephasing computed above that attenuates the magnetization during the
gradient pulse.

Let us consider the limit of narrow-gradient pulses: X → 0 and q is constant.
The above estimation (1.41) of the variance of q just after the pulse shows that
it tends to zero in that limit, therefore the e�ect of a narrow-gradient pulse is
simply to multiply the magnetization by the phase pattern 48q·r with no attenu-
ation. In other words, the attenuation of the magnetization is solely caused by
the subsequent di�usion step of duration Δ that “blurs” the phase pattern of pe-
riod ℓ@. The competition between ℓ@, ℓd and the con�ning length ℓs yields a rich
variety of regimes that is detailed in Sec. 1.2.3. For liquid or gas di�usion and
typical magnetic �eld gradient strengths with a 1 ms pulse duration, one obtains
the following orders of magnitude for ℓ@:

liquid/(gas) : 1 mT/m ≤ 6 ≤ 1 T/m → 3 mm ≥ ℓ@ ≥ 3 `m , (1.45)

where inequalities are reversed because the phase pattern period decreases with
increasing gradient strength. As stated previously, the transition between medi-
cal imaging scanners and research scanners is around 50 mT/m. Contrary to the
gradient length, the length ℓ@ does not depend on the di�usion coe�cient, hence
one gets the same order of magnitude for liquid and gas. However, the condition
of narrow-gradient pulse may be much harder to achieve with gas di�usion. In
fact, the large di�usion length during 1 ms (see Eq. (1.9b)) implies that one most
likely has to take into account attenuation during the pulse. In contrast, gradient
pulses shorter than 1 ms may be technically challenging because of �nite slew-
rate of gradient coils. Moreover, because of gradient strength limitations, shorter
pulses reduce the range of accessible @-values.
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General gradient pro�le

The length scales ℓ6 and ℓ@ are well-suited to describe extended-gradient and
narrow-gradient experiments, respectively. In the general situation of arbitrary
gradient pro�le, one cannot a priori use either of them. To our knowledge, almost
all works with complex gradient pro�les were done under the assumption of low
gradient amplitude where, as we shall see, the signal can be expressed in terms
of the �rst moments of q , especially its variance. That situation corresponds
to weak di�usion encoding by the gradient, where the behavior of the signal
is solely controlled by the competition between the di�usion length ℓd and the
structural scale ℓs. The next section starts with a description of this regime that
provides universal results in the weak encoding limit for any gradient sequence.
Then we turn to narrow-gradient sequences and �nally to extended-gradient se-
quences. For reference we recall the four length scales that we have introduced
so far:

Name Symbol Interpretation

Di�usion length ℓd =
√
�0) Typical distance traveled by di�using

particles during the experimental
time )

Structural length ℓs Scale of microstructural features of
the sample (e.g., pore diameter)

Gradient length ℓ6 = �
1/3
0 �−1/3 Length traveled by spin-bearing

particles before their phases become
decorrelated (di�usion encoding
length)

Phase pattern period ℓ@ = �
−1X−1 Period (up to a 2c factor) of the

phase pattern produced by a narrow
gradient pulse (position encoding
length)

Table 1.1: Fundamental length scales of dMRI.

1.2.2 Low-gradient, cumulant expansion
As discussed in the previous subsection, the low-gradient perturbative approach
is based on the assumption of weak dephasing between spins, i.e., weak phase
encoding by the gradient. For an arbitrary gradient sequence, Eqs. (1.27c) and
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(1.3) yield for free di�usion [17–20]:

V[q] = 21�0 , (1.46a)

1 =

∫ )

0
Q2(C) dC . (1.46b)

One can check that this result is consistent with Eq. (1.41). In a sense, 1�0 is a
generalization of the ratio (ℓd/ℓ6)6 and measures the strength of di�usion encod-
ing by the gradient if the e�ect of boundaries can be neglected.

Particles that di�use close to a boundary are re�ected on it, that reduces the
range of exploration and in turn the discrepancies between two random trajec-
tories. In other words, the e�ect of boundaries is to reduce the value ofV[q] and
one often de�nes an e�ective1 di�usion coe�cient � < �0 [26] by analogy with
the free di�usion formula (1.46a):

� (r) = 1
21
V[q |r) = r] , (1.47a)

� =
1
21
V[q] . (1.47b)

We emphasize that the e�ective di�usion coe�cient � depends a priori on the
gradient pro�le and therefore cannot be straightforwardly interpreted as a mea-
sure of displacement of particles inside the domain. Note that it does not depend
on the overall amplitude of the gradient because 1 and V[q] both are quadratic
functions of the gradient pro�le.

Another e�ect of boundaries is that the “local” expectation value of q is not
zero (although its “global” expectation value is zero, see Eq. (1.29)): E[q |r) =

r] ≠ 0. To see why this is the case, let us consider Fig. 1.5 and imagine that there
is a boundary that limits exploration to the left of r. Then all trajectories that end
at r come from the right side, that leads to a non zero average value of q . From
a more mathematical point of view, the presence of a boundary breaks left-right
symmetry, and Eq. (1.27b) shows that left-right symmetry is equivalent to q ↔
−q (symmetries are studied in more detail later in Sec. 1.2.4). A consequence of
the non-zero local expectaction value of q is that the “global” e�ective di�usion
coe�cient� is not the spatial average of the “local” e�ective di�usion coe�cient
� (r) but contains an additional term:

� =
1

vol(Ω)

∫
Ω
� (r) + E[q |r) = r]2

21
d3r (1.48)

In the weak di�usion encoding regime, i.e. 1� � 1, the characteristic func-
tion of q , i.e. the signal (1.21), can be computed perturbatively from the �rst

1One also �nds the terminology “apparent di�usion coe�cient” (ADC) in the literature.



24 1. Presentation of di�usion magnetic resonance imaging

moments or cumulants of the distribution of q . Therefore, the magnetization
and signal are given to the �rst order by

<(), r) ≈ exp
(
8 E[q |r) = r] − 1

2
V[q |r) = r]

)
(1.49a)

= exp (8 E[q |r) = r]) exp(−1� (r)) , (1.49b)

( ≈ exp
(
−1
2
V[q]

)
= exp(−1�) , (1.49c)

and the signal is a Gaussian function of the gradient amplitude through the vari-
able 1 [25, 26]. In the above formula, 1 is an experimental parameter that is
controlled by the choice of gradient pro�le, amplitude, and duration. By varying
the 1-value and �tting the signal with Eq. (1.49c), one can extract the e�ective
di�usion coe�cient � that contains a priori microstructural informations [25–
28, 109–112, 138, 139].

Since these formulas are exact if q is a Gaussian random variable, this regime
is called “Gaussian phase approximation” (GPA) in the litterature2. In particular,
these formulas are true for free di�usion without any restriction on the gradient
strength because q is Gaussian as a sum of independent Gaussian variables (see
Eq. (1.27c)). Naturally, � is equal to the intrinsic di�usion coe�cient �0 in that
case. Although free di�usion is not very interesting from a microstructural point
of view, it is worth noting that one can measure the intrinsic di�usion coe�cient
�0 of spin-bearing particles with dMRI. This is already an interesting application
because the measurement of di�usion coe�cients with other methods generally
requires sophisticated experimental protocols. Therefore this method has been
used since the 60s and was shown to be sensitive to a wide range of di�usion
coe�cients [20, 45, 46].

In contrast, restricted di�usion leads to three main regimes under the GPA,
that are controlled by the ratio of di�usion length ℓd and pore diameter ℓs:

Short-time regime ℓd � ℓs . Di�using particles can be split into two pop-
ulations: the ones that stay away from boundaries and the ones that interact
with the boundaries during the gradient sequence. Geometrically, we split the
pore space in two parts: the bulk, and a boundary layer of thickness ∼ ℓd. In
the bulk, the e�ect of the boundary is negligible and the local e�ective di�usion
coe�cient � (r) is equal to �0. In contrast, near the boundaries there is far less

2This terminology may be misleading as it suggests that the phase is approximately Gaus-
sian, whereas Eq. (1.49c) simply follows from a low-1� Taylor expansion, without any assump-
tion on the phase distribution. See Refs [11, 126] for a more detailed discussion of misinterpre-
tation of the GPA.
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phase dispersion, which corresponds to � (r) < �0. Therefore, taking the aver-
age over the whole domain, one deduces that � di�ers from �0 by a quantity
that is proportional to the fraction of particles a�ected by the boundary, hence
to the surface-to-volume ratio f of the domain:

�0 − �
�0

∼ ℓdf . (1.50)

Mitra et al. obtained the numerical coe�cient for an isotropic domain and a
narrow-pulse sequence in [47–49] and we discuss this regime in much more de-
tail in Sec. 2.3.

Long time regime ℓs � ℓd in unbounded domain. The condition ℓd � ℓs im-
plies that all particles have di�used across multiple pores and that the microstruc-
tural complexity of the medium has been averaged out by di�usion. By upscaling
the medium by a factor ℓd/ℓs, the di�usive motion of particles is similar to a Brow-
nian motion in free space with a reduced di�usion coe�cient�∞ = �0/T , where
the tortuosity coe�cient T depends on the connectivity of the porous medium
in which di�usion takes place. In general, the e�ective di�usion coe�cient �
approaches this limit at long time as a power law:

� − �∞
�∞

∼
(
ℓs

ℓd

)3+?
, (1.51)

where3 is the dimensionality of the medium and ? is the structural exponent that
quanti�es disorder in the medium (roughly speaking, weak disorder corresponds
to ? ≥ 0 whereas stronger disorder yields ? < 0). This universal behavior was
�rst revealed by Novikov et al. in [68, 69] and we explain it in more details in the
next subsection for the particular case of narrow-gradient pulses.

Long time regime ℓs � ℓd in bounded domain. This corresponds to the
situation of an isolated pore of diameter ℓs. The condition ℓs � ℓd implies that
each particle explores the domain multiple times during the gradient pulse, so
let us denote by =expl = (ℓd/ℓs)2 � 1 the average number of domain explorations
per particle. To compute the dephasing acquired by spins during one domain
exploration, one can use the results of free di�usion recalled above, assuming
that during one domain exploration, the particles have little interaction with the
boundaries of the medium and that the gradient remains constant. Of course,
this is not valid over the course of multiple domain explorations. Therefore,
if one denotes by qexpl(C) the phase acquired by a particle during one domain
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exploration around time C , the free di�usion case (1.41) shows that it is of the
order of

V[qexpl(C)] ∼ (ℓs/ℓ6)6 ∼ � (C)2ℓ6s /�2
0 . (1.52)

In the following, we assume that ℓs/ℓ6 � 1 at all times so that the above
dephasing is small. This assumption is necessary to ensure a weak attenuation
of the bulk signal. Otherwise, the signal is dominated by the contribution from
rare trajectories that remain close to the boundaries at all times. This is the
localization regime that is explored in details later. After one domain exploration,
the position of the particle is almost uncorrelated from its starting point so that
the dephasings qexpl(C) at di�erent times can be seen as independent from each
other (in the limit =expl → ∞). Therefore, one can see the total dephasing after
=expl domain explorations as a sum of independent variables so that

V[q] ∼
=expl

)

∫ )

0
V[qexpl(C)] dC ∼

ℓ4s

�0

∫ )

0
� (C)2 dC . (1.53)

The above relation provides the correct scaling; an exact computation shows that
it is true up to a numerical prefactor usually denoted by Z−1 that depends on the
geometry of the pore. For example, Z−1 = 1/120 for a slab, Z−1 = 7/1536 for a
cylinder, and Z−1 = 1/350 for a sphere (where ℓs denotes the diameter of the pore).
Therefore, the magnetization is uniform and the signal is given by

( = exp
(
−Z−1

ℓ4s

�0

∫ )

0
� (C)2 dC

)
. (1.54)

This is the motional narrowing regime, where fast position averaging by
di�usion e�ectively reduces the Larmor precession rate dispersion [79–81]. A
larger di�usion coe�cient implies more explorations of the domain in the same
amount of time, that increases the position averaging e�ect and in turn leads to
less attenuated signal. The size of the pore contributes through ℓ4s , implying a
strong discrimination between small and large pores. Although the numerical
coe�cient Z−1 is generally unknown, the measurement of the signal for various
gradient amplitudes or durations allows to recover a reasonable estimate of ℓs.
This regime is revisited in terms of Bloch-Torrey eigenmodes in Sec. 1.2.4 and is
studied in more detail in Secs. 3.2 and 4.3.1.

1.2.3 Narrow-gradient pulse, averaged di�usion
propagator

The previous approach treated the gradient as a perturbation by ensuring a low
amplitude. In that case the behavior of the signal is governed by the variance ofq ,
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therefore reducing the study of the Bloch-Torrey equation to a di�usion problem.
Another way to perform such a reduction is by mean of narrow-gradient pulses:
the gradient does not have a low amplitude but is localized in time, so that its
e�ect can be separated from that of di�usion. More precisely, we consider a
gradient pro�le such as the one on Fig. 1.6, with X → 0 and q = XG is constant
[20, 22]. Note that here) and Δ coincide; in the following we use the notation Δ
for consistency with the literature.

Narrow pulses e�ectively encode the starting point and arrival point of each
particle, so that their phase is simply related to their displacement along the
gradient direction:

q = q · (r0 − rΔ) , (1.55)

and the magnetization and signal are given by integrals over all possible displace-
ment R = rΔ − r0:

<(Δ, r) =
∫

48q·RG(Δ, r, r + R) d3R , (1.56a)

( =

∫
48q·R% (Δ,R) d3R , (1.56b)

where % (Δ,R) is the average of the di�usion propagator G(Δ, r, r + R) over all
starting points r:

% (Δ,R) = 1
vol(Ω)

∫
Ω
G(Δ, r, r + R) d3r . (1.57)

Note that we used the symmetry of di�usion propagator related to time-reversal
symmetry, i.e. G(Δ, r, r + R) = G(Δ, r + R, r) to write Eq. (1.56a) in a more
convenient form. The signal appears as the Fourier transform of the averaged
di�usion propagator % (Δ,R), that can in principle be recovered if a su�cient
number of measurements is performed. However, the di�usion propagator itself
is not available because of the limited spatial resolution of dMRI.

The1-value (1.46b) associated to the narrow-gradient pulse sequence is equal
to

1�0 = (ℓd/ℓ@)2 . (1.58)

The interpretation for free di�usion is rather straightforward. Indeed, the ratio
between di�usion length and phase pattern period ℓd/ℓ@ can be interpreted as a
measure of the “blurring” of the phase pattern by di�usion. In turn, this is con-
sistent with the interpretation of 1�0 as a measure of di�usion encoding by the
gradient in the free di�usion case. For restricted di�usion, one can identify sev-
eral di�erent regimes depending on the ratios of phase pattern period ℓ@, di�usion
lengh ℓd, and structural length ℓs. Those regimes are summarized graphically at
the end of this subsection on Fig. 1.8.
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Short-time and weak blurring: ℓd � ℓs and ℓd � ℓ@ . Since ℓd � ℓ@, this
corresponds to the low 1-value (GPA) regime described above where the signal
decays as exp(−1�) with an e�ective di�usion coe�cient � (see Eq. (1.49c) and
related discussion). Moreover, ℓd � ℓs implies that the e�ective di�usion coe�-
cient is given by the Mitra formula (1.50).

Short-time and strong blurring: ℓd � ℓs and ℓ@ � ℓd . Contrary to the
previous case, one cannot rely on the GPA to obtain the expression of the signal
because of the strong blurring hypothesis. The short-time hypothesis ℓd � ℓs im-
plies that each di�using particle explores a small fraction of the domain. There-
fore, one can split the domain Ω in small independent “blobs” of diameter ℓd
and the signal is the sum of contributions from all blobs. The strong blurring
hypothesis implies that the bulk magnetization is strongly attenuated so that
the signal is dominated by boundary contributions. To obtain the expression of
the signal, let us �rst compute the e�ect of a single impermeable boundary in
a one-dimensional setting (the barrier is placed at G = Gb). At very large ℓd/ℓ@,
Eq. (1.56b) yields after integration by parts the following formula for the (non-
normalized) signal contribution from the boundary:

Bb = −ℓ2@ vol(Ω)
m%

mG

����
G=Gb

= ℓ2@ G(Δ, Gb, Gb) . (1.59)

The return-to-the-barrier probability G(Δ, Gb, Gb) is simply equal to twice the
Gaussian probability density (1.7) at the origin because of the “folding” created
by the boundary. This yields directly

Bb =
1

@2
√
c�Δ

=
ℓ2@

ℓd
√
c
. (1.60)

The physical interpretation of Eq. (1.59) is that the signal is dominated by tra-
jectories that start and end at a distance less than ∼ ℓ@ from the boundary. The
reason why only these trajectories matter is �guratively explained on Fig. 1.7

If the gradient makes the angle \ with the normal to the boundary, the at-
tenuation of the signal results from the independent contribution of the nor-
mal and parallel part of the gradient. The normal part is the same as above
with ℓ@ → ℓ@/cos\ , and the parallel part follows the free di�usion formula with
ℓ@ → ℓ@/sin\ :

Bb =
1

cos2 \

ℓ2@

ℓd
√
c
exp(− sin2(\ ) ℓ2d/ℓ

2
@ ) . (1.61)

The above formula has to be modi�ed at \ ≈ ±c/2 because the assumption
ℓ@/cos\ � ℓd is not valid anymore, however the strong decay from the exponen-
tial factor exp(− sin2(\ ) ℓ2d/ℓ

2
@ ) makes this correction negligible in practice. From
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x0 ∼ ℓq eiq(x−x0)

×G(∆, x0, x)
xb x0 ∼ ℓq

×G(∆, x0, x)
eiq(x−x0)

Figure 1.7: Schematic plot of � (r0, r) = 48q·(r−r0)G(Δ, r0, r) in 1D and in the limit ℓ@ �
ℓd. The magnetization at position r0 (i.e. G0 in 1D) is given by the integral of � , that
is represented by the shaded area. (left) In the bulk, the left-right symmetry leads to
positive and negative parts of � cancelling each other and a very weak magnetization.
(right) Close to a boundary, there is a symmetry breaking and the integral of � is equal to
the bulk integral plus a small contribution from an area of size ∼ ℓ@ close to the boundary
(shown in red). Therefore, the magnetization close to boundaries is more intense and
gives the contribution (1.59) to the signal.

this result, one can easily compute the normalized signal from a 3-dimensional
isotropic medium by averaging over all possible orientations of the boundary
with respect to the gradient:

( = n (3)
fℓ1+3@

ℓ3d

, (1.62)

where n (1) = 1/
√
c , n (2) = 1/c , and n (3) = 1/(2

√
c). This is the analogous of

Debye-Porod law for wave di�raction at large wavector q inside a 3-dimensional
disordered medium [82–84]. In particular, the scaling ( ∼ ℓ1+3@ is universal at
large values of ℓB/ℓ@ and simply results from the general properties of Fourier
transform of functions with discontinuities in dimension 3 . In turn, the prefac-
tor is modi�ed if the short-time hypothesis is not valid, as we show in the next
paragraph.

Long-time: ℓs � ℓd in a bounded domain. In the long-time limit, the di�u-
sion propagator G(Δ, r, r + R) in a single pore Ω1 becomes independent of time
and equal to the two-point correlation function of the pore:

G(Δ, r, r′) = IΩ1 (r)IΩ1 (r′) =
{

1
vol(Ω1) if r, r′ ∈ Ω1 ,

0 otherwise.
(1.63)
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The magnetization is uniform inside the pore and the signal is equal to the squared
absolute value of the form factor �pore(q) of the pore:

( =
���pore(q)

��2 = ���� 1
vol(Ω1)

∫
Ω1

48q·r d3r
����2 . (1.64)

For illustration, here are the formulas for the form factor of an interval, a disk,
and a sphere, where ' denotes here the half-diameter of the pore:

interval : �pore(@) = sinc(@') , (1.65a)

disk : �pore(@) = 2
�1(@')
@'

, (1.65b)

sphere : �pore(@) = 3
cos(@') − sinc(@')

(@')2 , (1.65c)

where sinc(I) = sin(I)/I and �a (I) is the Bessel function of the �rst kind. The
form factor typically displays maxima and minima as a function of q, separated
by ∼ ℓ−1s . This is the so-called di�usion-di�raction phenomenon for bounded
domains where the dMRI signal is identical to that of wave di�raction by the
pore Ω1. It is interesting to note that at large values of @', the signal (1.64) is
the product of an oscillating function and a power law @−(1+3) that follows the
Debye-Porod formula (1.62). Note that by reproducing the �rst computational
step (1.59) in dimension 3 and replacing the return-to-the-barrier probability by
its long-time limit f , one obtains the general formula

( ≈ n′(3)
fℓ1+3@

vol(Ω1)
, (1.66)

where n′(1) = 1, n′(2) = 2 and n′(3) = 2c , and one recovers the same numerical
prefactor as the large-@' asymptotic behavior of formulas (1.65a), (1.65b) and
(1.65c) (squared and with averaged oscillations).

The di�usion-di�raction phenomenon was discovered by Callaghan et al. and
stimulated a lot of interest as the patterns displayed by the signal could be directly
related to the pore size [85–88]. However, if the domain Ω is made of several
isolated pores of various shapes and diameters, the signal is the superposition of
the contribution (1.64) from all pores that leads in general to a blurring of the
di�usion-di�raction pattern.

Long-time: ℓs � ℓd in unbounded domain. In this limit, each particle ex-
plores several pores many times each so that the di�usive motion can be de-
scribed as the superposition of a discrete random walk over the lattice of pore
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sites and a fast di�usive averaging inside each pore. The di�usion propagator
can then be represented as:

G(Δ, r1, r2) = IΩ1 (r1 − R1)IΩ1 (r2 − R2)%rw(Δ,R1,R2) , (1.67)

where Ri, 8 = 1, 2 denotes the center of mass of the pore containing ri, and %rw
denotes the discrete random walk propagator. The above formula assumes that
all pores have identical shapes (described by the function IΩ1 (r)) for simplicity.
At long di�usion times, %rw is the product of the lattice correlation function and
a Gaussian envelope (1.7) with the tortuosity di�usion coe�cient �∞ = �0/T .
This yields for the signal (1.56b):

( =
���pore(q)

��2 [
�latt(q) ∗ exp

(
−
@2ℓ2d

T

)]
, (1.68)

where ∗ denotes convolution and �latt is the structure factor of the lattice

�latt(q) =
∑
R

48q·R , (1.69)

where the sum is performed over all lattice sites.
For weak position encoding, i.e. ℓs � ℓ@, the pore form factor is nearly con-

stant and equal to 1 and the lattice structure factor is reduced in a �rst approx-
imation to a Dirac peak X (q) at q = 0. The signal is then reduced to the GPA
formula in the tortuosity limit:

( = exp(−1�∞) . (1.70)

In general, the structure factor of the lattice follows the low-@ asymptotics:

�latt(q) − X (q) ∼
@→0

@? , (1.71)

with an exponent ? > −3 . This asymptotic behavior can be understood as fol-
lows: �latt(q) is the Fourier transform of the two-point correlation function of
the lattice and therefore encodes the set of correlation lengths {_} in the medium
through the wavevector q. A periodic (i.e., perfectly ordered) lattice with period
ℓs has a discrete set of correlation lengths {_} ∼ ℓsZ3 and�latt(q) displays intense
peaks at the reciprocal lattice vectors q ∈ 2cℓ−1s Z

3. In contrast, a disordered lat-
tice possess a continuous range of correlation lengths and the structure factor
�latt(q) is in turn continuous. The disorder “strength” can be quanti�ed by look-
ing at long-range correlations, i.e. low-@ behavior. The larger ? is, the faster
�latt decays to zero at low-@ and the weaker the long-range disorder. Note that
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? ≤ −3 corresponds to non self-averaging disorder with a non-integrable lat-
tice structure factor. We discard such situations that generally lead to “anormal”
long-time di�usion behavior [307, 308].

By combining Eqs. (1.68) and (1.71), one gets

( = exp(−1�) ,
� − �∞
�∞

∼
(
ℓs

ℓd

)3+?
, (1.72)

that is a particular case of the general result of Novikov et al. on the long-time
asymptotics of e�ective di�usion coe�cient in disordered media [69].

In contrast, the strong position encoding case, i.e. ℓ@ . ℓs yields a complex
signal that results from (i) the pore form factor, and (ii) the lattice structure factor,
broadened by the Gaussian envelope resulting from the �nite number of lattice
sites visited by each di�using particle. This yields a “double” di�usion-di�raction
pattern, one from the pore shape and one from the pore lattice. As time increases,
the pattern from the lattice structure factor becomes sharper, whereas the pore
form factor is unchanged. The �rst experimental observation of this double
di�usion-di�raction pattern was performed by Callaghan et al. in a spectacu-
lar work [85]. By modeling a packing of monodisperse micrometric polystyrene
beads by a periodic lattice of spherical pores, they were able to extract physical
parameters of the packing such as the diameter of the beads. For clarity, we em-
phasize that in this system the pores are the inter-beads spaces. Therefore, the
assumption of spherical pores is crude, but may be justi�ed by the orientational
averaging e�ect caused by the random packing.

In the previous paragraph, we showed that the signal from an isolated pore is
analogous to that of wave di�raction by the pore. In the case of connected pores,
one can see a strong analogy with wave di�raction by a grating [2]. In particular,
the width of the Gaussian envelope in Eq. (1.68) is equal to (ℓ2d/T )

−1, that is the
inverse of the typical di�usion length probed by particles in the porous medium.
This is equivalent to the situation of wave di�raction by a grating, where the
width (in q space) of the di�raction peaks scales as the inverse of the size of the
illuminated portion of the grating.
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Figure 1.8: Schematic representation of di�erent regimes of dMRI for the narrow-
gradient pulse experiment. Refer to Table 1.1 for the de�nition of the length scales ℓd, ℓs,
ℓ@ .
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1.2.4 Extended-gradient pulse, Bloch-Torrey operator
After having presented the two main “perturbative” approaches to the Bloch-
Torrey equation, namely low gradient amplitude and short gradient duration,
we turn to the non-perturbative study of the Bloch-Torrey equation. For clarity,
we consider a PGSE sequence (see Fig. 1.6) with no di�usion time between two
pulses (i.e. Δ − X = 0) and the gradient is in the G direction with positive then
negative amplitude ±� . The right-hand side of the Bloch-Torrey equation during
the �rst gradient pulse is the Bloch-Torrey operator3

B = −�0∇2 − 8�G , (1.73)

and the application of a constant gradient pulse of duration X can be written
formally as

<(X, G,~, I) = exp(−XB)<(0, G,~, I) . (1.74)

One way to give some operational meaning to the above relation is through the
eigenmodes of B. In fact, it is a very often employed formulation in quantum
mechanics where the evolution of a wavefunction results from the evolution of
the eigenstates of the Hamiltonian. However, although the BT operator is for-
mally similar to a Schrödinger operator, the imaginary “potential” 8�G makes
the operator non-Hermitian. Therefore, the existence and a fortiori the com-
pleteness of eigenmodes of B is far from trivial. As we shall see throughout this
thesis, the non-Hermitianity of the BT operator is at the heart of the variety of
regimes of dMRI and of the transition from perturbative to non-perturbative, i.e.,
low-gradient to high-gradient behavior of the magnetization and the signal.

Let us assume that the Bloch-Torrey has a complete set of eigenmodes E= (G,~, I)
with eigenvalues `=:

BE= = `=E= , (1.75a)
n · �0∇E= − ^E= |mΩ = 0 , (1.75b)

This is always the case if the domain Ω is bounded because the gradient term
can be seen as a bounded perturbation of the Laplacian [95]. Although this per-
turbation may be large, this is enough to ensure the completeness of {E=}=≥1 as
well as the continuity of the spectrum as� → 0 (i.e., continuous transition from
Bloch-Torrey spectrum to Laplacian spectrum). The formal equation (1.74) may
then be rewritten as

<(X, G,~, I) =
∑
=

U=E= (G,~, I) exp(−X`=) , (1.76)

3From a mathematical point of view, the Bloch-Torrey operator contains also the boundary
condition (1.32) through the de�nition of the Laplace operator ∇2.
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where U= are some complex coe�cients and we show below how to compute
them from the initial magnetization<(0, G,~, I). At long times, only eigenvalues
with the lowest real part contribute signi�cantly to the above formula and the
magnetization is represented by a few numbers of eigenmodes, whereas its time-
evolution is controlled by their corresponding eigenvalues. Thus, the study of the
eigenmodes and eigenvalues of the BT operator provides another viewpoint to
understand the formation of the signal.

Basic properties of the Bloch-Torrey operator

In this section, we present the most basic properties of the Bloch-Torrey oper-
ator and of its eigenmodes and eigenvalues. We expect that most readers are
unfamiliar with this operator and this is a good opportunity to introduce some
simple results that we will use later in this thesis. Moreover, we will see that
even very simple computations and considerations about symmetry or scaling
already carry some interesting physical interpretation.

Projection: Although the BT operator is not Hermitian, it is symmetric, i.e.
for any functions 51, 52 that satisfy the boundary condition (1.75b) on mΩ, one
has ∫

Ω
51(B 52) =

∫
Ω
52(B 51) . (1.77)

Therefore, if we denote by (·|·) the real “scalar product”

(51 |52) =
∫
Ω
5152 , (1.78)

then we obtain
(E= |E=′) = 0 if `= ≠ `=′ . (1.79)

As we work with complex functions, the bilinear form (·|·) is not a scalar prod-
uct because it is not positive de�nite. Equation (1.79) and the completeness of
eigenmodes imply that one can project any function 5 onto the family {E=}=≥1
with the following formula

5 (G,~, I) =
∑
=

(5 |E=)
(E= |E=)

E= (G,~, I) , (1.80)

provided that all eigenvalues `= are simple4. We shall see that this is generally the
case except for some exceptional values of the gradient amplitude � . At these

4If the eigenmode family is complete and all eigenvalues are simple, then (E= |E=) ≠ 0 other-
wise E= would be orthogonal to any linear combination

∑
=′ U=′E=′ and thus would be orthogonal

to the whole space !2(Ω).
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Figure 1.9: Illustration of two domains that are symmetric under G-parity: (left) the do-
main is symmetric under mirror symmetry indicated by red dotted line; (right) the do-
main is symmetric under central symmetry indicated by red cross.

“bifurcation” or “branching” points, two eigenvalues and eigenmodes coalesce
into a Jordan block of dimension 2, and the resulting eigenmode is orthogonal
to itself with respect to (·|·). This peculiar behavior and the generalization of
Eq. (1.80) are investigated in details in Sec. 4.3. Outside these special values,
we shall always assume that the eigenmodes E= are normalized in the sense that
(E= |E=) = 1.

Interpretation of the real and imaginary part of eigenvalues. Multiply-
ing Eq. (1.75a) by E∗= and integrating yields

Re(`=) =
�0

∫
Ω
|∇E= |2 + ^

∫
mΩ
|E= |2∫

Ω
|E= |2

≥ 0 , (1.81a)

Im(`=) = −�
∫
Ω
G |E= |2∫

Ω
|E= |2

, (1.81b)

where we used the Robin boundary condition (1.75b) and Green’s formula to
write the �rst relation. One can see that the conventional minus sign in the
de�nition of the BT operator (1.73) ensures eigenvalues with positive real part.
If the integrals in the above formulas are well-de�ned (that is always the case for
bounded domains), then the BT eigenmode E= is localized and its mean position
is given by −Im(`=)/�G . Moreover, if the surface relaxivity ^ is zero, then the
typical scale of variation of the mode is given by

√
�0/Re(`=). We shall see in

Sec. 4.2.1 and Appendix C.2 that Bloch-Torrey eigenmodes generally exhibit a
fast oscillating behavior that dominates the value of Re(`=).

Symmetry properties First, one can note that reversing the gradient direc-
tion is equivalent to applying a complex conjugation to the BT operator (and as
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a result to E= and `=). As a side remark, it shows that the (real) signal after a
refocused gradient sequence is not a�ected by the gradient reversal. Now let us
assume that the domain Ω is bounded and invariant by an isometric transforma-
tion that reverses the G-axis (i.e., c rotation around an axis orthogonal to ex or
mirror symmetry with respect to the plane orthogonal to ex), see Fig. 1.9. We
call this transformation G-parity in short and we denote it generically by PG . In
Sec. 4.4 we investigate the case of periodic media and we shall see that the fol-
lowing discussion requires more care, hence the assumption of bounded Ω here.
The BT operator is then invariant under the combination G-parity plus complex
conjugation

PGB∗ = (−∇2 − 8� (−G))∗ = B , (1.82)

and this property translates for the eigenmodes into the following: if E= is an
eigenmode with eigenvalue `=, then PGE∗= is an eigenmode with eigenvalue `∗=.
This leads to two possible situations.

(i) the eigenvalue `= is real (and simple), so that E= = ±PGE∗=. In that case, the
eigenmode E= is “symmetric” in the sense that |E= | is invariant by G-parity. Note
that this is consistent with the previous paragraph: the imaginary part of `= is
zero and the mode is centered around G = 0.

(ii) two eigenvalues `= and `=′ form a complex conjugate pair, so that E=′ =
PGE∗=. This means that the mode E=′ is the “symmetric” of E= if one considers their
absolute value. Following the conclusion of the previous paragraph, each mode
is localized on one side of the domain (given by the sign of Im(`=) = −Im(`=′)).

Scaling properties For clarity, let us assume that the domain Ω is an isolated
pore of diameter ℓs, and let us perform the rescaling

r̃ = r/ℓ6 , (1.83)

where we recall that ℓ6 is the gradient length given by Eq. (1.40). The BT operator
becomes then

B =
�0

ℓ26

(
−∇̃2 − 8G̃

)
. (1.84)

Therefore, the eigenmodes E= of the BT operator in a pore of diameter ℓs are
(up to rescaling) the eigenmodes of the dimensionless BT operator B̃ = −∇̃2 −
8G̃ in a rescaled pore of diameter ℓs/ℓ6. Thus, if the pore shape is prescribed
(e.g., spherical), the eigenmodes of the BT operator are controlled by a single
parameter ℓs/ℓ6. Following the same reasoning, the eigenvalues `= can be written
in the following form:

`=) =
ℓ2d

ℓ26
Ξ= (ℓ6/ℓs) , (1.85)
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where Ξ= (·) are dimensionless functions.
In Sec. 1.2.2, we explained that the competition between the di�usion length

ℓd and the gradient length ℓ6 controls the strength of di�usion encoding by the
gradient pulse, i.e. the width of the phase distribution after the gradient se-
quence. In that regard, strong gradients correspond to strong di�usion encoding,
i.e. ℓ6 � ℓd. Here, the study of eigenmodes and eigenvalues of the BT operator
reveals a new competition, namely between ℓ6 and ℓs. At low gradient ℓs � ℓ6,
the BT eigenmodes and eigenvalues are close to the Laplacian ones. In contrast,
high gradient corresponds to ℓ6 � ℓs where the gradient term dominates.

Regimes of dMRI for extended-gradient pulses

The previous paragraphs allow us to write the magnetization after the full PGSE
sequence as an eigenmode decomposition. Naturally we assume that the eigen-
modes exist and form a complete basis. As we explained above, this is ensured
in bounded domains, for example. Furthermore, we assume that eigenmodes are
normalized in the sense that (E= |E=) = 1. Finally, we recall that the initial condi-
tion for the magnetization is a uniform magnetization <(0, r) = 1. We present
below the time-evolution of the magnetization in terms of spectral projection
over the Bloch-Torrey eigenbasis:

<(0, r) =
∑
=

(1|E=)E= (r) , (1.86a)

<(X, r) =
∑
=

(1|E=)E= (r)4−X`= , (1.86b)

<(X, r) =
∑
=′

∑
=

(1|E=) (E= |E∗=′)E∗=′ (r)4−X`= , (1.86c)

<() = 2X, r) =
∑
=′

∑
=

(1|E=) (E= |E∗=′)E∗=′ (r)4−) (`=+`
∗
=′)/2 , (1.86d)

( =
1

vol(Ω)
∑
=′

∑
=

(1|E=) (E= |E∗=′) (E∗=′ |1)4−) (`=+`
∗
=′)/2 , (1.86e)

where we used that the eigenmodes and eigenvalues for reversed gradient are
the complex conjugates of E= and `=. Although the full expression (1.86d) is more
complicated than the single-pulse expression (1.76) as it involves couplings be-
tween E= and E∗

=′, it still reduces to a small number of terms in the long-time
limit where the magnetization behavior is controlled by the eigenmodes with
the lowest eigenvalue in real part.

Therefore in general there are three possible regimes for the magnetization
after extended-gradient pulses that are controlled by the three length scales ℓs,
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ℓd, and ℓ6. We have already discussed the short-time, weak di�usion encoding
regime (ℓd � ℓs and ℓd � ℓ6) in the �rst subsection: the signal is given by Eqs.
(1.49c) and (1.50) as a consequence of the narrow phase distribution produced by
the gradient sequence. For a bounded domain, the motional narrowing regime
can be revisited in terms of the BT eigenmodes. Finally we discuss the localiza-
tion regime that emerges at strong gradients.

Motional narrowing regime revisited: ℓs � ℓd and ℓs � ℓ6 . As we explain
above, the assumption ℓs � ℓ6 implies that the gradient can be treated as a small
perturbation of the Laplace operator, that yields for `= an expansion in powers
of 8� ∼ 8 (ℓs/ℓ6)3. The zero-order term yields the =-th Laplacian eigenvalue of
the domain (denoted [=), the �rst-order term is imaginary and yields the average
Larmor frequency shift (we assume that it is set to zero by suitable coordinate
change), therefore one has:

Ξ= (ℓ6/ℓs) ≈
ℓ6�ℓs
(ℓ6/ℓs)2

(
[= + [′= (ℓs/ℓ6)6 + . . .

)
, (1.87a)

`=) ≈
ℓ6�ℓs

[=
ℓ2d

ℓ2s
+ [′=

ℓ2dℓ
4
s

ℓ66
+ . . . , (1.87b)

where [′= are geometry-dependent dimensionless coe�cients (see Sec. 4.3.1).
Since we assumed impermeable boundaries, the �rst Laplacian eigenmode is con-
stant and the �rst Laplacian eigenvalue is zero, i.e. [1 = 0, so that one has

`1) ≈
ℓ6�ℓs

[′1
ℓ2dℓ

4
s

ℓ66
, `2) ≈

ℓ6�ℓs
[2
ℓ2d

ℓ2s
, (1.88)

and the assumption ℓd � ℓs allows us to truncate the expansion (1.86e) to the
�rst term, that yields (after identifying [′1 to Z−1):

( = exp

(
−Z−1

ℓ4s ℓ
2
d

ℓ66

)
, (1.89)

where the prefactor 1 is given by | (1|E1) |2(E1 |E∗1)/vol(Ω) since E1 is nearly con-
stant and equal to vol(Ω)−1/2. Furthermore, the magnetization pro�le is given
by E1, i.e. uniform, as expected from the fast di�usive averaging inside the pore.

Localization regime: ℓ6 � ℓs and ℓ6 � ℓd . We shall provide two interpreta-
tions of this regime. Although very di�erent in nature, they provide two com-
plementary viewpoints on both magnetization and signal behavior. The �rst one
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relies on the spectral properties of the BT operator and the second one follows
from the study of the dephasing acquired by individual particles. We emphasize
that these interpretations are somewhat qualitative. The localization regime is
the object of Chapter 4.

Because of the assumption ℓ6 � ℓs, the gradient is a strong perturbation of
the BT operator and deeply a�ects its spectral properties. Qualitatively, there
is a competition between the delocalized eigenmodes of the Laplace operator
and the Dirac peak eigenmodes of the gradient term. At large gradient strength,
eigenmodes are thus localized. As the only relevant length scale in this limit, ℓ6
appears as the typical localization scale of these modes and Eq. (1.81a) implies
that

`=) ∼
ℓ2d

ℓ26
, (1.90)

and the signal decays as
− log ( ∼ ℓ2d/ℓ

2
6 . (1.91)

The above equation (1.90) may be restated as Ξ= (ℓ6/ℓs) having a �nite limit for
ℓ6/ℓs → 0. The exact limit Ξ= (0+) = −4−8c/30= was obtained by Stoller et al. in
1991 in [98], where the coe�cients 0= are the zeros of the derivative of the Airy
function: 01 ≈ −1.019, 02 ≈ −3.248, 03 ≈ −4.820, etc.

Another way to understand this regime is to go back to the interpretation of
ℓ6 in terms of dephasing acquired by di�using particles. Because of the assump-
tion of strong di�usion encoding (ℓ6 � ℓd), particles that di�use far away from
boundaries are strongly dephased with one another and the bulk magnetization
vanishes. In contrast, particles that remain close to boundaries are dephased less.
This e�ect is the strongest for boundaries that are perpendicular to the gradient.
Since any particle that di�uses further than a distance ℓ6 will have strong phase
di�erences with its neighbor, one deduces that the threshold between “far away
from boundaries” and “close to boundaries” is given by ℓ6.

Therefore, the magnetization at long times and large gradient is localized
over the length ℓ6 near boundaries that are perpendicular to the gradient. As time
increases, the magnetization decay is due to the increasing dephasing between
spins close to the boundaries as well as the decreasing number of particles staying
near the boundaries (see Sec. 4.1 for a more detailed qualitative description of
the emergence of the localization regime).
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Figure 1.10: Schematic representation of di�erent regimes of dMRI for the extended-
gradient pulse experiment. Refer to Table 1.1 for the de�nition of the length scales ℓd, ℓs,
ℓ6.
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Chapter 2

Anisotropy

An interesting property of di�usion MRI is that the random motion of particles is
encoded along a prescribed gradient direction. Since the seminal work by Stejskal
[21] in 1965, researchers in the �eld quickly appreciated that this could be used
to probe di�usive properties of a medium in di�erent directions and therefore
to detect the anisotropy of the medium [106, 132, 145–148, 226]. As we already
discussed in the introduction, the di�usion length ℓd allows one to distinguish be-
tween three di�erent scales, namely microscopic, mesoscopic, and macroscopic.
In the �rst section, we discuss how anisotropy may arise at these di�erent scales.
The study of microscopic anisotropy with dMRI stimulated many works in the
past years and we brie�y present this �eld of research. Then we turn to the less
explored mesoscopic anisotropy and we show how one can generalize Mitra’s
formula for the short-time behavior of the e�ective di�usion coe�cient. This
last part is largely drawn from our publication [344].

2.1 Anisotropy at di�erent scales
Isotropy is de�ned as “uniformity in all directions”, or equivalently “invariance
by spatial rotations”. In terms of microstructure, no medium is, strictly speaking,
isotropic. Indeed, one may go to a �ne enough scale where the microstructure
is locally non-invariant by rotations. The keyword here is scale. As one goes to
larger and larger scales, the properties of the microstructure are averaged and the
anisotropy of the medium may change. A common example of this phenomenon
is found in optics. A piece of transparent material at the molecular scale is locally
non-isotropic because of spatial arrangements of molecules. When one goes to
the macroscopic scale, two distinct behaviors are observed: either the material is
a glass (i.e. amorphous, disordered, hence macroscopically isotropic), that leads
to the usual refractive behavior; or the material is a crystal (i.e. ordered, hence
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macroscopically anisotropic), that generally leads to birefringence properties.
In the context of di�usion, we shall see in this section that anisotropy mani-

fests itself di�erently depending on its scale with respect to the di�usion length.
Since the di�usion length quanti�es the size of the region explored by individual
particles, one distinguishes three main scales: (i) microscopic scale, where the
anisotropy is averaged out by di�usion into an anisotropic di�usion tensor; (ii)
mesoscopic scale, where the di�usion behavior is complex, time-dependent, and
anisotropy generally arises in the time-dependence of di�usive properties; (iii)
macroscopic scale, where anisotropy arises as a statistical (or ensemble) average
of micro- and meso-anistropy of independent micro-domains. The discussion
below is summarized graphically on Fig. 2.1.

Microscopic
anisotropy

Macroscopic
anisotropy

Voxel size 𝐿

𝐷∥ 𝑇 ,𝐷⊥ 𝑇

 ℓd ℓs
=  𝐷0𝑇 ℓs

ℓd

ℓs
ℓd

ℓs

Mesoscopic
anisotropy

(a)

(b) (c)

(d)

Figure 2.1: Schematic representation of di�erent scales of anisotropy. (a) If di�usion
takes place between �bers spaced by ℓs, the di�usive motion may be modeled as two
time-dependent di�usion coe�cients: �‖ () ) in the direction parallel to the �bers and
�⊥() ) in the direction perpendicular to the �bers. (b) The mesoscopic scale corresponds
to ℓs being of the same magnitude as the di�usion length ℓd. Both coe�cients �‖ , �⊥
vary with time and the motion may be modeled by a time-dependent di�usion tensor.
(c) The microscopic scale corresponds to ℓs � ℓd: both coe�cients�‖ ,�⊥ have reached a
stationary value and the di�usive motion may be modeled by a constant di�usion tensor
(i.e., the di�usion motion is e�ectively “free”). (d) Macroscopic anisotropy results from
a coherent alignment of anisotropic microdomains at the scale of a voxel.
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2.1.1 Microscopic scale

The microscopic scale refers to any structure much smaller than the di�usion
length ℓd. For water di�usion and typical di�usion times (1.9a), this corresponds
to any structure smaller than ∼ 1 `m. At this scale, the microstructural complex-
ity is averaged by di�usion and one may model the complex di�usive motion
by a coarse-grained e�ective Brownian motion. For example, one may think of
water di�usion inside a living cell. Although the cytoplasm is a very complex
medium that is �lled with macromolecules of various sizes, one usually discards
this complexity and reduces it to a single number, namely the di�usion coe�cient
�0 inside the cytoplasm. In turn, the large-scale structure of the cell (membrane,
organelles, etc.) would be incorporated via boundary condition. Here we dis-
card these e�ects. In that case, the coarse-grained di�usion is e�ectively free
di�usion.

Transverse sliceLongitudinal slice
2 𝜇𝑚 0.5 𝜇𝑚

Figure 2.2: The structure of muscle �bers at the sub-micrometric scale. The images were
obtained with TEM microscopy by T. Astruc from QuaPa (UR370 Inra).

In a microstrure that is anisotropic, such as oriented muscle �bers (see Fig.
2.2), neuronal �bers, the coarse-graining yields an anisotropic di�usion tensor
D0 [141–144, 148]. One can provide two equivalent de�nitions for the di�usion
tensor, that generalizes the scalar di�usion coe�cient. The �rst one is the gener-
alization of Eq. (1.6) and relates the di�usive �ux J to the gradient of the quantity
5 of interest:

J = −D0∇5 . (2.1)

In the anisotropic case, the �ux J is generally not parallel to the gradient ∇5 .
Another way to de�ne the anisotropic di�usion tensor is through the velocity
autocorrelator (1.10):

E[vC ⊗ vC ′] = 2D0X (C − C ′) . (2.2)
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Equivalently, one has

E[(r) − r0) ⊗ (r) − r0)] = 2D0) . (2.3)

The di�usion tensor is symmetric hence it can be diagonalized. Let us assume
that our axes G,~, I are chosen so that D0 is in diagonal form:

D0 =


�GG 0 0

0 �~~ 0

0 0 �II

 . (2.4)

In that case its interpretation becomes simple: each diagonal element of the ten-
sor represents a one-dimensional di�usion coe�cient along each axis. The dif-
fusion is anisotropic if the diagonal elements are not equal to each other: there
are axes of faster di�usion and axes of slower di�usion. For instance, in Fig.
2.2, one expects that di�usion parallel to the �bers is faster than di�usion in the
orthogonal plane. The opposite situation of isotropic di�usion corresponds to

D0 = �0I , (2.5)

where I denotes the identity tensor. Any tensor that is proportional to the iden-
tity is invariant by any spatial isometry (rotation or symmetry) and thus we call
such tensors “isotropic” throughout the text.

Note that the mean-squared displacement does not distinguish between isotropic
and non-isotropic di�usion:

E[(r) − r0)2] = 23�0) , (2.6)

where
�0 =

1
3
Tr(D0) (2.7)

is the average di�usivity and coincides with the scalar di�usion coe�cient for
isotropic di�usion. At this point, a mathematical remark is in order: because the
trace Tr(·) is the only linear operation on a tensor that is invariant by spatial
isometries (rotations and symmetries), it appears naturally whenever one per-
forms orientational averages or computes rotation-invariant quantities related
to the di�usion tensor. In particular, one has〈

RD0R†
〉
=
Tr(D0)

3
I , (2.8)

where the average 〈·〉 is performed here over all possible rotation matrices R
(with isotropic integration measure). We shall see several examples of this result
in the following.
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2.1.2 Mesoscopic scale
The mesoscopic scale corresponds to structures with sizes similar to ℓd (i.e., ∼
10 − 100 `m for water di�usion). As we have discussed in Sec. 1.2.2 and as we
show later (see Sec. 2.3 for the short-time limit), such structures typically lead to
a formula for the mean-squared displacement of the form

E[(r) − r0)2] = 23�MSD() )) , (2.9)

where the average is performed over all trajectories and �MSD() ) is a time-
dependent e�ective di�usion coe�cient. The index MSD emphasizes that it is
de�ned through the mean-squared displacement. At short times, the e�ect of the
boundaries of the structure is negligible and �MSD = �0. At longer times, �MSD
decreases and tends to the tortuosity limit �∞ (note that �∞ = 0 in bounded do-
mains). Compared to the microscopic scale discussed above where one has only
access to the tortuosity limit, the time-variation of di�usivity at the mesocopic
scale contains a priori much more microstructural information.

If the medium structure is anisotropic at the mesoscopic scale (for example,
di�usion inside prolate cells or outside large �ber arrangements), then the dif-
fusion process, that is isotropic at short times, becomes anisotropic at longer
di�usion times. Hence Eq. (2.9) is not su�cient to describe the time-dependence
of di�usivity and one generalizes it to a tensorial form:

E[(r) − r0) ⊗ (r) − r0)] = 2DMSD() )) . (2.10)

The short-time behavior of DMSD is investigated in Sec. 2.3.

2.1.3 Macroscopic scale
The macroscopic scale corresponds to the size of the voxel. Practically, it is much
larger than the di�usion length (& 100 `m for water di�usion) so that a negli-
gible amount of particles actually travels through the medium over this scale.
Therefore at the macroscopic scale one can split the medium into independent
“microdomains” and the result of a measurement is the superposition of results
from all microdomains. The relevance of this scale in the context of dMRI is re-
lated to the lack of spatial resolution that leads one to measure the signal from
a voxel that is typically 100 times larger (in length) than the di�usion length ℓd.
Note that each microdomain would have a typical size of & 10ℓd.

Let us assume that each microdomain is anisotropic at the microscopic scale,
but with di�erent orientations with respect to each other. Note that the following
discussion extends straightforwardly to mesoscopic anisotropy but we focus on



48 2. Anisotropy

microscopic anisotropy for clarity. The voxel is then characterized at the macro-
scopic scale by a distribution of anisotropic di�usion tensors D0. For example, if
the anisotropy is caused by a �ber-like structure such as on Fig. 2.2, the distri-
bution of D0 is related to the macroscopic distribution of �ber orientation. Thus,
the medium is macroscopically anisotropic if there is a coherent orientation of
microdomains at the macroscopic scale. In that case, the ensemble average of
di�usion tensors yield an anisotropic tensor whose axes are related to the aver-
age microdomain orientation. In the opposite case of a macroscopically isotropic
medium (e.g., fully random microdomain orientation), the ensemble average of
di�usion tensors yields an isotropic tensor [154–156].

Let us illustrate this e�ect on the simplest possible example: di�usion inside
thin cylinders in 3 dimensions. Thin cylinders may model muscle �bers [226–
228] or alveolary ducts [151] in the long-time regime where di�usion transverse
to the cylinder axis is fully restricted. Inside a cylinder, di�usion is anisotropic
with di�usion tensor equal to D0 = �0 u ⊗ u, where u is a unit vector oriented
along the axis of the cylinder. To show this, it is su�cient to note that (i) the for-
mula is correct if u = ex, and that (ii) both sides of the formula are (contravariant)
tensors with respect to spatial isometries. We shall use this argument again later
in the text. We denote by \ and q the spherical coordinates of u, so that the
di�usion tensor has elements

D0 = �0


sin2 \ cos2 q sin2 \ cosq sinq sin\ cosq cos\

sin2 \ cosq sinq sin2 \ sin2 q sin\ sinq cos\

sin\ cosq cos\ sin\ sinq cos\ cos2 \

 . (2.11)

The ensemble average of D0 is then governed by the distribution of the ori-
entation of the cylinder (i.e. distribution of \, q) over the voxel. To simplify fur-
ther, we assume that the distribution of cylinder orientation is axially symmetric
around I, that yields

〈D0〉 =
�0

3


1 − Θ 0 0

0 1 − Θ 0

0 0 1 + 2Θ

 , (2.12)

where
Θ = 〈(3 cos2 \ − 1)/2〉 (2.13)

is the so-called “orientation order parameter” of the angular distribution of �ber
orientation [154–156] and results from the average of the second Legendre poly-
nomial weighted by the angular distribution of \ . One can make the follow-
ing observations: (i) the orientation distribution is reduced to a single parame-
ter −1/2 ≤ Θ ≤ 1; (ii) the value Θ = 0 corresponds to an isotropic averaged
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tensor 〈D0〉 with di�usivity �0/3. Note that this di�usivity is exactly equal to
Tr(�0 u ⊗ u)/3, that is another application of Eq. (2.8). We emphasize that the
average di�usivity is one third of the intrinsic di�usion coe�cient �0 because of
the one-dimensional character of cylinders.
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2.2 Interplay between micro- and
macro-anisotropy in dMRI

In this section, we brie�y investigate the e�ect of micro- and macro-anisotropy
on the dMRI signal. To simplify the discussion and emphasize the most interest-
ing mechanisms, we discard the e�ect of obstacles, boundaries, etc., at the meso-
scopic scale. In other words, we assume that di�usion is well represented by a
local di�usion tensor D0. First we present the case of macroscopically anisotropic
medium where one may recover structural information such as �ber orientation
at the scale of the voxel. This corresponds to di�usion tensor imaging [141–144],
a technique that was invented in the 90s and showed spectacular results in the
brain [140], among others. Then we turn to macroscopically isotropic medium,
that recently renewed interest in the design of a new family of gradient pro�les
generically called “spherical encoding” pro�les [153, 158–163, 168].

2.2.1 Di�usion tensor imaging
As we have shown in Sec. 1.2.2, in the free di�usion regime, the signal is governed
by the variance of the phase q acquired by di�using particles, according to Eq.
(1.49c) that we reproduce here

( = exp
(
−1
2
V[q]

)
. (2.14)

For isotropic free di�usion, we already obtained the simple formula (1.46a) for
the variance of q . Using Eqs. (1.27c) and (2.2), one deduces immediately the
generalization to anisotropic free di�usion:

V[q] = 2
∫ )

0
Q(C) · D0Q(C) dC . (2.15)

This formula may be rewritten in a convenient form by introducing the B-tensor
[141–143], that generalizes the 1-value (1.46b):

B =

∫ )

0
Q(C) ⊗ Q(C) dC . (2.16)

Note in particular that Tr(B) = 1. In terms of the B-tensor, the above equation
becomes:

V[q] = 2 Tr(BD0) . (2.17)

Mathematically, the variance of q may be seen as a scalar product between two
symmetric tensors B and D0. Whereas the tensor D0 is a property of the medium
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under study and is generally unknown, the B-tensor is fully under control of the
experimentalist. Therefore, one may choose di�erent gradient sequences that
produce di�erent B. In particular, if B spans a basis of symmetric tensors, the
measurement of V[q] through the signal (1.49c) allows one to recover the dif-
fusion tensor D0. This is the basic principle of di�usion tensor imaging (DTI)
[141].

Symmetric matrices form a 6-dimensional vector space, therefore at least 6
di�erent B-tensors are required to extract the di�usion tensor. A commonly em-
ployed scheme is to apply the same gradient temporal pro�le in 6 “non-collinear”
spatial directions1. Below we give an example of such 6 directions with the asso-
ciated B-tensors, and one can check that they indeed form a basis of symmetric
tensors:

ex + ey →


1 1 0

1 1 0

0 0 0

 , ex − ey →


1 −1 0

−1 1 0

0 0 0

 ,
ey + ez →


0 0 0

0 1 1

0 1 1

 , ey − ez →


0 0 0

0 1 −1
0 −1 1

 ,
ez + ex →


1 0 1

0 0 0

1 0 1

 , ez − ex →


1 0 −1
0 0 0

−1 0 1

 . (2.18)

In order to improve the quality of tensor reconstruction that may be altered by
noise, one may employ more than 6 gradient directions [149].

As we explained in the previous section, the recovery of the di�usion tensor
D0 is only possible at the scale of a voxel, therefore it is useless if the medium
is macroscopically isotropic. In other words, the above technique gives access to
new informations only in ordered samples where the orientation of microscopic
structures is coherent at the scale of a voxel. The most emblematic and spec-
tacular example is probably neuronal tracts in the brain (see Fig. 2.3) [140]. Al-
though neuronal �bers are too small to be resolved by MRI images, the di�usion
anisotropy reveals their orientation. By “connecting” continuously results from
neighboring voxels, one may then reconstruct whole �ber tracts in the brain. We
emphasize that this can be done in vivo and non-invasively. This achievement

1Note that “non-collinear” is mathematically absurd here, however it is the term in usage in
the �eld.
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stimulated numerous research works in a �eld now known as “tractography”.
This is also a part of the so-called functional MRI that plays the crucial role in
neurosciences (see Refs [113, 114] for a review).

Figure 2.3: Left lateral view of an owl monkey cerebral hemisphere. Lines represent neu-
ronal tracts obtained in vivo, non-invasively with di�usion tensor imaging (colors were
used to guide the eye and help visualization of large-scale structures). The �gure reveals
sheets of interwoven �bers that are continuous at the scale of the whole hemisphere.
Note that the thickness of one line is determined by the spatial resolution of the scan-
ner (here, about 0.5 mm) that is much larger than the actual diameter of axons (a few
microns). Figure from Ref [140].

2.2.2 Spherical encoding
The previous paragraph showed how one can recover the di�usion tensor D0
from the measurement of the dMRI signal. The fundamental requirement is that
the average of the microscopically anisotropic tensor D0 is not isotropic (i.e., 〈D0〉
is not proportional to I), that would result from e.g. uniformly oriented �bers over
the voxel of interest. To avoid any confusion, “uniformly oriented” means here
“randomly oriented with a uniformly distributed orientation”. Now we exam-
ine the opposite situation of macroscopic isotropy. We take this opportunity to
rephrase some previous considerations about the interplay between micro- and
macro-anisotropy.
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To simplify notations, we assume that the voxel is made of several identical
microdomains that are uniformly oriented. Let us choose one microdomain in the
voxel and denote by D0 its local di�usion tensor. Then the local di�usion tensor
at any other microdomain is given by an expression of the form RD0R†, where R
denotes a rotation matrix that accounts for the orientation of the microdomain
of interest with respect to our reference. The averaged di�usion tensor over the
whole voxel is given by

〈RD0R†〉 =
Tr(D0)

3
I . (2.19)

Now let us consider a gradient sequence with the gradient in a �xed direction
e. The B-tensor is given by

B = 1 e ⊗ e . (2.20)

The signal from an individual microdomain with di�usion tensor RD0R† is given
by Eqs. (2.14), (2.17), and (2.20):

B = B0 exp
(
−1Tr

[
(e ⊗ e)RD0R†

] )
= B0 exp(−1 ê · D0ê) , (2.21)

where we denoted ê = R†e, and B0 is the non-normalized signal from the mi-
crodomain without gradient encoding. This fomula has a straightforward inter-
pretation: the signal from a microdomain rotated by R is the same as the original
microdomain if the gradient direction e is rotated by the inverse transformation,
R†. The average of the signal over the whole voxel gives two di�erent behaviors
depending on the strength of di�usion weighting. Note that averaging over the
voxel is equivalent to averaging over all rotations R. In turn, this is equivalent to
averaging over all possible orientations of ê on the unit sphere (2:

( =
1
4c

∫
(2
exp(−1 ê · D0ê) d2ê . (2.22)

In the weak di�usion weighting regime, i.e. 1 Tr(D0)/3 � 1, the orientational
average can be performed inside the argument of the exponential2, that yields:

( ≈ exp (−1 Tr(D0)/3) . (2.23)

Two conclusions can be drawn from this �rst case. (i) The direction of the gra-
dient has disappeared. This is expected because the voxel over which the mea-
surement is performed is macroscopically isotropic. In other words, it is invariant
by rotation, therefore the signal does not depend on the direction of the gradi-
ent. (ii) The anisotropic di�usion tensor D0 is reduced to its trace, therefore the

2One linearizes exp(−G) ≈ 1−G , performs the average, then puts 1−〈G〉 in exponential form
exp(−〈G〉).
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signal in this regime does not distinguish the micro-anisotropy of the medium
[101, 153–155, 169].

We consider now the strong di�usion encoding regime: 1Tr(D0)/3 & 1. In
that case one cannot perform the average inside the argument of the exponen-
tial because its �rst order asymptotic expansion is not a good approximation
anymore. In order to compute the signal (2.22), let us denote by _1, _2, _3, and
e1, e2, e3 the eigenvalues and corresponding eigenvectors of D0. We assume fur-
ther that _1 < _2, _3. At large 1-values, the signal (2.22) becomes dominated by
the lowest values of ê ·D0ê, i.e. ê ≈ e1. One can apply the Laplace method to �nd
the approximate expression of the signal:

( ≈ exp(−_11)
41

√
(_3 − _1) (_2 − _1)

. (2.24)

Since _1 < Tr(D0)/3, this yields a slower decay with 1 than the low-1 expression
(2.23) (we assume here that the factor 1/1 varies much slower than the expo-
nential factor). Therefore, the signal deviates from the mono-exponential free
di�usion decay at large 1-values, which is a direct consequence of the micro-
anisotropy of the medium. A strong micro-anisotropy leads to a large discrep-
ancy between eigenvalues _1, _2, _3, and in turn a large deviation between the
low-1 and high-1 decay. However, a non-mono-exponential signal is a not a def-
inite proof of anisotropy. Indeed, it could result from, e.g., the existence of several
independent compartments with di�erent isotropic di�usivities.

An elegant way to reveal non-ambiguously the e�ect of microscopic aniso-
tropy is to perform the same measurement but with a gradient sequence such that
all microscopic domains yield the same, mono-exponential, signal decay [153].
This is ensured if Tr(BD0) does not depend on the orientation of the microstruc-
ture, i.e. if B is an isotropic tensor:

B =
1

3
I . (2.25)

Such sequences are called “isotropic di�usion weighting” or “spherical encoding”
sequences and involve a varying gradient direction during the measurement. In
that case the signal from an individual microdomain with di�usion tensor RD0R†

is given by

B = B0 exp(−Tr(BRD0R†)) = B0 exp(−1Tr(D0)/3) , (2.26)

that is indeed independent of R, i.e. of the orientation of the microstructure.
The total signal follows the mono-exponential decay (2.23) even for strong dif-
fusion encoding. The di�erence in the decay of the signal between the sequence
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Polylamellar liquid crystal

10 𝜇𝑚

10 𝜇𝑚

Yeast cell suspension

Figure 2.4: The dMRI signal from two di�erent systems acquired with two di�erent gradi-
ent sequences, as well as di�usion coe�cient distribution obtained from inverse Laplace
transform of the signal. The “q-MAS PGSE” sequence satis�es the isotropy condition
(2.25), whereas the standard PGSE sequence satis�es Eq. (2.20) (Figure and data adapted
from Ref. [153]). (top) experiments on a yeast cell suspension (optical microscopy im-
age by Bob Blaylock under Creative Commons Attribution-Share Alike 3.0 Unported
license). (a,b) The signal is bi-exponential that can be attributed to unrestricted extra-
cellular di�usion and restricted intra-cellular di�usion with almost no exchange. The
system is microscopically isotropic and both gradient sequences yield the same signal.
(bottom) experiments on a lamellar liquid crystal with randomly oriented anisotropic
microdomains (SEM image adapted from Ref. [150]). (c,d) While the PGSE sequence
yields a non-mono-exponential decay associated to a broad distribution of e�ective dif-
fusion coe�cients, the q-MAS PGSE sequence yields a purely mono-exponential decay
and therefore reveals the micro-anisotropy of the system.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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with (2.20) and the one with (2.25) is an unambiguous marker of microscopic an-
isotropy. This is shown on Fig. 2.4 that was adapted from Ref. [153], where this
�nding was �rst reported. Although spherical encoding sequences and their abil-
ity to average microscopic anisotropy were well-known for more than 20 years,
it was the �rst time that they were used in addition to a standard PGSE sequence
to investigate the presence of micro-anisotropy.

To summarize, the B-tensor controls di�usion encoding of each particle tra-
jectory. If it is anisotropic (e.g., Eq. (2.20)), trajectories are encoded along a pref-
erential direction and the magnetization inside one microdomain results from
the interplay of the anisotropy of B and the anisotropy of the microdomain
through D0. In turn, the total signal results from a statistical average over all
microdomains, i.e. all values of D0, that generally leads to a superposition of
exponential functions and a complex signal decay. In contrast, if the B-tensor is
isotropic (2.25), then trajectories are encoded isotropically, and the magnetization
in each microdomain is given by the free di�usion decay with scalar di�usivity
Tr(D0)/3. The signal is thus mono-exponential.
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2.3 Mesoscopic anisotropy probed in the
short-time limit

The previous sections gave an overview of the study of micro-anisotropy in the
�eld of dMRI. However, only recently, anisotropy at the mesoscopic scale has
attracted considerable attention [157]. The question is the following: how does
the anisotropy of microstructural features of size ℓs comparable to the di�usion
length ℓd a�ect the dMRI signal? In this section we investigate this e�ect in the
short-time (ℓd � ℓs) and weak di�usion-encoding (1�0 � 1) regime. In Sec.
1.2.2, we explained that in this regime, the signal may be described by the for-
mula for free di�usion, with a reduced e�ective di�usion coe�cient that depends
on the surface-to-volume ratio f of the domain (see Eq. (1.50) and related discus-
sion). This result, �rst obtained by Mitra et al. in [47], was exclusively derived
for isotropic structures and basic gradient sequences. We present a simpli�ed
pedagogical derivation of their formula in Sec. 2.3.1.

As we showed in the previous section, the use of three-dimensional gradient
sequence may bring additional insights into the study of anisotropy. The exten-
sion of Mitra’s formula to arbitrary geometry and gradient pro�les is discussed in
much detail in Sec. 2.3.2 and the following. We show that the form (1.50) is still
valid provided a di�erent prefactor in front of f should be modi�ed. Ignoring
such a correction may lead to gross misestimation of f . Our results introduce
a new family of tensors that generalize the B-tensor, and we show that a new
isotropy condition should be ensured to average mesoscopic anisotropy to the
�rst order in ℓd (i.e., ) 1/2). These results were published in [344].

2.3.1 Mitra formula for the mean-squared displacement
In this subsection we reproduce the computation performed by Mitra et al. in
[48]. For pedagogical reasons, we focus on the �rst-order term, that makes the
derivation simpler. In particular, it allows one to reduce the computation to a one-
dimensional system where all computations can be done analytically. Besides the
interest of closed and exact formulas, we believe that this simple computation
sheds some light on the rather technical derivation of Mitra et al.. A general and
systematic computation to any order in time and any geometry is presented in
Sec. A.1 and relies on mathematical methods presented in [3, 330, 331].

We wish to obtain, in the short-time limit, the expression of the mean-squared
displacement of particles in the presence of boundaries. As we explained in Sec.
1.2.2, the short-time limit corresponds to ℓd � ℓs where each particle probes a
region of size ℓd much smaller than the pore diameter ℓs. If the pore boundary
is smooth, it can be replaced at �rst order in ℓd/ℓs by a planar boundary over a
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Figure 2.5: If the di�usion length ℓd is much smaller than the pore diameter ℓs, then
the local boundary element probed by di�using particles may be approximated by a �at
surface. Note that here we neglect the e�ect of throats as they represent a vanishingly
small volume fraction of the medium.

region of size ℓd. Therefore we compute the e�ect of a single planar boundary
on the mean-squared displacement of particles, then we integrate over the pore
boundary. We further assume that the surface relaxivity of the boundary is zero.
This reduction is illustrated on Fig. 2.5.

We choose axes such that the boundary is parallel to (~, I), located at G = 0,
and di�usion occurs in the G ≥ 0 half-space. In that case the di�usive motion
can be factorized in the three independent directions G , ~, I that yields for the
di�usion propagator:

G(), r0, r) = G1D(), G0, G)
1

4cℓ2d
exp

(
−(~ − ~0)

2

4ℓ2d

)
exp

(
−(I − I0)

2

4ℓ2d

)
, (2.27)

where G1D denotes the one-dimensional propagator on the line with a re�ect-
ing condition at G = 0. We recall that ℓd =

√
�0) . In turn, the mean-squared

displacement is the sum of contributions from G , ~ and I:

E[(r) − r0)2] = E[(G) − G0)2] + 4ℓ2d . (2.28)

To avoid any confusion, we emphasize that in the above formula, r) is the random
variable averaged while the starting point r0 of the trajectory is treated as a pa-
rameter. In the following we shall examine how the mean-squared displacement
depends on the starting point r0 providing some insight into the Mitra formula.

The propagator G1D is computed with the method of images: by adding a
virtual source at position G = −G0, one automatically ensures the no-�ux condi-
tion at G = 0. Naturally, this trick relies on the linearity of the di�usion equation
(1.5) that allows one to make linear combinations of solutions to produce another
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solution. Thus, one obtains the formula

G1D(), G0, G) =
1

2ℓd
√
c

[
exp

(
−(G − G0)

2

4ℓ2d

)
+ exp

(
−(G + G0)

2

4ℓ2d

)]
. (2.29)

To compute the mean-squared displacement along G , we simply compute the �rst
moments E[G] and E[G2]. Since the above formula for the propagator is a sum of
two terms, each moment involves a sum of two terms, denoted generically by �
and �. However, the computations are simpli�ed if one notices that � is obtained
from � by reversing the sign of G0.

� =
1

2ℓd
√
c

∫ ∞

0
G exp

(
−(G − G0)

2

4ℓ2d

)
dG (2.30a)

=
G0

2

[
1 + erf

(
G0

2ℓd

)]
+ 1
2ℓd
√
c

∫ ∞

0
(G − G0) exp

(
−(G − G0)

2

4ℓ2d

)
dG (2.30b)

=
G0

2

[
1 + erf

(
G0

2ℓd

)]
+ ℓd√

c
exp

(
−
G20

4ℓ2d

)
. (2.30c)

By summing � and �, we obtain directly

E[G) ] = G0 erf
(
G0

2ℓd

)
+ 2ℓd√

c
exp

(
−
G20

4ℓ2d

)
. (2.31)

One can check that E[G) ] ≈ G0 if ℓd � G0. In the opposite limit, E[G) ] ≈ 2ℓd/
√
c .

In a similar way, one can perform the computation of the second moment:

� =
1

2ℓd
√
c

∫ ∞

0
G2 exp

(
−(G − G0)

2

4ℓ2d

)
dG (2.32a)

=
G20

2

[
1 + erf

(
G0

2ℓd

)]
+

∫ ∞

0

(G − G0) (G + G0)
2ℓd
√
c

exp

(
−(G − G0)

2

4ℓ2d

)
dG (2.32b)

=
G20

2

[
1 + erf

(
G0

2ℓd

)]
− ℓd√

c

([
(G + G0) exp

(
−(G − G0)

2

4ℓ2d

)]∞
0

−
∫ ∞

0
exp

(
−(G − G0)

2

4ℓ2d

)
dG

)
(2.32c)

=

(
G20

2
+ ℓ2d

) [
1 + erf

(
G0

2ℓd

)]
+ G0ℓd√

c
exp

(
−
G20

4ℓ2d

)
. (2.32d)
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The summation of � and � yields the simple result

E[G2) ] = G20 + 2ℓ2d . (2.33)

As expected from an unbounded system, in the long-time limit the classical result
E[G2

)
]/ℓ2d → 2 is recovered. From the above result, one can easily compute the

mean-squared displacement:

E[(G) − G0)2] = 2ℓ2d (1 + 5 (G0/ℓd)) , (2.34a)

5 (D) = D2 [1 − erf (D/2)] − 2D
√
c
exp

(
−D2/4

)
. (2.34b)

The correction 5 (G0/ℓd) to the free di�usion result is negative and tends to zero
when the ratio G0/ℓd goes either to zero or to in�nity (for G0/ℓd = 4 it is smaller
than a 1% correction). Indeed, a particle starting on the boundary simply per-
forms a Brownian motion re�ected with respect to G = 0, therefore its mean-
squared displacement is the same as a Brownian motion without boundary. The
opposite limit is clear as the e�ect of the boundary becomes negligible if the
starting point G0 is very far from it. Therefore, there is a layer of size ∼ ℓd where
the mean-squared displacement is signi�cantly lower than its free di�usion value
(see Fig. 2.6).

To obtain the e�ect of the boundary on the mean-squared displacement of
all particles, one should then average over the whole domain. Since the half-line
is unbounded, the term 2ℓ2d in Eq. (2.34a) yields an in�nite integral. However,
the correction term yields a �nite value, which proves that the reduction of the
mean-squared displacement is a surface e�ect:∫ ∞

0

(
E[(G) − G0)2]

2ℓ2d
− 1

)
dG0 = −

4
3
√
c
ℓd . (2.35)

Note that one may perform the same computation by studying the properties
of the one-dimensional velocity vGC . In that case, one obtains a formula in the
form of Eq. (1.10) with a correlation function that depends on the position with
respect to the boundary. After integration over the whole domain, one obtains
the simple formula for the boundary correction term

ΨGG (C − C ′) =
∫
Ω

(
E[vGC vGC ′]
2�0

− X (C − C ′)
)
dG0 = −

1
2
√
c

√
�0√
|C − C ′|

. (2.36)

The negative sign of the correction term here agrees with the negative sign of
the correction of mean-squared displacement (2.35). An interpretation is that
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Figure 2.6: The correction term 5 (G0/ℓd) from Eq. (2.34a) that represents the relative
decrease in the one-dimensional mean-squared displacement close to a boundary as a
function of starting position. The shaded area represents the integral of this correction
term and yields the numerical prefactor 4/(3

√
c) that was �rst computed by Mitra et al.

in the context of dMRI. The fact that the integral is �nite expresses that the correction
is a surface e�ect.

particles re�ecting on the boundary introduce a negative correlation between
their velocity before re�ection and their velocity after re�ection. This approach
is presented in more detail and generality in Ref. [61], where the velocity auto-
correlator in an arbitrary geometry is expressed through the propagator between
boundary points.

Using Eq. (2.28), one can reformulate the above results in terms of an e�ec-
tive di�usion coe�cient �MSD(), r0) (see Eq. (2.9)). If one returns to the origi-
nal porous geometry, Eq. (2.34a) remains valid, where G0 should be replaced by
d(r0, mΩ), the distance between the point of interest and the boundary:

�MSD(), r0) = �0 (1 + 5 (d(r0, mΩ)/ℓ3)/3) , (2.37)

and the spatial average over the whole domain

�MSD() ) =
1

vol(Ω)

∫
Ω
�MSD(), r0) d3r0 (2.38)

yields to the �rst order:

�MSD() ) = �0

(
1 − 4

33
√
c
fℓd

)
, (2.39)
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where we recall thatf denotes the surface-to-volume ratio of the porous medium.
To obtain Eq. (2.39), the integral over r0 is �rst restricted to the vicinity of mΩ
then decomposed as a product of an integral along the surface and an integral
perpendicular to it. This is Mitra’s formula that was obtained in [48].

2.3.2 Application to e�ective di�usion coe�cient probed
by gradient encoding

The above computation allowed us to re-derive the seminal result of Mitra et
al. on mean-squared displacement of particles in the short-time limit. The main
result is the �rst-order, short-time expansion for the quantity �MSD (2.39). How-
ever, a bridge is missing: the relation with the e�ective di�usion coe�cient
� probed by dMRI. For convenience, we reproduce here the formulas (1.49c),
(1.47b), (1.46b), and (1.27b), (1.27c):

( =
1��1

exp(−1�) , 1 =

∫ )

0
Q2(C) dC ,

� =
1
21
V[q] , q =

∫ )

0
G(C) · (rC − r0) dC = −

∫ )

0
Q(C) · vC dC .

We shall now explain that the e�ective di�usion coe�cient � di�ers from �MSD
on two aspects that lead us to the generalized Mitra formula.

Relative orientation of the gradient and the boundary

While the phaseq , and in turn the coe�cient� , results from encoding of the mo-
tion along the direction of the gradient, the mean-squared displacement, hence
�MSD results from an average over all directions. As we discussed in Sec. 2.1, the
correct description of mesoscopic anisotropy should involve a di�usion tensor
DMSD that contains information about di�usion in all directions. Let us denote
by n the inward normal vector (from the boundary to the pore space) at the
boundary mΩ. The above computation was done with n = ex. The considera-
tions of independence of motions along G , ~, and I allow us to rewrite Eq. (2.35)
in the tensorial form∫ ∞

0

(
E[(r) − r0) ⊗ (r) − r0)]

2ℓ2d
− I

)
dG0 = −

4
3
√
c
ℓd n ⊗ n . (2.40)

The formula is true for n = ex and both sides are contravariant tensors with
respect to spatial rotations, hence the formula is valid for any orientation of n.
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Similarly, one can rewrite the expression (2.36) the velocity autocorrelator for a
planar boundary with inward normal vector n:

Ψ(C − C ′) = − 1
2
√
c

√
�0√
|C − C ′|

n ⊗ n . (2.41)

For example, if the motion of the particle is probed along a direction e, then
the correction to the 1D mean-squared displacement is given by the projection
of e over n according to

− 4
3
√
c
ℓ3 (e · (n ⊗ n)e) = − 4

3
√
c
(e · n)2 . (2.42)

After integration over the whole boundary mΩ, one obtains the generalization of
Eq. (2.39):

DMSD() ) ≈
�0

3

(
I − 4

3
√
c
fℓ3S(3)

)
, (2.43)

with the following “structural” tensor S(3) (the reason behind the superscript “(3)”
will appear later)

S(3) =
1

surf (mΩ)

∫
mΩ

n ⊗ n df . (2.44)

One can also integrate the velocity autocorrelator over the whole boundary and
get

Ψ(C − C ′) ≈ − 2
√
c

√
�0√
|C − C ′|

fS(3) . (2.45)

While Eqs. (2.40) and (2.41) are exact for a planar boundary, the integrated formu-
las (2.43) and (2.45) involve an approximation where the boundary mΩ is locally
replaced by �at boundary elements over the scale ℓd.

Encoding by the gradient pro�le

The MSD measures the square of r) − r0, that is the squared distance between
endpoints of the trajectory. In contrast, the phase q results from the continuous
encoding of the trajectory by the gradient pro�le G(C). If we discard anisotropy
e�ects discussed above, one can see that � and �MSD would coincide only for a
narrow-gradient pulse experiment (see Eq. (1.55)), as it was explicitly stated by
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Mitra et al.. In general, one can compute the variance of q from:

V[q] = E
[∫ )

0

∫ )

0
(Q(C) · vC ) (Q(C ′) · vC ′) dC dC ′

]
(2.46a)

=

∫ )

0

∫ )

0
Tr [E[vC ⊗ vC ′] (Q(C) ⊗ Q(C ′))] dC dC ′ (2.46b)

= 2�0

∫ )

0

∫ )

0
Tr [(X (C − C ′)I + Ψ(C − C ′)) (Q(C) ⊗ Q(C ′))] dC dC ′ , (2.46c)

that yields from the above expression of the velocity autocorrelator (2.45):

V[q] = 21�0

(
1 − 4

3
√
c
fℓd Tr(T(3)S(3))

)
, (2.47)

with the following tensor T(3) :

T(3) =
3

81
√
)

∫ )

0

∫ )

0

Q(C) ⊗ Q(C ′)√
|C − C ′|

dC dC ′ . (2.48)

After integration by parts, we can rewrite it in the following way

T(3) = − )
21

∫ )

0

∫ )

0
G(C) ⊗ G(C ′)

����C − C ′)

����3/2 dC dC ′ . (2.49)

A more systematic computation shows that higher-order terms are of the
form ℓ<−2

3
Tr(T(<)S(<)),< = 4, 5, . . ., with the generalized “temporal” matrices

T(<) = − )
21

∫ )

0

∫ )

0
G(C) ⊗ G(C ′)

����C − C ′)

����</2 dC dC ′ , (2.50)

and where the matrices S(<) encode geometrical properties of the boundaries
such as curvature, surface relaxation, or permeability (see Sec. A.1 and Refs [3,
48–53]). However, these properties do not a�ect the �rst-order term in (2.51), on
which we focus in this section. The computation and study of the ℓ2d (i.e., �0) )
term is presented in Sec. 2.3.6. Note that with these notations T(2) is actually the
B-tensor renormalized by the 1-value [141–143] (see Sec. A.1 from Eq. (A.19) to
Eq. (A.24) for a detailed computation).

Therefore, we have generalized the Mitra formula (2.39) as

� () ) = �0

(
1 − [ 4

3
√
c
fℓ3 +$ () )

)
, (2.51)
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Figure 2.7: Illustration of some gradient pro�les for spin echo experiments. We stress
that these gradient pro�les are “e�ective” in the sense that the gradients are reversed
after ) /2 to include the e�ect of the 180◦ rf pulse. The corresponding values of g (3)

introduced in Sec. 2.3.4 are given for each pro�le. Note that g (3) = 1 for the narrow
pulses-case (�rst panel), which corresponds to Mitra’s formula (2.39).

by introducing the dimensionless prefactor [ that depends both on the structure
of the medium and on the gradient waveform:

[ = Tr(S(3)T(3)) . (2.52)

This correction factor is the result of an intricate coupling between the medium
structure and the gradient sequence, which is expressed through a simple math-
ematical relation between S(3) and T(3) . We recall that dependence on the wave-
form through T(3) implies that one cannot, strictly speaking, interpret � () ) as a
measure of mean-squared displacement of randomly di�using molecules, except
for the theoretical case of two in�nitely narrow gradient pulses.

We emphasize that the dependence of V[q] on T(3) instead of T(2) = B/1
in Eq. (2.47) prevents one from writing the generalized Mitra formula (2.51) in
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the form of an e�ective di�usion tensor. Indeed, if one were to obtain an ef-
fective di�usion tensor D() ), then the variance of the phase would follow Eq.
(2.17), i.e. V[q] = 2 Tr(BD() )), which would involve the T(2) tensor and not
T(3) . This observation contrasts with the di�usion tensor (2.43) de�ned through
mean-squared displacement DMSD() ).

Several remarks are in order about the newly introduced S(<) and T(<) ma-
trices. First, we emphasize that S(<) and T(<) are tensors in the sense that under
a spatial rotation or symmetry described by a matrix R, S(<) and T(<) are trans-
formed according to S(<) → RS(<)R−1 and T(<) → RT(<)R−1. Finally, all S(<) and
T(<) tensors are dimensionless. As a consequence, [ is invariant under dilatation
of the gradient waveform, dilatation of the time interval [0,) ] and dilatation of
the domain Ω.

Mitra’s formula (2.39) was derived for PGSE experiments with (in�nitely)
short gradient pulses, where) = Δ is the inter-pulse time. We emphasize that for
general gradient pro�les, Δ is not de�ned anymore, and we use instead the echo
time) in our generalized formula (2.51). If we compare the general formula (2.51)
to the one for narrow-gradient pulses (2.39) (which corresponds to the pro�le
shown on the �rst panel in Fig. 2.7), we see that Mitra’s formula corresponds to
the simple expression

[Mitra = 1/3 . (2.53)

Below we generalize this relation to arbitrary medium structures (Sec. 2.3.3) and
gradient pro�les (Sec. 2.3.4).

2.3.3 Dependence on the structure

Simple shapes

For any bounded domain Ω, the tensor S(3) is symmetric, positive-de�nite, with
Tr(S(3)) = 1. For example, if Ω is a sphere, one gets S(3)sphere = I/3, which is in-
variant under any spatial rotations of the medium, as expected. Let us recall that
we call such matrices, that are proportional to the 3× 3 unit matrix I, “isotropic”.
However, the same result holds if Ω is a cube, i.e. the cube is also quali�ed as
isotropic by the S(3) tensor. Clearly, the tensor S(3) does not uniquely characterize
the shape of Ω.

Let us now consider the example of a rectangular parallelepiped. We align its
sides with the axes (ex, ey, ez) and denote their lengths by 0,1, 2 . Then the normal
vector n is either ±ex, ±ey, or ±ez depending on the facet of the parallelepiped,
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and by integrating over each facet we get

S(3) =
1

12 + 20 + 01


12 0 0

0 20 0

0 0 01

 . (2.54)

This simple example shows that, by varying 0, 1, 2 , and applying rotations, the
matrix S(3) can be any symmetric positive-de�nite tensor with unit trace.

In the limit when one side of the parallelepiped (say, 2) tends to in�nity (or is
much bigger than the other two), the rectangular parallelepiped transforms into
a cylindrical domain with a rectangular cross-section and the S(3) tensor becomes

S(3) =
1

0 + 1


1 0 0

0 0 0

0 0 0

 . (2.55)

Note that in the special case 0 = 1 (cylindrical domain with square cross-section),
one obtains the same result as for a circular cylinder of axis ez: S(3)cyl = (I − ez ⊗
ez)/2. In the opposite limit where 0 and 1 are much bigger than 2 , the paral-
lelepiped transforms into a slab perpendicular to ez and the S(3) tensor becomes
S(3)slab = ez ⊗ ez.

One recognizes in the previous examples the factor 1/3 of Mitra’s formula
(2.53): 1/3 for a sphere, 1/2 for a circular cylinder, and 1 for a slab. However,
even in these basic cases, the factor [ remains a�ected by the gradient wave-
form, as discussed in Sec. 2.3.4. In Appendix A.2, we provide additional com-
putations of S(3) for slightly non-spherical domains (perturbative computation)
and for spheroids (exact computation). Such domains may be more accurate mod-
els of anisotropic pores in pathological tissues such as prostate tumor [64] than
cylinders.

The e�ect of orientation dispersion

Now we consider a random medium consisting of in�nite circular cylinders with
random orientations and random radii. Cylinders are archetypical anisotropic
domains and we choose them to illustrate in an explicit way the e�ect of orien-
tation dispersion of the domains. They can also serve as a model for alveolary
ducts in lungs [151] or muscle �bers [226–228]. For the sake of simplicity, we
assume the radius of each cylinder to be independent from its orientation. Equa-
tions (1.49c) and (2.51) describe the signal on the mesoscopic scale (one cylinder).
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Within the scope of small 1-values (1�0 � 1), the macroscopic signal formed by
many cylinders is:

( ≈ 〈exp(−1� () ))〉 ≈ exp(−1〈� () )〉) , (2.56)

where 〈· · · 〉 denotes the average over the voxel. Coming back to Eqs. (2.51) and
(2.52), we see that the average of � () ) is obtained through the average of the
S(3) matrices of the cylinders, that we now compute.

From the previous section, the S(3) tensor of a cylinder oriented along any
direction u (where u is a unit vector) is

S(3)cyl (u) =
1
2
(I − u ⊗ u) . (2.57)

Moreover, for one cylinder of radius ', one has f = 2/', thus the voxel-averaged
e�ective di�usion coe�cient reads

〈� () )〉 = �0

(
1 − 4ℓd

3
√
c

〈
2
'

〉
Tr(〈S(3)〉T(3)) +$ () )

)
. (2.58)

The averaged tensor 〈S(3)〉 depends on the angular distribution of the cylinder
orientations. Following a computation in Sec. 2.1, a distribution with a rotation
symmetry around the I-axis yields

〈S(3)〉 = 1
6


2 + Θ 0 0

0 2 + Θ 0

0 0 2 − 2Θ

 , (2.59)

where Θ is the orientation order parameter of the medium (see Eq. (2.13)). The
parameterΘ can take any value from−1/2 (all the cylinders are in the G−~ plane)
to 1 (all the cylinders are aligned with ez). The special value Θ = 0 corresponds
to an isotropic tensor S(3) = I/3 and can be obtained, for example, with a uniform
distribution [154–156].

The orientation order parameter has direct analogies with other di�usion
models describing the water di�usion in strongly anisotropic medium. For in-
stance, if randomly oriented �bers obey a Watson distribution of parameter  
[107], then one can compute [108]

Θ =
3

4
√
 F(
√
 )
− 3
4 
− 1
2
, (2.60)

where F is the Dawson function: F(D) =
∫ D

0 4
C2−D2 dC . In the limits of  going to

−∞, 0, and +∞, we obtain Θ = −1/2, 0, and 1, respectively.
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An important consequence of the above computations is that experiments at
short di�usion times and small-amplitude gradients are unable to distinguish the
mesoscopic anisotropy (the anisotropy of each cylinder) inside a macroscopically
isotropic medium (uniform distribution of the cylinders). Therefore, regimes
with longer di�usion times or higher gradients are needed for extracting meso-
scopic di�usion information [101, 154, 155, 169]. This observation may be re-
lated to Sec. 2.2.2 about micro-anisotropy and spherical encoding sequences. In
a similar way, we shall see that one can perform sequences with an isotropic en-
coding condition that would help to reveal mesoscopic anisotropy by producing
an orientation-independent exponential decay.

2.3.4 Dependence on the gradient waveform
In this section we investigate the dependence of the correction factor [ (and of
higher-order terms) on the gradient waveform captured via the T(<) tensors. We
begin with the simpler case, the so-called linear gradient encoding, where the
gradient G(C) has a �xed direction and each T(<) tensor is reduced to a scalar. We
show that signi�cant deviations from the classical formula (2.39) arise depending
on the chosen waveform.

Next, in Sec. 2.3.4, we study how the correction factor is a�ected in the most
general case when both gradient amplitude and direction are time dependent. In
particular, we show that recently invented spherical encoding sequences [153,
161] do not provide the full mixing e�ect in the sense that [ still depends on
the orientation of the (anisotropic) medium. In order to resolve this problem we
describe in Sec. 2.3.4 a simple and robust algorithm to design di�usion gradient
pro�les with desired features and constraints.

Linear encoding

If we set G(C) = � (C)e, with a constant unit vector e, the T(<) tensors become

T(<) = g (<) e ⊗ e , (2.61)

with the scalar

g (<) = − )
21

∫ )

0

∫ )

0
� (C)� (C ′)

����C − C ′)

����</2 dC dC ′ . (2.62)

For clarity, we emphasize that g (3) is positive, as it is proven in Sec. A.3. The
correction factor [ becomes

[ = g (3)
(
e · S(3)e

)
. (2.63)
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By keeping the same pro�le� (C) and only changing the direction of the applied
gradient e, the factor g (3) is unchanged and the factor

(
e · S(3)e

)
allows one to

probe the whole S(3) tensor, and thus microstructural information on the do-
main. For this purpose, one can transpose standard di�usion tensor imaging
reconstruction techniques (see Sec. 2.2.1 and Ref. [141]) to our case. Bearing in
mind that S(3) is symmetric positive-de�nite matrix with trace one, one needs
at least 6 di�usion directions to estimate 5 independent coe�cients of the S(3)

tensor and the surface-to-volume ratio f .
For a S(3) tensor such as the one of a parallelepiped in Eq. (2.54), the fac-

tor [ takes di�erent values depending on the gradient direction e. Note that the
extremal values of

(
e · S(3)e

)
are given by the minimal and maximal eigenvalue

of S(3) . In other words, the relative di�erence between the extremal eigenvalues
of S(3) indicates the magnitude of the induced error on the estimation of f . For
instance, if one applies the gradient in a direction perpendicular to the smallest
facets of parallelepiped, one probes the surface of these facets, not of the whole
structure (see Eq. (2.54)). Although this example is speci�c, the conclusion is
general: the mesoscopic anisotropy of a con�ning domain, captured via the ten-
sor S(3) , can signi�cantly bias the estimation of the surface-to-volume ratio. This
circumstance was ignored in some former studies with application of the classi-
cal Mitra’s formula, which is only valid for isotropic domains. While spherical
encoding scheme aims to resolve this issue by mixing contributions from di�er-
ent directions, we will see in Sec. 2.3.4 that this mixing is not perfect for formerly
proposed spherical encoding sequences.

In the remaining part of this subsection, we consider the particular case of
isotropic (e.g., spherical) domains with S(3) = I/3 so that the structural aspect is
fully decoupled from the temporal one. In this case, Eq. (2.52) yields

[ =
g (3)

3
, (2.64)

and we can focus on the temporal aspect (gradient waveform) captured via the
factor g (3) . Note that the original Mitra’s formula corresponds to g (3) = 1 (see Eq.
(2.53)).

Figure 2.7 shows several examples of temporal pro�les and the corresponding
values of g (3) . The maximum attainable value of g (3) is slightly over 1 (around
1.006), see Appendix A.3 for more details. Counter-intuitively, the maximal value
of g (3) is not 1 while the pro�le with in�nitely narrow pulses does not provide
its maximum. The in�mum of g (3) is 0; in fact, one can achieve very small values
of g (3) by using very fast oscillating gradients. Indeed, for sinusoidal gradient
waveforms of angular frequency l , one has g (3) ∼ l−1/2, in the limit l) � 1
(see Appendix A.3 and Refs. [59, 60]).
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This �nding has an important practical consequence: if one ignores the factor
g (3) and uses the original Mitra’s formula (for which g (3) = 1), one can signi�-
cantly underestimate the surface-to-volume ratio (by a factor 1/g (3)) and, thus,
overestimate the typical size of compartments.

Isotropy and spherical encoding

As we discussed in Sec. 2.1 and 2.2.2, microscopic anisotropy is usually modeled
via an anisotropic di�usion tensor D0, and the expression of the di�usion signal
becomes (see Eqs. (2.14) and (2.17)):

( ≈ exp
(
−1Tr

(
T(2)D0

))
. (2.65)

Typical spherical encoding sequences [153, 158–161, 165, 168] aim to average out
the microscopic anisotropy of the medium by applying an encoding gradient with
time-changing direction. Mathematically, the goal is to obtain an isotropic T(2)

matrix, T(2) = I/3, so that the signal in Eq. (2.65) depends only on the trace Tr(D0)
and thus yields the same result for any orientation of microdomains inside the
medium. We recall that throughout the thesis, we call a matrix isotropic if it is
proportional to the unit matrix I (in other words, its eigenvalues are equal to each
other).

Mesoscopic anisotropy manifests itself in the S(3) matrix of individual com-
partments, as we explained in Sec. 2.3.3. Thus, from Eq. (2.51) we can deduce
that mesoscopic anisotropy is averaged out (at the order

√
�0) ) by the gradi-

ent sequence only if T(3) is isotropic. In this case, the factor [ does not depend
on the orientation of the mesoscopically anisotropic medium nor on its actual
shape, and one can estimate precisely the surface-to-volume ratio of the medium.
Moreover, from Eq. (2.52) we see that in this case, [ can be read directly from the
expression of T(3) :

T(3)iso = [ I . (2.66)

Similarly, the isotropy condition for the matrices T(4), T(5), . . . would be needed
if the higher-order terms of expansion (2.51) were considered.

Hence, the natural question arises: “Do the former spherical encoding se-
quences that were designed to get an isotropic T(2) (or B) tensor, produce isotropic
T(<) tensors (or at least T(3))?”. For instance, for the q-Space Magic-Angle-Spinning
(q-MAS) sequence [153, 161] we obtain

T(3) =


0.14 0 0

0 0.28 0.10

0 0.10 0.17

 . (2.67)
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This matrix has eigenvalues 0.11, 0.14, 0.33 and is thus not isotropic. Similarly,
a triple di�usion encoding (TDE) sequence [168] (where three identical PGSE
sequences are applied along three orthogonal direction in space) yields

T(3) =


0.19 0.08 0.05

0.08 0.19 0.08

0.05 0.08 0.19

 , (2.68)

with eigenvalues 0.10, 0.14, 0.34. Note that, although the diagonal elements of
the matrix are identical, it is not isotropic because of the o�-diagonal elements.
The above matrix corresponds to a TDE sequence where each PGSE sequence is
made of in�nitely narrow pulses with spacing Δ = ) /3. One could also consider
the FAMEDcos sequence [164], for which we get

T(3) =


0.13 0 0.012

0 0.11 0

0.012 0 0.10

 , (2.69)

which is also not isotropic (with eigenvalues: 0.09, 0.11, 0.13). All spherical en-
coding schemes that we could �nd in the literature produce anisotropic T(3) ma-
trices.

In order to illustrate the errors induced by such sequences in the estimation
of the surface-to-volume ratio, let us apply the q-MAS sequence for the case
of an in�nite circular cylinder. We denote by (e1, e2, e3) the orthogonal basis of
eigenvectors and by (_1, _2, _3) = (0.11, 0.14, 0.33) the corresponding eigenvalues
of the T(3) matrix in Eq. (2.67) (see Fig. 2.8 for the orientation of these axes with
respect to the Q-space plot of the sequence). If the cylinder is oriented along e3,
one obtains [ = (_1 + _2)/2 = 0.13. However, if the cylinder is oriented along e1,
then [ = (_2 + _3)/2 = 0.24, which is nearly twice as large. In other words, the
estimated f ratio is twice as large in the second situation than in the �rst one.
This artifact is a direct consequence of the di�erences between the eigenvalues
of the T(3) matrix, i.e. its anisotropy.

How to obtain isotropic matrices?

The question in the subsection title can be restated in an algebraic language: how
to �nd three functions�G (C),�~ (C),�I (C) with zero mean (see Eq. (1.26)) that are
mutually “orthogonal” and have the same “norm” for a given set of symmetric
bilinear forms i<,< = 2, 3, . . ., with

i< (51, 52) = −
W2)

21

∫ )

0

∫ )

0
51(C) 52(C ′)

����C − C ′)

����</2dC dC ′ . (2.70)
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Figure 2.8: Plot of Q(C) for the q-MAS sequence. The color encoding of the trajectory
represents time, from C = 0 (light yellow) to C = ) (dark brown). The additional axes are
directed along the eigenvectors (e1, e2, e3) of the T(3) matrix (2.67) of the sequence.

Since the space of functions with zero mean is in�nite-dimensional, we can be
con�dent in �nding such three functions. However, Eq. (2.70) involves a non-
integer power of time that prevents us from getting analytical solution for this
problem. Thus, we design a simple algorithm for generating the gradient se-
quences that satisfy these conditions.

The idea is to choose a family of functions (51, 52, . . . , 5:) (for example, sines or
polynomials, possibly with sign jumps at) /2) and to search for�G (C),�~ (C),�I (C)
as linear combinations of the basis functions. This is a generalization of the clas-
sical sine and cosine decomposition which was already used in the context of
waveform optimization [161]. Mathematically, this means that

©­­­«
�G (C)
�~ (C)
�I (C)

ª®®®¬ = X

©­­­­­«
51(C)
52(C)
...

5: (C)

ª®®®®®®¬
, (2.71)

where X is a 3 × : matrix of coe�cients to be found. Now we de�ne the : × :
matrices Φ(<) by

Φ(<)8, 9 = i< (58, 5 9 ) , < = 2, 3, . . . (2.72)

In this way, one can compute directly the T(<) matrices according to

T(<) = XΦ(<)X† . (2.73)
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The problem is then reduced to an optimization problem for the matrix X, which
can be easily done numerically. In other words, one searches for a matrix X that
ensures the isotropy of the matrix T(3) . In the same way, one can generate a
sequence with both isotropic T(2) and T(3) matrices, or any other combination of
isotropic T(<) matrices. At the same time, we prove in Appendix A.4 that there
is no gradient sequence that produces isotropic T(<) matrices simultaneously for
all integers< ≥ 2.

The optimization algorithm can include various additional constraints. On
one hand, one has a freedom to choose an appropriate family (51, 52, . . . , 5:), for
example, to ensure smoothness of the resulting gradient pro�le. Similarly, the
refocusing condition can be achieved by choosing zero-mean functions. On the
other hand, it is also possible to add some constraints as a part of the optimization
problem. This is especially easy if the constraints can be expressed as linear or
bilinear forms of the gradient pro�le G(C). For instance, each T(<) matrix in
(2.50) is a bilinear form of the gradient pro�le allowing one to express them as
the simple matrix multiplication (2.73). Another example of additional conditions
consists in imposing zeros to the designed gradient pro�les. Indeed, for practical
reasons, it is often easier to manipulate gradients that satisfy

G(0) = G() /2) = G() ) = 0 . (2.74)

This is a linear condition on the gradient pro�le. If one denotes by V the : × 3
matrix

V =


51(0) 51() /2) 51() )
52(0) 52() /2) 52() )
...

...
...

5: (0) 5: () /2) 5: () )


, (2.75)

then Eq. (2.74) becomes

XV =


0 0 0

0 0 0

0 0 0

 . (2.76)

In the following, we impose the above condition to produce our gradient wave-
forms.

It is worth to note that one can also generate �ow-compensated gradients,
or more generally, motion artifacts suppression techniques, by imposing linear
conditions on the gradient pro�le∫ )

0
C?G(C) dC = 0 , ? = 1, 2, . . . , % , (2.77)
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where ? = 1 corresponds to the �ow compensation, and higher values of ? ac-
count for acceleration, pulsatility, etc. [29, 62]. This condition can be rewritten
in the matrix form XM = 0, where the : × % matrix M is de�ned by

M8,? =

∫ )

0
C? 58 (C) dC , ? = 1, 2, . . . , % . (2.78)

Another type of optimizaton constraints can be based on hardware limita-
tions such as a need to minimize heat generation during the sequence execution
which amounts to minimizing the following quantity

〈G,G〉 =
∫ )

0
|G(C) |2 dC , (2.79)

which is a bilinear form of the gradient pro�le. Similar to representation (2.73)
for T(3) , one can de�ne a matrix H8, 9 = 〈58, 5 9〉 to write Eq. (2.79) as 〈G,G〉 =

Tr
(
XHX†

)
, and then to include it into the optimization procedure.

The previous examples showed how linear and bilinear forms of the gradient
pro�le can be simply expressed in terms of the weights matrix - , which allows
one to perform very fast computations. The matrix corresponding to each condi-
tion (for example, Φ(3) , V, H) has to be computed only once, then optimization is
reduced to matrix multiplications. The size of the matrices involved in the com-
putations is de�ned by the size of the chosen set of functions (51, . . . , 5:). Note
that the set size is independent of the numerical sampling of the time interval
[0,) ] that controls accuracy of the computations.

Some properties of the designed gradients do not fall into the category of
aforementioned linear or bilinear forms, e.g., “max” amplitude-function (i.e., one
cannot impose the maximal gradient constraint in this way). They can be in-
cluded in the optimization, however one cannot apply the previous techniques
in order to speed up the computation.

We have to emphasize that the “optimal” solution is not unique and it depends
on the choice of the set 51, . . . , 5: . Moreover, if the set is su�ciently large and the
number of degrees of freedom is greater than the number of constraints, then the
algorithm will likely yield di�erent solutions depending on the initial choice of X
for an iterative solver. This property can be advantageous in practice, as one can
design many optimal solutions. The described optimization algorithm was im-
plemented in Matlab (The MathWorks, Natick, MA USA). It concatenates all the
chosen constraints in a single matrix-valued function 5 (X) of the weight matrix
X, in such a way that the constraints are expressed by the condition 5 (X) = 0.
This equation is then solved numerically with the Levenberg-Marquardt algo-
rithm.
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Figure 2.9: Two examples of gradient waveforms that produce an isotropic T(3) matrix
and that satisfy Eq. (2.74). Note that the gradients are “e�ective” gradients in the sense
that we reversed them after the 180◦ rf pulse at ) /2. The bottom �gure shows the cor-
responding Q(C). The color encoding of the trajectory represents time, from C = 0 (light
yellow) to C = ) (dark brown). (left) the pro�les are combination of 9 piecewise sine and
cosine functions with frequencies up to 6/) , and in addition they satisfy isotropy of T(2) ;
(right) the pro�les are piecewise polynomials of order 5, and they satisfy T(4) = 0.
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Figure 2.9 shows two examples of gradient waveforms that produce an isotropic
T(3) matrix. These pro�les were obtained from two sets with : = 9 functions.
The �rst set was composed of cos(c 9C/) ) with 9 = 1, . . . , 5; sin(c 9C/) ) with
9 = 2, 4, 6; and Y (C) sin(4cC/) ) where n (C) is a piecewise constant function that
is equal to 1 on [0,) /2] and −1 on () /2,) ]. We also imposed the condition of
isotropy of T(2) . The second set was composed of a mixture of monomials, sym-
metrized odd monomials and antisymmetrized even monomials, with zero mean:
(C −) /2), (C −) /2)2 −) 2/12, (C −) /2) |C −) /2|, (C −) /2)3, |C −) /2|3 −) 3/32,
(C −) /2)4−) 4/80, (C −) /2)3 |C −) /2|, (C −) /2)5, |C −) /2|5−) 5/192. In this case,
we imposed the condition of vanishing T(4) . Although the combination of sym-
metric and antisymmetric functions helped us to increase the number of basis
functions while keeping low degree monomials or slowly oscillating sines, one
could alternatively use just monomials, polynomials, or other basis functions as
well. Note that there is no need to impose the orthogonality of the basis functions
51, . . . 5: .

Let us consider the waveform obtained in the left panel of Fig. 2.9. The
condition of isotropy for both matrices T(2) and T(3) yields 5+ 5 equations on the
components of matrix X. Besides of matrices T(2,3) , condition (2.74) adds another
9 equations on the components of X. Moreover, we imposed the 1-value so that
the algorithm satis�ed 20 conditions with 3: = 27 degrees of freedom.

The gradient waveform corresponds to [ ≈ 0.1 and the dimensionless 1-
value is 1/(�2

max)
3) ≈ 0.006 (with�max being the maximum gradient amplitude).

Hence the 1-value is about three times smaller than what one can achieve with
only the condition on the isotropy of T(2) [161]. Instead of only constraining
T(3) to be isotropic, one can in addition impose a precise value of [ by using
Eq. (2.66). However we observed that the algorithm could not produce gradient
waveforms with arbitrary values of [: there were bounds for [-values outside of
which the optimization process did not converge. This behavior was expected,
because even in the linear encoding case, there were mathematical limitations
for the parameter [ (see Sec. 2.3.4 and Appendix A.3). These bounds can be
extended by adding more basis functions (i.e., by increasing the size : of their
set). Another way to extend the bounds is to reduce the number of constraints,
for example, by dropping out the condition of isotropic T(2) matrix and only
keeping the condition on T(3) . Indeed, the isotropy of T(2) is only required in
the case of a microscopically anisotropic medium, which we did not assume here
(see Appendix 2.3.6).

Interestingly, the T(4) matrix presents a special case: integrating by parts in
Eq. (2.50) one can show that

T(4) =
(∫ )

0
Q(C) dC

)
⊗

(∫ )

0
Q(C) dC

)
. (2.80)



78 2. Anisotropy

𝜎ℓd

𝑇 (ms)

Figure 2.10: E�ective di�usion coe�cient � () )/�0 plotted against fℓd = f
√
�0) inside

a prolate spheroid with semi-axes 10 `m and 5 `m for two gradient sequences and two
orientations of the spheroid. The intrinsic di�usivity is �0 = 1 `m2/ms. The simulation
results are shown as symbols and the generalized Mitra formula is plotted as line. (top)
q-MAS sequence: di�erent orientations of the domain produce di�erent � () ) curves.
(bottom) Optimized sequence with isotropic T(3) and zero T(4) : the � () ) curves are the
same for di�erent orientations of the domain because of the condition on T(3) . Moreover,
the condition on T(4) extends the range of validity of the theoretical formula to about
20 ms.
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This implies that the matrix has rank one, so it cannot be proportional to the unit
matrix unless it is null, that occurs under the simple condition∫ )

0
Q(C) dC = 0 . (2.81)

This condition can be easily included in our optimization algorithm. This is the
case for the designed pro�le shown on the right panel in Fig. 2.9. As a conse-
quence, the corresponding term (of the order of �0) ) vanishes in the expansion
(2.51).

The property of vanishing �0) -order term is well-known for cosine-based
waveforms with an integer number of periods [63], and, indeed, such functions
automatically satisfy to Eq. (2.81). However, this property is not exclusive to
cosine functions (for example, the right panel of Fig. 2.9 was obtained with
polynomial functions). It is also easy to show that Eq. (2.81) is equivalent to
condition (2.77) for ? = 1. In other words, �ow-compensated gradient pro�les
automatically cancel the (fℓd)2-order correction term in the generalized Mitra’s
expansion, as it was pointed out earlier in [62].

2.3.5 Monte Carlo simulations
We performed Monte Carlo simulations to illustrate our theoretical results. The
con�ning domain Ω is a prolate spheroid with major and minor semi-axes equal
to 10 `mand 5 `m. The intrinsic di�usion coe�cient�0 is 1 `m2/ms and the echo
time ) ranges from 0 to 25 ms. Re�ecting conditions were implemented at the
boundary of the domain and the interval [0,) ] was divided into 200 time steps of
equal duration. For each value of) , we generated about 5·106 trajectories, applied
the gradient sequence and computed the e�ective di�usion coe�cient� () ) from
the variance of the random dephasing q of the particles: � () ) = V[q]/(21). In
order to generate random initial positions for the particles inside the spheroid,
we generated random positions inside a larger parallelepiped then discarded the
particles that were outside the spheroid. We checked that the randomness in the
e�ective number of particles was very small relatively to the number of particles
(less than 0.1%).

We chose two di�erent gradient sequences: the q-MAS sequence [153, 161]
and an optimized sequence with isotropic T(3) and zero T(4) such as the one in
the right panel of Fig. 2.9. Note that we could have replaced the q-MAS se-
quence by any other 3D gradient sequence from the present literature, such as
triple di�usion encoding (TDE) [168]. For each sequence, we chose two di�erent
orientations of the spheroid that yielded maximal and minimal value of [. This
can be done by �nding numerically the eigenvectors (e1, e2, e3) of the T(3) matrix
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(sorted by increasing eigenvalue) and then orienting the spheroid along e1 and
e3, respectively (see for example Fig. 2.8). The � () ) curves are presented on Fig.
2.10. The S(3) matrix of a spheroid can be computed exactly (see Appendix A.2)
and we plotted simulation results alongside analytical results.

The comparison between the two graphs reveals several important features.
First, as we argued in the previous section, the q-MAS sequence is not isotropic
with respect to mesoscopic anisotropy studied with short-time experiments. Dif-
ferent orientations of the spheroid yield di�erent values of [ (0.15 and 0.22, re-
spectively) and thus, di�erent � () ) curves. In turn, if one does not know a
priori what is the orientation of the spheroid, then it is impossible to recover
its f ratio from one � () ) curve, as [ depends on this orientation. In this case,
one may estimate [ from its average over di�erent orientations of the domain:
[ ≈ Tr

(
T(3)

)
/3. For the q-MAS sequence this would yield [ ≈ 0.20.

On the other hand, sequences with isotropic T(3) produce the same coe�cient
[ independently of the shape or orientation of the domain. Thus, one obtains the
same � () ) curve for the two orientations of the spheroid that allows one to
recover its surface-to-volume ratio f from a single measurement.

Another important point lies in the range of validity of the �rst-order gen-
eralized Mitra formula (2.51). One can clearly see the e�ect of zero T(4) matrix
that extends the range of validity from about 5 ms to about 20 ms. This comes at
the price of a lower [ (here, [ = 0.11), meaning a slower decay of � () ), which
is however compensated by the extension of the range of ) . Note that this ex-
tension of the range of) may also compensate for a smaller 1-value. In all these
cases, the [ values are signi�cantly di�erent from 1/3 given by Mitra’s original
formula (see Eq. (2.53)).

2.3.6 Extensions
In this section we examine several extensions of our results. First we investigate
in more details the next order, �0) , term of expansion (2.51). Then we turn to
the case where the medium is microscopically anisotropic, i.e. the di�usivity is a
tensor D0. Finally we discuss the e�ects of multiple compartments with di�erent
pore shapes and/or intrinsic di�usivities �0.

Order �0) term

From the short-time expansion of heat kernels [332–334] one can compute the
next-order term of � () ) as

� () )
�0

=1 − [ 4
3
√
c
fℓd − [ (4)

1
2
�0fℓ

2
d +$ ()

3/2), (2.82)
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where [ (4) is a dimensionless parameter de�ned as

[ (4) = Tr
(
S(4)T(4)

)
. (2.83)

In the above formula, the structural matrix S(4) is

S(4) =
1

�0 surf (mΩ)

∫
mΩ
� n ⊗ n dB , (2.84)

where� is the local mean curvature of the surface, i.e. � = ('−11 +'−12 )/2, where
'1 and '2 are the local principal radii of curvature of the boundary mΩ of the
domain. The integral is normalized by the average curvature of mΩ:

�0 =
1

surf (mΩ)

∫
mΩ
� dB . (2.85)

Note that this normalization ensures that the matrix S(4) has unit trace.
Thus, one can potentially probe the curvature of the boundary of the domain

by measuring the ℓ2d = �0) correction term in the short-time expansion of � () ).
Note that, as we mentioned in Sec. 2.3.4, the T(4) matrix has rank one so that one
would need at least three measurements (for example, the same linear gradient
sequence in three orthogonal directions) in order to average out the anisotropy of
S(4) and recover �0. We recall that we ignore permeation and surface relaxation
that manifest in the �0) term as well.

Tensor di�usivity

In this work, we speci�cally focused on mesoscopic anisotropy and excluded the
e�ect of microscopic anisotropy by choosing a scalar di�usivity �0. However,
some of our results may be extended to a tensor di�usivity D0. Let us assume
that the eigenvectors of D0 are directed along ex, ey, ez, with �GG , �~~ , �II being
the corresponding eigenvalues. The mean di�usivity is �0 = Tr(D0)/3. Let us
denote by S(2) the matrix de�ned by S(2) = D0/�0.

By applying the a�ne mapping of matrix L =
√

S(2)
−1

, i.e. a spatial dilata-
tion by the factor

√
�0/�88 for each direction 8 = G,~, I, one transforms the

anisotropic di�usion tensor D0 into the isotropic di�usion tensor �0I. The do-
main and the gradient are also a�ected by this transformation and we denote by
prime the new quantities. For instance, spheres are transformed in ellipsoids by
this transformation. As the gradient is also a�ected by the matrix L−1, one has
T(<)′ = L−1T(<)L−1. While the new volume is vol(Ω′) = det(L)vol(Ω), there is
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no simple formula for the surface-to-volume ratio f′ and the S(3)′ tensor. Apply-
ing our results on isotropic di�usivity to this new case, we get for the e�ective
di�usion coe�cient in the original system

� () ) = �0

(
Tr(S(2)T(2)) − [′ 4

3
√
c
f′ℓd +$ () )

)
, (2.86)

where
[′ = Tr(S(3)′T(3)′) = Tr(L−1S(3)′L−1T(3)) . (2.87)

From the above equation we obtain that � () ) does not depend (to the order√
�0) ) on the orientation of the gradient sequence with respect to the medium

if T(2) and T(3) are isotropic. As we mentioned before, the condition of isotropy
of the temporal tensor T(2) is equivalent to the isotropy of the B-tensor. Thus it
is not surprising to obtain the condition of isotropic T(2) (see Sec. 2.2.2).

Multiple compartments

Our results were derived under the assumption of a spatially homogeneous in-
trinsic di�usivity. Moreover, except in Sec. 2.3.3 where we investigated the ef-
fect of orientation dispersion of the con�ning pores, we implicitly assumed that
all con�ning pores are identical. Here we present an extension to a medium
that is composed of two or more non-communicating (isolated) compartments
(for example, intra- and extra-cellular spaces) with di�erent di�usion coe�cients
and/or di�erent con�ning pores.

Inside each compartment, the di�usivity is constant and the pore shapes are
identical, so that our formula (2.51) for � () ) is valid, with parameters �0, [,
f that depend on the compartment. The signal can be computed as a voxel-
average of signals from individual compartments. In the regime of small1-values
(1�0 � 1), one has, in analogy to Eq. (2.56),

( ≈ 〈exp(−1� () ))〉 ≈ exp(−1〈� () )〉) , (2.88)

where the average is weighted by the relative volume of each compartment, and

〈� () )〉 = 〈�0〉 −
4

3
√
c

〈
[f�0

3/2
〉√
) +$ () ) . (2.89)

We keep this general form of the voxel average which depends on the speci�c
con�guration of compartments, pore shapes, di�usivities, etc.

In the above reasoning, the hypothesis of non-communicating compartments
is crucial and further modi�cations would be needed in order to include exchange
between compartments when a nucleus can experience di�erent di�usion coef-
�cients during the measurement.
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2.3.7 Conclusion
We presented a generalization of Mitra’s formula that is applicable to any gra-
dient waveform and any geometrical structure. This generalized formula di�ers
from the classical one by a correction factor in front of the surface-to-volume
ratio f . In the case of linear encoding schemes, we showed that this factor can
signi�cantly a�ect the estimation of f and lead to overestimated size of compart-
ments.

We also discussed in detail the e�ect of anisotropy of the medium and the
use of spherical encoding schemes. In particular, we showed that in order to
estimate the surface-to-volume ratio of a mesoscopically anisotropic medium,
the gradient should satisfy the isotropy condition (T(3) ∝ I) that is di�erent from
the usual one (T(2) ∝ I). In particular, common spherical encoding schemes do
not satisfy this new condition. We presented a simple and �exible algorithm that
allows fast optimization of gradient waveforms and is well-suited for design of
di�usion weighted sequences with speci�c features such as isotropy of T(3) , �ow
compensation, heat limitation, and others.

The developed extension of Mitra’s formula is expected to have a signi�cant
practical impact due to temporal di�usion encoding parametrization [60, 164],
in particular, in medical applications [56, 65, 66]. The proposed approach char-
acterizes the underlying microstructure via novel quantitative metrics such as
S(3)-tensor and more accurate surface-to-volume ratio.
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Chapter 3

Permeability

The aim of di�usion MRI is to unravel the microstructure of a sample through
the di�usive motion of spin-bearing particles. The most prominent microstruc-
tural features of a sample are boundaries that restrict the di�usive motion. In
the previous chapter we studied the e�ective reduction of the di�usion coe�-
cient at short times due to impermeable boundaries. However, in biological sam-
ples the hypothesis of impermeable boundaries is often not valid as exchange of
molecules between compartments (cells, organelles, extracellular medium, blood
vessels, etc.) plays a major role in living organisms [8]. The actual mechanism
of exchange may be passive (a small molecule goes through a membrane), facili-
tated by selective channel proteins, or even mediated by active (i.e., that involve
consumption of chemical energy) processes. Moreover, biological membranes1

usually are not equally permeable to all molecules, creating osmotic pressure ef-
fects. Throughout this chapter, we simplify greatly the analysis by discarding
the detail of the permeation mechanism and by considering a single chemical
species (water).

We show in Sec. 3.1 how one can de�ne the permeability ^ of a boundary and
we exhibit natural time and length scales associated to permeability. In Sec. 3.2,
we study how exchange between small compartments and an external medium
a�ects the measured dMRI signal. Experimental data from this section was ob-
tained by M. Nilsson and D. Topgaard at Lund University, and we published these
results in [345]. Then we extend this approach to the study of mitochondria
inside muscles, in collaboration with J.-M. Bonny, S. Clerjon, and G. Pagès at
AgroResonance (QuaPA unit of INRA). Finally, in Sec. 3.4, we turn to the prob-
lem of di�usion through multiple barriers in a one-dimensional setting and we
obtain scaling laws at short and long di�usion time for the dMRI signal. Those
results were published in [346].

1We shall use “boundary”, “membrane”, and “barrier” as synonyms throughout this chapter.
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3.1 General properties

3.1.1 One concept, many approaches
The permeability ^ of a boundary can be introduced in di�erent ways. We shall
present four de�nitions that are equivalent with each other despite the variety of
viewpoints, providing additional insights into the concept of permeability. For
simplicity we consider a �at boundary but all the following considerations are
applicable to any smooth boundary.

As an intermediate between impermeable boundary and no boundary

Let us denote by 5 a generic intensive quantity “carried” by di�using particles
(for example, the magnetization). A planar boundary G = 0 splits the medium
in two parts with two di�erent di�usion coe�cients: �− for G < 0 and �+ for
G > 0. The continuity of the �ux � should be ensured between these two parts,
yielding a �rst condition

� (0) = −�−mG 5 (0−) = −�+mG 5 (0+) . (3.1)

Note that this equation requires to adopt the Hänggi-Klimontovitch (or “isother-
mal”) interpretation of Langevin equation (see Appendix D). At this point, the
value of the �ux � (0) is not prescribed, nor the values of 5 (0−) and 5 (0+). One
can distinguish three situations, illustrated on Fig. 3.1.

1. Impermeable boundary: the half spaces G < 0 and G > 0 are independent
from each other and there is no �ux at the boundary, i.e. � (0) = 0.

2. No boundary: there is continuity between two half-spaces, i.e. 5 (0−) =
5 (0+).

3. Permeable boundary: As a natural intermediate case, 5 (G) is discontinuous
at the boundary and the jump is proportional to the �ux:

� (0) = −^ (5 (0+) − 5 (0−)) , (3.2)

where the proportionality coe�cient ^ is the permeability of the boundary
[53, 268–270, 273]. The larger ^, the larger the �ux for a given disconti-
nuity in 5 , that corresponds intuitively to a more permeable boundary.
In particular, the impermeable boundary is obtained in the limit ^ → 0,
whereas the limit ^ →∞ is equivalent to no boundary.
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𝑓(𝑥) 𝑓(𝑥) 𝑓(𝑥)

Impermeable boundary No boundaryPermeable boundary

𝐷− 𝐷− 𝐷−𝐷+ 𝐷+ 𝐷+

Figure 3.1: The permeable boundary appears as an intermediate case between imperme-
able boundary and no boundary.

The permeability ^ has the dimension of a length divided by a time. Equation
(3.2) suggests an interpretation of^ as a velocity. In fact, one can see the �ux � (0)
as the result of the di�erence between the �ux from left-to-right and the �ux from
right-to-left:

� (0) = �−→+ − �+→− �−→+ = ^5 (0−) , �+→− = ^5 (0+) . (3.3)

These relations make ^ appear as the velocity at which particles cross the bound-
ary (keeping in mind that the process remains di�usive on both sides).

As an in�nitely thin, weakly di�usive layer

Another point of view is illustrated on Fig. 3.2. Let us consider a thin layer
−4/2 ≤ G ≤ 4/2 of thickness 4 . The di�usion coe�cient inside it is �4 . In the
limit of in�nitely small 4 , one gets that the �ux is constant through the layer and
equal to

� (0) = −�−mG 5 (−4/2) = −�4mG 5 (0) = −�+mG 5 (4/2) . (3.4)

In turn, the jump of 5 between two sides of the layer is equal to

5 (4/2) − 5 (−4/2) = 4mG 5 (0) = −
4

�4
� (0) . (3.5)

One recovers the above boundary condition (3.2) if�4/4 →
4→0

^ [9]. Note that this

relation may be rewritten as ^ = 4 (42/�4)−1, i.e., thickness of the layer divided
by typical di�usion time through the layer. This is consistent with the above
interpretation of ^ as a boundary crossing velocity.
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𝑓(𝑥) 𝑓(𝑥)

𝐷− 𝐷−𝐷+ 𝐷+

𝐷𝑒 = 𝜅𝑒

𝑒

𝑒 → 0

𝜅

Figure 3.2: The permeable boundary appears as the limit of an in�nitely thin layer of
very low di�usivity. The permeability of the resulting membrane is the ratio between
di�usion coe�cient and thickness.

 1 2 𝜖

1 − 𝜖𝑎

 1 2

 1 2

321 4

𝜖

5

1 − 𝜖

 1 2

Figure 3.3: In the context of random walks, the permeable boundary (dotted line) is
modeled by a small transition probability n .

As a crossing probability

Let us replace the continuous Brownian motion by a discrete random walk on a
cubic lattice (as the sum of three independent one-dimensional random walks).
The step of the lattice is denoted by 0, the time steps of the walk are denoted by g .
We recall that a random walk yields a Brownian motion in the continuous limit
0, g → 0 if the di�usion coe�cient�0 = 0

2/(2g) remains constant. For simplicity
of notations we assume here that the di�usion coe�cient on both sides of the
boundary is the same but the extension to di�erent di�usion coe�cients poses
no di�culty. We introduce a permeable barrier as a small transition probability
n between the two half spaces, as shown on Fig. 3.3.

Let us compute the net �ux between sites 1 and 2, with the convention that
a �ux from left-to-right is positive. We get simply

�1→2 =
0

g

(
1
2
51 −

1
2
52

)
= −0

2

2g
52 − 51
0

, (3.6)

where we recognize the formula J = −�0∇5 . Then we compute the �ux between
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sites 2 and 3, 3 and 4, 4 and 5:

�2→3 =
0

g

(
1
2
52 − (1 − n) 53

)
, �3→4 =

0

g
(n 53 − n 54) , (3.7a)

�4→5 =
0

g

(
(1 − n)n 54 −

1
2
55

)
. (3.7b)

One can see that the �ux between 2 and 3 (or between 4 and 5) has a di�erent
expression than the one between 1 and 2 because of the re�ection probability
1 − n . In particular, the equality �2→3 = �3→4 yields 53 = 52/2 + n 54 that may be
very di�erent from 52. In other words, the discontinuity between sites 3 and 4
spreads to sites 2 and 5. Therefore, to compute the �ux, we perform a weighted
average of the �ux from site 2 to 5 to cancel the contributions from sites 3 and 4
(alternatively, one can simply solve a system of linear equations):

� =

[
�2→3 +

1 − n
n

�3→4 + �4→5

]
(2 + (1 − n)/n)−1

=
�

0

52 − 55
2 + (1 − n)/n . (3.8)

Then we relate 52 and 55 to 5 (0−) and 5 (0+) through the slope of 5 , which is
given by −�/�0:

52 − 55 = (5 (0−) − 5 (0+)) +
30�
�0

, (3.9)

and by combining this relation with the formula for � , one obtains

� = − n

1 − 2n
�0

0

(
5 (0+) − 5 (0−)

)
. (3.10)

The identi�cation with Eq. (3.2) yields

^ =
�0

0

n

1 − 2n , n =
^0

�0 + 2^0
. (3.11)

Note that the permeability is in�nite for n = 1/2, as it should be (no barrier).
Interestingly, this formula di�ers from the case of a relaxing boundary where
the factor 1 − 2n in the denominator is replaced by 1 − n , see Ref. [285]. In the
continuous limit (0, g → 0), the crossing probability goes to zero. In parallel, the
motion becomes in�nitely fast so that the number of times that the particle hits
the boundary in a given amount of time goes to in�nity. As we show in Appendix
B.1.1, these e�ects compensate in the continuous limit.
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As the local stopping rate of a re�ected Brownian motion

In a sense, this formalism corresponds to the continuous limit of the previous
description. We shall brie�y describe it and we invite the interested reader to
refer to books [279–281, 284] for a more complete introduction. We emphasize
that all results here are classical. A re�ected Brownian motion inside a domain
Ω is described by a set of two stochastic processes, the position rC and the local
time2 ℓC , that obey

drC =
√
2�0dWC + ImΩ (rC ) n(rC ) dℓC , (3.12)

with the conditions that rC ∈ Ω at all time C and ℓC increases only if rC ∈ mΩ [274,
282, 283]. In the above equation, n is the inward normal vector at the boundary
and ImΩ is the indicator function of mΩ, i.e. it is zero everywhere except on mΩ, in
which case it is equal to 1 (note that n(rC ) is ill-de�ned but n(rC )ImΩ (rC ) is well-
de�ned). This process describes di�usion inside a domain Ω with impermeable
boundaries mΩ.

Although a bit counter-intuitive, this formulation is self-consistent. Indeed,
the condition that the trajectory does not leave the domain implies that dℓC has
to “compensate” for the Brownian motion

√
2�0dWC if rC ∈ mΩ. In turn, ℓC stops

increasing as soon as the particle leaves the boundary. If one has in mind a
discrete random walk, when the particle is at the boundary, it has a 1/2 chance to
make the “wrong” jump that would make it cross the barrier, in which case ℓC has
to compensate this wrong step by increasing by one step size 0. This reasoning
leads to the Levy formula

ℓC = lim
0→0

�0

0

∫ C

0
Id(r,mΩ)<0 (rC ) dC , (3.13)

that yields an interpretation for ℓC/0 as the number of crossings of a layer of
thickness 0 at the boundary before time C (alternatively, ℓC/�0 would be a time
per unit length spent in the vicinity of the boundary). Consistently with Levy
formula, one can easily compute the local time for di�usion in a half space with
a boundary at G = 0 by using the re�ection principle:

ℓC = �0

∫ C

0
X

(
G0 +

√
2�0(WC ′ · ex)

)
dC ′ . (3.14)

To take into account the permeability of the boundary, the re�ected Brownian
motion is conditioned to stop at a random time)2 , at which it starts again on the
other side of the boundary (i.e., the re�ected Brownian motion now takes place

2Despite the historical terminology “local time”, ℓC has dimensions of a length.
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in the complementary of Ω). The random stopping time )2 is in turn related to
the time spent at the boundary, i.e. the local time ℓC , by

)2 = inf{C | ℓC ≥ j} , (3.15)

where j is a random variable that follows an exponential law with rate ^:

P(j ≥ D) = exp(−^D) . (3.16)

The interpretation is as follows: depending on the permeability of the mem-
brane, a random stopping local time j is drawn out of an exponential distribu-
tion. As the particle meets the boundary, the local time ℓC increases; the trajec-
tory is stopped when ℓC reaches the stopping time j . In other words, the crossing
events are modeled as independent events occuring at a constant rate ^, not in
“real” time C , but in local time ℓC . As we show in Appendix B.1.1, the distribution
of)2 is far from exponential because the local time is conditioned by the di�usive
process. In particular,)2 has an in�nite expectation value because of exceptional
trajectories that perform very long excursions far away from the boundary be-
fore crossing it, and that dominate the distribution at long times.

3.1.2 Di�usion control versus permeation control
Let us consider a bounded compartment of size ℓB (e.g., a spherical pore) and
surface-to-volume ratiof , with permeability^, and di�usion coe�cient�0. From
these quantities, one can form two “new” time scales: the intrinsic crossing time
g^ that is the typical time taken by a particle near the boundary to cross it; and
the global exchange time ge that describes the typical time after which the com-
partment has fully equilibrated its content with outside. We shall see that both
of these scales are relevant depending whether di�usion or permeation e�ect
dominates, i.e. depending on the kinetically limiting process. Furthermore, the
transition from one regime to the other is controlled by a single dimensionless
parameter ℓs/ℓ̂ , where

ℓ̂ =
�0

^
(3.17)

is the “permeability length” [274, 276–278]. In Sec. 3.4 we shall use the notation
˜̂ = ℓs/ℓ̂ for brevity.

Di�usion control, intrinsic crossing time g^

We �rst assume di�usion to the barrier as being the limiting process in the kinet-
ics of barrier crossing. In other words, a particle starting at a random point in the
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compartment takes much more time to di�use to the boundary than to cross the
boundary after the �rst hit. Under these conditions, we shall see that the typical
crossing time for a particle starting on the boundary is given by

g^ =
�0

^2
. (3.18)

Therefore the “di�usion control” regime corresponds to the conditiong^ � ℓ2s /�0,
or equivalently ℓ̂ � ℓs. The length ℓ̂ appears here as the di�usion length asso-
ciated to g^ , i.e. ℓ̂ =

√
�0g^ , and represents the typical exploration length along

the boundary by a particle before crossing it [274, 276–278]. Note that g^ is the
result of a coupling between the di�usive process that brings the particle multi-
ple times to the boundary and the permeation process that lets the particle cross
the boundary after a su�cient “number of attempts”.

The formula (3.18) for g^ may be obtained with the following reasoning. Let
us denote by 5 the density inside the compartment and let us assume that it is ini-
tially uniform and equal to 50. We assume that particles inside the compartment
are labeled (or colored) di�erently than particles outside so that 5 = 0 outside
the compartment. This hypothesis allows us to neglect permeation from outside,
at least at short times. At time C = 0, there is a permeation �ux from inside to
outside:

� (C = 0) = ^50 . (3.19)

We assume that at short times, the value of 5 near the boundary is not modi�ed
too much by this �ow so that the above equation remains valid. Therefore after
time C , the number of particles that have leaked outside per unit area is �C = ^50C .
In parallel, the number # of particles per unit area that have actually hit the
boundary at least once is # ∼

√
�0C 50 (in the short-time limit

√
�0C � ℓB). The

ratio between these two quantities yields the fraction �c of particles that have
crossed the boundary among the ones that actually hit the boundary

�2 ∼
^
√
C

√
�0
∼

√
C

g^
. (3.20)

To summarize, at short time C , there is a thin layer of size
√
�0C where particles

hit the boundary and possibly cross it. Because of crossings, the particle density
is lower in this layer than in the rest of the compartment. To know how much
lower it is, one has to compute the fraction of particles that have crossed the
barrier: this is given by �2 . Equation (3.20) makes g^ appear as the typical crossing
time for particles starting close to the boundary. Stricly speaking, this expression
is only valid at C � g^ � ℓ2s /�0 since the previous computations were done under
the assumption that (i) the density is weakly a�ected by permeation through the
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boundary, i.e. �2 � 1, and (ii) few particles hit the boundary so that their number
is well approximated by # ∼

√
�0C 50.

Note that one can compute the exact distribution of crossing time through a
planar boundary using a random walk approach or the re�ected Brownian mo-
tion formalism [274, 284]. The assumption of planar boundary results from the
short-time approximation C � ℓ2s /�0, similarly to Sec. 2.3.1. The computations
and results are presented in Appendix B.1.1, and we show that the “survival prob-
ability” for a particle starting at the boundary is given by

(c(C) = erfcx(C/g^) , (3.21)

that makes the scaling C/g^ appear explicitly (erfcx is the scaled complementary
error function). The short-time behavior of (c(C) is given by

(c(C) =
C�g^

1 −
√

C

cg^
, (3.22)

that is consistent with the behavior (3.20) obtained with qualitative arguments.
We have seen in Sec. 3.1.1 that ^ is related to the rate (probability) of cross-

ing the barrier in a continuous (or discrete) random walk description (see e.g.
Eq. (3.11)). Therefore one would expect the typical crossing time to scale as the
inverse of this rate (or probability), and the scaling as 1/^2 in (3.18) might come
as a surprise. As shown in Appendix B.1.1, the distribution of crossing times has
in�nite expectation value, caused by the in�nite return-to-the-origin mean time.
This leads to “non self-averaging”, a phenomenon discussed in Appendix B.1.2.
In a bounded domain, the mean return time is not in�nite because the size of
the compartment ℓs creates a “cut-o�” at time ℓ2s /�0 in the distribution of return
times. Although this cut-o� has negligible e�ect in the regime g^ � ℓ2s /�0 just
evoked, it becomes the dominant e�ect in the opposite regime. This is the object
of the next paragraph.

Permeation control, global exchange time ge

For several reasons, the above discussion fails if g^ � ℓ2s /�0. One can note al-
ready that the interpretation of ℓ̂ as a typical exploration length is invalid be-
cause ℓ̂ � ℓs. The time taken by a particle to cross the boundary is so large that
the particle explores the compartment several times. Therefore the derivation in
Appendix B.1.1 for a single planar boundary fails to describe the behavior for a
bounded compartment. In the same way, the formula (3.20) for �2 reveals that
�2 � 1 even at C ∼ ℓ2s /�0, at which the hypotheses behind the computation are
grossly invalid.
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In this regime, called “permeation control”, “pore equilibration” [85], or “barrier-
limited exchange” [192, 193] , the relevant time scale is the global exchange time

ge =
ℓB

^
∼ 1
f^

. (3.23)

This time scale represents the typical time before the compartment has fully equi-
librated its content with the outside. Therefore, the permeation control regime
emerges in the limit ℓ2s /�0 � ge, or equivalently for ℓs � ℓ̂ . This regime is
characteristic of weakly permeable membranes and small compartments.

To obtain Eq. (3.23), we consider, as in the previous section, that particles
initially inside the compartment are labeled so that the particle density 5 equal to
50 inside the compartment, and equal to 0 outside. We assume all particles explore
the compartment multiple times before crossing the boundary so that the leakage
is homogeneous inside the compartment and 5 is uniform at all times. Finally,
we neglect reentry of particles. This may be ensured by a weak permeability
hypothesis (few particles have leaked so that the re-entry �ux is much smaller
than the leakage �ux) or by an in�nite outside medium (most particles di�use
far away from the compartment). Under these hypotheses, the evolution of the
density is controlled by the leakage �ux � :

mC 5 ≈ −�f = −^f 5 , (3.24)

that yields the simple expression

5 (C) ≈ 504−^fC ≈ 504−C/ge . (3.25)

This last expression makes ge appear as the typical exchange time between the
compartment and the outside medium, as claimed above.
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3.2 Exchange between small compartments and
exterior medium probed by dMRI

3.2.1 Introduction
In this section we consider an unbounded “exterior” medium that contains small
compartments (e.g., small cells or organelles) with permeable boundaries. Through-
out the section we discard any e�ect that would result from di�erent relaxation
times between interior and exterior medium. We shall denote by d the volume
fraction of the interior space, and by �4 and �8 the di�usion coe�cients of spin-
bearing particles in the exterior and the interior media, respectively. Intuitively,
one understands that the dMRI signal may obey two distinct regimes depending
on the ratio between experimental time ) and the exchange time ge. If ) � ge,
one may neglect exchange and the signal is the sum of “interior” and “exterior”
contributions. Inside small compartments, di�usion is signi�cantly restricted
even at short times leading to motional narrowing regime and a slow decay
of intra-compartment magnetization (see Sec. 1.2.2 and Eq. (1.54)). Therefore,
the signal is well represented by a bi-exponential model, which yields “fast” and
“slow” e�ective di�usion coe�cients [115, 120–125]. In contrast, at long times
) � ge, most particles have di�used multiple times inside and outside compart-
ments and the medium may be replaced by an e�ective medium with a coarse-
grained di�usion coe�cient�0 = d�8+(1−d)�4 . Thus, in principle the crossover
between these two regimes allows one to probe the exchange time ge with dMRI.
However, it is a priori unclear how the signal would behave at intermediate times.

In order to account for exchange between the two pools of spins, Kärger
introduced in [186, 187] a model that was then developed to study di�usion NMR
signals in the narrow-gradient pulse regime [188–191]. The main idea consists in
characterizing di�usion in the complex structure of the medium by macroscopic
quantities, namely di�usion coe�cients and exchange times. This is a coarse-
graining approach that relies on two hypotheses, as was shown in [192]: (i) the
di�usion length ℓd is much larger than the correlation length of the medium ℓs,
and (ii) exchange between compartments is in the permeation control regime,
i.e., permeability length ℓ̂ is much larger than ℓs. This allows one to treat any
complex medium as a “homogeneous” one where the exchange takes place at
every point in space. This is the fundamental hypothesis of the Kärger model.

In the case of small compartments, the validity of the narrow-gradient pulse
approximation, and in turn of the Kärger model, is not ensured. Indeed, one
should take into account restriction by boundaries during each gradient pulse.
In [194, 195] the Kärger model was rigorously extended to �nite pulses, but the
resulting ordinary di�erential equations need to be solved numerically. A “mod-
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i�ed” Kärger model in which the slow e�ective di�usion coe�cient is set to zero
was also proposed in order to account for restricted di�usion [196]. Note that
the derivation in [194, 195] yields the same modi�ed Kärger model with zero
intracellular e�ective di�usion coe�cient (see Eqs. (20-29) from Ref. [195]).

In the following, we critically revise the derivation of three models (bi-expo-
nential, Kärger model and modi�ed Kärger model). Then we apply them to an-
alyze pulsed-gradient stimulated spin-echo experiments with yeast cells. The
Kärger model and the modi�ed Kärger model are shown to be very close to each
other in the relevant range of parameters, whereas the bi-exponential model ex-
hibits some deviations at low gradients. All three models �t the data well and
give access to the exchange time across the cell membranes.

In the next section, we shall apply the same modeling to mitochondria in
muscle tissues. Compared to a well-controlled yeast cell suspension, muscles are
much more complex and we shall see that interpretations are less clear.

3.2.2 Three Models
For the sake of clarity and being motivated by experiments with yeast cells, we
consider a medium that contains spherical cells of radius', and spin-bearing par-
ticles are water molecules. The gradient sequence is a standard PGSE sequence
with two rectangular pulses of duration X and an o�-gradient duration Δ− X be-
tween two pulses. We recall that the signal from free di�usion with di�usivity
�0 would decay as

( = exp(−1�0) , 1 = �2X2C3 , C3 = Δ − X/3 . (3.26)

In contrast, restricted di�usion exhibits a slower decay, as we discussed in Sec.
1.2. In order to quantify restriction of intracellular di�usion during the gradient
pulses, we introduce the dimensionless quantity

b =
�8X

'2
. (3.27)

Note that the total di�usion time Δ + X is a priori independent from b .
Under the Gaussian phase approximation (GPA), i.e. weak dephasing and

weak signal decay, and in the absence of exchange, Neuman derived in [81] the
decay of the intracellular signal:

(8 ≈ d exp(−�B1) , (3.28a)

�B =
4'2

bC3

∞∑
==1

1 − 1
U=

2b
�= (b,Δ/X)

U=
4(U=2 − 2)

, (3.28b)

�= (b,Δ/X) = 1 − 4−U=2b + 24−U=2bΔ/X sinh2(U=2b/2) , (3.28c)
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where U= are the zeroes of the derivative of the spherical Bessel function 91:
U1 ≈ 2.08, U2 ≈ 5.94, . . .. The coe�cient �B is thus the apparent “slow” di�u-
sion coe�cient probed by dMRI. When U12b & 1 one can rewrite (3.28b) with a
very good approximation as:

�B ≈
16'2

175bC3

(
1 − �1(b,Δ/X)

U1
2b

)
. (3.29)

In the limit b → ∞ one recovers the well-known motional narrowing formula
(see Eq. (1.54)):

�B ≈
b�1

16'4

175�8XC3
. (3.30)

Equations (3.28a) to (3.30) rely on the GPA, that is a low-gradient approxima-
tion. More precisely, one should distinguish between two situations depending
on the value of b . At low b , the e�ect of boundaries is weak during the encoding
pulse and the narrow-gradient pulse regime is a good approximation. Figure 1.8
and the related discussion shows that the GPA, and thus Eq. (3.28b), is valid as
long as

ℓ@ = (�X)−1 � ' , (b � 1) , (3.31)

where we assumed that compartments are small so that ℓd > ', otherwise the
condition is given by ℓ@ � ℓd, i.e. 1�8 � 1 (that would correspond to Mitra
regime). If condition (3.31) is not respected, then the signal exhibits a di�usion-
di�raction pattern controlled by the radius of cells '.

In contrast, if b & 1, there is strong restriction by boundaries during each
encoding pulse and one should refer to Fig. 1.10 that shows the regimes associ-
ated to extended-gradient pulses. In that case, one can see that Eq. (3.29) and a
fortiori Eq. (3.30) are valid if

ℓ6 = (�/�0)−1/3 � ' , (b & 1) . (3.32)

Note that this last condition may be rewritten as ℓ@ � '/b , and is therefore less
restrictive than condition (3.31). If condition (3.32) is not respected, the signal ex-
hibits “abnormal” dependence on the 1-value, − log(() ∼ 11/3, in the localization
regime (see Chapter 4 and Refs [6, 79, 99, 100, 102]).

In typical experiments with biological samples, �8 ∼ 1 `m2/ms, X ∼ 1−10 ms
and ' ∼ 1−5 `m which makes the condition b � 1 di�cult to achieve. Therefore
one generally has to carefully check the validity of the GPA, especially for the
small values of b (i.e., X).

In the absence of exchange across cell membranes, the complete signal can
then be written in a bi-exponential form [120, 122, 130]:

( = (1 − d) exp(−� 51) + d exp(−�B1) , (3.33)
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where � 5 is the apparent “fast” di�usion coe�cient, which is smaller than the
intrinsic �4 because the extracellular di�usion is hindered by the cells3. This in-
volves already an approximation because the complex problem of di�usion in the
crowded extracellular medium is reduced to an apparent di�usion coe�cient, ig-
noring for example high-gradient localization e�ects at the cell boundaries [98–
100, 102]. As we discussed in Sec. 1.2.2, � 5 may decrease slowly with di�usion
time C3 (generally as a power law) and reach the “tortuosity limit” at long times
[53, 69, 70]. The short-time behavior, that was studied in depth in the previous
chapter, is not relevant here because of small compartments compared to typical
di�usion lengths. Now we investigate the e�ect of exchange accounted via three
models.

Bi-exponential model with time-dependent water fractions

The most simple idea is to keep the bi-exponential form (3.33) but to consider
time-dependent intracellular water fraction d . In the regime of permeation con-
trol, and neglecting re-entry into the same cell, the fraction of water that remains
inside the same cell during the experimental duration) follows from the discus-
sion of Sec. 3.1.2:

d = d0 exp(−) /g8→4) , (3.34)

where g8→4 is the global exchange time (3.23) of the compartment and the indices
emphasize that it describes exchange from interior to exterior of the cell. For a
sphere of radius ' the expression of g8→4 is given by the simple expression (and
for an arbitrary shape of diameter 2' the result is always smaller):

g8→4 =
'

3^
. (3.35)

The validity of this approach relies on several assumptions. (i) The encoding
is su�ciently short to neglect the e�ect of permeability during pulses, i.e. X �
g8→4 . (ii) Exchange is permeation controlled, i.e. g8→4 � '2/�8 , or equivalently
' � �8/^. (iii) Cells are spatially disordered, therefore there is no di�usion-
di�raction e�ects due to water traveling from one cell to the other. (iv) Entry

3Note that the bi-exponential formula has been proposed as a robust phenomenological rep-
resentation for the signal in complex samples such as brain tissue [111, 115]. On the other hand,
it has been argued in [128] that the bi-exponential �t may be unstable because of a too large
number of parameters compared to a Taylor expansion of the signal, that is more “universal” at
low 1-values. Furthermore, the danger of misinterpretation of biexponential �tting was high-
lighted in [11]. Those considerations do not apply to our work, since the bi-exponential form of
the signal (3.33) is a model that relies on microscopic assumption on the studied sample, and not
a mere convenient �t.
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of spin-bearing molecules from the outside is neglected, that requires either a
strong decay of extracellular magnetization during one pulse, or that particles
from the outside have di�used from su�ciently far away so that their phase
dispersion leads to a very weak contribution to the intracellular signal. One can
see that the second condition, � 5 g8→4 � ℓ2@ is much less restrictive than the �rst
one, � 5 X � ℓ2@ , that can thus be discarded.

In the restricted di�usion regime (b & 1) that is the case considered here, (i)
automatically implies (ii). Note that this corresponds to the conditions of appli-
cability of the Kärger model discussed in Sec. 3.2.1. Moreover, it allows one to
replace the total di�usion time ) = X + Δ by C3 = Δ − X/3 in Eq. (3.35), so that d
decays as:

d = d0 exp(−C3/g8→4) . (3.36)

Kärger Model

The classical model for treating exchange between two compartments with dif-
ferent di�usion coe�cients is the Kärger model [188, 189]. Roughly speaking,
this is an extension of the bi-exponential model with an additional parameter:
an exchange time g which is the time-scale of the leakage from one compart-
ment to the other. More precisely,

g8→4 = d0g and g4→8 = (1 − d0)g (3.37)

are respectively the mean times for crossing the membranes from the inside to
the outside and from the outside to the inside. Note that the dependence on d0 is
simply related to mass conservation in intra- and extra-cellular compartments.

As we discussed in Sec. 3.2.1, the Kärger model relies on a coarse-graining
approach that allows one to treat the exchange between intra- and extra-cellular
water pools as occuring at every point in space. Moreover, one assumes that
the encoding and decoding gradient pulses are in�nitely short. Therefore, the
evolution of each pool of magnetization results from decay and exchange:

d(8
dC

= −A8(8 − (8/g8→4 + (4/g4→8 , (3.38a)

d(4
dC

= −A4(4 − (4/g4→8 + (8/g8→4 , (3.38b)

where A8 and A4 are intra- and extra-cellular decay rates of the magnetization. All
the geometric complexity of the medium is coarse-grained into the coe�cients
g , A8 and A4 , that reduces the Bloch-Torrey partial di�erential equation to the
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above system of ordinary di�erential equations. In the absence of exchange, each
magnetization pool decays as

(8 = d0 exp(−�B@2C3) , (4 = (1 − d0) exp(−� 5@
2C3) , (3.39)

that yields by identi�cation with the above system

A8 = �B@
2 , A4 = � 5@

2 , (3.40a)
(8 (C = 0) = d0 , (4 (C = 0) = 1 − d0 . (3.40b)

The Kärger model relies on the assumption that X � g , which allows one to
neglect the e�ect of exchange during the encoding and decoding gradient pulses.
This means that, as far as the exchange is concerned, one can use C3 = Δ − X/3
instead of, say, Δ + X , as the total time during which the exchange takes place.
As a matter of fact, in the case of long-exchange times, it was shown that using
this form of C3 as the total time improves the accuracy of the Kärger model to
the �rst order in X/Δ [198, 199]. In addition, it makes the comparison with the
bi-exponential model easier.

Solving the system of di�erential equations on the intra- and extracellular
signals 

d(8
dC

= −�B@2(8 − (8/g8→4 + (4/g4→8 (3.41a)

d(4
dC

= −� 5@
2(4 − (4/g4→8 + (8/g8→4 (3.41b)

and the initial conditions

(8 (C = 0) = d0 , (4 (C = 0) = 1 − d0 , (3.42)

one gets the Kärger formula

( = %1 exp(−�1@
2C3) + %2 exp(−�2@

2C3) , (3.43)

where %1, %2, �1, �2 are functions of @ given by

�1,2 =
1
2

(
-4 + -8 ∓

√
(-4 − -8)2 +

4
@4g4→8g8→4

)
, (3.44a)

-4 = � 5 +
1

@2g4→8
, -8 = �B +

1
@2g8→4

, (3.44b)

%1 =
�2 − d0�B − (1 − d0)� 5

�2 − �1
, (3.44c)

%2 =
d0�B + (1 − d0)� 5 − �1

�2 − �1
. (3.44d)
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Note that some authors [196, 200] claimed using 4 initial conditions for the
two �rst-order di�erential equations (3.41) even though only 2 conditions are
needed. In our notations, the two additional conditions (along with Eq. (3.42))
are

d(8
dC

����
C=0

= −�B@2d0 ,
d(4
dC

����
C=0

= −� 5@
2(1 − d0) , (3.45)

which are actually equivalent to each other and compatible with (3.37). Although
one can interpret these redundant initial conditions as another way to state Eq.
(3.37), it is more natural, from the mathematical point of view, to discard Eq.
(3.45) and to keep the two initial conditions (3.42) and two physical relations
(3.37). We emphasize that the e�ective “fast” di�usion coe�cient � 5 is used in
the system (3.41) instead of the intrinsic di�usion coe�cient �4 as a way to take
into account hindrance of extracellular di�usion by cell boundaries.

Modi�ed Kärger model

One obvious �aw of the Kärger model is that �B , which was supposed to be a
constant intrinsic di�usion coe�cient, depends on the di�usion time (see Eq.
(3.29)). Although it seems to be of no consequence in the �nal formula (3.43), it
is a serious issue when one looks at the original equations (3.41). Should one treat
�B �rst as a constant and then add its time dependence in the �nal formula or
on the contrary consider that it is time-dependent from the beginning? Another
defect is that the Kärger model relies on the narrow pulse approximation that is
not valid in the restricted di�usion regime b & 1. In this case, the equation for
the intracellular signal should be modi�ed.

Actually, if one goes back to Eq. (3.28a), one can see that the time-dependence
of�B in Eq. (3.29) is simply another way to state that the intracellular signal does
not depend on the di�usion time in the restricted di�usion regime. Thus one can
modify the Kärger model in the following way, inspired by [196]:

d(8
dC

= −(8/g8→4 + (4/g4→8 (3.46a)

d(4
dC

= −� 5@
2(4 − (4/g4→8 + (8/g8→4 (3.46b)

with the initial conditions

(8 (C = 0) = Ud0 (4 (C = 0) = 1 − d0 , (3.47)

where U = exp(−�B1) < 1 depends on @ and X but not on Cd. Compared to the
Kärger model, the intracellular e�ective di�usion coe�cient is set to zero but the
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e�ect of �B is incorporated via the initial condition for the intracellular signal.
Here, U is the time-independent decrease of the intracellular signal computed by
Neuman formulas (3.28a) and (3.28b). One can see that the system (3.46) provides
the correct solution in the absence of exchange (g8→4, g4→8 →∞).

The main physical motivation behind this model is that the intracellular mag-
netization reaches an equilibrium on a much shorter time-scale than the water
exchange through the cell membranes ('2/�8 � g ). Because it does not evolve
after this very short transient regime (in the absence of exchange), the corre-
sponding e�ective di�usion coe�cient is set to zero. The initial value Ud0 that
we set for the intracellular signal is precisely the value of the signal resulting
from this transient regime.

Solving the system (3.46) yields

( = % ′1 exp(−�′1@2C3) + % ′2 exp(−�′2@2C3) , (3.48)

where % ′1, %
′
2, �
′
1, �
′
2 are functions of @ given by

�′1,2 =
1
2

(
- ′4 + - ′8 ∓

√
(- ′4 − - ′8 )2 +

4
@4g4→8g8→4

)
,

- ′4 = � 5 +
1

@2g4→8
, - ′8 =

1
@2g8→4

,

% ′1 =
�′2(1 − d0(1 − U)) − (1 − d0)� 5

�′2 − �′1
,

% ′2 =
(1 − d0)� 5 − �′1(1 − d0(1 − U))

�′2 − �′1
.

One can see that the formulas for �′1 and �′2 are the same as the ones from the
Kärger model with �B set to zero. However, the formulas for % ′1 and % ′2 are dif-
ferent due to the change of initial conditions.

As in the previous section, we note that some authors [196, 200] wrote 4
initial conditions instead of 2 for Eqs. (3.46). Their two additional conditions
read in our notations as

d(8
dC

����
C=0

= 0 ,
d(4
dC

����
C=0

= −� 5@
2(1 − d0) , (3.50)

which are equivalent to each other but not compatible with (3.37). Because these
authors probably used the same initial conditions (3.47) as us for the derivations,
their formulas are the same as ours. However, the additional conditions (3.50)
implicitly discard (3.37), which expresses the conservation of mass and is thus a
fundamental relationship between exchange times and water fractions. To avoid
further confusion, the incompatible conditions (3.50) should be discarded.
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Comparison of the models

We have presented three di�erent macroscopic models for the exchange between
the intracellular and the extracellular water in the restricted di�usion regime.
The modi�ed bi-exponential model is the most simple and intuitive one, the
Kärger model is the canonical one, whereas the modi�ed Kärger model is the
most rigorous of the three in this situation. It is natural to ask whether these
three models give similar or di�erent results and under which conditions.

First, it follows from the mathematical de�nition of the modi�ed Kärger model
that it coincides with the Kärger model in the limit �B/� 5 → 0. However, from
a physical point of view, the modi�ed Kärger model makes sense only if �B is
inversely proportional to C3 , which necessarily implies that �B � �8 (see Eq.
(3.29)) and thus �B � � 5 . As a consequence, when the Kärger model and the
modi�ed Kärger model are applicable, they generally yield results that are close
to each other.

As for the modi�ed bi-exponential model with decreasing fraction d , one can
expand the Kärger model at high gradients and long exchange time (� 5@

2g � 1)
to get:

�1 ≈ �B +
1

@2g8→4
, �2 ≈ � 5 , (3.51a)

%1 ≈ d0 , %2 ≈ (1 − d0) , (3.51b)

that shows that the modi�ed bi-exponential model is close to the Kärger model in
this regime. To see this, we treat separately the cases of short and long di�usion
times. At short times (� 5@

2C3 . 1), the extracellular signal is not completely
attenuated, but one has C3 . (� 5@

2)−1 � g so that exchange can be neglected.
In other words, one can use �1 ≈ �B and �2 ≈ � 5 , which yields the standard
bi-exponential model. At long times (� 5@

2C3 � 1), the extracellular signal is
completely attenuated, and the total signal reduces to the intracellular part:

%1 exp(−�1@
2C3) ≈ d0 exp(−�B@2C3) exp(−C3/g8→4) , (3.52)

which again coincides with the modi�ed bi-exponential model. Discrepancies
between the two models appear at low gradients (� 5@

2g � 1), which is consis-
tent with the condition (iv) discussed in 3.2.2.

In the next section we apply these three models to experimental data on yeast
cells to compare their quality and range of applicability.

3.2.3 Material and Methods
Baker’s yeast (Jästbolaget, Sweden) was purchased at a local supermarket, di-
luted with tap water in approximate volume ratio 1:2 (yeast:water), transferred
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to a 5 mm NMR tube, stored in room temperature for four days, and �nally cen-
trifuged at 15006 for 2 min to form a packed cell sediment of 2 cm height. NMR
experiments4 were performed on a Bruker Avance-II spectrometer operating at
500.13 MHz 1H resonance frequency. The magnet was �tted with a Bruker MIC-
5 probe with 3 T/m maximum gradient at a current of 60 A. The 1H signal of
water was recorded with a pulsed gradient stimulated echo sequence [23] for an
array of values of @, X , and C3 [201–203]. More precisely, four values of X were
used: 3.0 ms, 5.6 ms, 10.6 ms, 20 ms, and six values for C3 = Δ − X/3: 20.2 ms,
35.2 ms, 187.2 ms, 327.2 ms, 572.1 ms, 1000.2 ms, yielding 24 di�erent curves.
To avoid spurious e�ects of di�erences in )2-relaxation between the intra- and
extracellular components [204], the time duration for transverse relaxation was
held constant at 44.8 ms for all measurements.

The variable@ = �X took 26 logarithmically spaced values from 5.3·10−3 `m−1
to 1.4 `m−1 whatever X and C3 . The parameter 1 = @2C3 reached maximum values
of approximately 40 ms/`m2 for C3 = 20.2 ms and approximately 2000 ms/`m2

for C3 = 1000 ms. The signal was systematically renormalized by the value (0 at
1 = 0 obtained by �tting a single exponential function ( = (0exp(−1�) to data
points ful�lling (/(0 > 0.8. Before performing any �t, we determined the noise
level of the data to be about 0.25%. Because the signal never goes down below
3 · 10−2 we conclude that the signal-to-noise ratio is always bigger than 10.

3.2.4 Results
The typical radius of the yeast cells is 2.5 `m (see top left panel of Fig. 2.4).
The smallest encoding duration X is 3 ms for which (�8X)1/2 ∼ 2 `m, implying
the restricted di�usion regime (b ≈ 1), but not the motional narrowing regime
(b → ∞). The advantage of being in this intermediate regime is that by �tting
�B with (3.29), one can estimate both physical quantities ' and �8 , that is not
possible in the motional narrowing regime (cf. (3.30)) [41].

Bi-exponential model with decaying d

We have applied the �t (3.33) to all the values of X and C3 . The quality of the �t was
assessed by the value of the residual error, which was very close to the estimated
noise value, indicating a good �t. Moreover, the 95% con�dence intervals on the
�t parameters were each time about: d ± 1%, � 5 ± 2%, �B ± 4%.

The intracellular water fraction d does not depend on X and decreases with
C3 , from 0.42 at C3 = 20.2 ms to 0.23 at C3 = 1000 ms, and the exponential decay
(3.36) �ts well (Fig. 3.4), from which we estimate a typical leakage time g8→4 of

4Experiments were carried out by M. Nilsson and D. Topgaard from Lund University.
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Figure 3.4: Parameters obtained from the bi-exponential �t (3.33). (left) The fast e�ective
di�usion coe�cient � 5 , as a function of the di�usion time C3 ; (center) The intracellular
water fraction d as a function of C3 . Dashed line shows an exponential �t (3.36), with
d0 = 0.42 and g = 1700 ms; (right) The product �BXC3 as a function of X . Dashed line
shows a �t of the curves by Eq. (3.29).

about 1700 ± 100 ms. Moreover the intracellular water fraction d0 is equal to
0.42 ± 0.01, that yields g = g8→4/d0 = 4000 ± 300 ms. Note that the hypothesis
X � g8→4 is valid and that the value of d0 is consistent with a packed sphere bed5

[78].
The fast di�usion coe�cient � 5 does not depend on X and slowly decreases

with C3 , from 1.6 `m2/ms at C3 = 20.2 ms to 1.2 `m2/ms at C3 = 1000 ms (Fig. 3.4).
As explained previously, one can interpret this decrease as the combined e�ect
of hindered di�usion due to the high concentration of yeast cells and exchange
with intracellular water. In [70] an asymptotic formula for the time dependent
di�usion coe�cient in a dilute suspension of spheres was derived. This formula
indicates that the di�usion coe�cient decreases towards a limit value as C−1

3
with

a typical time scale given by '2/�4 , which in our case is equal to about 5 ms. In a
crowded suspension one expects this time scale to be linked to some correlation
length of the distribution of the cells. For example, if the cells aggregate and
form clusters of size ! � ', � 5 will decrease with a time scale !2/�4 � '2/�4 .
Numerous works have also been devoted to the in�nite time limit of the di�usion
coe�cient outside an isotropic random suspension of spheres [71–75], with a
common agreement on the upper bound:

� (C = ∞)
�4

≤ 1 − d0
1 + d0/2

, (3.53)

where the exact value of � (C=∞)/�4 depends on the distribution of spheres. In
particular, this upper bound is reached in the case of a “well-separated” array

5The value of d0 is the intracellular water fraction, that is smaller than the intracellular vol-
ume fraction.
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of spheres, that is a suspension with no aggregates. In our case, d0 ≈ 0.4 so
that (3.53) provides the upper bound � (C = ∞)/�4 ≤ 0.5. The free di�usion
coe�cient of water at room temperature is around 2.3 `m2/ms [42–44] thus the
hindered di�usion coe�cient should be lower than 1.2 `m2/ms. However � 5 is
above 1.2 `m2/ms even at C3 as high as 1000 ms. As a consequence, the exchange
alone does not seem to explain the obtained values of � 5 . Note that, in general,
neglecting the e�ect of geometrical hindrance on the time variation of � 5 leads
to an underestimation of g .

The product �BXC3 is not exactly constant but increases with X (its value at
X = 20 ms is approximately the double of its value at X = 3 ms) and slightly
increases with C3 (a 20% increase from C3 = 20 ms to C3 = 1000 ms) (Fig. 3.4).
The correction formula (3.29) accounts quite well for the variation with X but
is unable to reproduce the dependence on C3 because the correction term in Eq.
(3.29) does not depend on C3 if C3 � X (which is the case for almost all data
points). We expect that the variation with C3 is caused by the exchange across
the cell membranes. This dependence on C3 makes hard to give precise estimates
of ' and �8 . We get ' = 2.6± 1 `m and �8 = 0.75± 0.15 `m2/ms (95% con�dence
intervals), in agreement with the values found in the literature [41, 197].

Kärger model and modi�ed Kärger model

On these experimental data, the Kärger model and the modi�ed Kärger model
yield very close values of the parameters, hence we only show in Fig. 3.5 a �t
made with the modi�ed Kärger model. In spite of small systematic deviations
between the data and the model, the �t is good and yields (with 95% con�dence
intervals): � 5 = 1.73±0.03 `m2/ms, �8 = 0.86±0.12 `m2/ms, d0 = 0.413±0.002,
g = 3700±100 ms and ' = 2.7±0.07 `m. From Eqs. (3.35) and (3.37) one deduces
the permeability ^ = (5.8 ± 0.4) 10−4 `m/ms. These values are consistent with
the literature [41, 197]. Fig. 3.5 illustrates also the property that the low-@ decay
of the signal is independent of X whereas the high-@ decay is independent of C3
(more precisely, varying C3 changes only the amplitude but not the shape of the
curve).

Note however that the Kärger model is only suited to �t data with several
values of C3 and X at the same time. If one tries to �t only one curve ( (@) (that
is, with one value of C3 and one value of X), the �t is unstable. Indeed, we have
already noted that the bi-exponential model �ts the data well (no sign of a sys-
tematic deviation, RMSE close to the noise level estimation). As a consequence,
the addition of another parameter g does not signi�cantly improves the quality
of the �t. Moreover, the �t algorithm returns very high values of g associated
with very large error bars. In turn, these large error bars on g a�ect the stability
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Figure 3.5: Fit of the data by the modi�ed Kärger model. The signal is plotted against
@ = �X for various values of X and C3 (asterisk: 20.2 ms, circle: 35.2 ms, star: 187.2 ms,
square: 327.2 ms, cross: 572.1 ms, diamond: 1000.2 ms). Note that the plots are vertically
shifted with di�erent X for visibility.

of the whole �t because all the parameters are correlated (in particular d0 and g ).
This can be understood by looking at Fig. 3.6. The signal is sensitive to g only
when g ∼ C3 . As g /C3 → 0 the signal converges to the fast mono-exponential
decay and as g /C3 → ∞ the signal converges to the bi-exponential decay. As
the bi-exponential �t is already good, the optimal value of g is high compared
to C3 and it is not well-determined. One also notices that the two curves with the
highest g (103 ms and 104 ms) have both the shape of a bi-exponential decay, the
only di�erence being the apparent value of d0 (the amplitude of the slow high-@
decay).
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Figure 3.6: The Kärger signal for C3 = 100 ms and various values of g . While the signal
increases with g , the dependence on g is weak when g � C3 or g � C3 .

3.2.5 Discussion
In summary, the bi-exponential model and both Kärger models yield rather close
values of the parameters. In particular, the intracellular water fraction d0 and the
exchange time g are very similar. The bi-exponential model shows its limita-
tions when it comes to the analysis of the slow apparent di�usion coe�cient �B .
Indeed �BC3 weakly depends on C3 whereas it should not, according to Eq. (3.29).
This e�ect may be attributed to the exchange. In the same way, the slow depen-
dence of � 5 on C3 may be caused by the exchange as well as by the hindering
by the cells. The errors bars on the parameters obtained from the bi-exponential
model are also slightly larger than the ones obtained from the Kärger model.

The modi�ed Kärger model is the most appropriate one from a theoretical
point of view and can �t the whole data with one set of parameters. In some
sense, this strength is also a weakness because the model is not applicable if one
does not have full sets of data with variable @ and C3 . Furthermore, this makes
the model too “rigid”; for example, it is not clear how to take into account time-
dependent di�usion coe�cients.

On the other hand, the bi-exponential model with time-decaying d has a
transparent physical interpretation and suggests the following experimental modal-
ity to quickly measure the exchange time: to choose a �xed value of @ with �xed
X and to probe the signal as a function of di�usion time, for example with a mul-
tiple echo (CPMG) experiment (this is analogous to the Cg-simulations of Ref.
[200]). At short times, the signal from the extracellular water is not completely
destroyed, but at long times one only measures the intracellular signal, which
decays as exp(−C/g8→4), as shown above. Note that the same measurement with-
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out any weighting gradient is also needed in order to estimate the )2-relaxation
beforehand. This modality bears similarities with the FEXSY and FEXI sequences
[205, 206] (where an additional �ltering sequence is used to destroy the extracel-
lular signal). From a theoretical point of view, one should choose X large enough
in order to be in the restricted di�usion regime but small compared to g8→4 . This
is only possible if g8→4 & 50 ms. Another condition is that the echo time) should
be chosen su�ciently long so that the extracellular magnetization is completely
destroyed between two echoes (�4@2) � 1) but still not too large compared to
g8→4 . On a conventional scanner with 6 ≤ 20 mT/m these conditions require that
g8→4 & 250 ms. With gradients higher than about 200 mT/m one can theoreti-
cally probe exchange time as short as 50 ms.
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3.3 Quantitative estimation of mitochondrial
content and permeability in muscles

3.3.1 Overview

2 𝜇𝑚 0.1 𝜇𝑚

Figure 3.7: (left) The muscle structure at the sub-micron scale is essentially composed
of aligned �bers (myo�brils) and micron-sized compartments (mitochondria). (right)
magni�ed image of a single mitochondrion between two myo�brils. The seemingly
round shape is a misleading artefact of slice direction. Most mitochondria have a prolate
spheroid-like shape, as one may guess from the left panel image. These images were
obtained with TEM microscopy by T. Astruc from QuaPa (UR370 Inra)

The previous section about experiments on a yeast cell suspension showed
that it is possible to recover several interesting properties of the cells, such as vol-
ume fraction d , radius ', and permeability ^ of cell membrane. We recall that the
basic principle of the technique is to employ su�ciently strong di�usion weight-
ing (i.e., large 1-values) to create a contrast between intra- and extra-cellular
magnetization. This opens interesting possibilities for dMRI in muscles, in par-
ticular to probe properties of mitochondria (see Fig. 3.7). Indeed, mitochondria
bear similarities with yeast cells in terms of size (a few microns) and possibly
membrane type (bi-lipidic plasma membrane). While mitochondria play a major
biochemical role in cells and are related to several diseases, their current studies
require invasive microscopy techniques such as TEM. Therefore, a non-invasive
quanti�cation of mitochondrial content, size, and permeability with di�usion
MRI would be of great clinical interest. We present below preliminary results
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in this direction6. A �rst set of experimental data allowed us to extract the mi-
tochondrial content d and an estimation of the mitochondria diameter !. The
study of permeation e�ects is still in progress at the moment.

Compared to the experiments on yeast cells presented above, several impor-
tant di�erences should be noted.

Imaging

In this work, we aim to study the spatial dependence of tissue properties, i.e.
to combine di�usion-weighted contrast and imaging. It is known that muscle
�bers have di�erent metabolic types and in turn di�erent mitochondrial con-
tent. The baseline is that white �bers have fast contraction speed and anaerobic,
glycolytic metabolism, with a low mitochondrial content; in contrast, red �bers
have slow contraction speed and aerobic, oxidative metabolims, with high mi-
tochondrial content. The full picture is more complicated and one can �nd a
continuous transition from one type to the other [224]. Inside a muscle sample,
several types of �ber often coexist, therefore the spatial repartition of �ber types
could potentially be imaged through the measure of intra-mitochondrial signal.
However, a �ne spatial resolution would imply smaller voxels and lower signal-
to-noise ratios, that limit the applicability of our method. Indeed, as we explained
previously, the principle of the technique is to go to su�ciently high 1-values so
that signal from extra-mitochondrial water vanishes and one observes solely the
signal from intra-mitochondrial water. This implies a signi�cant signal decay
that may become challenging because of noise issues. In other words, there is a
need for a compromise between quality of di�usion-weighted signal and spatial
resolution.

Anisotropy of the exterior medium

Figures 2.2 and 3.7 reveal a coherent orientation of muscle �bers. As we discussed
in Sec. 2.1, di�usion in the exterior medium can be modeled as a di�usion tensor
D4 , with faster di�usivity along the �bers than in the orthogonal plane [217].
The signal from exterior medium is then given by

(4 = (1 − d) exp (−Tr(D4B)) . (3.54)

As we explain in Sec. 2.2.1, at least 6 measurements with “independent” gradient
direction are required to recover the di�usion tensor D4 .

6A manuscript is in preparation and our results were published in two conference proceed-
ings [350, 351].
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Other candidates for slow signal decay

The muscle structure is complex and it is not clear a priori that mitochondria
are the only compartments that could contribute to the signal at high-1 values.
In particular, intra-myocellular lipid (IMCL) micron-sized droplets would be an-
other natural candidate in terms of size and volume fraction [218]. Several studies
demonstrated their role as energy fuel during exercise as well as energy storage
for muscles [215]. Furthermore, it was suggested that the accumulation of IMCL
due to excessive fat intake was one of the main mechanism of reduced insulin
sensitivity in muscles [211, 212, 218].

Two main di�erences with mitochondria allow us to discard their in�uence
on the signal. (i) Their chemical composition (lipid) allows one to distinguish
them from water signals with magnetic resonance spectroscopy [211], or sim-
ply to destroy their signal selectively with fat suppression schemes [221]. We
employed the latter method in the experiments described below. (ii) The slow
di�usion coe�cient of lipids, estimated to �l8? ≈ 6.6 · 10−3 `m2/ms implies that
the IMCL signal is almost not attenuated even at 1 = 10 ms/`m2, that was the
typical order of magnitude of maximal1-values used in our experiments. In other
words, IMCL would contribute as a constant “o�set” of the signal, whereas mi-
tochondrial water signal is expected to decay with increasing gradient strength,
similarly to experiments with yeast cells described previously.

Shape and orientation

As one can see on the left panel of Fig. 3.7, mitochondria are non-spherical but
typically prolate. Since the size of the compartments enter as !4, one can see
that the orientation between mitochondria and the gradient may have a strong
e�ect. To estimate it, let us assume that mitochondria are circular cylinders with
length !1 and base diameter !2, with !2 < !1. The cylindrical geometry is a crude
assumption but allows us to perform analytical computations that help to cap-
ture the e�ect of orientation. Let us denote by u the direction of one cylinder,
by e the direction of the gradient, and by \ the angle between the two vectors,
i.e. cos\ = (e · u). Di�usion along u and perpendicular to u are two indepen-
dent motions, therefore one get the signal from water inside the cylinder in the
motional narrowing regime (�8X � !21):

( ≈ exp
(
− 1
120

2�2X!41

�8
cos2 \ − 7

1536
2�2X!42

�8
sin2 \

)
, (3.55)

where we have used the known values of Z−1 for a slab and a disk (see Secs.
1.2.2 and 4.3.1). Note that the factor 2 in front of �2X comes from two applied
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gradient pulses. In the regime of weak attenuation of intra-mitochondrial signal,
one can replace the exponential by its linearized expression. If we assume that
mitochondria are uniformly oriented inside the voxel of interest, we obtain after
averaging over \ :

( ≈ exp
(
−2�

2X

�8

[
!41

360
+

7!42
2304

] )
. (3.56)

Interestingly, the numerical coe�cients 1/360 and 7/2304 are both close to the
value of Z−1 = 1/350 for a sphere. If, as Fig. 3.7 seems to suggest, one has !1 ≈ 2!2,
then the term !42 is a small correction to the term !41 . We conclude that one
can replace the prolate mitochondria with diameter !1 by spheres of diameter
!1 with a good approximation for the expression of the signal decay. In turn, if
the orientation of mitochondria is coherent at the scale of the voxel, then one
should observe a strong anisotropy of the signal as a function of the gradient
because of the large di�erence between !41 and !42 . From the biological viewpoint,
mitochondria are found in two di�erent places inside a muscle cell: either in
the small space between two myo�brils (right panel of Fig. 3.7), or near the
cell membrane (left panel of Fig. 3.7). While we expect the �rst situation to
create an average orientation of mitochondria along myo�brils, mitochondria
are generally more numerous in the second situation where there is no reason a
priori to observe a preferred orientation [208]. The validation of this expectation
is one of the aim of future experimental work.

Size distribution

The left panel of Fig. 3.7 suggests that the distribution of the diameter ! may be
very wide, with very small as well as very large mitochondria. This feature was
reported in earlier microscopic observations of mitochondria [219]. The non-
normalized signal from a single mitochondria scales as

B ∼ !3 exp
(
−Z−1

2�2X!4

�8

)
≈ !3 − Z−1

2�2X!7

�8
, (3.57)

therefore one can see that after averaging over all sizes, the intra-mitochondrial
signal is equal to

( ≈ d exp
(
−Z−1

2�2X

�8

〈!7〉
〈!3〉

)
, (3.58)

where d is the intra-mitochondrial water fraction.
One can see that !4 is replaced by 〈!7〉/〈!3〉, that skews the estimated value

of ! towards high values. For example, if one assumes that the distribution of !
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is log-normal with parameters ` and f (i.e. log(!) is normally distributed with
mean value ` and variance f2, a common model in biology), then

〈!=〉 = 4=`+=2f2/2 ,
(
〈!7〉
〈!3〉

)1/4
= 4`+5f

2
= 49f

2/2〈!〉 , (3.59)

so that (〈!7〉/〈!3〉)1/4 may be considerably larger than 〈!〉 if the distribution has
a large coe�cient f , i.e. a large coe�cient of variation7. This e�ect is illustrated
on Fig. 3.8 for a moderate value f = 0.35.
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Figure 3.8: Example of log-normal distribution function 5 for ` = 0 and f = 0.35. The
choice ` = 0 is equivalent to rescaling the distribution by the median value !med. One can
see that (〈!7〉/〈!3〉)1/4 is signi�cantly larger than 〈!〉 and !med. Moreover, it corresponds
to the tail of the distribution, with only about 4% of realizations above this value.

Post-mortem degradation

If experiments are performed ex-vivo, there is a post-mortem degradation of
muscle cells and possibly of mitochondria. It was shown that the inner struc-
ture of mitochondria disappears in a few days after animal death, while its outer
membrane remains intact for at least a week [210, 225]. However, it is not clear
how permeation is a�ected by cell death. On one hand, one would expect an
increase of permeability with post-mortem time because of degradation of mito-
chondrial membranes. On the other hand, one could argue that water permeation

7The coe�cient of variation of a log-normal distribution is equal to (4f2 − 1)1/2, that is close
to f for f . 0.5.
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through the mitochondrial membrane is an active process performed by channel
proteins and that cell death would lead to a decrease of permeability in the �rst
hours after animal death. An experimental validation of either scenario will thus
present an important physiological contribution.

3.3.2 Material and Methods
The experiments were performed by J.-M. Bonny, S. Clerjon, and G. Pagès at
AgroResonance (QuaPA unit of INRA). A PGSE sequence with X = 3.2 ms, Δ =

10 ms, and 1-values up to 10 ms/`m2 was applied in 6 gradient directions and
for 32 × 32 (0.3 mm)3 voxels. The directions of the gradient that were used fol-
lowed Eq. (2.18). As mentioned previously, a fat suppression scheme [221] was
employed to reduce contributions from lipids. Two contrasted muscle samples
were analyzed: Masseter (M1), an oxidative muscle with high mitochondrial con-
tent, and Longissimus Dorsi (LD2), a glycolytic muscle with low mitochondrial
content. To avoid non-stationary e�ects caused by heating of the sample dur-
ing acquisition, the temperature was regulated at 16◦� . At this temperature, the
di�usion coe�cient of free water was measured [42]: �0 = 1.81 `m2/ms. The
di�usion coe�cient inside muscle tissues is expected to be smaller because of
molecular crowding and hindered di�usion.

The aim of this protocol with constant Δ and X was to identify the mitochon-
drial signal as well as to extract physical quantities such as volume fraction and
typical size. For this purpose, the extra-mitochondrial medium is modeled by an
e�ective di�usion tensor D4 and the intra-mitochondrial medium was assumed
to be statistically isotropic with a di�usion coe�cient �8 . The signal was then
�tted by a tensorial bi-exponential model:

( = (1 − d) exp(−Tr(BD4)) + d exp(−1�B) , (3.60)

where �B is the e�ective “slow” di�usion coe�cient probed by dMRI in the re-
stricted di�usion regime.

3.3.3 Results
The signal from a representative voxel of each sample is shown on Fig. 3.9, with
the result of the �t (3.60). From the �t one can extract and analyze three model
parameters: the restricted water fraction d , the e�ective “fast” di�usion tensor
D4 , and the “slow” di�usion coe�cient �B . We emphasize that a good �t quality
does not prove our hypotheses. In particular, there is no de�nite proof that the
high-1 signal comes from intra-mitochondrial water (our ongoing project, which
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is not discussed in this manuscript, aims at validating these hypotheses). Bearing
in mind this caveat, we discuss the following preliminary results.
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Figure 3.9: Signal measured for 6 gradient directions in a representative voxel of LD2
(left) and M1 (right), �tted by a bi-exponential tensorial model (3.60). The level of noise
is about 0.3% of the reference signal. Gray shadowed region indicates the 67% con�dence
interval (�tted curves ± noise level). The fast decay of the signal at low 1-values is
attributed to the extra-mitochondrial water signal, whereas the slow decay at high 1-
values is attributed to the intra-mitochondrial water signal. The high-1 signal is larger
on the right panel, that is consistent with higher mitochondrial content in M1.

If the high-1 measured signal is the intra-mitochondrial signal, then d repre-
sents the water fraction contained inside mitochondria, possibly reduced because
of permeation to the exterior medium. As mitochondria are �lled with around
64% of water [220, 222, 223], one can infer the mitochondrial volume fraction im
from d as

im =
1

0.64
d ≈ 1.5d . (3.61)

Maps of im are presented for both muscle tissues on Fig. 3.10. Sample M1 dis-
plays two regions with respectively high (≈ 15%) and low (≈ 5%) values of im
whereas sample LD2 has a uniform low (≈ 3%) value of im. These results are
in qualitative agreement with the muscle type as discussed above, and the val-
ues of im are consistent with the literature [208, 209, 215]. Histological slices
are planned in order to con�rm and explain the existence of two di�erent re-
gions in sample M1. One can estimate that each voxel contains on the order of
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106 mitochondria, therefore spatial variations cannot be attributed to statistical
�uctuations.
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Figure 3.10: Map of the extracted mitochondrial volume fraction im (see Eq. (3.61)) for
both muscle samples. Each pixel corresponds to a (0.3mm)3 region of the muscle sample.

The e�ective di�usion tensor D4 is shown in ellipsoid representation on Fig.
3.11. The idea of this representation is to diagonalize the tensor, to �nd its eigen-
vectors u1, u2, u3 and eigenvalues _1, _2, _3, then to draw an ellipsoid with semi-
axes _8ui. In other words, the equation of the ellipsoid is r · D−24 r = 1. The
left panel (LD2) reveals a very coherent orientation of di�usion tensors that was
shown to be consistent with �ber orientations in the muscle. This can be related
to the left panel of Fig. 3.9, where the signal corresponding to “Direction 4” de-
cays faster than other curves at low 1, that indicates faster di�usion along this
direction. The largest eigenvalue of the di�usion tensor is on average equal to
1.25 `m2/ms. This value is below the intrinsic di�usion coe�cient of water, as
expected. In contrast, the right panel (M1) exhibits more disorder, although there
seems to be a global vertical orientation. The largest eigenvalue of the di�usion
tensor is on average 1.05 `m2/ms, which is again below the intrinsic di�usion
coe�cient of water.

Finally, the “slow” di�usion coe�cient�B was estimated around 0.07 `m2/ms
for M1 and 0.20 `m2/ms for LD2. Low values of d imply a low residual signal
at high 1-values, and thus less reliable estimation of �B due to noise. There-
fore, the di�erence between its values for M1 and LD2, although signi�cant
compared to error bars, should be interpreted with caution. It was previously
reported that white �bers may have very large inter-myo�brillar mitochondria
[219]. This observation, combined with the low overall amount of mitochon-
dria, may explain the larger value of �B in LD2. Indeed, as we discussed above,



118 3. Permeability

Figure 3.11: Ellipsoid representation of di�usion tensors D4 in each voxel of LD2 (left)
and M1 (right). To facilitate interpretation, the eigenvector with the largest eigenvalue
was drawn as a blue arrow.

the value of �B is strongly biased towards very large mitochondria. From the
value �B = 0.07 `m2/ms one can extract two informations. The �rst one is that
this value is about ten times larger than the di�usion coe�cient of lipids, and
therefore cannot be attributed to IMCL. The second information is that Eq. (3.29)
yields a diameter ! ≈ 4−5 `m. Note that a more accurate estimation of ! depends
on the di�usion coe�cient �8 of intra-mitochondrial water, that is unknown. As
illustrated on the right panel of Fig. 3.7, mitochondria have a complex internal
structure so that �8 might be signi�cantly lower than the exterior di�usion co-
e�cient that was measured as 1.25 `m2/ms. However, the coe�cient �8 enters
with a power 1/4 in the value of !, which makes the dependence on �8 rather
weak. For instance, the value 4 − 5 `m was obtained with �8/�4 = 0.5 − 1.

The estimated value of ! is much larger than the typical value ! ≈ 2 `< that
is found in the literature. This may be partly explained by a bias towards large
and exceptional values of !, as we discussed previously. Another contribution to
this deviation would be the permeability of mitochondrial membrane that leads
to faster signal attenuation than the pure motional narrowing regime.
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3.4 Di�usion inside an array of permeable
barriers

In the previous section, we have studied exchange between two pools of spins:
small compartments and an in�nite exterior medium. Now we turn to another
situation where di�usion takes place in a medium segmented by numerous per-
meable barriers. At short times, the di�usive motion is almost not a�ected by
the barriers, and one expects a behavior similar to the one studied in Sec. 2.3.1.
In contrast, at long times, particles have di�used across multiple barriers and
there should be a reduced di�usion coe�cient �∞ that describes the complex
medium, coarse-grained by di�usion. As we shall see, the competition between
permeability length ℓ̂ , typical inter-barrier spacing ℓs, and di�usion length ℓd
yield di�erent regimes for the di�usion propagator G(), r0, r). From the di�u-
sion propagator we will compute the dMRI signal in the narrow-gradient pulse
regime, that introduces another length scale ℓ@ into the problem and a variety of
regimes for the magnetization and the signal. Di�usion through multiple barri-
ers is a broad topic with numerous applications and we begin this section with an
overview of the literature. This allows us to better position our approach among
previous works.

3.4.1 Introduction
One often characterizes di�usion processes by the di�usion propagator (or “heat
kernel”) G(), r0, r). As we discussed in Sec. 1.1.2, when di�usion takes place
in a homogeneous medium without boundaries, the propagator is a Gaussian
distribution centered on r0 with variance 2�0) = 2ℓ2d , where �0 is the di�usion
coe�cient in the medium (see Eq. (1.7)). On the other hand, di�usion in complex
systems such as biological cells or composite materials may exhibit non-Gaussian
behavior due to con�nement, hindrance by permeable barriers or heterogeneity
of the di�usion coe�cient.

Generally speaking, the di�usion propagator obeys the di�usion equation:

m)G = ∇(�0∇G) , G() = 0, r0, r) = X (r − r0) , (3.62)

where X is the Dirac distribution, ∇ = mG in the one-dimensional case, and the dif-
fusion coe�cient �0 can in general be space and time dependent to capture het-
erogeneities of the medium [12, 13]. Throughout this article, we refer to ∇(�0∇)
as the “di�usion operator”. Note that if the di�usion coe�cient is uniform, then
the di�usion operator is simply proportional to the Laplace operator ∇2. The
complexity of the geometry is hidden in the boundary conditions imposed on
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G at the outer boundaries and possible inner permeable barriers. Analytical so-
lutions of Eq. (3.62) mainly rely on spectral decomposition over the di�usion
operator eigenmodes which are explicitly known only for few geometries: slab,
disk, sphere (and some simple extensions) [14]. The study of more complicated
structures requires numerical simulations such as stochastic Monte-Carlo simu-
lations [229, 230] or PDE solving with �nite element or �nite di�erence methods
[231]. On top of being time-consuming these techniques give little theoretical
insight into the dependence of the propagator on the physical parameters of
the simulated medium. In this situation, one-dimensional models of heteroge-
neous systems partitioned by permeable barriers can help to uncover this depen-
dence and to understand the role of di�usive exchange across the barriers. Note
that three-dimensional di�usion in a stack of parallel planes with lateral invari-
ance is naturally reduced to one-dimensional models. As a consequence, these
models have a wide variety of applications, for example multilayer electrodes
[232–234], coating of electronic components and improving the performance of
semi-conductors [235–237], geophysics and thermal analyses of buildings [238–
242], industrial processes [243–245], waste disposal and gas permeation in soils
[246–249], drug delivery [250–252] and modeling tumor growth [253]. They can
also be applied as approximation schemes for �nding the spectrum of Sturm-
Liouville problems where the coe�cients of the di�erential operator are replaced
by piecewise constant (or polynomial) functions (the so-called “Pruess method”)
[335–339]. Two applications of particular interest to us are di�usion magnetic
resonance imaging (Sec. 3.4.5), and �rst-passage phenomena (Appendix B.2).

Because of this diversity of applications, many authors have more or less
independently tackled such models of one-dimensional di�usion in heteroge-
neous structures, with various computational techniques: spectral decomposi-
tions, Green functions, Laplace transforms and others (see [15, 254] for a re-
view of the subject). In this article we consider �nite geometries, which are best
treated by spectral decompositions (or “separation of variables”). To our knowl-
edge, the most recent and complete work on this topic is the one by Hickson et
al [231, 244, 245]. However it was mainly devoted to the case of heterogeneous
structures with distinct di�usivities and without barriers. Moreover the spec-
trum was computed numerically and only few analytical results were obtained.
On the other hand, some very general mathematical results were obtained by
Gaveau et al for generic heterogeneous media without barriers [255]. Another
technique was proposed in the recent work by Carr and Turner [256], in which
the solution of Eq. (3.62) was decomposed on the Laplacian eigenmodes of each
compartment separately, instead of the eigenmodes of the whole structure. This
technique presents numerical advantages without providing analytical insights
onto the spectrum of the di�usion operator.
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In this section we present an e�cient method to compute the eigenvalues
and eigenfunctions of the di�usion operator in one-dimensional domains with
multiple barriers. This method allows us to calculate the di�usion propagator and
related quantities such as dMRI signal or �rst exit time distribution analytically
for su�ciently regular geometries such as a �nite periodic geometry or a micro-
structure inside a larger scale structure, and numerically for arbitrary structures.

This section is organized as follows. Section 3.4.2 is entirely devoted to ana-
lytics. We start with standard computations using transition matrices and obtain
the equation of the spectrum as a transcendental equation � (_) = 0 (Eq. (3.81)).
Three following subsections are more technical; in particular, we express the
normalization constant of the eigenmodes as a function of � (Eq. (3.94)), and we
derive general consequences of the symmetry or the periodicity of the medium.
Then we study in more detail the function � and obtain simple estimates of its
roots with respect to the geometrical parameters of the medium, in particular
the permeability of the barriers. This part is crucial for the numerical imple-
mentation of the method. This section is concluded with some extensions of our
model. Section 3.4.3 illustrates our general approach on the example of a (�nite)
periodic structure with multiple identical barriers and compartments. The nu-
merical implementation of the method is presented in Sec. 3.4.4. In particular, we
discuss the major numerical challenges related to �nding very close zeros of the
eigenspectrum equation (3.81) and the proposed shortcuts based on the analytics
from Sec. 3.4.2. Our computational technique is then applied to the computation
of dMRI signal. We discuss thoroughly di�erent regimes for the signal and with
a focus on the e�ect of permeability of inner barriers. In Appendix B.2 the e�ect
of permeable barriers on the di�usive motion is studied from another viewpoint,
namely the �rst exit time distribution.

Some technical results are moved to Appendix B.3.1, which contains proofs of
the existence of in�nitely many eigenvalues, their non-degeneracy, their mono-
tonic growth with respect to the barrier permeabilities, as well as a Courant nodal
theorem for our particular model of di�usion with barriers.

3.4.2 Computation of the eigenmodes of the di�usion
operator

General case

In this section we study the eigenmodes of the di�usion operator ∇(�0∇) in
a one-dimensional geometry (see Fig. 3.12). We reproduce the general com-
putational scheme from Ref. [268] and propose improvements speci�c to the
one-dimensional geometry. An interval [0, !] is divided by barriers into< com-
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Figure 3.12: Illustration of the geometry. Arbitrarily spaced barriers split the interval
[0, !] into< compartments Ω8 of length ;8 and di�usion coe�cient �8 . The positions of
the barriers are denoted by G8,8+1 and their permeabilities by ^8,8+1. One can also take into
account relaxation or leakage at the two outer barriers by permeabilities  −,  +.

partments (or “cells”) Ω8 =
(
G8−1,8, G8,8+1

)
, 8 = 1, . . . ,<, where G1,2, . . . , G<−1,<

are the positions of < − 1 inner barriers, and G0,1 = 0 and G<,<+1 = ! corre-
spond to the outer barriers. Each compartment is characterized by its length
;8 = G8,8+1 − G8−1,8 > 0 and di�usion coe�cient �8 > 0 and each barrier by its
permeability ^8,8+1 ≥ 0 or equivalently by its “resistance” to di�usive exchange:
A8,8+1 = 1/^8,8+1. The endpoints 0 and ! are characterized by non-negative per-
meabilities (or relaxaton coe�cients)  − and  +, which can describe either im-
permeable inert boundaries (when  − =  + = 0), or account for relaxation or
leakage (when  −,  + > 0). Note that the number of compartments, denoted<
here, should not be confused with the magnetization.

The di�usion coe�cient �0 is thus a piecewise constant function:

�0(G) =
<∑
8=1

�8IΩ8 (G), (3.63)

where IΩ8 denotes the indicator function of Ω8 : IΩ8 (G) = 1 if G ∈ Ω8 and 0 other-
wise. This implies that the di�usion operator can be split into two terms:

∇(�0∇) = �0∇2 + (∇�0)∇ = �0∇2 +
(
<−1∑
8=1

(�8+1 − �8)X (G − G8,8+1)
)
∇ . (3.64)

The second term vanishes at the interior points so that the di�usion operator
is reduced to �0∇2. The same is true for the general class of di�usion oper-
ators ∇(�U0∇(�1−U

0 ·)), where 0 ≤ U ≤ 1 is the Itô-Stratonovitch interpretation
parameter (some authors use 1−U instead of U) [309, 311]. Here we consider het-
erogeneous di�usion coe�cients with discontinuities at the barriers, hence these
operators coincide inside the compartments but yield di�erent boundary condi-
tions at the barriers. We discuss this technical point in Appendix D. Our choice
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∇(�0∇) corresponds to the Hänggi-Klimontovich interpretation [312–316] with
U = 1, which is most often used in physical applications. The main reason is
that it corresponds to the standard Fick law and that equilibrium solutions of the
di�usion equation are constant, which is expected for, say, water di�using in an
isothermal medium. From a mathematical point of view, this choice ensures that
the operator is self-adjoint, which allows us to use standard spectral methods.

The !2-normalized eigenmodes D of the di�usion operator are then deter-
mined by the equation

�0D
′′ + _D = 0 , (3.65)

with the boundary conditions

�8D
′|Ω8 = �8+1D

′|Ω8+1 at the barrier at G8,8+1 (3.66a)
�8D
′|Ω8 = ^8,8+1(D |Ω8+1 − D |Ω8 ) at the barrier at G8,8+1 (3.66b)

�1D
′(0) =  −D (0) (3.66c)

�<D
′(!) = − +D (!) , (3.66d)

and the normalization condition ∫ !

0
D2 = 1 , (3.67)

where D |Ω8 is the restriction of D to the cell Ω8 (8 = 1, . . . ,<) and prime denotes
the derivative with respect to G .

If ^8,8+1 = 0 the compartments Ω8 and Ω8+1 do not communicate with each
other: the �ux is zero at the barrier and the discontinuity (D |Ω8+1 −D |Ω8 ) (G8,8+1) is
arbitrary. One can then study the two parts [0, G8,8+1] and [G8,8+1, !] separately. To
avoid such trivial separations, we consider only non-zero permeabilities: ^8,8+1 >
0. Under this assumption we prove in Sec. B.3.1 that there are in�nitely many
eigenvalues _=, = = 1, 2, . . ., and all _= are simple. One can also easily prove that
they are non-negative, and we sort them by ascending order: 0 ≤ _1 < _2 < . . ..
Moreover, thanks to the self-adjointness of the di�usion operator ∇(�0∇) we
know that the eigenmodes D=, = = 1, 2, . . . form a complete orthonormal basis in
the space !2(0, !) of square-integrable functions on [0, !] [15, 254].

For simplicity we further assume that  − < ∞, which allows us to write

D = VE , E (0) = 1 , (3.68)

with V being a normalization constant that ensures Eq. (3.67). The case of Dirich-
let boundary conditions ( − = ∞) requires another convention which is detailed
in Sec. B.3.2. We study the (non-normalized) eigenmode E �rst and then we
compute the normalization constant V .
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Throughout this section we assume _ ≠ 0. One can see that _ = 0 is only
possible if the relaxation coe�cients  ± are equal to zero and in this case one
gets a constant eigenmode E = 1 (and V = 1/

√
!).

Equation (3.65) has a general solution

E |Ω8 (G) = 0
;
8 cos(

√
_/�8 (G − G8−1,8)) + 1;8 sin(

√
_/�8 (G − G8−1,8)) , (3.69)

or equivalently

E |Ω8 (G) = 0
A
8 cos(

√
_/�8 (G − G8,8+1)) + 1A8 sin(

√
_/�8 (G − G8,8+1)) , (3.70)

where 0;8, 1
;
8 and 0A8 , 1

A
8 are constants to be determined, related by[

0A8

1A8

]
= R8

[
0;8

1;8

]
, R8 =

[
cos(

√
_/�8;8) sin(

√
_/�8;8)

− sin(
√
_/�8;8) cos(

√
_/�8;8)

]
. (3.71)

Note that
E |Ω8 (G8,8+1) = 0

A
8 , �8E

′|Ω8 (G8,8+1) =
√
_�81

A
8 , (3.72)

with similar formulas for 0;8, 1
;
8 , so that one can write the boundary equations

(3.66a) and (3.66b) as[
0;8+1
1;8+1

]
= K8,8+1

[
0A8

1A8

]
, K8,8+1 =

[
1 A8,8+1

√
_�8

0
√
�8/�8+1

]
. (3.73)

The equations at the barriers can thus be restated in a matrix form:[
0;8+1
1;8+1

]
= M8,8+1

[
0;8

1;8

]
, (3.74)

with the notation for the “transition matrix”:

M8,8+1 = K8,8+1R8 , (3.75)

with R8 and K8,8+1 de�ned by Eqs. (3.71), (3.73). In the same way, one can rewrite
the endpoint conditions (3.66c), (3.66d):[

− −
√
_�1

] [
0;1

1;1

]
= 0 and

[
 +
√
_�<

] [
0A<

1A<

]
= 0 . (3.76)

We have the additional condition 0;1 = E (0) = 1, therefore[
0;1

1;1

]
=

[
1

 −/
√
_�1

]
and

[
0A<

1A<

]
= n

[
1

− +/
√
_�<

]
, (3.77)
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where n is an unknown proportionality coe�cient.
Equation (3.74), which relates the coe�cients of one cell to those of the next

cell, is compatible with Eq. (3.77), which prescribes the �rst and last cell coe�-
cients (up to a proportionality factor), only if _ is an eigenvalue of the di�usion
operator ∇(�0∇). That is, by writing explicitly the condition that the product of
all the transition matrices M8,8+1 should send the previously determined (0;1, 1;1)
onto the (0;<, 1;<), we get the equation on the spectrum of the di�usion operator:

T

[
1

 −/
√
_�1

]
= n

[
1

− +/
√
_�<

]
, (3.78)

with
T = R<M<−1,< . . .M1,2 . (3.79)

Note that this condition is equivalent to[
 +/
√
_�< 1

]
T = [

[
− −/

√
_�1 1

]
, (3.80)

and to

� (_) :=
[
 +/
√
_�< 1

]
T(_)

[
1

 −/
√
_�1

]
= 0 . (3.81)

The proportionality coe�cients n and [ are constrained by the relation: n[ =

det T =

√
�1
�<

.

Computation of the norm

Now we compute the normalization constant V . Since the eigenmode E is a piece-
wise combination of sine and cosine functions, the constant V can be obtained
by a direct integration (see Ref. [268]). This approach is convenient for numeri-
cal computations. Here we present another approach which is more suitable for
analytical derivations. The starting point of the method is the spectral decom-
position of the di�usion propagator:

G(), G0, G) =
∞∑
==1

D= (G0)D= (G)4−_=) =

∞∑
==1

V=
2E= (G0)E= (G)4−_=) , (3.82)

where= = 1, 2, . . . spans the in�nitely many eigenmodes of the di�usion operator.
We now compute this propagator in a di�erent way by solving explicitly Eq.
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(3.62). Again, we use Eq. (3.64) to transform ∇(�0∇) into �0∇2 at the interior
points. Let Ĝ(B, G0, G) denote the Laplace transform of the propagator:

Ĝ(B, G0, G) =
∫ ∞

0
4−BCG(C, G0, G) dC . (3.83)

Then Ĝ obeys the equation

�0(G)Ĝ′′(B, G0, G) = BĜ(B, G0, G) − X (G − G0) , (3.84)

with the same boundary conditions (3.66a)-(3.66d) as for the propagator G in
time domain. As in the previous section, prime denotes derivative with respect
to G . We use the method from Sec. 3.4.2 to solve the homogeneous equation with
the inner boundary conditions (3.66a), (3.66b) imposed at the barriers: if B ≠ 0
we can build two solutions q (B, G) andk (B, G) such that:

• q (B, G) is built from

[
0;1

1;1

]
=

[
1

0

]
: at the left endpoint its derivative with

respect to G is zero and its value is one.

• k (B, G) is built from

[
0;1

1;1

]
=

[
0

1

]
: at the left endpoint its derivative with

respect to G is
√
B/�1 and its value is zero.

It is then easy to obtain the complete solution because the Wronskian matrix

W =

[
q (B, G) k (B, G)
q′(B, G) k ′(B, G)

]
(3.85)

is quite simple. Indeed over any layer Ω8 the determinant of W is constant and
equal to

√
B�1/�8 . This is obtained from the di�erential equation obeyed by

q (B, G) and k (B, G) and the boundary conditions at each barrier. The standard
method for solving the second order di�erential equations then yields

Ĝ = `q + ak , (3.86)

with the equation on `, a :

�0(G)
[
`′(B, G)
a′(B, G)

]
= W−1

[
0

−X (G − G0)

]
= −�0(G)√

�1B
X (G − G0)

[
−k (B, G)
q (B, G)

]
. (3.87)
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After a straightforward integration, we obtain

Ĝ(B, G0, G) =
(
� + 1
√
�1B

k (B, G0)� (G − G0)
)
q (B, G)

+
(
� − 1
√
�1B

q (B, G0)� (G − G0)
)
k (B, G) , (3.88)

which is valid for any G0, G ∈ [0, !], and B ≠ 0, where� is the Heaviside function
and the constants� and � remain to be determined. We consider general relaxing
conditions at the endpoints:

�

{
1mG Ĝ(G = 0) =  −Ĝ(G = 0) , (3.89a)
�<mG Ĝ(G = !) = − +Ĝ(G = !) , (3.89b)

from which

� =
q (B, G0) (�<k ′(B, !) +  +k (B, !)) −k (B, G0) (�<q′(B, !) +  +q (B, !))
�< −k ′(B, !) +  + −k (B, !) + �<

√
�1Bq

′(B, !) +  +
√
�1Bq (B, !)

,

(3.90a)

� =
 −�√
�1B

. (3.90b)

Now we simplify the above expressions. We anticipate that the non-normalized
eigenmodes are E= (G) = E (_=, G), with

E (B, G) = q (B, G) +  −√
�1B

k (B, G) , (3.91)

and we use Eq. (3.72) to get

�q (B, G) + �k (B, G) = E (B, G)q (B, G0)
 −

−
√
�1B

 −
E (B, G)E (B, G0)

[
 +
√
�<B

]
T(B)

[
1

0

]
� (B) , (3.92)

with T and � de�ned in Eqs. (3.79), (3.81), respectively, in which _ is replaced
by B . To obtain the propagator in time domain, one needs to perform an inverse
Laplace transform. This is done by looking for the poles B = _= of Ĝ and the
above formula shows that they are given by the zeros of � (B), as expected. We
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prove in Sec. B.3.1 that these zeros are simple. At B = _=, one can use Eqs. (3.78)
and (3.80) to compute the residue of Ĝ, which yields simply

ResB=_= (Ĝ) =
−[=
√
�1B E (B, G)E (B, G0)

d�
dB

�����
B=_=

. (3.93)

Note that this computation actually proves that the propagator G(C, G0, G) can be
written as the eigenmode decomposition (3.82), and one can identify the normal-
ization coe�cient:

V=
−2 = − 1

[=
√
�1_=

d�
d_
(_=) . (3.94)

In general, one obtains [= by computing the matrix product in Eq. (3.80).
A great simpli�cation occurs in the case of symmetric geometries, which is the
topic of the next section.

Symmetry properties

For a geometry which is symmetric with respect to the middle of the interval
[0, !], some simpli�cations occur. In fact the symmetry of the geometry implies
that the eigenmodes are either symmetric or anti-symmetric with respect to the
middle of the interval, and as a consequence n = [ = +1 or n = [ = −1, respec-
tively. These statements can be easily proved with the above matrix formalism.
In fact, the symmetry of the geometry is equivalent to the two properties:

1. The endpoints vectors V+ =

[
1

− +/
√
_�1

]
and V− =

[
1

 −/
√
_�<

]
have

equal �rst components and opposite second components, which follows

from the symmetry  − =  +, �1 = �<. With the notation S =

[
1 0

0 −1

]
,

this can be restated as V± = SV∓.

2. The inverse of the transition matrix T is obtained by replacing the o�-
diagonal terms by their opposite in its expression (note that this corre-
sponds to the transformation

√
_ → −

√
_). In fact, this property is clearly

true for the “elementary blocks” K and R and thus it is also the case for
R<K<−1,<R<−1 . . .K1,2R1 because R8 = R<+1−8 and K8,8+1 = K<−8,<+1−8 . In
other words, T−1 = STS.

The consequence of these two properties is that Eq. (3.78) can be restated as:
“V− is an eigenvector of ST” and that this matrix is equal to its inverse:

(ST)−1 = T−1S−1 = ST . (3.95)
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This implies that the eigenvalues of this matrix, hence the proportionality coef-
�cients n, [ in Eqs. (3.78) and (3.80), are equal to ±1. We can also easily prove the
symmetry or anti-symmetry of the eigenmodes. In fact, one has[

0;8

1;8

]
= K8−1,8R8−1 . . . R1V− (3.96a)[

0A<+1−8
1A<+1−8

]
= K−1

<+1−8,<+2−:R−1
<+2−: . . . R

−1
< nV+ (3.96b)

Hence [
0A<+1−8
1A<+1−8

]
= SK8−1,8SSR8−1S . . . SR1SnV+ = nS

[
0;8

1;8

]
. (3.97)

Let G ∈ Ω8 , we write G = G8−1,8 + b , with 0 < b < ;8 , which implies by symmetry
that ! − G = G<+1−8,<+2−8 − b . According to Eqs. (3.69), (3.70), and (3.97), we have
then

E (G) =
[
0;8 1;8

] [
cos(b

√
_/�8)

sin(b
√
_/�8)

]
(3.98a)

= n

[
0A<+1−8 1A<+1−8

] [
cos(−b

√
_/�<+1−8)

sin(−b
√
_/�<+1−8)

]
= nE (! − G) , (3.98b)

since �8 = �<+1−8 . Therefore the eigenmode is symmetric if n = +1 and anti-
symmetric if n = −1. Moreover from Eq. (3.94) we deduce that the derivative
d�
d_ (_=) and [= have opposite signs. Because the eigenvalues _= are the zeros of � ,
the derivative alternates between positive and negative sign, and so do [= and n=.
In particular, in the case of a symmetric geometry, the modes D= are alternately
symmetric and anti-symmetric. One can show that the �rst mode D1 is always
symmetric (n1 = [1 = 1), hence

n= = [= = (−1)=−1 . (3.99)

Periodicity properties

A �nite periodic geometry is an"-times repetition of an elementary block com-
posed of # compartments: (�1; ;1), (�2; ;2), . . . , (�# ; ;# ). The transition matrix
of the block is

M = KinterR#K#−1,# . . . R1 , (3.100)
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where Kinter is the matrix corresponding to the inter-block barriers. Then the
complete transition matrix T is equal to

T = K−1interM
" . (3.101)

Because of the periodicity,

detM =

√
�#

�1︸︷︷︸
detKinter

√
�#−1
�#

. . .

√
�1

�2
= 1 . (3.102)

This property makes the computation of M" easier, thanks to the formula

M" =
sin"k
sink

M − sin(" − 1)k
sink

I2 , (3.103)

where I2 is the 2 × 2 identity matrix andk is implicitly de�ned by

cosk =
1
2
TrM . (3.104)

Formula (3.103) implies that the inter-block variation of the coe�cients 0, 1 has
the form:

080+# ( 9−1) = � cos( 9k ) + � sin( 9k ) , 9 = 1, . . . , " , (3.105)

with a similar formula for 1, where� and � are coe�cients which depend on the
choice of the origin 80 ∈ {1, . . . , # − 1}. Thus k governs the global behavior of
the mode (when the number " of repeated blocks is su�ciently large).

Study of the spectrum

The main numerical di�culty of the above method is to solve Eq. (3.81) on the
spectrum, that is to �nd the zeros of � (_). In fact, a standard method to �nd all
the zeros of a function in a given interval is to compute the function on a �ne set
of points (0, n, 2n, . . .) and to look for the sign changes, that indicate the presence
of at least one zero. By decreasing n , one is assured at some point to �nd all
the zeros of the function. However, in general one knows neither the number
of zeros of the function in a given interval nor the minimal spacing between the
zeros. In turn, missing some zeros would result in missed eigenmodes, and thus
in inaccurate computation of the propagator and the related di�usion quantities.
An example of � (_) shown in Fig. 3.13 illustrates that some roots may be very
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Figure 3.13: Example of roots which may prove challenging to �nd numerically with
standard methods. We consider �ve compartments and �1 = . . . = �5 = 1, A1,2 = . . . =

A4,5 = 10 and the lengths ;8 of the �ve compartments are: 1; 1.2; 1.5; 1.2; 1, with re�ecting
boundary conditions at the endpoints:  ± = 0. The root I = 6.30446 (b) corresponds
to ;3 = 1.5, with = = 3, Z = 2, whereas the two roots I± = 6.2991316 ± 8.7 · 10−6 (c)
correspond to ;1 = ;5 = 1, with = = 2, Z = 1 (see explanations in the text). Notice the
scale changes, horizontally and vertically, between (a), (b) and (c).

close to each other. We provide here a rough analysis of Eq. (3.81) in order to
study this phenomenon.

We discard the elementary case of a single interval (< = 1) where the roots
of � are explicitly known [12, 13]. Let us assume for simplicity that all the dif-
fusion coe�cients �8 and the barrier resistances A8,8+1 are identical (denoted �0
and A , respectively). Furthermore we set the relaxation coe�cients  ± to zero.
We change the variable _ by I =

√
_/�0 and reveal an explicit dependence of �

on the geometry (omitting �0 and A for the sake of clarity):

� (_) = �< (I; ;1, . . . , ;<) . (3.106)
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Regime A → 0 . This is the regime of almost fully-permeable barriers (i.e.
“quasi-no-barrier” case). One has

K = I2 + A�0IN , N =

[
0 1

0 0

]
, (3.107)

from which we deduce the �rst-order expansion

�< (I; ;1, . . . , ;<) ≈−sin(I!) + A�0I

<∑
8=1

sin(I (;1 + · · · + ;8)) sin(I (;8+1 + · · · + ;<)) .

(3.108)
This formula implies that the roots are approximately equal to I0 = =c/!, with
an integer =. In fact, one can compute the �rst order correction to this formula,
which yields

I ≈ =c
!

(
1 − A�0

;a

[
1
<

<∑
8=1

sin2
(
=c
;1 + · · · + ;8

!

)])
, (3.109)

where ;a = !/< is the arithmetic mean of the ;8 . The factor inside the brackets
is always less than 1, hence the (�rst order) relative perturbation of the roots is
at most A�0/;a. Therefore in the regime of almost fully-permeable inner barriers
(A�0/;a � 1) the roots are easy to �nd numerically because we have a good
estimate of their position and a good lower bound of the distance between them.
Note that A�0/;a � 1 corresponds to di�usion control, where the time taken by
a particle to reach a barrier is much larger than the time taken to cross it, as we
discussed in Sec. 3.1.2.

Regime A → ∞ . Now we turn to the opposite regime of almost impermeable
barriers, i.e. permeation control. In this case one writes

K = A�0I

(
N + 1

A�0I
I2

)
. (3.110)

For I large enough such that A�0I � 1, this yields

�< (I; ;1, . . . , ;<) ≈ (−A�0I)<−1 sin(I;1) · · · sin(I;<)

×
(
1 − 1

A�0I

<−1∑
8=1

sin(I (;8 + ;8+1))
sin(I;8) sin(I;8+1)

+ . . .
)
. (3.111)

From this expression one gets the approximate roots I0 = =c/;8 with an integer=,
as expected. The non-zero permeability of the barriers increases the values of the
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roots by coupling the compartments to their nearest neighbors. The higher-order
terms of the expansion (3.111) involve coupling between next-nearest neighbors,
etc. From the above formula we expect the increase to be of order (A�0I0)−1. The
case = = 0 (that is, I0 = 0) is special and we treat it later. Note that the above
expansion is valid around I0 = =c/;8 (with= > 0) if A�0I0 � 1, that is A�0/;8 � 1.

If we consider an isolated root I0 = =c/;8 (which means that all the other
=′c/;8 ′ are located at a relative distance much greater that (A�0I0)−1), then we
get

I ≈ =c
;8
+ Z8

=cA�0
, (3.112)

where Z8 is the number of neighbors of the cell 8 (Z8 = 2 if 1 < 8 < <, otherwise
Z8 = 1).

The case of non-isolated roots is more complicated but also more interesting.
In fact all the numerical di�culties come from this case. From the equation

R8

[
1

0

] [
0 1

]
R8 −

[
1

0

] [
0 1

]
= − sin(I;8)R8 , (3.113)

we deduce the following general relation which is valid for any 8 from 1 to<−1:

�< (I; ;1, . . . , ;<) =

[
�8 (I; ;1, . . . , ;8)�<+1−8 (I; ;8, . . . , ;<)
− �8−1(I; ;1, . . . , ;8−1)�<−8 (I; ;8+1, . . . , ;<)

]
�1(I; ;8)

. (3.114)

Now we assume that there exist 81 < 82 such that

I0 =
=1c

;81
=
=2c

;82
, (3.115)

with =1, =2 integers. Note that =1/=2 = ;81/;82 . We look for an approximate root of
the form I = I0(1 + [), with [ ∼ (A�0I0)−1 (where ∼means “is of the same order
of magnitude as”).

First let us consider the case where two compartments 81 and 82 are not neigh-
bors, that is 81 + 1 < 82. From Eq. (3.111) we infer

�81+1(I; ;1, . . . , ;81+1) ∼ (A�0I)81[ ∼ (A�0I)81−1 , (3.116a)

�<−81 (I; ;81+1, . . . , ;<) ∼ (A�0I)<−1−81[ ∼ (A�0I)<−2−81 , (3.116b)

�81 (I; ;1, . . . , ;81) ∼ (A�0I)81−1[ ∼ (A�0I)81−2 , (3.116c)

�<−1−81 (I; ;81+2, . . . , ;<) ∼ (A�0I)<−2−81[ ∼ (A�0I)<−3−81 , (3.116d)
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hence Eq. (3.114) becomes

�< (I; ;1, . . . , ;<) =

�81 (I; ;1, . . . , ;81)
× �<+1−81 (I; ;81, . . . , ;<)

�1(I; ;81)
(
1 +$ ((A�0I)−2)

)
. (3.117)

We deduce that the roots of �< (I; ;1, . . . , ;<) are given by the roots of the functions
�81 (I; ;1, . . . , ;81) and �<+1−81 (I; ;81, . . . , ;<), which are not coupled to the �rst order
in (A�0I)−1:

I ≈ I0 +
Z81

=1cA�0
and I ≈ I0 +

Z82

=2cA�0
. (3.118)

Note that the same is true for any number of “coinciding” roots as long as they
correspond to non-adjacent compartments. The roots are at a relative distance
of order (A�0I0)−1 if =1/Z81 ≠ =2/Z82 . If =1/Z81 = =2/Z82 one has to compute the
next-order corrections which involve the length of the other compartments, as
explained previously. One can show that the term of order (A�0I0)81−82 is always
non-zero; for symmetric geometries (A�0I0)81−82 may be the �rst non-zero term
of the expansion of the relative di�erence of the roots.

Now we consider the case 82 = 81 + 1. We use Eq. (3.111) to get

�< (I; ;1, . . . , ;<) ≈ (−A�0I)<−3
( ∏
8≠81,81+1

sin(I;8)
)

×
(
=1=2-

2 − (Z81=1 + Z82=2)- + (Z81Z82 − 1)
)
, (3.119)

where - = A�c[. Thus we obtain two roots:

I± = I0 +
-±
A�0c

, (3.120a)

-± =
Z81=1 + Z82=2 ±

√
(Z81=1 − Z82=2)2 + 4=1=2
2=1=2

. (3.120b)

Note that I+ − I− ≥ 2
c
√
=1=2A�0

. One can perform the same computations for a
larger number of adjacent cells with “coinciding” roots: at the end one has to
solve a polynomial equation in the variable - . The roots are always distinct and
separated by a relative distance of order (A�0I0)−1. Section 3.4.3 is devoted to
the exact computation of the roots for an array of identical cells, which is a good
example of such a situation.

In all the above computations we assumed I0 = =c/;8 with positive =. How-
ever there are also < roots located near zero. To �nd them we expand the sine
and cosine functions in Eq. (3.111) and get to the �rst order in I;h a polynomial
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equation of degree < in the variable / = A�0;hI
2, where ;h = <

(∑<
8=1 ;

−1
8

)−1 is
the harmonic mean of the ;8 . Hence we obtain< roots of the form:

I= =

√
/=

A�0;h
, = = 1, . . . ,< (3.121)

with /= spanning the solutions of the polynomial equation. Note that we as-
sumed A�0/;8 � 1 hence one has I;h � 1, which legitimates a posteriori the
polynomial expansion. Furthermore, the �rst coe�cients of the polynomial ex-
pansion are readily available from Eq. (3.111) and we get from them that:

<∑
==1

/= ≈ 2< . (3.122)

This formula is valid in the regime A�0/;h � 1 and its simplicity comes from the
particular choice of ;h we made (harmonic mean of the ;8). If one assumes that the
roots /= are approximately equispaced at small =, then one obtains immediately
that the �rst roots /=, and hence _=, follow a 1/<2 dependence on<.

From this analysis of the low permeability regime (A�0/;8 � 1 for all 8) we
can draw several conclusions, partly illustrated in Fig. 3.13.

• the < �rst roots (I;h � 1) behave di�erently than the other ones. They
typically spread over a distance (A�0;h)−1/2.

The following points only apply to the other roots (I;h & 1).

• all the roots increase from their limits I0 = =c/;8 with the permeability of
the inner barriers (a general mathematical proof of this statement is given
in Sec. B.3.1). The relative increase is of the �rst order in (A�0I0)−1;

• very close roots associated to adjacent cells are coupled by the permeability
of their barrier and separate from each other by a relative distance of order
(A�0I0)−1;

• very close roots associated to non-adjacent cells are not coupled to the �rst
order in (A�0I)−1. The di�cult case is when the two cells have the same
length: then =1 = =2 and the relative distance between the two roots is
in the best case of order (A�0I0)−2. In fact, it depends on the length of all
other cells. For example, symmetric geometries typically lead to a relative
distance between roots of order (A�I0)−|82−81 |.

All the previous computations are somewhat schematic because we made a par-
ticular choice of geometry (same di�usion coe�cients, same permeability and
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no relaxation at the outer boundaries) from the beginning. However, the above
conclusions are globally still valid in the general case, with appropriate modi�ca-
tions. For example if one considers perfectly relaxing condition at the endpoints
( ± = ∞), then in the low-permeability limit the roots corresponding to the outer
compartments are I0 = (= + 1/2)c/;8 (8 = 1 or<), whereas the roots correspond-
ing to the other compartments are I0 = =c/;8 , 1 < 8 < < (with an integer=). Thus
one has to consider separately the case of the outer compartments depending on
the conditions at the outer boundaries. We come back to the relaxing case in Ap-
pendix B.2 and Appendix B.3.2. Moreover, the case of heterogeneous di�usion
coe�cients is treated analytically in the simplest case of a bi-periodic structure
in Appendix B.3.3.

Extensions

The above analysis may be extended in many ways. First, one can consider more
general boundary conditions. In particular, many experiments in heat conduc-
tion are done with one end of the system in contact with a heat source (acting
as a constant heat �ux or as a thermostat with a constant temperature). One
should then replace our homogeneous outer boundary conditions (3.66c), (3.66d)
by inhomogeneous boundary conditions. The only di�erence is in the steady-
state solution (_ = 0) which is easy to obtain, whereas the transient solution
remains the same (see also [244, 254]). One is then often interested in the “crit-
ical time”, i.e. the typical time required to reach the steady-state solution. More
precisely, one de�nition of the critical time is the time at which the average tem-
perature over the sample is equal to some fraction U < 1 of the average steady-
state temperature over the sample. Other de�nitions and a thorough comparison
of these de�nitions are detailed in [257, 258]. This time is essentially given by
the study of the �rst non-zero eigenvalue of the di�usion operator, for which
we are able to obtain estimates with respect to the geometrical parameters of the
medium (such as Eq. (3.121), which yields _ ∼ (A;h<2)−1, in the low-permeability
regime). The situation is di�erent when the boundaries are subject to modulated
heating, which is the case in geophysics and building design [238–242], and in
photothermal measurements [236, 237]. One can still transform the problem into
an homogeneous boundary problem but it requires adding a suitable source term
to the di�usion equation [254]. In some cases the main mechanism of heat relax-
ation at the outer boundaries is not conduction-convection but radiation, with
a non-linear ) 4 heat �ux [261]. Finally, when considering di�usion of ions in
multilayer chemical system such as electrodes, one writes chemical equilibrium
condition at the interfaces: the ratio of concentrations on both sides of the inter-
face is equal to the partition coe�cient [232–234, 259, 260]. This is another type
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of inner boundary condition, which leads to di�erent K matrices, quite similar to
the case of heterogeneous di�usion coe�cients and no barriers.

Another possible generalization is the inclusion of bulk reaction rates inside
the compartments. That is, to change Eq. (3.62) to a reaction-di�usion equation:

m)G = ∇(�0∇G) + `G , (3.123)

where ` may depend on space and G [257]. If ` is constant, then one gets the
solution of Eq. (3.123) by multiplying the solution of Eq. (3.62) by exp(`C). The
case of piecewise constant ` (` = `8 on Ω8) is slightly more complicated but may
be easily incorporated into our computations. Such reaction-di�usion models
may describe di�usion of molecules that can be trapped, killed, destroyed, or
loose their activity [262, 263, 286–288] (` < 0) or, on the opposite, self-heating by
temperature-induced oxidation [264] (` > 0). Other applications include ecology
dynamics [265] and fabrication of multilayer foil materials [266, 267].

Last, one can consider other equations than the di�usion equation (3.62), for
example:

• inhomogeneous Laplace (Poisson) equation: ∇(�0∇Ψ) = � ,

• inhomogeneous Helmholtz (B > 0) or modi�ed Helmholtz (B < 0) equa-
tions: (B + ∇�0∇)Ψ = � ,

• inhomogeneous di�usion equation: m)Ψ −∇(�0∇Ψ) = � , with initial con-
dition Ψ(G,) = 0) = * (G),

• inhomogeneous wave equation: m2
)
Ψ − ∇(�0∇Ψ) = � , with initial condi-

tions Ψ(G,) = 0) = * (G) and m)Ψ(G,) = 0) = + (G),

where �,* ,+ are given functions, and with the boundary conditions (3.66a),
(3.66b), (3.66c), and (3.66d). Thanks to the knowledge of the eigenmodes basis
of the di�usion operator ∇(�0∇), the above equations may be solved by decom-
posing D and � over this basis [12, 13].

The computational method that we presented is therefore relevant to many
models and applications. Our main concern is application to dMRI, that is pre-
sented in detail in Sec. 3.4.5. We also discuss brie�y �rst-exit time distribution
in Appendix B.2.

3.4.3 Example: simple periodic geometry
In this section, we illustrate the application of our general method to the case of
a (�nite) periodic structure which is relevant for various applications. Through-
out this section, we assume that all ;8 , �8 , ^8,8+1 are the same (denoted ℓs, �0, ^
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in the following). We apply the results of Sec. 3.4.2 and obtain the eigenmodes
and eigenvalues D=, _=. Similar computations for more complicated structures
are presented in Sec. B.3.3 (bi-periodic geometry) and Sec. B.3.4 (two-scale ge-
ometry).

Eigenmodes

We assume re�ecting boundary conditions at the endpoints ( ± = 0) and intro-
duce the dimensionless parameters

U = ℓs
√
_/�0 and Ã = 1/ ˜̂ = A�0/ℓs = ℓ̂ /ℓs . (3.124)

We recall that the parameter Ã controls the transition between di�usion control
(Ã � 1) and permeation control (Ã � 1), see Sec. 3.1.2. With these notations, the
transition matrix of the elementary block is simply

M = KR =

[
cosU − ÃU sinU sinU + ÃU cosU
− sinU cosU

]
, (3.125)

and Eq. (3.78) on the spectrum becomes

K−1M<

[
U

0

]
= n

[
U

0

]
. (3.126)

Since the geometry is symmetric, we already know that n = ±1. Furthermore we
use the results of Sec. 3.4.2 to compute M<: �rst we apply Eq. (3.104) to de�ne
k :

cosk = cosU − Ã
2
U sinU , (3.127)

then from Eq. (3.103), we get

M< =

[
(cosU − ÃU sinU) sin<ksink −

sin(<−1)k
sink (sinU + ÃU cosU) sin<ksink

− sinU sin<k
sink cosU sin<k

sink −
sin(<−1)k

sink

]
. (3.128)

Equation (3.126) can be further simpli�ed by using the fact that K

[
1

0

]
=

[
1

0

]
. We

thus have the simple condition

M<

[
1

0

]
= n

[
1

0

]
, (3.129)
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which gives the equation on U (and thus on eigenvalues _)

sinU
sin<k
sink

= 0 . (3.130)

This corresponds to two cases:

• sinU = 0, that is U = 9c , with 9 = 0, 1, 2, . . .. We denote these solutions by

U 9,0 if 9 is even and U 9,< if 9 is odd. The vector

[
1

0

]
is an eigenvector of the

matrix M with the eigenvalue (−1) 9 , thus n = (−1) 9<.

• sin<k
sink = 0, which gives <k = ?c , where ? ∈ {1, . . . ,< − 1}, and can be

restated according to Eq. (3.127) as:

cosU − Ã
2
U sinU = cos?c/< , ? ∈ {1, . . . ,< − 1} . (3.131)

For each value of ? this yields an in�nite array of solutions that we will
denote as U 9,? , where the 9 index means 9c ≤ U 9,? < ( 9 + 1)c ( 9 = 0, 1, . . .).
We have M< = (−1)?I2, therefore n = (−1)? .

Figure 3.14 illustrates the solutions U 9,? in the case< = 4 and Ã = 0.4. One can
see that the solutions are grouped in branches of< values. Each branch begins
at a multiple of c and ends below the next one. The branches of even 9 begin
with k = 0 (? = 0) and increase with increasing ? , whereas the odd 9 branches
begin with k = c (? = <) and increase with decreasing ? . Note that we discard
the branches with negative 9 because U ≥ 0 according to Eq. (3.124).

Note that U (or 9 ) dictates the intra-compartment variation of the mode,
whereas k (or ?) is related to its inter-compartment variation (as we explained
in Sec. 3.4.2). In fact, the index 9 is equal to the number of extrema of the mode
in the �rst compartment (not counting the one at G = 0). If one is interested in
the inter-compartment variation only, for example by looking at the value of the
mode at the beginning of each compartment, then ? represents the number of
extrema of this variation over the whole interval. Moreover, the Courant nodal
theorem (proved for our particular model in Sec. B.3.1) states that each eigen-
mode changes sign ? + 9< times. Figure 3.15 shows the �rst modes of an array
of< = 4 identical cells with impermeable outer barriers. The �rst two branches
are represented. We have additionally plotted dots at the beginning of each com-
partment to make the inter-compartment variation more visible. This variation
is even more apparent for a large number of cells. On Fig. 3.16 we show a plot of
some modes for< = 100. We have chosen ? = 7 and 9 = 0, 1, 2. One can see that
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Figure 3.14: (left) Plot of cosk = cosU − Ã2U sinU with Ã = 0.4. Horizontal dotted lines in-
dicate cosk = cos?c/<, ? = 0, . . . ,<, with< = 4 and the circles represent the solutions
U 9,? . (right) An equivalent representation is the plot of U 9,? versus k? = ?c/<. One can
see branches beginning at 9c and ending below ( 9 + 1)c . As U increases, the graph of
cosk crosses the [−1; 1] interval with a steeper slope, which results in solutions closer
to 9c as 9 increases.

although U is very di�erent between the di�erent modes, the overall behaviour
of the modes is the same: the dots form a sine function with ? = 7 extrema.

One can compare the results of this section with Bloch waves in solid state
physics [325, 326]. Indeed the branches of solutions U 9,? are similar to energy
bands, where 9 and ? are analogous to the band index = and the wavenumber : ,
respectively. More precisely, U is equivalent to the square root of energy. This is
no surprise because we are dealing with a (�nite) periodic geometry. Although
the periodicity is not expressed through an energy potential but boundary con-
ditions, the mathematical framework is the same. This explains the striking sim-
ilarity between Fig. 3.14 and energy band diagrams (where only the : ≥ 0 half
would be represented). This analogy will also be discussed in Sec. 4.4 about the
spectrum of the BT operator in periodic domains.
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Figure 3.15: Plot of the di�usion operator eigenmodes for the array of < = 4 identical
cells of length 1 with impermeable outer boundaries and Ã = 0.4. (left) 9 = 0, ? =

0, . . . ,< − 1; (right) 9 = 1, ? = <, . . . , 1. Note the discontinuities at the barriers which
increase when U 9,? increases.

Computation of the norm

Because the geometry is symmetric and the relaxation coe�cients  ± are equal
to zero, one can transform the formula (3.94) of the normalization constant into

V−29,? =
ℓs

2

����� [0 1
] dT
dU

[
1

0

] �����
U=U 9,?

=
ℓs

2

����� [0 1
] dM<

dU

[
1

0

] �����
U=U 9,?

(3.132a)

=
ℓs

2

���� ddU (
sinU

sin(<k )
sink

)����
U=U 9,?

. (3.132b)

Now we use Eq. (3.130), which leads us to distinguish the two cases as above:

• sinU = 0: it corresponds to U = 9c , with a positive integer 9 (recall that we
discard U = 0). Then cosk = (−1) 9 and sin<k

sink =<(−1) 9 (<−1) . We conclude
that the normalization factor of the mode is:

V29,? =
2
<ℓs

. (3.133)

• sin<k
sink = 0: it corresponds to U 9,? (k = ?c/<), ? = 1, . . . ,< − 1 and 9 =

0, 1, . . .. In this case, the derivative in Eq. (3.132b) is easily computed by
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Figure 3.16: Plot of the modes for the simple periodic geometry with impermeable outer
boundaries. The interval is composed of< = 100 cells and Ã = 0.4. The modes are taken
from di�erent branches ( 9 = 0, 1, 2) but have all ? = 7. The dots mark the value of the
mode at the left point of each subinterval and help to visualize the inter-compartment
behavior.

the chain rule:

d
dU

(
sin<k
sink

)
=
d cosk
dU

dk
d cosk

d
dk

(
sin<k
sink

)
= −

(
sinU

(
1 + Ã

2

)
+ Ã
2
U cosU

) (
−1
sink

)
× < cos<k sink − sin<k cosk

sin2k
,

which by evaluation at U 9,? yields:

V29,? =
2
<ℓs

sin2 ?c/<

sinU 9,?
(
sinU 9,?

(
1 + Ã

2

)
+ Ã

2U 9,? cosU 9,?
) . (3.134)
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3.4.4 Numerical Implementation
From a numerical point of view, the computational steps are the following: (i) to
compute the transition matrix M8,8+1 in Eq. (3.75) for each compartment; (ii) to
apply Eq. (3.79) to get the complete transition matrix; (iii) to solve Eq. (3.81) to get
the spectrum of the di�usion operator; each solution of Eq. (3.81) determines one
eigenvalue whereas Eqs. (3.74) and (3.77) yield the coe�cients 0;8 , 1

;
8 , : = 1, . . . ,<

for each (non-normalized) mode; (iv) to compute the normalization constant;
combined with Eq. (3.69) it allows one to compute the eigenmode at any point
of the interval.

Steps (i) and (ii) are easy and fast since we are dealing with 2×2matrices. Step
(iv) can be done either with Eq. (3.94), which involves a numerical derivative, or
by a direct computation, using:∫ ;

0
(0 cos(:G) + 1 sin(:G))2 dG =

(02 + 12);
2

+ (0
2 − 12)
4:

sin(2:;)

+ 01
4:
(1 − cos(2:;)) . (3.135)

The most complicated and time-consuming step is (iii). As we explained in
Sec. 3.4.2, two or more solutions of Eq. (3.81) may be very close to each other
in the case of low-permeability barriers (typically ℓs � ℓ̂ ). The estimates we
derived allow us to localize the roots that speeds up the computation. This is the
crucial point and one of the major practical achievements of this work. This nu-
merical improvement allows us to detect very close zeros (as those shown in Fig.
3.13) and to compute the eigenmodes of the di�usion operator in heterogeneous
structures with hundreds of barriers. Moreover, Fig. 3.13 illustrates an interesting
property of �< (I; ;1, . . . , ;<) as a function of I: two local extrema are apparently
always separated by a zero. Although we have no mathematical proof for this
observation, it is very helpful because it allows us to detect pairs of close zeros
by the change of sign of the derivative of the function, which may take place on
a much larger scale than the change of sign of the function itself. One can also
take advantage of the Courant nodal theorem (which is proven for our particular
model in Sec. B.3.1): the =-th eigenmode has = nodal domains (connected com-
ponents on which the eigenmode has a constant sign), or equivalently, the =-th
eigenmode changes sign = − 1 times (possibly at the barriers). This can be used
as an e�cient test to check a posteriori that no eigenvalue is missed.

In practice, the standard �oating-point precision limits the relative accuracy
of a numerical computation to about 10−15. Let us assume that we are dealing
with a geometry such that two eigenvalues _1 and _2 are much closer than this
limit; for example they coincide up to 10−20. With the above tricks we are still able
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to detect those roots and even to compute accurately their position and spacing.
However, the subsequent computations performed on _1 and _2 (for example, the
computation of the eigenmodes or their norm) treat _1 and _2 as equal numbers.
Even worse: the closeness of _1 and _2 is related to the very fast local variations
of � (_) with _, and as a consequence of the coe�cients (0;8, 1;8 ) and of the norm of
the eigenmode. Therefore it is very di�cult to compute accurately these quanti-
ties for two eigenmodes corresponding to very close eigenvalues. The estimates
derived in Sec. 3.4.2 can be used to detect a priori such situations in which the
spectral decomposition can numerically fail.

If one is interested in the di�usion propagator (3.82) or related quantities, the
in�nite collection of eigenmodes has to be truncated. This is done by sorting
the eigenvalues _= in ascending order and then cutting o� the ones such that
_=C � 1, where C is the smallest di�usion time for which the computation is
needed. The precise choice of the truncation threshold is a compromise between
precision and speed of computation. Practically, one can check the validity of
the truncation by re-doing the computation with a higher threshold and then
comparing the two results.

3.4.5 Application to di�usion MRI
Overview

From the knowledge of the di�usion propagator one can access the dMRI signal
in the narrow-gradient pulse regime (see Sec. 1.2.3), thus motivating numerous
theoretical and experimental works on di�usion in complex geometries. As ex-
plained previously, restricted di�usion in simple domains such as slab, cylinder,
sphere, can be treated analytically [22, 86–88]. In contrast, most works devoted
to multi-layered systems with permeable barriers are numerical. Tanner took
advantage of the simple expression of the Laplace eigenmodes in a slab geom-
etry to study a �nite periodic repetition of permeable barriers [269]. The same
method was applied later by Kuchel and Durrant to unevenly spaced membranes
[270]. These approaches were generalized by Grebenkov with a matrix formal-
ism allowing e�cient computation of the signal in general multi-layered planar,
cylindrical or spherical structures, without the narrow-gradient pulse restriction
[268]. Powles and co-workers proposed in [271] an opposite approach based on
the (one-dimensional) analytical solution of the propagator G for one perme-
able barrier extended to several barriers by multiple re�ections. Other numerical
techniques such as a �nite di�erences method were reported [272].

The �rst analytical expression of the dMRI signal in a one-dimensional geom-
etry with periodic permeable barriers was provided by Sukstanskii et al. [273].
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Relying on the periodicity of the system they computed directly the signal in
Laplace domain without having to derive the di�usion propagator. Unevenly
spaced membranes were treated in [102, 197] from the analytical solution for
one membrane and under the assumption that the di�using time is su�ciently
short so that the layers are independent. Note that in contrast to almost all pre-
viously cited works the analysis performed in [102] does not con�ne to in�nitely
narrow pulses. Finally, Novikov et al. studied the e�ect of randomly placed per-
meable barriers on the di�usive motion [68, 69]. Using a renormalization group
technique, they obtained structural universality classes characterized by the dis-
order introduced by the barriers, which in turn govern the long-time asymptotic
behavior of the mean square displacement.

The method developed in Sec. 3.4.2 for computing the di�usion operator
eigenmodes allows us to calculate the signal analytically for in�nitely narrow
gradient pulses, or numerically for arbitrary pulse sequences (see Sec. 1.1.5). In
particular, this method generalizes earlier approaches [197, 269, 272, 273] and
opens unprecedented opportunities for studying more sophisticated con�gura-
tions of barriers such as microstructures inside larger scale structures. The com-
putations are detailed in Sec. 3.4.5. We explain how one can obtain the dMRI sig-
nal from the Fourier transform of the eigenmodesD= in the narrow pulse regime,
then we derive the expression of the signal for the periodic geometry presented
in Sec. 3.4.3. We discuss the e�ect of the permeability of the barriers on the dMRI
signal in the regimes of short and long di�usion time. In particular, we obtain
a scaling law of the form ˜̂C/( ˜̂ + 1) involving C and ˜̂ = ^ℓs/� = ℓs/ℓ̂ , which
is valid in the long time regime (ℓd � ℓs). Computations for more sophisticated
geometries are presented in Sec. B.3.2 (relaxation at the outer boundaries), B.3.3
(bi-periodic geometry), and B.3.4 (two-scale geometry).

Narrow-gradient regime for an array of identical cells and re�ecting
conditions at the outer boundaries

We consider now a gradient pro�le made of two pulses of duration X → 0 and
amplitude� = &/X →∞ (see Sec. 1.2.3). The di�usion time between two pulses
is denoted by Δ for consistency with literature. The signal is directly linked to
the di�usion propagator G by Eq. (1.56b), that reads here:

( (Δ) =
∫ !

0

∫ !

0
d (G0)G(Δ, G0, G)48& (G−G0) dG dG0 , (3.136)
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where d (G0) is the initial spin density [2–4]. The spectral decomposition (3.82)
yields

( (Δ) =
∞∑
==1

4−_=Δ
∫ !

0

∫ !

0
d (G0)D= (G0)D= (G)48& (G−G0) dG dG0 , (3.137)

If the initial density is uniform d (G0) = 1/!, the symmetry between G and G0
leads to the following simpli�cation:

( (Δ) = 1
!

∞∑
==1

4−_=Δ
����∫ !

0
D= (G)48&G dG

����2 . (3.138)

This formula was initially introduced in [22] to study the signal coming from
a single isolated interval. Later the e�ect of permeable barriers was numerically
studied in [269] for the most simple one-dimensional geometry where all ;8 , �8 ,
^8,8+1 are the same (denoted ℓs, �0, ^ in the following).

In this section we apply the results of Sec. 3.4.3 and extend the results of Ref.
[269]. In addition to Sec. 3.4.3 we compute the Fourier transform of the modes
which gives us the signal ( . In Sec. B.3.2 we extend this computation to relaxing
conditions at the outer boundaries. A more complicated geometry consisting of
a microstructure inside a larger scale structure is treated in Sec. B.3.4. For clarity,
we recall the following de�nitions

ℓd =
√
�0Δ , ℓ̂ =

�0

^
, ℓ@ = &

−1 . (3.139)

We temporarily use the subscript : instead of 8 for the compartments in order
to avoid any confusion with the imaginary unit 8 =

√
−1. As previously we use

the position of the barrier to the left as the origin in the formula (3.69) of the
eigenmodes. This means that we have to compute integrals of the form:∫ ;:

0
48&G cos

(
G
√
_/�:

)
dG =

;:

2

(
48 (&+
√
_/�: );: − 1

8;: (& +
√
_/�:)

+4
8 (&−
√
_/�: );: − 1

8;: (& −
√
_/�:)

)
,∫ ;:

0
48&G sin

(
G
√
_/�:

)
dG =

;:

28

(
48 (&+
√
_/�: );: − 1

8;: (& +
√
_/�:)

−4
8 (&−
√
_/�: );: − 1

8;: (& −
√
_/�:)

)
.

We denote by L: the row vector whose components are the above integrals. The
Fourier transform of the eigenmode E is then simply∫ !

0
E (G)48&G dG =

<∑
:=1

48&G:−1,:L:

[
0;
:

1;
:

]
. (3.140)
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Now we apply this general formula to our �nite periodic geometry. The sum
can be simpli�ed because all L: are the same:

L =
ℓs

2

[
−8

(
48 (@−U) − 1
@ − U + 4

8 (@+U) − 1
@ + U

) (
48 (@−U) − 1
@ − U − 4

8 (@+U) − 1
@ + U

)]
, (3.141)

where @ = &ℓs. Moreover G:−1,: = (: − 1)ℓs so we can rewrite the sum (3.140):∫ !

0
E (G)48&G dG =

<∑
:=1

48 (:−1)@L

[
0;
:

1;
:

]
= L

<−1∑
:=0

48:@M:

[
1

0

]
= L(I2 − 48@M)−1(I2 − 48<@M<)

[
1

0

]
= (1 − (−1)?48<@)L(I2 − 48@M)−1

[
1

0

]
, (3.142)

where we have used Eq. (3.129) with n = (−1)? . We can simplify the matrix
product further with the remark that the comatrix operation is linear for 2 × 2
matrices, and that detM = 1, so that

L(I2 − 48@M)−1
[
1

0

]
=

L(I2 − 48@M−1)
det(I2 − 48@M)

[
1

0

]
=

L(I2 − 48@R−1)
det(I2 − 48@M)

[
1

0

]
. (3.143)

From the knowledge of the trace and determinant of the matrix M we compute

det(I2 − 48@M) = −248@ (cosk − cos@) . (3.144)

Furthermore,

L(I2 − 48@R−1)
[
1

0

]
= −2848@ (cosU − cos@) @ℓs

@2 − U2 . (3.145)

Putting all the pieces together yields∫ !

0
E 9,? (G)48@G dG = 48<@/2

8@ℓs(4−8<@/2 − (−1)?48<@/2)
cos@−cosU 9,?
cos@−cos?c/<

@2 − U 9,?2
. (3.146)

Note that the ratio is either real (? even) or imaginary (? odd) which is consistent
with the symmetry or anti-symmetry of the mode (see Sec. 3.4.2).
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Complete expression of the signal

Let us summarize our results. In the array of < identical cells one has �8 = �0
and ;8 = ℓs, 8 = 1, . . . ,<. We thus introduce the dimensionless time C̃ = �0Δ/ℓ2s =

ℓ2d/ℓ
2
s , and @̃ = &ℓs = ℓs/ℓ@. The combination of the previous results yields the

formula:

( =
2(1 − cos<@̃)
(<@̃)2 +

∞∑
9=1

4@̃2(1 − (−1) 9< cos<@̃)
<2 (@̃2 − ( 9c)2)2

4−( 9c)
2C̃

+
∞∑
9=0

<−1∑
?=1

2@̃2

<2

1 − (−1)? cos<@̃
(cos @̃ − cos?c/<)2

(
cos @̃ − cosU 9,?
@̃2 − U29,?

)2
(<ℓsV29,?)4−U 9,?

2C̃ ,

(3.147)

where V29,? is given by Eq. (3.134), and we made explicitly appear the size of the
interval ! =<ℓs to compensate the 1/! scaling of V29,? .

If < = 1, there is no double sum on the second line of Eq. (3.147), and one
retrieves the well-known result by Tanner [22]:

(1(@̃, C̃) =
2(1 − cos @̃)

@̃2
+
∞∑
9=1

4@̃2(1 − (−1) 9 cos @̃)
(@̃2 − ( 9c)2)2

4−( 9c)
2C̃ . (3.148)

The opposite limit< → ∞ was the motivation of the subsequent article by
Tanner [269] and was derived analytically in [273]. When< →∞, each term of
the sum in Eq. (3.147) vanishes except the ones for which cos ?c/< is close to
cos @̃. Let us write

@̃ = 2:c + ?0c/< + n/< , ?0 ∈ {0, . . . ,< − 1} , 0 ≤ n < c . (3.149)

Then we have:

1 − (−1)? cos(<@̃)
<2(cos @̃ − cos?c/<)2 ≈

1 − (−1)?0−? cos n
c2 sin2(@̃) (?0 − ? + n/c)2

. (3.150)

To get the signal in the< →∞ limit, we use the following identity:

∞∑
?=−∞

1
c2

1 − (−1)? cos n
(? + n/c)2 = 1. (3.151)

The new equation on U is

cosk = cosU − Ã
2
U sinU = cos @̃ , (3.152)
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and the expression of the signal becomes

(∞(@̃, C̃ , ˜̂) =
2@̃2

˜̂

∞∑
==1

U=
2 sinU=4−U=

2C̃

(U=2 − @̃2)2 ((2 ˜̂ + 1) sinU= + U= cosU=)
. (3.153)

This is exactly the formula derived in [273] by the computation of the Laplace
transform of

∫
G(), G0, G)48& (G−G0) dG0 on an in�nite periodic geometry. Note that

although the geometry is in�nite and thus the spectrum of the di�usion opera-
tor is continuous, the signal is expressed in terms of a discrete set of eigenvalues
because of Eq. (3.152): the Fourier transform selects only the modes that globally
oscillate at the wavenumber& (recall that U only describes the intra-block oscil-
lations, whereas the global behavior of the mode is dictated byk , according to Eq.
(3.105)). A general explanation of this property will be given in the next chap-
ter, where the behavior of the magnetization and signal in periodic structures is
studied. As a consequence, one has to compute U=, = = 1, 2, . . . for each value
of @̃, in contrast to the �nite geometry where the spectrum depends only on the
geometry and needs to be calculated only once. This is an important numerical
advantage of the �nite geometry over the in�nite one because the computation
of the spectrum is one of the most time-consuming step (as explained in Sec. 3.4.2
and 3.4.4).

3.4.6 Dependence of the signal on the permeability
In this section we study the di�usion operator eigenvalues and the dMRI signal
in various regimes in order to show the dependence of the signal on the dimen-
sionless permeability of the inner barriers, ˜̂ , which characterizes the microstruc-
ture. We recall that ˜̂ = ℓs/ℓ̂ controls the transition between di�usion control
( ˜̂ � 1) and permeation control ( ˜̂ � 1). In biological tissues, one has typically:
�0 ∼ 1 `m2/ms, ℓs = 1 − 100 `m, ^ ∼ 10−3 − 1 `m/ms (see Refs [170–183, 197]),
and the experimental range of di�usion time is about Δ = 10 − 103 ms. In Sec.
1.2.1, we showed that the minimal accessible values of ℓ@ was of the order of a few
microns. Thus we have the following ranges of variation for our dimensionless
parameters: ˜̂ ∼ 10−3 − 102, C̃ ∼ 10−3 − 103, and @̃ ∼ 0 − 102.

In the limit ˜̂ →∞, one obviously recovers the signal associated to the whole
interval of length <ℓs with no barriers, whereas in the opposite limit ˜̂ → 0
one gets the signal (3.148) associated to one interval of length ℓs (we detail the
mathematical proof in Sec. B.3.5). In other words

( (<, @̃, C̃, ˜̂) −−−−→
˜̂→∞

(1(<@̃, C̃/<2) and ( (<, @̃, C̃, ˜̂) −−−→
˜̂→0

(1(@̃, C̃) .
(3.154)
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We are interested in the transition from one limit to the other, that is the de-
pendence of the signal on the permeability. Expansions of U 9,? at low and high
permeability are derived in Sec. B.3.6. They show that the transition from ˜̂ = 0
to ˜̂ = ∞ does not occur at one �xed value of ˜̂ but depends on the branch of
eigenvalues that we consider. Typically for the branch 9 the transition occurs at
˜̂ ∼ 9c/2 if 9 > 0. As we have already seen, the 9 = 0 branch is particular and
exhibits a ˜̂1/2 dependence at low ˜̂ (see Eqs. (3.161) and (B.94)). In order to re�ne
our analysis we distinguish short-time and long-time regimes.

Short-time regime

The short-time regime corresponds to C̃ � 1 or equivalently, ℓd � ℓs. The physi-
cal interpretation is that almost no particles travel from one barrier to the other,
therefore the barriers can be considered as independent. For this reason, the bar-
rier spacing ℓs does not play any role in the behavior of the signal, except as a
normalization factor.

From a mathematical point of view, several eigenvalues contribute to the sum
(3.147). Since 9c < U 9,? < ( 9 + 1)c , one can see that all branches with 9 . 1/

√
C̃

have to be taken into account. As ˜̂ increases the branches of solutions transform
successively from the ˜̂ = 0 limit to the ˜̂ = ∞ limit. Beyond ˜̂ ∼ 1/

√
C̃ , the

increase of ˜̂ produces little change on the most contributing branches, hence on
the signal. This behavior can be related to the discussion of Sec. 3.1.2, where we
showed that, in the short-time regime, the fraction of particles that have crossed
a barrier among the ones that have hit it grows as �c ∼

√
Δ/g^ = ˜̂

√
C̃ . In other

words, ˜̂ ∼ 1/
√
C̃ is the value of the permeability from which almost every particle

that has reached a barrier has crossed it.
To illustrate this e�ect, we consider the low-@̃ regime, @̃2C̃ � 1 or equivalently

ℓd � ℓ@. In this case, the signal is given by the Gaussian phase approximation
(see Fig. 1.8 and Sec. 1.2.2):

( = exp(−1�) = exp(−(�/�0)@̃2C̃) , (3.155)

with an e�ective di�usion coe�cient � . In the previous chapter, we showed that
in the short-time regime � follows Mitra formula (2.51):

�

�0
= 1 − 4

3
√
c
fℓs

√
C̃ +$ (C) . (3.156)

For a single interval of length ℓs the (dimensionless) surface-to-volume ratio is
fℓs = 2, and one should obtain therefore the same value for the whole interval
with< compartments. However, this result is paradoxical because the e�ect of
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Figure 3.17: E�ective surface-to-volume ratio f̃ extracted from Mitra formula (2.51) as
a function of ˜̂

√
C̃ for various values of ˜̂ and C̃ , in the short-time regime C̃ � 1. The

formula without permeability correction yields a value of f̃ that decreases from f = 2
for a single interval to f = 2/< for the full interval without internal barriers (here
< = 10). The scaling ˜̂

√
C̃ makes all values fall on one master curve. The asymptotic

formulas (3.158) and (3.159) are plotted by solid and dotted line, respectively.

internal barriers is expected to vanish in the limit ˜̂ → ∞, in which case one
would get fℓs = 2/<. Therefore it seems that the “e�ective” surface-to-volume
ratio extracted from Mitra formula

f̃ = (1 − �/�0)
3
√
c

4
√
C̃

(3.157)

depends on permeability and time. The solution to this paradox lies in the $ (C)
correction term in the above formula. Indeed, at low permeability (i.e., perme-
ation control), the next-order term would be fℓs ˜̂ C̃ [53], so that

f̃ = 2
(
1 − 3

√
c

4
˜̂
√
C̃

)
, ( ˜̂

√
C̃ � 1) , (3.158)

This formula breaks down at high permeability, and one can compute

f̃ =
2
<
+ 2(< − 1)

<

3
√
c

8
1

˜̂
√
C̃
, ( ˜̂

√
C̃ � 1) . (3.159)

Consistently with the discussion of the previous paragraph, one can see that f̃
is controlled by a single parameter ˜̂

√
C̃ .
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Numerical results are presented on Fig. 3.17. One can see that the scaling ˜̂
√
C̃

makes all values fall on one master curve. At low ˜̂
√
C̃ =

√
C̃/g^ , most particles that

have hit an internal barrier have not crossed it, therefore one can treat internal
barriers as almost impermeable, and f̃ ≈ 2. In the opposite limit, almost all
particles that have hit a barrier have crossed it, therefore one can treat internal
barriers as fully permeable, so that f̃ ≈ 2/<. There is a continuous transition
from one regime to the other over a wide range of values of ˜̂

√
C̃ . Note that the

asymptotic formulas (3.158) and (3.159) yield the correct behavior at respectively
very small and very large ˜̂

√
C̃ but fail to describe the intermediate regime.

Although we focused on the low-@̃ regime, the study of the Debye-Porod
regime (ℓ@ � ℓd) would lead to the same conclusion: the signal coming from
the barriers is proportional to an e�ective surface-to-volume ratio f̃′ that is a
function of ˜̂

√
C̃ and decreases from 2 to 2/< when ˜̂

√
C̃ goes from 0 to∞. Com-

pared to the GPA regime where internal barriers are a weak correction to the
bulk decay of the signal, in this regime the signal comes from barriers only, and
the in�uence of permeability is high.

Long-time regime

Now we turn to the long-time regime C̃ & 1, or equivalently ℓd & ℓs. In this
regime, each particle explores at least one subinterval completely. Mathemati-
cally, the condition C̃ & 1 allows us to discard all branches with 9 ≥ 1. Note that
both a�rmations are equivalent, as one can understand from Fig. 3.15 and the
related discussion on the role of 9, ? on the behavior of eigenmodes. In particular,
in the in�nite time limit, all the modes with non-zero eigenvalues vanish and we
are left with

( =
2(1 − cos<@̃)
(<@̃)2 , (3.160)

which is the well-known formula of the squared form factor of an interval of
length ! = <ℓs (see Ref. [22] and Sec. 1.2.3). Note that relaxation at the outer
boundaries would lead to zero signal in the long-time limit because _ = 0 would
not be an eigenvalue of the di�usion operator anymore. As expected at long
times the details of the geometry are averaged out and the signal depends only
on the length of the whole interval, ! =<ℓs. The next terms are given by the �rst
solutions of the 9 = 0 branch. Let us study Eq. (3.131) at small U , k . Expanding
the sine and cosine functions, one gets

U = k

√
˜̂

˜̂ + 1

(
1 − k 2

24( ˜̂ + 1)2

)
+$ (k 5) . (3.161)
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Figure 3.18: The 9 = 0 branch of solutions and its approximation by Eq. (3.161). (left)
˜̂ = 1; (right) ˜̂ = 0.01. One can see that the �rst order approximation formula is more
accurate when ˜̂ is higher which is consistent with Eq. (3.161).

Note that the third order correction is below 1% if k/c < 0.15( ˜̂ + 1) and ap-
proximately below 10% if k/c < 0.5( ˜̂ + 1). In particular the accuracy of the
�rst-order approximation is always better than 10% for the �rst non-zero solu-
tion k = c/< (< > 1). This is illustrated in Fig. 3.18 for two values of ˜̂ : 1 and
0.01. As expected, the approximation is more accurate for larger ˜̂ . Using this
expansion we get the long-time asymptotic behavior

( ≈ 2(1 − cos<@̃)
(<@̃)2 +�1(@) exp

(
− c2 ˜̂ C̃
<2( ˜̂ + 1)

)
, (3.162)

where �1(@̃) can be read on Eq. (3.147):

�1(@̃) =
2@̃2

<2

1 + cos<@̃
(cos @̃ − cosc/<)2

(
cos @̃ − cosU0,1
@̃2 − U20,1

)2
(<ℓsV20,1) . (3.163)

Because U0,1 is small, we have approximately

�1(@̃) ≈
4(1 + cos<@̃) (1 − cos @̃)2
@̃2<2(cos @̃ − cosc/<)2 , (3.164)

which does not depend on U0,1 anymore but only onk0,1 = c/<. In other words,
�1(@̃) weakly depends on ˜̂ . This approximation is especially accurate at high<
(we checked numerically that the error is less than 3% for< > 10, for example).
This is a consequence of the remark that the global behavior of the mode, hence
its norm and Fourier transform, is dictated byk (see Eq. (3.105)).

From the expansion (3.162) we conclude that the parameter which controls
the validity of the in�nite-time limit is not C but rather ˜̂C/(( ˜̂ + 1)<2). The<-
dependence is obvious: <2 is in fact the (dimensionless) time required to di�use
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through all the compartments if there are no barriers. One can then see that the
e�ect of the barriers is to increase this di�usion time by a factor ( ˜̂ + 1)/ ˜̂ .

More generally, we have:

( ≈
<−1∑
?=0

�? (@̃) exp
(
− ?2c2 ˜̂C
<2( ˜̂ + 1)

)
, (3.165)

where �? (@̃) weakly depends on ˜̂ . Thus in the long-time regime, the signal
depends on C̃ and ˜̂ via the combination ˜̂ C̃/( ˜̂ + 1). In other words, the time-
dependence of the signal yields an apparent di�usion coe�cient

�∞ = �0
˜̂

˜̂ + 1 =
1

1/�0 + 1/(^ℓs)
. (3.166)

This formula is a well-known correction that can be derived by simple geomet-
rical arguments [294]. When the permeability is high, the di�usion coe�cient
is slightly diminished. In the opposite limit ˜̂ � 1, i.e. permeation control, one
gets an apparent di�usion coe�cient: �∞ = �0 ˜̂ = ^ℓs, which does not depend
on the “true” di�usion coe�cient anymore. As we discussed in Sec. 3.1.2, the
kinetics of di�usion are governed by the crossing of the barriers and not by the
(much faster) intra-compartment di�usion.

As an application of the previous remark, let us consider the regime of per-
meation control ˜̂ � 1 at intermediate times: 1 � C̃ � 1/ ˜̂ . Physically, this
means that all particles have di�used multiple times inside at least one subin-
terval but that very few of them have crossed a barrier. Mathematically, the
low-permeability expansion (B.94) of U0,? shows that exp(−U20,? C̃) ≈ 1, so that
( ≈ ∑<−1

?=0 �? (@̃) and from Sec. B.3.5 we get:

( ≈ 2(1 − cos @̃)
@̃2

(1 � C̃ � 1/ ˜̂) . (3.167)

Thus, we recover the signal in the long-time limit for one compartment of length
ℓs and not of length ! =<ℓs (as in Eq. (3.160)), even though C̃ � 1.

Figure 3.19 illustrates the long-time regime (C̃ > 1) for an interval segmented
into< = 10 compartments. On the top panel, the signal is plotted as a function
of ˜̂ C̃/( ˜̂ + 1) at �xed @̃ = 0.5 and di�erent times. One can see that the scaling
˜̂ C̃/( ˜̂ + 1) makes all symbols fall onto one master curve. On the bottom panel,
the signal is plotted as function of @̃ for three representative values of ˜̂ C̃/( ˜̂ + 1).
At very low values of ˜̂ C̃/( ˜̂ + 1), almost no particle has crossed a barrier, and
the signal is given by the squared form factor of a single interval (3.167). As a
function of @̃, the signal exhibits a di�usion-di�raction pattern that reveals the
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Figure 3.19: Signal at long di�usion times (C̃ > 1) for < = 10 compartments. (top) The
signal is plotted as a function of ˜̂ C̃/( ˜̂ +1) for a �xed @̃ = 0.5. One can see that the curves
fall onto one master curve. The low- and high-permeability limits (Eqs. (3.167) and
(3.160), respectively) are plotted by dashed and dash-dotted line, respectively. (bottom)
The signal is plotted as a function of @̃ for three representative values of ˜̂ C̃/( ˜̂ + 1).
The signal decreases with ˜̂ C̃/( ˜̂ + 1) and exhibits qualitatively di�erent behaviors. The
asymptotic Debye-Porod formula (1.62) (( ∼ 1/@̃2) is plotted by a dashed line for ˜̂ C̃/( ˜̂ +
1) = 5.

size ℓs of the subintervals. As ˜̂ C̃/( ˜̂ + 1) increases, particles start to cross in-
ternal barriers and travel further. In this intermediate regime, di�usion in the
bulk is e�ectively free with the reduced di�usion coe�cient �∞ and the signal
mainly comes from contributions from the outer barriers, in the Debye-Porod
regime (the corresponding asymptotic formula (1.62) is shown as dashed line
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on the bottom panel). The di�usion-di�raction pattern is still present but much
less pronounced. Finally, when ˜̂ C̃/( ˜̂ + 1) goes to in�nity, particles travel mul-
tiple times through the whole interval and one recovers the limit (3.160), with a
di�usion-di�raction behavior controlled by the total length ! = <ℓs: the signal
as a function of @̃ exhibits peaks spaced by 2c/<.

3.4.7 Summary
In this section, we presented an e�cient method to compute the eigenmodes
of the di�usion operator on a one-dimensional interval segmented by perme-
able barriers, which in turn give access to the di�usion propagator. One can
then compute several di�usion-related quantities such as the dMRI signal for
any pulse sequence or the �rst exit time distribution.

Although the general matrix formalism is applicable to other multi-layered
structures such as concentric cylindrical or spherical shells [268], the main an-
alytical simpli�cations follow from the translation invariance of the Laplacian
eigenmodes which is speci�c to one-dimensional models. In particular we de-
rived some estimates that help us to accurately compute the eigenvalues, even
when they are extremely close to each other. This is the crucial numerical step
that allowed us to deal with heterogeneous structures with hundreds of perme-
able barriers. This e�cient method opens unprecedented opportunities to inves-
tigate the impact of microstructure onto di�usive motion.



Chapter 4

Localization
In the previous chapters we have encountered many di�erent regimes for the
magnetization (see Figs. 1.8 and 1.10). In Sec. 2.3 we have investigated the regime
of short di�usion time ℓd � ℓs and weak di�usion encoding 1�0 � 1 (i.e. ℓd � ℓ6
for extended-gradient and ℓd � ℓ@ for narrow-gradient). In Sec. 3.2, the study of
small compartments led us to the motional narrowing regime ℓs � ℓd and ℓs � ℓ6.
Then in Sec. 3.4 we turned to narrow-gradient pulses and we studied the e�ect
of exchange in the regimes of short-time, long-time, strong and weak position
encoding.

The localization regime has not been discussed yet and is the object of this
last chapter. It emerges in extended-gradient pulse experiments when the gra-
dient length ℓ6 is smaller than any other relevant length scale, i.e. smaller than
the di�usion length ℓ6 � ℓd and smaller than the structural scale ℓ6 � ℓs. In
the case of permeable boundaries, one would impose the additional condition
ℓ6 � ℓ̂ , see Ref. [102]. This regime was �rst described theoretically by Stoller et
al. in a profound yet technical paper devoted to the one-dimensional case (planar
boundaries) [98]. Their results were qualitatively extended to higher dimensions
(i.e., curved boundaries) and applied to explain the phenomenon of di�usive edge
enhancement by de Swiet and Sen [99]. These theoretical �ndings were exper-
imentally con�rmed by Hürlimann et al in 1995 [100]. For about 20 years, the
localization regime was almost completely ignored, probably because of (i) weak
signals; (ii) mathematical technicity; and (iii) an overcon�dence in the validity
of low-1 (perturbative) approaches such as Gaussian phase approximation. Re-
cently, D. Grebenkov has asserted that the localization regime was accessible un-
der moderate experimental conditions for almost any microstructure [101, 102].
Therefore, ignoring the localization regime could lead to misinterpretation of the
measured signal.

We start this chapter with a qualitative description of the phenomenon of
localization. Then follows a pedagogical presentation of the results of Stoller et



158 4. Localization

al., and their extension to curved boundaries. In Sec. 4.3, we turn to bounded
domains and we investigate the peculiar phenomenon of spectral bifurcations
and its consequence on the localization of the magnetization. The next section
is devoted to periodic domains and contains results submitted in [348]. We show
how one can solve numerically the Bloch-Torrey equation from computations on
a single unit cell of the lattice, and we apply this technique to the investigation
of various regimes of dMRI as well as spectral properties of the Bloch-Torrey
operator. Finally, we present in Sec. 4.5 experimental validations in collaboration
with K. Demberg and T. Kuder from German Cancer Research Center (DKFZ),
Heidelberg, Germany, and these results were published in [347].

4.1 Qualitative description of the localization
regime

Before going into the technical details of the localization regime, we ask a simple
question: “why is the magnetization localized at high gradient strength?”. We
shall revise common misconceptions and provide a qualitative explanation for
this behavior. Then we extend this qualitative description to emphasize the dif-
ference between the motional narrowing regime and the localization regime. As
we described in the introduction, the main features of the localization regime
are: (i) the magnetization is localized over the length ℓ6 = (�/�0)−1/3 near
points where the boundary is perpendicular to the gradient, and (ii) the signal
decays as − log ( ∼ ℓ2d/ℓ

2
6 = �

1/3
0 �2/3) , in contrast to the free di�usion decay

− log ( ∼ ℓ6d/ℓ
6
6 = �0�

2) 3, and the motional narrowing decay − log ( ∼ ℓ4s ℓ2d/ℓ
6
6 =

�2!4) /�0 (see Table 1.1 for the de�nition of the length scales ℓd, ℓs, and ℓ6). We
emphasize that at large values of 1�0 = �0�

2) 3, the signal in the localization
regime is orders of magnitude above the signal in the free di�usion regime.

4.1.1 Reduced mean-squared displacement?
The main argument that is commonly put forward to rationalize localization of
the magnetization is that the displacement of particles along the gradient di-
rection is the most reduced at boundaries that are perpendicular to the gradient.
Although this restriction is indeed present, we argue that its e�ect is far too weak
to explain the drastic change in the signal decay in comparison to free di�usion.
In Sec. 2.3.1, we obtained the formula for the mean-squared displacement for a
particle near the boundary, illustrated on Fig. 2.6. The computation reveals that
the mean-squared displacement is reduced at most by 40% of its nominal value.
Although this is a strong e�ect in itself, it cannot explain that the decay of the
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signal would not follow the �0�
2) 3 law anymore. In fact, to be consistent one

would model the signal as free di�usion with an e�ective di�usion coe�cient
� so that the signal would decay as ��2) 3. Therefore, this explanation fails to
reproduce the behavior of the localization regime.

From another viewpoint, the argument of “reduced displacement” implicitly
assumes that the Gaussian phase approximation is valid so that the decay of the
signal is directly related to the variance of the phase and in turn to the mean-
square displacement of particles. However, the distribution of phases is not Gaus-
sian anymore close to a boundary because of velocity correlations introduced by
re�ections on the boundary.

Another �aw in this reasoning is that it would yield a magnetization that is
localized over ℓd and not over ℓ6. Indeed as shown on Fig. 2.6, the mean-squared
displacement is reduced inside a layer of thickness ℓd close to the boundary. Nat-
urally, one would argue that in the regime of ℓd � ℓ6, particles that travel further
than ℓ6 would yield a magnetization too small so that we discard them from the
computation of the signal. This observation is the basis of the next argument.

4.1.2 Competition between con�ned trajectories and
magnetization decay?

This qualitative argument was privately presented to me by V. Kiselev. Let us
consider a single impermeable boundary at G = 0 and introduce a virtual bound-
ary at G = ℓ that particles can freely cross. The number of particles 5 (ℓ) that re-
main con�ned between the two boundaries during the whole gradient sequence
can be simply estimated1 as

5 (ℓ) ∼ ℓ exp
(
−
c2ℓ2d

4ℓ2

)
, (4.1)

and the (non-normalized) signal coming from those particles follows from the
motional narrowing regime in a slab of width ℓ under the hypothesis ℓ � ℓd:

B (ℓ) = 5 (ℓ) exp
(
−
ℓ4ℓ2d

120ℓ66

)
. (4.2)

Then one studies the competition between motional narrowing decay and “leak-
age” of particles outside the virtual slab by maximizing the signal with respect

1This formula is obtained by solving the di�usion equation inside a slab with an absorbing
boundary. Precisely, the long-time behavior 5 (ℓ) ∼ (1|D1)24−_1) results from the computation of
the �rst eigenmode, D1(G) =

√
2/ℓ cos(cG/2ℓ), and the corresponding eigenvalue _1 = �0c

2/4ℓ2.
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to ℓ , that yields ℓ ≈ 2.3 ℓ6 and the signal becomes

B (ℓ) ∼ ℓ6 exp
(
−0.70 ℓ2d/ℓ

2
6

)
. (4.3)

Although the numerical coe�cient is wrong that shows the limits of such a sim-
ple model, this reasoning provides the correct form of the signal. It shows that
the signal is produced by exceptional trajectories of particles that stay close to
the boundaries of the domain. Indeed, the strong di�usion encoding assumption
ℓ6 � ℓd implies that 5 (ℓ)/ℓ is very small for ℓ ∼ ℓ6.

This is an elegant idea that brings additional insight into the mechanisms
behind the localization regime. However, there are several �aws in this argu-
ment. We discard technical details such as the use of the motional narrowing for
non-impermeable boundaries.

The �rst one is to consider a virtual boundary that is perfectly absorbing and
that prevents the entry of particles from the outside. In that regard, it is hard to
give a physical meaning to B (ℓ), since the signal inside the slab should take into
account neighboring particles that enter through the virtual boundary. One could
argue that we discard particles from the outside because of their strongly decayed
magnetization, however this argument fails for two reasons: (i) if ℓ � ℓ6, particles
that come from a distance ∼ ℓ6 may enter the virtual slab without experiencing
a strong decay, and therefore they cannot be neglected; (ii) if ℓ � ℓ6, particles
from the outside have weak magnetization, but so do particles inside, and it is
not obvious whether the former can be neglected with respect to the latter.

The second di�culty is related: why should we maximize B (ℓ) with respect
to ℓ? It would seem more consistent to take into account the signal from the
whole medium by mean of integration over all values of ℓ or something similar.

The third issue is probably the most problematic one: the reasoning could
be applied exactly the same way to any point of the medium, regardless of the
presence of a boundary. Instead of considering a virtual boundary close to the
impermeable boundary, one would consider two virtual boundaries and com-
pute B (ℓ) for this “virtual slab”. The only thing that would change is 5 (ℓ) ∼
exp

(
−c2ℓ2d/ℓ

2
)
, and in turn the numerical coe�cient inside the exponential. This

observation emphasizes the aforementioned contradictions about the de�nition
of B (ℓ).

Even though this reasoning yields the correct form of the signal, it does not
explain why the magnetization is localized at the boundary. In the next para-
graph, we suggest a new qualitative interpretation of the localization regime. We
shall see at some point some similarities with the above idea, that might explain
why it seems to work so well.
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4.1.3 Symmetry breaking and local e�ective gradient
We turn to our own qualitative explanation of the localization regime. We shall
see that the main e�ect of the boundary is not to reduce particles displacements
but a symmetry breaking. This symmetry breaking yields an e�ective magnetic
�eld that is not linear with position but has a V-shape. Then we show how lo-
calization occurs inside this e�ective magnetic �eld.

Figure 4.1: (left) Impermeable boundary and linear magnetic �eld. (right) No boundary
and V-shaped magnetic �eld. Both situations are equivalent according to the method of
images.

For simplicity, we consider a one-dimensional situation, with a barrier at G =

0 and particles di�using inside the half-space G ≥ 0. Using the method of images,
one can remove the boundary provided that each particle on the right half-space
is paired with a “mirror” particle on the left half-space. Therefore, the e�ect
of the impermeable boundary can be taken into account by replacing the linear
magnetic �eld �(G) = �G by a V-shape magnetic �eld �(G) = � |G |, as shown on
Fig. 4.1. Note that in the Bloch-Torrey equation, the magnetic �eld plays the role
of an imaginary potential, by analogy with the Schrödinger equation. Although
it is tempting to make a parallel with localization inside a real potential, it is not
evident that the same conclusion would hold for an imaginary potential.

In order to demonstrate the localization phenomenon, let us write the magne-
tization as an amplitude-phase representation,<(C, G) = �(C, G)48i (C,G) , and write
the Bloch-Torrey equation in terms of �,i :

mC� = �0�
′′ − �0�i

′2 , (4.4a)

mCi = �0i
′′ + �0

�′

�
i′ +� |G | , (4.4b)

where prime denotes derivative with respect to G . The initial condition is �(C =
0, G) = 1 and i (C = 0, G) = 0. The �rst equation states that �(C, G) obeys a
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di�usion equation with a reaction rate �0i
′2. The second equation states that i

obeys a di�usion equation with a force term −�0�
′/� and a source term � |G |.

We emphasize thati (C, G) is a deterministic quantity that should not be confused
with the random particle dephasing q .

Short times

At short times, �(C, G) is nearly constant and the evolution of the magnetization
is dominated by the phase equation

mCi = �0i
′′ +� |G | , (4.5)

whose solution is

i (C, G) = �
∫ C

0

[
G erf

(
G

√
4�0C

′

)
+
√
4�0C

′
√
c

exp
(
− G2

4�0C
′

)]
dC ′ (4.6a)

= �

[
CG erf

(
G
√
4�0C

)
− 2
3
G3

4�0

(
1 − erf

(
G
√
4�0C

))
+ 2
3
√
c

√
4�0C

(
C + G2

4�0

)
exp

(
− G2

4�0C

)]
, (4.6b)

where erf is the Gauss error function

erf (D) = 2
√
c

∫ D

0
4−E

2
dE . (4.7)

The formula for i is rather involved but becomes much simpler after position
and time derivation:

mCi (C, G) = �G erf
(

G
√
4�0C

)
+
√
4�0C√
c

exp
(
− G2

4�0C

)
, (4.8a)

mCi
′(C, G) = � erf

(
G
√
4�0C

)
. (4.8b)

The rate of change of i with time can be interpreted as an e�ective magnetic
�eld averaged by di�usion, and the space derivative of this rate of change is an
e�ective gradient averaged by di�usion. We have plotted these functions on Fig.
4.2. The main e�ect of di�usion is to “smooth” the V-potential over a length ∼ ℓd
near G = 0, resulting in a local parabolic shape. In turn, the e�ective gradient
takes smaller values in this region, that translates into smaller values of i′2. The
results for free di�usion are recovered for |G | � ℓd, where one gets mCi′ = �

and [i′(C, G)]2 = (�C)2. This limits the validity of the above equations to short
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Figure 4.2: Plot of mCi (left), mCi′ (middle), and −i′2 (right) at short times (ℓd � ℓ6).

times such that �0�
2C3/3 � 1, i.e. ℓ6d/3ℓ

6
6 � 1. Indeed, these equations rely on

the assumption that the amplitude of the magnetization remains approximately
constant in space, i.e. that the free di�usion decay far from the boundary is not
too large compared to the weak decay at G = 0. This corresponds to ℓd/ℓ6 = 1.0–
1.25 on Fig. 4.3: the amplitude is practically not a�ected and the phase pro�le
exhibits the rounded V-shape pro�le that we just described.

Intermediate times

When the free di�usion decay cannot be neglected anymore, the evolution of
the magnetization enters a second step that corresponds to intermediate times
(ℓd/ℓ6 = 1.5–1.75 on Fig. 4.3). The free di�usion decay term �0�

2C3 becomes
rapidly very large and the amplitude � decays very fast except at the points
where i′2 is signi�cantly reduced, i.e. everywhere but in a thin layer of width
∼ ℓd ≈ ℓ6. In turn, the “force” −�0�

′/� becomes a strong e�ect that broadens
the phase pro�le. Intuitively, the amplitude of the magnetization becomes much
stronger in the center than to the sides, therefore the di�usion process becomes
dominated by the magnetization �ux from the center to the sides. In competition
with this broadening e�ect, the source term� |G | tends to make the phase pro�le
steeper. Since the force term enters through �0�

′/�i′, one can see that there
is a value of i′ at which both e�ects compensate each other. In parallel, the
evolution of the amplitude � results from the competition of two e�ects that
are di�usion and attenuation. The inhomogeneous attenuation of the amplitude
enhances the e�ect of di�usion, and in turn di�usion tends to homogenize the
amplitude pro�le. Therefore, a balance between these two e�ects is also reached
after some time.
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Increasing time

Increasing time

ℓd = 1.0ℓ𝑔
ℓd = 1.25ℓ𝑔

ℓd = 1.5ℓ𝑔
ℓd = 1.75ℓ𝑔

ℓd = 2.0ℓ𝑔
ℓd = 3.0ℓ𝑔

Figure 4.3: Time evolution of the magnetization pro�le in phase (top) and amplitude
(bottom) representation, for a constant gradient. The barrier is located at G = 0 and the
amplitude and phase pro�les are re�ected with respect to G = 0 according to the method
of images. Refer to the text for description.

Long times

In this �nal step, a dynamic balance between competing e�ects is set (see Fig.
4.3 for ℓd/ℓ6 = 2.0–3.0). Di�usion tends to broaden the amplitude pro�le, but the
strong decay −i′2 destroys the magnetization outside of |G | . ℓ6. Therefore, the
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situation is analogous to that of a slab of width ∼ ℓ6 with absorbing boundaries,
hence the decay − log� ∼ ℓ2d/ℓ

2
6 . The source term � |G | tends to make the phase

pro�le steeper but the force term −�0�
′/� broadens it by “pushing” towards

high |G |. In other words, particles at the center with a (relatively) strong mag-
netization di�use away from the center and dominate particles at the sides that
have a much weaker magnetization. Therefore, the source term� |G | contributes
only up to |G | ≈ ℓ6, and the phase pro�le translates upwards as ∼ �ℓ6C = ℓ2d/ℓ

2
6 .

These conclusions reproduce exactly the behavior of the magnetization in the
localization regime.

Note that similarly to the argument by V. Kiselev, we obtain that at long times
the phenomenon is similar to di�usion inside a slab of width ℓ6 with absorbing
boundaries. In other words, the signal in the localization regime is produced by
rare trajectories that remain close to the boundary at all times. However, we do
not rely on the motional narrowing regime formula and the e�ect of the bound-
ary is explicitly taken into account as a symmetry breaking of the phase pro�le
(more precisely, the phase pro�le becomes even instead of odd that leads to a
region with reduced decay rate i′2). In particular, in the absence of a boundary,
the magnetic �eld pro�le is linear and there is no region of space with a reduced
e�ective gradient therefore there is no localization.

In the next paragraph, we further emphasize the mechanism of the localiza-
tion regime by taking into account the size ℓs of the domain and by investigating
qualitatively the transition between motional narrowing regime and localization
regime.

4.1.4 Localization regime and motional narrowing regime

Figure 4.4: (left) Slab with impermeable boundaries and linear magnetic �eld. (right) No
boundary and periodic triangular pro�le. Both situations are equivalent according to the
method of images.
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We employ the same qualitative description as above, but now we consider
a �nite slab of width ℓs. As illustrated on Fig. 4.4, the method of images yields
a periodic triangular magnetic �eld, with period 2ℓs. To obtain the phase pro�le
i , the e�ective magnetic �eld mCi and the e�ective gradient mCi′ averaged by
di�usion at short times (ℓd � ℓ6), we solve the di�usion equation for the phase
pro�le without the term �0�

′/� and get

i (C, G) =
ℓ3s

ℓ36

∞∑
==0

(−1)=
4c4(= + 1/2)4 sin ((2= + 1)cG/ℓs)

[
1 − 4−(2=+1)2c2ℓ2d/ℓ2s

]
, (4.9)

mCi (C, G) = �ℓs
∞∑
==0

(−1)=
c2(= + 1/2)2 sin ((2= + 1)cG/ℓs) 4

−(2=+1)2c2ℓ2d/ℓ
2
s , (4.10)

mCi
′(C, G) = �

∞∑
==0

2(−1)=
c (= + 1/2) cos ((2= + 1)cG/ℓs) 4

−(2=+1)2c2ℓ2d/ℓ
2
s . (4.11)

The last two functions are plotted on Fig. 4.5. One can see that as time increases,
the e�ective �eld and gradient become rounder and weaker because of compen-
sation between positive and negative parts. Therefore, one is naturally led to dis-
tinguish between two regimes, depending on the range of validity of the above
formulas, i.e. the time from which the amplitude decay plays a signi�cant role.
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ℓd = 0.1ℓs
ℓd = 0.2ℓs
ℓd = 0.3ℓs
ℓd = 0.4ℓs

−2 −1 0 1 2

x/ℓs

∂
tϕ

′

Gx−Gx

−G
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Figure 4.5: E�ective magnetic �eld (left) and e�ective gradient (right) averaged by di�u-
sion for ℓd � ℓ6, at various ratios ℓd/ℓs. As time increases, both functions become rounder
but also weaker because of compensation between positive and negative parts. Note that
the slab corresponds to −1/2 ≤ G/ℓs ≤ 1/2 and is repeated periodically according to the
method of images.

Localization regime (large slab, strong gradient)

Let us �rst consider the case ℓ6 � ℓs corresponding to the localization regime. For
example, if ℓ6 = 0.1ℓs, the above formulas for i , mCi and mCi′ are valid until ℓd ≈
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0.1ℓs, after which the amplitude decay becomes signi�cant. This corresponds
to the light yellow curves on Fig. 4.5. Since ℓd � ℓs, the e�ective magnetic �eld
pro�le is close to triangular with a small parabolic part, similarly to the left panel
of Fig. 4.2. The discussion of the above section applies without any modi�cation
to this regime, and the magnetization is localized at the boundaries.

Motional narrowing regime (small slab, weak gradient)

The opposite regime is ℓs � ℓ6 and corresponds to the motional narrowing
regime. In that case, the above formulas for mCi , mCi′ are valid over a very long
time range (corresponding to the dark brown curves on Fig. 4.5). In particular,
for ℓs . ℓd � ℓ6, Eq. (4.9) becomes

i (C, G) ≈
ℓ3s

ℓ36

∞∑
==0

(−1)=
4c4(= + 1/2)4 sin

(
(2= + 1)cG/ℓs

)
(4.12a)

=
ℓ3s

24ℓ36

G

ℓs

(
3 − 4G

2

ℓ2s

)
, (−0.5 ≤ G/ℓs ≤ 0.5) , (4.12b)

from which one obtains the decay rate

�0i
′2 ≈ 1

64
�0ℓ

4
s

ℓ66

[
1 −

(
2G
ℓs

)2]2
,

1
ℓs

∫ ℓs/2

−ℓs/2
�0i

′2(C, G) dG ≈
�0ℓ

4
s

120ℓ66
, (4.13)

that yields an average signal decay ( ≈ exp(−(1/120)ℓ2dℓ
4
s /ℓ66 ), which is the exact

result for the motional narrowing, see Refs [3, 79, 81] and Sec. 1.2.2 and Sec.
4.3.1 below. At long times, the decay of the signal becomes signi�cant, and one
may wonder about the validity of the previous result. Actually, one can see that
the decay of the signal occurs on a time scale ℓ66 /(�0ℓ

4
s ) much larger than the

di�usion time scale ℓ2s /�0. As a consequence the di�usion term in the equation
for the amplitude �attens any inhomogeneity in the amplitude pro�le. In turn,
since the amplitude pro�le is nearly homogeneous at all times, the formula (4.12a)
for i , that relies on neglecting the force term �0�

′/�, is always valid at long
times.

Breakdown of Gaussian phase approximation

As we discussed in Sec. 1.2.2, the motional narrowing regime may be obtained
from the central limit theorem applied to successive explorations of a bounded
domain [81]. The main hypothesis behind this reasoning is that any particle
“loses memory” of its initial position after a time∼ ℓ2s /�0. This hypothesis allows
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one to treat the acummulated phases over successive explorations of the domain
as independent from each other, that is a crucial assumption for the central limit
theorem to hold. This argument implies that the distribution of the random phase
q is Gaussian. In turn the signal is a Gaussian function of the gradient strength:
− log ( ∼ �2!4) /�0. Since this reasoning relies on the central limit theorem,
it seems very robust and it is a priori not clear why it would break down if the
gradient length is much smaller than the pore diameter (i.e., ℓ6 � ℓs).

The above computation reveals that in the localization regime, a small frac-
tion of particles, of order exp(−ℓ2d/ℓ

2
6 ), remains close to the boundary and dom-

inates the signal due to the local symmetry breaking caused by the boundary.
In terms of accumulated phase, this means that the velocity correlations intro-
duced by the boundary make the phase distribution non-Gaussian for particles
close to the boundary. At high gradient, these velocity correlations are strongly
weighted by the gradient (see Eq. (1.27c)) and yield a signi�cant contribution.
Note, however, that the regime ℓ6 � ℓs � ℓd would yield a very weak signal, so
that this discussion is of purely theoretical interest.
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4.2 Localization at a single boundary
In this section we consider a porous medium with pores of diameter ℓs and we
assume that the di�usion length ℓd and the gradient length ℓ6 are both much
smaller than ℓs. By following the reasoning depicted on Fig. 2.5, we consider
the e�ect of a single impermeable boundary on the magnetization. Contrary to
Sec. 2.3.1 where the signal under weak di�usion encoding was governed by the
variance of spin dephasing q , we compute non-perturbatively the magnetization
and signal and we study in particular the regime of strong di�usion encoding
(i.e., ℓ6 � ℓd). We consider �rst the case of a planar boundary, then we take into
account the e�ect of curvature [94, 95, 98, 99].

4.2.1 Planar boundary
Here, we revisit the seminal work by Stoller et al [98] and present results in a
simpler form (see also [94] for a rigorous mathematical treatment). Let us assume
that the boundary is the plane G = 0 and that di�usion occurs in the half-space
G ≥ 0. The initial magnetization is uniform and equal to 1. Note that the to-
tal signal is in�nite because of unbounded geometry, however this is of no con-
cern because we are interested in the magnetization at a given point<(), G,~, I),
which is always �nite.

In that case di�usion along G ,~, and I are independent and the magnetization
after a single gradient pulse of amplitude G and duration X can be represented as

<(X, r) =<1D(X, G) exp(8�~X~ − �0�
2
~X

3/3) exp(8�IXI − �0�
2
IX

3/3) , (4.14)

where the contributions from �~,�I are given by the expressions for free di�u-
sion. In the following, we compute <1D, i.e. the magnetization pro�le along G .
To simplify our notations, we assume that the gradient is along G , i.e. �G = �

and <1D = <. We �rst compute the e�ect of a single extended gradient pulse,
then we obtain the expression of the magnetization after two opposite pulses.

One-dimensional Bloch-Torrey equation

To compute the magnetization pro�le<, we have to solve the one-dimensional
Bloch-Torrey equation

mC< = �0m
2
G< + 8�G< , (4.15a)

mG< |G=0 = 0 . (4.15b)

In order to put this equation in a dimensionless form, we perform the scaling:

G̃ = G/ℓ6 , C̃ = �0C/ℓ26 , (4.16)
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and we obtain the dimensionless BT equation:

m̃C< = m̃2G< + 8G̃< . (4.17a)

m̃G<
��
G̃=0 = 0 . (4.17b)

Eigenmode equation

To solve Eq. (4.17a), we look for eigenmodes E= (G̃) of the one-dimensional di-
mensionless Bloch-Torrey operator

B̃ = −m̃2G − 8G̃ , (4.18)

in order to express <(C̃ , G̃) as an eigenmode decomposition. We postpone until
later the validity of this decomposition, i.e. the completeness of the eigenmode
family, and we solve

− E′′ − 8G̃E = ˜̀E . (4.19a)
E′|G̃=0 = 0 , (4.19b)

for a complex coe�cient ˜̀. Note that the minus sign in the de�nition of B̃ is
here to ensure a positive real part of ˜̀, as we have seen in Sec. 1.2.4. Now we
make the abstract change of variables

b = 8G̃ + ˜̀ . (4.20)

The complex variable b runs along a vertical semi-axis in the complex plane when
G̃ goes from 0 to∞. With this change of variables, the eigenmode equation (4.19)
becomes

d2E
db2
− bE = 0 (4.21a)

dE
db

����
b=− ˜̀

= 0 , (4.21b)

that is the Airy equation.
Let us put aside the boundary condition (4.21b) for the moment and discuss

the general solution of Eq. (4.21a). Since it is a second-order linear di�erential
equation, any solution may be represented as a linear combination of two funda-
mental solutions. A particular solution is the Airy function that can be written
as an improper integral for real argument:

Ai(b) = 1
2c

∫ ∞

−∞
48bD48D

3/3 dD , (b ∈ R) . (4.22)
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For a complex argument, the integral should be performed along a path in the
complex plane that goes to in�nity inside the sextants 0 < arg(D) < c/3 and
2c/3 < arg(D) < c , so that the factor 48D

3/3 decays fast enough to compensate
for the exponential growth of 48bD . With this de�nition, the Airy function is
real-valued for real arguments and is an entire function over the whole complex
plane. Moreover, one can check that the Airy equation (4.21a) is invariant by
b → 428c/3b , so that one can form two new solutions Ai(428c/3b) and Ai(4−28c/3b).
Naturally, these three solutions are not independent and one has

Ai(b) + 428c/3Ai(428c/3b) + 4−28c/3Ai(4−28c/3b) = 0 , (4.23)

for any complex number b . Since b depends on the position G via 8G̃ , we shall see
that it is more convenient to choose Ai(4±28c/3b) as fundamental solutions and
we de�ne two functions

�r(I) = Ai(84−28c/3I) , �l(I) = Ai(8428c/3I) . (4.24)

One can see that �r(G̃−8 ˜̀) and �l(G̃−8 ˜̀) are solutions of Eqs. (4.19a) without tak-
ing into account the boundary condition at G̃ = 0. Moreover, they are symmetric
of each other in the sense that

�l(I) = �r(−I∗)∗ . (4.25)

We show in Appendix C.2 that �r(G̃−8 ˜̀) is (i) a fast decaying function for G̃ →∞,
with − log( |�r |) ∼ G̃3/2, and (ii) a fast diverging function for G̃ → −∞, with
log( |�r |) ∼ (−G̃)3/2. According to the symmetry between �r and �l expressed
by Eq. (4.25), the same conclusion holds for �l(G̃ − 8 ˜̀) but with opposite G̃ , i.e.
it decays for G̃ → −∞ and diverges for G̃ → ∞. One can see immediately that
�r(G̃−8 ˜̀) is the only solution of Eq. (4.19b) that is bounded at∞ and that �l(G̃−8 ˜̀)
is the only solution that is bounded at −∞. This is the reason for our choice of
fundamental solutions (the subscript “r” stands for “right”, and the subscript “l”
stands for “left”).

We recall that di�usion takes place in the “right” half-space G̃ ≥ 0. Since we
are looking for an eigenmode that can be normalized, we conclude that

E = V�r(G̃ − 8 ˜̀) , (4.26)

with V a normalization coe�cient that is explicited in the next paragraph. The
eigenvalue ˜̀ is determined by the boundary condition (4.19b) � ′r (−8 ˜̀) = 0, yield-
ing the solutions

˜̀= = 428c/30= , = = 1, 2, . . . , (4.27)
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where 0= are zeros of Ai′(I), 01 = −1.019, 02 = −3.248, 03 = −4.820, 04 = −6.163,
05 = −7.372, etc. One can show that there are in�nitely many zeros and that
they are all real and negative. Note that the eigenvalues ˜̀= have all a positive
real part, as we claimed above.

Properties of the eigenmodes

Let us summarize the results so far. We have looked for eigenmodes of the di-
mensionless BT equation (4.19a). If one goes back to the original BT equation,
this is equivalent to solving

�0E
′′
= + 8�GE= = −`=E= , (4.28a)

E′= (G = 0) = 0 . (4.28b)

We have obtained that there are in�nitely many pairs (E=, `=) that are solutions
and they are given by

E= = V=�r

(
G

ℓ6
− 48c/6 |0= |

)
, (4.29a)

`= =
�0

ℓ26
4−8c/3 |0= | , (4.29b)

where 0= are the zeros of the derivative of the Airy function [98, 99]. The fast
decay of �r for G/ℓ6 � 1 con�rms a posteriori the validity of the local computation
(i.e., neglecting the in�uence of other boundary elements in the domain).

As we discussed in Sec. 1.2.4, the normalization condition of the eigenmodes
is

∫
E2= = 1. Although E= is complex, the normalization does not involve the

absolute value of E= because of the non-Hermitianity of the BT operator. We
show in Appendix C.1 that the normalization coe�cient V= is given by

V−2= = 48c/6ℓ6 |0= |Ai2(0=) . (4.30)

Similarly to the computation of the normalization coe�cient in the previous
chapter (Sec. 3.4.2), the computation of V= allows us to prove at the same time
that the eigenmode family is complete. Therefore, the behavior of the magneti-
zation results from the behavior of the eigenmodes E=, and in turn of the function
�r.

On Fig. 4.6 we have plotted �r(I) on the complex plane with separate plots
for Re(�r(I)), Im(�r(I)), and |�r(I) |. These plots are consistent with the asymp-
totic behavior discussed previously: one can see that �r is an oscillating function
with an amplitude that decays to zero very fast if −c/6 < arg(I) < c/2 and
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Figure 4.6: Real part, imaginary part, and absolute value of the fonction �r(I) in the
complex plane. Positive values are displayed in red and negative values are displayed in
green. A few contour lines in gray are plotted to guide the eye. Zeros of �r are indicated
by squares and zeros of its derivative are indicated by crosses. Eigenmodes of the BT
equation (4.19a) are given by � (G̃ − 8 ˜̀=) and we have represented the line I = G̃ − 8`1 as
a dashed blue line.

diverges very fast in the rest of the complex plane, with the exception of the line
arg(I) = −5c/6 where �r is a slowly decaying real-valued oscillating function.
Each eigenmode is given by the values of �r(I) on a horizontal line I = G̃ − 8 ˜̀=.
The boundary condition (4.21b) is ensured if (i) this line goes through a zero of
� ′r (I) and if (ii) this zero corresponds to the position of the barrier G̃ = 0 (the zeros
of � ′r are indicated by crosses). Note that condition (i) imposes the real part of `
and condition (ii) imposes the imaginary part of `. For example, if the barrier is
moved to G = G0 then all eigenvalues `= are shifted by −8�G0 to satisfy condition
(ii). As the order = of the eigenmode increases, the line I = G̃ − 8 ˜̀= goes down in
the complex plane, and the mode E= displays increasingly large oscillations, with
a maximum that gets further away from the boundary.

This behavior is illustrated on Fig. 4.7 where the �rst four modes are plotted
separately. One can see that the modes are localized over a few ℓ6 at an increasing
distance from the boundary at G̃ = 0 and with larger and more numerous oscilla-
tions as= increases. Additionally, we have plotted the asymptotic formulas (C.18)
and (C.19) as dashed and dotted lines. Surprisingly, Eq. (C.18) approaches the ex-
act modes even at moderate values of G̃ . For small values of G̃ , the argument of
G̃ − 8 ˜̀= is close to 5c/6 and Eq. (C.19) reproduces the modes very well, except
for the �rst one (not shown). Note that for = = 3 and = = 4, both asymptotic
formulas are visually undistinguishable, however deviations occur at low values
of G̃ . In Appendix C.2, we show that the eigenmodes obey approximately the
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Figure 4.7: First eigenmodes of the one-dimensional BT operator. The vertical dash-
dotted lines indicate the approximate center of symmetry of each mode, which is also the
position of maximal amplitude, and the horizontal double arrows represent the typical
width of each mode (see Eq. (4.31) and Appendix C.2). It is not shown for = = 1 since
asymptotic formulas are grossly inaccurate in that case.
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symmetry:

E=

(
(
√
3|0= | − n=)ℓ6 − G

)
≈ E∗= (G) , n= =

c

6

√
2
|0= |

. (4.31)

The corresponding center of symmetry is represented as a vertical dashed-dotted
line and it is visually consistent except for = = 1 (not shown). Finally, we com-
pute in Appendix C.2 that the typical width of the eigenmode E= is 4( |0= |/6)1/4,
and we have plotted is as a double arrow except for= = 1 for which the formula is
inaccurate. Interestingly, the width of the eigenmode increases with =, however
much slower than its average position G=. We conclude that high-order eigen-
modes are localized near the boundary but not at the boundary, as it is illustrated
on Fig. 4.7.

Magnetization

In the previous paragraphs, we have solved the Bloch-Torrey equation for a con-
stant gradient � . Now we consider the magnetization resulting from two gra-
dient pulses ±� of duration X without o�-gradient di�usion time (i.e., the total
duration is) = 2X). From the knowledge of the eigenmodes E= (G), one can com-
pute the magnetization using Eq. (1.86d), reproduced here for convenience:

<() = 2X, r) =
∑
=′

∑
=

(1|E∗=) (E∗= |E=′)E=′ (G)4−) (`
∗
=+`=′)/2 , (4.32)

where we recall that (5 |6) stands for the integral of 5 6 over the whole domain
(here the half-line G ≥ 0). Even by replacing E= with asymptotic formulas (see
Appendix C.2), the prefactors (1|E∗=) (E∗= |E=′) do not admit a closed expression,
that prevents one from performing the summation. In other words, the above
expression is not a convenient representation at short times when many terms
contribute to the sum.

The spacing between the �rst two eigenvalues is given by:

Re(`2) − `1) ) =
|02 | − |01 |

2

ℓ2d

ℓ26
, (4.33)

therefore if ℓd � ℓ6 (i.e., long and strong gradient pulse) all terms with =, =′ > 1
are negligible compared to the �rst term (with = = =′ = 1):

<(), G) = 21E1(G) exp
(
− |01 |

2

ℓ2d

ℓ26

)
+ . . . , (4.34)
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where 21 = (1|E∗1) (E∗1 |E1). The above formula may seem paradoxical because it
yields a �nite signal. Far from the boundary (i.e., G � ℓd) the magnetization
should be given by the free di�usion expression, i.e.< ≈ exp(−ℓ6d/ℓ

6
6 ). Although

this quantity is extremely small because of ℓd � ℓ6, it is constant and its integral
over the whole half-line is in�nite. This mathematical paradox is discussed in
Appendix C.2. Naturally, if one integrates the magnetization over a �nite domain,
the signal is at all times �nite and the paradox disappears.

Hence, the above equation shows that in the regime ℓd � ℓ6, the signal is
dominated by the contribution from the �rst eigenmode that is localized at the
boundary and follows the asymptotic decay:

( = �1ℓ6 exp

(
− |01 |

2

ℓ2d

ℓ26

)
(4.35a)

= �1

(
�0

�

)1/3
exp

(
−|01 |�2/3�1/3X

)
, (4.35b)

where the second equality emphasizes the “uncommon” decay as �2/3. The
prefactor �1 ≈ 5.888 is obtained by numerical computation of the integrals
| (1|E1) |2(E1 |E∗1) and we recall that |01 | ≈ 1.0188. This formula was �rst reported
and experimentally con�rmed in Ref. [100]. It gives the decay of the signal for
the gradient perpendicular to the boundary. In the case of general gradient di-
rection (4.14), the signal after two pulses is

( = �1ℓ6 exp
(
−|01 |�2/3

G �1/3X
)
exp

(
−2
3
�2
~�X

3
)
exp

(
−2
3
�2
I�X

3
)
. (4.36)

Since the decay caused by �~ and �I is much faster than that caused by �G ,
we conclude that the signal is the strongest for a gradient perpendicular to the
boundary.

4.2.2 Curved boundary
The previous computation was done under the assumption that the di�usion
length and the gradient length are both su�ciently short so that the curvature of
the boundary can be neglected. However, it is not clear a priori if both conditions
are required. Moreover, according to Eq. (4.36) we expect the magnetization to be
the strongest near the point where the boundary is perpendicular to the gradient.
Therefore, there are two localization length scales involved: (i) localization in the
direction perpendicular to the boundary over the length ℓ6, and (ii) localization
in the direction parallel to the boundary over the length ℓ6,‖ . The latter is the
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object of this subsection. We shall derive results formerly obtained by de Swiet
and Sen in [99] and extend their analysis to higher-order correction terms (see
also Ref. [95] for rigorous results in two dimensions).

Bloch-Torrey equation near a curved boundary

As in the previous section, we assume that the gradient direction is along G and
we denote its amplitude by � without subscript G to simplify the notations. We
perform a local computation near a point where the gradient direction is perpen-
dicular to the boundary. This point is now chosen as our origin and we denote
by '1 and '2 the principal curvature radii of the surface at that point. We assume
that '1 and '2 are �nite but we make no hypothesis about their sign. Moreover,
we choose the axes ~1, ~2 along the principal curvature directions (see Fig. 4.8).
In all the computation that follows, we assume that G,~1, ~2 are small in absolute
value compared to |'1 |, |'2 |, and equality signs should be understood “up to a
negligible higher-order term”.

The boundary is locally described by the equation

G = −
~21

2'1
−
~22

2'2
. (4.37)

Note that G = 0 along two lines if '1 and '2 have opposite signs, however the gra-
dient is perpendicular to the boundary only at ~1 = ~2 = 0 since the component
of the inward normal vector n are

=1 =
~1

'1
, =2 =

~2

'2
. (4.38)

These equations imply a sign convention for G and '1, '2, depicted on Figs 4.8
and 4.9.

Now we perform a change of coordinates in which the boundary is �at, i.e.
we choose a new coordinate A as the distance to the boundary

A = G +
~21

2'1
+
~22

2'2
. (4.39)

To this coordinate is associated a unit vector er that coincides with the inward
normal vector n on the boundary. Therefore, the Laplace operator in the coordi-
nates A,~1, ~2 is expressed as

∇2 = ∇ · (er mA + e1 m~1 + e2 m~2) (4.40a)

= m2A + (∇ · er) mA + m2~1 + m
2
~2

(4.40b)

= m2A +
(
1
'1
+ 1
'2

)
mA + m2~1 + m

2
~2
, (4.40c)
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𝐶1

𝐶2

𝑅1 > 0

𝑅2 < 0

𝑦1𝑦2

𝑥, 𝑟

𝒏

Figure 4.8: A curved boundary in three dimensions with the curvature centers �1,�2,
the corresponding curvature radii '1, '2, with explicit sign convention, the coordinates
~1, ~2, and the inward normal vector n as an illustration of Eq. (4.38). Di�usion takes
place in the half-space A ≥ 0 (upper part of the �gure).

where we used Eq. (4.38) to compute the divergence of er close to the boundary.
The gradient term becomes

8�G = 8�A − 8 �
2'1

~21 − 8
�

2'2
~22 . (4.41)

To simplify our notations, we introduce

�1 =
�

2'1
, �2 =

�

2'2
, � =

1
2'1
+ 1
2'2

. (4.42)
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𝑥, 𝑟

𝑅 < 0

𝑥, 𝑟

𝑅 > 0

𝑥 = 0 𝑥 = 0

Figure 4.9: Sign convention for the curvature radius and the orientation of axes G and A .
The shape of the eigenmode is schematically pictured as a blue shaded area. For ' < 0,
the eigenmode spreads more to the right (i.e., towards positive values of G, A ) than for
' > 0.

The Bloch-Torrey equation at a curved boundary becomes:

mC< =
[
�0(m2A + 2�mA ) + 8�A

]
< +

[
�0m

2
~1
− 8�1~

2
1

]
< +

[
�0m

2
~2
− 8�2~

2
2

]
< ,

(4.43a)

mA< |A=0 = 0 . (4.43b)

There are several advantages to this new formulation compared to the Bloch-
Torrey equation in Cartesian coordinates. The curvature of the boundary enters
explicitly as coe�cients of the di�erential equation instead of implicitly through
the boundary condition. Moreover, the di�erential equation and the boundary
condition exhibits a separation of variables (emphasized by the brackets). There-
fore, one can look for Bloch-Torrey eigenmodes and eigenvalues in the form

E=,;1,;2 (A,~1, ~2) = 5= (A )6;1 (~1)ℎ;2 (~2) , `=,;1,;2 = Z= + [;1 + \;2 , (4.44)

where =, ;1, ;2 are three indices and (5=, Z=), (6;1, [;1), (ℎ;2, \;2) satisfy

−
[
�0(m2A + 2�mA ) + 8�A

]
5= = Z= 5= , 5 ′= (0) = 0 , (4.45a)

−
[
�0m

2
~1
− 8�1~

2
1

]
6;1 = [;16;1 , (4.45b)

−
[
�0m

2
~2
− 8�2~

2
2

]
ℎ;2 = \;1ℎ;2 , (4.45c)

with the additional condition that all functions are bounded at in�nity. Moreover,
if the initial condition<(C = 0, A , ~1, ~2) can be written as a product of the same
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form, then this remains true at all times, and one needs to solve three separate
one-dimensional partial di�erential equations that simpli�es the problem a lot.
This is especially true for a uniform initial condition, that is the most common
situation. In the following paragraph, we solve the eigenmode equations (4.45a)
and (4.45b) and we discuss the corrections due to the curvature of the boundary.

Eigenmodes for a curved boundary

Let us start with the radial eigenmode equation (4.45a). One can see that it is
nearly the same as the one-dimensional equation (4.28b) with an additional term
2�0�mA 5=. In the previous subsection we obtained that the eigenmodes of the
one-dimensional equation are localized over the length ℓ6. Therefore a gross
estimation of 2�0�mA 5= compared to �0m

2
A 5= implies that is is a small correction

if �ℓ6 � 1. This condition is ensured if ℓ6 � |'1 |, |'2 |, that we assume now. In
that case one may look for an approximate eigenpair as a perturbation of Eqs.
(4.29a) and (4.29b):

5= (A ) = V=�r(A/ℓ6 − 48c/6 |0= |) + X5= (A ) , Z= =
�0

ℓ26
4−8c/3 |0= | + XZ= , (4.46)

where X5= and XZ= are small compared to 5= and Z=, respectively. Note that this
notation should not be confused with the pulse duration X . For brevity, we de-
note the eigenmode and eigenvalue without correction term by 5 (0)= and Z (0)= . By
injecting this form into the eigenmode equation (4.45a) and discarding second-
order terms, we get the equation

− �0X5
′′
= − 8�AX5= − Z

(0)
= X5= = XZ= 5

(0)
= + 2�0� 5

(0)
=

′
, (4.47a)

X5 ′= (0) = 0 , X5= bounded at ∞ . (4.47b)

To solve the di�erential equation while taking into account the boundary con-
dition, we project it onto the eigenbasis of the one-dimensional Bloch-Torrey
equation. Thus, we write

X5= =
∑
=′
2=,=′ 5

(0)
=′ (4.48)

and the equation on X5= translates into the following equations on 2=,=′ and XZ=:

(Z (0)
=′ − Z

(0)
= )2=,=′ = 2�0�3=,=′ = ≠ =′ (4.49a)

0 = XZ= + 2�0�3=,= , (4.49b)

where

3=,=′ =

∫ ∞

0
5
(0)
=

′
(A ) 5 (0)

=′ (A ) dA . (4.50)
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Equation (4.49b) yields the formula for XZ=

XZ= = −
2�0�

ℓ6
V2=

∫ ∞

0
� ′r (A/ℓ6 − 48c/6 |0= |)�r(A/ℓ6 − 48c/6 |0= |) dA (4.51a)

= �0�V
2
=�

2
r (−48c/6|0= |) (4.51b)

= 4−8c/6
�0�

ℓ6 |0= |
. (4.51c)

One can see that XZ=/Z= ∼ ℓ6� � 1, that con�rms a posteriori the validity of the
above expansion. For conciseness, we present the computation of 3=,=′ for = ≠ =′

in Appendix C.4. The result reads

3=,=′ =
4−8c/6

ℓ6
√
0=0=′ (0=′/0= − 1)

, (4.52)

so thatX5= may be expressed as a series of Airy functions with explicit coe�cients.

Now we turn to the equation for the lateral part (4.45b). To simplify our
notations, we discard temporarily the subscript “1”. Let us introduce the length
scale

ℓ6,‖ =
(
2|' |ℓ36

)1/4
, (4.53)

and perform the rescaling ~̃ = ~/ℓ6,‖ , [̃; = [;ℓ
2
6,‖/�0. The eigenmode equation

takes the dimensionless form

− 6′′
;
± 8~̃26; = [̃;6; , (4.54)

that is the time-independent equation of a complex quantum harmonic oscillator
and where the ± sign is the sign of '. The solutions of this equation are formally
identical to the real quantum harmonic oscillator with the change ~̃ → 4∓8c/8~̃
and [̃; → 4∓8c/4[̃; , that yields

6; (~) =  ; exp
(
−4±8c/4~̃2/2

)
�;−1

(
4±8c/8~̃

)
, (4.55a)

[̃; = 4
±8c/4(2; − 1) , (4.55b)

where �; are Hermite polynomials (in particular, �0(I) = 1) and  ; are normal-
ization coe�cients given by

 −2
;

= 4∓8c/8 2;−1(; − 1)!
√
c . (4.56)

We have plotted the functions 6; (~̃) for ; = 1, 2, 3, 4 on Fig. 4.10. These modes
are qualitatively similar to the eigenmodes of the real quantum harmonic oscilla-
tor. As the index ; increases, the number of oscillations and the lateral expansion
of the modes increase.
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(ỹ
)

 

 
Real part

Imaginary part

Figure 4.10: Lateral part of the �rst eigenmodes at a curved boundary (see description in
the text).
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Magnetization at a curved boundary

We obtained that the magnetization can still be represented as a spectral decom-
position and that the eigenmodes are indexed by three integers =, ;1, ;2 that con-
trol the extension and oscillation of the eigenmode along A,~1, ~2, respectively.
The spectrum is given by

`=,;1,;2 = 4
−8c/3�0

ℓ26
|0= | + 4±8c/4

(2;1 − 1)�0

ℓ2
6,‖,1

+ 4±8c/4 (2;2 − 1)�0

ℓ2
6,‖,2

+ 4−8c/6 �0�

|0= |ℓ6
(4.57)

= 4−8c/3�1/3
0 �2/3 |0= | + 4±8c/4

(2;1 − 1)�1/2
0 �1/2

(2|'1 |)1/2

+ 4±8c/4
(2;2 − 1)�1/2

0 �1/2

(2|'2 |)1/2
+ 4−8c/6

�
2/3
0 �1/3

2|0= |
(
'−11 + '−12

)
, (4.58)

where the ± signs are the signs of the curvature radii '1 and '2 (see also Refs.
[95, 99]). The interpretation of those signs follows from the interpretation of
−Im(`=,;1,;2)/� as the average position of the eigenmode (see Sec. 1.2.4). The
imaginary part of the correction terms has the same sign as '1 and '2, respec-
tively. If '1 is positive (convex boundary), the mode spreads more to the left (i.e.,
towards negative values of G ) than in the opposite case of negative '1 (concave
boundary), as illustrated on Fig. 4.9.

A second point is that the real part of the eigenvalues is increased by the cur-
vature of the boundary. This implies that the magnetization and the signal decay
faster if the boundary is curved than if it is �at. We interpret this point by relat-
ing it to the remark that the decay of the signal for the planar boundary is faster
if the gradient is not perpendicular to the boundary. Since a curved boundary is
perpendicular to the gradient only at one point, it follows that the signal decays
faster than for the planar boundary where the gradient is perpendicular at every
point of the boundary.

The lateral part of the eigenmodes is localized over the length scale ℓ6,‖,1 along
~1 and over ℓ6,‖,2 along ~2. Therefore, as we claimed above, the curvature of
the boundary introduces a new localization length that di�ers from the radial
localization length ℓ6. Note that these results were obtained under the condition
that ℓ6 � |'1 |, |'2 |. This condition implies in particular that ℓ6,‖ is larger than ℓ6.
However, the ratio ℓ6,‖/ℓ6 = (2|' |/ℓ6)1/4 increases slowly with |' |/ℓ6 because of
the 1/4 exponent.

Let us now investigate the role of ℓd. To simplify the discussion, we discard
one of the curvature radii in the following. In other words, we consider a two-
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dimensional situation which is equivalent to setting '2 = ∞ (e.g., a cylinder).
We shorten our notations again by dropping the subscript “1” in the formulas.
The eigenvalues with the lowest real part are given by `1,; , at least for the �rst
values of ; . In particular, the spacing between the �rst and the second eigenvalue
is given by

Re(`1,2) − `1,1) ) =
√
2
ℓ2d

ℓ2
6,‖

. (4.59)

This formula should be contrasted with that for a planar boundary (Eq. (4.33))
that involved ℓ2d/ℓ

2
6 . The interpretation of these two formulas is the following.

The magnetization is initially uniform, hence delocalized. When time increases
and reaches the value ℓ26 /�0, the eigenmodes with = > 1 have signi�cantly de-
cayed and the magnetization pro�le does not evolve anymore in the radial direc-
tion. In other words, at that time the magnetization is fully localized in the di-
rection perpendicular to the boundary. However, several eigenmodes with = = 1
and ; = 1, 2, . . . may have a signi�cant amplitude. Therefore the magnetization
is delocalized in the direction parallel to the boundary. When the time is larger
than ℓ2

6,‖/�0, then all modes with = > 1 and ; > 1 become negligible and the mag-
netization is also fully localized in the direction parallel to the boundary. At later
times the magnetization pro�le does not evolve anymore and the signal decays
exponentially with time with the rate Re(`1,1).

Figure 4.11: Absolute value of the transverse magnetization for increasing pulse duration
and �xed gradient computed with a matrix formalism. (a) ℓd/ℓ6 = 0.84: the magnetization
is nearly uniform inside the disk; (b) ℓd/ℓ6 = 1.1: the magnetization starts to localize along
the gradient direction but remains nearly uniform along the boundary. (c) ℓd/ℓ6 = 1.3: the
magnetization is completely localized along the gradient direction and starts to shrink
along the boundary; (d) ℓd/ℓ6 = 2.0 (so that ℓd/ℓ6,‖ = 1.0): the magnetization is localized
both along the gradient (with size ℓ6) and perpendicular to the gradient (with size ℓ6,‖).

We show on Fig. 4.11 the magnetization pro�le inside a disk for increasing
pulse duration and �xed gradient strength. The radius of the disk is ' = 8ℓ6 so
that ℓ6,‖ = 2ℓ6. One can see clearly the localization in two steps, �rst in the direc-
tion perpendicular to the boundary, then in the direction parallel to the boundary.
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Therefore, one concludes that the localization regime emerges partially at
time ℓ26 /�0 and is fully established at time ℓ2

6,‖/�0. However, this a�rmation
seems paradoxical because in the limit of in�nite curvature radius ', the time
ℓ2
6,‖/�0 goes to in�nity therefore the localization regime would never be estab-

lished for a �at boundary. We investigate this (singular) limit in Appendix C.3.
We show that one can sum the eigenmode expansion in the direction parallel to
the boundary and recover the results of the previous subsection.
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4.3 Bounded domain

Numerous theoretical, numerical, and experimental works have been devoted to
studying the BT operator and the dMRI signal in bounded domains (intracellular
space, isolated pores) [20, 22, 24, 79–81, 84, 87, 88, 99]. On theoretical side, the
linear potential in the BT operator is a bounded perturbation of the (unbounded)
Laplace operator, which has a discrete spectrum in bounded domains. As a conse-
quence, the BT operator also has a discrete spectrum, and its spectral properties
can be analyzed by rather standard mathematical tools [94, 95, 98–100, 102, 104].
At low gradient strength, perturbation methods are applicable and we shall dis-
cuss their limitation when presenting spectral bifurcations. On the numerical
side, di�erent computational techniques for dMRI have been developed (see Sec.
1.1.5), including �nite di�erence/�nite elements PDE solvers [30–32, 195, 272],
Monte-Carlo simulations [34, 35, 58, 192], and spectral methods (matrix formal-
ism) [3, 36, 37, 40]. However, all of these techniques are numerically challenging
at high gradients because of the �ne spatial scales involved in the signal forma-
tion, as well as the weak signal. This requires a �ne mesh (for PDE solvers), a
�ne di�usion step and a large number of particles (for Monte Carlo algorithms),
and a large number of Laplace eigenmodes (for spectral methods).

In the previous section we studied in detail the phenomenon of localization
at a single boundary. The main hypothesis was that the structural length scale ℓs
is much larger than ℓ6 and ℓd so that one can ignore the e�ect of other boundaries.
We obtained that the =-th eigenmode is localized at a distance ≈

√
3|0= |ℓ6/2 from

the boundary (see Fig. 4.7 and Appendix C.2). Clearly one expects that this result
breaks down for a �nite pore when this distance becomes comparable to the pore
diameter ℓs [98, 99].

We start by computing the Bloch-Torrey spectrum in the low-gradient regime,
i.e. ℓs � ℓ6, for which we recover the well-known motional narrowing regime
[3, 79, 81]. We �rst present the simple case of a slab then we turn to a general
bounded domain. Then we investigate the transition to the localization regime
when ℓ6 becomes smaller than ℓs. In symmetric domains, this transition is abrupt
and creates bifurcation points in the spectrum. We shall see that these bifurca-
tion points are generic and subsist for non-symmetric domains if the gradient
� is considered as a complex variable. Although a complex gradient strength
has limited practical applications, the non-analyticity created by the bifurcation
points imposes a �nite convergence radius to any analytical expansion in powers
of � . This is an intrinsic limitation to perturbative low-� approaches, indepen-
dent of the symmetry of the domain.
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4.3.1 Motional narrowing regime
In a slab

We consider here one-dimensional di�usion inside the interval −ℓs/2 ≤ G ≤ ℓs/2,
under the gradient� and we are interested in the behavior of the eigenvalues `=
of the BT operator in the limit ℓs � ℓ6. Let us perform the rescaling

G̃ =
G

ℓs
, ˜̀= =

ℓ2s

�0
`= , �̃ = �ℓ3s /�0 = ℓ

3
s /ℓ36 . (4.60)

Note that here we rescale by the size of the interval ℓs and not by the gradient
length ℓ6 as in the previous section. The hypothesis ℓs � ℓ6 implies that �̃ is a
small parameter.

With this rescaling, the eigenmodes of the Bloch-Torrey operator satisfy

− E′′= − 8�̃G̃E= = ˜̀=E= , (4.61)
E′= (−1/2) = E′= (1/2) = 0 . (4.62)

The gradient term is a weak perturbation of the Laplace operator and the eigen-
modes and eigenvalues of the BT operator may be written as

E= (G̃) = D= (G̃) + 8�̃D (1)= (G̃) + (8�̃)2D (2)= (G̃) + . . . , (4.63)

˜̀= = _= + 8�̃_(1)= + (8�̃)2_(2)= + . . . , (4.64)

where D= (G̃), _= are the Laplacien eigenmodes and eigenvalues on the interval
[−1/2; 1/2] with Neumann boundary condition:

D1(G̃) = 1 , (4.65)

D= (G̃) =
√
2 cos((= − 1)cG̃ + (= − 1)c/2) , = = 2, 3, . . . , (4.66)

_= = (= − 1)2c2 . (4.67)

The correction terms 8�̃ , (8�̃)2, . . . are small relatively to _= for = > 1, however
this is not the case for = = 1 since _1 = 0. Let us focus on this case and compute
the �rst correction terms _(1)1 and _(2)1 . By injecting the expansions (4.63) and
(4.64) into the eigenmode equation (4.61) and by identifying terms of the same
order in 8�̃ , one gets

−D (1)1
′′
= G̃ + _(1)1 , D

(1)
1
′
(±1/2) = 0 , (4.68)

−D (2)1
′′
= (G̃ + _(1)1 )D

(1)
= + _(2)1 , D

(2)
1
′
(±1/2) = 0 , (4.69)
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The integration of the �rst equation over [−1/2; 1/2] yields _(1)1 = 0. Solving for
D
(1)
1 gives then D (1)1 = G̃/8 − G̃3/6. Then the integration of the second equation

over [−1/2; 1/2] gives immediately _(2)1 = −1/120. Moreover, one can solve the
di�erential equation and get D (2)1 = G̃2/240 − G̃4/96 + G̃6/180.

Therefore, the �rst eigenvalue of the BT operator on a slab of width ℓs is given
in the low gradient regime by

`1 =
�2ℓ4B

120�0
, (4.70)

that is the motional narrowing formula, as we explained in Sec. 1.2.4. Since one
has

`2 − `1 ≈ (_2 − _1)
�0

ℓ2s
= c2�0

ℓ2s
, (4.71)

the decay of the magnetization (and of the signal) follows exp(−`1) ) in the
regime of long di�usion time ℓ2d � ℓ2s .

It is interesting to note that `1 is real to order �̃2 because _(1)1 = 0. If one in-
spects the above computation, it simply follows from the fact that the integral of
G̃ over the slab is zero. The interpretation is simply that the imaginary part of `1
is related to the average Larmor frequency of spins inside the domain. Since the
eigenmode E1 is nearly uniform, its time evolution re�ects the average evolution
of spins over the whole domain. If we wanted to compute the next order term,
then we would get the equation

− D (3)1
′′
= G̃D

(2)
1 + _

(2)
1 D

(1)
1 + _

(3)
1 , D

(3)
1
′
(±1/2) = 0 , (4.72)

and integration over the whole interval yields again _(3)1 = 0. It is quite easy to
prove that all odd orders are zero so that the expansion (4.64) contains only real
terms. As we show in the next section, this peculiar property is related to the
parity symmetry of the domain (see also Sec. 1.2.4).

Arbitrary bounded domain

Now we consider an arbitrary bounded domain Ω with diameter ℓs and we inves-
tigate again the limit ℓs � ℓ6. After rescaling by ℓs, we obtain the dimensionless
eigenmode equation (where quantities are denoted with a tilde after rescaling):

− ∇̃2E= − 8�̃G̃E= = ˜̀=E= , (4.73)

n · ∇̃E=
���
mΩ̃

= 0 , (4.74)
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where n is the normal vector at the boundary. As above, 8�̃ is a small parameter
and we expand E1 and ˜̀1 in powers of 8�̃ , that yields the equations

−∇̃2D (1)1 = (G̃ + _(1)1 ) , n · ∇̃D (1)1

���
mΩ̃

= 0 , (4.75)

−∇̃2D (2)1 = (G̃ + _(1)1 )D
(1)
1 + _

(2)
1  , n · ∇̃D (2)1

���
mΩ̃

= 0 , (4.76)

where  = vol(Ω̃)−1/2 is the normalization factor of the constant eigenmode D1.
The integration of the �rst equation over the domain yields

_
(1)
1 =  2

∫
Ω̃
G̃ d3r̃ . (4.77)

Note that the factor 2 comes from integrating the constant _(1)1 over the domain
Ω̃. As we discussed for the case of the interval, this term simply represents the
average Larmor precession rate of spins in the domain. In the following we dis-
card this e�ect by choosing the origin at the center of mass of the domain. To
obtain the next-order correction term, we still need to obtain the expression of
D
(1)
1 . To this end we shall project it onto the basis of Laplacian eigenmodes. Let

us write
 G̃ =

∑
=

�=D= (G̃) , �= =  

∫
Ω̃
G̃D= (G̃) d3r̃ . (4.78)

In the notations of Sec. 1.1.5, one has �= = [�G ]1,=. Note that �1 = 0 thus we sum
over = = 2, 3, . . .. Then one obtains simply

D
(1)
1 (G̃) =

∑
=≥2

�=

_=
D= (G̃) . (4.79)

Now by integrating the second equation, we get directly

_
(2)
1 = − 

∫
Ω̃
G̃D
(1)
1 d3r̃ (4.80)

= −
∑
=≥2

�2=

_=
, (4.81)

that is the general formula for the motional narrowing regime [3, 79, 81]. One
can check that this formula gives the previous result _(2)1 = 1/120 for a slab, but
also 7/1536 for a cylinder and 1/350 for a sphere2.

2We recall that we have rescaled the domain by ℓs, which is the diameter of the pore (slab,
cylinder, sphere). In contrast, the values provided in [3, 79, 81] correspond to a di�erent choice
(diameter of the slab, radius of the cylinder or sphere).
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Symmetry properties

We recall that we call a domain symmetric under G-parity if it is invariant under
an isometric transformation that reverses the G-axis (see Fig. 1.9 and related
discussion). Let us assume that the domain is symmetric under G-parity and let
us denote by PG the associated transformation.

In that case, one can apply the parity transformation PG to our equations and
rewrite them in term of the functions PGD (1,2)1 :

−∇̃2(PGD (1)1 ) = (−G̃ + _
(1)
1 ) , n · ∇̃(PGD (1)1 )

���
mΩ̃

= 0 ,

−∇̃2(PGD (2)1 ) = (−G̃ + _
(1)
1 ) (PGD

(1)
1 ) + _

(2)
1  ,

n · ∇̃(PGD (2)1 )
���
mΩ̃

= 0 .

Now we consider these equations in addition to the above ones. If one integrates
the �rst equation, then _(1)1 is equal to the average of G̃ and to its opposite there-
fore it is equal to zero, as expected. Additionally, PGD (1)1 and D (1)1 have opposite
Laplacians and obey the same boundary condition, therefore they are opposite of
each other. We conclude thatD (1)1 is odd with respect to PG . The reasoning is sim-
ilar to D (2)1 : in that case we obtain that PGD (2)1 and D (2)1 have identical Laplacians
and obey the same boundary condition therefore they are equal to each other.
Thus D (2)1 is even with respect to PG . Recursively, one can easily prove that the
:-th order correction term of the �rst eigenmode, D (:)1 , has the same parity as : .
Moreover, _(:)1 is zero for odd : .

One can extend this result to any eigenmode and eigenvalue E=, ˜̀=. Since PG
and the Laplace operator commute, the Laplacian eigenmodes are either even or
odd with respect to PG . By reproducing the same steps as above, one can prove
thatD (:)= has the same parity asD= if : is even and opposite parity if : is odd. This
implies that the expansion

E= (G̃) = D= (G̃) +
∑
:

(8�̃):D (:)= (G̃) (4.82)

has a real part of the same parity as D= and an imaginary part of opposite parity.
Moreover, one can prove that _(:)= is zero for odd : . Therefore the expansion

˜̀= = _= +
∑
:

(8�̃):_(:)= (4.83)

contains only real terms, and the spectrum of the BT operator is real to all orders
in �̃ . We shall see in the next subsection that this property cannot hold for any
value of �̃ therefore the above asymptotic expansions fail for �̃ exceeding a �nite
convergence radius �̃2 .
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4.3.2 Spectral bifurcations
Parity-symmetric domain

The conclusion of the above subsection calls for two remarks. The �rst one is
that it is perfectly consistent with the discussion of Sec. 1.2.4 about symmetry
properties of the BT operator. For convenience, we recall the main point of this
discussion: for a parity symmetric domain, its eigenpairs `=, E= fall into one of
the two cases:
(i) the eigenvalue `= is real and E= = ±PGE∗= (delocalized eigenmode);
(ii) two eigenvalues `= and `=′ form a complex conjugate pair, and E=′ = PGE∗=
(pair of localized eigenmodes).

Thus, the conclusion of the previous subsection corresponds to case (i). How-
ever, this result seems to be in contradiction with Sec. 4.2 where we obtained a
complex spectrum in the limit ℓ6 � ℓs, i.e. �̃ � 1. The only solution to this
paradox is that the expansions (4.82) and (4.83) are not valid for all values of �̃ ,
i.e. they have a �nite convergence radius �̃c. For �̃ < �̃c, the expansion is valid
but it breaks down for �̃ > �̃c.

𝜇𝑛 𝜇𝑛′

𝜇𝑛

𝜇𝑛′

 𝐺 <  𝐺0
 𝐺 >  𝐺0

Re 𝜇 Re 𝜇

Im 𝜇 Im 𝜇

𝒞𝜇 𝒞𝜇

Figure 4.12: Illustration of the transition from two real eigenvalues to a complex con-
jugate pair. For �̃ = �̃0, `= and `=′ bifurcate in the complex plane. By integrating the
resolvent (B−`I)−1 over the contour C` , one obtains a two-dimensional projector Π(�̃)
that is analytical in �̃ because the resolvent is analytical outside of poles (i.e., outside of
eigenvalues of B).

Note that the transition from case (i) to case (ii), i.e. from two real eigenval-
ues `=, `=′ to a complex conjugate pair may occur only if `= and `=′ coincide for
some value �̃ = �̃0. As illustrated on Fig. 4.12, the coalescence of two eigen-
values creates a bifurcation point in the spectrum, i.e. a non-analyticity. This
observation is consistent with the existence of a �nite convergence radius �̃c for
the expansions (4.82) and (4.83) (more precisely, one has �̃c ≤ �̃0). These bi-
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furcation points mark the transition from delocalized eigenmodes (i) to localized
eigenmodes (ii), i.e. the emergence of the localization regime. This mathematical
phenomenon was �rst shown by Stoller et al. for the BT operator in an interval
with Neumann boundary condition [98].

Matrix model

We shall illustrate the mathematical phenomenon of spectral bifurcation on the
simplest case of a 2 × 2 matrix. Although a di�erential operator acting on an
in�nite-dimensional functional space cannot be reduced to a matrix, the coales-
cence of two eigenmodes and eigenvalues is essentially captured by a computa-
tion on a vector space of dimension 2. To explain this point, we follow a sugges-
tion by B. Hel�er illustrated on Fig. 4.12. Let us choose an integration path C` in
the complex `-plane that circles around two eigenvalues `= and `=′. We assume
that these eigenvalues coalesce at �̃ = �̃0. Since the eigenvalues are discrete,
it is possible to choose the path C` such that no other eigenvalue cross it over
�̃0−n < �̃ < �̃0+n for a given n > 0. By integrating the resolvent (B(�̃)−`I)−1
of the BT operator over the path C` , one obtains a two-dimensional projector
Π(�̃) over the space spanned by E=, E=′, at least for �̃ ≠ �̃0. Note that Π(�̃) is a
function of the variable �̃ with values in the in�nite-dimensional space of con-
tinuous operators over the functional space !2(Ω). For clarity, we emphasize the
dependence of the BT operator B and the projector Π on �̃ by writing explicitly
B(�̃), Π(�̃).

Since the integration path C` does not cross any eigenvalue, the resolvent is
an analytic function of ` and �̃ over C` , therefore Π(�̃) is an analytic function
of �̃ . In particular, the image of Π(�̃) is two-dimensional, even at the bifurca-
tion point �̃ = �̃0. As we shall see, this does not imply that there are still two
eigenmodes E=, E=′ at that point. The restriction of the BT operator B(�̃) to the
image of Π(�̃) yields a 2 × 2 matrix A(�̃). If there are no other spectral bifurca-
tions over the considered range of �̃ , then the restriction of the BT operator to
the kernel of Π(�̃) has an analytical spectrum, therefore the non-analyticity of
the spectrum of B(�̃) is fully captured by the matrix A(�̃) as we claimed above.
Note that a bifurcation involving a higher number of eigenvalues would yield
a higher-dimensional matrix, however such bifurcations were not observed nu-
merically. Moreover, a dimension counting argument3 implies that such points

3The argument relies on the property that two varieties generically intersect if the sum of
their dimension exceeds the dimension of the underlying space (i.e., the dimension of one variety
exceeds the co-dimension of the other one). We apply this property to investigate the intersection
between the two-dimensional variety spanned by the = × = matrices M(�̃, _) = A(�̃) − _I and
the space #A of = × = matrices with = − A vanishing eigenvalues. The latter has co-dimension A .
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should generically not exist.
We �rst consider the example of a Hermitian matrix, then we show how the

general, non-Hermitian case, di�ers qualitatively. We consider a matrix of the
general form

A(�̃) =
[
_0 + 0 1

2 _0 − 0

]
, (4.84)

where _0, 0, 1, 2 are smooth functions of �̃ (the smoothness results from the an-
alyticity of the projector Π(�̃)). One can easily compute its eigenvalues _± and
eigenvectors X±:

_± = _0 ±
√
3 , X± =

[
1

±
√
3 − 0

]
, 3 = 12 + 02 , (4.85)

if 3 ≠ 0. The eigenvalues coalesce at �̃ = �̃0 if 3 (�̃0) = 0.

If A(�̃) is Hermitian for all values of �̃ , then 0 ∈ R and 2 = 1∗, so that
3 = |1 |2 + 02 is real and non-negative. Furthermore, 0(�̃0) = 1 (�̃0) = 2 (�̃0) = 0.
In fact, this simply derives from the fact that a diagonalizable matrix with all
eigenvalues equal to zero is the null matrix. This also implies that 3′(�̃0) = 0
and 3′′(�̃0) ≠ 0 in general, so that close to �̃0 the eigenvalues are approximately
equal to

_± = _0 ±
√
3′′(�̃0)/2 |�̃ − �̃0 | . (4.86)

Thus we can draw two main conclusions: (i) the spectrum does not present non-
analytical bifurcation points, the eigenvalues merely cross each other at �̃ = �̃0;
(ii) the dimension of the eigenspace �_=_0 at �̃ = �̃0 is 2.

Now we consider the general, non-Hermitian case. The function 3 (�̃) takes
complex values and crosses 0 at �̃ = �̃0 with a non-zero derivative 3′(�̃0). The
phases of _± − _0 undergo a c/2 jump when �̃ passes through the critical value

�̃0 and the absolute values of _± − _0 have a typical
√��3′(�̃0) (�̃ − �̃0)

�� shape for

�̃ close to �̃0. In particular, if 3 (�̃) is real, positive for �̃ < �̃0 and negative for

The intersection of M(�̃, _) with #1 is generically a variety of dimension 1 (i.e., a collection of
curves) which corresponds to the spectrum _(�̃) of A(�̃). The intersection of M(�̃, _) with #2 is
generically a variety of dimension 0 (i.e., isolated points) and corresponds to order-2 bifurcations
in the spectrum of A(�̃). Finally, higher-order bifurcations (A ≥ 3) generically lead to an empty
set.
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�̃ > �̃0, and if _0(�̃) is real, one obtains close to the critical value �̃0:

�̃ < �̃0

 Re(_±) ≈ _0(�̃) ±
√
3′(�̃0) (�̃0 − �̃)

Im(_±) = 0
(4.87a)

�̃ > �̃0


Re(_±) = _0(�̃)

Im(_±) ≈ ±
√
3′(�̃0) (�̃ − �̃0)

(4.87b)

At the critical value �̃ = �̃0, the matrix A(�̃0) is in general not diagonalizable.
Without loss of generality, let us assume that 1 (�̃0) ≠ 0. The matrix A(�̃0)
can then be reduced to a Jordan block with an eigenvector X0 and a generalized
eigenvector Y0:

A(�̃0)X0 = 0 , X0 =

[
1 (�̃0)
−0(�̃0)

]
, (4.88a)

A(�̃0)Y0 = X0 , Y0 =

[
0

1

]
. (4.88b)

Note that since the derivative of
√
3 (�̃) is in�nite at �̃ = �̃0, one has

Y0 =
3X±
3_±

����
�̃=�̃0

, (4.89)

where the derivative yields the same result for (X+, _+) and (X−, _−). Moreover,
if A(�̃) is a symmetric matrix (i.e. 1 = 2), then X)0X0 = 0, i.e., X0 is “orthogonal”
to itself for the real scalar product.

In comparison to the Hermitian case, our main conclusions are: (i) the spec-
trum is non-analytical at �̃ = �̃0; (ii) the eigenvectors X± of A collapse onto one
single eigenvector X0, the matrix A can be reduced to a Jordan block with a gen-
eralized eigenvector Y0 given by the rate of change of the eigenvectors X± with
their corresponding eigenvalues _±, evaluated at the critical point �̃ = �̃0.

We summarize the results for the Hermitian and non-Hermitian case graphi-
cally on Fig. 4.13. We emphasize that the dichotomy “Hermitian, no bifurcation”
versus “non-Hermitian, bifurcation” is speci�c to two-dimensional matrices. In
fact, if one considers a 4 × 4 matrix made of two 2 × 2 blocks where one is Her-
mitian and the other is non-Hermitian, then the eigenvalues of the Hermitian
block will not display any bifurcation point when they cross even if the whole
operator is not Hermitian. This somewhat arti�cial example shows that there
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is no general relation between bifurcation points and non-Hermitianity except
that the spectrum of an Hermitian operator never bifurcates. By reducing the
full operator to a low-dimensionality matrix on the subspace associated to the
coalescing point, one can make precise statements about bifurcation and Hermi-
tianity, as we did in this two-dimensional case. The “translation” of the above
conclusions to the case of the Bloch-Torrey operator and their consequences on
spectral decompositions is detailed in Appendix C.5.

Arbitrary domain, complex bifurcations

For a parity-symmetric domain, the spectrum exhibits bifurcations for particular
values of the dimensionless gradient �̃ , where two real eigenvalues abruptly be-
come a complex conjugate pair. In contrast, for a non parity-symmetric domain,
all eigenvalues are generally complex for non-zero �̃ and there is no bifurca-
tion point. However, this is true only for real values of �̃ . By allowing �̃ to
take complex values, one recovers bifurcation boints for any bounded domain.
In other words, a slight asymmetry of the domain merely “moves” bifurcation
points away from the real axis.

Generally speaking, by solving the eigenmode equation

− ∇̃2E − 8�̃G̃ = ˜̀E , (4.90)
n · ∇E |mΩ̃ = 0 , (4.91)

one obtains a transcendental equation on ˜̀ of the generic form � (�̃, ˜̀) = 0,
where � is an analytic function of �̃ and ˜̀. To show how bifurcations may result
from this equation, let us consider a simple example:

� (I,F) = (F2 − 1)2 − I = 0 . (4.92)

In this example,F stands for the eigenvalue and I for the gradient strength. This
equation may be inverted to obtain F as a function of I but the inversion of the
square function makesF (I) a multivaluate function with four possible values in
general (i.e., four “sheets” in the complex plane):

F (I) = ±
√
±
√
I + 1 . (4.93)

or equivalently:

F1(I) =
√√

I + 1 , F2(I) =
√
−
√
I + 1 , (4.94)

F3(I) = −
√√

I + 1 , F4(I) = −
√
−
√
I + 1 . (4.95)
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Figure 4.13: Eigenvalues and eigenvectors of a Hermitian and non Hermitian 2 × 2 ma-
trix A(�̃). (top) Hermitian case: the eigenvalues _±(�̃) cross each other at �̃ = �̃0, the
eigenvectors -±(�̃) are always orthogonal to each other and do not exhibit any partic-
ular behavior at �̃ = �̃0. (bottom) non-Hermitian case: the eigenvalues _±(�̃) exhibit
a typical square-root behavior at �̃ = �̃0 ((indicated by a red cross), the eigenvectors
-±(�̃) collapse on a single vector at �̃ = �̃0, which creates an angular point (indicated
by a red arrow). Note that �̃ was sampled with additional points near �̃0 for better visu-
alization of the bifurcation. The complex -± vectors were plotted with the convention
that arg( [-±]1) = 0.
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The multivaluation ofF (I) is closely related to the absence of unique deter-
mination of the argument of a complex number and the necessity of a “cut” in the
complex plane. In what follows we consider the usual convention that the cut is
along the negative real semi-axis. In other words, the square root is de�ned as
follows: √

d 48\ =
√
d 48\/2 , d > 0 , −c < \ ≤ c . (4.96)

This choice makes the real part of
√
I a continuous function when I crosses the

cut (i.e., when \ jumps from c to −c ). However, the imaginary part of
√
I is not

continuous and jumps from 8
√
d to −8√d .

The multivaluate functionF (I) exhibits three “branching” points where two
sheets coincide: F1(0) = F2(0) = 1,F3(0) = F4(0) = −1, andF2(1) = F4(1) = 0.
All these branching points have the same “structure”, that is the one of ±

√
I at

I = 0. We show on Fig. 4.14 the plot of the multivaluate functionF = ±
√
I. One

can see two sheets that are individually discontinuous at the cut, and both sheets
taken together form a continuous surface. By performing a 2c turn around I = 0,
one goes from one sheet to the other, and a full 4c turn is required to go back to
the initial point.

Re 𝑧 Re 𝑧

Im 𝑧 Im 𝑧

Re 𝑤 Im 𝑤

Figure 4.14: Plot of the real part (left) and imaginary part (right) of the bivaluate function
F (I) = ±

√
I (“+” sheet in light blue and “−” sheet in dark blue). The cut along the real

negative semi-axis is represented as a thick black line. Each sheet is discontinuous at the
cut but both of them for a single continuous surface F (I). The red contour depicts to a
full 4c turn around I = 0 on the surface F (I). After a 2c turn from the point (I0,F0),
one reaches the point (I0,−F0), as indicated by the red dashed line.

The plot of F (I) = ±
√
±
√
I + 1 is presented on Fig. 4.15. Although it is

visually more complicated than the “simple” square root function, it is essentially
the combination of three

√
I-branching points that connect 4 sheets together. By
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circling around all branching points (shown in red), one goes through all sheets
and reach the initial point after a 6c turn.

Re 𝑧 Re 𝑧

Im 𝑧 Im 𝑧

Re 𝑤 Im 𝑤

Figure 4.15: Plot of the real part (left) and imaginary part (right) of the multivaluate
function F (I) = ±

√
±
√
I + 1. The color code is the following: ++ in light blue, +− in

dark blue, −+ in light green and −− in dark green. The red contour depicts a full 6c turn
around all branching points, and illustrates that all sheets are connected to each other
and form a unique multivaluate surface.

The particular example that we chose is representative of bifurcations in the
spectrum of the BT operator. Indeed, the computations of the previous paragraph
on 2×2 matrices show that eigenvalues behave as

√
�̃ − �̃0 close to a bifurcation

point. In other words, spectral bifurcations are related to branching points of a
complex multivaluate function. From a mathematical point of view, the discrete
spectrum ˜̀1(�̃), ˜̀2(�̃), . . . appears as di�erent sheets of a unique multivaluate
function ˜̀ (�̃). This function ˜̀ (�̃) simply results from the inversion of the tran-
scendental eigenvalue equation � (�̃, ˜̀) = 0. This point of view reveals a way to
�nd bifurcations in the complex plane. Let us consider a closed contour C�̃ in
the complex �̃-plane. If C�̃ does not enclose any bifurcation point, then ˜̀= (�̃) is
analytical inside the the contour for any sheet = = 1, 2, . . ., and one has∮

C
�̃

˜̀= (�̃) d�̃ = 0 . (4.97)

In contrast, if the path C�̃ encloses bifurcation points, the path integral along
C�̃ is generally non zero anymore. Therefore, one can �nd bifurcation points by
applying the following algorithm:

1. choose an initial closed path C�̃ and compute
∮
C
�̃

˜̀= (�̃) d�̃ for all sheets
by following continuously the path C�̃ ;
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2. if the obtained value is non zero, split the path in smaller closed paths and
perform the integral over each smaller path;

3. identify paths with non zero integral and repeat the previous step.

We show on Fig. 4.16 an example of such an algorithm. Numerically, one
performs path integrals by discretizing the contour C�̃ , and a threshold should
be found to decide between “zero” and “non-zero” integrals (indicated by red and
black dots, respectively). A compromise should be found between �ability and
speed. A too high threshold may result in missed bifurcation points. However, a
too small threshold generally leads to a large number of path integrals. Since each
integral requires the computation of the spectrum ˜̀ (�̃) along the path C�̃ , a bad
choice of the threshold may be very time-consuming. For the particular example
shown on Fig. 4.16, one can see that the threshold was chosen somewhat too
low because some red squares at the initial steps eventually disappear after a
large number of iterations. In other words, a suspicion of bifurcation points was
eventually dismissed, that resulted in too many computations.

The choice of the contour is also a matter of compromise. One one hand, one
can choose a shape that tiles the plane, like a square. This allows one to have non-
overlapping integration contours, which avoids counting one bifurcation point
twice. On the other hand, one can choose a smooth contour, like a circle. This
implies a better numerical accuracy for the integral computation and in turn a
lower threshold may be chosen. However, this requires an additional criterion
to discard “double” points that result from overlapping contours. Both cases are
shown on Fig. 4.16.

The pattern of bifurcation points in the complex �̃ plane reveals a left-right
symmetry. Let us consider the dimensionless Bloch-Torrey operator B̃ = −∇2 −
8�̃G and perform a complex conjugation:

B̃∗ = −∇2 + 8�̃∗G = −∇2 − 8 (−�̃∗)G , (4.98)

therefore we immediately see that the bifurcation point pattern is always sym-
metric under the transformation �̃ → −�̃∗, that explains the left-right symmetry
of the pattern. Furthermore, the bifurcation pattern of G-parity-symmetric do-
mains exhibits a top-bottom symmetry, according to

PG B̃∗ = −∇2 − 8�̃∗G , (4.99)

where we used the parity symmetry to write PG∇2 = ∇2. The above equation
shows that for an G-parity symmetric domain, the bifurcation point pattern is
symmetric under the transformation �̃ → �̃∗, i.e. top-bottom symmetry. Note
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Complex  𝐺-plane

Ω
Symmetric

Complex  𝐺-plane

Ω
Weakly asymmetric

Figure 4.16: Several iterations of the algorithm to �nd spectral bifurcations in the com-
plex �̃-plane. The red dots indicate contours that yield a non-zero contour integral. The
range of �̃ is a square in the complex plane, from −200(1+8) to 200(1+8). We emphasize
that there are in�nitely many bifurcation points in the complex plane but only a �nite
number appears because of the �nite range of �̃ . (Top) the domain Ω is a disk and we
show the algorithm with square integration contours. (Bottom) the domain Ω is slightly
asymmetric (a thin dashed line helps to visualize the asymmetry) and we show the algo-
rithm with circular integration contours. Compared to the bifurcation pattern of a disk,
the top-bottom symmetry is lost but bifurcation points still exist.
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that the existence of bifurcation point on the real axis is consistent with the top-
bottom symmetry of the bifurcation pattern. We show on Fig. 4.17 the multival-
uate function ˜̀ (�̃) (real part and imaginary part) for a disk. Although the �gure
is visually complicated by the superposition of numerous sheets, one recognizes
the basic sqare root structure of bifurcation points, illustrated on Fig. 4.14.

The bifurcation point with the smallest absolute value de�nes a convergence
radius outside of which low-gradients asymptotic expansions would fail because
of the non-analyticity of the bifurcation. The �nite radius of convergence of
the cumulant expansion in terms of 1�0 was investigated in [84] for a one-
dimensional model in the limit of narrow-gradient pulses. In that case, the gradi-
ent pulse e�ectively applies a 48@G phase pattern across the domain and the decay
of the magnetization is caused by the “blurring” of this pattern due to di�usion
(see Sec. 1.2.3). In this regime, the signal is an analytic function of 1�0 = @

2
G�0Δ

because it is controlled by the spectrum of the Laplace operator that does not
exhibit bifurcation points. As the authors explain, the �nite convergence radius
of the cumulant expansion is merely caused by the Taylor series of the logarithm
function and related to the smallest (in absolute value) complex value of 1�0 for
which the signal is zero. In contrast, we argue that the non-analyticity of the
BT spectrum at �nite gradient strength should intrinsically restrict the range of
applicability of low-gradient expansions in all non-trivial domains.

4.3.3 Overlapping of eigenmodes
We have shown the transition between delocalized eigenmodes in the motional
narrowing regime, and strongly localized eigenmodes in the localization regime.
In this section, we investigate the crossover between these two extreme regimes.
More precisely, we assume that the Bloch-Torrey eigenmodes are localized but
not strongly enough so that eigenmodes on opposite sides of the domain overlap
with each other.

We recall that the formulas for the magnetization and the signal after two
opposite pulses of duration X = ) /2 are

<() = 2X, r) =
∑
=′

∑
=

(1|E∗=) (E∗= |E=′)E=′ (G)4−) (`
∗
=+`=′)/2 , (4.100)

( =
1

vol(Ω)
∑
=′

∑
=

(1|E∗=) (E∗= |E=′) (E=′ |1)4−) (`
∗
=+`=′)/2 , (4.101)

The overlapping between the eigenmodes E= and E=′ is represented quantitatively
by the factor (E∗= |E=′). If two modes on opposite sides of the domain overlap, it
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Figure 4.17: Real and imaginary part of the sheets ˜̀ (�̃) of the BT spectrum in a disk (see
also top panel of Fig. 4.16). The �gure reveals a rich pattern of bifurcation points, with
a similar structure as in Figs. 4.14 and 4.15.
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yields a term in the signal with a complex exponential of time that may lead to
oscillating patterns.

To illustrate this e�ect, let us consider a simple example of a slab of width
! (with the gradient direction being orthogonal to the slab). In this setting, the
eigenmodes of the Bloch-Torrey operator can be localized at either of two end-
points of the interval, but only if the gradient length ℓ6 is su�ciently small com-
pared to !. To give a concrete numerical value, Stoller et al computed the value
of the �rst bifurcation point (i.e., the �rst two eigenmodes start to localize at each
side of the slab) and obtained ℓ6/! = 0.38. In the following, we assume that ℓ6/!
is smaller than this value so that the �rst two eigenmodes E1 and E2 are localized.

Due to the left-right symmetry (G → −G ), the �rst two eigenmodes E1(G)
and E2(G) satisfy the identity E2(G) = E∗1 (−G) and `2 = `∗1, and are localized
at each endpoint of the interval. Thus the �rst two eigenvalues have the same
real part and, in the limit of large ) , the magnetization may be represented by a
superposition of E1 and E2:

<(G,) ) ≈
(
21,1 + 22,1 4−8Im(`1))

)
4−Re(`1))E1(G)

+
(
22,2 + 21,2 48Im(`1))

)
4−Re(`1))E2(G) , (4.102)

with 2=,=′ = (1|E∗=) (E∗= |E=′), and the signal is given by

( ≈ �4−Re(`1)) , (4.103)

with
� = 2(�1,1 + Re(�1,2)) , (4.104)

where �1,1 and �1,2 are given by

�1,1 = | (1|E1) |2(E∗1 |E1) , �1,2 = (1|E∗1) (E∗1 |E2) (1|E2)48Im(`1)) . (4.105)

The factor 2 in (4.104) re�ects the fact that two eigenmodes contribute to the
signal. For a planar boundary located at ±!/2, we obtained in Sec. 4.2.1 the
following expression for the real and imaginary part of the �rst eigenvalue:

2Re(`1) = |01 |
�0

ℓ26
, (4.106)

2Im(`1) = ±
(
�! −

√
3|01 |

�0

ℓ26

)
. (4.107)

For a slab these expressions are modi�ed because the boundaries may a priori
not be treated independently. Here we assume that the overlapping between E1
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Figure 4.18: The real part of the transverse magnetization <() = 2X, G) in a slab for
two di�erent gradient strengths, in the long X regime, as well as the real part of the �rst
two eigenmodes E1(G) and E2(G) weighted by the coe�cients of Eq. (4.102). We checked
that the superposition of E1(G) and E2(G) reproduces perfectly the exact magnetization
<(), G) in this regime. In both cases, one observes the localization of the magnetization
near the endpoints of the interval. We chose a constant ratio ℓd/ℓ6 = 2.5 for both �gures,
so that the amplitude of the magnetization is approximately the same. (left) ℓ6/! ≈ 0.2:
one can see some overlapping between the two eigenmodes and | (E∗1 |E2) | = 0.23. (right)
ℓ6/! ≈ 0.1: there is almost no overlapping of the eigenmodes and | (E∗1 |E2) | = 8.2 · 10−4.

and E∗2 is su�ciently weak so that Eqs. (4.107) present a good approximation of
the �rst eigenvalues `1, `2 for the slab.

Since at high gradients the imaginary part of `1 scales as � and its real part
scales as �2/3, the oscillations in the signal are somewhat faster than its global
decay. In other words, the signal may exhibit several oscillations before reaching
the noise �oor. One may note that the dominant term, �!, of the imaginary
part depends on the choice of origin G = 0. However, Eq. (4.105) was derived
under the assumption of a symmetric slab, i.e. G = 0 at the middle of the slab.
In the general case, the imaginary parts of the eigenvalues enter through their
di�erences in the expression of the signal, thus the arbitrary choice of the origin
G = 0 has no in�uence on the expression of the signal, as it should be for a
refocused gradient sequence.

The conclusion of this computation is that the cross-term �1,2 produces os-
cillations in the signal (by varying � or X) on top of the asymptotic decay given
by exp(−Re(`1)) ). This cross-term is linked to the overlapping of the modes E1
and E2. In turn, this overlapping depends on the ratio between the width ℓ6 of
the modes, and their spacing !: the smaller the ratio ℓ6/!, the smaller the over-
lapping, and thus, the smaller the oscillating term. In the limit of well-separated
modes, (E∗1 |E2) = 0 and one has� = 2�1,1, with no oscillation. The e�ect of over-
lapping of eigenmodes is illustrated in Fig. 4.18 where we plotted the transverse
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magnetization in a slab for two di�erent gradient strengths: at low gradients the
localization pockets overlap and at high gradients they are well-separated. Note
that we plotted only the real part of the magnetization; the imaginary part is
non-zero but it does not contribute to the signal since its integral over the slab is
zero. Although we illustrated this overlapping e�ect on the simple example of a
slab, the conclusion (and the previous computations) may be generalized to any
geometry, where ! would denote the spacing between two localized eigenmodes.

The in�uence of Δ − X

Until now we have considered a PGSE sequence with Δ = X , i.e. without any gap
between two gradient pulses. In this section we consider a more general PGSE
sequence and investigate the in�uence of the di�usion step duration Δ − X on
the transverse magnetization. Mathematically, the e�ect of this di�usion step is
to multiply the transverse magnetization just after the �rst gradient pulse by the
evolution operator D = exp((Δ − X)�0∇2). Then Eqs. (4.100), (4.101), and the
consequent analysis remain applicable by replacing (E∗= |E=′) with the coe�cient
V=,=′ de�ned by

V=,=′ =

∫
Ω
(DE∗=) (r)E=′ (r) dr . (4.108)

The dependence on Δ − X is now hidden in the coe�cients V=,=′. Note that
if Δ = X , then the operator D is the identity (since di�usion during zero time
does not a�ect the magnetization) and we recover V=,=′ = (E∗= |E=′). If we consider
the regime of long X where only the �rst eigenmode contributes (without over-
lapping), the e�ect of the di�usion step results merely in a modi�cation of the
global amplitude of the magnetization through the new de�nition (4.108) of the
coe�cients V1,1 = V2,2. In turn, the global amplitude of the signal is also a�ected
by this coe�cient and decreases with increasing Δ − X .

The situation of two overlapping eigenmodes is more complex. The di�usion
step also changes the values of the coe�cients V1,2, V2,1, and hence the relative
amplitude of the oscillating term �1,2 (see Eqs. (4.104) and (4.105)). Di�usion
is expected to increase the width of the localized eigenmodes, thus increasing
the overlapping between them and enhancing the oscillations in the signal. This
e�ect should be stronger for already overlapping modes than for well separated
ones, in other words, when the ratio ℓ6/! is not very small, where ! denotes the
distance between two localization pockets. The e�ect of the di�usion step on the
localization regime in a one-dimensional setting was partly investigated in [102].
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4.3.4 Summary
We summarize nearly all that we have presented so far on Fig. 4.19. This �gure
represents the eigenvalues and corresponding eigenmodes of the BT operator in
a disk, as a function of the dimensionless gradient strength �̃1/3 = ℓs/ℓ6. The
power 1/3 has no particular signi�cance but was chosen to improve the clarity
of the �gure. At �̃ = 0, the Bloch-Torrey operator is reduced to the Laplace
operator, and one obtains the well-known Laplacian eigenmodes. Because of
the rotational invariance of the disk, several eigenvalues are twice degenerate,
because from one eigenmode one can a priori form another one by rotating it by
an appropriate angle.

Another consequence of the symmetries of the disk is that eigenmodes ex-
hibit various symmetries. On the �gure, we have denoted by + a symmetric
eigenmode and by − an antisymmetric eigenmode. The �rst sign refers to the
symmetry along the G-axis and the second sign refers to symmetry along the ~-
axis. The symmetry of Laplacian eigenmodes is of considerable importance be-
cause the gradient term 8�̃G couples only modes with the same symmetry along
~ and with opposite symmetries along G . With signs, it means that the gradient
couples (+, +) to (−, +) and (−,−) to (+,−). For example, the �rst bifurcation
point (blue curves) involves the constant eigenmode with symmetry (+, +), and
the eigenmode with symmetry (−, +) immediately above. A more complicated
bifurcation pattern may be observed with the light orange curve which has a
(+, +) symmetry. One can see that it goes up and bifurcates with the dark orange
curve that corresponds to the (−, +) eigenmode at the top of the �gure. How-
ever, a careful examination shows that this mode bifurcates �rst with the (+, +)
mode right below it, then they split again before bifurcating with the light orange
curve.

At large gradient strength, nearly all plotted eigenvalues have bifurcated,
and eigenmodes are localized on one side of the domain. Consistently with our
results, eigenvalues with positive imaginary part correspond to eigenmodes lo-
calized on the left side of the disk. By applying the theory of localization at a
curved boundary of Sec. 4.2.2, one can associate to each eigenmode two indices
(=, ;) that govern the behavior of the mode in the directions perpendicular and
parallel to the boundary. As the order = increases, the extension of the modes
along G increases until a point where they cannot be localized anymore. This ex-
plains why the bifurcation points associated to larger values of = occur at larger
values of �̃ , i.e., smaller values of ℓ6/ℓB .
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Figure 4.19: Graphical summary of the results for bounded domains (illustrated for the
case of a disk). The spectrum of the BT operator inside a disk exhibits bifurcations for
some particular values of ℓs/ℓ6, that indicate the emergence of the localization regime.
The pro�le of the eigenmodes is governed by two indices (=, ;), that represent loosely
the number of oscillations perpendicular and parallel to the boundary, respectively.
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4.4 Periodic domain

4.4.1 Introduction
In the previous section, we studied the BT operator for bounded domains, in
which the spectrum of this operator is discrete. Such domains however are not
always suitable for modeling biological samples or mineral porous media which
are interconnected and usually extended over a broad range of length scales. In
this light, periodic domains may serve as more appropriate models and present
a somewhat intermediate setting between bounded and unbounded domains,
keeping the advantages of both: they can model macroscopic samples but com-
putations can be performed in a single unit cell that dramatically reduces the size
of the computational domain and the computation time. Evidently, complex bi-
ological or mineral samples, on which dMRI experiments are usually performed,
are not simple periodic structures. In a living tissue, one would most likely �nd
very diverse cell shapes, sizes, and arrangements, in a given voxel. However,
the microstructure is probed at the scale of the di�usion length traveled by spin-
bearing particles, that is much smaller than the voxel size. Although two “unit
cells” of the real structure are always di�erent, they are often statistically sim-
ilar at this mesoscopic scale and may lead to almost identical behavior of the
signal. In that regard, a periodic medium may be the best compromise between
simplicity and relevance.

To our knowledge, the spectral properties of the BT operator have not been
studied at all in periodic domains. One of the major challenges is that the gradient
term in the BT operator is not periodic, so that standard methods of the quantum
theory of solids [325, 326], in which potentials are typically periodic, are not
applicable here. To overcome this problem, we will approximate the constant
gradient in the BT operator or, more generally, the continuous-time gradient
pro�le in the BT equation, by a sequence of in�nitely narrow gradient pulses. In
this approximation, the e�ects of the gradient term and of the Laplace operator
are separated, and the problem can be reduced to that of the Laplace operator in
a single unit cell with pseudo-periodic boundary conditions. This representation
will allow us to develop e�cient numerical computations and to investigate the
spectral properties of the BT operator4. In particular, we will show how the
localization of eigenmodes is related to bifurcation points in the spectrum in
periodic domains. We will also discuss the validity of this approximation.

This section reproduces closely our publication [348] and is organized as fol-

4Note that it is a priori not clear whether eigenfunctions of the BT operator exist in the
case of periodic domains because the gradient term is an unbounded perturbation of the Laplace
operator.
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lows. In Sec. 4.4.2, we present the theoretical basis of our numerical technique.
We show that the BT equation cannot be straightforwardly reduced to a single
unit cell and how to overcome this di�culty. The numerical implementation and
results are described in Sec. 4.4.3. As the gradient strength increases, the mag-
netization localizes sharply around obstacles in the medium, at points where the
boundary is orthogonal to the gradient direction. This behavior can be inter-
preted in terms of localized eigenmodes of the BT operator. We investigate these
eigenmodes and the corresponding eigenvalues in Sec. 4.4.4. Finally, Sec. 4.4.5
summarizes our results.

4.4.2 Theoretical ground
For pedagogical reasons, the presentation of our technique is split into di�erent
steps of increasing generality. First we consider the case of a medium that is
periodic along one axis (bounded along the other two). To be concise we call it
a 1D-periodic medium, although the medium itself is not one-dimensional. The
gradient is initially aligned with the periodicity axis, then we show how to take
into account a general gradient direction. Finally the case of periodicity along
several axes is discussed.

For convenience, we recall the Bloch-Torrey equation with the general Robin
boundary condition at the boundary of the domain and a uniform initial magne-
tization:

mC< = �0∇2< + 8 (�GG +�~~ +�II) in Ω , (4.109a)
n · ∇< − ^< |mΩ = 0 , (4.109b)
<(C = 0, r) = 1 , (4.109c)

and the Bloch-Torrey operator is de�ned as

B = −�0∇2 − 8 (�GG +�~~ +�II) . (4.110)

Bloch-Torrey equation adapted to a 1D-periodic medium

Let us �rst consider a medium Ω which is periodic along a given direction, say
G . In other words, the medium is invariant by the translation G → G + 0G , where
0G is the spatial period of the medium along G . A natural idea is to reduce the
study of the whole medium to the study of a single unit cell, that is to a slab
Ω1 = {(G,~, I) | − 0G/2 ≤ G ≤ 0G/2}, with appropriate boundary conditions, and
then to expand the results to the whole medium. Note that this “slab” typically
contains microstructural features, as illustrated on Fig. 4.20.
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Figure 4.20: A schematic example of a 1D-periodic medium, where 0G is the spatial pe-
riod. The dashed lines help to visualize a unit cell. The gray regions represent obstacles.
Di�usion can occur either only in white region (so that boundaries of gray regions are
impermeable), or in both gray and white regions (in which case boundaries of gray re-
gions are permeable). In this thesis, we focus on the former setting but the method can
be generalized to the latter one.

A simple case in which the reduction is straightforward is when the trans-
verse magnetization<(C, G,~, I) is at all times periodic along G ; in that case, one
can study the magnetization and related quantities on Ω1 with periodic boundary
conditions. However, although the initial condition (4.109c) is uniform (hence
periodic), the BT equation (4.109a) that governs the time-evolution of the trans-
verse magnetization is not periodic unless�G = 0. Therefore, let us consider the
case of�G ≠ 0 where one cannot directly reduce the BT equation to a single unit
cell with periodic boundary conditions. For clarity we assume that the gradient
is along G , in other words �~ = �I = 0, and the general case will be presented
later. We recall the de�nition

&G (C) =
∫ C

0
�G (C ′) dC ′ . (4.111)

From Eq (4.109a), one can see that the magnetization at the position G+0G evolves
in the same way as the magnetization at G , except for an accumulated phase:

<(C, G + 0G , ~, I) = 48&G (C)0G<(C, G,~, I) . (4.112)

Thus, in principle one can reduce the BT equation to a single unit cell, with the
time-dependent boundary condition

<(C, 0G/2, ~, I) = 48&G (C)0G<(C,−0G/2, ~, I) . (4.113)
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This time-dependent boundary condition makes the problem impractical from
both theoretical and numerical points of view. An often-employed trick to dis-
card the phase 48&G (C)0G and reduce the problem to simple periodic boundary con-
ditions is to introduce [31, 33]:

<per(C, G,~, I) = 4−8&G (C)G<(C, G,~, I) , (4.114)

so that Eq. (4.112) becomes

<per(C, G + 0G , ~, I) =<per(C, G,~, I) . (4.115)

Moreover, &G (C) = 0 at C = 0 and the refocusing condition (1.26) implies that
&G (C) = 0 at the end of the gradient sequence, so that < and <per coincide be-
fore and after the gradient sequence. The BT equation (4.109a) and boundary
condition (4.109b) on< become new equations on<per in the unit cell Ω1:

m<per

mC
= �0∇2<per + 28�0&G (C)

m<per

mG
− �0&

2
G (C)<per (4.116a)

n · �0∇<per + 8�0&G (C)=G<per − ^<per
��
mΩ1

= 0 , (4.116b)

<per(C, 0G/2, ~, I) =<per(C,−0G/2, ~, I) , (4.116c)

with <per(C = 0, G,~, I) = 1. As expected, the non-periodic 8�GG term in Eq.
(4.109a) has been replaced by new, periodic terms. Note that the boundary mΩ1
does not include frontiers between neighboring unit cells (here, the sections G =

−0G/2 and G = 0G/2), since these are taken into account by the periodic boundary
condition.

The modi�ed BT equation (4.116a) now has time-dependent coe�cients and
the new boundary condition (4.116b) is complex-valued and time-dependent.
These features prevent the use of spectral methods that were very e�cient to
solve the BT equation in bounded domains. In the next section we show how
one can reformulate the BT equation in a di�erent way, in order to reduce the
problem to a single unit cell while allowing the use of spectral methods.

Periodic boundary conditions

We still assume that the gradient is along the G-axis, in other words�~ = �I = 0.
The main idea of the method is to replace the continuous-time gradient pro�le
by a series of in�nitely narrow gradient pulses: computing the magnetization
is then reduced to solving a series of di�usion problems with di�erent (pseudo-
)periodic boundary conditions. Note that the idea of replacing a gradient pro�le
by multiple narrow pulses was introduced and exploited in [36, 38, 39] to compute
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Figure 4.21: The &G (C) function is sampled at multiples of 2c/(%0G ), the gradient �G (C)
becomes a series of Dirac peaks at times C: , : = 1, 2, . . .. Here, an example with two rect-
angular gradient pulses (“pulsed-gradient spin-echo sequence”) is shown but the tech-
nique is applicable to any gradient pro�le.

the magnetization in bounded domains. One will see that the case of periodic
domains is much more subtle.

For the sake of clarity, let us �rst present the simplest case that involves
only periodic boundary conditions. If we sample the function&G (C) at multiples
of 2c/0G and replace it by a step function &̂G (C), the gradient is then replaced
by a series of Dirac peaks �̂G (C) with weights ±2c/0G (see Fig. 4.21 with % =

1). In other words, a positive/negative gradient pulse e�ectively multiplies the
magnetization by exp(±28cG/0G ).

If the initial magnetization is periodic along G , then it remains periodic at
all times. Indeed, the gradient pulses and the di�usion steps both preserve the
periodicity. Thus, one can project the magnetization on the eigenmodes of the
Laplace operator on the slab Ω1 with a periodic boundary condition along G co-
ordinate:

− �0∇2D0,= = _0,=D0,= (4.117a)
D0,= (G = 0G/2, ~, I) = D0,= (G = −0G/2, ~, I) (4.117b)

n · �0∇D0,= − ^D0,=
��
mΩ1

= 0 , (4.117c)

where = = 0, 1, . . ., and the eigenmodes D0,= are !2(Ω1)-normalized. The reason
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for the index “0” will be clari�ed when we move to the general (pseudo-periodic)
case.

After projection on the eigenmode basis D0,=, the magnetization is repre-
sented by a vector m(C):

<(C, G,~, I) =
∑
=

<= (C)D0,= (G,~, I) , (4.118a)

<= (C) =
∫
Ω1

<(C, G,~, I)D∗0,= (G,~, I) dG d~ dI . (4.118b)

The computation of the magnetization is then reduced to matrix multiplications.
A di�usion step of duration g corresponds to left-multiplication by the matrix
exp(−gΛ0), where Λ0 is a diagonal matrix with elements _0,=, = ≥ 0. A posi-
tive gradient pulse corresponds to left-multiplication by the matrix ΓG0 , whose
elements are [

ΓG0
]
=,=′ =

∫
Ω1

D∗0,= exp(28cG/0G )D0,=′ dG d~ dI , (4.119)

and a negative pulse corresponds to the matrix (ΓG0)†.
In summary, for a given periodic medium, one �rst computes a su�cient

number of eigenmodes, constructs the matrix ΓG0 , discretizes the gradient pro�le,
and then computes the magnetization and/or the normalized signal via a matrix
product of the form:

m =

(
4−g#Λ0 (ΓG0)† · · · ΓG0 4−g1Λ0 ΓG0

)
m0 , (4.120a)

( = m†0m/(m
†
0m0) , (4.120b)

where m0 represents the initial condition (4.109c):

[m0]= =
∫
Ω1

D∗0,= dG d~ dI , (4.121)

and the left multiplication by m†0 represents the integration over a unit cell. In
Eq. (4.120a), # is the number of narrow pulses, g1, g2, . . . g# are the time intervals
between adjacent narrow pulses, and one has g1 + g2 + · · · + g# = ) the total
duration of the gradient sequence (here we assume that the gradient sequence
lasts up to the echo time) , at which the signal is measured). With the notations
of Fig. 4.21, g: = C:+1 − C: for : = 1, . . . , # with the convention C#+1 = ) .



214 4. Localization

Pseudo-periodic boundary conditions

In general, it may be restrictive to sample&G (C) at multiples of 2c/0G , especially
at low gradient strength. The above method can be generalized to any sampling:
for example one can sample @G (C) at every multiple of 2c/(%0G ), with a given
integer % (see again Fig. 4.21). In that case, each gradient pulse multiplies the
magnetization by exp(±28cG/(%0G )). Naturally, other sampling choices are pos-
sible. Because of the sampling, at all times the magnetization obeys:

<(C, 0G/2, ~, I) = 48?0G<(C,−0G/2, ~, I) , (4.122a)

? = &̂G (C) (mod 2c/0G ) . (4.122b)

Throughout the text, we will call “?-pseudo-periodic” a function that obeys Eq.
(4.122a), and ? is the wavenumber that de�nes the pseudo-periodicity condition.
Note that, as the function &̂G (C) is piecewise constant, there is a �nite number of
di�erent values of ? involved during the gradient sequence. For example, if one
samples &G (C) at multiples of 2c/(%0G ) as in Fig. 4.21, there are only % di�erent
values of ? .

Every ?-pseudo-periodic function can be projected onto the ?-pseudo-periodic
eigenmode basis of the Laplace operator on Ω1 [342]:

− �0∇2D?,= = _?,=D?,= (4.123a)

D?,= (G = 0G/2, ~, I) = 48?0GD?,= (G = −0G/2, ~, I) (4.123b)

n · �0∇D?,= − ^D?,=
��
mΩ1

= 0 . (4.123c)

The wavenumber ? = 0 corresponds to periodic eigenmodes, which is consistent
with our previous notations. A di�usive step of duration g translates then into
left-multiplication by the matrix exp(−gΛ?), with Λ? being a diagonal matrix
with elements _?,=, = ≥ 0. A narrow gradient pulse of weight @0 corresponds to
the left-multiplication by ΓG?→?+@0 :[

ΓG?→?+@0

]
=,=′

=

∫
Ω1

D∗?+@0,=4
8@0GD?,=′ dG d~ dI , (4.124)

that is the projection of the ?-pseudo-periodic basis onto the (? + @0)-pseudo-
periodic basis after multiplication by exp(8@0G). Note that by performing several
pulses in succession in order to cycle through a 2c phase di�erence between
G = −0G/2 and G = 0G/2, one gets the equivalent of one pulse of weight 2c/0G ,
in other words

ΓG0 = ΓG
?#−1→2c/0G ΓG?#−2→?#−1 . . . ΓG?1→?2 ΓG0→?1 , (4.125)
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where 0 < ?1 < ?2 < · · · < ?#−1 < 2c/0G . This algebraic relation is a direct
consequence of the completeness of the ?-pseudo-periodic Laplacian eigenmode
bases and shows how the ΓG?→?+@0 matrices generalize the ΓG0 matrix from the
previous subsection.

Similarly to the periodic case presented above, one can compute the magne-
tization at all times by successively applying the matrix multiplications corre-
sponding to the gradient sequence:

m =

(
4−g#Λ0 ΓG?#→0 · · · ΓG?1→?2 4

−g1Λ?1 ΓG0→?1

)
m0 , (4.126)

where # is the number of narrow pulses, g1, g2, . . . , g# are the time intervals be-
tween adjacent narrow pulses and satisfy g1 + g2 + · · · + g# = ) the duration of
the gradient sequence, and ?1, ?2, . . . , ?# are the sampled values of&G (C) modulo
2c/0G . With the notations of Fig. 4.21, one has ?: = &̂G (C:) (mod 2c/0G) and
g: = C:+1 − C: for : = 1, . . . , # with the convention C#+1 = ) . Due to the refo-
cusing condition (1.26), the magnetization at the end of the gradient sequence is
periodic again, so that the wavenumber ? is equal to zero, hence the last gradient
pulse matrix ΓG?#→0 in Eq. (4.126). The initial condition m0 is still given by Eq.
(4.121), and the normalized signal can be computed with Eq. (4.120b).

Relation with Bloch bands, di�usion-di�raction, and di�usion pore
imaging

The collection of all ?-pseudo-periodic eigenvalues are exactly the Bloch bands of
the periodic medium, a fundamental concept in condensed matter physics [325,
326]. The previous formulas potentially allow one to measure the Bloch bands of
a periodic medium by performing a short-gradient pulses experiment and �tting
the signal by a multi-exponential function of the di�usion time between two
pulses (see Fig. 4.21, with the pulse duration X → 0 and variable inter-pulse
duration Δ). Indeed, a short gradient pulse of weight @G allows one to select a
given pseudo-periodicity wavenumber ? , and the signal decays then according
to the Laplacian eigenvalues corresponding to that wavenumber:

( =

∞∑
==0

���?,= (@G )��2 exp(−_?,=Δ) , (4.127a)

�?,= (@G ) =
1√

vol(Ω1)

∫
Ω1

48@GGD∗?,= (G,~, I) dG d~ dI , (4.127b)

? = @G (mod 2c/0G ) . (4.127c)

The notation for�?,= (@G ) is somewhat redundant because ? is a function of @G ; its
purpose is to present �?,= as a generalization of the form factor of bounded do-
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mains that corresponds to �0,0. As the eigenvalues _?,= generally scale as �0/02G ,
the signal ( typically exhibits a multi-exponential time-decay over the duration
Δ ∼ 02G/�0, and then becomes mono-exponential with Δ at longer times. In con-
trast with di�usion in the free space R3 where the signal decays as exp(−@2G�0Δ),
the long-time decay of the signal in a periodic medium with microstructural fea-
tures is controlled by _?,0 that is a bounded function of @G . This observation
generalizes our results on a periodic array of permeable barriers (see Sec. 3.4).

The above formula generalizes the expression used by Callaghan et al. in their
seminal work [85]. In that work, a packing of monodisperse beads is treated as a
collection of pores separated by a constant spacing along the gradient direction,
i.e., a periodic lattice. As they were interested in the long-time limit when water
molecules could di�use through multiple pores, their main formula is exactly
the �rst term (= = 0) of Eq. (4.127a). If one assumes zero surface relaxivity
on the obstacles and pore boundaries, then _?,0 = 0 for ? = 0 and _?,0 > 0
otherwise. Thus at long times, Eq. (4.127a) displays relatively sharp maxima at
@G = 2:c/0G , : = 0, 1, 2, . . .. This important feature, called “di�usion-di�raction
pattern”, allowed Callaghan et al. to recover the lattice step 0G (i.e., pore spacing).
Moreover, the value of the squared generalized form factor

���?,0��2 allowed them to
extract geometrical features of the pores, in particular their diameter (assuming
a spherical shape), as we discussed in Sec. 1.2.3.

Note that one could improve this last step by getting access to the phase in-
formation of the form factor (lost because of the absolute value). This possibility
was shown by Laun et al. in bounded domains by using asymmetric gradient
sequences (short and long pulses, double di�usion encoding, and others), thus
opening the �eld of di�usion pore imaging [90, 91]. However, it remains an
open question in periodic domains. Plots of the magnetization and signal for a
short-gradient pulses sequence are presented in Appendix C.9, and we focus on
extended-gradient pulses sequence in the main text.

Sampling optimization

One can sample&G (C) in di�erent ways that lead to di�erent step functions &̂G (C),
which are more or less close to the original pro�le. In essence, this is similar to
approximating integrals by Riemann sums or to rounding a decimal number. In
fact, there are at least 4 natural approximation schemes: (i) “�ooring” scheme
where &̂G (C) is equal to the sampled value immediately below &G (C); (ii) “ceil-
ing” scheme would choose the value immediately above &G (C); (iii) “rounding”
scheme would choose the value which is the closest to &G (C); (iv) “midpoint”
scheme would be to place the gradient pulses (i.e. the jumps in &̂G (C)) inbe-
tween the pulses of the �ooring scheme and those of the ceiling scheme (see Fig.
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4.22). Although these 4 schemes are the most straigthforward ones, many oth-
ers are possible. Note that the midpoint and rounding schemes give the same
results if the gradient is constant. If one considers the free di�usion case as a
benchmark, the criterion for the sampling scheme is to reproduce the 1-value,
1 =

∫ )
0 &2

G (C) dC , as accurately as possible. From the theory of Riemann sums,
the most accurate sampling scheme among the four considered above would be
the midpoint one, followed by the rounding one.

 𝑞1

 𝑞2

 𝑞2 +  𝑞2

2

𝑡ceil 𝑡floor𝑡ceil + 𝑡floor
2

Flooring scheme Ceiling scheme

Rounding scheme Midpoint scheme

Figure 4.22: Illustration of four natural sampling schemes of a continuous function (blue)
into a piecewise constant function (red).

The second point to optimize is the size of the steps of &̂G (C). For simplicity,
we assume that&G is sampled at multiples of 2c/(%0G ) as in Fig. 4.21. The larger
we choose % , the �ner the sampling and the better the approximation. To have a
more quantitative view on this question, one can again consider free di�usion as
a benchmark and compare the e�ect of a �nite pulse of strength� and duration
g with a narrow pulse of weight @0 = �g such that @0 = 2c/(%0G ). Following the
conclusion of the previous subsection, the narrow pulse is applied at C = g/2.

Since the &-value associated to both gradient pulses is the same, the only
di�erence is the decay of the magnetization during the pulse itself. This decay is
simply expressed as exp(−�2g3�0/3) = exp(−@20�0g/3) for the continuous pulse,
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and exp(−@20�0g/2) for the narrow pulse, resulting in a ratio of exp(−@20�0g/6).
This additional decay accumulates over all pulses, so that if) is the total time dur-
ing which the gradient is turned on, one gets that the multiple narrow pulses cre-
ate an additional attenuation factor exp(−@20�0) /6) compared to the continuous
gradient. One obtains the same formula by directly comparing the continuous-
time value 1�0 = �0

∫ )
0 @2G (C) dC with its discrete version.

Now, according to the sampling scheme detailed previously, one should re-
place @0 by 2c/(%0G ) hence the relative error created by the sampling reads

n = 1 − exp
(
−4c

2

6%2
�0)

02G

)
≈ 7
%2
�0)

02G
. (4.128)

This estimation allows one to control the quality of the approximation as a func-
tion of % . Since any microstructure on a much �ner scale than the di�usion length√
�0) would be modeled via reduced (e�ective) medium di�usivity, it is reason-

able to assume that the di�usion length is at most of the order of magnitude of
the lattice step:

√
�0) . 0G . Thus it is possible to choose a moderate value of %

to ensure a good compromise between accuracy and computation time.
It should be noted that many gradient sequences, especially the pulsed-gradient

spin-echo (PGSE) sequence [20, 22] (see Fig. 4.21), contain a free di�usion step
during which the gradient is o�. This means that&G (C) (resp. &̂G (C)) would take
a constant value @o� (resp. @̂o�) over a duration Co� . In terms of 1-value, the
discrepancy between @o� and @̂o� would accumulate over the whole duration Co�
and yield a di�erence in1-values equal to Co� (@2o�−@̂

2
o�). Thus, if Co� is large, even

a very �ne sampling may lead to an important error. To prevent this, a simple
solution is to add the constant value @o� explicitly in the sampling scheme.

Extension to higher dimensions

In the previous sections we dealt with a medium that is periodic along one direc-
tion, and the gradient was aligned with that direction. In this section, we show
how to extend the results to an arbitrary gradient direction, as well as multi-
dimensional periodic media.

First we assume that the medium is still periodic along G and bounded along~
and I. The gradient direction is arbitrary and may change over time as well. Since
the medium is bounded along~ and I, the e�ect of�~ and�I can be implemented
using standard spectral methods [3, 36, 37, 40]. As we explained in Sec. 1.1.5, two
main schemes were proposed in the literature, in which the gradient is either
replaced by (i) a collection of narrow pulses [36, 38, 39] (similar to our method
but without restrictions introduced by periodicity); or (ii) a stepwise function [3,
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37, 40]. For clarity and consistency of notations we show here how to implement
the narrow pulse approach, and the extension to the stepwise gradient approach
is detailed in Appendix C.10.

Between two narrow�G pulses, the magnetization is ?-pseudo-periodic with
a given wavenumber ? and one can compute the e�ect of narrow gradient pulses
of weight @0 along ~ or I with the following matrices:[

Γ~?
]
=,=′

=

∫
Ω1

D∗?,=4
8@0~D?,=′ dG d~ dI (4.129a)[

ΓI?
]
=,=′

=

∫
Ω1

D∗?,=4
8@0ID?,=′ dG d~ dI . (4.129b)

There are two main di�erences between the Γ~? , ΓI? matrices and the ΓG?→?+@0 ma-
trices presented above. First, since the ~ or I pulses do not interfere with the
pseudo-periodic boundary condition along G , there is no restriction on the sam-
pling of &~ (C) and &I (C) as it is the case with &G (C) where each new additional
sampled value ? requires the computation of a family of eigenmodes D?,=. More-
over, since the boundary condition along ~ and I does not evolve with the �~
and�I gradient pulses, one needs to compute only one Γ~? and ΓI? matrix for each
value of ? . The only requirement is that the value of @0 in Eqs. (4.129a) and
(4.129b) is su�ciently small to provide a correct sampling of &~ (C) and &I (C).

If the medium is periodic along, say, G and ~, then one has to sample both
&G (C) and &~ (C) in order to apply the same numerical technique. This leads to
two pseudo-periodicity wavenumbers ?G and ?~ , and two families of matrices
ΓG?G→?G+@0,?~ , Γ~?G ,?~→?~+@0 . If the medium is periodic along G , ~ and I, one has
three indices and three families of Γ...···→··· matrices.

Particular orientations of the gradient may simplify the computations. The
simplest example is when one of the component of the gradient is zero, in that
case no sampling needs to be done and the magnetization is at all times periodic
along that direction. Another example is the gradient which is perpendicular to
a lattice vector. In that case, it might be interesting to re-de�ne the unit cell to
cancel all components of the gradient except one (see Fig. 4.23).

4.4.3 Numerical Implementation and Results
Numerical implementation

As discussed above, the computation of the magnetization and the normalized
signal is reduced to matrix multiplications. However, all the matrices ΓG?→?+@0 , Γ~? ,
ΓI? , Λ? , depend on the Laplacian eigenfunctions with (pseudo-)periodic boundary
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Figure 4.23: This �gure shows that the choice of the unit cell (delimited by dashed lines)
is arbitrary and can be tailored to the particular orientation of the gradient. The situation
(a), (b) and (c) are geometrically equivalent but in (b), (c) the gradient is orthogonal to one
of the lattice axes, that simpli�es the computations. The unit cell in (b) has a convenient
square shape but can be reduced further to (c), with a length along the gradient direction
equal to 0/

√
2.

conditions. Except for some trivial cases, these eigenfunctions are not known and
need to be computed numerically. This computational step is usually the most
time-consuming. However, once the eigenfunctions and the consequent matri-
ces are computed for a given unit cell, one can apply them to various gradient
sequences and strengths.

We implemented the algorithm in Matlab by using the �nite element PDE
toolbox, but other numerical solvers could be used to compute the Laplacian
eigenfunctions. The practical di�culty was that periodic/pseudo-periodic bound-
ary conditions are not available in the Matlab PDE solver. Thus we generated the
mass and sti�ness matrices by imposing Neumann boundary conditions on the
outer boundaries of the unit cell and then modi�ed those matrices in order to
account for the periodic or pseudo-periodic boundary conditions5. The search
for eigenmodes and eigenvalues has to be truncated at a given threshold. Typi-
cally, any eigenvalue much larger than 1/g , where g is the duration between two
Dirac peaks, can be omitted because its contribution to the �nal result will be
negligible. Indeed, the di�usion step between two peaks corresponds to the mul-
tiplication by the matrix exp(−gΛ?). In practice, one can control the truncation
error by increasing the truncation threshold and checking whether the varia-
tion of computed quantities is small. We also employed this check to control the
number of mesh points in the domain.

In the following, we will present numerical results for the particular example
of a 2D square lattice of circular impermeable obstacles with no surface relaxivity
(i.e., ^ = 0). For simplicity, we apply a PGSE sequence with rectangular gradient

5The code was written by A. Moutal.
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pulses of duration X and no di�usion time between two pulses (i.e., Δ = X), so
that the problem is fully determined by three length ratios: '/0, ℓ6/0 and ℓX/0,
where 0G = 0~ = 0 is the lattice step, ' is the radius of obstacles and we recall
that

ℓ6 = (�/�0)−1/3 and ℓX = (�0X)1/2 (4.130)

are respectively the gradient and di�usion lengths. Note that here we write ex-
plicitly ℓX instead of ℓd to avoid any confusion with the results of Appendix C.9
where we consider narrow-gradient sequences for which ℓd =

√
�0Δ shall be

denoted by ℓΔ. The gradient length controls the competition between the Lapla-
cian and gradient terms of the BT equation and can be interpreted as the typical
length over which di�using spins get uncorrelated phases. Results for very short
gradient pulses and non-zero di�usion time between pulses are presented in Ap-
pendix C.9 and we show important and interesting qualitative di�erences in the
transverse magnetization pro�le and the resulting signal. The initial transverse
magnetization is uniform and equal to 1. We recall that the free-di�usion case
(i.e., a periodic medium without any obstacle) would yield a uniform magnetiza-
tion

< = exp(−1�0) = exp

(
−2
3

(
ℓX

ℓ6

)6)
. (4.131)

We chose to sample &-values at multiples of 2c/(%0) with a rounding sam-
pling scheme (see Sec. 4.4.2). Thus we computed % families of eigenmodes for
a given geometry. All computations were performed with % = 120, about 6000
mesh points in a single unit cell and 240 Laplacian eigenmodes for each pseudo-
periodic boundary condition. The computation of all eigenmodes and eigenval-
ues took about 5 minutes on a standard desktop computer. Once this preliminary
step has been performed, all computations of the magnetization took less than
one second. For better visibility, we plot the magnetization inside one unit cell
surrounded by its neighbors. We stress, however, that the computations were
performed solely inside one unit cell and then the results were “copy-pasted” to
other cells.

Results

Figure 4.24 shows the magnetization<(), G,~) after a PGSE sequence for a gra-
dient in the left to right horizontal direction. This direction is expected to create
the most important restriction to di�usion because of the proximity of neigh-
boring obstacles along the gradient direction. Let us discuss �rst the top panel
('/0 = 0.4, ℓX/0 = 0.5, ℓ6/0 = 0.25). One can see that the magnetization has been
strongly attenuated in regions where there is almost no geometrical restriction
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by the obstacles. In contrast, one can interpret the areas with large magnetiza-
tion (typically the red parts in the “abs” plot) as areas where the in�uence of the
obstacles is strong. Because of the large di�usion length, this red area is very
broad. When one decreases both the gradient length and di�usion length (mid-
dle then bottom panel), the e�ect of the obstacle is less spread by di�usion and
the localization of the magnetization between the neighboring obstacles becomes
sharper. In the bottom panel, the magnetization is actually localized on each ob-
stacle, with a small overlap between two neighboring localization pockets.

Figure 4.24: Plot of the magnetization (real and imaginary part, absolute value and phase)
after a PGSE sequence. The gradient is in the left to right horizontal direction. The black
square indicates the unit cell in which the computation was performed. For all �gures,
'/0 = 0.4, and we kept a �xed ratio ℓX/ℓ6 = 2. The corresponding normalized signal
is shown on the left panel of Fig. 4.26. (top) ℓ6/0 = 0.25; (middle) ℓ6/0 = 0.1; (bottom)
ℓ6/0 = 0.05.

Figure 4.25 shows the magnetization for the same set of parameters but with
the gradient in the bottom-left to top-right diagonal direction. In that case, the
geometrical restriction by the disks is much weaker (and thus the attenuation
is stronger). This is especially visible on the top panel, where the magnetiza-
tion is two orders of magnitude lower than that in the horizontal gradient case
presented above. One still observes the same pattern as above on the top panel,



4.4. Periodic domain 223

Figure 4.25: Plot of the magnetization (real and imaginary part, absolute value and phase)
after a PGSE sequence. The gradient is in the bottom-left to top-right diagonal direction.
The black square indicates the unit cell in which the computation was performed. For
all �gures, '/0 = 0.4, and we kept a �xed ratio ℓX/ℓ6 = 2. The corresponding normalized
signal is shown on the right panel of Fig. 4.26. (top) ℓ6/0 = 0.25; (middle) ℓ6/0 = 0.1;
(bottom) ℓ6/0 = 0.05.

with almost zero magnetization where there is no geometrical restriction along
the gradient direction, and the largest magnetization inbetween two neighboring
obstacles. As the gradient length and di�usion length decrease, the magnetiza-
tion localizes more sharply near the obstacles. On the middle panel, one can
already see magnetization pockets on each obstacle, with almost no overlap be-
tween neighboring obstacles.

In both cases (horizontal or diagonal gradient direction), at high gradient
strength the localization along the gradient direction is much sharper than in
the orthogonal direction (parallel to the boundary). As we showed in Sec. 4.2.2,
the magnetization localizes on the scale ℓ6 along the gradient direction and on
the scale

ℓ6,‖ = (2ℓ36')1/4 (4.132)

parallel to the boundary. In particular, the bottom panels of Figs. 4.24 and 4.25
correspond to a ratio ℓ6,‖/ℓ6 = 2, which is visually consistent with the �gures.
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The (normalized) signal is presented in Fig. 4.26 as a function of (ℓX/ℓ6)6
for di�erent �xed values of ℓX/0 and horizontal or diagonal gradient direction.
At low values of ℓX/ℓ6 the gradient encoding is weak so that the signal is well
represented by an expression similar to the free di�usion decay (4.131):

( ≈ exp(−1� (ℓX/0))

≈ exp

(
−2
3
� (ℓX/0)
�0

(
ℓX

ℓ6

)6)
, (4.133)

where 0 < � (ℓX/0) < �0 is the e�ective di�usion coe�cient that accounts for
the restriction by obstacles in the domain. At in�nitely short di�usion time, i.e.
ℓX/0 → 0, the e�ect of the obstacles becomes negligible so that � (ℓX/0) → �0.
This limit is plotted as a dotted line on Fig. 4.26. The short-time behavior of
� (ℓX/0) was shown to be linear in ℓXf , where f is the surface-to-volume ratio
of the domain (see Sec. 2.3.1 and Refs [47, 48, 344]). For unbounded domains
such as the one considered here, � (ℓX/0) has a positive limit at in�nitely long
times that can be interpreted as a measure of the tortuosity of the domain [76,
77]. Furthermore, the long-time asymptotic behavior of � (ℓX/0) is related to the
structural disorder of the medium (see Secs. 1.2.2 and 1.2.3 and Ref. [69]). In that
regard, periodic media present a special case of perfectly ordered media, however
this is of little importance as long as the di�usion length is at most of the order
of the lattice step (i.e. ℓX . 0). As we argued in the introduction and in Sec. 4.4.2,
this is a natural assumption in the context of this paper as otherwise the e�ect
of microstructure is averaged out by the di�usion, as it is discussed in [69].

At large values of ℓX/ℓ6, the decay of the signal is much slower than the free
di�usion decay (4.131). As we plot the signal in terms of (ℓX/ℓ6)6 = �0�

2X3 for
di�erent �xed values of ℓX , smaller values of X (i.e., smaller ℓX ) correspond to a
larger range of values of � (i.e., smaller values of ℓ6 are attained). Therefore, in
this representation, a sharp localization phenomenon is obtained at large values
of ℓX/ℓ6 and small ℓX . Bearing that in mind, we observe two distinct behaviors
depending on the gradient direction.

(i) For the gradient in the horizontal direction (top panel of Fig. 4.26), the
decay of the signal as a function of ℓX/ℓ6 changes signi�cantly when ℓX decreases,
and the signal displays oscillations at the lowest considered value of ℓX . This
behavior can be related to the previous observations about Fig. 4.24, that cor-
responds to (ℓX/ℓ6)6 = 64. At ℓX/0 ≥ 0.2, the gradient length is too large com-
pared to the inter-obstacle spacing so that the magnetization is not localized on
each obstacle’s boundary but rather inside the small slab-like space between two
neighboring obstacles. As the di�usion length ℓX is larger than the inter-obstacle
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Figure 4.26: Signal as a function of (ℓX/ℓ6)6 ∝ 1�0 for di�erent values of ℓX as well as
asymptotic regimes (4.133) (in the limit ℓX/0 → 0), (4.134) (for ℓX/0 = 0.3) and (4.135) (for
ℓX/0 = 0.1). (top) The gradient is in the horizontal direction. (bottom) The gradient is in
the diagonal direction. Refer to the text for discussion of the �gure.
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spacing, one can interpret this regime as a motional narrowing regime in an ef-
fective slab of width !:

( ≈ �mn exp

(
− 1
60

ℓ2
X
!4

ℓ66

)
≈ �mn exp

(
− 1
60

(
!

ℓX

)4 (
ℓX

ℓ6

)6)
, (4.134)

where the above formula is valid in the regime !/ℓX . 1 (see Secs. 1.2.2 and 4.3.1
and Refs [79–81]) and �mn represents here the fraction of spins inside the small
inter-obstacle space. A rough �tting of the signal at the longest di�usion length,
i.e. ℓX/0 = 0.3, yields !/0 ≈ 0.3, that is larger than the inter-obstacle spacing
1 − 2'/0 = 0.2 as expected from the curvature of obstacles. This asymptotic
regime is plotted as solid line on the top panel of Fig. 4.26 for ℓX/0 = 0.3.

In contrast, at smaller gradient length the localization regime emerges and
the signal from localized magnetization pockets decays as

( ≈ �loc exp

(
−|01 |

ℓ2
X

ℓ26
−

ℓ2
X

'1/2ℓ3/26

−
√
3ℓ2
X

2|01 |'ℓ6

)
≈ �loc exp

(
−
ℓ2
X

ℓ26

(
|01 | +

ℓ
1/2
6

'1/2
+
√
3

2|01 |
ℓ6

'

))
, (4.135)

where 01 ≈ −1.0188 is the �rst zero of the derivative of the Airy function (see
Sec. 4.2.2). The prefactor �loc represents the fraction of spins in the localization
pockets and one has �loc ∼ ℓ6ℓ6,‖ ∼ ℓ7/46 '1/4. This asymptotic regime is plotted
on Fig. 4.26 for ℓX/0 = 0.1. Moreover, the signal exhibits some oscillations that
are related to overlapping of magnetization pockets, as we showed in Sec. 4.3.3.
This is consistent with Fig. 4.24 where the magnetization pockets on two neigh-
boring obstacles have some signi�cant overlapping even at the highest gradient
strength. Note that these oscillations may lead to a signi�cant signal attenuation
for some particular values of ℓX and ℓ6.

(ii) For the gradient in the diagonal direction (bottom panel of Fig. 4.26), the
spacing between neighboring obstacles is much larger so that the localization
regime emerges at larger gradient length. Correspondingly, all curves follow
the asymptotic decay (4.135) and one observes some oscillations only for the
largest di�usion length ℓX/0 = 0.3. This is consistent with Fig. 4.25 where the
magnetization pockets on neighboring obstacles have almost no overlap even at
the lowest gradient strength (top panel).
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For completeness we have also performed some numerical simulations in a
3-dimensional cubic lattice with spherical impermeable obstacles (see Fig. 4.27).
We used about 29000 mesh points, % = 12 and 350 Laplacian eigenmodes for each
pseudo-periodicity condition. The physical parameters used were '/0 = 0.4,
ℓ6/0 = 0.15, ℓX/0 = 0.225. The magnetization displays similar features compared
to the 2D case. In particular it takes maximum values around “poles” of the spher-
ical obstacles (i.e., points where the gradient is perpendicular to the boundary of
obstacles). These magnetization pockets are well localized along the gradient
direction on the scale ℓ6 but they are rather delocalized in the orthogonal plane
(one can compute ℓ6,‖/0 = 0.23). Thus they overlap on neighboring cells, that
creates a pattern similar to the top panel of Fig. 4.25, with a rather intense mag-
netization in the “equatorial plane” of the obstacle, where one would expect a
very weak magnetization if the obstacles were isolated or much further apart
from each other. The right plot of Fig. 4.27 reveals this overlapping e�ect from
neighboring cells.

Figure 4.27: Real part of the magnetization<(), G,~, I) in a 3D cubic lattice of spherical
obstacles after a PGSE sequence, plotted as a set of colored wired isosurfaces as well as
volume colors (dark colors represent intense magnetization). The left plot represents a
single unit cell and the right plot represents a di�erent view with neighboring cells (the
black cube helps to visualize a unit cell). The gradient is along ex + ey + ez (the diagonal
of the cube from A to B). The parameters are '/0 = 0.4, ℓ6/0 = 0.15, ℓX/0 = 0.225
and the normalized signal is 2.75 · 10−3. One can see that the magnetization forms two
localization pockets near the “poles” of the spheres, where the gradient is orthogonal to
the boundary of obstacles. The magnetization is also high near the “equatorial plane” of
the spheres; the right plot reveals that this is caused by the overlapping of neighboring
localization pockets on the central unit cell.
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4.4.4 Eigenmodes of the Bloch-Torrey operator in a
periodic medium

In this section we study eigenmodes and eigenvalues of the BT operator B de-
�ned in Eq. (4.110):

BE= (G,~) = `=E= (G,~) (4.136a)
n · �0∇E= − ^E= |mΩ = 0 . (4.136b)

By convention, the eigenvalues are sorted by increasing real part. The existence
and the properties of eigenmodes of the BT operator in a bounded domain have
been studied in [94, 95, 98–100, 102, 104] (see also Sec. 4.3), whereas a class
of unbounded domains (exterior of an obstacle) has been investigated in [94–
97]. In contrast, no theoretical or numerical studies were devoted to the spectral
properties of the BT equation in the periodic case.

For the sake of clarity, we restrict our discussion in this section to a 2D
medium, periodic along G and ~ with periods 0G and 0~ , and the gradient is
aligned along G (i.e., �~ = �I = 0). This particular case allows us to describe
the e�ect of periodicity along the gradient and perpendicular to the gradient.
Note that all of our discussions and results are actually valid for any 2D peri-
odic medium with one periodicity axis orthogonal to the gradient and can be
extended to any 3D medium with two periodicity axes orthogonal to the gradi-
ent. The general case of an arbitrary gradient direction is brie�y discussed in Sec.
4.4.4. We emphasize that the results of this section require further mathematical
analysis on the existence of the eigenmodes of the BT operator in periodic me-
dia. Throughout this section, we conjecture that these eigenmodes exist, and we
shall provide strong numerical support to this conjecture.

Periodicity perpendicular to the gradient

Since the gradient is along G , the BT operator is invariant under any translation
~ → ~ + 0~ . From the theory of Bloch bands in condensed matter physics [325,
326], we deduce that any eigenmode of B can be written in the form

E?~,= (G,~) = 48?~~F?~,= (G,~) , (4.137)

where F?~,= is periodic along ~, ?~ ∈ [0, 2c/0~) is the wavenumber associated
to the eigenmode, and the index = is integer. As a consequence, the eigenmodes
and eigenvalues of B would form continuous bands, each band being indexed by
the integer =.

Note that if one considers a uniform initial magnetization, then only eigen-
modes with ?~ = 0 (i.e., periodic along~) will be populated. As such, eigenmodes
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with ?~ ≠ 0 do not play any role in the signal formation. In the following, we dis-
card the index ?~ from notations for brevity and all our numerical results assume
?~ = 0.

Periodicity along the gradient

The translation G → G + 0G modi�es the BT operator as B → B − 8�G0G . Hence,
we can conclude that any eigenmode E= (G,~) and eigenvalue `= of B would be-
long to a family of eigenmodes E= (G −:0G , ~) and eigenvalues `=−8:�G0G , where
: ∈ Z. This is consistent with the idea that the BT eigenmode E= (G,~) is local-
ized near an obstacle of the medium and that E= (G − :0G , ~) is localized on the
same obstacle but in a di�erent unit cell. Indeed, as we showed in Sec. 1.2.4, the
imaginary part of `= can be interpreted as −�G times the position along G of the
localized mode E=. In the following, we discard the index : from notations for
brevity.

Moreover, if the unit cell Ω1 is not irreducible along the gradient direction,
i.e. if there exists a lattice vector e such that 0 < 4G < 0G , then all eigenmodes E=
can be translated by multiples of e which leads to 0G/4G families of eigenvalues

` = `= − 8:�G0G − 8:′�G4G , : ∈ Z , :′ = 0, . . . , 0G/4G − 1 , (4.138)

where 0G/4G is necessarily integer because of the hypothesis �~ = 0 and the
properties of additive groups. To avoid this arti�cial splitting of one family of
eigenvalues into 0G/4G di�erent families, we assume in the following that Ω1 is
irreducible along the gradient direction. In other words, for any given periodic
medium, there are many choices of unit cells, and we always select an irreducible
one6. An example of this situation is illustrated on Fig. 4.23 where the case (b) is
reducible to (c).

General gradient direction

As we explained in Sec. 4.4.2, if the gradient is perpendicular to a generating
vector of the lattice, one can redraw the unit cell and the previous discussion
will be valid. Here we discuss the case of an arbitrary gradient direction and we
assume that no lattice vector is perpendicular to the gradient. In that case, one
cannot �nd any translation that leaves the BT operator invariant. However, the
set {e · G}, where the vector e spans all possible vectors of the lattice, is known
to be a dense set in R. Therefore to any eigenvalue `= is associated an in�nite
band `= + 8a , where a spans a dense set in R. Although this case is formally the

6There are in�nitely many choices of an irreducible unit cell.
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most general one (in the sense that a randomly chosen gradient direction always
falls into that situation), we discard it in our analysis for two reasons: (i) as this
paper represents the �rst step in the study of the spectrum of the BT operator
in periodic media, we focus on a simpler but physically relevant situation and
postpone the general case for future research; (ii) slightly changing the gradient
direction allows returning to the case discussed in this section where the gradient
is orthogonal to all periodicity axes but one.

Numerical computation

One can use our numerical technique to investigate the properties of eigenmodes
of the BT operator on a periodic medium. Let us stress again that since B does
not respect the periodicity of the medium, it is impossible to study its eigenmodes
and eigenvalues directly on a unit cell. However, the eigenmodes of the BT op-
erator B are also the eigenmodes of its semi-group operator exp(−gB), whereas
the eigenvalues `= are transformed into exp(−g`=). Note that the minus sign
comes from the de�nition (4.110) of B so that exp(−gB) represents the e�ect of
a �G gradient pulse of duration g . If g and �G satisfy the condition

�Gg0 = 2c , (4.139)

then the semi-group operator respects the periodicity of the medium and one
can study its eigenmodes and eigenvalues on a unit cell. Note that one can im-
pose any ?-pseudo-periodic boundary conditions on the unit cell, not only pe-
riodic ones. In other words, one can study the eigenmodes and eigenvalues of
the semi-group operator exp(−gB) on the space of ?-pseudo-periodic functions
for any value of ? . The application of a gradient pulse of a given duration is
represented by the multiplication by a matrix (see Eq. (4.126)), hence the study
of the eigenmodes and eigenvalues of the BT operator is reduced to the study of
the eigenvectors and eigenvalues of a matrix. Performing this study for a given
?-pseudo-periodic boundary condition, one obtains a family (E′?,= (G,~), `′?,=) of
the ?-pseudo-periodic eigenmodes and associated eigenvalues of the semi-group
exp(−gB) on Ω1:

exp(−gB)E′?,= = `′?,=E′?,= , (4.140a)

n · �0∇E′?,= − ^E′?,=
���
mΩ1

= 0 , (4.140b)

E′?,= (0G/2, ~) = 48?0GE′?,= (−0G/2, ~) . (4.140c)

In the following, we call them “numerical” eigenmodes and eigenvalues, to dis-
tinguish them from “true” eigenmodes and eigenvalues of the BT operator. It is
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quite easy to see that `′?,= does not depend on ? , hence we will denote it by `′= in
the following.

The accuracy of the numerical computation can be assessed using Eq. (4.128)
combined with Eq. (4.139), which yields a relative error:

n ≈ 1
%2

�0

�G0
3 =

1
%2

(
ℓ6

0

)3
. (4.141)

This formula implies that the numerical computation of eigenmodes and eigen-
values of the BT operator is more accurate at high gradients. In the following, we
assume that the sampling of &G (C) is �ne enough (i.e., % is large enough) so that
this error is negligible. Moreover, because of the condition (4.139), low gradients
�G require long pulse duration g which increases the relative di�erence between
the eigenvalues exp(−g`=) of the semi-group operator exp(−gB). As eigenval-
ues are sorted by increasing real part, the accuracy in the numerical computation
of `= is limited by the ratio | exp(−`=g)/exp(−`0g) |. If one denotes by ℎ the rela-
tive precision of numerical computations (usually, ℎ = 2−52 ≈ 2 · 10−16), then any
eigenvalues `= such that

Re(`= − `0) > −
log(ℎ)
g

(4.142)

is “lost” because of the �nite precision of numerical computations. The above
equation, combined with Eq. (4.139), can be rewritten as

Re(`= − `0) > −
�G0 log(ℎ)

2c
, (4.143)

so that the limit between computable and non-computable eigenvalues is a line
in a `= (�G ) plot (see Fig. 4.28 below).

The numerical eigenmodes E′?,= are pseudo-periodic, hence delocalized, that
means that they are not eigenmodes of the BT operator. However, they are
formed by a superposition of translated BT operator eigenmodes. In fact, let
us assert the following formula

E′?,= (G,~)
?
=  ?,=

∑
:∈Z

48?:0GE= (G − :0G , ~) , (4.144)

with  ?,= a normalization constant. First, one can note that the right-hand side
of Eq. (4.144) is ?-pseudo-periodic. Moreover, it is an eigenmode of exp(−gB)
with the eigenvalue

`′= = exp (−g (`= − 8:�G0G )) , : ∈ Z . (4.145)
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Indeed, the right-hand side of Eq. (4.145) does not depend on : according to Eq.
(4.139). This proves that Eq. (4.144) is correct.

From the “numerical” eigenvalues `′=, one can deduce the “true” eigenvalues
`= of the BT operator according to

`= = − log(`′=)/g − 28:c/g , : ∈ Z

= −�G0G log(`
′
=)

2c
− 8:�G0G , : ∈ Z . (4.146)

As explained in Sec. 4.4.4, the above formula describes an in�nite family of eigen-
values corresponding to eigenmodes localized on the same obstacle’s boundary
region but at di�erent lattice sites. We applied the convention that the imaginary
part of the complex logarithm belongs to (−c, c] so that : = 0 corresponds to
the smallest imaginary part in absolute value and to a mode centered on the unit
cell Ω1 (−0G/2 ≤ G ≤ 0G/2). An example of spectrum obtained numerically is
shown on Figs. 4.28 and 4.29 (discussed below).

Now we will show how one can recover the true eigenmodes E= from the
numerical ones E′?,=. First, Eq. (4.144) implies that E= can be computed as an
in�nite superposition of E′?,=:

E= (G,~) =
0G

2c

∫ 2c/0G

0

E′?,=

 ?,=
d? . (4.147)

However, this is clearly impractical from a numerical point of view because one
would have to compute E′?,= for in�nitely many values of ? . Thus, let us consider
the discrete version of the above formula, where ? = 2;c/(%0G ), ; = 0, 1, . . . , %−1,
and de�ne

E′= (G,~) =
1
%

%−1∑
;=0

E′2;c/(%0G ),= (G,~)
 2;c/(%0G ),=

(4.148a)

=
∑
:∈Z

E= (G − :%0G , ~) . (4.148b)

Note that compared to Eq. (4.147) where integrating over all ? leads to a perfect
cancellation for all: ≠ 0, the discrete sum in Eq. (4.148a) generates a %0G periodic
pattern where the eigenmode E= (G,~) is repeated every % unit cell. Therefore, if
% is large enough so that BT eigenmodes do not overlap over the distance %0G ,
the restriction of E′= (G,~) to −%0G/2 ≤ G ≤ %0G/2 gives the exact eigenmode
E= (G,~).

The only di�culty in the above method is to �nd the values of the normal-
ization constants  ?,=. We did not manage to �nd a normalization scheme that
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 𝑎 ℓ𝑔
3
=  𝐺𝑎3 𝐷0

Figure 4.28: Several eigenvalues of the BT operator on a square lattice of circular im-
permeable obstacles with '/0 = 0.4 and the gradient in the horizontal direction. The
dimensionless eigenvalues `=02/�0 and dimensionless gradient (0/ℓ6)3 ensure that the
plot is independent of the actual value of 0 used in the computation. The numbers and
colors help to associate the top plot to the bottom plot. (top) Real part of the spectrum.
The numerical limit (4.143) is represented by a thick black line above which the computa-
tion of eigenvalues is limited by numerical accuracy. Moreover, dashed horizontal lines
show the low gradient limit (4.150) and the bands _?,= of the Laplace operator are plotted
as vertical segments at� = 0. (bottom) Imaginary part of the spectrum. Equation (4.146)
is plotted for : = −1, 0, 1 and branches of `= with : ≠ 0 are denoted by “=′”. Spurious
�uctuations at small � are caused by di�culties in ordering complex eigenvalues with
identical real parts. Vertical dashed lines indicate the values of the gradient used in Fig.
4.30: (a) ℓ6/0 = 0.3; (b) ℓ6/0 = 0.2.
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Figure 4.29: Same plot as in Fig. 4.28 but with a larger range of gradient values and
additional branches of `= (some were omitted to improve visibility). The �gure reveals a
rich structure of bifurcation points.

would give access to them. However, one can easily �nd their values numerically
by treating them as unknown quantities and solving Eq. (4.148a) as an optimiza-
tion problem (typically, the optimization criterion is to cancel E′= (G,~) in as many
unit cells as possible). This is how we obtained the eigenmodes presented in Fig.
4.30 (discussed below).

Asymptotic behavior at low and large gradient

At large gradient strength, the gradient length ℓ6 becomes much smaller than
any other geometrical length in the medium. Therefore, there is no di�erence
between a bounded and a periodic domain because in both cases the eigenmode is
localized over the length ℓ6 and its properties depend only on the local properties
of the obstacle’s boundaries such as curvature, as we showed in Sec. 4.2.2 (see
also Refs. [95–97, 347]).

At low gradient strength, the di�usion e�ect becomes predominant over the
gradient e�ect so that the ?-pseudo-periodic numerical eigenmodes E′?,= are close
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 4.30: Real and imaginary part of the �rst four eigenmodes of the BT operator on
a square lattice of circular impermeable obstacles with the gradient in the horizontal di-
rection, for two di�erent gradient strengths: (a) ℓ6/0 = 0.3; (b) ℓ6/0 = 0.2. Refer to Fig.
4.28 for the corresponding eigenvalues. Whereas modes 1 and 4 show little variation
from (a) to (b), the pair 2, 3 undergoes a bifurcation that dramatically a�ects its symme-
try properties. The black square helps to visualize the unit cell Ω1 and to interpret the
imaginary part of `= on Fig. 4.28. The color scale is the same as on Figs. 4.24 and 4.25:
green for negative, red for positive, intense colors correspond to large absolute value.

to the ?-pseudo-periodic Laplacian eigenmodesD?,=. In the matrix product (4.126)
that would represent exp(−gB), the main e�ect of the matrices Γ?→?+@0 is to
“move” along the Bloch bands of the medium by projecting D?,= onto D?+@0,=,
whereas the decay of the eigenmode is mainly caused by the di�usion matrices
exp(−g 9Λ? 9 ). Thus, as the gradient becomes in�nitely small and for an in�nitely
�ne sampling of&G (C), the numerical eigenvalues of exp(−gB) tend to (we keep
the notations of Eq. (4.126)):

exp(−g`′=) ≈
�G→0

exp(−g#_0,=) . . . exp(−g2_?2,=) exp(−g1_?1,=) (4.149a)

→
�ne sampling

exp
(
−

∫ g

0
_? (C) dC

)
= exp

(
−g0G
2c

∫ 2c/0G

0
_?,= d?

)
, (4.149b)
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so that the true eigenvalues of the BT operator are given by (see Eq. (4.146)):

`= (�G = 0+) = 〈_?,=〉 , (4.150)

where 〈_?,=〉 is the average value of _?,= over ?:

〈_?,=〉 =
0G

2c

∫ 2c/0G

0
_?,= d? . (4.151)

Therefore the continuous bands _?,= of the Laplace operator (i.e., BT operator
with �G = 0) are collapsed into their average values 〈_?,=〉, = = 0, 1, . . . when �G
is very small but non zero. Thus, the gradient term of the BT operator cannot be
treated as a small perturbation of the Laplace operator because the limit�G → 0
is singular. This peculiar behavior is shown in Figs. 4.28 and 4.29 where the
bands of the Laplace operator are drawn as vertical segments at �G = 0 and the
asymptotic formula (4.150) is plotted as horizontal dashed lines. One can see that
these dashed lines naturally extend the solid curves beyond our computational
limit shown by thick black line (see Sec. 4.4.4). This e�ect is similar to Wannier-
Stark localization for electrons in a crystal under a weak electric �eld [328, 329].
In that case the linear potential term is real so that the spectrum is real. Energy
states have the general form `=,: = 〈_?,=〉 + :�0 and form a quasi-continuum. In
contrast, the imaginary potential that we study here produces a spectrum of the
form `=,: = 〈_?,=〉 + 8:�0 which is discrete.

u0,1

λ0,1

u0,0

λ0,0

u0,0

λ0,0

u0,1

λ0,1
u0,1

λ0,1

u0,1

λ0,1

u0,0

λ0,0

u0,0

λ0,0

Figure 4.31: The �rst two Laplacian bands for: (left) free space, where the bands cross
each other; (right) a domain with obstacles such as the one considered throughout the
text, with no crossing between bands. The arrows help to visualize the “motion” along
bands created by small pulses 48@0G and show that D?,= cannot be a quasi-eigenmode of
exp(−gB) for �G → 0 if bands = and = + 1 cross each other.

The above reasoning implicitly assumes that the Bloch bands of the medium
are isolated, i.e. that by continuously increasing the wavenumber ? , each band
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D?,=, _?,= continuously evolves without crossing any other bands and that the limit
? → 2c/0G yields the “initial point” D0,=, _0,=. The isolated versus non-isolated
bands situations is illustrated on Fig. 4.31. One can see that Eq. (4.150) is not
applicable to the case where bands cross each other because the eigenmode D0,0
is continuously transformed into D0,1 by the successive narrow pulses. As a con-
sequence of the “avoided crossing” theorem of von Neumann and Wigner [327],
the Bloch bands cannot cross if the unit cell Ω1 is irreducible along G . In contrast,
there does not exist any irreducible unit cell for free space so that the formula
(4.150) is not applicable, which is consistent with emptiness of the spectrum of
the BT operator [94].

Spectral bifurcations in a periodic domain

The plot of the eigenvalues `= as functions of the gradient reveals some bifur-
cation (or “branching”) points, where two eigenvalues with the same imaginary
part and di�erent real parts branch into two eigenvalues with the same real part
and di�erent imaginary parts. As we have discussed in Sec. 4.3, the bifurcation
points are related to the emergence of the localization regime and to the parity-
symmetry of the domain. In a periodic domain, the situation is more complicated
because the medium is symmetric with respect to an in�nite number of axes.
However, the essence of the phenomenon remains the same.

If the unit cell Ω1 is symmetric under the parity transformation G → −G , then
the BT operator is invariant under parity and conjugation:(

−�0∇2 − 8� (−G)
)∗

= −�0∇2 − 8�G . (4.152)

Therefore, if E= (G,~, I) is an eigenmode of B with eigenvalue `=, then the func-
tion E∗= (−G,~, I) is an eigenmode of B with eigenvalue `∗=. This leads to two
di�erent situations.

(i) When Im(`=) = :�G0G/2 for a given integer : , then `∗= = `= − 8:6G0G so
that it is actually the same eigenvalue but translated to another unit cell (see Eq.
(4.146)). In general the eigenvalue `= is simple so that E∗= (−G,−~,−I) = E= (G −
:0G , ~, I), which means that the eigenmode E= has a symmetric shape (its real part
is symmetric and imaginary part antisymmetric), and is centered at the middle
of a unit cell (if : is even) or on the boundary between two unit cells (if : is
odd). From the spectrum and the corresponding eigenmodes shown in Figs. 4.28
and 4.30, one can see that this corresponds to (a1), (b1), (a4), (b4) where : is odd
(the eigenmodes are centered on the spacing between two obstacles at G = 0G/2)
and to (a2), (a3) where : is even (the eigenmodes are centered on the obstacle at
G = 0).
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(ii) When Im(`=) ≠ :�G0G/2, then `∗= does not belong to the same family of
eigenvalues as `=, i.e., there is an integer =′ ≠ = such that `=′ = `∗=. Then one has
E=′ (G,~, I) = E∗= (−G,−~,−I): the shape of the eigenmode E=′ is the same as that
of the eigenmode E= after parity transformation. One can see that this situation
corresponds to eigenmodes (b2) and (b3) on Fig. 4.30, where `2 and `3 form a
complex conjugate pair and the eigenmodes E2 and E3 are localized on the left
and right sides of the obstacle, respectively.

The transition between these two situations creates a branching point where
two eigenvalues coalesce to form a complex conjugate pair. Note that, in contrast
with Hermitian operators, the corresponding eigenmodes also coalesce at the
branching point. This is supported by the fact that the eigenmodes (a2) and (a3)
are very close to each other in Fig. 4.30, as they were plotted not far from their
branching point (see vertical dashed lines on Fig. 4.28).

If the domain is not invariant under parity symmetry, then the eigenmodes
still localize at large gradients but there is no longer a sharp transition between
“delocalized” and “localized” states. Note, however, that there are still branching
points in the spectrum if one considers complex values of the gradient, as we
discussed in Sec. 4.3.

4.4.5 Summary
The aims of this section were twofold. One one hand, we have developed a nu-
merical method to solve e�ciently the BT equation in periodic media. By re-
placing the continuous integrated gradient pro�le (&G (C), &~ (C), &I (C)) by a step
function, this equation can be solved in a single unit cell by spectral methods,
allowing for very fast and accurate computations, especially at high gradients.
This is of signi�cant practical importance for numerical simulations in dMRI
as periodic media can describe a wide range of unbounded media if the spin-
bearing particles visit at most a few unit cells in the course of the gradient se-
quence. Numerical simulations in a simple model (array of circular obstacles)
reveal diverse regimes (e�ective free di�usion, motional narrowing, localization,
di�usion-di�raction) for the transverse magnetization and the signal. The spac-
ing between obstacles along the gradient direction was shown to be a crucial
parameter by comparing results for the gradient in the horizontal direction and
in the diagonal direction. In particular, the competition between this spacing and
the gradient length controls the emergence of the localization regime at high gra-
dient strength.

On the other hand, this numerical method allowed us for the �rst time to
compute the eigenmodes and eigenvalues of the BT operator in periodic media.
The non-Hermitian character of the BT operator led to several interesting phe-
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nomena. The most spectacular one is that its spectrum is discrete even though
periodic domains are in�nite. More precisely, even a very small gradient term
causes the continuous Bloch bands of the Laplace operator to collapse on their
average values. One sees therefore that the low gradient limit is singular in pe-
riodic domains that urges for re-thinking conventional perturbative results that
are still dominant in the �eld of dMRI (see the review [3]). As the gradient in-
creases, the BT eigenmodes start to localize near the obstacles of the domain and
we have shown that this localization is associated to bifurcation points in the
spectrum. Moreover, the emergence of this localization regime corresponds to
a strong deviation in the measured signal compared to the freely di�using case
and related perturbation formulas. Mathematically, the bifurcation points create
non-analyticity of the spectrum that prevents the use of low-gradient asymptotic
expansions beyond some critical value of the gradient, hence the sharp di�erence
in signal decay between low gradients and high gradients. Several mathematical
questions remain open, among which the existence of the eigenmodes of the BT
operator in general (non trivial) domains and their completeness outside of the
set of bifurcation points are probably the most important.
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4.5 Experimental validation

4.5.1 Introduction
As we explained at the beginning of Chapter 4, the work by Hürlimann et al [100]
on di�usion in a slab is the only undeniable experimental evidence of the local-
ization regime. While deviations from the Gaussian phase approximation were
abundantly observed in biological tissues and mineral samples [5, 67, 85, 93, 116–
120, 137], it is usually di�cult to identify unambiguously the origin of these devi-
ations. In other words, the observed deviations may be related to the localization
regime, but may also originate from co-existing populations of water with di�er-
ent e�ective di�usion coe�cients, mixture of restricted and hindered di�usion,
etc. The existence of the localization regime in more general domains and, in
particular, in unbounded domains (e.g., the extracellular space) has not yet been
addressed experimentally. In this section, we present experimental data show-
ing the emergence of the localization regime in two complementary geometries:
di�usion inside cylinders and di�usion outside an array of rods. We also treat a
slab geometry as a reference case.

The section is organized as follows. Section 4.5.2 describes the experimental
setup and the numerical simulations. In Sec. 4.5.3, we show that our theoretical
analysis and numerical computations are in excellent agreement with the exper-
imental data. The characteristic stretched-exponential decay of the signal in the
localization regime is observed at moderately high gradients and in various ge-
ometries, including unbounded di�usion outside obstacles. Finally, we discuss
the implications of these results in Sec. 4.5.7.

4.5.2 Material and Methods
Experiments7 were performed using hyperpolarized xenon-129 gas (W ≈ 74 ·
106 s−1T−1) continuously �owing through phantoms containing di�erent dif-
fusion barrier geometries. Utilizing gas di�usion compared to water di�usion
entails a several orders of magnitude larger di�usion coe�cient which allows
probing structures on the millimeter scale, which can easily be constructed with
3D-printers. Due to the weak signal of thermally polarized gas, hyperpolarized
xenon gas with a considerably higher NMR signal was employed. Hyperpolar-
ization was achieved by Rb/Xe-129 spin-exchange optical pumping (SEOP) [133–
135]. For technical reasons [133], a gas mixture (Air Liquide Deutschland GmbH,
Düsseldorf, Germany) composed of xenon (0.95 Vol %), nitrogen (8.75 Vol%) and

7The experiments were performed by K. Demberg and T. Kuder from German Cancer Re-
search Center (DKFZ), Heidelberg, Germany. The presented results were published in [347].
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# Geometry Dimensions

1 slab ! = 3 mm

2 cylinders 2' = 3.8 mm

3 cylinders 2' = 2 mm

4 array of rods 17 × 10 rods

2' = 3.2 mm; ! = 4 mm

!+ = 1.48 mm; !� = 1.35 mm

5 array of rods 20 × 10 rods

2' = 3.2 mm; ! = 3.4 mm

!+ = 0.78 mm; !� = 1.08 mm

Table 4.1: Characteristics of the phantoms (see Fig. 4.32).

helium-4 (rest) was used. The free di�usion coe�cient of xenon in this gas mix-
ture was measured to be �0 = (3.7 ± 0.2) · 10−5 m2s−1 [92], which is one order
of magnitude larger than for pure xenon gas [136]. The gas was transferred at
a small constant �ow (approximately 150 mL/min) to the phantom positioned
in an in-house built xenon coil in the isocenter of the magnet of a 1.5 T clinical
MR scanner (Magnetom Symphony, A Tim System, Siemens Healthcare, Erlan-
gen, Germany) with a maximal employed gradient amplitude of 32 mT/m. The
experimental set-up and hyperpolarization process are detailed in [91, 92].

The phantoms used are illustrated in Fig. 4.32 and described in Table 4.1.
Phantom 1 contains parallel plates separated by a distance of ! = 3 mm, built
by the in-house workshop from PMMA. For the phantoms 2 and 3, two blocks
containing cylindrical tubes (with two di�erent diameters 2') in a hexagonal
arrangement were 3D-printed. Here, the gas di�uses inside the cylinders. Since
all cylinders are identical and isolated from each other, this setting is equivalent
to a single cylinder of diameter 2'. Phantoms 4 and 5 consist of cylindrical solid
rods on a square grid attached to a base plate and a roof plate with holes for gas
in and out �ow, so that the gas di�uses outside the cylinders. The geometry is
de�ned by the diameter of the rods (2') and by the rod center-to-center distance
(!).

Phantoms 2-5 were printed with the PolyJet technology (Objet30 Pro, Ve-
roClear as printing material, Stratasys, Ltd., Eden Prairie, MN, USA) and then
inserted in a casing with a base area of 70.1 mm × 42.3 mm. Consequently, for
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Figure 4.32: Phantoms with corresponding magni�ed schematic depiction showing rel-
evant length scales. (a) Phantom 1: Parallel plates. (b) Phantoms 2 and 3: Cylindrical
tubes. (c) Phantoms 4 and 5: Cylindrical rods on a square grid.

phantoms 4 and 5, there are border regions between the array of rods and the
enclosing walls in which di�usion also takes place. For all phantoms, surface
relaxivity and permeation can be ignored for high-gradient experiments.

Phantom 1 was positioned with the gas �ow directed in the horizontal di-
rection perpendicular to the main magnetic �eld and the gradient vector was
pointing in the vertical direction in a sagittal slice of 50 mm thickness orthogo-
nal to the plates and to the gas �ow direction, see Fig. 4.32. Phantoms 2-5 were
positioned with the gas �ow directed parallel to the main magnetic �eld and the
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Figure 4.33: PGSE sequence. The spin echo forms at time ) = TE.

gradients were applied in the transversal plane of the scanner orthogonal to the
gas �ow direction (slice thickness 45 mm). For phantoms 4 and 5, measurements
were taken with the gradient vector pointing along the left-right direction or
the diagonal direction. In all cases, the gas �ow did not in�uence the di�usion-
weighted NMR signal.

A pulsed-gradient spin-echo (PGSE) sequence was applied as depicted in Fig.
4.33. The durations X of the trapezoidal gradient pulses were set to 6 ms and in-
clude �at top time plus the ramp-up time of Y = 0.32 ms. The gradient separation
time was Δ = 9.34 ms. The di�usion-weighted signal was sampled by gradually
increasing the gradient amplitude in 32 steps from 0 to 6max = 32 mT/m, record-
ing the spin echo signal and acquiring up to 15 averages. The time between two
consecutive 90◦ excitation pulses, i.e. the time between two measurements, was
set to 18 s to restore the polarization in the phantom via gas �ow. To account for
�uctuations in the polarization level the recorded spin echo was averaged and
normalized to an additional signal pre-readout directly after the 90◦ excitation
pulse. To obtain the di�usion-induced signal attenuation, all points were nor-
malized to the point acquired without di�usion weighting (i.e., at 6 = 0). The
SNR at low gradient strength was in the order of 1000.

The numerical computation of the signal in a slab and in a cylinder is ef-
fectively reduced to that in an interval and a disk, respectively. For these sim-
ple shapes, the most e�cient and accurate computation of the signal is realized
with the matrix formalism, in which the Bloch-Torrey equation is projected onto
the basis of explicitly known Laplacian eigenmodes to represent the signal via
matrix products and exponentials (see Sec. 1.1.5 and Refs. [3, 36–38, 40, 268]).
The matrix formalism was also used to compute the transverse magnetization in
these two domains (see similar computations in [102]). In turn, the numerical
computation of the signals for phantoms 4 and 5 (arrays of rods) was performed
di�erently. While the matrix formalism could in principle be applied, the need
for a numerical computation of Laplacian eigenmodes in such structures makes
this approach less e�cient. Thus, we performed Monte Carlo simulations includ-
ing the borders around the rod arrays with 2.5 · 107 random walkers and 1.6 · 105
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steps per random walk trajectory. In order to compute the eigenmodes of the
Bloch-Torrey operator in the rods geometry, we used the PDE solver from Matlab
(The MathWorks, Natick, MA USA) in a square array of 3× 3 rods with Dirichlet
boundary conditions on the outer boundary and we kept only the eigenmodes
that were localized on the central rod. Since the distance from the central rod
to the outer boundary is about !, which was much larger than ℓ6 and ℓX in our
simulations, the e�ect of the outer boundary is negligible, so that the computed
eigenmodes are very close to the ones for the in�nitely periodic array of rods8.

4.5.3 Results
We present the experimental and numerical results for di�usion in three di�erent
geometries: inside slabs, inside cylinders, and outside arrays of rods. The local-
ization regime in the slab geometry was already investigated experimentally by
Hürlimann et al [100], whereas only a few theoretical studies were devoted to the
cylinder geometry [95, 99, 101]. The signal for an array of rods was previously
computed numerically in [101] using a �nite-element method [31].

We shall present the experimental results in terms of the typical lengths

ℓ6 = (�0/�)1/3 = (�0/W6)1/3 , ℓX =
√
�0X . (4.153)

Similarly to the previous section, we do not use ℓd here to avoid any confusion,
since the experiments were performed with Δ−X > 0. For our particular gradient
sequence and the parameters of the xenon gas mixture, one can compute ℓX =

0.5 mm and ℓ6 decreases from 0.8 mm to 0.25 mm for 6 ranging from 1 mT/m to
32 mT/m. So, by increasing the gradient, ℓ6 crosses ℓX and the localization regime
emerges.

4.5.4 Slab geometry
We choose the axes such that the slab is orthogonal to the G-axis. Note that
this convention is di�erent from the one that we adopted in Sec. 1.2, where the
gradient was directed along the G-axis. One can then decompose the di�usive
motion independently along the three axes G,~, I and get

( = exp(−1�0 sin2\ ) (1D(!,� cos\ ) , (4.154)
8As this work was performed before that on periodic domains (Sec. 4.4), we did not use our

numerical technique for periodic media to compute the magnetization and signal. The practi-
cal limitations of this analysis actually stimulated the development of the advanced numerical
technique.
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where \ is the angle between the gradient and the G-axis and (1D(!,�) is the
signal from an interval of length !. Here, the �rst factor is the signal attenuation
due to di�usion in the lateral plane ~I, which is almost free as outer boundaries
are separated by distances that greatly exceed both ℓ6 and ℓX (about 40 mm). One
gets the slowest decay by ensuring that the gradient is orthogonal to the slab,
i.e. \ = 0, which was chosen in the experiments and numerical simulations.
This is expected since in this situation the boundary restricts di�usion along the
gradient direction the most.

The signals are presented in Fig. 4.34. At low gradients, the Gaussian phase
approximation is valid with an e�ective di�usion coe�cient � . Note, however,
the deviation from the free di�usion signal ( = 4−1�0 due to restriction by the
slab. A short-time analysis (see Sec. 2.3 and Refs. [47, 48, 99, 346]) yields an
apparent di�usion coe�cient

� ≈ �0

(
1 − [ 4

3
√
c
f
√
�0)

)
, (4.155)

where f is the surface-to-volume ratio of the con�ning domain (f = 2/! for a
slab), [ ≈ 0.9 is a numerical prefactor that depends on the sequence (Eq. (2.63)),
and ) = Δ + X is the duration of the gradient sequence. This is a short-time
approximation in the sense that [

√
�0) /! should be small enough. In addition,

this formula relies on the Gaussian phase approximation which requires small
1-values. For our parameters, we get � ≈ 0.66�0 and the agreement between
4−1� and the signal at low gradients is good.

Additionally, we computed the kurtosis correction term from the cumulant
expansion. Two di�erent methods were used: (i) we evaluated the second deriva-
tive of the logarithm of the computed signal with respect to 1 by �tting the low-1
part (1�0 < 1) of log(() by a quadratic polynomial; (ii) we searched for a value
of the kurtosis that would �t best the computed signal over the largest range of
1-values. The second method yielded a value of the kurtosis twice as large com-
pared to the �rst method and a much better visual agreement with the theoretical
and experimental curves. In Fig. 4.34, we show the result of the second method.
One can see that the signal is well �tted up to 1�0 ≈ 6 − 7, then the localization
regime emerges and the cumulant expansion diverges very fast from the theo-
retical and experimental curves. The deviation of the cumulant expansion from
the signal occurs at smaller 1-values when we use the kurtosis computed from
the �rst method (not shown). For clarity of the �gures, we do not show the kur-
tosis correction for the other geometries. Note that in the narrow-pulse, short
di�usion time limit, the kurtosis may be computed exactly as a function of the
surface-to-volume ratio of the geometry [207].
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Figure 4.34: Signal attenuation for phantom 1 (a slab of width 3 mm). Experimental
results are shown by full circles and matrix formalism computation by a solid line. The
signal for free di�usion 4−1�0 is indicated by a dotted line, whereas the low-1, short-
time approximation 4−1� , where � is given by Eq. (4.155), is plotted as a dashed-dotted
line. We also plot the cumulant expansion with kurtosis correction as dotted line with
pluses. The high-gradient asymptotic formula (4.156) of the localization regime appears
as a dashed line.

At higher gradients, the signal follows the asymptotic decay (see Eq. (4.35b)
and Refs. [3, 98–101])

(slab ≈ 2�1,1 exp(−|01 |ℓ2X /ℓ
2
6 ) , (4.156)

where the prefactor�1,1 can be computed exactly and scales as ℓ6/!, and we recall
that 01 ≈ −1.0188 is the �rst zero of the derivative of Airy function. One can
interpret this prefactor as the fraction of spins inside the two boundary layers of
thickness ∼ ℓ6 where the signal is localized. As we discussed in Sec. 4.3.3, �1,1
decreases with increasing di�usion step duration Δ−X . Note that the localization
regime emerges at gradients as small as 10 mT/m, for which ℓX/ℓ6 ≈ 1.3 and
1�0 ≈ 5 (we recall that 1�0 = (Δ/X − 1/3) (ℓX/ℓ6)6). Since the width of the slab
is much greater than ℓ6, one can treat the localization layers on both sides of
the slab as independent from each other (see Fig. 4.18 and the discussion in Sec.
4.3.3).

We observe a remarkable agreement between the experimental data, exact
solution via the matrix formalism, and the asymptotic relation (4.156). Note that
the latter contains no �tting parameter (the prefactor �1,1 was found by com-
puting the eigenmodes numerically). Systematic minor deviations of the exper-
imental points may be caused by weak misalignment of the gradient direction
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(i.e. \ slightly di�erent from 0 in Eq. (4.154)) or weak surface relaxivity. Note
that we performed all computations with a rectangular gradient pro�le instead
of a trapezoidal one (in other words, with Y = 0, see Fig. 1.6) and we checked
that not accounting for the trapezoidal pro�le had a negligible in�uence on the
computed signal due to the very short ramp-up time (Y = 0.34 ms).

4.5.5 Di�usion inside a cylinder
If the diameter of the cylinder is much larger than the gradient length ℓ6 and the
di�usion length ℓX , then the cylinder geometry may be reduced to two curved
boundary elements near the points where the gradient is perpendicular to the
boundary. The transverse magnetization inside a cylinder, obtained with a ma-
trix formalism computation, supports this argument (Fig. 4.35). In fact, as the
gradient increases, the magnetization gradually transforms from a �at uniform
pro�le to the one that is localized around two opposite points on the boundary of
the cylinder and displays two independent pockets at su�ciently high gradients.

In Fig. 4.36 we show the signal for di�usion inside a cylinder of diameter
3.8 mm. Although the signal decays faster than in the slab, one observes a sim-
ilar stretched-exponential behavior. Using Eqs. (4.58) and (4.103), one gets the
asymptotic decay for the cylinder:

(cyl ≈ � exp

(
−|01 |

ℓ2
X

ℓ26
−

ℓ2
X

'1/2ℓ3/26

+
√
3ℓ2
X

2|01 |'ℓ6

)
, (4.157)

where� is given by Eq. (4.104). Here, ' is large enough so that there is no over-
lapping between the �rst two eigenmodes, and � = 2�1,1. The prefactor �1,1
can be computed numerically from the eigenmodes and scales approximately
as ℓ6ℓ6,‖/'2 ∼ (ℓ6/')7/4 (see 4.2.2). One observes the perfect agreement between
experiment, matrix formalism computation, and asymptotic formula at high gra-
dients (without any �tting parameter). Note also that Eq. (4.156) with only the
leading term is not accurate (not shown) so that the correction terms in the ex-
ponential are indeed important.

For a cylinder of a smaller diameter (2' = 2 mm, see Fig. 4.37), the signal
shows some oscillations that are usually reminiscent of di�usion-di�raction pat-
terns for in�nitely narrow gradients. (see Sec. 1.2.3 and Refs. [36, 85, 86, 88, 89]).
Here, this is the consequence of the overlap of two localization pockets because
ℓ6/(2') is not small enough, as discussed in Sec. 4.3.3. The signal is still given by
Eq. (4.157) but one cannot neglect the cross-term�1,2 in the expression (4.104) of
� . The oscillations are then described by �1,2 and appear on top of the asymp-
totic stretched-exponential decay. These oscillations shown in Fig. 4.37 are very
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Figure 4.35: Transverse magnetization computed by matrix formalism inside phantom 2
(a cylinder of diameter 3.8 mm) for four values of the gradient6: (a) 2 mT/m, (b) 5 mT/m,
(c) 10 mT/m and (d) 32 mT/m. The direction of the gradient is indicated by an arrow.

well reproduced by the asymptotic formulas (4.105) and (4.107) with ! = 2',
where the coe�cients (1|E1), (1|E2), and V1,2 were computed numerically from
the eigenmodes. These coe�cients generally depend on the gradient strength�
and V1,2 additionally depends on the di�usion step duration Δ−X (see Sec. 4.3.3).
This overlapping phenomenon is supported by Fig. 4.38 which illustrates that
the magnetization inside the cylinder is not well localized even at the highest
gradient available.

4.5.6 Di�usion outside an array of rods
The geometry of phantoms 4 and 5 is de�ned by !, the center-to-center spac-
ing between rods, and 2', the diameter of the rods. We consider three di�erent
cases: (a) phantom 4 (! = 4 mm and 2' = 3.2 mm) with the gradient vector in
the diagonal direction; (b) phantom 5 (! = 3.4 mm and 2' = 3.2 mm) and gra-
dient vector in the diagonal direction; (c) phantom 5 and gradient vector in the
horizontal direction.

The main di�erence between these three cases is the spacing 4p between
two neighboring rods along the gradient direction, i.e. the spacing between two
neighboring localization pockets (see Fig. 4.39): 4p = 4d =

√
2! − 2' = 2.5 mm in

(a); 4p = 4d = 1.6 mm in (b); and 4p = 4h = 0.2 mm in (c). Figure 4.40 shows the
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Figure 4.36: Signal attenuation for di�usion inside phantom 2 (a cylinder of diameter
3.8 mm). Experimental results are shown by full circles and matrix formalism computa-
tion by a solid line. The signal for free di�usion is indicated by a dotted line, whereas the
short-time approximation 4−1� , where � is given by Eq. (4.155), is plotted as a dashed-
dotted line. The high-gradient asymptotic formula (4.157) of the localization regime ap-
pears as a dashed line.

signal for these three cases, ordered by descending 4p. Note that here the signal
is formed by the magnetization localized near the rods and by the magnetiza-
tion localized near the borders of the casing in which the phantom is enclosed.
We did not plot the low-1, short time approximation � = 4−1� here because the
surface-to-volume ratio of the structure is too large so that the approximate for-
mula (4.155) for � is not valid.

First of all, one can note an excellent agreement between experimental data
and Monte Carlo simulations. The high-� asymptotic behavior of the eigenval-
ues and the signal in a rods geometry is similar to the one for cylinders in Eq.
(4.157) except for a sign change due to the opposite curvature (see Eq. (4.58))

(rods ≈ � exp

(
−|01 |

ℓ2
X

ℓ26
−

ℓ2
X

'1/2ℓ3/26

−
√
3ℓ2
X

2|01 |'ℓ6

)
, (4.158)

where � is given by Eq. (4.104) and may be computed numerically from the
eigenmodes. This formula matches very well the signal at high gradients in case
(a) (see Fig. 4.40 (a)).

In the previous subsection, we already saw the signal without oscillations
(Fig. 4.36) due to well-localized states, as well as the signal with oscillations (Fig.
4.37) due to a partial overlap of two localization pockets when the size of the
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Figure 4.37: Signal attenuation for di�usion inside phantom 3 (a cylinder of diameter
2 mm). Experimental results are shown by full circles and matrix formalism computa-
tion by a solid line. The signal for free di�usion is indicated by a dotted line, whereas the
short-time approximation 4−1� , where � is given by Eq. (4.155), is plotted as a dashed-
dotted line. The high-gradient asymptotic formula (4.157) of the localization regime ap-
pears as a dashed line.

con�ning domain is not very large compared to ℓX and ℓ6. Here the same phe-
nomenon occurs. With 4p much larger than ℓ6 (case (a)), there is little overlapping
between the localization pockets of neighboring rods. This ensures the localiza-
tion of the eigenmodes and the small amplitude of the oscillations in the signal
(see Sec. 4.3.3), i.e. the validity of � = 2�1,1. In the case where the ratio between
4p and ℓ6 is smaller, i.e. localization pockets overlap more (case (b)), more pro-
nounced oscillations on top of the overall decay (4.158) arise (see Fig. 4.40 (b)).
The signal is still described by Eq. (4.158), and the oscillations are contained in
the cross-term �1,2 from the expression (4.104) of � and may be computed from
Eqs. (4.105) and (4.107) (with ! = 4p). Systematic deviations between the exact
signal and the asymptotic formulas may be attributed to the truncation of Eq.
(4.58), neglecting higher-order modes in the expression of the signal, and not
accounting for the borders in the experimental setup.

In turn, in case (c) 4p is smaller than ℓ6 even at the highest gradient available.
If one could approximate the small space between two neighboring rods as a
slab, then the ratio ℓ6/4p would be too large for localization to be relevant (see
Sec. 4.3.3). Our conjecture is that the residual signal at high gradients may be
interpreted as a kind of motional narrowing regime (see [3, 79]) inside the small
gaps of width 4p between the rods.
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Figure 4.38: Transverse magnetization computed by matrix formalism inside phantom 3
(a cylinder of diameter 2 mm) for four values of the gradient 6: (a) 2 mT/m, (b) 5 mT/m,
(c) 10 mT/m and (d) 32 mT/m. The direction of the gradient is indicated by an arrow.

Figure 4.39: Schematic representation of the rods showing the lengths 4d and 4h. The
spacing 4p between two localized pockets is equal to 4d if the gradient is in the diagonal
direction and to 4h if the gradient is in the horizontal or vertical direction.

4.5.7 Discussion and Conclusion

We have observed and described the localization regime in three geometries: slab,
cylinder, and array of circular obstacles (rods). The localization regime appears
whenever the gradient length ℓ6 = (�0/�)1/3 is much smaller than the di�usion
length ℓX = (�0X)1/2 and any relevant geometrical length scale ℓB of the medium
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Figure 4.40: Signal attenuation for di�usion in phantoms 4 and 5 (array of rods of diam-
eter 3.2 mm and center-to-center spacing 4 mm and 3.4 mm, respectively). (a) phantom
4 with the gradient in the diagonal direction, spacing 4p = 2.5 mm; (b) phantom 5 and
diagonal gradient direction, spacing 4p = 1.6 mm; (c) phantom 5 and horizontal gradient
direction, spacing 4p = 0.2 mm. Experimental results are shown by full circles and Monte
Carlo simulations by a solid line. The signal for free di�usion is indicated by a dotted
line. The high-gradient asymptotic formula (4.158) of the localization regime appears as
a dashed line. The latter is not shown for (c) as this regime is not applicable here, see the
text.
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along the gradient direction. Thus, it is universal at high gradients and non-
narrow pulses. In this regime, the transverse magnetization is localized near the
obstacles, boundaries, or membranes of the sample. For this reason, the signal is
particularly sensitive to the microstructure of the medium. In particular, possible
oscillations of the signal are caused by a partial overlap between localized mag-
netization pockets and thus contain information about mutual arrangements of
obstacles.

Let us clarify the role of the conditions (i) ℓ6 � ℓX and (ii) ℓ6 � ℓB . Condition
(i) ensures that the eigenmode decomposition of the transverse magnetization
may be truncated to its �rst terms. In turn, the signal decays exponentially with
X and its dependence on � is essentially determined by the �rst eigenvalue of
the Bloch-Torrey operator. Furthermore, condition (ii) is necessary for the local-
ization of the eigenmodes of the Bloch-Torrey operator and the validity of the
high-� expansion of its eigenvalues. Thus, both conditions are required for the
localization of the transverse magnetization and the stretched-exponential decay
of the signal with � .

An extreme case where condition (i) is not satis�ed would be the narrow
pulses limit (� →∞ and X → 0). Although these experiments require high gra-
dients, they do not achieve the localization regime. In fact, whereas the localiza-
tion regime emerges when �2X3�0 � 1, narrow-pulse experiments correspond
to� →∞ and X → 0 such that�X = @ is a �nite value. This leads to�2X3�0 → 0.
In other words, the signal attenuation is not produced by the encoding step but
by the subsequent di�usion step with 6 = 0. This is evident from the fact that
the signal is left unchanged if one sets Δ = 0, i.e. no di�usion time between two
short gradient pulses. On the other hand, condition (ii) is typically not satis�ed
in the motional narrowing regime (� → 0 and X →∞). Here, the eigenmodes of
the Bloch-Torrey operator are close to the eigenmodes of the Laplace operator.
In particular, the �rst Laplacian eigenmode is constant if one assumes imperme-
able, non-relaxing boundaries. Therefore, the transverse magnetization at long
times is uniform inside the sample (see Sec. 4.3.1).

Slab and cylinder are con�ned geometries that may model an intracellular
space. It is well-known that such domains produce non-Gaussian signals, for
example in the limit of narrow pulses (e.g. di�usion-di�raction patterns, see
[36, 85, 86, 88, 89]). However, in most former studies the signal from the ex-
tracellular space was assumed to be Gaussian, and non-Gaussian e�ects were
attributed to multiple contributing pools. In other words, one assumes either
that the 1-values are su�ciently small so that the Gaussian phase approximation
is applicable or that the obstacles may be treated as an e�ective medium with
an e�ective di�usivity � such that the di�usion process is Gaussian. The latter
assumption is in principle valid only in the very long time limit, as it has been
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discussed for weak di�usion weighting, e.g. in Refs [68, 69]. Our measurements
reveal the non-Gaussianity of the extracellular signal at high gradients and we
have shown that it simply results from the localization of the magnetization at
the outer boundaries of the obstacles. Ignoring this e�ect may lead to false in-
terpretations created by commonly used �tting models.

We stress that the localization regime in our setting starts to emerge with
moderate gradients of about 10 mT/m, or at 1�0 about 5. These conditions
are easily achieved in most clinical scanners. Note that the localization regime
emerges under the condition ℓX/ℓ6 � 1which can be restated as1�0 ∝ �0W

262X3 �
1. In order to rescale the experimental conditions from xenon gas to water, we
compute the ratio (W2�0)xenon/(W2�0)water ≈ 103. This means that in order to
have the same value of W2�06

2X3, one has to increase 6 and X such that 62X3 is
103 times larger with water than with xenon. For example, the experiments by
Hürlimann et al were performed with X = 60 ms which is approximately 10 times
longer than in our experiments, and gradients of comparable magnitude as ours
(around 20 mT/m).



Conclusion

We have investigated three theoretical aspects of di�usion magnetic resonance
imaging: anisotropy of the microstructure, permeability of boundaries, and lo-
calization of the magnetization at high gradient. We shall present a summary of
results and perspectives related to these three aspects.

Although it was recognized very early that dMRI is a technique that is sen-
sitive to anisotropic di�usion e�ects, the possibility of disentangling microscopic
anisotropy from macroscopic anisotropy was recently demonstrated and renewed
interest in the study and measurement of anisotropic e�ects. However, the case
of mesoscopic anisotropy had not been systematically studied yet. We obtained a
generalization of Mitra formula and revealed a correction term that results from
the coupling between the anisotropy of the con�ning domain and the gradient
sequence. Ignoring this correction may lead to a gross error on the estimated
surface-to-volume ratio, even for linear encoding sequences. Furthermore, we
demonstrated that it is possible to average mesoscopic anistropy provided that
the gradient sequence satis�es a new isotropy criterion. We developed a simple
and fast algorithm for generating such gradient sequences that can also incor-
porate various practical constraints such as �ow compensation, heat limitation,
and gradient cancellation. These �ndings are expected to improve the accuracy
of surface-to-volume estimation but also to lead to new metrics and potential
biomarkers based on mesoscopic anisotropy.

In biological samples, microstructural elements at the micrometric scale are
typically cells, which have permeable membranes. Therefore the “common” as-
sumption of impermeable boundaries, which simpli�es the theoretical analysis,
might not be valid for biomedical applications. We have studied the e�ect of
permeability from two somewhat opposite viewpoints. First, we considered a
collection of small compartments with weak permeation exchange with the ex-
terior medium. We revisited three common theoretical models and applied them
to a “model” experimental system with yeast cells. The membrane permeabil-
ity, radius, and volume fraction of the cells were recovered accurately. Then we
aimed at applying the same protocol to muscle tissues in order to recover the mi-



tochondrial content and possibly to measure the mitochondrial membrane per-
meability. This work is still in progress and can open valuable medical and food
science applications. In a second part, we studied the e�ect of stacked permeable
barriers on the di�usive motion and we obtained scaling laws in the short and
long-time regime. These results emphasize that the permeability of a membrane,
although constant, has an increasing e�ect as time increases not only because
of a larger number of particles that reach the membrane, but also because of the
increasing probability to actually cross the membrane. Moreover we developed
a �exible numerical technique that allowed us to investigate di�usion through
several hundreds of barriers in one dimension, which may have interesting ap-
plications to the study of di�usion inside disordered media.

Theoretical aspects of di�usion NMR have been broadly explored at weak
gradients by means of perturbation theory. In biomedical applications, the ap-
parent di�usion coe�cient and kurtosis are employed as biomarkers to detect
stroke, tumors, lesions, partial tissue destruction, etc. In spite of its considerable
progress in medicine and material sciences, the comprehensive theory of di�u-
sion NMR remains to be elaborated. The “localization” regime of long and strong
gradient pulses is still largely unexplored and we aimed at �lling that gap. We
asserted that no satisfying qualitative explanation of the localization mechanism
had yet been proposed. It seems to us that this is symptomatic of the relative lack
of knowledge, and perhaps lack of interest, related to this regime. Ignoring the lo-
calization regime may lead to a wrong interpretation of experimental results, by
e.g. invoking a compartmentalization of magnetization in order to explain a de-
viation from the classical mono-exponential decay. We have shown by means of
theoretical developments, numerical computations and — last but not least — ex-
perimental validation, that the localization regime is a generic feature of strong
di�usion weighting experiments, in any non-trivial domain. In particular, the
localization of the magnetization in unbounded domains dismisses the common
assumption of Gaussian di�usion in extracellular space. Although exploiting the
potential advantages of the localization regime is still challenging in experiments
(partly due to strongly attenuated signals), the high sensitivity of the signal to
the microstructure at strong gradients is a promising avenue for creating new
experimental protocols. If former theoretical e�orts were essentially focused on
eliminating the dephasing e�ects and reducing the mathematical problem to the
computation of the di�usion propagator and related quantities, future develop-
ments have to aim at exploiting the advantages of high gradients.



Appendix A

Supplementary material to Chapter 2

This appendix contains technical developments related to Sec. 2.3. In Sec. A.1 we show a
general framework to obtain the Mitra formula to any order in (�0) )1/2. Section A.2 con-
tains computations of the structural S(3)-tensor for sphere-like shapes. Then in Sec. A.3 we
investigate the maximal value of the coe�cient g (3) . Finally, we show in Sec. A.4 that one
cannot design a gradient sequence that is “universally” isotropic in the sense that all tensors
T(<) would be isotropic.

A.1 Systematic computation of generalized Mitra
formula to any order

The signal is proportional to the expectation of the transverse magnetization which has a form
of the characteristic function of the random dephasing q acquired by di�using spin-carrying
molecules:

( = E[48q ], q = W

)∫
0

�(r(C), C) dC , (A.1)

where ) is the echo time, r(C) is the random trajectory of the nucleus, W is the gyromagnetic
ratio, and W�(r, C) is the Larmor frequency corresponding to the magnetic �eld. In this work,
we consider the most general form of the linear gradient G(C):

W�(r, C) = G(C) · r = �G (C)G +�~ (C)~ +�I (C)I. (A.2)

In particular, the dephasing can be decomposed as

q = qG + q~ + qI, q8 =

)∫
0

3C �8 (C) (ei · r(C)) (8 = G,~, I), (A.3)

where ex, ey and ez are the units vectors in three directions, and (ei · r(C)) is the projection of
the molecule position at time C onto the direction ei.

The e�ective di�usion coe�cient is related to the second moment of the dephasing, i.e.,
we need to evaluate

E[q2] =
∑

8, 9=G,~,I

E[q8q 9 ] . (A.4)
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We emphasize that the three components qG , q~ and qI are independent only for free di�usion,
whereas con�nement would typically make them correlated. In other words, one cannot a
priori ignore the cross terms such as E[qGq~].

In order to compute these terms, we use the following representation [3]:

E[q8q 9 ] =
∫ )

0
dC1

∫ )

C1

dC2

∫
Ω
dr0

∫
Ω
dr1

∫
Ω
dr2

∫
Ω
dr3

× d (r0)%C1 (r0, r1)%C2−C1 (r1, r2)%)−C2 (r2, r3)
×

[
�8 (r1, C1)� 9 (r2, C2) + � 9 (r1, C1)�8 (r2, C2)

]
, (A.5)

where %C (r, r′) is the propagator in the domain Ω, and d (r0) is the initial density of particles
(the initial magnetization after the 90◦ rf pulse). If the boundary is fully re�ecting and d (r0)
is uniform, then the integrals over r0 and r3 yield 1, so that

E[q8q 9 ] =
1

vol(Ω)

∫ )

0
dC1

∫ )

C1

dC2

∫
Ω
dr1

∫
Ω
dr2%C2−C1 (r1, r2)

×
[
�8 (r1, C1)� 9 (r2, C2) + � 9 (r1, C1)�8 (r2, C2)

]
. (A.6)

We get thus

E[q8q 9 ] =
∫ )

0
dC1�8 (C1)

∫ )

C1

dC2� 9 (C2) 8 9 (C2 − C1)

+
∫ )

0
dC1� 9 (C1)

∫ )

C1

dC2�8 (C2) 98 (C2 − C1), (A.7)

where
 8 9 (C) =

1
vol(Ω)

∫
Ω

∫
Ω
?8 (r1)%C (r1, r2)? 9 (r2) dr1 dr2, (A.8)

with ?8 (r) = (ei · r). Since  8 9 (C) =  98 (C) due to the symmetry of the propagator, we can
rewrite the moment as

E[q8q 9 ] =
∫ )

0
68 (C1)

∫ )

0
6 9 (C2) 8 9 ( |C2 − C1 |) dC1 dC2. (A.9)

We rely on the general short-time expansion for the heat kernels (see [332–334] and ref-
erences therein)

 8 9 (C) =
∑
<≥0

2< (?8, ? 9 ) (�0C)</2, (A.10)

with

20(5 , ℎ) =
1

vol(Ω)

∫
Ω
5 (r)ℎ(r) dr , (A.11a)

21(5 , ℎ) = 0 , (A.11b)

22(5 , ℎ) = −
1

vol(Ω)

∫
Ω
∇5 (r) · ∇ℎ(r) dr , (A.11c)

23(5 , ℎ) =
4

3
√
c

1
vol(Ω)

∫
mΩ

m5 (r)
m=

mℎ(r)
m=

d( , (A.11d)
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where m/m= = (n ·∇) is the normal derivative at the boundary, and n is the unit inward normal
vector at the boundary. We note that the expansion (A.10) is an asymptotic series which has
to be truncated. In our case, we get

20(?8, ? 9 ) =
1

vol(Ω)

∫
Ω
(ei · r) (ej · r) dr , (A.12a)

21(?8, ? 9 ) = 0 , (A.12b)
22(?8, ? 9 ) = −X8 9 , (A.12c)

23(?8, ? 9 ) =
4

3
√
c

1
vol(Ω)

∫
mΩ
(ei · n) (ej · n) dB (A.12d)

(in the last integral, the normal vector n depends on the boundary point). Combining these
results, we get

E[q8q 9 ] =
∫ )

0
dC1�8 (C1)

∫ )

0
dC2� 9 (C2)

×
(
−X8 9�0 |C2 − C1 | +

4
3
√
c
fS(3)

8 9
(�0 |C2 − C1 |)3/2 + · · ·

)
, (A.13)

where f is the surface-to-volume ratio and the “structural” matrix S(3) is de�ned by

S(3) =
1

surf (mΩ)

∫
mΩ

n ⊗ n d2B , (A.14)

and the zeroth order term (with 20) vanished due to the rephasing condition∫ )

0
�8 (C) dC = 0 (8 = G,~, I). (A.15)

We can write this result more compactly as

E[q8q 9/2] = 1�0

(
X8 9T

(2)
8 9
− 4ℓd
3
√
c
fS(3)

8 9
T(3)
8 9
+ · · ·

)
, (A.16)

where we introduced the “temporal” matrices

T(<) = − )
21

∫ )

0

∫ )

0
G(C) ⊗ G(C ′)

����C − C ′)

����</2 dC dC ′ , (A.17)

and we recall the de�nition of the di�usion length ℓd =
√
�0) . As a consequence, we compute

the second moment as

V[q]
21�0

= Tr(T(2)) − 4
3
√
c
fℓd Tr(S(3)T(3)) + · · · . (A.18)

Note that this formula can also be obtained from the results of Frølich et al [61]. They
compute the e�ective di�usion coe�cient from the velocity auto-correlation function that is
then expressed in terms of a double-surface integral of the di�usion propagator. By performing
two integration by parts, this integral is essentially identical to our Eq. (A.8).
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Let us introduce the auxiliary function

h(C) =
∫ )

0
G(C ′) |C − C ′| dC ′ . (A.19)

We split the above integral and perform an integration by parts

h(C) =
∫ C

0
Q(C ′) dC ′ −

∫ )

C

Q(C ′) dC ′ , (A.20)

where we used the conditions Q(0) = 0 and Q() ) = 0. Now we note that∫ )

0
dC

∫ C

0
G(C) ⊗ Q(C ′) dC ′ =

∫ )

0
dC ′

∫ )

C ′
G(C) ⊗ Q(C ′) dC (A.21a)

= −
∫ )

0
Q(C ′) ⊗ Q(C ′) dC ′ , (A.21b)

where we used again Q() ) = 0. In the same way one gets∫ )

0
dC

∫ )

C

G(C) ⊗ Q(C ′) dC ′ =
∫ )

0
Q(C ′) ⊗ Q(C ′) dC ′ . (A.22)

Putting all the pieces together, one �nally obtains

T(2) =
1
1

∫ )

0
Q(C) ⊗ Q(C) dC , (A.23)

so that T(2) is actually the 1-matrix renormalized by the 1-value [141–143]. Since

Tr(T(2)) = 1
1

∫ )

0
|Q(C) |2 dC = 1 , (A.24)

we recover the signal attenuation for free di�usion ( = 4−V[q]/2 = 4−1�0 in the absence of
con�nement. In turn, the e�ective di�usion coe�cient, which is experimentally determined
from the dependence of − ln ( on 1 at small b-value, is expressed through the second moment
as

� () ) = lim
1→0

− ln (
1

= lim
1→0

V[q]/2
1

, (A.25)

from which, using (A.18) we obtain Eq. (2.51).
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A.2 Structural matrix of sphere-like shapes.

In this appendix we show an approximate computation of the surface area surf (mΩ) and the
S(3) matrix of a domain that is a small perturbation of a sphere. Then we provide an exact
computation for a spheroid (i.e., an ellipsoid of revolution).

A.2.1 Approximate computation
Let us write the equation of the surface of the domain Ω in spherical coordinates: A (\, q),
where A is the radius, \ is the colatitude and q the longitude along the surface. We recall that
with these conventions, we have an orthogonal basis (er, e\ , eq ), where er is the outward unit
radial vector, e\ is directed South along the meridian, and eq is directed East, perpendicular to
er and e\ . We also introduce the spherical gradient:

∇s5 =
1
A

m5

m\
e\ +

1
A sin\

m5

mq
eq , (A.26)

for a function 5 (\, q).
We now write A (\, q) = '(1 + Y (\, q)), where Y (\, q) is a small perturbation. The surface

element can then be expressed as

dB = A 2(1 + ‖∇sA ‖2)1/2 sin\ d\ dq
= '2(1 + 2Y (\, q)) sin\ d\ dq +$ (Y2) . (A.27)

In the same way, one computes the inward normal vector as

n = −(1 + ‖∇sA ‖2)−1/2 (er − ∇sA )
= −er + ∇sA +$ (Y2) . (A.28)

Then the surface area of the domain Ω can be approximated as

surf (mΩ) ≈ 4c'2
(
1 + 1

2c

∫ c

0
d\

∫ 2c

0
dq Y (\, q) sin\

)
. (A.29)

In the special case of a domain with a symmetry of revolution, we choose the axis of revolution
as the polar axis of the spherical coordinates and get the simpler formula

surf (mΩ) ≈ 4c'2
(
1 +

∫ c

0
Y (\ ) sin\ d\

)
. (A.30)

Now we turn to the S(3) matrix. As we already obtained surf (mΩ), what remains to com-
pute is the following matrix

S̃(3) =
∫
mΩ

n ⊗ n dB , (A.31)

and then S(3) = S̃(3)/surf (mΩ). In order to compute the S̃(3) matrix, we choose a �xed basis
(ex, ey, ez), where ez is directed along the polar axis, ex corresponds to the direction q = 0
and ey to the direction q = c/2. We also introduce the vector ed , which is the normalized
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projection of er on the equatorial plane. In other words, ed = cos(q)ex+sin(q)ey. Furthermore,
we assume that Ω has a symmetry of revolution around ez. Thus Y only depends on \ and we
denote derivative by a prime: Y′(\ ) = mY

m\
. First we compute the following integral over q :

� (\ ) = 1
2c

∫ 2c

0
(er − Y′(\ )e\ ) ⊗ (er − Y′(\ )e\ ) dq . (A.32)

Writing
er = cos(\ )ez + sin(\ )ed , (A.33a)

e\ = cos(\ )ed − sin(\ )ez , (A.33b)

we compute:
1
2c

∫ 2c

0
ed dq = 0 , (A.34a)

1
2c

∫ 2c

0
ed ⊗ ed dq =

1
2
(ex ⊗ ex + ey ⊗ ey) . (A.34b)

From the above relations we get

� (\ ) ≈
(
cos2\ + sin(2\ )Y′(\ )

)
ez ⊗ ez (A.35)

+ 1
2

(
sin2\ − sin(2\ )Y′(\ )

)
(ex ⊗ ex + ey ⊗ ey) .

The S̃(3) matrix is then computed from

S̃(3) = 2c
∫ c

0
A 2(\ )� (\ ) sin\ d\ , (A.36)

which yields (up to $ (Y2))

S̃(3)GG
4c'2

=
1
3
+ 1
2

∫ c

0
(Y sin3\ − Y′(\ ) sin2\ cos\ ) d\ , (A.37a)

S̃(3)~~ = S̃(3)GG , (A.37b)

S̃(3)II
4c'2

=
1
3
+

∫ c

0
(Y cos2\ sin\ + Y′(\ ) sin2\ cos\ ) d\ , (A.37c)

and the o�-diagonal terms are null. Integrating the second terms by part and using (A.30), we
�nally get:

S(3)GG =
1
3
+

∫ c

0
Y (\ )

(
cos2\ − 1/3

)
sin\ d\ +$ (Y2) , (A.38a)

S(3)~~ = S(3)GG , (A.38b)

S(3)II = 1 − 2S(3)GG . (A.38c)

In the case of linear gradient encoding with the gradient oriented either along ex or along ez,
the relative variation of [ is given by (see Eq. (2.63))

S(3)GG − S(3)II
S(3)II

≈ 9
∫ c

0
Y (\ )

(
cos2\ − 1/3

)
sin\ d\ . (A.39)
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A.2.2 Exact computation for a spheroid
Let us consider a spheroid (ellipsoid with a symmetry of revolution) with axis ez. Here we
do not consider a small perturbation from a sphere anymore, so that we switch to cylindrical
coordinates (d, q, I) that are more convenient for this computation. Let us recall that d is the
distance to the revolution axis. The vectors of the basis (ed , eq , ez) have all been de�ned in the
previous section. We denote by 0 the equatorial radius of the spheroid and by 2 the distance
from the center to the poles (see Fig. A.1). In other words, 0 and 2 are the two semi-axes of
the spheroid. Two cases will be treated separately: the prolate spheroid (0 ≤ 2) and the oblate
spheroid (2 ≤ 0). More precisely, we detail the computations for the prolate case and only
give the results for the oblate case, as the computations are very similar.

Figure A.1: A spheroid (ellipsoid of revolution) is de�ned by two semi-axes: its equatorial radius 0 and
the distance from the center to the poles 2 . Two situations can occur: (left) the prolate spheroid, with
0 ≤ 2; (right) the oblate spheroid, with 2 ≤ 0.

For the prolate spheroid, we introduce the eccentricity 4 as 4 =
√
1 − (0/2)2. Note that

4 = 0 corresponds to a sphere of radius 0 = 2 and 4 = 1 to a stick of length 22 , oriented along
ez. We have

d (I) = 0
√
1 − (I/2)2 , (A.40)

and the surface area of the spheroid is readily computed from

(prol = 2c
∫ 2

−2
d (I)

√
1 + [d′(I)]2 dI

= 2c02
∫ 1

−1

√
1 − 42G2 dG , (A.41)

which yields

(prol = 2c02
(
arcsin(4)

4
+
√
1 − 42

)
. (A.42)

For an oblate spheroid, the eccentricity is de�ned as 4 =
√
1 − (2/0)2 and the formula for the

surface area becomes

(obl = 2c
(
02 + 22 artanh(4)

4

)
. (A.43)

Now we turn to the computation of S̃(3) . The inward normal vector is given by

− (1 + [d′(I)]2)−1/2(ed + d′(I)ez) . (A.44)



264 A. Supplementary material to Chapter 2

First we compute the integral over q :

� (I) = 1
2c

∫ 2c

0
(ed + d′(I)ez) ⊗ (ed + d′(I)ez) dq

=
1
2
ex ⊗ ex +

1
2
ey ⊗ ey + [d′(I)]2 ez ⊗ ez . (A.45)

The S̃(3) matrix is then given by

S̃(3) = 2c
∫ 2

−2
d (I) (1 + d′(I)2)−1/2� (I) dI . (A.46)

The following computations assume the prolate case. Thanks to the relations

S̃(3)
prol
GG = S̃(3)

prol
~~ = ((prol − S̃(3)

prol
II )/2 , (A.47)

we only have to compute S̃(3)
prol
GG in order to have the full S̃(3)

prol
matrix. We have

S̃(3)
prol
GG = c02

∫ 1

−1

1 − G2
√
1 − 42G2

dG (A.48)

= 2c02
(
arcsin 4

4
− 1
242

(
arcsin 4

4
−
√
1 − 42

))
,

and then deduce

S̃(3)
prol
II = 2c02

(
arcsin 4

4
−
√
1 − 42

)
1 − 42
42

. (A.49)

Using (A.42), we come to the matrix S(3) for the prolate spheroid.
In the oblate case, one gets

S̃(3)
obl
GG = c22

(
artanh4

4
+ 1
42

(
artanh4

4
− 1

))
, (A.50a)

S̃(3)
obl
II = 2c

(
02 − 2

2

42

(
artanh4

4
− 1

))
, (A.50b)

from which the matrix S(3) is deduced using (A.43).
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A.3 Maximal value of g (3)

In the case of linear gradient encoding in a spherical domain, we obtained that Mitra’s formula
is corrected by a factor g (3) which is computed from the gradient pro�le according to Eq. (2.62).
In this section, we investigate the maximum and the minimum values of g (3) . We have

g (3) =
3

81)

∫ )

0

∫ )

0
& (C)& (C ′)

����C − C ′)

����−1/2 dC dC ′ . (A.51)

Note that despite its singularity at 0, the function 1/
√
|C | is integrable, hence the above integral

is well-de�ned. Next, we apply a change of variables from C ∈ [0,) ] to C/) ∈ [0, 1] and & (C)
to @(C/) ), which gives

g (3) =
3

8‖@‖2
∫ 1

0

∫ 1

0
@(C)@(C ′) |C − C ′|−1/2 dC dC ′ , (A.52)

with the usual !2 norm. One can understand the above expression as a scalar product

g (3) =
3
8
〈@,K@〉
〈@, @〉 , (A.53)

with an integral operator K with the kernel |C − C ′|−1/2

(K@) (C) =
∫ 1

0
@(C ′) |C − C ′|−1/2 dC ′ . (A.54)

One can see that K is a weakly singular convolution operator because the kernel can be ex-
pressed as  (C − C ′) (with  (C) = 1/

√
|C |). Denoting by @̂(l) the Fourier transform of @(C) and

by  ̂ (l) the Fourier transform of  (C), one gets

〈@,K@〉 = 1
2c

∫ ∞

−∞
|@̂(l) |2 ̂ (l) dl , (A.55)

with  ̂ (l) =
√
2c/|l |. This shows that g (3) is always positive (in other words, the operatorK

is positive-de�nite). This result is expected from a physical point of view: if g (3) were negative,
then the e�ective di�usion coe�cient would increase with time that is nonphysical. The mini-
mum value 0 can be asymptotically obtained, for example, with very fast oscillating gradients.
It is, indeed, clear from Eq. (A.55) that if 6(C) is a cosine function with angular frequency l0
such that the number of periods #0 = l0) /(2c) � 1, then |@̂(l) |2 is concentrated around
±l0, and we obtain g (3) ≈ 3/(8

√
#0) ∼ l−1/20 , a result that was obtained as well in [59] (see

also Fig. 2.7).
Now we turn to the maximum value of g (3) . The condition that & (C) is null outside of

[0, 1] is di�cult to take into account in Fourier space and we could not extract further infor-
mation from Eq. (A.55). In order to bound the maximum value of g (3) , one can use the Cauchy
inequality:

| (K@) (C) | =
����∫ 1

0

√
 (C − C ′)@(C ′)

√
 (C − C ′) dC ′

����
≤

(∫ 1

0
 (C − C ′) dC ′

) 1
2
(∫ 1

0
@2(C ′) (C − C ′) dC ′

) 1
2

.
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One can easily compute the function∫ 1

0
 (C − C ′) dC ′ = 2

√
C + 2
√
1 − C , (A.56)

whose maximum is 2
√
2. Thus, one gets

| (K@) (C) | ≤
(
2
√
2
∫ 1

0
@2(C ′) (C − C ′) dC ′

) 1
2

. (A.57)

Using again the Cauchy inequality, one obtains

〈@,K@〉 ≤ 23/4‖@‖
(∫ 1

0

∫ 1

0
@2(C ′) (C − C ′) dC ′ dC

) 1
2

.

The same reasoning about the maximum value of the integral of  yields

〈@,K@〉 ≤ 23/2‖@‖2 , (A.58)

and �nally

g (3) ≤ 3
√
2

4
≈ 1.06 . (A.59)

We also know from the examples in Fig. 2.7 that g (3) = 1 can be achieved for @ ≡ 1, which
implies that the maximum value of g (3) is in the interval [1, 1.06].

The problem can be considered from another point of view. Due to the symmetry of the
operatorK , it is well-known that the function @ maximizing 〈@,K@〉/‖@‖2 is the eigenfunction
of K with the highest eigenvalue. As a consequence, if one searches for a good estimation of
the maximum g (3) as well as the corresponding “optimal” gradient pro�le, then one can use
the following procedure: (i) to choose an initial pro�le @0 which is su�ciently general or
su�ciently close to a guessed optimal pro�le; (ii) to apply iteratively the operator K and to
renormalize the result; (iii) to stop when the sequence has converged.

For example, the initial pro�le @0(C/) ) = 1, which corresponds to two in�nitely narrow
gradient pulses at time 0 and ) , yields g (3) = 1, which is close to the optimal value. Thus, it is
a good initial condition for the iterative process. The result of such a procedure is shown in
Fig. A.2. This yields an optimum value of g (3) of about 1.006, thus very close to 1. It is worth
to note, however, that the optimal pro�le @(C/) ) di�ers clearly from @0(C/) ) = 1 (note also
that @0 is not an eigenfunction of K).
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Figure A.2: The result of the iterative procedure in order to obtain the optimal pro�le that maximizes
the value of g (3) .



268 A. Supplementary material to Chapter 2

A.4 Fully isotropic sequence

The conventional condition T(2) ∝ I removes the microscopic anisotropy in the di�usion ten-
sor, whereas the new isotropy condition T(3) ∝ I eliminates the mesoscopic anisotropy in the
leading order of the short-time expansion. One can thus naturally ask whether it is possible to
design a “fully isotropic” sequence that removes anisotropy in all order of (�0) )1/2? In this ap-
pendix we show that it is impossible to �nd a gradient sequence such that T(<) is isotropic for
all integer values< = 2, 3, 4, . . .. In other words, one cannot �nd a sequence which produces
an isotropic time-dependence of � () ) to every order in (�0) )1/2. To show this we restrict
ourselves to the values of< that are multiple of 4,< = 4; , with ; = 1, 2, . . ..

T(4;)
8 9

= −)
1−2;

21

∫ )

0

∫ )

0
�8 (C1)� 9 (C2) (C2 − C1)2; dC1dC2

= −)
1−2;

21

2;∑
:=0

(−1):
(
2;
:

)
U
(:)
8
U
(2;−:)
9

, (A.60)

where

U
(:)
8

=

∫ )

0
�8 (C)C: dC . (A.61)

We will now prove that the isotropy of T(4;) for any integer ; implies that U (:)
8

= 0 for all
8 = G,~, I and all integer : . Note that the property for : = 0 corresponds to the refocusing
condition (1.26) that we assumed throughout the paper. We prove our statement by recurrence
on ; and : . First, let us consider ; = 1 and prove the : = 1 case. One has

T(4)
8 9

= −)
−1

21

(
−2U (1)

8
U
(1)
9

)
. (A.62)

If 8 ≠ 9 , then T(4)
88

= T(4)
9 9

and T(4)
8 9

= 0 so that U (1)
8

= U
(1)
9

= 0.

Now we assume that U (:)
8

= 0 for all 8 = G,~, I and for all : < :′ up to a given rank :′.
Then almost all the terms in the expression of T(4:

′)
8 9

vanish and we are left with

T(4:
′)

8 9
= −)

1−2: ′

21

(
(−1): ′

(
2:′

:′

)
U
(: ′)
8

U
(: ′)
9

)
, (A.63)

and with the same reasoning as in the previous case, we deduce that U (:
′)

8
= 0 for any 8 . By

recurrence, we have proven that U (:)
8

= 0 for all 8 and : .
What remains to prove is that the only continuous function 5 (C) that satis�es the con-

ditions
∫ )
0 5 (C)C: dC = 0 for all integer values of : is the null function 5 = 0. Let us assume

that 5 is nonzero, i.e., there exists an interval (0, 1) with 0 < 1 such that 5 (C) ≠ 0 for any
C ∈ (0, 1) (e.g., 5 (C) > 0 on this interval). Since polynomials form a dense subset of continuous
functions on [0,) ], one can build a sequence of polynomials that converges to a continuous
function that would be zero outside (0, 1) and positive inside (0, 1). Thus there would exist a
polynomial % (C) such that

∫ )
0 5 (C)% (C) dC > 0, which is incompatible with the statement: for

all : = 0, 1, 2, . . .
∫ )
0 5 (C)C: dC = 0. Note that this argument can be easily extended to functions

with a �nite number of jumps.
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Supplementary material to Chapter 3

In Appendix B.1, we study the permeation process for a random walk near a planar bound-
ary. We compute the distribution of crossing times and show that the scaling (3.11) creates a
compensation between a vanishingly small crossing probability and an in�nitely large num-
ber of re�ections on the boundary, in the continuous limit. This computation reveals that the
barrier crossing is a non self-averaging process and we provide some basic results about such
processes. In Appendix B.1, we present computations of the �rst exit time distribution outside
an array of permeable barriers. Although not directly related to dMRI, we obtain interesting
results that provide new insight into di�usion through multiple barriers and inside disordered
media. Finally, the last part of this appendix contains extended technical developments related
to Sec. 3.4.

B.1 Random walk model of permeability

B.1.1 Distribution of crossing times

In this appendix, we compute the distribution of times at which the particle crosses a barrier
from simple random walk computations. Our formulas reproduce exactly the ones obtained by
considering directly a partially re�ected Brownian motion, and the reader may argue that our
lengthy derivation is much less e�cient than the powerful formalism of stochastic processes
[274]. While this argument is perfectly valid, we also feel that it is interesting to present
a rather elementary computation that requires only little knowledge of random walks. The
computation is presented for a planar boundary, and would become rather involved for an
arbitrary geometry. In the somewhat extreme (but physically relevant) example of fractal
boundary, the absence of lower bound on geometrical length scales a priori prevents one from
considering discrete random walks and taking the continuous limit, as we do here. In that
case, the partially re�ected Brownian motion becomes the natural tool to study permeation
e�ects.

We consider a one-dimensional random walk on a half-space G ≥ 0, where the plane
G = 0 is the barrier. The lattice step is denoted by 0, the time step is g , and the barrier crossing
probability is (see Eq. (3.11) and related discussion)

n =
^0

�0 + 2^0
≈
0→0

^0/�0 . (B.1)
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We consider a particle starting at the origin and we compute the probability that it crosses the
barrier after = time steps. To cross the barrier, the particle has to reach the barrier a su�cient
number of times to compensate for the small crossing probability n . Therefore, there is a
coupling between the random walk and the random crossing controlled by n .

The probability that the particle crosses the barrier after exactly A attempts is given by

%b(A ) = n (1 − n)A−1 . (B.2)

Moreover, by classic considerations about random walk, one can compute the probability that
the particle meets the barrier for the A -th time after exactly = time steps:

%m(A, =) = 2A−=
A

= − A

(
= − A
=/2

)
. (B.3)

The factor=/2 appears because the particle can go back to the origin only after an even number
of steps. The following computations are done under the assumption that = is even. Therefore
the probability that the particle crosses the barrier after exactly = time steps is

%c(=) =
=/2∑
A=1

%b(A )%m(A, =) (B.4)

=

=/2∑
A=1

n (1 − n)A−12A−= A

= − A

(
= − A
=/2

)
. (B.5)

The above sum may be expressed in terms of the hypergeometric function, however a simpler
expression is obtained in the continuous limit, when 0, g, n → 0. One can see that at �xed =,
%c(=) →

n→0
0 therefore we will evaluate the sum (B.5) with =, A → ∞. To this end, we write

A = =G/2 so that the sum becomes an integral over 0 ≤ G ≤ 1. With this notation, one gets the
approximate formula

%c(=) ≈
1
√
2c=

∫ 1

0

=Gn

2
√
(1 − G) (1 − G/2)

exp
(
−=G

2

8
− =Gn

2

)
dG (B.6)

≈ 2
n
√
2c=

[
1 −

√
cn2=/2 erfcx

(√
n2=/2

)]
, (B.7)

with the scaled complementary error function

erfcx(D) = 2
√
c

∫ ∞

D

4D
2−G2 dG . (B.8)

One can see that

%c(=) ≈
=→∞

2

√
1
2c

1
n=3/2

, (B.9)

so that the mean value of = is in�nite. This can be seen as a consequence of a well-known
property of the one-dimensional random walk where the probability to return to the origin is
1 but the mean return time is in�nite. If the mean return time was a �nite value 〈=return〉, then
the mean crossing time would be related to the mean number of attempts to cross the barrier
times 〈=return〉, i.e., 〈=〉 ∼ n−1〈=return〉. The above formula (B.7) reveals the scaling n2=, that
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contradicts this naive reasoning. This peculiar behavior is studied in a more general setting
in Appendix B.1.2.

In the continuous limit, one can rewrite the above distribution (B.7) in two di�erent ways.
First, one can write it as a distribution for the time C = =g . Since the probability is zero for
odd values of =, one has to divide the right hand side of (B.7) by 2, as a mean value between
odd and even values of =. One can also rewrite the distribution in terms of ~ = 0

√
= =
√
�0C ,

that can be interpreted as the typical di�usion length parallel to the barrier during time C . This
yields the following formulas:

%c(C) =
1
√
cg^C

[
1 −

√
cC/g^erfcx

(√
C/g^

)]
, (B.10)

%c(~) =
1

ℓ̂
√
c

[
1 −
√
c~/ℓ̂ erfcx (~/ℓ̂ )

]
, (B.11)

with the natural scales
g^ = �0/^2 , ℓ̂ = �0/^ . (B.12)
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Figure B.1: The survival probability (B.13) for a particle starting at the barrier as a function of time. The
scale g^ may be interpreted as a typical barrier crossing time since half of the particles have crossed the
barrier after C = 0.591g^ . However, the survival probability decays very slowly (as (cC/g^)−1/2) so that
the average crossing time is in�nite. This in�nite average crossing time corresponds to particles making
very long excursions before coming back to the barrier and is typical of random walks in unbounded
domains.

These formulas yield a natural interpretation of g^ as the typical time taken by an indi-
vidual particle to cross the barrier. In turn, ℓ̂ is the typical length explored by a particle along
the barrier before crossing it. The fact that one obtains �nite scales in the continuous limit
indicates that the scaling n = ^0/�0 is correct. In other words, there is a compensation be-
tween an in�nitely small crossing probability and an in�nitely large number of hits per unit
of time. One can compute the survival probability of the particle as a function of time (the
same formula holds for ~ after a simple change of variable):

(c(C) =
∫ ∞

C

%c(C ′) dC ′ = erfcx(
√
C/g^) . (B.13)
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This function is plotted on Fig. B.1. One can see that the survival probability decays very fast at
short times, so that half of the particles initially at the barrier have crossed it after C = 0.591g^ .
However, the very slow decay of (c(C) at long times indicates that a signi�cant fraction of
particles di�use away from the barrier and come back to it after very long excursions, thus
yielding an in�nite average crossing time.

B.1.2 Non self-averaging
In this appendix we discuss qualitatively the phenomenon of non self-averaging, that can be
loosely thought as the opposite of the law of large numbers. This phenomenon describes
random variables that have in�nite mean values and leads to counter-intuitive behaviors, as
we shall explain. Let us consider a positive random variable - with in�nite mean value. We
denote by % (G) its tail distribution function, i.e.

% (G) = P(- ≥ G) . (B.14)

One has % (0) = 1, � (∞) = 0, and 〈- 〉 = ∞ is equivalent to∫ ∞

0
% (G) dG = ∞ . (B.15)

In particular we consider the common situation of a power-law tail

% (G) =
G→∞

�

G?
, 0 < ? < 1 . (B.16)

Now we perform the following experiment. We draw # independent values of - and
we study the maximum value obtained. We denote this new random variable by "# and its
repartition function by %# . One has

%# (G) = P("# ≥ G) = 1 − (1 − � (G))# =
G→∞

#�

G?
. (B.17)

The value of "# that occurs with maximum probability is found as the zero of the double
derivative of %# , that yields at large values of # :

% ′′# (G<) = 0 , G< =

(
#�?

1 + ?

)1/?
. (B.18)

As one can see, G< grows with # as # 1/? , i.e. faster than # .
Now let us turn to the sum (# = -1 + · · · + -# , with repartition function %̂# . First, one

can compute the repartition function of (2 as a convolution

%̂2(G) = P(-1 + -2 ≥ G) = % (G) −
∫ G

0
% ′(~)% (G − ~) d~ . (B.19)

In the limit of in�nitely large G , the second term in the right-hand side can be simply estimated
using (B.16), that yields

%̂2(G) =
G→∞

2�
G?

. (B.20)
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By recurrence, one obtains then

%̂# (G) =
G→∞

#�

G?
. (B.21)

Therefore, the tail of %# and the tail of %̂# coincide, in other words the probability law that
governs large values of (# is identical to the probability law that governs large values of "# .
Intuitively, if one sorts-1, . . . , -# in descending order, the �rst value(s) tend to be much larger
than the rest, so that the value of the sum (# is dominated by the value of the maximum "# .
In turn, one deduces that (# grows as # 1/? . The terminology “non self-averaging” becomes
clear. If one performs the arithmetic average of # copies of- , i.e. (# /# , the result is a random
variable that does not converge with increasing # . On the contrary, (# /# tends to take larger
and larger values as # increases. Our analysis reveals that large values of (# /# are dominated
by individual extreme events. Therefore the behavior of the arithmetic average (# /# cannot
be understood as an “average behavior” of - . This behavior is to be contrasted with the law
of large numbers that applies if ? > 1. In that case, - has �nite mean value 〈- 〉 and self-
averages in the sense that the sum of # independent copies of - grows as 〈- 〉# . In that
case the arithmetic average (# /# converges (almost surely) to the value 〈- 〉 when # tends
to in�nity.

In the example of permeation through a barrier (Appendix B.1.1), a particle performs sev-
eral excursions away from the barrier before crossing it. The probability of crossing is denoted
by n , and the typical number of excursions is thus # ∼ n−1 The variable- represents the dura-
tion of one excursion, i.e. the �rst return time to the origin. It is a classic result in probability
theory (see, e.g., the book [275]) that its repartition function scales at large times as a power
law with exponent ? = 1/2. Therefore the total time before the barrier is crossed scales as
# 1/? = n−2, as we obtained by direct computation (see Eq. (B.7)).
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B.2 First exit time distribution out of an array of
permeable barriers

Another application of the di�usion operator eigenmodes is the computation of the �rst exit
time distribution. First exit times are a particular case of �rst passage phenomena, which �nd
many applications in physics, chemistry, biology, or economics. In particular, one-dimensional
models are relevant to a wide variety of phenomena in which an event is triggered when a
�uctuating variable reaches a given threshold (examples include avalanches, neuron �ring,
or sell/buy orders) as well as di�usion controlled reactions such as �uorescence quenching
or predation [289, 290]. In general planar domains, exit times were thoroughly investigated
in the so-called “narrow-escape limit” [291] and few results are available for arbitrary escape
areas [292, 293].

In order to compute the �rst exist time distribution out of an array of permeable barriers,
let us consider perfectly relaxing conditions at the outer boundaries of the interval [0, !]:  ± =
∞. Then the quantity ∫ !

0
G(C, G, G′) dG′

represents the probability of not reaching the outer boundaries for a particle starting at G , up
to the time C . In other words, if one denotes by )G the random variable equal to the �rst exit
time of a particle starting at G , then the tail distribution and the probability density of )G are
respectively given by:

%)G (C) = P()G > C) =
∞∑
==1

4−_=CD= (G)
(∫ !

0
D= (G′) dG′

)
, (B.22)

d)G (C) =
P(C < )G < C + dC)

dC
=

∞∑
==1

_=4
−_=CD= (G)

(∫ !

0
D= (G′) dG′

)
. (B.23)

We brie�y present the case of a regular geometry, based on the computation of the eigen-
modes with perfectly relaxing outer boundaries performed in Sec. B.3.2. We obtain the �rst
exit time distribution and we study the limit of a large number of barriers (where the size !
of the large interval remains constant). Similarly to the computation of the dMRI signal, we
obtain a scaling law of the form ˜̂ C̃/( ˜̂ + 1). However, here the limit< → ∞ ensures that the
scaling law is valid for any time C̃ . Then we turn to irregular geometries where ;8 and ^8,8+1 are
randomly distributed and we observe the same scaling law, with a new de�nition for ˜̂ which
depends on permeabilities and positions of the barriers. Numerical computations show a very
good agreement even for a moderate number of barriers (< ≈ 10). Moreover, we analyze
the regime of very low permeability, where the di�usive motion can be replaced by a discrete
hopping model, and exhibit a perfect agreement with previously obtained results. Finally, we
brie�y discuss some implications for di�usion inside disordered media.

B.2.1 Regular geometry
Let us study the �rst exit time distribution (B.23) for a geometry similar to the example of Sec.
3.4.3 and 3.4.5: it consists of an array of< identical cells of length !/<, where ! is independent
of<, with perfectly relaxing conditions at the outer boundaries ( ± = ∞). The computations
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are detailed in Sec. B.3.2. Since D= (0) = 0, one cannot use the normalization E (0) = 1 from
Sec. 3.4.2, so we write D = VF with another normalization,F ′(0) =

√
_/� , which corresponds

to

[
0;1

1;1

]
=

[
0

1

]
. Because the geometry is symmetric the eigenmodes of the di�usion operator

D= , = = 1, 2, . . . are alternately symmetric or anti-symmetric (see Sec. 3.4.2); the latter give a
zero contribution in the sum in Eqs. (B.22) and (B.23). As for the symmetric eigenmodes, one
obtains:∫ !

0
F (G) dG =

2ℓs
U
, (B.24)

V−2 =
−<ℓs
2

sinU
(
1 + Ã

2

)
+ Ã

2U cosU

sin2k

(
sinU cos<k + ÃU (< − 1)

<
cos((< − 1)k )

)
+ <ℓs

2

(
sinU
U
− cosU

)
sin<k
< sink

, (B.25)

where U is a solution of the equation

sinU
sin<k
sink

+ ÃU sin((< − 1)k )
sink

= 0 . (B.26)

We recall that
_ = �0U

2/ℓ2s = �U2<2/!2 , (B.27)

and we introduce the dimensionless time:

C̃ = �0C/!2 . (B.28)

Note that the solutions U depend only on< and ˜̂ , hence the tail distribution is a function of
C̃ ,<, ˜̂ , and the starting point G :

P()G > C) = %G (C̃ ,<, ˜̂) ,

d)G (C) = −mC%G = −
!2

�0
mC̃%G =

!2

�0
d̃G (C̃ ,<, ˜̂) ,

d̃G (C̃ ,<, ˜̂) being the probability density function of the dimensionless random variable�)G/!2.
We consider now the limit< → ∞. We recall that ˜̂ = ^ℓs/� = ^!/(<�0) is the dimen-

sionless parameter that governs the transition from di�usion control ( ˜̂ � 1) to permeation
control ( ˜̂ � 1). Here, ˜̂ depends on < if ^, �0, ! are �xed. However in what follows we
consider ˜̂ and < as independent parameters. From Eq. (B.27) we get that only the smallest
solutions U contribute to the sum in Eqs. (B.22) and (B.23), hence we use Eq. (B.60) which
immediately implies that in the< → ∞ limit all the curves fall on a unique master curve of
the variable ˜̂ C̃/( ˜̂ + 1):

%G (C̃ ,<, ˜̂) ≈ %∗G
(

˜̂ C̃
˜̂ + 1

)
, (B.29)

d̃G (C̃ ,<, ˜̂) ≈
˜̂

˜̂ + 1d
∗
G

(
˜̂ C̃

˜̂ + 1

)
. (B.30)
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This master curve (%∗G , d∗G ) is precisely the one corresponding to an interval without any barri-
ers ( ˜̂ → ∞). The interpretation is that a very large number of barriers can be modeled as an
e�ective medium with the di�usion coe�cient �∞ = �0 ˜̂/( ˜̂ + 1). In particular, one obtains
the formula for the mean �rst exit time:

E[)G ] =
G (! − G)
2�∞

=
G (! − G)

2�0

˜̂ + 1
˜̂

. (B.31)

Note that from the second equality in Eq. (B.60) we get that one should replace ˜̂ by
˜̂
(
1 + 2

<

)
in order to obtain the scaling laws (B.29) and (B.30), and thus Eq. (B.31), to the �rst

order in 1/<.

B.2.2 Irregular geometry
Now we turn to an irregular geometry: the lengths of the intervals and the permeabilities
of the inner barriers are randomly distributed. We still impose that the whole interval has a
constant length !. If the number of compartments< is su�ciently large, we expect that the
e�ective medium description still holds, with an e�ective value of ˜̂ . The formula for ˜̂ should
involve all the lengths ;8 and permeabilities ^8,8+1. Moreover in the case of a regular geometry,
;8 = ℓs and ^8,8+1 = ^, and one should retrieve ˜̂ = ^ℓs/�0. If ;8 and ^8,8+1 are independent, we
�nd numerically that the formula

˜̂ =
〈;〉
〈A 〉�0

, (B.32)

where 〈·〉 denotes arithmetic mean, works well for large values of< (typically,< & 100). As
a consequence, an irregular geometry does not di�er from a regular geometry provided that
the number of compartments is su�ciently large, when one replaces ℓs by 〈;〉 and A by 〈A 〉.

However, this formula fails at small values of<. The following reasoning suggests indeed
that the formula of ˜̂ should involve a correlation between the position of the barriers and their
resistances. Let us assume for simplicity that the lengths of the compartments are randomly
generated in such a way that the geometry is symmetric with respect to the middle of the
interval (and that< is odd). One can then see the structure as (< − 1)/2 nested subintervals
�1 ⊂ �2 ⊂ · · · ⊂ [0, !] of sizes !1 < !2 < · · · < ! and enclosed by barriers of resistances
'1, '2, . . . , '(<−1)/2 (see Fig. B.2). We let a large number of particles di�use from G = !/2. First
they di�use inside the �rst subinterval �1, so that they “feel” Ã1 = �0'1/!1. Let us assume
that the barriers are quasi-impermeable, that is Ã1 � 1. According to Eq. (B.31), after a time
)1 ∼ !21Ã1(8/�0) ∼ !1'1 they have crossed the �rst barriers. The particle density is then quite
homogeneous inside the second subinterval �2 and so the particles feel Ã2 = �0'2/!2. After a
time )2 ∼ !2'2 they cross the second barriers, they homogenize inside the third subinterval,
and so on. The mean exit time is thus proportional to

∑(<−1)/2
8=1 '8!8 . According to Eq. (B.31)

and to the condition that we recover Ã = A�0/ℓs for a regular geometry in the < = ∞ limit,
one can guess:

˜̂ = Ã−1 =
!2

4�0

((<−1)/2∑
8=1

'8!8

)−1
=
!2

4�0

(
<−1∑
8=1

A8,8+1
��G8,8+1 − !/2��)−1 . (B.33)

Interestingly, the correction ˜̂ → ˜̂
(
1 + 2

<

)
is contained in this formula in case of a regular

geometry (see Sec. B.2.1). This formula was obtained for a symmetric geometry and it has to
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Figure B.2: An example of a random symmetric structure (with < = 11 compartments). The solid
vertical lines picture the barriers (the darker the line, the higher the resistance of the barrier). One can
see this structure as nested subintervals of lengths !1 < !2 < . . . enclosed by barriers of resistances
'1, '2, . . .. The cross indicates the starting position of the particles, G = !/2.

be re�ned for asymmetric geometries. In particular, it is not clear how it should be changed if
the starting point G is not at the middle of the interval anymore. The same reasoning suggests
a formula such as:

˜̂ =
G2

4�0

(
80−1∑
8=1

A8,8+1(G − G8,8+1)
)−1
+ (! − G)

2

4�0

(
<−1∑
8=80

A8,8+1(G8,8+1 − G)
)−1

, (B.34)

if G ∈ Ω80 . However the numerical agreement is not as good as with a symmetric geometry
and G = !/2. Therefore we focus on Eq. (B.33) in the following. Note that Eq. (B.33) gives
di�erent weights to the barriers depending on their position with respect to the middle of the
interval, which is rather intuitive. Indeed one expects a barrier located exactly at the middle
of the interval to have no e�ect at all (given the symmetry of the geometry) whereas barriers
located near the exit points should have the greatest e�ect.

If the permeabilities of the barriers and the lengths of the compartments are independent
random variables and are distributed in a way that 〈A 〉 is �nite, then Eqs. (B.32) and (B.33) are
identical in the limit< → ∞. Furthermore, according to the central limit theorem we expect
their deviation to be of order <−1/2. Figure B.3 shows a comparison of the two formulas.
We have plotted the �rst exit time distribution for random structures such as the one shown
in Fig. B.2, with < = 11 compartments. The lengths of the compartments and the barrier
resistances follow an exponential distribution. We choose various mean values of the barrier
resistances and we compute ˜̂ according to Eq. (B.32) or Eq. (B.33). Then we apply the scaling
C → ˜̂C/( ˜̂ + 1). One can see that with Eq. (B.33) all the curves fall onto one master curve,
whereas Eq. (B.32) leads to signi�cant deviations. Even though Eq. (B.32) is less accurate than
Eq. (B.33), the latter involves the correlation between the position of the barriers and their
permeabilities, which may be unknown in actual experiments. In this case one should use Eq.
(B.32), which is more “universal”.
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Figure B.3: The probability density of the �rst exit time from an interval segmented into < = 11
compartments by random barriers of variable mean resistance (such as in Fig. B.2). We apply the
scale change: C → ˜̂C/( ˜̂ + 1), where ˜̂ is computed either with Eq. (B.32) or Eq. (B.33). The dotted
and dashed lines correspond to a regular geometry with quasi-impermeable and permeable barriers,
respectively. (a) ˜̂ is computed with Eq. (B.32). One can see that the curves corresponding to the
regular geometry do not coincide very well, while the curves corresponding to the random structures
exhibit large deviations between each other. (b) ˜̂ is computed with Eq. (B.33). Visually, all the curves
fall onto one master curve.

B.2.3 Relation to random hopping models

The above results allow us to investigate the particular case ˜̂ � 1. As discussed previously,
in this regime the intra-compartment di�usion is much faster than the inter-compartment ex-
change, hence our di�usion model becomes equivalent to a random walk process on a discrete
one-dimensional lattice of size<. The hopping rate from site 8 to site 8 + 1 and from site 8 to
site 8 − 1 are respectively given by:

,8→8+1 =
^8,8+1
;8

, and ,8→8−1 =
^8−1,8
;8

. (B.35)

Such models of discrete random walks with random hopping rates have been considered by
many authors [295–299], and in particular from the perspective of �rst exit times [300–305]. In
particular, Murthy and Kehr discuss in [302] various cases for the distribution of the hopping
rates ,8→8+1. They consider discrete random walks starting from the left endpoint (site 0,
re�ecting condition) of the lattice and analyze the �rst exit time through the right endpoint
(site # , absorbing condition). By re�ecting the whole lattice with respect to the left endpoint,
it is equivalent to a symmetric geometry with a starting point at the middle of the interval
(and < = 2# + 2). In two particular cases they obtain exact formulas for the mean �rst exit
time:

• “Symmetric case”, with,8→8+1 =,8+1→8 , which in our case corresponds to ;8 = ;8+1 = ; .
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The mean exit time is then given by

E[) ] " 89=

#∑
8=1

8

,</2+8→</2+8+1
=
1
2

<−1∑
8=1

|8 −</2|;A8,8+1

=
1
2

<−1∑
8=1

|G8,8+1 − !/2|A8,8+1 =
!2

8� ˜̂
.

The �rst equality is from [302] (with suitable changes of notations). Using Eq. (B.35),
we obtain at the end the same formula as Eq. (B.31) (recall that ˜̂ � 1 and G = !/2),
where ˜̂ is given by Eq. (B.33).

• “Random sojourn probabilities”, with ,8→8+1 = ,8→8−1, which translates into A8,8+1 =

A8−1,8 = A . The mean exit time is given by

E[) ] " 89=

#∑
8=1

8

,<−8→<−8+1
=

#∑
8=1

8∑
:=1

;<−8A =
#∑
:=1

(
:∑
8=1

;</2+8

)
A

=
1
2

<−1∑
:=1

|G:,:+1 − !/2|A =
!2

8� ˜̂
.

Again, the �rst equality is from [302]. By rearranging the sum, it transforms exactly
into Eq. (B.31).

We conclude that our formula Eq. (B.33) introduces an e�ective permeability ˜̂ which is con-
sistent with the predictions of the random hopping rate models and accurately describes the
�rst exit time distribution even for moderate number of barriers.

B.2.4 Di�usion inside disordered media
Di�usion in disordered media may be modeled by two classes of disorder (see Ref. [306] and
references therein). In the �rst class, called “annealed disorder”, the local environment in
which particles di�use changes over time scales comparable to the di�usion time scale and
one is naturally led to model the di�usion coe�cient �0 as a stochastic process that evolves
independently from the particle position. In contrast, when the disordered medium is static,
the di�usion coe�cient is a static function of position. Therefore the di�usivity felt by a parti-
cle is directly correlated with its position. This second situation is called “quenched disorder”.

We consider here quenched disorder in the one-dimensional case from the point of view
of �rst-passage time. Although unrelated in apparence, we discuss brie�y how the study of
di�usion through multiple membranes brings some insight into the problem of di�usion inside
a random �eld of di�usivity �0(G). To this e�ect, we model a 1D disordered medium by an
interval of �xed length ! made of a very large number of subintervals with random lengths ;8
and di�usion coe�cients �8 . For simplicity we assume that ;8 and �8 are independent random
variables, except that we impose a symmetric geometry with respect toG = !/2. This geometry
represents the discretized version of a continuous random di�usivity �eld �0(G), where the
typical length of subintervals is the correlation length of �0(G). We emphasize that there are
no barriers in this discrete geometry. However, we showed in Sec. 3.1.1 that a thin layer of size
4 and di�usivity�4 is equivalent to a permeable barrier with permeability^ = �4/4 . Therefore
the results of the previous section lead us to distinguish two situations.
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Figure B.4: We have plotted the distribution of e�ective barrier resistances A8 = ;8/�8 for two di�erent
random media with < = 1000 compartments (left) and the corresponding �rst-exit time distribution
computed for the same random media (right). In the self-averaging case (top), the quantity A8 is drawn
from a distribution with �nite average value, and the �rst exit-time distribution is equal to that of a
homogeneous medium with di�usion coe�cient �e� = 〈1/�8〉−1. In contrast, the non self-averaging
case (bottom) generally yields few exceptional values of A8 that dominate the whole distribution. In that
case the �rst-exit time distribution is controlled by permeation through this e�ective barrier and yields
a mono-exponential decay of d after a very short transient regime.

Self-averaging situation

This corresponds to the case where A8 = ;8/�8 has a �nite average value, i.e. 1/�8 has a �nite
average value. This situation is illustrated on the top panel of Fig. B.4. The distribution of
A8 over the whole interval exhibits several maxima therefore the disordered medium may be
replaced by an interval with homogeneous di�usion coe�cient and several barriers of resis-
tances A8 . Since the number of barriers is very large, the reduced permeability can be computed
from Eq. (B.32), that yields a di�usion coe�cient �∞ = 〈1/�8〉−1.

Non self-averaging situation

This is the opposite situation where 〈1/�〉 has an in�nite average value. As we discuss in
Appendix B.1.2, a random realization of A8 typically yields a few values that are much higher
than the rest. This is illustrated on the bottom panel of Fig. B.4. Therefore, the medium may be
replaced by an interval with homogeneous di�usion coe�cient and few barriers of very high
resistances. In the situation of Fig. B.4 where only one pair of barriers should be considered,
the exit time is under permeation control, i.e. the kinetically limiting process is the barrier
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crossing and not di�usion to the end of the interval. Therefore, the distribution of �rst exit
times is mono-exponential after a very short transient time, and Eq. (B.59) yields the rate of
the exponential decay:

_ =
2

Amax!max
, (B.36)

where Amax is the maximum value of A8 and !max is the spacing between the corresponding
barriers. Note that _ is exactly the inverse of the global exchange time of the e�ective interval
of length !max, as expected (see Sec. 3.1.2).
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B.3 Computation for the 1D case

This section contains technical developments related to Sec. 3.4. Sec. B.3.1 contains proofs of
the existence of in�nitely many eigenvalues, their non-degeneracy, their monotonic growth
with respect to the barrier permeabilities, as well as a Courant nodal theorem for our particular
model of di�usion with barriers. Then we present general computations for a �nite periodic
geometry with relaxation conditions at the outer boundaries in Sec. B.3.2. The case of in�nite
relaxation is of particular interest for the �rst-exit time distribution. The computations are
also presented for more sophisticated structures such as bi-periodic (Sec. B.3.3) and two-scale
geometry (Sec. B.3.4). The two �nal sections are devoted to technical results for the �nite
periodic geometry with impermeable endpoints. Sec. B.3.5 presents the limit of the signal in
the zero- and in�nite-permeability limit, and Sec. B.3.6 contains asymptotic expansions of the
eigenvalues that are crucial for the discussion of the behavior of the dMRI signal.

B.3.1 Mathematical proofs

In this section we prove the non-degeneracy of the eigenvalues of the di�usion operator under
the assumption that all inner membranes are permeable ^8,8+1 > 0, 8 = 1, . . . ,< − 1. In fact this
statement involves two facts: (i) the eigenvalues _= of the di�usion operator are distinct; (ii) the
zeros of � are simple, that is � ′(_=) ≠ 0, = = 1, 2, . . . (in this section, prime denotes derivative
with respect to _). Furthermore we shall obtain as a corollary that there are in�nitely many
eigenvalues _= , that they grow monotonically with the inner and outer barrier permeabilities
^8,8+1 and  ±, as well as a Courant nodal theorem for the eigenmodes.

The assumption of non-zero permeability is crucial. Indeed it is clear that any inner imper-
meable barrier would split the structure into two non-communicating parts. The eigenmodes
for the whole structure would then be given by the eigenmodes for one part and the other sep-
arately. If the two parts are identical, each eigenvalue is twice degenerate. We make no other
assumption about the geometry and we consider general relaxing outer boundary conditions.

Uniqueness of the eigenmodes

Let us assume that there exist two eigenmodes D and D̃ satisfying Eqs. (3.65)-(3.67), with the
same eigenvalue _. We shall prove that D is proportional to D̃. Because D and D̃ both satisfy
Eq. (3.66c), one has D ′(0)

D (0) =
D̃ ′(0)
D̃ (0) hence there exists a constant � such that

D (0) −�D̃ (0) = 0 and D′(0) −�D̃′(0) = 0 .

Let us denote D −�D̃ byF . This function satis�es Eqs. (3.65)-(3.67) because all these equations
are linear. What remains to show is that F is equal to 0 over the whole interval [0, !]. We
prove it by induction on the index of the compartment 8 . The main mathematical argument is
Cauchy-Lipschitz uniqueness theorem for second order linear di�erential equations (U): “if 5
satis�es a second order linear di�erential equation over an interval Ω and 5 (2) = 5 ′(2) = 0,
with 2 ∈ Ω, then 5 (G) = 0 for every G ∈ Ω”.

• We apply (U) toF |Ω1
: F |Ω1

(0) = F ′|Ω1
(0) = 0 and�1F

′′|Ω1
+_F |Ω1

= 0, henceF |Ω1
= 0.
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• Let us assume that F |Ω8 = 0, with 0 < 8 < < − 1. Then, because ^8,8+1 ≠ 0, the inner
boundary conditions in Eqs. (3.66a) and (3.66b) imply thatF |Ω8+1 (G8,8+1) = F ′|Ω8+1 (G8,8+1) =
0. Because F |Ω8+1 obeys the equation �8+1F ′′|Ω8+1 + _F |Ω8+1 = 0, one can apply again
(U), which impliesF |Ω8+1 = 0.

Simplicity of the zeros of �

Now we prove that � ′(_=) ≠ 0 for any eigenvalue _= . In order to simplify the notations we
consider the case where  ± are �nite. However the proof follows the same steps in the case
of in�nite  ±. Throughout the proof we implicitly discard the case _ = 0. Let us recall that
if we consider the function E (_, G) which satis�es Eqs. (3.65)-(3.66c) as well as the condition
E (0) = 1 (we have proven above that this function is unique), then

� (_) =  +
�<

E (_, !) + mE
mG
(_, !) . (B.37)

Instead of writing E as a sum of sine and cosine functions (see Eq. (3.69)), we introduce an
amplitude and phase representation:

E |Ω8 (G) = �8 (_) cos(
√
_/�8G + q8 (_)) = �8 (_) cos(Φ8 (_, G)) , (B.38)

with �8 ≥ 0. It is clear from Eq. (3.69) that �8 and q8 do not depend on G . Moreover we
have proven in the above paragraph that �8 (_) is non-zero for all 8 and _. We now translate
the boundary conditions (3.66a)-(3.66d) in terms of Φ8 . Equation (3.66c) yields:  −�8 cosq1 +√
_�1 sinq1 = 0, hence

tanq1 = −
 −√
_�1

(−c/2 ≤ q1 ≤ 0) . (B.39)

Equtaions (3.66a) and (3.66b) can be restated as

−�8
√
_�8 sin(Φ8) = −�8+1

√
_�8+1 sin(Φ8+1) = ^8,8+1(�8+1 cos(Φ8+1) −�8 cos(Φ8))

at G = G8,8+1, hence by eliminating �8 and �8+1, we get

cotΦ8 (_, G8,8+1)√
�8

− cotΦ8+1(_, G8,8+1)√
�8+1

= A8,8+1
√
_ , (B.40)

with 0 ≤ Φ8+1(_, G8,8+1) − Φ8 (_, G8,8+1) < c . Finally, one can rewrite Eq. (B.37) as

� (_) = �< (_)
(
 +
�<

cosΦ< (_, !) −
√
_/�< sinΦ< (_, !)

)
= �<+1(_) cos(Φ< (_, !) + q<+1(_)) , (B.41)

with:

�<+1(_) = �< (_)

√(
 +
�<

)2
+ _

�<
, cotq<+1(_) =

 +√
_�<

(B.42)
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and 0 ≤ q<+1 ≤ c/2. We have �<+1(_) ≠ 0 for any _ and −c/2 < Φ< (0, !) + q<+1(0) ≤ c/2,
hence Eq. (3.81) is equivalent to Φ< (_=, !) + q<+1(_=) = (2= − 1)c/2. The derivative of � at
_ = _= is then given by

� ′(_=) = (−1)=�<+1(_=)
(
Φ′< (_=, !) + q′<+1(_=)

)
. (B.43)

It is clear from Eq. (B.42) thatq′<+1(_) ≥ 0 for any _. In order to prove that � ′(_=) ≠ 0, it is then
su�cient to show that Φ′< (_, !) > 0. We prove by induction on the index of the compartment
8 that Φ′8 (_, G) is positive for any _ and any G ∈ Ω8 :

• From Eq. (B.39) we get that q1 is an increasing function of _. As Φ1(_, G) =
√
_/�1G +

q1(_), we immediately get that Φ′1(_, G) > 0 for any G ∈ Ω1.

• Let us assume that Φ8 (_, G8,8+1) is an increasing function of _. According to Eq. (B.40),
let us introduce the function:

5 (_,~) = cot−1
(√

�8+1
�8

cot~ − A8,8+1
√
_�8+1

)
. (B.44)

Because cot is a decreasing function, 5 is an increasing function of~ and a non-decreasing
function of _, which implies that Φ8+1(_, G8,8+1) = 5 (_,Φ8 (_, G8,8+1)) is an increasing
function of _. It is then clear that Φ8+1(_, G) = Φ8+1(_, G8,8+1) +

√
_/�8+1(G − G8,8+1) is an

increasing function of _ for any G ∈ Ω8+1.

This proves the simplicity of the zeros of � . Moreover, we also obtain that Φ< (_, !) grows
inde�nitely with _. According to Eq. (B.41), this implies that there are in�nitely many values
of _ such that � (_) = 0. In other words, there are in�nitely many eigenvalues _= .

Monotonicity of the eigenvalues with respect to the permeabilities

The previous computations enable us to show that the eigenvalues grow monotonically with
the inner and outer permeabilities ^8,8+1 and  ±. In fact, because Φ< (_, !) + q<+1(_) is an
increasing function of _, we just have to prove that Φ< (_, !) + q<+1(_) is a non-increasing
function of ^8,8+1 and  ±, which follows immediately from Eqs. (B.39), (B.44) and (B.42).

Courant nodal theorem

Let us de�ne the nodal domains of an eigenmode D= as connected components on which D=
does not change sign. We prove here that D= has exactly = nodal domains, which means that
it changes sign = − 1 times (recall that we numbered the modes = = 1, 2, . . .). Note that these
sign changes can occur at discontinuity points of D= . The proof relies on the amplitude and
phase representation detailed above. Let us then write

D= (G) = �(_=, G) cos(Φ(_=, G)) , (B.45)

where � and Φ are piecewise continuous functions of G de�ned by �|Ω8 = �8 and Φ|Ω8 = Φ8 .
The changes of sign of the eigenmode occur when the phase Φ crosses an odd multiple of c/2.
Indeed, �(_=, G) has a constant sign, and from Eq. (B.40) we get that the jumps of Φ at the



B.3. Computation for the 1D case 285

barriers are always less than c (which means that Φ cannot cross two odd multiples of c/2 at
the same time).

Moreover, we know the phase at the left endpoint: Φ(_=, 0) = q1(_=) ∈ [−c/2; 0] and the
phase at the right endpoint: Φ(_=, !) = (2= − 1)c/2 − q<+1(_=) ∈ [(= − 1)c ; (= − 1)c + c/2].
We conclude that the interval (Φ(_=, 0);Φ(_=, !)) contains exactly = − 1 odd multiple of c/2,
thus the eigenmode has = nodal domains.

B.3.2 Computations for an array of identical cells with symmetric
relaxation conditions at the outer boundaries

In this section we extend the computation presented in Sec. 3.4.3 by allowing relaxation or
leakage at the endpoints of the interval. In other words, we relax the re�ecting boundary
conditions  ± = 0 at the outer membranes. In particular we will also study the limit  ± →∞
which is the perfectly relaxing case that we use in Appendix B.2. The cells are the same:
;8 = ℓs, �8 = �0, ^8,8+1 = ^, and the relaxation coe�cients are identical:  + =  − =  . In
addition to the notations (3.124), we introduce:  ̃ =  ;/� .

Eigenmodes

Because the geometry is symmetric we know that n = ±1. In this case we need to solve the
general equation (3.126)

K−1M<

[
U

 ̃

]
= n

[
U

− ̃

]
. (B.46)

With the help of Eq. (3.128) we can compute the matrix K−1M<:

K−1M< =

[
cosU sin<k

sink −
sin(<−1)k

sink sinU sin<k
sink + ÃU

sin(<−1)k
sink

− sinU sin<k
sink cosU sin<k

sink −
sin(<−1)k

sink

]
. (B.47)

Thus Eq. (B.46) yields the system
(
cosU +  ̃ sinU

U

)
sin<k
sink −

(
1 − Ã  ̃

)
sin(<−1)k

sink = ±1(
cosU − 1

 ̃
U sinU

)
sin<k
sink −

sin(<−1)k
sink = ∓1

, (B.48)

which is equivalent to the equation(
cosU + 1

2

(
 ̃

U
− U
 ̃

)
sinU

)
sin<k
sink

−
(
1 − Ã  ̃

2

)
sin(< − 1)k

sink
= 0 . (B.49)

Combined with Eq. (3.127) it forms a system whose solutions U= determine the eigenvalues
_= . Compared to the  = 0 case from Sec. 3.4.3, the solutions U= are modi�ed and in general
increase with  ̃ .

In the particular case  ̃ = 2 ˜̂ , Eq. (B.49) simpli�es into

sin<k
sink

= 0 or cosU + 1
2

(
 ̃

U
− U
 ̃

)
sinU = 0 . (B.50)
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Figure B.5: Spectrum of the �nite periodic geometry with< = 4 compartments and Ã = 0.4, for  ̃ = 0
(circles),  ̃ = ˜̂/2 = 1.25 (squares),  ̃ = 2 ˜̂ = 5 (asterisks),  ̃ = 10 ˜̂ = 25 (pluses) and  ̃ = ∞ (triangles).
The values of U increase with  ̃ . Notice how the spectra for  ̃ = 0 and  ̃ = 2 ˜̂ coincide except at the
beginning and the end of the branches.

The �rst equation gives the U 9,? (? = 1, . . . ,< − 1) from the earlier considered  = 0 case. The
second equation gives the solutions of cosk = ±1 that are not multiple of c (that we denote as
U 9,< if 9 is even and U 9,0 if 9 is odd, to be consistent with our previous notations). The condition
 ̃ = 2 ˜̂ can be interpreted as “one inner barrier is equivalent to two stacked outer barriers”

or equivalently “the crossing of one inner barrier transforms

[
−1
 ̃
U

]
into

[
1
 ̃
U

]
”. In this way the

reason why the U 9,? are solutions becomes clear: the matrix K
(
K−1M<

)
= M< should send[

1
 ̃
U

]
onto plus or minus itself. The U 9,? (with 1 < ? < <) are solutions of M< = ±I2 and the

U 9,0 and U 9,< are such that

[
1
 ̃
U

]
is an eigenvector of M.

As a consequence, the spectrum for the case  ̃ = 2 ˜̂ di�ers little from the spectrum for
the impermeable outer boundary condition. The only di�erence lies in the beginning and the
end of the branches (see Fig. B.5). This is nevertheless not a small di�erence because the
eigenvalue _ = 0 (which is absent of the spectrum if  ̃ > 0) plays an important role in the
long-time limit of the di�usion propagator as we have discussed in Sec. 3.4.6.

Beyond this special value of  ̃ , the solutions U= continue to increase so that some values
of k= become complex (because | cosk | > 1, which is apparent in Fig. B.5). More precisely
they have the general formk = 8G ork = c +8G , with G ∈ R. These values correspond to eigen-
modes strongly localized inside the outer compartments. Indeed, Eq. (3.105) implies that the
coe�cients 0 and 1 vary like linear combinations of cosh and sinh functions of the compart-
ment index 8 . The physical interpretation is simple: when  ̃ � ˜̂ we are indeed in a regime
where the leakage through the outer membranes is much faster than the exchange through
the inner barriers. As a consequence the outer compartments evolve separately from the inner
compartments, which corresponds mathematically to the existence of localized eigenmodes.
On the other hand, when  ̃ � ˜̂ , the outer leakage is much slower than the inner exchange,
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thus all compartments are coupled. We treat the limit  ̃ →∞ below in Sec. B.3.2.

Computation of the norm

The general formula (3.94) reads

V−2 =
ℓs

2

����� ddU
( [

 ̃
U

1
]

T(U)
[
1
 ̃
U

])�����
U=U=

. (B.51)

After lengthy computations, one gets

V−2 =
nℓs

2

sinU
(
1 + Ã

2

)
+ Ã

2U cosU

sin2k

((
 ̃

U

)2
sinU + 2 ̃

U
cosU − sinU

) (
(< − 1) sink
sin(< − 1)k − cos<k

)
+ n;

2
sin<k
sink

(
sinU
U

(
1 + 2 ̃ +

(
 ̃

U

)2)
+

(
1 −

(
 ̃

U

)2)
cosU

)
. (B.52)

Note that when  ̃ = 2 ˜̂ we have to compute separately the casesk = 0 andk = c . We get

V−2 =
<ℓs

2

(
− cosU − 2 ̃

U
sinU +

(
 ̃

U

)2 (
cosU + < − 1

< ˜̂

)
+ 2  ̃

<U2

)
ifk = 0,

V−2 =
<ℓs

2

(
cosU + 2 ̃

U
sinU −

(
 ̃

U

)2 (
cosU − < − 1

< ˜̂

)
+ 2  ̃

<U2

)
ifk = c .

Fourier transform

Except for the conditions at the outer boundaries, the geometry is the same as in Sec. 3.4.5.
Hence the computation follows the same steps. Using the condition (B.46), we are led to com-
pute the product

L
(
I2 − 48@̃R−1K−1

) (
I2 − n48<@̃KS

) [
U

 ̃

]
.

Skipping the technical computations, one gets depending on n = ±1∫ !

0
E (G)48@̃G dG =

48<@̃/22ℓs
(@̃2 − U)2(cos @̃ − cosk ) (� cos(<@̃/2) + � sin(<@̃/2)) if n = +1,

(B.53)∫ !

0
E (G)48@̃G dG =

−848<@̃/22ℓs
(@̃2 − U)2(cos @̃ − cosk ) (� sin(<@̃/2) − � cos(<@̃/2)) if n = −1,

(B.54)

where

� =  ̃

(
(cosU − cos @̃) + Ã

2
(@̃ sin @̃ − U sinU)

)
, � = @̃(cos @̃ − cosU)

(
1 − Ã  ̃

2

)
. (B.55)
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Complete expression of the dMRI signal

According to Eq. (3.138), the signal is expressed as a sum over all eigenmodesD= . We recall that
the eigenmodes are alternately symmetric (odd=) and anti-symmetric (even=). Combining the
above results (B.52)-(B.55), one gets

( =

∞∑
==1

(
�2
= + �2= + (−1)=−1(�2

= − �2=) cos<@̃ + (−1)=−12�=�= sin<@̃
)
4V2=4

−U2= C̃

(@̃2 − U=2)2(cos @̃ − cosk=)2
, (B.56)

where V= is given by Eq. (B.52), �= and �= by Eq. (B.55),k= by Eq. (3.127) and U= are solutions
of Eq. (B.49). For< = 1, we recover the signal derived by Coy and Callaghan [87].

Perfectly relaxing outer boundaries

Note that the limit  ̃ → ∞ is singular because of the chosen normalization (3.68). This is
particularly clear in Eq. (3.77) where1;1 →∞. In fact,  ̃ = ∞ represents Dirichlet conditions at
the outer boundaries: D (0) = D (!) = 0. To avoid the singularity we use another normalization:

D = VF , F ′(0) =
√
_/� , (B.57)

which corresponds to the coe�cients (forF )[
0;1

1;1

]
=

[√
_�1
 −

1

]
.

When  ̃ →∞, Eq. (B.49) simpli�es into

sinU
sin<k
sink

+ ÃU sin (< − 1)k
sink

= 0 . (B.58)

We now study the solutions of this equation in three di�erent regimes: high-permeability, low-
permeability, and very large number of compartments. We rely on the discussion developed
in Sec. 3.4.2, which leads us to the following conclusions.

High-permeability regime In the high-permeability regime (Ã � 1), the solutions are
located near the limits U0 = =c/<, which correspond also to k0 = =c/< (= = 1, 2, . . .). More
precisely one can compute the �rst-order expansion:

U= ≈
=c

<

(
1 − Ã (< − 2)

2<

)
if = is not a multiple of<,

U= ≈
=c

<

(
1 − Ã (< − 1)

<

)
otherwise.

As already noted this case presents no di�culty from the numerical point of view.
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Low-permeability regime In the low-permeability regime ( ˜̂ � 1), the solutions are di-
vided into two categories.
• First, the solutions corresponding to the “inner” compartments: 1 < : < <. These

solutions form groups located around U0 = 9c ( 9 being an integer). In fact they correspond to
k ∈ R, at which sin(<k ) and sin((< − 1)k ) are of the same order. This implies that Eq. (B.26)
becomes in the low-permeability limit

sin((< − 1)k )
sink

= 0 ,

which is (almost) the equation of the spectrum of<−1 identical cells with impermeable outer
boundaries (3.130). One gets simply the solutionsk0 = ?c/(< − 1), ? = 1, . . . ,< − 2, thus the
solutions in the �rst category are approximately determined by

cosU − Ã
2
U sinU = cos(?c/(< − 1)), ? = 1, . . . ,< − 2 .

We study this equation in details in Sec. B.3.6. In particular, applying Eq. (B.94) one gets for
the< − 2 �rst solutions:

U= ≈ 2
√
˜̂ sin

(
=c

2(< − 1)

)
, = = 1, . . . ,< − 2 . (B.59)

• Second, the solutions corresponding to the outer compartments : = 1,<. These solu-
tions form pairs U± such that(

= + 1
2

)
c − U+ ≈

(
= + 1

2

)
c − U− ∼

˜̂
(= + 1/2)c ,

U+ − U− ∼
(

˜̂
(= + 1/2)c

)<−1
,

with = = 1, 2, . . .. Therefore in the low-permeability limit ( ˜̂ → 0) these pairs are very di�cult
to detect, especially when one is dealing with a large number of compartments<. As explained
in Sec. 3.4.4, even if one �nds the roots, the subsequent computation of the eigenmodes and
their norm may be inaccurate. However in this regime these solutions are much larger than
the smallest one from the �rst category which goes to zero according to Eq. (B.59). Hence
they have little in�uence on the �rst exit time distribution (B.23) because of the very fast
exponential decay compared to the �rst terms of the sum.

Limit< →∞ From the above discussion we get that the< − 2 �rst solutions of Eq. (B.26),
U1, . . . , U<−2, satisfy

=c/< < k= < =c/(< − 1) , = = 1, . . . ,< − 2 .

Thus one may writek= = =c
<−G , with 0 < G < 1. Let us rewrite Eq. (B.26) as

sinU= sin(<k=) + ÃU= sin((< − 1)k=) = (−1)=
[
sinU= sin

( G=c
< − G

)
− ÃU= sin

(
(1 − G)=c
< − G

)]
= 0 .
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Now we study the limit < → ∞ with �xed =. Then k=, U= � 1 and the above equation
transforms into

(−1)=U==c
< − G (G − Ã (1 − G)) = 0 ,

from which we get G = Ã/(1 + Ã ) = 1/(1 + ˜̂). Let us use the expansion (3.161):

U= ≈
√

˜̂
˜̂ + 1

=c

< − 1
˜̂+1
≈

√
˜̂
(
1 + 2

<

)
˜̂
(
1 + 2

<

)
+ 1

=c

<
, = = 1, . . . ,< − 2 . (B.60)

Computation of the norm

The formula (3.94) for the norm becomes

V−2 =

∫ !

0
F2 =

−
√
�1

2[
d

d
√
B

( [
 +
 −

√
�<B

 −

]
T(B)

[√
�1B

 −

1

])�����
B=_

.

In the particular geometry we are dealing with and in the case  ̃ = ∞, this gives

V−2 =
−nℓs
2

����� [1 0
] dT
dU

[
0

1

] ����� (B.61)

=
−n<ℓs

2

sinU
(
1 + Ã

2

)
+ Ã

2U cosU

sin2k

[
sinU cos<k + ÃU (< − 1)

<
cos((< − 1)k )

]
+ n<ℓs

2

(
sinU
U
− cosU

)
sin<k
< sink

. (B.62)

Computation of the Fourier transform

In the same way, the computation of the Fourier transform ofF simpli�es into

48<@̃/22ℓsU
(@̃2 − U)2(cos @̃ − cosk ) ×

{
� cos(<@̃/2) + � sin(<@̃/2) if n = +1
−8 (� sin(<@̃/2) − � cos(<@̃/2)) if n = −1

, (B.63)

with

� =

[
(cosU − cos @̃) + Ã

2
(@̃ sin @̃ − U sinU)

]
, � =

Ã

2
@̃(cosU − cos @̃) . (B.64)

B.3.3 Bi-periodic geometry
In this section, we brie�y apply our method to the computation of the spectrum of the di�usion
operator on a �nite periodic geometry where the elementary block is made of two di�erent
compartments (repeated" times). Such a system may model laminated steel coils in industrial
processes [243, 244] or intra- and extra-cellular spaces in biology [192, 270, 272]. This is also
a good example of the numerical simpli�cations that our method enables. The lengths of the
compartments are denoted by ;4 and ;8 , their di�usion coe�cients by �4 and �8 and the barrier
between the two compartments has a permeability^ (or equivalently a resistance A = 1/^). For
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simplicity we assume re�ecting boundary conditions at the outer boundaries. Let us introduce
the notations

g8 = ;
2
8 /�8 and g4 = ;

2
4 /�4 . (B.65)

In that case, the equation (3.78) on the spectrum is M"

[
1

0

]
= n

[
1

0

]
, with

M =

[
1 A
√
_�8

0
√
�8/�4

] [
cos(
√
_g8) sin(

√
_g8)

− sin(
√
_g8) cos(

√
_g8)

] [
1 A
√
_�4

0
√
�4/�8

] [
cos(
√
_g4) sin(

√
_g4)

− sin(
√
_g4) cos(

√
_g4)

]
.

(B.66)

Because the geometry is not symmetric, n is not necessary equal to ±1. Moreover we have
n[ =

√
�4/�8 . Following the same reasoning as in Sec. 3.4.3, we obtain that the solutions of

Eq. (3.78) can be decomposed into two types:

• the ones such that

[
1

0

]
is an eigenvector of the transition matrix of one block, M, from

Eq. (B.66). This gives the condition:

A
√
_�8�4 =

√
�8 cot(

√
_g4) sin(

√
_g8) +

√
�4 sin(

√
_g4) cot(

√
_g8) . (B.67)

Moreover, one has

n =

(
cos(

√
_g4) cos(

√
_g8)−

√
�8

�4
sin(

√
_g4) sin(

√
_g8)−A

√
_�8 cos(

√
_g4) sin(

√
_g8)

)−"
;

(B.68)

• the ones such that Tr(M) = 2 cos?c/" , with ? = 1, . . . , " − 1, which corresponds to
M" = (−1)? I2 and thus to n = (−1)? . This gives the equation

2 cos?c/" = 2 cos(
√
_g4) cos(

√
_g8) −

(√
�8

�4
+

√
�4

�8

)
sin

(√
_g4

)
sin

(√
_g8

)
− 2A
√
_

(√
�4 sin

(√
_g4

)
cos

(√
_g8

)
+
√
�8 cos

(√
_g4

)
sin

(√
_g8

))
+ A 2_

√
�8�4 sin

(√
_g4

)
sin

(√
_g8

)
, ? = 1, . . . , " − 1 . (B.69)

It is interesting to compare the above equations with the analysis conducted in Sec. 3.4.2.
Indeed, one can see that in the limit of quasi-impermeable barriers (A → ∞), Eq. (B.67) yields
approximately√

_/�4 ≈
=c

;4
+ 1
=cA�4

and
√
_/�8 ≈

=c

;8
+ 1
=cA�8

, = = 1, 2, . . . , (B.70)

which is exactly Eq. (3.112) with Z = 1, that is for the outer compartments. In the same way,
Eq. (B.69) yields approximately√

_/�4 ≈
=c

;4
+ 2
=cA�4

+
;4
√
�4/�8-?
(=cA�4)2

,√
_/�8 ≈

=c

;8
+ 2
=cA�8

+
;8
√
�8/�4.?
(=cA�8)2

, (B.71)
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where = = 1, 2, . . ., and -?, .? are dimensionless coe�cients which depend on the value of
cos?c/" , with ? = 1, . . . , " − 1. One recognizes the �rst order correction from Eq. (3.112)
for inner compartments. The second order correction is also discussed in Eq. (3.4.2) and arises
from the next-nearest neighbor coupling between the compartments of the same type. There-
fore, in the low-permeability limit, the spectrum is made of groups of" closely packed eigen-
values located around _ = �4 (=c/;4)2 or _ = �8 (=c/;8)2: one eigenvalue is given by Eq. (B.67)
then the following " − 1 eigenvalues are given by Eq. (B.69). These groups correspond to
eigenmodes localized inside all compartments of type “4” or “8”, respectively. More precisely,
the �rst eigenvalue of each group corresponds to an eigenmode localized inside an outer com-
partment and the " − 1 following eigenvalues correspond to eigenmodes localized inside all
inner compartments.

Equations (B.67) and (B.69) “disentangle” these groups of eigenvalues, that allows one to
compute very fast the spectrum of the di�usion operator for any number of repetitions "
and any barrier permeability. This is a major simpli�cation of the numerical problem of the
determination of the spectrum (see Sec. 3.4.2 and 3.4.4). The same remark applies to any �nite
periodic geometry, provided that the repeated elementary block is not too long.

B.3.4 Two-scale geometry

Eigenmodes

We consider again the repetition of an elementary block but without restricting ourselves to
a small block. Indeed the structure is the repetition of " arrays of # identical cells, each
array being separated from others by a “large barrier” (see Fig. B.6). For simplicity we assume
re�ecting boundary conditions at the endpoints. The cells are of length ; , the barriers are of
permeability ^, the di�usion coe�cient is � , and the “larger barriers” are of permeability ^! .
In addition to the notations (3.124), we introduce:

Ã! = 1/ ˜̂! = �/(^!;) and d̃ = Ã! − Ã . (B.72)

Strictly speaking, d̃ may be negative, however we have in mind the opposite case where the
“larger barriers” are less permeable than the inner barriers.

We have two di�erent matrices to consider:

• the matrix associated to the microstructure is M1 =

[
1 ÃU

0 1

] [
cosU sinU

− sinU cosU

]
.

• the matrix associated to the macrostructure is M2 =

[
1 d̃U

0 1

]
M1

# .

Thanks to the formula (3.128), we can compute the matrix M2:

M2 =
1

sink


(
sin(# + 1)k
− (cosU + d̃U sinU) sin#k

) (
(sinU + '̃U cosU) sin#k

− d̃U sin(# − 1)k

)
− sinU sin#k cosU sin#k − sin(# − 1)k

 . (B.73)
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Figure B.6: Illustration of the two-scale geometry, which is a repetition of " blocks of # cells. All the
cells have the same length ; and di�usion coe�cient � and are separated by barriers of permeability ^.
The blocks are separated by barriers of permeability ^! .

Since the geometry is symmetric, Eq. (3.78) of the spectrum is

M2
"

[
1

0

]
= n

[
1

0

]
, (B.74)

with n = ±1, and by analogy with the �nite periodic geometry from Sec. 3.4.3 we have two
cases:

• sinU sin#k
sink = 0: the vector

[
1

0

]
is an eigenvector of the matrix M2. This condition gives

exactly the solutions U 9,? , 9 = 0, 1, . . . and ? = 0, . . . , # (Sec. 3.4.3). One has n = (−1)?" .

• The trace of the matrix M2 is 2 cos %c/" , for % ∈ {1, . . . , " − 1}: M2
" is plus or minus

the identity matrix I2, which gives the condition:

cos#k − Ã
2
U sinU

sin#k
sink

= cos %c/" , % = 1, . . . , " − 1 . (B.75)

In this case n = (−1)% . Again, we use a special notation for the solutions: U 9,?,% , where
the index 9 means 9c ≤ U 9,?,% < ( 9 + 1)c and the index ? means ?c/# ≤ k 9,?,% <

(? + 1)c/# . The % = 0 (resp., % = ") case corresponds then to the solutions for the
�nite periodic case U 9,? if ? is even (resp. if ? is odd).

The interpretation of the indices 9, ?, % follows the same line of reasoning as with the sim-
ple periodic geometry: they give the intra-compartment, inter-compartment (or intra-block)
and inter-block variation of the mode, respectively..
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Computation of the norm:

We use again Eq. (3.103):[
0 1

]
T

[
1

0

]
=

[
0 1

]
(K2M# )"

[
1

0

]
=
sin"q
sinq

[
0 1

]
K2M#

[
1

0

]
=
sin"q
sinq

sin#k
sink

[
0 1

]
M

[
1

0

]
= −sin"q

sinq
sin#k
sink

sinU , (B.76)

where we have introduced q de�ned by

cosq =
1
2
Tr(K2M<) = cos#k − Ã

2
U sinU

sin#k
sink

. (B.77)

Now we have three cases:

1. sinU = 0, which corresponds to U 9,0 and U 9,# . One gets

V2 =
2

"#;
.

2. sin#k
sink = 0, which corresponds to U 9,?, ? = 1, . . . , # − 1. In this case we get

V29,? =
2
<;

sin2 ?c/#

sinU 9,?
(
sinU 9,?

(
1 + Ã

2

)
+ Ã

2U 9,? cosU 9,?
) .

3. sin"q
sinq = 0, which corresponds to the general case. We use the chain rule again to

compute the derivative with respect to U :

d
dU

(
sin"q
sinq

)
=
d cosq
dU

dq
d cosq

d
dq

(
sin"q
sinq

)
,

d cosq
dU

= −# 1 − cos#k cos %c/"
sin#k sink

[(
1 + Ã

2

)
sinU + Ã

2
U cosU

]
+ cos#k − cos %c/"

sin2k

[
sin2 U
U
+ Ã
2
(U + sinU cosU)

]
,

dq
d cosq

d
dq

(
sin"q
sinq

)
=

(
−1

sin %c/"

) (
(−1)%

sin %c/"

)
.

Hence we get the normalization constant:

V29,?,% =

2 sin2 (%c/") sink
<; sinU sin#k

1−cos#k cos %c/"
sin#k sink

((
1 + Ã

2

)
sinU + Ã

2U cosU
)

+ cos#k−cos %c/"
# sin2k

(
sin2 U
U
+ Ã

2 (U + sinU cosU)
) 

�������������
U=U 9,?,%

. (B.78)
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Fourier transform

In the same way as for the �nite periodic geometry, we have only one L to consider, so we
need to compute∑

8

48:@̃L8

[
0;8

1;8

]
= L

"−1∑
8=0

#−1∑
8=0

48@̃( #+:)M1
:M2

 

[
1

0

]
= L(I2 − 48@̃M1)−1(I2 − 48#@̃M1

# ) (I2 − 48@̃#M2)−1(I2 − 48#"@̃M2
" )

[
1

0

]
. (B.79)

Using Eq. (B.74) on the spectrum and the linearity of the comatrix operation, we get to simplify
a lot the above expression:∑

8

48:@̃L8

[
0;8

1;8

]
= (1 − (−1)%48#"@̃)det(I2 − 4

8#@̃M1
# )

det(I2 − 48#@̃M2)
L(I2 − 48@̃M1)−1

[
1

0

]
. (B.80)

And �nally ∫ !

0
E (G)48&G dG =

8@̃;
(
1 − (−1)%48#"@̃

) cos#k 9,?,%−cos#@̃
cos %c/"−cos#@̃

cosU 9,?,%−cos @̃
cosk 9,?,%−cos @̃

@̃2 − U 9,?,% 2
. (B.81)

Complete expression of the dMRI signal

We gather the above expressions to obtain the signal as a function of @̃ = &; and C = �Δ/;2:

( =
2(1 − cos<@̃)
(<@̃)2 +

∞∑
9=1

4@̃2(1 − (−1) 9< cos<@̃)
<2 (@̃2 − ( 9c)2)2

4−( 9c)
2C̃

+
∞∑
9=0

#−1∑
?=1

2;@̃2

<

1 − (−1)?" cos<@̃
(cos @̃ − cos?c/# )2

(
cos @̃ − cosU 9,?
@̃2 − U2

9,?

)2
V29,?4

−U 9,? 2C̃

+
∞∑
9=1

#∑
?=0

"−1∑
%=1

2<;@̃2(1 − (−1)% cos<@̃)
"2 (cos#@̃ − cos %c/")2

(
cos @̃ − cosU 9,?,%
@̃2 − U 9,?,% 2

)2 (
cos#@̃ − cos#k 9,?,%
# (cos @̃ − cosk 9,?,% )

)2
× V29,?,%4

−U 9,?,% 2C̃ , (B.82)

where V29,? and V2
9,?,%

are given by Eqs. (3.132b) and (B.78), respectively.

B.3.5 Limit of the dMRI signal for the periodic geometry as ˜̂ → 0
and ˜̂ →∞

High-permeability limit: ˜̂ →∞

In this limit, one has: {
U 9,? = 9c + ?c/< if 9 is even,
U 9,? = 9c + (< − ?)c/< if 9 is odd.

(B.83)
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In particular, cosU 9,? = cosk 9,? , so the expression of the signal simpli�es into

( =
2(1 − cos<@)
(<@)2 +

∞∑
9=1

4@2(1 − (−1) 9< cos<@)
<2 (@2 − ( 9c)2)2

4−( 9c)
2C

+
∞∑
9=0

<−1∑
?=1

2ℓs@2

<

1 − (−1)? cos<@
(@2 − U2

9,?
)2

V29,?4
−U 9,? 2C ,

with V29,? = 2/(<ℓs). Hence:

( =
2(1 − cos<@̃)
(<@̃)2 +

∞∑
==1

4@̃2(1 − (−1)= cos<@̃)
((<@̃)2 − (=c)2)2

4−(=c)
2C̃/<2

, (B.84)

which is the formula of the signal for one interval of length ! =<; , as expected.

Low-permeability limit: ˜̂ → 0

Although the result is intuitively expected, the computation is more complicated. The mathe-
matical reason is that in the limit ˜̂ → 0, U 9,? = 9c so that the eigenmodes of the branch 9 are
degenerate. Using Eq. (3.131), one gets the expression of the signal:

( =
2(1 − cos<@̃)
(<@̃)2 +

∞∑
9=1

4@̃2(1 − (−1) 9< cos<@̃)
<2 (@̃2 − ( 9c)2)2

4−( 9c)
2C̃

+
∞∑
9=0

<−1∑
?=1

2ℓs@̃2

<

1 − (−1)? cos<@̃
(cos @̃ − cos?c/<)2

(
cos @̃ − (−1) 9
@̃2 − ( 9c)2

)2
V29,?4

−( 9c)2C ,

with {
V29,? =

2
<ℓs
(1 + (−1) 9 cos?c/<) if 9 > 0,

V20,? =
1
<ℓs
(1 + (−1) 9 cos?c/<) .

Gathering all the terms, we obtain

( = (0(@̃)
2(1 − cos @̃)2

<2@̃2
+ 4@̃2

<2

∞∑
9=1

( 9 (@̃)
(1 − (−1) 9 cos @̃)2
(@̃2 − ( 9c)2)2 4−( 9c)

2C̃ , (B.85)

with

( 9 (@̃) =
<∑
?=0

(1 − (−1)? cos<@̃) (1 + (−1) 9 cos?c/<)
(cos @̃ − cos?c/<)2(1 + \?)

, 9 = 0, 1, . . . , (B.86)

where \? = 1 if ? = 0 or <, and \? = 0 otherwise. To compute ( 9 (@̃), we introduce the
following polynomial:

% (- ) =
<∏
?=0

(- − cos ?c/<) . (B.87)

The analysis of its roots and degree leads to the following formula:

% (cos @̃) = # sin(<@̃) sin @̃ , (B.88)
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where# is an unknown proportionality coe�cient whose value is not needed in the following.
This allows us to compute

% ′(cos @̃) =
(
−1
sin @̃

)
# (< cos(<@̃) sin @̃ + sin(<@̃) cos @̃) , (B.89)

% ′(cos?c/<) = #<(−1)?+1(1 + \?) . (B.90)

Now we use the standard partial fraction expansion formula, for any polynomial & such that
deg& ≤ deg % :

& (- )
% (- ) = � +

<∑
?=0

& (cos?c/<)
% ′(cos?c/<) (- − cos?c/<) , (B.91)

where prime denotes the derivative with respect to- and� is a constant. With the polynomial
'(cos@) = cos<@, we get according to Eq. (B.91)

( 9 (@̃) = #<
[(
'(- ) (1 + (−1) 9- )

% (- )

)′
− '(- )

(
1 + (−1) 9-
% (- )

)′]
-=cos @̃

= #<'′(cos @̃) 1 + (−1)
9 cos @̃

% (cos @̃) .

Computing the derivative of ' and using Eq. (B.88), one �nally gets

( 9 (@̃) =
<2

1 − (−1) 9 cos @̃ . (B.92)

Now we come back to Eq. (B.85), which yields

( =
2(1 − cos @̃)

@̃2
+
∞∑
9=1

4@̃2(1 − (−1) 9 cos @̃)
(@̃2 − ( 9c)2)2 4−( 9c)

2C̃ , (B.93)

which is the expected formula of the signal for one interval of length ; .

B.3.6 Expansions for U 9,? for the periodic geometry
Low-permeability limit: ˜̂ → 0 In this case we rewrite Eq. (3.127) as U sinU = 2 ˜̂ (cosU −
cosk ). We start with the branch 9 = 0. Let us write U = D

√
2 ˜̂ (1 − cosk ). Then

U sinU = 2 ˜̂ (1 − cosk )D2
(
1 − 1

3
˜̂ (1 − cosk )D2

)
+$ ( ˜̂3) ,

(cosU − cosk ) = (1 − cosk ) − ˜̂ (1 − cosk )D2 +$ ( ˜̂2) ,

from which we derive

U0,? = 2 ˜̂1/2 sin(?c/2<) − ˜̂3/2
(
sin(?c/2<) − 2

3
sin2(?c/2<)

)
+$ ( ˜̂5/2) . (B.94)

Now, if U = 9c + n , one has

U sinU = (−1) 9 ( 9cn + n2 +$ (n3)) , (cosU − cosk ) = (−1) 9 (1 − (−1) 9 cosk +$ (n2)) ,
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which gives

U 9,? =


9c + 4 ˜̂

9c
sin2(?c/2<) − (4 ˜̂)

2

( 9c)3 sin
4(?c/2<) +$ ( ˜̂3) if 9 is even,

9c + 4 ˜̂
9c
sin2((< − ?)c/2<) − (4 ˜̂)

2

( 9c)3 sin
4((< − ?)c/2<) +$ ( ˜̂3) if 9 is odd.

(B.95)

This is consistent with the idea that at very low permeability the compartments become in-
dependent so that U 9,? (with ? = 1, . . . ,< − 1) are identical and equal to 9c . One notices that
the deviation from this limit decreases with 9 which is consistent with previous observations
(Fig. 3.14).

High permeability limit: Ã → 0 Again, we start with the 9 = 0 branch. Let us write
U = k − D. Then we have the equations:

cosU = cosk
(
1 − D

2

2
+$ (D4)

)
+ sink (D +$ (D3)) ,

U sinU = k sink + D sink + Dk cosk +$ (D3) ,

which yield

U0,? =
?c

<

(
1 − Ã

2
+ Ã

2

4

[
1 + ?c/<

2 tan(?c/<)

]
+$

(
Ã 3

) )
. (B.96)

For the other branches, the computations are similar:

U 9,? =


( 9c + ?c/<)

(
1 − Ã

2
+ Ã

2

4

[
1 + 9c + ?c/<

2 tan(?c/<)

] )
+$

(
Ã 3

)
9 even,

( 9c + (< − ?)c/<)
(
1 − Ã

2
+ Ã

2

4

[
1 + 9c + (< − ?)c/<

2 tan((< − ?)c/<)

] )
+$

(
Ã 3

)
9 odd.

(B.97)

Again, the interpretation is quite clear. When the permeability is very high, Ã → 0 and the
U 9,? approach the solutions for one interval of length<; , for which U= = =c/< (= = 0, 1, . . .).
Consistently with the above low-permeability regime, the deviation from the limit ˜̂ = ∞
increases with 9 .



Appendix C

Supplementary material to Chapter 4

This Appendix contains several developments regarding the eigenmodes of the Bloch-Torrey
operator and the localization regime. In Appendix C.1, we compute the normalization fac-
tor of one-dimensional Bloch-Torrey eigenmodes on the half-line and we prove at the same
time that these eigenmodes form a complete basis, which ensures the validity of spectral de-
compositions. Then we provide asymptotic formulas for them in Appendix C.2. From these
asymptotic formulas we obtain an interesting symmetry property as well as a qualitative con-
sistency check with the formula for free di�usion decay far from the boundary. In Appendix
C.3, we investigate the singular limit of a curved boundary with in�nite curvature radius.
We show that the spectrum of the Bloch-Torrey becomes dense in this limit, and that one
recovers the result for the �at boundary by summing lateral eigenmodes. Then we turn to
the question of the validity of spectral decompositions near a spectral bifurcation. We show
that such decompositions remain valid as long as one includes a “generalized eigenmode” into
the series. In Appendix C.6, we study the magnetization inside a slab with slightly curved
boundaries and we show in some cases a coexistence of localization and motional narrowing
regime. The next appendix is a supplement to Sec. 4.4, where we compute numerically the
transverse magnetization and signal in a periodic medium for short-gradient pulse sequences.
The comparison with extended-gradient sequences reveals interesting qualitative di�erences.
Finally, we discuss in Appendix C.11 the de�nition of the spectrum of a di�erential opera-
tor. Although the rigorous mathematical de�nition di�ers from the qualitative one commonly
used by physicists, we show that they are consistent with each other. Moreover, we show how
non-Hermitian operators may have an empty spectrum.

C.1 Completeness and normalization of 1D BT
eigenmodes

In Sec. 4.2.1, we presented the computation of the eigenmodes of the BT operator on the half-
line G ≥ 0 with an impermeable boundary at G = 0. We recall that the eigenmode equation
yields two solutions �r(G̃ − 8 ˜̀) and �l(G̃ − 8 ˜̀) and we keep only �r because it is the only one
to be bounded for G̃ → ∞. In this section, we follow the same procedure as in Sec. 3.4.2
in order to (i) compute the normalization factors of the Bloch-Torrey eigenmodes; (ii) prove
their completeness, i.e. the validity of spectral decompositions. This computation relies on
standard methods from the theory of di�erential equations. We emphasize that these results
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were �rst derived by Stoller et al [98] then extended in [94, 102]. We present them here for
self-consistency.

To this end, we solve for the Green function F (C, G̃0, G̃) of the dimensionless Bloch-Torrey
equation

mCF = F ′′ + 8G̃F , (C.1a)
F (C = 0, G̃0, G̃) = X (G̃ − G̃0) , (C.1b)
F ′(C, G̃0, 0) = 0 , F (C, G̃0,∞) = 0 , (C.1c)

where ′ denotes derivative with respect to G̃ and X (·) is the Dirac distribution. We perform a
Laplace transform F (C, G̃0, G̃) → F̂ (B, G̃0G̃), and the equations become

BF̂ − X (G̃ − G̃0) = F̂ ′′ + 8G̃ F̂ , (C.2a)

F̂ ′(B, G̃0, 0) = 0 , F̂ (B, G̃0,∞) = 0 , (C.2b)

According to the computations of Sec. 4.2.1 that we recalled brie�y above, we can solve the
second order di�erential equation (without boundary condition yet) with the general decom-
position

F̂ (B, G̃, G̃0) = q (B, G̃0, G̃)�r(G̃ + 8B) +k (B, G̃0, G̃)�r(G̃ + 8B) , (C.3)

with yet unknown functions q andk . Let us introduce the Wronskian matrix

W =

[
�r(G̃ + 8B) �l(G̃ + 8B)
� ′r (G̃ + 8B) � ′l (G̃ + 8B)

]
. (C.4)

Note that its determinant obeys det(W)′ = 0. To compute it, we evaluate it at G̃ = −8B , which
yields

det(W) = 8428c/3Ai(0)Ai′(0) − 84−28c/3Ai(0)Ai′(0) (C.5a)

= − 1
2c

. (C.5b)

By injecting Eq. (C.3) into Eq. (C.2a), one gets a system for q,k :[
q′

k ′

]
= W−1

[
0

−X (G̃ − G̃0)

]
= 2cX (G̃ − G̃0)

[
−�l(G̃ + 8B)
�r(G̃ + 8B)

]
. (C.6)

After integration, we obtain the Green function in Laplace domain

F̂ (G, G̃0, G̃) = (� − 2c�l(G̃0 + 8B)� (G̃ − G̃0)) �r(G̃ + 8B) (C.7)
+ (� + 2c�r(G̃0 + 8B)� (G̃ − G̃0)) �l(G̃ + 8B) ,

where � is the Heaviside function (� (G) = 0 for G < 0 and � (G) = 1 for G ≥ 0).
The constants � and � remain to be determined by the boundary condition (C.2b):

�� ′r (8B) + �� ′l (8B) = 0 , � + 2c�r(G̃0 + 8B) = 0 , (C.8)

from which we get

� = 2c
� ′l (8B)�r(G̃0 + 8B)

� ′r (8B)
, � = −2c�r(G̃0 + 8B) . (C.9)
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By putting all the pieces together, we obtain the formula of the Green function in Laplace
domain

F̂ (B, G̃0G̃) = 2c
� ′l (8B)�r(G̃0 + 8B)�r(G̃ + 8B)

� ′r (8B)
− 2c�l(G̃0 + 8B)� (G̃ − G̃0)�r(G̃ + 8B)
+ 2c�r(G̃0 + 8B)� (G̃0 − G̃)�l(G̃ + 8B) . (C.10)

To obtain the Green function in time domain, we invert the Laplace transform by looking
for the poles of F̂ . Since the functions �r and �l are analytic, there is no contribution from the
second and third term in Eq. (C.10). Therefore the poles B= of F̂ are the solutions of � ′r (8B) = 0,
which gives B= = − ˜̀= = 4−8c/3 |0= |, as expected. The residues of the poles are simply

ResB=− ˜̀= (F̂ ) =
4−8c/6Ẽ= (G̃0)Ẽ= (G̃)
V2= |0= |Ai2(0=)

. (C.11)

In this formula, we have introduced the expression for the dimensionless eigenmodes Ẽ= (G̃) =
Ṽ=�r(G̃ − 8 ˜̀=). Furthermore, we have used the Wronskian and the di�erential equation on �r to
simplify the expression. We conclude that the Green fonction can be represented as a spectral
decomposition

F (C, G̃0, G̃) =
∑
=

4−8c/6

Ṽ2= |0= |Ai2(0=)
Ẽ= (G̃0)Ẽ= (G̃)4− ˜̀=C . (C.12)

By evaluating this expression at C = 0, one obtains that the Dirac distribution can be repre-
sented as a spectral decomposition:

X (G̃ − G̃0) =
∑
=

4−8c/6

Ṽ2= |0= |Ai2(0=)
Ẽ= (G̃0)Ẽ= (G̃) . (C.13)

This proves that the eigenmode family is complete. Moreover, after integration against Ẽ= (G̃),
one gets

Ẽ= (G̃0) =
∫ ∞

0
Ẽ= (G̃)X (G̃ − G̃0) dG̃ (C.14a)

=
∑
=′

4−8c/6

Ṽ2
=′ |0=′ |Ai2(0=′)

Ẽ=′ (G̃0)
∫

Ẽ=Ẽ=′ (C.14b)

=
4−8c/6

Ṽ2= |0= |Ai2(0=)
Ẽ= (G̃0) , (C.14c)

which yields the formula for the normalization factor

Ṽ−2= = 48c/6 |0= |Ai2(0=) . (C.15)

This is the normalization factor of the dimensionless eigenmodes Ẽ= (G̃). To go back to
the eigenmodes E= (G), one simply performs a change of variable G = ℓ6G̃ in the normalization
condition:

1 =
∫ ∞

0
Ẽ2= (G̃) dG̃ =

1
ℓ6

∫ ∞

0
Ẽ2= (G/ℓ6) dG =

∫ ∞

0
E2= (G) dG . (C.16)

From this formula, we deduce that the normalization factor V= of the eigenmode E= is

V−2= = ℓ6Ṽ
−2
= = ℓ64

8c/6 |0= |Ai2(0=) . (C.17)
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C.2 Asymptotic behavior of the 1D BT eigenmodes

In this appendix we provide asymptotic formulas for the function �r and thus for one-dimensional
BT eigenmodes E= (G) = V=�r(G/ℓ6 − 48c/6 |0= |). On Fig. 4.7, we have plotted the eigenmodes
along with these asymptotic expressions, and we observe a very good agreement between the
exact and asymptotic expressions. Therefore, we shall use these asymptotic expressions to ob-
tain simpler expressions of the modes E= . From these expressions, we deduce (i) a symmetry
property of the eigenmodes; (ii) a qualitative agreement with the free di�usion decay and the
transition to localization regime.

C.2.1 Asymptotic expression
Standard mathematical techniques [343] allow one to prove the following asymptotic behavior
for �r:

�r(G̃ − 8 ˜̀) ≈
G̃→±∞

exp
(
−2

3

[
4−8c/6(G̃ − 8 ˜̀)

]3/2)
2
√
c

[
4−8c/6(G̃ − 8 ˜̀)

]1/4 , (C.18)

in other words, �r(G̃ − 8 ˜̀) is well approximated by the product of an oscillating function and:
(i) a fast decaying function for G̃ →∞, with − log( |�r |) ∼ G̃3/2, or (ii) a fast diverging function
for G̃ → −∞, with log( |�r |) ∼ (−G̃)3/2. On Fig. C.1, we show graphically this asymptotic
behavior. Note that the term

[
4−8c/6(G̃ − 8 ˜̀)

]3/2
has a discontinuity when G̃ − 8 ˜̀ crosses the

line of argument 5c/6 in the complex plane. This line corresponds to the points where the
approximate formula (C.18) is the least accurate, and around those points it should be replaced
by

�r(I) ≈
arg(I)≈5c/6

sin
(
2
3

[
−4−8c/6I

]3/2
+ c
4

)
1

√
c

[
−4−8c/6I

]1/4 , (C.19)

that becomes increasingly accurate as |I | increases. As we show on Fig. 4.7, this asymptotic
formula represents well the behavior of the eigenmodes close to the boundary, whereas Eq.
(C.18) is more accurate far from the boundary.

Moreover, one can use the asymptotic formula (C.19) to get an approximate expansion for
the zeros of the derivative of the Airy function [343]:

0= ≈
=→∞

−
(
3
2
c (= − 3/4)

)2/3
, = = 1, 2, . . . (C.20)

We show the �rst values obtained from this formula1 and the comparison with the tabulated
values in the table below. Except for the �rst value which is o� by about 10%, the next values
are very close to the exact 0= .

We consider an eigenmode of relatively large order =, and we �rst look for the maximum
of its amplitude. We use Eq. (C.18), that yields

�r(G/ℓ6 − 48c/6 |0= |) ≈
exp

(
−2

3

[
4−8c/6G/ℓ6 − |0= |

]3/2)
2
√
c

[
4−8c/6G/ℓ6 − |0= |

]1/4 . (C.21)

1Higher-order terms are given in [343]. For instance, the next term is 7
48

( 3
2c (= − 3/4)

)−4/3, which is a very
small relative correction for = ≥ 2 (a 0.4% relative correction for = = 2).
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tabulated values −1.0188 −3.2482 −4.8201 −6.1633 −7.3722

approximate values −1.1155 −3.2616 −4.8263 −6.1671 −7.3749

Table C.1: Tabulated values for 0= , = = 1, . . . , 5, and approximate values (C.20).

F = exp( 23w)

w =
−(e−iπ/6z)

3
2

Figure C.1: Complex representation of the asymptotic formula (C.18). (left) We have plotted I = G̃ − 8 ˜̀
for several values of ˜̀ as colored lines, and the dashed arrows indicate the direction of increasing G̃ .
(middle) Complex map of the quantity F = −(4−8c/6I)3/2. The circles indicate discontinuities at the
branching points that are caused by the non-integer exponent of I. The corresponding cut in the I-
plane is indicated by thick black line in the left panel. When G̃ goes to ∞ or −∞, F goes to ∞ with
argument 3c/4 or c/4, respectively. (right) Complex map of the asymptotic formula � = exp(2F/3).
The spiraling pattern indicates an oscillating and decaying behavior.

At large values of G/ℓ6 and |0= |, we may assume that the denominator varies much slower than
the numerator and therefore we discard it temporarily. Thus we have reduced the problem to
the study of the exponential factor and more precisely of

F = −
[
4−8c/6G/ℓ6 − |0= |

]3/2
. (C.22)

One can see on the middle panel of Fig. C.1 that between G = 0 and G = ∞ (i.e. from a
small circle and following the dashed arrows), the real part ofF increases then decreases. The
maximum of Re(F) corresponds to the maximum of the amplitude of E= . The plot suggests
that this maximum is attained whenF goes through the real axis, i.e. for

G= =

√
3
2
|0= |ℓ6 . (C.23)

One can rewriteF as a function of b = G − G= , that yields

F =
1

ℓ
3/2
6

[
G=√
3
+ 8b

]3/2
≈

b�G=

(
G=

ℓ6
√
3

)3/2
+ 8 3

3/4

2
G
1/2
= b

ℓ
3/2
6

− 35/4

8
b2

G
1/2
= ℓ

3/2
6

, (C.24)

that proves a posteriori that the maximum of Re(F) is reached at G = G= .
Moreover, close to G = G= , the denominator that we discarded earlier is approximately

equal to

2
√
c

[
4−8c/6G/ℓ6 − |0= |

]1/4
≈ 24−8c/6c1/23−1/8G1/4= ℓ

−1/4
6 . (C.25)
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Finally, we compute the normalization factor V= with Eqs. (C.19) and (4.30), that yield

V= ≈ 4−8c/12c1/22−1/431/8G−1/4= ℓ
−1/4
6 . (C.26)

Putting everything together, we obtain the approximate formula for E= close to its maximum:

E= (G) ≈
b�G=

31/4

25/4G1/2=

exp

(
2G3/2=

37/4ℓ3/26

+ 8 G
1/2
= b

31/4ℓ3/26

− 33/4b2

4G1/2= ℓ
3/2
6

+ 8 c
12

)
. (C.27)

Moreover, one can use Eq. (C.20) to get an approximate expression for G=

G= ≈
=�1

37/6c2/3

25/3

(
= + 1

4

)2/3
. (C.28)

Equation (C.27) reveals that the eigenmode E= is the product of an oscillating function with
period ℓ6 (2/|0= |)1/2 and an envelope with half-width (8|0= |/3)1/4ℓ6. Interestingly, at large= the
oscillating behavior is much faster than the decaying behavior, which is consistent with the
observation that

Re(`=) =
|0= |
2
�0

ℓ26
(C.29)

is equal to �0 times the inverse square of the oscillation period (see also discussion in Sec.
1.2.4).

C.2.2 Eigenmode symmetry

From the approximate expression ofF , one would conclude that the eigenmode is symmetric
with respect to G= . However, this is not exactly true because of the additional phase c/12 that
comes from the normalization factor and from the denominator. One way to compensate this
phase is to introduce [ = b + ℓ6n=/2 such that

8
G
1/2
= b

31/4ℓ3/26

+ 8 c
12

= 8
G
1/2
= [

31/4ℓ3/26

, (C.30)

that yields

n= =
31/4cℓ1/26

6G1/2=

=
c

6

√
2
|0= |

. (C.31)

In principle, one can compute next-order corrections by taking into account the quadratic
term in the exponential (but also the variation of the denominator with b). If we discard these
corrections, we obtain the approximate symmetry

E= (2G= + n=ℓ6 − G) ≈ E= (G)∗ . (C.32)

Figure 4.7 shows graphically that this relation is valid close to the maximum G = G= of the
eigenmode.
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C.2.3 Qualitative transition between localization and free di�usion
We emphasize that the spectral decompositions such as Eqs. (1.86d), (1.86e), (C.12) cannot be
computed exactly, even with the somewhat simpler asymptotic formulas derived above. Here
we propose a qualitative analysis that shows the consistency between the localized eigen-
modes E= and the free di�usion decay far from the boundary.

The above asymptotic formula for E= shows that its amplitude is maximal at G = G= and
that it is approximately given by

|E= (G=) | ∼ exp

(
2G3/2=

37/4ℓ3/26

)
. (C.33)

In contrast, the �rst eigenmode decays approximately as

|E1(G=) | ∼ exp

(
−
√
2G3/2=

3ℓ3/26

)
. (C.34)

One can see that the =-th eigenmode is signi�cantly larger than the �rst eigenmode at G = G= .
Therefore, there is a competition between the very large ratio between E= and E1, and their
decay rate with time. More precisely, the decay of the =-th eigenmode with time follows

| exp(−`=) ) | ≈ exp

(
−
ℓ2dG=√
3ℓ36

)
. (C.35)

We conclude from the above equations that the =-th eigenmode becomes negligible com-
pared to E1 if (here we discard the time decay of E1 because it is much slower than that of
E=)

|E= (G=) | | exp(−`=) ) | � |E1(G=) | ⇔
ℓ2dG=√
3ℓ36
− 2G3/2=

37/4ℓ3/26

�
√
2G3/2=

3ℓ3/26

(C.36)

⇔ ℓ4d � G=ℓ
3
6 . (C.37)

At the time when |E= (G=) | | exp(−`=) ) | becomes comparable with |E1(G=) |, i.e. ℓ4d ≈ G=ℓ
3
6 , one

can compute the amplitude:

− log |E1(G=) | ∼
G
3/2
=

ℓ
3/2
6

≈
ℓ6d

ℓ66
. (C.38)

Quite counter-intuitively, the superposition of very large eigenmodes with a very strong
time decay produces a constant magnetization far from the boundary. When time increases,
the high-order eigenmodes decay much faster than the �rst eigenmodes localized at the bound-
ary. The crossover occurs when ℓ4d ≈ Gℓ

3
6 , and our approximate computation shows that the

amplitude of the �rst eigenmode at that point is given by the free di�usion formula. Thus,
qualitatively, the expression of the eigenmodes is consistent with the free di�usion decay far
from the boundary (see Fig. C.2).
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Figure C.2: Absolute value of the magnetization computed numerically for the half-line with an imper-
meable boundary at G = 0, for three di�erent values of the ratio ℓd/ℓ6. One can see a transition between
the pro�le given by the �rst eigenmode, and a constant magnetization that is given by the free di�usion
expression. The transition occurs at G ≈ 2−1/3ℓ4d/ℓ

3
6 . Spurious �uctuations for ℓd = 2ℓ6 are caused by

numerical roundo� errors.
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C.3 Spectrum in the limit of in�nite curvature radius

We consider a two-dimensional medium and we study localization near a curved boundary in
the limit of in�nite curvature radius ' (see Sec. 4.2.2 for the general case). As illustrated on
Fig. C.3 the spectrum of the Bloch-Torrey operator becomes continuous. Therefore, the limit
' →∞ is singular because the spectrum di�ers signi�cantly between the case of very large '
and the case of strictly in�nite '. This can be qualitatively understood from the observation
that a �at boundary is invariant by translation parallel to itself whereas a curved boundary is
not. Therefore, a very large but �nite ' produces a symmetry breaking compared to the case
of in�nite '.
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Figure C.3: Complex representation of the spectrum of the BT operator for a curved boundary. Di�erent
colors correspond to di�erent values of =, and eigenvalues of the same color di�er by the index ; . The
curvature radius ' increases from left to right: (left) ' = 5ℓ6; (middle) ' = 20ℓ6; (right) ' = 80ℓ6. As '
increases, the spectrum becomes denser and is continuous in the limit ' →∞.

Let us write the expression of the magnetization after a single gradient pulse of duration
X :

<(X, G,~) =<⊥(X, G)<‖ (X,~) , (C.39)

where<⊥(X, G) is the pro�le of the magnetization perpendicular to the boundary and<‖ (X,~)
is the pro�le parallel to the boundary. We recall that this factorization is approximate follows
from the variable separation in the Bloch-Torrey operator (4.43a) at a slightly curved boundary.

In the limit of ' � ℓ6, the pro�le<⊥(X, G) becomes very close to the magnetization pro�le
for a planar boundary

<⊥(X, G) =
∑
=

U=V=�r(G/ℓ6 − 48c/6 |0= |) exp(−4−8c/3 |0= |ℓ2d/ℓ
2
6 ) +$ (ℓ6/') , (C.40a)

U= = V=

∫ ∞

0
�r(G/ℓ6 − 48c/6 |0= |) dG . (C.40b)
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As we mentioned previously, to our knowledge this series cannot be summed therefore there
is no closed form of<⊥(X, G). In contrast, the magnetization pro�le parallel to the boundary
can be computed by summing the whole eigenmode series

<‖ (X,~) =
∑
;

(∫ ∞

−∞
6; (~′) d~′

)
6; (~) exp(−[;X) (C.41a)

= exp

[
−4±8c/4 tanh

(
4±8c/4

2�0X

ℓ2
6,‖

)
~2

2ℓ2
6,‖

]
cosh

(
4±8c/4

2�0X

ℓ2
6,‖

)−1/2
. (C.41b)

In this formula,6; , [; are the eigenmodes and eigenvalues of the lateral part of the Bloch-Torrey
operator (see Eq. (4.55)). At long times, �0X � ℓ2

6,‖ , the above formula is reduced to the �rst
eigenmode, as expected. In the opposite regime of short di�usion times or large curvature
radius, �0X � ℓ2

6,‖ , one gets to the �rst order in time:

<‖ (X,~) ≈
�0X�ℓ26,‖

exp
(
−8�~

2

2'

)
, (C.42)

that is simply the dephasing due to the local �eld along the boundary. If one goes to the next
order in time, the decay due to di�usion appears

<‖ (X,~) ≈
�0X�ℓ26, ‖

exp
(
−8�~

2

2'

)
exp

(
−1
3

(
�~

'

)2
�0X

3

)
. (C.43)

Note that the additional exponential term is very close to 1 in the limit �0X � ℓ2
6,‖ . If one ap-

plies a second pulse of duration X immediately after the �rst one but with opposite amplitude,
the refocusing condition makes the phase term disappear and one obtains

<‖ (),~) ≈
�0X�ℓ26,‖

exp

(
− 1
12

(
�~

'

)2
�0)

3

)
. (C.44)

To summarize, as ' increases, the spectrum of the BT operator is getting denser. However,
the summation of the eigenmodes at �xed = yields in this limit the magnetization pro�le (C.43)
that is the formula for free di�usion inside the magnetic �eld −8�~2/(2') and is very close to
1. Therefore one can identify two situations and associated regimes.

(i) ℓ2
6,‖ � ℓ26 : there is a large time separation between localization in the direction per-

pendicular to the boundary and localization in the direction parallel to the boundary. In that
case there is a large range of times where the magnetization along the boundary is practically
uniform and the signal decays according to the formula for the one-dimensional localization
regime. This situation corresponds to a boundary with very large curvature radius.

(ii) ℓ2
6,‖ & ℓ26 : localization in the direction parallel to the boundary occurs on the same

time scale than localization in the direction perpendicular to the boundary. Therefore the
signal exhibits a complex behavior for ℓ26 . ) . ℓ

2
6,‖ with a transition to the localization decay

controlled by `1,1.
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C.4 Computation of the matrix elements 3=,=′

In this appendix we present a detailed computation of the coe�cients

3=,=′ =

∫ ∞

0
E′= (G)E=′ (G) dG (C.45)

where E= (G) denote the one-dimensional BT eigenmodes on the half-line G ≥ 0 with Neu-
mann boundary condition at G = 0. These coe�cients enter in the computation of the radial
correction of BT eigenmodes at a curved boundary (see Sec. 4.2.2). The case = = =′ is straigth-
forward:

3=,= = −
1
2
E2= (0) =

4−8c/6

ℓ6 |0= |
. (C.46)

In the following, we assume = ≠ =′.
To compute the integral, we shall make appear explicitly the Bloch-Torrey operator B =

−�0∇2 − 8�G by relying on the property BE= = `=E=:

`=′3=,=′ =

∫ ∞

0
E′= (G) (BE=′) (G) dG (C.47a)

= −�0

∫ ∞

0
E′= (G)E′′=′ (G) dG − 8�

∫ ∞

0
GE′= (G)E=′ (G) dG . (C.47b)

We now integrate by parts twice the �rst term and we get∫ ∞

0
E′= (G)E′′=′ (G) dG = E′′= (0)E=′ (0) +

∫ ∞

0
E′′′= (G)E=′ (G) dG . (C.48)

By putting all terms together, we can make appear again the BT operator

`=′3=,=′ =

∫ ∞

0
(BE′=) (G)E=′ (G) dG − �0E

′′
= (0)E=′ (0) . (C.49)

Note that the function E′=, E=′ do not satisfy the symmetry property of the BT operator, i.e.
one has (E′= |BE=′) ≠ (BE′= |E=′) (see Sec. 1.2.4). One can see that the correction term is non
zero because E′= does not satisfy the Neumann boundary condition at G = 0. Mathematically,
E′= does not belong to the domain of the BT operator therefore the symmetry property is not
applicable to this function.

Now we use the formulas

BE′= = (BE=)′ + 8�E= = `=E′= + 8�E= , �0E
′′
= (0) = −`=E= (0) (C.50)

to �nally get the expression of 3=,=′

`=′3=,=′ = `=3=,=′ + `=E= (0)E=′ (0) ⇒ 3=,=′ =
`=

`=′ − `=
E= (0)E=′ (0) . (C.51)

This formula can be simpli�ed further by using the formula (4.29) for E= and `= , which gives

3=,=′ =
4−8c/6

ℓ6
√
0=0=′ (0=′/0= − 1)

. (C.52)
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C.5 Spectral decomposition at a bifurcation point

In this appendix, we “translate” the general results of Sec. 4.3.2 on order-2 bifurcations an-
alyzed with a matrix model in the language of eigenmodes of the Bloch-Torrey operator. In
particular, we investigate the validity of the spectral decomposition (1.80), that we reproduce
here for convenience

5 (r) ?
=

∑
=

(5 |E=)E= (r) , (C.53)

where
(5 |6) =

∫
Ω
5 (r)6(r) d3r , (C.54)

and the eigenmodes E= are normalized by the condition (E= |E=) = 1. We recall that there
is no complex conjugate in the de�nition of (·|·) because of the non-Hermitianity of the BT
operator. We emphasize that the validity of this formula is the cornerstone of the study of the
eigenmodes and eigenvalues of the Bloch-Torrey operator.

C.5.1 Behavior of the eigenmodes at the bifurcation
Let us consider two eigenpairs (E1, `1) and (E2, `2) that undergo a bifurcation at �̃ = �̃0. The
matrix model of Sec. 4.3.2 shows that E1 and E2 collapse onto a single eigenmode E0 at the
bifurcation. Moreover, since E1 and E2 are “orthogonal” with respect the bilinear form (·|·) if
�̃ ≠ �̃0, we conclude by continuity that E0 is self-orthogonal2, i.e. (E0 |E0) = 0.

The computations in Sec. 4.3.2 imply that close to the bifurcation point one can write

E1(r) ≈ V1(�̃)
[
E0(r) + (�̃ − �̃0)1/2Y0(r)

]
, (C.55)

E2(r) ≈ V2(�̃)
[
E0(r) − (�̃ − �̃0)1/2Y0(r)

]
, (C.56)

where the function Y0(r) is a priori unknown and depends on the details of the bifurcation
point under study, and where V1(�̃) and V2(�̃) are normalization coe�cients. To the �rst
order in (�̃ − �̃0)1/2, E1 and E2 are orthogonal to each other and the normalization condition is

2V21 (�̃) (�̃ − �̃0)1/2(E0 |Y0) = −2V22 (�̃) (�̃ − �̃0)1/2(E0 |Y0) = 1 , (C.57)

therefore

E1(r) ≈ : (�̃ − �̃0)−1/4E0(r) + : (�̃ − �̃0)1/4Y0(r) , (C.58)

E2(r) ≈ 8: (�̃ − �̃0)−1/4E0(r) − 8: (�̃ − �̃0)1/4Y0(r) , (C.59)

with the constant : = (2(E0 |Y0))−1/2. We recall that the eigenvalues `1, `2 behave as

`1 ≈ `0 + (�̃ − �̃0)1/2[0 , `1 ≈ `0 − (�̃ − �̃0)1/2[0 , (C.60)

with an unknown coe�cient [0. By writing the dimensionless Bloch-Torrey operator as

B̃ = −∇2 − 8�̃0G − 8 (�̃ − �̃0)G = B̃0 − 8 (�̃ − �̃0)G , (C.61)
2Since E0 is complex and (·|·) does not contain complex conjugate, the condition (E0 |E0) = 0may be achieved

for a non zero function E0.
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one can expand the eigenmode equation in powers of (�̃−�̃0) and keep the lowest-order term

B̃E1 = `1E1 , B̃E2 = `2E2 (C.62)

⇔ B̃0Y0 = `0Y0 + [0E0 . (C.63)

One recognizes in the last equation the typical Jordan block associated to a bifurcation point
(see Sec. 4.3.2).

C.5.2 Regularity of the spectral decomposition at a bifurcation point
The above equations (C.58) and (C.59) reveal that the eigenmodes E1 and E2 diverge as (�̃ −
�̃0)−1/4 at the boundary. This behavior is intuitively expected because they tend to the self-
orthogonal eigenmode E0, therefore the normalization coe�cients V1, V2 diverge as �̃ → �̃0.
One may wonder whether this divergence produces speci�c e�ects in the spectral decomposi-
tion (C.53) such as a resonance e�ects where two eigenmodes near a bifurcation point would
dominate the series. We show here that this is not the case and that, in some sense, two in-
�nitely large values cancel each other that yields a continuous behavior in the limit �̃ → �̃0.
Note that this regularization follows from the general argument that the projector Π(�̃) over
the space spanned by E1, E2 is an analytic function of �̃ at the bifurcation point (see Sec. 4.3.2).

Let us isolate the terms with E1 and E2 in the sum (C.53) and de�ne:

51,2(r) = (5 |E1)E1(r) + (5 |E2)E2(r) . (C.64)

Now we use the previous expansions (C.58) and (C.59) and we obtain, close to the bifurcation
point:

51,2(r) ≈ :2
(
(�̃ − �̃0)−1/4(5 |E0) + (�̃ − �̃0)1/4(5 |Y0)

)
×

(
(�̃ − �̃0)−1/4E0(r) + (�̃ − �̃0)1/4Y0(r)

)
− :2

(
(�̃ − �̃0)−1/4(5 |E0) − (�̃ − �̃0)1/4(5 |Y0)

)
×

(
(�̃ − �̃0)−1/4E0(r) − (�̃ − �̃0)1/4Y0(r)

)
, (C.65)

which simpli�es into

51,2(r) ≈
(5 |Y0)
(E0 |Y0)

E0(r) +
(5 |E0)
(E0 |Y0)

Y0(r) , (C.66)

where we recall that we have neglected higher order terms that would yield a contribution in
$ ((�̃ − �̃0)1/2).

Two important observations can be made: (i) the diverging terms in (�̃ − �̃0)−1/4 have
canceled each other and 51,2(r) has a �nite value in the limit �̃ → �̃0; (ii) at the bifurcation
point, 51,2(r) is expressed as a linear combination of the eigenmode E0(r) and the additional
function Y0(r). This shows that the spectral decomposition is still valid if the eigenmode family
is supplemented with a “generalized eigenmode” Y0(r). Note that the function Y0(r) is the
analogous of the vector .0 for the matrix model considered in Sec. 4.3.2.

If the function 5 represents the magnetization, then one can compute its time-evolution by
exponentiating the Bloch-Torrey operator over the basis (E0, Y0, E3, E4, . . .). The only di�erence
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with the general case lies in the 2 × 2 Jordan block associated to E0, Y0 (see Eq. (C.63)), that
yields

exp

(
−)

[
`0 [0

0 `0

])
= exp(−`0) ) [I − [0)N] , (C.67)

where I is the 2×2 identity matrix and N is a 2×2 matrix with zeros everywhere except N1,2 =

1. One may recognize the typical C4−C evolution of a critically damped harmonic oscillator,
which also originates from the exponential of a Jordan block. Therefore, the evolution of the
magnetization during an extended gradient pulse is given by

<(), r) = (1|Y0) − [0) (1|E0)(E0 |Y0)
E0(r)4−`0) +

(1|E0)
(E0 |Y0)

Y0(r)4−`0) +
∑
=≥3
(1|E=)E= (r)4−`=) . (C.68)
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C.6 Slab with curved boundaries

In this appendix, we study the magnetization inside a slab with slightly curved boundaries. For
simplicity, we assume that the domain is two-dimensional, and we shall consider three cases:
biconcave slab (interior of an ellipse), convex-concave slab (annulus space), and biconvex slab
(space between neighboring disks). The �rst case yields a universal correction factor to the
motional narrowing formula for a slab with planar boundaries. In contrast, the second and
third cases reveal a superposition of motional narrowing and localization behavior.

𝑮

Biconcave slab

𝑮

Biconvex slab

𝑮

Concave-convex slab

ℓs ℓs ℓs

Figure C.4: Schematic description of three cases of “curved slab” considered in this appendix.

C.6.1 Biconcave slab

We treat the biconcave slab by performing the computations for the interior of an ellipse.
The minor axis of the ellipse is the width of the slab ℓs, and we denote the major axis by 22 .
As illustrated on Fig. C.4, the gradient is directed along the minor axis of the ellipse. In the
regime of large gradient, ℓ6 � ℓs, the magnetization localizes on each side of the slab, and the
analysis of Sec. 4.2.2 is valid. Let us focus on the opposite regime ℓ6 � ℓs, that is the motional
narrowing regime. We assume that the curvature radius ' = 22/ℓs is much larger in absolute
value than ℓs. In that case one can model a curved slab as a superposition of small slabs with
variable lengths (see Fig. C.5)

!(~) = ℓs
√
1 − ~2/22 . (C.69)

Now we consider the application of a constant gradient pulse with amplitude � and du-
ration ) such that ℓd � ℓs and ℓd � |' |. The �rst assumption implies that the motional
narrowing regime is set, while the second assumption allows us to treat the small slab ele-
ments as independent from each other, therefore the non-normalized signal results from the
superposition of the signals produced by each slab:

B =

∫ 2

−2
!(~) exp

(
−�

2)!(~)4
120�0

)
d~ . (C.70)
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𝑮

≡
𝐿(𝑦)

Figure C.5: In the limit of very large curvature radius, a curved slab may be approximated as a super-
position of small slab elements with variable length !(~).

Let us assume that the decay of the signal is weak so that the exponential can be linearized:

B ≈
∫ 2

−2
!(~)

[
1 − �

2)!(~)4
120�0

]
d~ , (C.71)

therefore the normalized signal is given by

( ≈ exp
(
− �5
�1

�2) ℓ4s

120�0

)
, (C.72)

with the following integral

�= =

∫ 1

−1
(1 − D2)=/2 dD . (C.73)

With the change of variablesD = cos\ , one can easily compute �5/�1 = 5/8, so that the motional
narrowing for a long ellipse is given by

( ≈ exp
(
− 1
192

�2) ℓ4s

�0

)
. (C.74)

The decay of the signal at long times is governed by the real part of the �rst eigenvalue
`1 of the Bloch-Torrey operator according to ( ∼ exp(−Re(`1)) ). Furthermore, the analysis
of Sec. 4.3.1 shows that the spectrum is real at low gradients for parity-symmetric domains
such as an ellipse. Therefore we conclude

`1 ≈
1
192

�2ℓ4s

�0
. (C.75)

We have checked numerically this formula by computing the Bloch-Torrey spectrum at low
gradient for ellipses with aspect ratios 2/ℓs = 2, 4, and 6. The numerical computations were
performed with a matrix formalism as described in Sec. 1.1.5. The results are shown on Fig.
C.6. We have plotted the �rst (rescaled) eigenvalue ˜̀1 = `1ℓ2s /�0 as a function of the rescaled
gradient squared �̃2 = �2ℓ6s /�2

0 . At low gradient strength, all ellipses yield the same linear
behavior with a slope 1/192, in accordance with Eq. (C.75).
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Figure C.6: First eigenvalue of the Bloch-Torrey operator in an ellipse with aspect ratios 2/ℓs equal to 2
(red), 4 (green), and 6 (blue). At low gradients, all curves coincide with the motional narrowing formula
with coe�cient 1/192.

C.6.2 Convex-concave slab

Now we turn to the behavior of the magnetization in an annulus space, with width ℓs and
curvature radius '. We assume that ' is much larger than any other relevant length scale so
that this annulus space can be seen locally as a “slab” with curved boundaries. As illustrated
on Fig. C.4, we restrict our analysis around a point where the gradient is perpendicular to the
boundary. As above, if ℓ6 � ℓs, the magnetization is localized on each side of the slab, which
corresponds to the analysis carried out in Sec. 4.2.2. We are interested in the opposite regime
ℓs � ℓ6.

Similarly to Sec. 4.2.2, one can perform a coordinate change and rewrite the Bloch-Torrey
operator in terms of the radial distance A and the lateral coordinate ~:

B ≈ −�0m
2
A −

�0

'
mA − 8�A − �0m

2
~ + 8�

~2

'
. (C.76)

Let us assume that the radial distance A is counted from the center of the slab. In that case,
the boundaries of the curved slab correspond to A = −ℓs/2 and A = ℓs/2. Thus, this coordinate
change replaces a slab with curved boundaries by a slab with planar boundaries. Since the
curvature radius ' is assumed to be much larger than the slab width ℓs, the term �0mA/' may
be neglected and the Bloch-Torrey operator is then the sum of the operator for a slab with �at
boundary plus the operator for a parabolic magnetic �eld. By applying the same analysis as
in Secs. 4.2.2 and 4.3.1, one immediately obtains that the �rst eigenpair of the Bloch-Torrey
operator may be written as

E1(A,~) = 51(A )61(~) , `1 =
1
120

�2ℓ4s

�0
+ 48c/4

�
1/2
0 �1/2

(2')1/2
. (C.77)

The function 51(A ) is given a perturbative expansion (4.63) and is approximately constant over
the slab width. In turn, the eigenvalue associated to 51(A ) yields the �rst term in the expression
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of `1. The function 61(~) is given by Eq. (4.55) and the corresponding eigenvalue yields the
second term in the expression of `1. Thus, the behavior of the magnetization is that of motional
narrowing along A and localization along ~. This peculiar phenomenon is illustrated on Fig.
C.7. We have plotted the �rst eigenpair (E1, `1) of the BT operator for increasing gradient
strength. One can see the localized state of the magnetization along ~, with a localization
length that decreases with increasing gradient. In contrast, the magnetization remains nearly
uniform in the radial direction. The agreement between the approximate expression for `1
and the numerical results is very good.

 𝐺  1 2 =  ℓs ℓ𝑔
 3 2

Re  𝜇1

Figure C.7: First eigenvalue of the Bloch-Torrey operator in an annulus space as a function of (ℓs/ℓ6)3/2.
The corresponding eigenmode is represented for several values of the gradient. The asymptotic for-
mula (C.77) for the �rst eigenvalue is plotted by a black dashed line, whereas its �rst term (motional
narrowing) is plotted as a gray line to emphasize the e�ect of the second term. One observes a local-
ization behavior in the direction parallel to the boundary and a delocalized behavior in the direction
perpendicular to the boundary.

One can clearly see the localization parallel to the boundary, while the magnetization
pro�le in the radial direction is nearly constant. At large gradient, deviations with Eq. (C.77)
occur. At even larger gradient, the eigenvalue eventually bifurcates and the eigenmode splits
into two localized eigenmodes (not shown).

C.6.3 Biconvex slab

Finally, we consider a biconvex slab that is the space between two circles of radius ', separated
by a distance ℓs. Similarly to the previous situation, we consider the regime ℓs � ℓ6 where the
magnetization along the gradient is expected to be delocalized. We were not able to address
this problem analytically. Numerical simulations reveal a striking similarity between this case
and the annulus space considered previously (see Figs. C.7 and C.8).

Therefore we conjecture that the magnetization for the biconvex slab is essentially similar
to the magnetization for the annulus space. Because of the left-right symmetry of the bicon-
vex slab, the eigenvalue of a delocalized mode is necessarily real, therefore we are led to the
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 𝐺  1 2 =  ℓs ℓ𝑔
 3 2

Re  𝜇1

Figure C.8: First eigenvalue of the Bloch-Torrey operator in an annulus space as a function of (ℓs/ℓ6)3/2.
The corresponding eigenmode is represented for several values of the gradient. The conjectured asymp-
totic formula (C.78) for the �rst eigenvalue is plotted by a black dashed line, whereas its �rst term
(motional narrowing) is plotted as a gray line to emphasize the e�ect of the second term. One ob-
serves a localization behavior in the direction parallel to the boundary and a delocalized behavior in
the direction perpendicular to the boundary.

conjectured formula

`1=
1
120

�2ℓ4s

�0
+ 1
√
2

�
1/2
0 �1/2

(2')1/2
, (C.78)

which is visually accurate at low gradient (see Fig. C.8).
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C.7 From Localization to narrow-gradients

We show in this appendix that the formalism of spectral decomposition over the Bloch-Torrey
eigenmodes allows one to recover the formula of the magnetization for a short-gradient pulse
sequence. Since such sequences employ very strong gradients, one can use the results derived
for the localization regime. Note however that the phenomena associated to narrow-gradients
are di�erent from that of the localization regime because the pulses are very short and create
a position-encoding and not a di�usion-encoding mechanism.

We recall the spectral decomposition of the magnetization after a PGSE sequence (see Sec.
4.3.3):

<(Δ + X, r) =
∑
=,<≥1

U∗=V=,<E< (r)4−(`
∗
=+`<)X , (C.79)

with the following de�nitions for U= and V=,<:

U= =

∫
Ω
E= (r) d3r , (C.80)

V=,< =

∫
Ω
(DE∗=) (r)E< (r) d3r , (C.81)

where we have introduced the di�usion operator:

D = exp((Δ − X)∇2) . (C.82)

At high gradients, we have shown in Sec. 4.2.1 that the eigenmodes E= are localized at the
boundary of the domain and the eigenvalues `= follow the asymptotic expansion:

`=X ≈ −8@G= + 4∓8c/3 |0= |@ℓ6 , (C.83)

with @ = �X , ℓ6 = (�/�0)−1/3, and G= is the G-coordinate of the localization point of E= . The ∓
sign depends whether localization happens to the left or to the right of the boundary point.

In the limit of narrow pulses, X → 0, � → ∞ and @ remains constant and �nite. The
consequences are twofold: (i) since the gradient � is very large, the eigenmodes E= of the
Bloch-Torrey operator are strongly localized; (ii) ℓ6 → 0 so that Eq. (C.83) is reduced to:

`=X ≈ −8@G= . (C.84)

As a consequence, one can write

E= (r)4−`=X ≈ E= (r)48@G , (C.85)

U=4
−`=X ≈

∫
Ω
E=4

8@G d3r , (C.86)

and Eq. (C.79) becomes

<(Δ + X, r) =
∑
=,<

(∫
Ω
E=4

8@G d3r
)∗ (∫

Ω
(DE=)∗(r)E< d3r

)
E< (r)48@G (C.87)

= (D4−8@G )48@G , (C.88)

which is exactly the formula for the magnetization under the NPA that can be obtained by
considering the di�usion propagator on the domain Ω.
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C.8 Localization for a radial gradient

Let us consider a rotationnally invariant domain with dimensionality 3 (e.g. disk, sphere). We
denote the radial coordinate by A and we consider the time-independent Bloch-Torrey equation
with a radial gradient on this domain:

�0∇2E + 8�AE + `E = 0 , (C.89)

We split the Laplace operator in radial and spherical part:

∇2E = m2A E +
3 − 1
A

mAE +
1
A 2
∇2sE . (C.90)

In the following we consider solutions of Eq. (C.89) that depend only on A , i.e. we set ∇2s< = 0.
Note that for 3 = 3 the expression of the Laplace operator simpli�es into

∇2< =
1
A
m2A (A<) . (3 = 3) (C.91)

We now consider only the case 3 = 3. Using Eq. (C.91), we get the following equation on
5 (A ) = AE

�05
′′ + (` + 8�A ) 5 = 0 , (C.92)

that is the one-dimensional Bloch-Torrey equation, with a general solution

5 (A ) = ��r

(
G

ℓ6
− 8
ℓ26 `

�0

)
+ ��l

(
G

ℓ6
− 8
ℓ26 `

�0

)
, (C.93)

where the eigenvalue ` and the numerical coe�cients � and � depend on the boundary con-
dition, i.e. on the studied geometry. In the following, we consider the exterior and the interior
of a sphere.

Exterior of a sphere

Let us denote the radius of the sphere by '. The boundary conditions are{
mAE (A = ') = 0
E (A →∞) → 0

⇔
{
'5 ′(b') − 5 (b') = 0
� = 0

, (C.94)

where b' = '/ℓ6 − 8ℓ26 `/�0. Therefore, we have to compute the solution of

� ′r
�r
(b') =

ℓ6

'
. (C.95)

Now let us assume that the radius of the sphere is much greater than the gradient length.
Then the solutions are approximately given by the zeros of the derivative of �r, i.e. b' ≈ 48c/60= .
One can obtain a better approximation by considering the derivative of the function � ′r/�r at
48c/60=: (

� ′r
�r

)′
(48c/60=) = 428c/3 |0= | , (C.96)



320 C. Supplementary material to Chapter 4

which yields the approximate solution b' ≈ −48c/6 |0= |+4−28c/3
ℓ6

' |0= | . Note that one can compute
higher order corrections in a similar way. From this solution we deduce the eigenvalues

`= = −8�' + 4−8c/3 |0= |
�0

ℓ26
+ 4−8c/6 �0

ℓ6' |0= |
+$ (�0/'2) , (C.97)

and the eigenfunctions

E= (A ) =
1
A
�r

(
A − '
ℓ6
− 48c/6 |0= | −

48c/3

|0= |
ℓ6

'
+$ ((ℓ6/')2)

)
. (C.98)

Note that for the gradient in a constant direction (i.e., not radial), the existence of eigenmodes
has not been rigorously established yet [95].

Interior of a sphere

The boundary conditions are{
mAE (A = ') = 0
(AE) (A = 0) = 0

⇔
{
'5 ′(b') − 5 (b') = 0
5 (b0) = 0

, (C.99)

where b0 = −8ℓ26 `/�0. Since all gradient vectors diverge from (or converge at) the center of
the sphere, it is not surprising that the magnetization may localize at the point A = 0; however
this is more a mathematical artifact that originates from our choice of a radial gradient than a
physical e�ect, therefore we discard it. Let us assume once again that ℓ6 � ', then we expect
the magnetization to be localized near the boundary of the sphere and we write

b0 = −8ℓ26 `/�0 = '/ℓ6 + [ , (C.100)

with [ = $ (1). Then the condition 5 (b0) = 0 becomes

5 ([ + '/ℓ6) → 0 ('/ℓ6 →∞) , (C.101)

which implies that � = 0, and we are left with the equation

� ′l
�l
([) =

ℓ6

'
. (C.102)

Using the same technique as above, we �nd

`= = −8�' + 48c/3 |0= |
�0

ℓ26
− 48c/6 �0

ℓ6' |0= |
+$ (�0/'2) , (C.103)

and

E= (A ) =
1
A
�l

(
A − '
ℓ6
+ 4−8c/6 |0= | −

4−8c/3

|0= |
ℓ6

'
+$ ((ℓ6/')2)

)
. (C.104)

Comparison with general asymptotic formulas

Let us compare the above formulas for `= with the asymptotic one (4.58) derived in Sec. 4.2.2. In
our formulas, there is no ℓ−3/26 term, because our potential 8�A is constant along the boundary.
If we take into account that the mean curvature of a sphere is � = 1/', we �nd that our
formulas for `= coincide with Eq. (4.58).
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C.9 Short-gradient sequence in a periodic medium

Figure C.9: Plot of the magnetization (real and imaginary part, absolute value and phase) after a narrow-
pulse sequence. The gradient is in the left to right horizontal direction. The black square indicates the
unit cell in which the computation was performed. For all �gures, '/0 = 0.4, and we kept a �xed
value @0 = 14c/3. The corresponding normalized signal is shown on the top panel of Fig. C.11. (top)
ℓΔ/0 = 0.1; (middle) ℓΔ = 0.3; (bottom) ℓΔ/0 = 1.0.

In this appendix, we present and discuss the behavior of the magnetization and the signal
for a short gradient pulse sequence (see Fig. 4.21 with X → 0). As in the main text, we consider
a 2D square lattice of impermeable circular obstacles with radius ' and lattice step 0. In that
case, there are three relevant dimensionless quantities: '/0, @0, and ℓΔ/0, where@ is the weight
of the narrow gradient pulses and ℓΔ =

√
�Δ is the di�usion length traveled by spin-bearing

particles during the time Δ between two pulses. Note that we write explicitly ℓΔ instead of ℓd
to avoid any confusion with the extended-gradient pulse case. Di�usion in free space would
yield a uniform magnetization

< = exp(−1�0) = exp
(
−@2ℓ2Δ

)
. (C.105)

Note that the short-gradient pulse limit corresponds to �0�
2X3 → 0 so that the mechanism

behind the attenuation of the signal is di�erent from the extended-gradient pulse situation
presented in the main text. Correspondingly, the magnetization and the signal exhibit new
behaviors as we shall now explain. Let us �rst assume that the gradient is along G , i.e. in the
horizontal direction. The �rst gradient pulse multiplies the magnetization in the medium by
48@G , then di�usion “blurs” this pattern and the second pulse multiplies the magnetization by
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4−8@G . As a consequence, the magnetization shows two very di�erent patterns depending on
the duration of the di�usion step.

(i) If the di�usion step duration is short so that @ℓΔ . 1, there is little “blurring” of the
phase pattern by di�usion. Just before the second pulse, the magnetization is close to 48@G

but with a lower amplitude, because spins with di�erent phases are mixed by di�usion: the
average phase at a given position remains the same but dephasing of spins causes attenuation
of magnetization. Close to obstacles, the phase pattern 48@G is modi�ed because it is “cut”
by the boundaries. For this reason, the attenuation of the magnetization is less pronounced
and the resulting phase of spins is modi�ed as well. Thus, right after the second pulse, the
magnetization is nearly uniform except for boundary regions where the magnetization is more
intense (so-called “edge enhancement”, see [105]) and has a signi�cative imaginary part (after
integration, this imaginary part cancels so that the signal is real).

(ii) if the di�usion step duration is long so that @ℓΔ � 1, the phase pattern is completely
blurred by di�usion. However, the magnetization is not uniform because of the ?-pseudo-
periodicity created by the gradient pulse, where ? = @ (mod 2c/0). In terms of Laplacian
eigenmodes, all D=,? with = > 1 relax and the magnetization is close to D0,? (with attenuation)
after the di�usion step (and before the second pulse). Therefore, after the second pulse, the
magnetization is close to D0,?4−8@G , that is somewhat similar to 4−8@̃G , where @̃ denotes here the
multiple of 2c/0 that is the closest to @.

These two regimes are shown on Fig. C.9 for the gradient in the horizontal direction and
@0 = 14c/3, where the top panel corresponds to ℓΔ/0 = 0.1, i.e. @ℓΔ = 1.5 (case (i)), and the
bottom panel corresponds to ℓΔ/0 = 1.0, i.e. @ℓΔ = 15 (case (ii)). The middle panel corresponds
to ℓΔ/0 = 0.3, i.e. @ℓΔ = 4.4, that is an intermediate case between (i) and (ii).

The case of the gradient in the diagonal direction is very similar except that the length
of the unit cell along the gradient direction is di�erent. As it is shown in Fig. 4.23, although
the diagonal of the unit cell is equal to 0

√
2, one can reduce it further so that the actual period

along the gradient direction is 0/
√
2. Another way to see this is that the set {g · e}, where e

spans all vectors of the lattice, is equal to (60/
√
2) Z. Thus, the same discussion as that for

the horizontal case holds if one replaces 0 by 0/
√
2. Following this conclusion, Fig. C.10 was

obtained with @0/
√
2 = 14c/3 and the gradient in the diagonal direction.

The normalized signal is plotted on Fig. C.11 as a function of @0/(2c) for the gradient in
the horizontal direction and as a function of @0/(2

√
2c) for the gradient in the diagonal direc-

tion. In the weak blurring regime (i.e., @ℓΔ . 1), the signal decays according to an expression
similar to Eq. (4.133):

( ≈ exp(−1� (ℓΔ/0)) = exp
(
−� (ℓΔ/0)

�0
@2ℓ2Δ

)
, (C.106)

where 0 < � (ℓΔ/0) < �0 is the e�ective di�usion coe�cient that accounts for the restriction
by obstacles in the domain. Because the gradient sequence considered here is not the same as
the one for which Eq. (4.133) was written, the coe�cient � is not the same but shares some
common features [344]: � (0) = �0, � is a linear function of fℓΔ close to 0 and� (∞) yields the
universal tortuosity limit of the medium. We have plotted Eq. (C.106) on Fig. C.11 for di�erent
values of ℓΔ/0 (the parameter � (ℓΔ/0) was obtained by �tting the low-@ part of each curve).
In the strong blurring regime (i.e., @ℓΔ � 1), the signal exhibits di�erent behaviors depending
on the di�usion length, that can be interpreted with the help of Eq. (4.127a) and related to the
above discussion of the magnetization pro�le.
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Figure C.10: Plot of the magnetization (real and imaginary part, absolute value and phase) after a
narrow-pulse sequence. The gradient is in the bottom-left to top-right diagonal direction. The black
square indicates the unit cell in which the computation was performed. For all �gures, '/0 = 0.4, and
we kept a �xed value @0/

√
2 = 14c/3. The corresponding normalized signal is shown on the bottom

panel of Fig. C.11. (top) ℓΔ/0 = 0.1; (middle) ℓΔ = 0.3; (bottom) ℓΔ/0 = 1.0.

At short di�usion time (e.g. ℓΔ/0 ≈ 0.1), nearly all eigenmodes contribute to the signal
in (4.127a) so that this expansion is not the best tool to understand the behavior of the signal.
Because of the short di�usion time, one can treat the e�ect of the obstacle’s boundary as a sum
of independent contributions from small boundary regions (as in [84] where the signal in an
interval is split into a sum “left boundary + bulk + right boundary”). As we show in Sec. 1.2.3,
the strong blurring regime yields the following expression for the signal in a two-dimensional
macroscopically isotropic domain:

( ≈ fℓΔ

c (1�0)3/2
=

f

c@3ℓ2Δ

, (C.107)

where f = 2c'/(02 − c'2) is the surface-to-volume ratio of the domain. This is the two-
dimensional Debye-Porod law where the signal is dominated by contributions from the bound-
aries in the medium.

At slightly longer di�usion time (e.g., ℓΔ/0 ≈ 0.3), high-order eigenmodes are almost fully
attenuated and the signal is nearly equal to the �rst form factor �?,0(@G ) that depends on the
structure of the unit cell. For example, the drop in signal at @0/(2c) ≈ 4 for the gradient
in the horizontal direction is characteristic of the particular value '/0 = 0.4 for which the
computation was performed. At even longer di�usion time, the exponential decay of the �rst
eigenmode emerges and the signal is close to �?,0(@) exp(−_?,0�0Δ). As we explained in Sec.
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4.4.2, _?,0 = 0 for ? = 0 so that the signal exhibits “di�usion-di�raction” peaks that reveal the
periodicity of the medium. The signal for the gradient in the diagonal direction shows peaks
at integer values of @0/(2

√
2c), that con�rms the value of the period 0/

√
2. Moreover, for

ℓΔ/0 & 1, the decay of the signal at small values of @0 is mainly dictated by exp(−_0,?�0Δ) and
not by the form factor �?,0(@G ) that has a slower decay with @. Combined with Eq. (C.106),
this observation yields the following low-? asymptotic behavior:

_0,? ≈ V (∞)?2 , (C.108)

i.e., the behavior of the �rst Laplacian band at low wavenumber is directly related to the tor-
tuosity limit of the medium. This observation generalizes our results in a periodic array of
permeable barriers (see Sec. 3.4).

The comparison of Figs. C.9, C.10 and C.11 with Figs. 4.24, 4.25 and 4.26 reveals important
qualitative di�erences. First, one can note a visual similarity between the localized magneti-
zation in the bottom panels of Figs. 4.24, 4.25 and the edge enhancement e�ect that can be
observed on the top panels of Figs. C.9 and C.10. However, we argue that these two regimes
are vastly di�erent. In fact, the localization regime arises when the motion encoding by the
gradient is strong (i.e., 1�0 � 1) so that the transverse magnetization is strongly attenuated
everywhere but in a small layer of thickness ℓ6 close to the obstacles, resulting in a weak signal.
In contrast, the edge enhancement e�ect shown here appears even at weak gradient encoding
(i.e., 1�0 . 1) so that the transverse magnetization is rather intense everywhere in the medium
but enhanced near obstacles, resulting in a strong signal. Furthermore, a short-gradient pulse
sequence with strong encoding (i.e., 1�0 � 1) gives rise to a peculiar striped pattern as shown
on the bottom panels of Figs. C.9 and C.10. This delocalized pattern is in some sense the
“opposite” of the localizated magnetization pockets shown on Figs. 4.24 and 4.25. This is es-
pecially apparent in the resulting signal: whereas the short-gradient pulse experiment probes
the global structure of the domain that is revealed through the di�usion-di�raction pattern,
the extended-gradient pulse experiment probes the local properties of obstacle’s boundaries
around localization points. Intuitively, the reason behind these di�erences is that the limit
X → 0, 6 → ∞ with constant �X = @ yields �2X3 = 0. In other words, there is no motion en-
coding during the narrow gradient pulse, and the attenuation of the transverse magnetization
is caused by the subsequent di�usion step. This is in sharp contrast with extended-gradient
pulses that continuously encode the random motion of spin-bearing particles.
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Figure C.11: Signal after a narrow-pulse sequence for di�erent values of ℓΔ/0 and asymptotic formulas
(C.106) and (C.107) for the shortest di�usion time considered here, ℓΔ/0 = 0.1. (top) The gradient is
in the horizontal direction. (bottom) The gradient is in the diagonal direction. Refer to the text for
discussion of the �gure.
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C.10 Another spectral method in 1D-periodic medium

In this appendix, we consider a 1D-periodic medium and show how to implement the e�ect
of �~ and �I gradients with an alternative spectral method to the one presented in Sec. 4.4.2.
Instead of replacing �~ and �I by a collection of narrow pulses, one can replace them by
stepwise functions (see also Sec. 1.1.5). In fact, in bounded domains the e�ect of a constant
gradient can be computed exactly with matrix multiplications.

Between two narrow �G pulses, the magnetization is ?-pseudo-periodic with a given
wavenumber ? and one can compute two matrices B~ and BI :[

B~,?
]
=,=′ =

∫
Ω1

~ D∗?,=D?,=′ dG d~ dI (C.109)[
BI,?

]
=,=′ =

∫
Ω1

I D∗?,=D?,=′ dG d~ dI . (C.110)

These two matrices encode the~ and I terms of BT equation. Therefore, a constant�~,�I gra-
dient pulse of duration g is represented by the left-multiplication by the matrix exp(−�0gΛ? +
8�~B~,? + 8�IBI,?). Note that one has to compute as many di�erent B~,? and BI,? matrices as
there are di�erent values of ? involved in the sampling.
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C.11 Clari�cations on the spectrum of a di�erential
operator

Physicists and mathematicians employ the word “spectrum” with di�erent meanings, which
may lead to some confusion. In this Appendix, we illustrate by examples the mathematical
de�nition of the spectrum and its distinction from a physical one. We shall see that in the end
it is mostly consistent with the physicits’ point of view and that according to this de�nition, the
spectrum of the Bloch-Torrey operator is empty in free space. As this is a didactic discussion
of terminology, we do not claim for mathematical rigor here.

Let us consider a di�erential operator A. This operator is de�ned on the space of func-
tions with some prescribed properties (smoothness, boundary conditions, etc.). Moreover, for
technical reasons, one often restricts the operator to square-integrable functions D ∈ !2. All
these conditions de�ne the domain DA of the operator.

An eigenmode (also called eigenfunction, or eigenvector, or eigenstate) ofA is a function
D_ ∈ DA such thatAD_ = _D_ , where _ ∈ C is the corresponding eigenvalue. Mathematically,
the spectrum of A, denoted f (A) is not the set of eigenvalues of A but a larger set: it is the
set of all _ ∈ C such that A − _ is not invertible [340]. The eigenvalues present a particular
case in which A − _ is not injective and thus form a subset of the spectrum; both de�nitions
are not equivalent in (in�nite-dimensional) functional spaces. In particular, as we shall discuss
below, the set of eigenvalues may be empty even though the spectrum is not.

As an example, let us consider the Laplace operator on R,A = −d2/dG2, whose spectrum
is [0,∞) from the physicists’ point of view. We shall see that it is also the case according to
the mathematical de�nition of f (A). Solving the equation AD = _D with _ ∈ R yields

D_ (G) = exp(±8_1/2G) if _ ≥ 0 , (C.111)

D_ (G) = exp(±|_ |1/2G) if _ ≤ 0 . (C.112)

None of these solutions is square-integrable, hence they do not belong to DA and they are
not eigenmodes of A in the mathematical sense. If _ < 0, then D_ (G) diverges exponentially
at∞ or −∞. If _ ≥ 0, D_ (G) does not diverge at ±∞ and is in fact a tempered distribution. One
can then see D_ (G) as a linear form on DA that satis�es an eigenmode equation. Therefore,
D_ with _ ≥ 0 is a “generalized eigenmode” in the sense that

∀E ∈ DA, 〈D_, (A − _)E〉 = 〈(A − _)D_, E〉 = 0 , (C.113)

so that the range ofA−_ is included in the orthogonal space ofD_ , thusA−_ is not surjective
and _ ∈ f (A). Another way to prove this result is to construct an approximate eigenmode
by multiplying D_ (G) by a sequence of �nitely supported functions with increasing support.
The fact thatD_ (G) does not diverge at ±∞ allows one to control the above approximation and
prove that _ ∈ f (A). Note that we did not consider the case where _ is not real since A is
Hermitian (or self-adjoint). It is easy to see from the general form of D_ (G)

D_ (G) = exp(±8_1/2G) , _ ∈ C (C.114)

that D_ (G) diverges at ∞ or −∞ whenever Im(_) ≠ 0. One concludes here that the operator
A = −d2/dG2 has a continuous spectrum and no eigenvalues.

Now we discuss the case of the one-dimensional Bloch-Torrey operator onR: A = d2/dG2−
8G . As we shall see, this operator exhibits an empty spectrum (note that the spectrum of an
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Hermitian operator is never empty). We apply the same procedure as in the previous example
and look for solutions of the equation AD_ = _D_:

D_ (G) = �r(G − 8_) or (C.115)
D_ (G) = �l(G − 8_) , (C.116)

where �r and �l are de�ned in Eq. (4.24). Both these functions, for any _ ∈ C, exhibit a fast
divergence (as an exponential of |G |3/2) at −∞ hence they cannot be generalized eigenmodes.
From another point of view, the divergence of D_ (G) at −∞ prohibits the construction of a
sequence of approximate eigenmodes. The spectrum of A is then empty.

One may argue that this is merely a matter of convention and that the spectrum of the
Bloch-Torrey operator may be seen to be continuous (and in fact, equal to C) if the rapidly
diverging functionsD_ (G) from Eqs. (C.115) and (C.116) are allowed. However, to be consistent
with this convention, one would also have to consider D_ (G) from Eq. (C.114), for any _ ∈ C,
as an eigenmode of the Laplace operator and the spectrum of the Laplace operator on Rwould
be C. Therefore, to be consistent with the general convention that the spectrum of the Laplace
operator on R is [0,∞), one must conclude that the spectrum of the Bloch-Torrey operator on
R is empty. Note that this discussion extends to other domains in higher dimension.



Appendix D

Langevin equation and its interpretation

In this Appendix, we investigate di�usion in a spatially heterogeneous medium (i.e., with a
position-dependent di�usion coe�cient). It is quite well-known (see e.g. book [324]) that
in this setting the di�usion equation is not uniquely determined and that a free parameter
“U” enters in the di�usion equation. We �rst recall this peculiar mathematical phenomenon
by showing how a seemingly well-de�ned Langevin equation yields in�nitely many possible
Fokker-Planck equations. Then we proceed to show that the indetermination of U results from
coarse-graining of microscopic mechanisms and that there is no “true” value of U , from both
mathematical and physical points of view. Then we discuss the behavior of an intensive quan-
tity at an interface and we focus on the particular case of a thin, weakly di�usive membrane
(see also Sec. 3.1.1). Depending on the value of U , a variety of phenomena is obtained. Fi-
nally, we perform the limit from a regularized Langevin equation (inertia, colored noise) to
the singular Langevin equation (no inertia, white noise) and we obtain di�erent values of U
depending on the way that the limit is performed.

D.1 Introduction and notations

D.1.1 Langevin equation
The Langevin equation typically describes the one-dimensional motion of a massive particle
inside a viscous �uid when subjected to a deterministic force and a random force:

< ¥G = −Z ¤G − mG* + Z
√
2�0# (C) , (D.1)

where * is a potential (typically depending on G ) and <, Z , �0 are coe�cients that play the
role of the mass of the particle, the damping coe�cient of the �uid, and the di�usivity of the
particle in the �uid. The force (or “noise”) # (C) is a random (typically Gaussian) variable for
any time C . In the following we further assume that # (C) is a stationary process (no ageing)
with zero mean. The noise is called “white” if# (C) and# (C ′) are independent whenever C ≠ C ′.
Conversely it is “colored” if there are some time correlations, in which case one can write

〈# (C)# (C ′)〉 = f2n

gn
�

(
C − C ′
gn

)
, (D.2)

where � is the two-point correlation function, which is normalized such that � (0) = 1 and∫ ∞
−∞� = 1. Typically, � is an even fuction monotonically decaying at in�nity, for example
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� (D) = 4−2|D | . One can see that fn and gn play the roles of standard deviation and relaxation
time of the noise, respectively. If gn → 0, the noise becomes gradually uncorrelated and one
recovers the white noise, for which

〈# (C)# (C ′)〉 = f2nX (C − C ′) . (D.3)

In this case, # (C) is ill-de�ned as a random Gaussian variable and one circumvents this di�-
culty by considering it as a distribution and stating that

∫ 1

0
# (C)dC is a Gaussian variable with

zero mean and variance (1 − 0)f2n, for any 0 < 1.
This equation is often used to model the motion of a micron-sized particle interacting

with a surrounding �uid by: (i) very frequent collisions with the �uid molecules with no bias;
(ii) a macroscopic viscous drag. In other words, the total force exerted by the molecules on
the particle can be split in a random part (collisions with no bias) and a mean part (viscous
drag), because of the huge size ratio between the particle and the molecules. In usual �uids,
a quick computation leads to a rate of collisions of about 1021 per second. If one assumes the
collisions to be nearly independent, this leads to a correlation time gn ∼ 10−21B . Because this
time is much shorter than the temporal resolution of any experiment, the noise is modeled as
a white noise.

Let us now consider another timescale of interest: the “inertial” relaxation time of the
particle

gi =
<

Z
. (D.4)

This time embodies the ratio between inertia e�ects and viscous damping e�ects. One can
understand it as the time taken by the viscous drag to “stop” the particle. If the particle and the
�uid have the same densities (which is usually the case in experiments in order to eliminate
gravity e�ects), then one can estimate this time as gi = 2

9'
2/a , where ' is the radius of the

particle and a is the cinematic viscosity of the �uid. For example, if one chooses ' ∼ 1`<
and a ∼ 10−6<2/B (order of magnitude of the water viscosity), then gi ∼ 1`B . Increasing the
viscosity of the �uid shortens this time even more. In the limit of in�nitely short gi, one is led
to discard inertia e�ects.

Both assumptions (in�nitely short gn and in�nitely short gi) yield together the well-known
overdamped version of the Langevin equation

¤G = −1
Z
mG* +

√
2�0# (C) , (D.5)

with a Gaussian white noise # (C).

D.1.2 Simpli�ed Langevin equation, Fokker-Planck equation
One interesting feature of Eq. (D.5) is that it leads to a Fokker-Planck equation on the particle
density 5 (G, C)

mC 5 = mG

(
5

Z
mG*

)
+ �0m

2
G 5 , (D.6)

in which one recognizes a di�usion equation with a deterministic drift. Its stationary solution
coincides with the Boltzman distribution

5∞(G) = � exp(−* (G)/(:�) )) , (D.7)
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where �0,) , Z satisfy the Stokes-Einstein relation

�0 =
:�)

Z
. (D.8)

Note that keeping the inertia term< ¥G in the Langevin equation would have led to a coupled
Fokker-Planck equation for G and ¤G , whereas time correlations in the noise would have pre-
vented us from getting a di�erential Fokker-Planck equation at all because of memory e�ects.

Many physical phenomena may be modeled by a Langevin equation because, ultimately,
the phenomenon is well-described by the resulting Fokker-Planck equation. In other words,
any phenomenon that obeys the di�usion equation (D.6) can be modeled by the corresponding
Langevin equation (D.5), even though the microscopic mechanism may di�er greatly. The
Langevin equation should then be understood as a coarse-grained description of the system,
with the coarse-grained coe�cients Z , � and the coarse-grained potential* (G). However, the
process of coarse-graining may lead to some surprises.

A typical example is given by particles di�using with “microscopic” di�usivity �< inside
a “microscopic” potential *< (G) with multiple wells. If we assume the Langevin equation to
be a valid description of the microscopic system, then its equilibrium distribution is given by
Boltzmann formula

5∞,< (G) = �< exp(−*< (G)/(:�) )) . (D.9)

When coarse-grained, the system yields Gaussian di�usion again, however with a di�erent dif-
fusion coe�cient �0 that depends on the structure of the potential *< (G), such as the depth
and width of the wells. The coarse-grained potential* (G) is obtained through a local space av-
eraging that we denote by* (G) = *< (G). As a consequence, the resulting Boltzman distribu-
tion (D.7) may not coincide with 5< , the locally averaged microscopic equilibrium distribution
because in general

exp
(
−*< (G)
:�)

)
≠ exp

(
−*< (G)
:�)

)
. (D.10)

For instance, let us consider that the bottom and the width of the potential wells are all
identical but the tops are slowly modulated [309]. At low temperature, this slow modulation
does not a�ect 5< , and thus 5< is independent of G . However, the averaged potential * (G)
now depends on G , that contradicts Eq. (D.7). At the same time, one can see that the di�usion
coe�cient �0 depends on G , which a priori violates the validity of the Fokker-Planck equation
(D.6).

D.2 Langevin equation with space-dependent coe�cients

Suprisingly, the term
√
2�0# (C) becomes mathematically ambiguous if �0 depends on G . The

intuitive reason is that, in the absence of inertia or noise correlations, G (C) may perform rel-
atively large “jumps” that make

√
2�0(G (C))# (C) take di�erent values depending on whether

one evaluates �0(G (C)) at “C − 0” (just before the jump), or at “C + 0” (just after the jump), or
a mixture of both. We emphasize that this ambiguity is only caused by spatial heterogeneity
and not by possible time dependence of the parameters of Langevin equation.
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To make this statement more precise, we consider the simplest Langevin equation

¤G =
√
2�0(G (C))# (C) (D.11)

and we integrate it over a short time interval:

ΔG =

∫ ΔC

0

√
2�0(G (C))# (C)dC . (D.12)

Now let us imagine that we want to evaluate � (G) after the jump, that is

ΔG+ =
√
2�0(G (0) + ΔG)

∫ ΔC

0
# (C)dC . (D.13)

The de�nition of Gaussian white noise implies that∫ ΔC

0
# (C)dC = b

√
ΔC , (D.14)

where b is Gaussian variable with zero mean and unit variance. Then, to the �rst order in
√
ΔC ,

one can insert the expression of ΔG+ inside the right-hand side of the equation:

ΔG+ =
(√

2�0(G (0)) + mG�0b
√
ΔC +$ (ΔC)

)
b
√
ΔC (D.15)

=
√
2�0(G (0))b

√
ΔC + mG�0b

2ΔC +$ (ΔC3/2) . (D.16)

In the above expression, the derivative of �0(G) can be taken either at G (0) or G (ΔC) without
changing the result up to order ΔC . The �rst two terms on the right-hand side of the equation
contribute equally in the limit ΔC → 0 because 〈b〉 = 0 and 〈b2〉 = 1. By summing a large
number of small increments ΔG+, the �uctuations of b2 vanish and one can replace b2 by its
mean value, 1. More precisely, the law of large numbers implies that �uctuations of b2 have a
negligible e�ect to order ΔC . The �rst term is ΔG− and one can see that it di�ers from ΔG+ by
a drift term corresponding to a velocity

+ = mG�0 . (D.17)

In the previous computations, we discarded the potential* (G) for the sake of clarity, but one
can easily show that the same results hold if the potential is present in the Langevin equation.

To summarize, when evaluating the di�usion coe�cient �0(G) after the jump, one adds
a drift towards the higher values of �0, compared to when it is evaluated before the jump.
This is not surprising because if one evaluates the value of �0(G) after the jump, then a jump
towards higher values of�0 will be increased, whereas a jump towards lower values of�0 will
be decreased. What is surprising is that the jumps are su�ciently large to make this e�ect
survive in the limit ΔC → 0.

Hence there is no unique de�nition of the Fokker-Planck equation associated to a Langevin
equation with space-dependent di�usivity. In fact, there are as many possibilities as the ways
to evaluate �0(G) during the jump. For instance, if one decides to evaluate �0(G) at the time
UΔC , with 0 ≤ U ≤ 1, then one gets a drift term equal to U+ . The Fokker-Planck equation is
then

mC 5 = mG

(
5

Z
mG*

)
+ m2G (�05 ) − UmG (5 mG�0) , (D.18)



D.2. Langevin equation with space-dependent coe�cients 333

from which we get the expression of the di�usive �ux

�U = −mG (�05 ) + U 5 mG�0 = −�U0 mG (�1−U
0 5 ) . (D.19)

One can also derive the equilibrium distribution:

5∞,U =
�

�1−U
0

exp
(
−

∫
mG*

:�)

)
, (D.20)

which simpli�es in the case of constant ) :

5∞,U =
�

�1−U
0

exp
(
−* (G)
:�)

)
. (D.21)

Three cases have been given special names

• U = 0 is called “Itô”;

• U = 1/2 is called “Stratonovich”;

• U = 1 is called “isothermal”, or “Hänggi-Klimontovich”.

These cases exhibit di�erent mathematical properties. The Itô operator m2G (�05 ) is a Laplacian-
type operator, which makes it a preferred choice for many mathematical studies. Moreover,
because the di�usion coe�cient is evaluated before the jump in the Langevin equation, the
position G (C) and the noise # (C) are independent random variables. The Stratonovich choice
arises naturally as a limit of the Langevin equation when the noise# (C) is colored and the noise
correlation time gn goes to zero [317] (as we shall see in Sec. D.5). As a consequence, classical
di�erential calculus (such as a change of variables) is applicable in the Langevin equation under
this interpretation. The isothermal di�usion operator mG (�0mG 5 ) is self-adjoint and leads to
homogeneous stationary solution in the absence of potential.

From a physical point of view, there are a priori no reasons to prefer one choice over the
others. Although the Hänggi-Klimontovich choice (U = 1) is the only one that yields the Boltz-
mann distribution in the case of constant ) (Eq. (D.21)), we have seen in the previous section
that for a coarse-grained system the equilibrium distribution may di�er from the Boltzmann
distribution. Moreover, one may simply consider the additional term UmG (5 mG�0) as a new po-
tential term. This point of view allows to switch from one interpretation to the other simply
by changing the potential * (G). In other words, although the choice of U leads to in�nitely
many possible Fokker-Planck equation, all those equations have the same form of a di�usion
term plus a force term. In particular, if there is no a priori reason that the force term takes a
particular value, then the “paradox” of the choice of U disappears.

In order to illustrate the physical relevance of any value of U , let us consider a medium
which is split in two parts of equal volume, the �rst part having a small di�usion coe�cient�1
and the second part having a large di�usion coe�cient�2. There is no external potential in the
system. We let a particle di�use in the medium and ask about the proportion of time spent in
each part in the limit of long times. By ergodicity of the system, these proportions are given by
the equilibrium distribution of the system. Hence, applying the Boltzmann distribution, one
obtains that the time spent in each part is asymptotically the same, because the two parts have
equal volume. This is in favour of the Hänggi-Klimontovich interpretation. However, another
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line of reasoning gives an opposite result. One may argue that the di�usion coe�cients do not
a�ect the trajectory of the particle but only the “speed” at which the particle travels along it. As
a consequence, the particle will go faster when experiencing the larger di�usion coe�cient�2
than when experiencing the smaller di�usion coe�cient �1. One concludes that the particle
will spend more time in the �rst region. One can compute that the proportion of time spent in
region 8 is�8−1/(�1

−1+�2
−1), in which one recognizes the result given by the Itô interpretation

(see Eq. (D.21)).
The so-called “Ito-Stratonovich” dilemma simply reveals that a heterogeneous system is

not fully described by the di�usion coe�cient �0(G). In the coarse-graining process, the dif-
fusion coe�cient emerges as an aggregate of several microscopical properties of the medium.
Although this approach is perfectly valid for a homogeneous system, it remains ambiguous
for a heterogeneous one where more informations on the microscopical mechanism behind
the space variation of �0 is required to write the Fokker-Planck equation.

D.3 Examples

Some authors proposed simple examples of systems that, after coarse-graining, can be de-
scribed by di�usion with a space-dependent di�usion coe�cient. Depending on the micro-
scopic parameters of the systems, one obtains di�erent interpretations (i.e., di�erent values
of U). We present two examples: the Lorentz gas and di�usion inside slowly modulated pe-
riodic potential. Both these examples show in di�erent ways that the value of U has nothing
to do with a priori considerations about the “correct” sampling point in the integral (D.12) but
simply re�ects the indetermination of the Fokker-Planck equation without knowledge of the
microscopical mechanisms at play.

D.3.1 Lorentz gas

A particularly illuminating example is the random Lorentz gas system [310]: a particle moves
ballistically and re�ects on the boundary of randomly distributed disks. Following [310] we
consider a two-dimensional Lorentz gas. There are three parameters in this system: the veloc-
ity E of the particle, the radius A of the disks, and the free volume fraction i . As the disks can-
not overlap, i cannot take values below the compact packing limit imin = 1 − c/

√
12 ≈ 0.093.

When coarse-graining, the motion of the particle becomes di�usive. One can show by scaling
arguments that the di�usion coe�cient �0 has the form

�0 = EA� (i) , (D.22)

and the function � (i) is monotonically increasing from 0 at i = imin to ∞ at i = 1. Let us
impose that the velocity of the particles is �xed. Then one can tune the di�usion coe�cient by
changing either A ori . In particular one can reproduce the thought experiment of the previous
section with two pairs (A1, i1), and (A2, i2) that produce two di�erent di�usion coe�cients �1
and �2.

Because the microscopic system is ergodic, the proportion of time spent by the particle
in each part is simply proportional to their free volume fraction i1 and i2. If i1 = i2, the
di�usion coe�cients may be di�erent because of di�erent A1 and A2, however, the particle will
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𝜑1 = 0.5; 𝑟1 = 0.3; 𝐷1 = 0.09 𝜑2 = 0.5; 𝑟2 = 0.6; 𝐷2 = 0.18

𝜑1 = 0.6; 𝑟1 = 0.09; 𝐷1 = 0.047 𝜑2 = 0.3; 𝑟2 = 0.75; 𝐷2 = 0.094

Figure D.1: Two examples of a Lorentz gas system split in two halves with di�erent properties. One
can see that in each case the free volume i and the disk radius A are tuned to produce a di�usion
coe�cient twice larger in the right half than in the left half, i.e. �2 = 2�1. (top) i1 = i2 therefore the
particles spend as much time in the left part than in the right part, in favor of Hänggi-Klimontovich
interpretation. (bottom) i1 = 2i2 so that particles spend twice much time in the left part than in the
right part, in favor of Itô interpretation. Figure adapted from Ref. [310].

spend an equal amount of time in each part. This corresponds to the Hänggi-Klimontovich
interpretation. However, if one chooses i1 ≠ i2, then the conclusion is di�erent. By tuning i
and A , one can in fact produce any value of U . We will show in Sec. D.5 that this result may
also be obtained by performing the coarse-graining explicitly.

D.3.2 Di�usion inside a slowly modulated periodic potential
In [309], Sokolov studied di�usion inside a slowly modulated periodic potential *< (G) such
as the ones on Fig. D.2. We reproduce here his results and discussion in a simpli�ed setting.
After coarse-graining over a scale much larger than the period of the potential, the behavior of
particles becomes di�usive with a coarse-grained di�usion�0 that is controlled by the proper-
ties of the microscopic potential*< , as we show below. For clarity we denote the microscopic
position by G and the coarse-grained position by - .

We denote the slowly varying period of the potential by _, its minima and maxima by*max
and *max, and we assume that these quantities are slowly position-dependent (i.e. they vary
with - ). Moreover, we assume that the temperature is constant and that :�) � *max −*max.
The coarse-grained potential*< (- ) is given by

*< (- ) ≈
*max +*max

2
. (D.23)
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𝑈min, 𝑈min
′′

𝑈max, 𝑈max
′′

𝜆

Figure D.2: Three examples of slowly modulated potential that yield an increasing coarse-grained dif-
fusivity from left to right. The blue rectangle indicates one period over which averages are performed.
(top) Trap model, where minima of the potential slowly increase; (middle) accordion model, where the
period of the potential slowly increases; (bottom) barrier model, where the maxima of the potential
slowly decrease. (Figure adapted from Ref. [309])

This simple formula is valid only if the potential has a symmetric pro�le in the integration
range. In particular, correction terms would involve the di�erence in width of the wells, i.e.

*< (- ) −
*max +*max

2
∼ (*max −*max)

(
1√
* ′′max

− 1√
* ′′max

)
, (D.24)

where * ′′ denotes the second derivative of *< , which is evaluated here at the minima and
maxima of*< . In the following, we set this correction term to 0 by imposing that* ′′max = *

′′
max,

therefore we use Eq. (D.23). Note that if a position-dependent _ is achieved by dilatation of the
potential along G , then* ′′ ∼ 1/_2. In that case* ′′max and* ′′max have the same spatial variations.

The coarse-grained di�usion coe�cient is simply obtained from �0 = _
2/(2gjump), where

gjump is the typical time between two jumps above the barriers of potential. In the low-
temperature limit, gjump is given by Arrhenius law, so that

�0(- ) = '(- )_2 exp
(
−*max −*max

:�)

)
, (D.25)

where '(- ) is a rate that results from the geometric average of the rates at which the particle
crosses the potential minima and maxima, i.e. '(- ) ∼ �<:�) /

√
* ′′max*

′′
max (one can show

that the numerical prefactor is c , see Ref. [309]). On Fig. D.2, the potentials are drawn with
constant* ′′max and* ′′max, however in principle they can be position-dependent too. Finally, the
coarse-grained equilibrium distribution is given by

5< (- ) =
�(- )
_

exp
(
−*max

:�)

)
, (D.26)
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where �(- ) ∼
√
* ′′max/:�) is related to the width of the potential well. Note that with our

hypothesis * ′′max = * ′′max, one has �(- ) = �/
√
'(- ), where � is a constant. The coarse-

grained equilibrium distribution 5< di�ers from the classical Boltzmann distribution (D.7) by
a prefactor j (- ):

5< (- ) = j (- ) exp
(
− *<
:�)

)
, j (- ) = �(- )

_
exp

(
*max −*max

2:�)

)
= ��

−1/2
0 (- ) . (D.27)

Sokolov concludes, by identi�cation between Eqs. (D.21), (D.25) and (D.26), that each case
presented on Fig. D.2 corresponds to a di�erent interpretation. (i) The trap model corresponds
to varying *max, and one can see that 5< ∼ �−10 , i.e. U = 0 (Itô interpretation). (ii) The
accordion model corresponds to varying _, therefore 5< ∼ �−1/20 , i.e. U = 1/2 (Stratonovich
interpretation). (iii) The barrier model corresponds to varying*max, in that case 5< is constant
through the medium and independent of �0, i.e. U = 1 (Hänggi-Klimontovich interpretation).
Naturally, when all parameters vary at the same time, any value of U may be obtained in
principle and U is generally position-dependent as well.

D.4 Continuity at an interface

In this section, we discuss the implication of the generalized expression (D.19) of the �ux on
a discontinuous interface between two regions with di�erent di�usion coe�cients. Then we
turn to the case of a thin membrane with reduced di�usivity, which can model a permeable
barrier (see Sec. 3.1.1). We assume that the medium is well described by an inhomogeneous
di�usion coe�cient �0 with no external potential and a constant interpretation parameter U .

D.4.1 Continuity equations

Let us consider two half spaces G < 0 and G > 0, with di�usion coe�cients �0 = �− and
�0 = �+, respectively. We shall denote by 5 a generic quantity “carried” by di�using particles
(such as magnetization, density, temperature). The local conservation of particles implies that
the �ux is continuous at the interface:

�U0 mG (�1−U
0 5 )

��
G=0 = �−mG 5 |G=0− = �+mG 5 |G=0+ . (D.28)

If one pictures a discontinuous interface as a very thin layer where the di�usion coe�cient �0
changes continuously from �− to �+, then the continuity of the �ux yields two conditions: (i)
�1−U
0 5 is continuous at the interface; (ii) the �uxes on both sides of the interface are equal, i.e.

�−mG 5 |G=0− = �+mG 5 |G=0+ .
Note that condition (i) implies that 5 is discontinuous at the interface if U ≠ 1 and that

5 (0+)/5 (0−) = (�−/�+)1−U . Interestingly, such a condition is reminiscent of chemical systems
in which the ratio of concentrations on both sides of the interface is equal to the partition
coe�cient [232–234, 259, 260].



338 D. Langevin equation and its interpretation

D.4.2 Thin membrane
Now we consider a thin layer −4/2 ≤ G ≤ 4/2 of width 4 and with di�usivity �4 inside such
as on Fig. 3.2. Let us introduce the �uxes in each region:

�− = −�−mG 5 |G=−4/2 , �4 = −�4mG 5 |G=0 , �+ = −�+mG 5 |G=4/2 . (D.29)

We assume that the layer thickness is negligible compared to the scale of variation of the �ux,
therefore we have �− = �4 = �+ and we shall denote this constant �ux by � in the following.
This yields a �rst condition

�−mG 5 |G=−4/2 = �+mG 5 |G=4/2 . (D.30)

Now let us write the discontinuity equations at each interface. For clarity we denote by
54 the values of 5 inside the membrane, to distinguish them from the values outside.

54 (−4/2) =
(
�−
�4

)1−U
5 (−4/2) , 54 (4/2) =

(
�+
�4

)1−U
5 (4/2) . (D.31)

Furthermore, the variation of 54 inside the membrane can be computed from

54 (4/2) − 54 (−4/2) ≈ 4mG 5 |G=0 =
4 �

�4
. (D.32)

By combining these equations, we can relate 5 (4/2) to 5 (−4/2) by

5 (4/2) =
(
�4

�+

)1−U [(
�−
�4

)1−U
5 (−4/2) + �4

�4

]
, (D.33)

that we can simplify into

�1−U
+ 5 (4/2) = �1−U

− 5 (−4/2) − � 4
�U4

. (D.34)

By analogy with Sec. 3.1.1, one recognize the permeability ^U of the membrane on the
right-hand side:

^U =
�U4

4
. (D.35)

Moreover, one can compute the number =4 of particles trapped inside the membrane as

=4 ≈ 54 (0)4 ≈
�1−U
− 5 (−4/2) + �1−U

+ 5 (4/2)
2

4

�1−U
4

. (D.36)

Therefore, one obtains a permeable barrier in the limit 4 → 0 if two conditions are satis�ed:

1. ^U has a �nite limit, that yields �4 ∼ 41/U ;

2. =4 goes to zero, i.e. �1−U
4 � 4 .

By combining both conditions, one obtains 4 (1−U)/U � 4 , that is veri�ed in the limit 4 → 0
only if U > 1/2.
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D.4.3 Summary

To summarize, there are generally three situations at an interface depending on the value of
U . The �rst one occurs when U = 1. In that case, 5 is continuous at any interface and one can
model a permeable barrier by a thin membrane with �4/4 = ^. This yields the usual boundary
equation at a permeable barrier, and the discontinuity of 5 is proportional to the �ux � . This
is the case considered in Chapter 3.

A somewhat opposite situation is obtained for U ≤ 1/2. In that case, 5 is always discon-
tinuous at an interface, and 5 +/5 − is related to the ratio of di�usivities on both sides of the
interface. However, it is not possible to model a permeable barrier by a thin membrane. In fact,
the discontinuity �/^U tends to zero when 4 → 0 otherwise the number of particles inside the
membrane goes to in�nity, which is not physical. Note that the value U = 1/2 is special and
corresponds to ^1/2 =

√
�4/4 , i.e. a �nite permeability corresponds to a �nite crossing time

42/�4 of the membrane. In that case the number of particles inside the membrane is �nite and
given by =4 ∼ 1/^U . Such a situation could model a trap with a �nite escape time.

The intermediate situation 1/2 < U < 1 is a mixture of both cases. The function 5 is
discontinuous at interfaces, with a ratio 5 +/5 − that depends on the ratio of di�usivities on
both sides. In addition, a thin membrane may model a permeable barrier, with an additional
discontinuity that is proportional to the �ux.

D.5 Singular limit

We have explained previously that the existence of the interpretation parameter U is a conse-
quence of the “singularity” of the Langevin equation, in which the absence of inertia and/or
the absence of correlations in the noise allow relatively large “jumps”. In turn, if one goes back
to the general Langevin equation (D.5) with< ≠ 0 (i.e. gi > 0) and a colored noise with gn > 0,
then the ambiguity of interpretation disappears. Therefore it is natural to ask what happens
in the limit gi → 0, gn → 0. This question (or a similar one) has been considered by several
authors [318–323] in various contexts (e.g. constant temperature, or constant damping, or ab-
sence of inertia, and so on) and we take this opportunity to present quite general results in a
uni�ed way, without claiming for mathematical rigor.

For convenience, we summarize our results here. There are two main situations depending
on the ratio between gi and gn:

1. if gi � gn, i.e. if inertia can be neglected compared to correlations in the noise, then
the limit yields the Stratonovich interpretation U = 1/2;

2. if gn � gi, i.e. if the correlations in the noise can be neglected compared to inertia,
then there is no unique answer. If the temperature ) is constant, then one obtains the
Hänggi-Klimontovich interpretation U = 1. If, on the contrary, the damping coe�cient
Z is constant, one obtains the Itô interpretation U = 0. In general, one obtains any (and
possibly position-dependent) value of U .

We start with the �rst case, then we show how the second case may obtained from the
�rst one. We shall denote a small time step by ΔC and compute the variation of quantities from
C = 0 to C = ΔC . Therefore, we shall discard all higher-order terms (such as ΔC3/2, ΔC2, etc.)
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in the following computations, without always expliciting them. In the same way, we shall
discard all terms that go to zero as either gn or gi goes to zero.

D.5.1 No inertia, colored noise
We consider the stochastic equation

¤G =
√
2�0(G)# (C) , (D.37)

where # is a colored noise with correlation time gn. We do not consider any external potential
to simplify the formulas but it can be included in a straightforward way. If ΔC � gn, the
integral of # (C) over the time ΔC is a quantity of order ΔC ; in contrast if ΔC � gn, then the
integral of # (C) over the time ΔC is of order

√
ΔC (as it is the case for white noise). This is the

crucial point on which the following computation relies.
We consider a time step ΔC � gn and we compute the variation of G over ΔC :

ΔG =

∫ ΔC

0

√
2�0(G (C))# (C) dC = $ (ΔC) . (D.38)

Therefore, one has approximately

ΔG =

∫ ΔC

0

√
2�0(G (0))# (C) dC +$ (ΔC2) . (D.39)

One can see that because of the “small” jump of size ΔG = $ (ΔC), there is no interpretation
parameter U , since one would get a correction term of order ΔC2 by evaluating �0(G (C)) at
C = ΔC instead of C = 0.

Now, in order to obtain the associated Fokker-Planck equation, we consider a test function
i (G) and we compute its variation over the time ΔC :

i (G (ΔC)) − i (G (0)) = i (G (0) + ΔG) − i (G (0)) =
∫ ΔC

0
i′(G (C))

√
2�0(G (C))# (C) dC . (D.40)

This term is of order ΔC and its value depends on the correlation between G (C) and # (C). More
precisely, we have to compute a quantity of the general form 〈�(C)k (G (C))〉. To perform this
computation, let us choose a large integer : and write this quantity as a time integral

# (C)k (G (C)) = # (C)k (G (C − :gn) +
∫ C

C−:gn
k ′(G (B))

√
2�0(G (B))# (B)# (C) dB , (D.41)

where we have inserted the evolution equation (D.37) of G inside the integral. Now we use the
assumption of large : to deduce 〈# (C)k (G (C −:gn)〉 = 0, and we use the de�nition (D.2) of the
noise correlator to perform the average:

〈# (C)k (G (C))〉 =
∫ C

C−:gn

〈
k ′(G (B))

√
2�0(G (B))

〉 f2n
gn
�

(
C − B
gn

)
dB (D.42)

→
gn→0

1
2

〈
k ′(G (C))

√
2�0(G (C))

〉
. (D.43)
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This result allows us to conlude the computation of the variation of i :

〈i (G (ΔC)) − i (G (0))〉 =
∫ ΔC

0

1
2

〈(
i′

√
2�0

)′
(G (C))

√
2�0(G (C))

〉
dC (D.44)

≈ ΔC

2

〈(
i′

√
2�0

)′
(G (C))

√
2�0(G (C))

〉
. (D.45)

If we denote by % (C, G) the probability density of G at time C , then we have shown that∫
i (G)mC% (C, G) dG =

〈
d
dC
(i (G (C)))

〉
(D.46)

=
1
2

〈(
i′

√
2�0

)′
(G (C))

√
2�0(G (C))

〉
(D.47)

=

∫
1
2

√
2�0(G)

(
i′

√
2�0

)′
(G)% (C, G) dG (D.48)

=

∫
1
2
i (G)

(√
2�0

(√
2�0%

)′)′
dG . (D.49)

The above formula is valid for any test functioni (G), therefore the probability distribution
% (C, G) obeys the following Fokker-Planck equation

mC% = mG

(√
�0mG

(√
�0%

))
, (D.50)

that corresponds to Stratonovich interpretation U = 1/2. This result is somewhat expected
because a colored noise may be seen as a regular function that approximates a white noise as
gn → 0, and a theorem [317] shows that such a limit always yields Stratonovich interpretation.

D.5.2 White noise and inertia

Now we consider the opposite situation where # (C) is a white noise and the particle obeys

¥G = −b (G) ¤G +
√
2�0(G)b (G)# (C) , (D.51)

where b (G) = Z (G)/< is the inverse of the inertial relaxation time gi. Let us introduce the
function

Ξ(C, C ′) =
∫ C ′

C

b (G (B)) dB . (D.52)

Then one can integrate the time evolution equation as

¤G (C) − ¤G (0) =
∫ C

0
exp (−Ξ(B, C))

√
2�0(G (B))b (G (B))# (B) dB . (D.53)

Loosely speaking, this equation looks like a Langevin equation without inertia and with a
colored noise. We shall follow this intuition and transform the right-hand side to make appear
an e�ective colored noise #̂ (C). This requires to get rid of all factors that depend on G (C).



342 D. Langevin equation and its interpretation

Note that the exponential factor e�ectively limits the integration range to ∼ gi, therefore the
right-hand side is of order

√
gi. This allows us to write Ξ as

Ξ(C, C ′) ≈
∫ C ′

C

(
b (G (C)) + b′(G (C))

∫ B

C

¤G (A ) dA
)
dB (D.54)

≈ (C ′ − C)b (G (C)) +$ (g3/2i ) . (D.55)

Now we have to simplify the factor b (G)
√
2�0(G), that we denote by [ (G). One has

[ (G (B)) ≈ [ (G (C)) − [′(C)
∫ C

B

¤G (A ) dA (D.56)

and we inject the integrated evolution equation of ¤G into this formula, that yields approxi-
mately

[ (G (B)) ≈ [ (G (C)) − [ (G (C))[′(G (C))
∫ C

B

∫ A

0
4−(A−D)b (G (C))# (D) dD dA − [′(G (C)) (C − B) ¤G (0) .

(D.57)
Let us introduce the colored noise

#̂ (C) = b (G (C))
∫ C

0
4−b (G (C)) (C−B)# (B) dB . (D.58)

One can see that it has a correlation time ∼ gi. By combining the above equations, one can
rewrite the evolution equation on G as

¤G (C) − ¤G (0) = [ (G (C))#̂ (C)

− [ (G (C))[′(G (C))
∫ C

0

∫ C

B

∫ A

0
4−(C−B)b (G (C))4−(A−D)b (G (C))# (B)# (D) dD dA dB . (D.59)

The last term is random but may be reduced to its average value (the argument is similar to
the one that allowed us to simplify Eq. (D.16)):〈∫ C

0

∫ C

B

∫ A

0
4−(C−B)b (G (C))4−(A−D)b (G (C))# (B)# (D) dD dA dB

〉
=

∫ C

0

∫ C

B

4−(C−B)b (G (C))4−b (G (C)) (A−B) dA dB ≈ 1
2b (G (C))2 (D.60)

Therefore, we obtain that the Langevin equation with inertia becomes a Langevin equation
without inertia but with a colored noise and a drift term:

¤G =
√
2�0(G)#̂ (C) −

[[′

2b2
(G) . (D.61)

From the previous subsection we know that the resulting Fokker-Planck equation yields the
Stratonovich interpretation in the gi → 0 limit:

mC% = mG

(√
�0mG

(√
�0%

))
+ mG

(
[[′

2b2
%

)
= mG (�0mG%) + mG

(
�0
) ′

)
%

)
, (D.62)
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where we have written that equation in order to make explicitly appear the Hänggi-Klimontovich
interpretation U = 1. Indeed, one can see that if ) is constant, then the second term in the
right-hand side vanishes. In turn, the situation where Z is constant yields �0)

′/) = �′0, there-
fore the Fokker-Planck equation yields the Itô interpretation U = 0. Naturally, any value of U
is obtained if both ) and Z are position-dependent:

1 − U =
) ′/)

) ′/) − Z ′/Z . (D.63)

Note that ) ′/) − Z ′/Z = �′0/�0 so that it vanishes for a constant di�usivity �0, in which case
the interpretation, i.e. the value of U , does not matter.

D.5.3 The Lorentz gas revisited
One can check the consistency of the above computations on the particular example of the
Lorentz gas. Indeed, the motion of a particle that bounces on hard disks is a priori well de-
scribed by a Langevin equation with inertia and a white noise. The temperature is a measure
of the kinetic energy density inside the medium that yields

:�) = E2i−1 , (D.64)

where i is the free volume fraction in the medium. Now we assume a constant value of U and
we use the above equation (D.63), that gives

(1 − U)
�′0
�0

= −i
′

i
. (D.65)

By integrating the above equation, we immediately get

1
�1−U
0
∼ i , (D.66)

that is fully consistent with Eq. (D.21) and the discussion of Appendix D.3.1.
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Résumé: L’imagerie de résonance magnétique nu-
cléaire pondérée par diffusion (dMRI) est une technique
expérimentale qui a pour but d’identifier les propriétés
microstructurales d’un échantillon bien en-dessous de la
résolution conventionnelle de l’IRM “classique”. Bien que
cette technique ait été introduite et appliquée dans divers
contextes depuis plusieurs décennies, de nombreux élé-
ments théoriques restent à élucider, et ce d’autant plus
avec l’amélioration constante des appareils d’imagerie et
des techniques expérimentales. Notablement, les méca-
nismes de formation du signal d’IRM aux forts gradients
sont encore largement incompris, malgré une tendance
“naturelle” à l’augmentation des gradients pour sonder
des échelles structurales de plus en plus fines.
Nous revisitons dans un premier temps les effets
d’anisotropie géométrique. Tandis que l’anisotropie aux
échelles micro- et macroscopiques a été l’objet de beau-
coup d’attention ces dernières années, l’échelle inter-
médiaire, “mésoscopique”, n’avait pas encore été étu-
diée systématiquement. Nous avons obtenu une géné-

ralisation de la formule de Mitra qui permet d’améliorer
significativement l’estimation du rapport surface-volume
de domaines arbitraires quelle que soit la séquence de
gradient utilisée.
Dans un second temps, nous étudions les effets de per-
méabilité, qui sont cruciaux pour les applications biomé-
dicales. Nous proposons une analyse critique de trois
modèles classiques de l’effet de l’échange sur le signal
d’IRM de diffusion. De plus, nous formulons une mé-
thode numérique et théorique générale et flexible pour
étudier la diffusion à travers plusieurs membranes per-
méables parallèles.
Le dernier chapitre constitue le coeur de la thèse et
aborde l’étude non-perturbative de l’équation de Bloch-
Torrey qui régit l’évolution du signal d’IRM de diffu-
sion. Aux forts gradients, nous montrons théoriquement,
numériquement, et expérimentalement l’universalité du
phénomène de localisation, qui ouvre des perspectives
prometteuses pour augmenter la sensibilité du signal
d’IRM à la microstructure.

Title: Study of the Bloch-Torrey equation associated to diffusion magnetic resonance imaging
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Abstract: Diffusion magnetic resonance imaging (dMRI)
is an experimental technique which aims at unraveling
the microstructural properties of a sample well below the
conventional spatial resolution of “classic” MRI. Although
this technique has been proposed and applied in various
contexts for several decades, many theoretical points re-
main to be clarified, even more with the permanent im-
provement of MRI scanners and experimental protocols.
Notably, the understanding of the signal formation at high
gradients is largely incomplete, in spite of the “natural”
tendency to increase the gradient in order to probe finer
and finer structural scales.
We first revisit anisotropy effects. While micro- and
macroscopic anisotropy have been largely studied over
past years, the intermediate, “mesocopic” scale had not
been investigated in a systematic way. We have obtained

a generalized Mitra formula which improves significantly
surface-to-volume ratio estimations for arbitrary domains
and gradient waveforms.
In a second chapter, we investigate permeability effects,
that are crucial for biomedical applications. We criti-
cally revise three classical models of exchange for dMRI.
Moreover, we obtain a general and flexible numerical and
theoretical method to study diffusion trough several par-
allel permeable membranes.
The last chapter is the heart of the thesis and contains a
non-perturbative study of Bloch-Torrey equation, which
governs the evolution of dMRI signal. At high gradient
strength, we reveal theoretically, numerically, and experi-
mentally the universality of the localization phenomenon,
which opens promising perspectives to improve the sen-
sitivity of the signal to the microstructure.
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