, On-wafer reflectometry system: first tests IV.1

, 1.2.2. Electro-Optical Terahertz Pulse Reflectometry technique, IV.1.2. Non-destructive fault isolation techniques

, 2.3. Reflected time signal II (Model 500)

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and E. Al, The 2017 terahertz science and technology roadmap, J. Phys. D. Appl. Phys, vol.50, p.43001, 2017.

R. A. Lewis, A review of terahertz sources, J. Phys. D. Appl. Phys, vol.47, issue.37, p.374001, 2014.

R. E. Miles and M. Naftaly, Terahertz Sources, Microw. Photonics Devices Appl, pp.111-129, 2011.

R. A. Friedel and A. G. Sharkey, Comparison of glower and Globar sources for infra-red spectrometry, Rev. Sci. Instrum, vol.18, issue.12, p.928, 1947.

K. Charrada, G. Zissis, and M. Aubes, Two-temperature, two-dimensional fluid modelling of mercury plasma in high-pressure lamps, J. Phys. D. Appl. Phys, vol.29, issue.9, pp.2432-2438, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02547139

J. B. Sleiman, Terahertz Imaging and Spectroscopy: Application to Defense and Security, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01404459

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, S. Member et al., Vacuum Electronic High Power Terahertz Sources, IEEE Trans. Terahertz Sci. Technol, vol.1, issue.1, pp.54-75, 2011.

J. S. Rieh, J. Yun, D. Yoon, J. Kim, and H. Son, Terahertz InP HBT Oscillators, 2018 IEEE International Symposium on Radio-Frequency Integration Technology, pp.1-3, 2018.

A. Khalid, N. J. Pilgrim, G. M. Dunn, M. C. Holland, C. R. Stanley et al., A planar Gunn diode operating above 100 GHz, IEEE Electron Device Lett, vol.28, issue.10, pp.849-851, 2007.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-tombet, D. Coquillat et al., Field effect transistors for terahertz detection and emission, J. Infrared, Millimeter, Terahertz Waves, vol.32, issue.5, pp.618-628, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00814487

M. Sakhno, A. Golenkov, and F. Sizov, Uncooled detector challenges: Millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors, J. Appl. Phys, vol.114, issue.16, 2013.

J. S. Rieh, D. Yoon, and J. Yun, An overview of solid-state electronic sources and detectors for Terahertz imaging, Proc. -2014 IEEE 12th Int. Conf. Solid-State Integr. Circuit Technol. ICSICT, pp.1-4, 2014.

G. Dodel, On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application, Infrared Phys. Technol, vol.40, issue.3, pp.127-139, 1999.

J. Lampin, A. Pagies, G. Santarelli, J. Hesler, W. Hansel et al., Quantum cascade laser-pumped terahertz molecular lasers: frequency noise and phase-locking using a 1560 nm frequency comb, Opt. Express, vol.28, issue.2, p.2091, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02410876

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield et al., Terahertz semiconductor-heterostructure laser, Nature, vol.417, issue.6885, pp.156-159, 2002.

M. S. Vitiello, G. Scalari, B. Williams, and P. Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express, vol.23, issue.4, p.5167, 2015.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang et al., Optically pumped terahertz sources, Sci. China Technol. Sci, vol.60, issue.12, pp.1801-1818, 2017.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel et al., Narrow linewidth tunable terahertz radiation by photomixing without servo-locking, IEEE Trans. Terahertz Sci. Technol, vol.4, issue.2, pp.260-266, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00941862

K. Murasawa and T. Hidaka, Generation and homodyne detection of continuous terahertz waves using single photoconductive antenna, Jpn. J. Appl. Phys, vol.49, issue.12, 2010.

T. Ishibashi and H. Ito, Uni-traveling-carrier photodiodes, J. Appl. Phys, vol.127, issue.3, 2020.

S. Blin, R. Paquet, M. Myara, B. Chomet, L. L. Gratiet et al., Coherent and Tunable THz Emission Driven by an Integrated III-V Semiconductor Laser, IEEE J. Sel. Top. Quantum Electron, vol.23, issue.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652671

E. Castro-camus and M. Alfaro, Photoconductive devices for terahertz pulsed spectroscopy, Photonics Res, vol.4, issue.3, p.36, 2016.

X. C. Zhang and J. Xu, Generation and Detection of THz Waves, 2010.

R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel et al., Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range, Opt. Express, vol.22, issue.16, p.19411, 2014.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang et al., Single GaAs/AlGaAs nanowire photoconductive terahertz detectors, Conf. Optoelectron. Microelectron. Mater. Devices, pp.221-222, 2014.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya et al., Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity, J. Appl. Phys, vol.97, issue.10, 2005.

M. Tani, M. Herrmann, and K. Sakai, Generation and detection of THz pulsed radiation with photoconductive antennas, Meas. Sci. Technol, vol.13, pp.1739-1745, 2002.

G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya et al., A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis, Opt. Express, vol.23, issue.12, p.16184, 2015.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, High-intensity terahertz radiation from a microstructured large-area photoconductor, Appl. Phys. Lett, vol.86, issue.12, pp.1-3, 2005.

P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney et al., 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas, Opt. Express, vol.22, issue.21, p.26358, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01334184

X. Ropagnol, M. Khorasaninejad, M. Raeiszadeh, S. Safavi-naeini, M. Bouvier et al., Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas, Opt. Express, vol.24, issue.11, p.11299, 2016.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl et al., Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna, Opt. Express, vol.18, issue.9, p.9251, 2010.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun, vol.4, pp.1610-1622, 2013.

A. Jooshesh, V. Bahrami-yekta, J. Zhang, T. Tiedje, T. E. Darcie et al., Plasmon-Enhanced below Bandgap Photoconductive Terahertz Generation and Detection, Nano Lett, vol.15, issue.12, pp.8306-8310, 2015.

S. Park, Y. Choi, Y. Oh, and K. Jeong, Terahertz photoconductive antenna with metal nanoislands, Opt. Express, vol.20, issue.23, p.25530, 2012.

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, 7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes, IEEE Trans. Terahertz Sci. Technol, vol.4, issue.5, pp.575-581, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01203487

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, High-power terahertz generation using large-area plasmonic photoconductive emitters, IEEE Trans. Terahertz Sci. Technol, vol.5, issue.2, pp.223-229, 2015.

K. Moon, I. M. Lee, J. H. Shin, E. S. Lee, N. Kim et al., Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices, Sci. Rep, vol.5, pp.1-9, 2015.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan et al., Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures, Sci. Rep, vol.8, issue.1, pp.1-7, 2018.

F. D. Brunner and T. Feurer, Antireflection coatings optimized for single-cycle THz pulses, Appl. Opt, vol.52, issue.16, pp.3829-3832, 2013.

M. Nagel, C. Matheisen, and H. Kurz, Novel techniques in terahertz near-field imaging and sensing, 2013.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama et al., Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin Films, J. Infrared, Millimeter, Terahertz Waves, vol.36, issue.5, pp.423-429, 2015.

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel et al., Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers, Opt. Express, vol.18, issue.3, p.2296, 2010.

P. C. Gow, J. L. Carthy, S. A. Berry, and V. Apostolopoulos, A radial double-metal bias-free THz emitter for coaxial cable transmission, 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves, 2017.

B. Ferguson and X. C. Zhang, Materials for terahertz science and technology, Nature Materials, vol.1, issue.1, pp.26-33, 2002.

D. Saeedkia, Handbook of terahertz technolgy for imaging, sensing and comunications, 2013.

P. H. Siegel and R. J. Dengler, Terahertz heterodyne imaging part I: Introduction and techniques, Int. J. Infrared Millimeter Waves, vol.27, issue.4, pp.465-480, 2006.

J. Perraud, Reconstructions rapides d ' images en régime térahertz 3D, 2018.

D. A. Shaghik-atakaramians, S. Afshar, V. Tanya, and M. Monro, Terahertz dielectric waveguides, Adv. Opt. Photonics, vol.6, pp.293-339, 2014.

F. Pavanello, F. Garet, M. B. Kuppam, E. Peytavit, M. Vanwolleghem et al., Broadband ultra-low-loss mesh filters on flexible cyclic olefin copolymer films for terahertz applications, Appl. Phys. Lett, vol.102, issue.11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814965

X. Liu, K. Fan, I. V. Shadrivov, W. J. Padilla, X. I. Iu et al., Experimental realization of a terahertz all-dielectric metasurface absorber, Opt. Express, vol.25, issue.1, p.191, 2017.

F. Friederich, E. Cristofani, C. Matheis, J. Jonuscheit, R. Beigang et al., Continuous wave terahertz inspection of glass fiber reinforced plastics with semi-automatic 3-D image processing for enhanced defect detection, IEEE MTT-S Int. Microw. Symp. Dig, pp.1-4, 2014.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit et al., Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection, Opt. Eng, vol.53, issue.3, p.31211, 2014.

J. P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet et al., Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves, J. Infrared, Millimeter, Terahertz Waves, vol.38, issue.4, pp.369-379, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01437051

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses, Japanese J. Appl. Physics, Part 2 Lett, vol.43, issue.10 A, pp.43-46, 2004.

M. Tani, Z. Jiang, and X. Zhang, Photoconductive terahertz transceiver, Electron. Lett, vol.36, issue.9, pp.804-805, 2000.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, Terahertz wide aperture reflection tomography, Opt. Lett, vol.30, issue.13, pp.1653-1655, 2005.

C. Jordens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger et al., Fibre-coupled terahertz transceiver head, Electron. Lett, vol.44, issue.25, pp.44-45, 2008.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels et al., Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes, Proc. SPIE, vol.6616, p.66163, 2007.

S. Busch, T. Probst, M. Schwerdtfeger, R. Dietz, J. Palací et al., Terahertz transceiver concept, Opt. Express, vol.22, issue.14, p.16841, 2014.

M. Tani, M. Watanabe, and K. Sakai, Photoconductive twin dipole antennas for THz transceiver, Electron. Lett, vol.38, issue.1, p.5, 2002.

H. S. Bark, Y. Ji, S. J. Oh, S. K. Noh, and T. I. Jeon, Optical fiber coupled THz transceiver, IRMMW-THz 2015 -40th International Conference on Infrared, Millimeter, and Terahertz Waves, pp.1-2, 2015.

B. Globisch, R. J. Dietz, R. B. Kohlhaas, S. Nellen, M. Kleinert et al., Fibercoupled transceiver for terahertz reflection measurements with a 4.5 THz bandwidth, Opt. Lett, vol.41, issue.22, p.5262, 2016.

Y. Ji, E. S. Lee, S. Kim, J. Son, and T. Jeon, A miniaturized fiber-coupled terahertz endoscope system, Opt. Express, vol.17, issue.19, p.17082, 2009.

C. Jordens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger et al., Fibre-coupled terahertz transceiver head, Electron. Lett, vol.44, issue.25, 2008.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, Subwavelength plastic wire terahertz timedomain spectroscopy, Appl. Phys. Lett, vol.96, issue.5, 2008.

Y. Gao and R. Zoughi, Millimeter Wave Reflectometry and Imaging for Noninvasive Diagnosis of Skin Burn Injuries, IEEE Trans. Instrum. Meas, vol.66, issue.1, pp.77-84, 2017.

S. Ayhan, S. Scherr, M. Pauli, and T. Zwick, FMCW Radar in Oil-filled Waveguides for Range Detection in Hydraulic Cylinders, 2012 9th European Radar Conference, pp.63-66, 2012.

G. Goubau, Surface waves and their application to transmission lines, J. Appl. Phys, vol.21, issue.11, pp.1119-1128, 1950.

M. Wächter, M. Nagel, and H. Kurz, Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires, Opt. Express, vol.13, issue.26, pp.10815-10822, 2005.

J. Young, E. S. Lee, J. S. Jang, T. Jeon, M. H. Kwak et al., Guidance properties of metal wire waveguide by Terahertz pulse propagation, J. Korean Phys. Soc, vol.50, issue.5, pp.1238-1242, 2007.

K. R. Chu and P. Chow, A theoretical study of terahertz surface plasmons on a cylindrical metal wire, Phys. Plasmas, vol.24, issue.1, 2017.

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. Van-der et al., Frequency-dependent radiation patterns emitted by THz plasmons on cylindrical metal wires, Opt. Express, vol.14, issue.19, pp.1715-1719, 2006.

J. Zha, G. J. Kim, and T. Jeon, Enhanced THz guiding properties of curved two-wire lines, Opt. Express, vol.24, issue.6, p.6136, 2016.

A. Markov and M. Skorobogatiy, Two-wire terahertz fibers with porous dielectric support, Opt. Express, vol.21, issue.10, pp.5344-5355, 2013.

K. L. Wang and D. M. Mittleman, Metal wires for terahertz wave guiding, Nature, vol.432, pp.376-379, 2004.

M. Awad, M. Nagel, and H. Kurz, Tapered Sommerfeld wire terahertz near-field imaging, Appl. Phys. Lett, vol.94, issue.5, pp.3-6, 2009.

J. P. Guillet, L. Chusseau, R. Adam, T. Grosjean, A. Penarier et al., Continuous-wave scanning terahertz near-field microscope, Microw. Opt. Technol. Lett, vol.53, issue.3, pp.580-582, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00565014

H. Cao and A. Nahata, Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves, Opt. Express, vol.13, issue.18, p.7028, 2005.

L. Chusseau and J. Guillet, Coupling and propagation of Sommerfeld waves at, vol.100, p.300
URL : https://hal.archives-ouvertes.fr/hal-01091187

. Ghz, J. Infrared, Millimeter, Terahertz Waves, vol.33, issue.2, pp.174-182, 2012.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, Enhanced coupling of terahertz radiation to cylindrical wire waveguides, Opt. Express, vol.14, issue.1, pp.511-518, 2006.

T. I. Jeon, J. Zhang, and D. Grischkowsky, THz Sommerfeld wave propagation on a single metal wire, Appl. Phys. Lett, vol.86, issue.16, pp.1-3, 2005.

Y. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide, Opt. Express, vol.16, issue.1, pp.271-278, 2008.

M. Wächter, M. Nagel, and H. Kurz, Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution, Appl. Phys. Lett, vol.95, issue.4, pp.1-4, 2009.

R. Imai, N. Kanda, K. Konishi, and M. Kuwata-gonokami, Terahertz vector beam generation using segmented nonlinear optical crystals with three-fold rotational symmetry, Opt. Express, vol.20, issue.20, p.21896, 2012.

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-gonokami, Efficient coupling of broadband terahertz radial beams to metal wires, Opt. Express, vol.21, issue.9, pp.8433-8439, 2013.

R. Menais and D. Grischkowsky, THz interconnect with low-loss and low-group velocity dispersion, IEEE Microw. Wirel. Components Lett, vol.11, issue.11, pp.444-446, 2001.

R. Mendis and D. Grischkowsky, Undistorted guided-wave propagation of subpicosecond terahertz pulses, Opt. Lett, vol.26, issue.11, p.846, 2001.

A. Bingham, Y. Zhao, and D. Grischkowsky, THz parallel plate photonic waveguides, Appl. Phys. Lett, vol.87, issue.5, pp.10-13, 2005.

S. Kim, E. S. Lee, Y. Ji, and T. Jeon, Improvement of THz coupling using a tapered parallel-plate waveguide, Opt. Express, vol.18, issue.2, p.1289, 2010.

J. Liu, R. Mendis, D. M. Mittleman, and N. Sakoda, A tapered parallel-plate-waveguide probe for THz near-field reflection imaging, Appl. Phys. Lett, vol.100, issue.3, pp.98-101, 2012.

M. Navarro-cía, J. Wu, H. Liu, and O. Mitrofanov, Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides, Sci. Rep, vol.6, pp.1-8, 2016.

J. Zhang and T. Y. Hsiang, Dispersion characteristics of coplanar waveguides at subterahertz frequencies, 2006.

Z. Zhou and K. L. Melde, Development of a broadband coplanar waveguide-to-microstrip transition with vias, IEEE Trans. Adv. Packag, vol.31, issue.4, pp.861-872, 2008.

M. Naftaly and R. E. Miles, Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared, J. Non. Cryst. Solids, vol.351, pp.3341-3346, 2005.

J. Anthony, R. Leonhardt, A. Argyros, and M. C. Large, Characterization of a microstructured Zeonex terahertz fiber, J. Opt. Soc. Am. B, vol.28, issue.5, p.1013, 2011.

J. Balakrishnan, B. M. Fischer, and D. Abbott, Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy, Appl. Opt, vol.48, issue.12, pp.2262-2266, 2009.

Y. S. Jin, G. J. Kim, and S. G. Jeon, Terahertz dielectric properties of polymers, J. Korean Phys. Soc, vol.49, issue.2, pp.513-517, 2006.

A. W. Snyder and J. Love, Optical waveguide theory, 2012.

S. P. Jamison, R. W. Mcgowan, and D. Grischkowsky, Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers, Appl. Phys. Lett, vol.76, issue.15, 1987.

R. Mendis and D. Grischkowsky, Plastic ribbon THz waveguides, J. Appl. Phys, vol.88, pp.4449-4451, 2000.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, Low-loss subwavelength plastic fiber for terahertz waveguiding, Opt. Lett, vol.31, issue.3, p.308, 2006.

J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang et al., Terahertz scanning imaging with a subwavelength plastic fiber, Appl. Phys. Lett, vol.92, issue.8, pp.2006-2009, 2008.

C. Chiu, H. Chen, Y. Huang, Y. Hwang, W. Lee et al., All-terahertz fiberscanning near-field microscopy, Opt. Lett, vol.34, issue.7, pp.1084-1086, 2009.

B. You, T. Liu, J. Peng, C. Pan, and J. Lu, A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection, Opt. Express, vol.17, issue.23, pp.20675-20683, 2009.

B. Ung, M. Rozé, A. Mazhorova, M. Walther, and M. Skorobogatiy, Suspended core subwavelength fibers for practical low-loss terahertz guidance, Opt. InfoBase Conf. Pap, vol.19, issue.10, pp.1431-1433, 2011.

H. Han, H. Park, M. Cho, and J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber, Appl. Phys. Lett, vol.80, issue.15, pp.2634-2636, 2002.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, Teflon Photonic Crystal Fiber as Terahertz Waveguide, Japanese J. Appl. Physics, Part 2 Lett, vol.43, issue.2 B, 2004.

Y. Li, C. Wang, N. Zhang, C. Y. Wang, and Q. Xing, Analysis and design of terahertz photonic crystal fibers by an effective-index method, Appl. Opt, vol.45, issue.33, pp.8462-8465, 2006.

D. K. Sharma, A. Sharma, and S. M. Tripathi, Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model, Opt. Fiber Technol, vol.39, issue.September, pp.55-69, 2017.

M. Nagel, A. Marchewka, and H. Kurz, Low-index discontinuity terahertz waveguides, Opt. Express, vol.14, issue.21, pp.9944-54, 2006.

A. Hassani, A. Dupuis, and M. Skorobogatiy, Low loss porous terahertz fibers containing multiple subwavelength holes, Appl. Phys. Lett, vol.92, issue.7, pp.2006-2009, 2008.

S. Atakaramians, S. Afshar, V. , B. M. Fischer, D. Abbott et al., Porous fibers: a novel approach to low loss THz waveguides, Opt. Express, vol.16, issue.12, p.8845, 2008.

S. Atakaramians, S. Afshar, V. , B. M. Fischer, D. Abbott et al., Low loss, low dispersion and highly birefringent terahertz porous fibers, Opt. Commun, vol.282, issue.1, pp.36-38, 2009.

S. Atakaramians, S. Afshar, V. , H. Ebendorff-heidepriem, M. Nagel et al., THz porous fibers: design, fabrication and experimental characterization, Opt. Express, vol.17, issue.16, p.14053, 2009.

S. Atakaramians, S. Afshar, V. , M. Nagel, H. K. Rasmussen et al., Direct probing of evanescent field for characterization of porous terahertz fibers, Appl. Phys. Lett, vol.98, issue.12, 2009.

A. Dupuis, J. Allard, D. Morris, K. Stoeffler, C. Dubois et al., Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method, Opt. Express, vol.17, issue.10, p.8012, 2009.

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, Porous-core honeycomb bandgap THz fiber, Opt. Lett, vol.36, issue.5, p.666, 2011.

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, Fabrication and characterization of porous-core honeycomb bandgap THz fibers, Opt. Express, vol.20, issue.28, p.29507, 2012.

J. Fan, Y. Li, M. Hu, L. Chai, and C. Wang, Design of Broadband Porous-Core Bandgap Terahertz Fibers, IEEE Photonics Technol. Lett, vol.28, issue.10, pp.1096-1099, 2016.

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, Polymer microstructured optical fibers for terahertz wave guiding, Opt. Express, vol.19, issue.26, p.848, 2011.

S. F. Kaijage, Z. Ouyang, and X. Jin, Porous-core photonic crystal fiber for low loss terahertz wave guiding, IEEE Photonics Technol. Lett, vol.25, issue.15, pp.1454-1457, 2013.

R. Islam, G. K. Hasanuzzaman, M. S. Habib, S. Rana, and M. A. Khan, Low-loss rotated porous core hexagonal single-mode fiber in THz regime, Opt. Fiber Technol, vol.24, pp.38-43, 2015.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal et al., Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission, Opt. Fiber Technol, vol.34, pp.6-11, 2017.

S. Rana, A. S. Rakin, M. R. Hasan, M. S. Reza, R. Leonhardt et al., Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime, Opt. Commun, vol.410, pp.452-456, 2017.

Z. Wu, X. Zhou, H. Xia, Z. Shi, J. Huang et al., Low-loss polarizationmaintaining THz photonic crystal fiber with a triple-hole core, Appl. Opt, vol.56, issue.8, pp.2288-2293, 2017.

M. D. Islam, J. A. Sultana, J. Atai, D. Abbott, S. Rana et al., Ultra low-loss hybrid core porous fiber for broadband applications, Appl. Opt, vol.56, issue.4, pp.1232-1237, 2017.

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser et al., A modified hexagonal photonic crystal fiber for terahertz applications, Opt. Mater. (Amst), vol.79, pp.336-339, 2018.

J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W. et al., Terahertz detection of alcohol using a photonic crystal fiber sensor, Appl. Opt, vol.57, issue.10, p.2426, 2018.

S. Rana, A. S. Rakin, H. Subbaraman, R. Leonhardt, and D. Abbott, Low Loss and Low Dispersion Fiber for Transmission Applications in the Terahertz Regime, IEEE Photonics Technol. Lett, vol.29, issue.10, pp.830-833, 2017.

M. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam et al., Zeonexbased asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications, Appl. Opt, vol.57, issue.4, p.666, 2018.

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. Wai-him et al., Terahertz sensing in a hollow core photonic crystal fiber, IEEE Sens. J, vol.18, issue.10, pp.4073-4080, 2018.

B. Bowden, J. Harrington, and O. Mitrofanov, Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation, Opt. Lett, vol.32, issue.20, pp.2945-2952, 2007.

J. Harrington, R. George, P. Pedersen, and E. Mueller, Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation, Opt. Express, vol.12, issue.21, pp.5263-5268, 2004.

M. Navarro-cia, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, Silver-Coated Teflon Tubes for Waveguiding at 1-2THz, J. Infrared, Millimeter, Terahertz Waves, vol.36, issue.6, pp.542-555, 2015.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li et al., Dual cylindrical metallic gratingcladding polymer hollow waveguide for terahertz transmission with low loss, Appl. Phys. Lett, vol.97, issue.13, pp.65-68, 2010.

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, Implementing Bragg mirrors in a hollow-core photonic-crystal fiber, Opt. Express, vol.25, issue.4, pp.4126-4144, 2017.

J. Flannery, G. Bappi, V. Bhaskara, O. Alshehri, and M. Bajcsy, Implementing Bragg mirrors in a hollow-core photonic-crystal fiber, Opt. Mater. Express, vol.7, issue.4, pp.207-210, 2017.

B. Hong, S. Member, M. Swithenbank, N. Greenall, R. G. Clarke et al., Low-Loss Asymptotically Single-Mode THz Bragg Fiber Fabricated by Digital Light Processing Rapid Prototyping, IEEE Trans. Terahertz Sci. Technol, vol.8, issue.1, pp.90-99, 2018.

M. R. Hasan and S. Akter, Extremely low-loss hollow-core bandgap photonic crystal fibre for broadband terahertz wave guiding, Electron. Lett, vol.53, issue.11, pp.741-743, 2017.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures, Appl. Phys. Lett, vol.49, issue.1, pp.13-15, 1986.

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, Waveguide loss optimization in hollow-core ARROW waveguides, Opt. Express, vol.13, issue.23, p.9331, 2005.

N. ,

M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, Antiresonant reflecting photonic crystal optical waveguides, Opt. Lett, vol.27, issue.18, pp.1592-1594, 2002.

P. Rugeland, C. Sterner, and W. Margulis, Visible light guidance in silica capillaries by antiresonant reflection, Opt. Express, vol.21, issue.24, p.29217, 2013.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li et al., Terahertz aircore microstructure fiber, Appl. Phys. Lett, vol.92, issue.6, p.64105, 2008.

C. Lai, Y. Hsueh, H. Chen, Y. Huang, H. Chang et al., Low-index terahertz pipe waveguides, Opt. Lett, vol.34, issue.21, pp.3457-3459, 2009.

D. Chen and H. Chen, A novel terahertz waveguide: Polymer tube, Opt. Express, vol.18, issue.4, pp.3762-3767, 2010.

E. Nguema, D. Férachou, G. Humbert, J. Auguste, and J. Blondy, Broadband terahertz transmission within the air channel of thin-wall pipe, Opt. Lett, vol.36, issue.10, pp.1782-1784, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00924365

C. Lai, B. You, J. Lu, T. Liu, J. Peng et al., Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding, Opt. Express, vol.18, issue.1, p.309, 2010.

B. You, J. Lu, C. Yu, T. Liu, and J. Peng, Terahertz refractive index sensors using dielectric pipe waveguides, Opt. Express, vol.20, issue.6, p.5858, 2012.

H. Chen, J. Lu, and B. You, Terahertz endoscope based on anti-resonant reflecting hollow core waveguides, Opt. Soc. Am, vol.2, issue.c, 2011.

B. You and J. Lu, Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide, Opt. Express, vol.24, issue.16, p.18013, 2016.

Y. Zhong, G. Xie, F. Mao, J. Ding, F. Yue et al., Thin-wall cyclic olefin copolymer tube waveguide for broadband terahertz transmission, Opt. Mater. (Amst), vol.98, p.109490, 2019.

J. B. Sleiman, B. Bousquet, N. Palka, and P. Mounaix, Quantitative Analysis of Hexahydro-1,3,5-trinitro-1,3,5, Triazine/Pentaerythritol Tetranitrate (RDX-PETN) Mixtures by Terahertz Time Domain Spectroscopy, Appl. Spectrosc, vol.69, issue.12, pp.1464-1471, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263720

J. B. Perraud, A. F. Obaton, J. Bou-sleiman, B. Recur, H. Balacey et al., Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects, Appl. Opt, vol.55, issue.13, p.3462, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390875

J. Perraud, J. Guillet, O. Redon, M. Hamdi, F. Simoens et al., Shape-from-focus for real-time terahertz 3D imaging, Opt. Lett, vol.44, issue.3, p.483, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02009683

G. Ducournau, P. Szriftgiser, F. Pavanello, E. Peytavit, M. Zaknoune et al., THz Communications using Photonics and Electronic Devices: the Race to Data-Rate, J. Infrared, Millimeter, Terahertz Waves, vol.36, issue.2, pp.198-220, 2015.

G. Ducournau, F. Pavanello, A. Beck, L. Tohme, S. Blin et al., High-definition television transmission at 600 GHz combining THz photonics hotspot and high-sensitivity heterodyne receiver, Electron. Lett, vol.50, issue.5, pp.413-415, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00955223

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello et al., Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection, IEEE Trans. Terahertz Sci. Technol, vol.4, issue.3, pp.328-337, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987955

H. J. Song and T. Nagatsuma, Present and future of terahertz communications, IEEE Trans. Terahertz Sci. Technol, vol.1, issue.1, pp.256-263, 2011.

N. M. Burford, M. O. El-shenawee, C. B. Neal, and K. J. Olejniczak, Terahertz Imaging for Nondestructive Evaluation of Packaged Power Electronic Devices, Int. J. Emerg. Technol. Adv. Eng, vol.4, issue.1, pp.395-401, 2014.

W. G. Yeo, N. K. Nahar, R. Lee, and J. L. Volakis, New frontiers for commercial applications of terahertz, Natl. Aerosp. Electron. Conf. Proc. IEEE, pp.5-8, 2011.

G. Ok, H. J. Shin, M. C. Lim, and S. W. Choi, Large-scan-area sub-terahertz imaging system for nondestructive food quality inspection, Food Control, vol.96, pp.383-389, 2019.

A. Ren, A. Zahid, D. Fan, X. Yang, M. A. Imran et al., State-of-the-art in terahertz sensing for food and water security -A comprehensive review, Trends Food Sci. Technol, vol.85, pp.241-251, 2019.

K. Krügener, E. Stübling, R. Jachim, B. Kietz, M. Koch et al., THz tomography for detecting damages on wood caused by insects, Appl. Opt, vol.58, issue.22, p.6063, 2019.

Q. Cassar, A. Chopard, F. Fauquet, J. Guillet, M. Pan et al., Iterative Tree Algorithm to Evaluate Terahertz Signal Contribution of Specific Optical Paths within Multi-Layered Materials, IEEE Trans. Terahertz Sci. Technol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02335825

M. Picot, H. Ballacey, J. P. Guillet, Q. Cassar, and P. Mounaix, Terahertz Paint Thickness Measurements : from lab to automotive and aeronautics industry, Apndt2017, pp.1-8, 2017.

|. Teraview and . Teracota, Terahertz Coating thickness analysis

E. M. Kleist, C. L. Koch-dandolo, J. P. Guillet, P. Mounaix, and T. M. Korter, Terahertz Spectroscopy and Quantum Mechanical Simulations of Crystalline Copper-Containing Historical Pigments, J. Phys. Chem. A, vol.123, issue.6, pp.1225-1232, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02009689

C. L. Dandolo, J. Guillet, X. Ma, F. Fauquet, M. Roux et al., Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis, Opt. Express, vol.26, issue.5, p.5358, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718044

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, New terahertz security body scanner, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp.1-1, 2018.

T. P. , C. B. , C. A. , F. A. , and T. W. , Security applications of terahertz technology, Terahertz for Military and Security Applications, vol.5070, pp.6-8, 2003.

D. Markl, M. T. Ruggiero, and J. A. Zeitler, Pharmaceutical applications of terahertz spectroscopy and imaging, Eur. Pharm. Rev, vol.21, issue.4, pp.45-50, 2016.

A. Al-ibadi, J. Bou-sleiman, Q. Cassar, G. Macgrogan, H. Balacey et al., Terahertz biomedical imaging: From multivariate analysis and detection to material parameter extraction, Prog. Electromagn. Res. Symp, vol.1343, pp.2756-2762, 2017.

E. Pickwell and V. P. Wallace, Biomedical applications of terahertz technology, J. Phys. D. Appl. Phys, vol.39, issue.17, 2006.

Q. Sun, R. I. Stantchev, J. Wang, E. P. Parrott, A. Cottenden et al., In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy, J. Biophotonics, vol.12, issue.2, pp.1-10, 2018.

Q. Cassar, A. Al-ibadi, L. Mavarani, P. Hillger, J. Grzyb et al.,

, GHz range, Biomed. Opt. Express, vol.9, issue.7, p.2930, 2018.

P. Doradla, C. Joseph, and R. H. Giles, Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives, Word J. Gastrointest. Endosc, vol.9, issue.8, pp.346-358, 2017.

Y. Ji, C. H. Park, H. Kim, S. Kim, G. M. Lee et al., Feasibility of terahertz reflectometry for discrimination of human early gastric cancers, Biomed. Opt. Express, vol.6, issue.4, p.1398, 2015.

U. R. Pfeiffer, P. Hillger, R. Jain, J. Grzyb, T. Bucher et al., Ex Vivo Breast Tumor Identification: Advances Toward a Silicon-Based Terahertz Near-Field Imaging Sensor, IEEE Microw. Mag, vol.20, issue.9, pp.32-46, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02890448

D. L. Peytavit, E. Lampin, J. F. Akalin, and T. , Integrated terahertz TEM horn antenna, Electron. Lett, vol.43, issue.2, pp.73-75, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00255785

R. O. Mith, A. F. Ooshesh, J. I. Hang, and T. H. Arcie, THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter, vol.25, pp.23466-23471, 2017.

M. Nagel, C. Matheisen, S. Sawallich, H. Kurz, M. Nagel et al., Photoconductive microprobe enabled on-chip and wafer-scale Terahertz sensing applications, Adv. Photonics, 2015.

H. Yagi and S. Uda, Projector of the Sharpest Beam of Electric Waves, Proceedings of the Imperial Academy, vol.2, pp.49-52, 1926.

K. Han, Y. Park, H. Choo, and I. Park, Broadband CPS-fed Yagi-Uda antenna, Electron. Lett, vol.45, issue.24, p.1207, 2009.

P. L. Chi and Y. C. Chou, Planar Quasi-Yagi Antenna for Future 5G and WiGig Applications, APSURSI 2018 -Proc, pp.1213-1214, 2018.

F. Pavanello, G. Ducournau, E. Peytavit, S. Lepilliet, and J. F. Lampin, High-gain Yagi-Uda antenna on cyclic olefin copolymer substrate for 300-GHz applications, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.939-942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00996085

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, Optical yagi-uda nanoantennas, Nanophotonics, vol.1, issue.1, pp.65-81, 2012.

N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, A Broad-Band Planar Quasi-Yagi Antenna, IEEE Trans. Antennas Propag, vol.50, issue.8, pp.1158-1160, 2010.

N. Kaneda, Y. Qian, and T. Itoh, A broadband CPW-to-waveguide transition using quasi-Yagi antenna, IEEE MTT-S Digest, pp.617-620, 2002.

H. K. Kan, R. B. Waterhouse, A. M. Abbosh, and M. E. Bialkowski, Simple broadband planar CPW-fed quasi-Yagi antenna, IEEE Antennas Wirel. Propag. Lett, vol.6, pp.18-20, 2007.

T. Weiland, A discretization model for the solution of Maxwell's equations for six-component fields, Arch. Elektron. und Uebertragungstechnik, vol.31, pp.116-120, 1977.

C. A. Balanis, Antenna theory : analysis and design, 2016.

F. Friederich, K. May, B. Baccouche, C. Matheis, M. Bauer et al., Terahertz Radome Inspection, Photonics, vol.5, issue.1, p.1, 2018.

A. T. Local, O. Source, A. Maestrini, J. Ward, J. Gill et al., A 1.7-1.9 THz Local Oscillator Source, Ieee Microw. Wirel. Components Lett, vol.14, issue.6, pp.253-255, 2004.

M. Abbasi, S. E. Gunnarsson, N. Wadefalk, R. Kozhuharov, J. Svedin et al., Single-chip 220-GHz active heterodyne receiver and transmitter MMICs with on-chip integrated antenna, IEEE Trans. Microw. Theory Tech, vol.59, issue.2, pp.466-478, 2011.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay et al., Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar, IEEE Trans. Microw. Theory Tech, vol.56, issue.12, pp.2771-2778, 2008.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel et al., Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band, IEEE Trans. Microw. Theory Tech, vol.60, issue.3, pp.845-860, 2012.

K. Schmalz, W. Winkler, J. Borngdiber, W. Debski, B. Heinemann et al., 122 GHz ISM-band transceiver concept and silicon ICs for low-cost receiver in SiGe BiCMOS, IEEE MTT-S Int. Microw. Symp. Dig, pp.1332-1335, 2010.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan et al., Miniaturized Millimeter-Wave Radar Sensor for High-Accuracy Applications, IEEE Trans. Microw. Theory Tech, vol.65, issue.5, pp.1707-1715, 2017.

K. Schmalz, J. Borngräber, B. Heinemann, H. Rücker, and J. C. Scheytt, A 245 GHz transmitter in SiGe technology, Dig. Pap. -IEEE Radio Freq. Integr. Circuits Symp, pp.195-198, 2012.

C. H. Ei, R. J. Eiblen, and C. U. Enyuk, Negative curvature fibers, vol.9, pp.504-561, 2017.

L. Vincetti, Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications, Opt. Fiber Technol, vol.15, issue.4, pp.398-401, 2009.

L. Vincetti, Single-mode propagation in triangular tube lattice hollow-core terahertz fibers, Opt. Commun, vol.283, issue.6, pp.979-984, 2010.

L. Vincetti and V. Setti, Elliptical hollow core tube lattice fibers for terahertz applications, Opt. Fiber Technol, vol.19, issue.1, pp.31-34, 2013.

M. M. Nazarov, A. V. Shilov, K. A. Bzheumikhov, Z. C. Margushev, V. I. Sokolov et al., Eight-Capillary Cladding THz Waveguide with Low Propagation Losses and Dispersion, IEEE Trans. Terahertz Sci. Technol, vol.8, issue.2, pp.183-191, 2018.

A. L. Cruz, V. A. Serrão, C. L. Barbosa, and M. A. Franco, 3D Printed Hollow Core Fiber with Negative Curvature for Terahertz Applications, J. Microwaves, Optoelectron. Electromagn. Appl, vol.14, pp.45-53, 2015.

L. D. Van-putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, 3D-printed polymer antiresonant waveguides for short-reach terahertz applications, Appl. Opt, vol.57, issue.14, pp.3953-3958, 2018.

G. K. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance, Opt. Commun, vol.426, issue.ii, pp.477-482, 2018.

J. Sultana, S. Islam, C. M. Cordeiro, and A. Dinovitser, Terahertz Hollow Core Antiresonant Fiber with Metamaterial Cladding, Fibers, vol.8, issue.2, pp.1-11, 2020.

W. Lu, S. Lou, X. Wang, Y. Shen, and X. Sheng, Demonstration of low-loss flexible fiber with Zeonex tube-lattice cladding for Terahertz transmission, 2015 Optical Fiber Communications Conference and Exhibition (OFC), pp.6-8, 2015.

B. Bhushan and M. Caspers, An overview of additive manufacturing (3D printing) for microfabrication, Microsyst. Technol, vol.23, issue.4, pp.1117-1124, 2017.

B. Zhang and H. Zirath, Metallic 3-D Printed Rectangular Waveguides for Millimeter-Wave Applications, IEEE Trans. Components, Packag. Manuf. Technol, vol.6, issue.5, pp.796-804, 2016.

I. O. Saracho-pantoja, J. R. Montejo-garai, J. A. Ruiz-cruz, and J. M. Rebollar, Additive Manufacturing of 3D Printed Microwave Passive Components, Emerg. Microw. Technol. Ind. Agric. Med. Food Process, 2018.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-mejía et al., 3D Printed Terahertz Focusing Grating Couplers, J. Infrared, Millimeter, Terahertz Waves, vol.38, issue.6, pp.708-716, 2017.

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, THz Optics 3D Printed with TOPAS, J. Infrared, Millimeter, Terahertz Waves, vol.37, issue.4, pp.303-307, 2016.

M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-mejía et al., 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz, Opt. Express, vol.24, issue.25, p.28968, 2016.

Z. Wu, W. Ng, M. E. Gehm, and H. Xin, Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping, Opt. Express, vol.19, issue.5, pp.3962-3972, 2011.

S. Korobogatiy, 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications, vol.25, pp.309-322, 2017.

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun et al., 3D printed low-loss THz waveguide based on Kagome photonic crystal structure, Opt. Express, vol.24, issue.20, p.22454, 2016.

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, Novel Pentagram THz Hollow Core Antiresonant Fiber Using a 3D Printer, J. Infrared, Millimeter, Terahertz Waves, vol.40, issue.7, pp.720-730, 2019.

A. L. Cruz, M. A. Franco, C. M. Cordeiro, G. S. Rodrigues, H. Osório et al., Exploring THz Hollow-Core Fiber Designs Manufactured by 3D Printing, vol.00, pp.2-6, 2017.

A. Cruz, C. Cordeiro, and M. Franco, 3D Printed Hollow-Core Terahertz Fibers, Fibers, vol.6, issue.3, p.43, 2018.

M. E. Layani-tzadka, D. Krotkov, E. Tirosh, G. Markovich, and S. Fleischer, Contact-free conductivity probing of metal nanowire films using THz reflection spectroscopy, Nanotechnology, vol.30, issue.21, 2019.

K. Wang and D. M. Mittleman, Metal wires for terahertz wave guiding, Nature, vol.432, issue.7015, pp.376-379, 2004.

Y. Cai, Z. Wang, R. Dias, and D. Goyal, Electro Optical Terahertz Pulse Reflectometry -An innovative fault isolation tool, Proceedings -Electronic Components and Technology Conference, pp.1309-1315, 2010.

K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward et al., Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering, Conf Proc IEEE Eng Med Biol Soc, vol.2, pp.1302-1305, 2004.

M. Nagel, M. Först, and H. Kurz, THz biosensing devices: Fundamentals and technology, J. Phys. Condens. Matter, vol.18, issue.18, 2006.

P. Doradla, K. Alavi, C. Joseph, and R. Giles, Single-channel prototype terahertz endoscopic system, J. Biomed. Opt, vol.19, issue.8, 2014.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, Flexible waveguide enabled single-channel terahertz endoscopic system, Terahertz, RF, Millimeter, Submillimeter-Wave Technol. Appl. VIII, vol.9362, p.93620, 2015.

H. Balacey, B. Recur, J. Perraud, J. B. Sleiman, and P. Mounaix, Advanced Processing Sequence for 3-D THz Imaging, IEEE Trans. Terahertz Sci. Technol, vol.6, issue.2, pp.191-198, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390881

J. B. Perraud, J. B. Sleiman, B. Recur, H. Balacey, F. Simoens et al., Liquid index matching for 2D and 3D terahertz imaging, Appl. Opt, vol.55, issue.32, pp.9185-9192, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263947

W. R. Deal, K. Leong, V. Radisic, S. Sarkozy, B. Gorospe et al., Low noise amplification at 0.67 THz using 30 nm InP HEMTs, IEEE Microw. Wirel. Components Lett, vol.21, issue.7, pp.368-370, 2011.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida et al., Power amplification at 0.65 THz using InP HEMTs, IEEE Trans. Microw. Theory Tech, vol.60, issue.3, pp.724-729, 2012.

W. Deal, S. Member, X. B. Mei, K. M. Leong, V. Radisic et al., THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors, IEEE Trans. Terahertz Sci. Technol, vol.1, issue.1, pp.25-32, 2011.

W. R. Deal, K. Leong, A. Zamora, V. Radisic, and X. B. Mei, Recent progress in scaling InP HEMT TMIC technology to 850 GHz, IEEE MTT-S International Microwave Symposium Digest, pp.1-3, 2014.

M. Urteaga, M. Seo, J. Hacker, Z. Griffith, R. Young et al., InP HBTs for THz frequency integrated circuits, IPRM 2011 -23rd Int. Conf. Indium Phosphide Relat. Mater, pp.1-4, 2011.

M. Urteaga, A. Carter, Z. Griffith, R. Pierson, A. Arias et al., THz Bandwidth InP HBT Technologies and Heterogeneous Integration with Si CMOS, IEEE Bipolar/BiCMOS Circuits Technol. Meet, pp.35-41, 2016.

S. Kang, D. Kim, M. Urteaga, and M. Seo, State-of-the-art THz integrated circuits in InP HBT technologies, 2017 IEEE International Symposium on Radio-Frequency Integration Technology, pp.25-27, 2017.

T. Kraemer, I. Ostermay, T. Jensen, T. K. Johansen, F. J. Schmueckle et al., InP-DHBT-on-BiCMOS technology with fTfmax of 400/350 GHz for heterogeneous integrated millimeter-wave sources, IEEE Trans. Electron Devices, vol.60, issue.7, pp.2209-2216, 2013.

L. Samoska, A. Fung, D. Pukala, P. Kangaslahti, R. Lai et al., Onwafer measurements of S-MMIC amplifiers from 400-500 GHz, IEEE MTT-S Int. Microw. Symp. Dig, pp.1-4, 2011.

A. Fung, L. Samoska, S. Member, D. Pukala, D. Dawson et al.,

B. Mei, On-Wafer S-Parameter Measurements in the, IEEE Trans. Terahertz Sci. Technol, vol.2, issue.2, pp.186-192, 2012.

A. Fung, L. Samoska, M. Varonen, P. Kangaslahti, S. Sarkozy et al., A practical implementation of millimeter and submillimeter wave length on-wafer S-parameter calibration, 39th Int. Conf. Infrared, Millimeter, Terahertz waves, pp.1-2, 2014.

A. Rumiantsev, RF Probe Technology ©, IEEE Microwave Magazine, pp.46-58, 2013.

M. F. Bauwens, N. Alijabbari, A. W. Lichtenberger, N. S. Barker, and R. M. Weikle, A 1.1 THz micromachined on-wafer probe, IEEE MTT-S Int. Microw. Symp. Dig, pp.6-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01836226

E. M. Godshalk, A V-Band Wafer Probe Using Ridge-Trough Waveguide, IEEE Trans. Microw. Theory Tech, vol.39, issue.12, pp.2218-2228, 1991.

E. M. Godshalk, J. Burr, and J. Williams, An Air Coplanar Wafer Probe, pp.70-75, 2007.

N. S. Barker, M. Bauwens, A. L. Erger, and R. Weikle, Silicon-on-insulator substrates as a micromachining platform for advanced terahertz circuits, Proceedings of the IEEE, vol.105, pp.1105-1120, 2017.

M. F. Bauwens, S. Member, L. Chen, C. Zhang, S. Member et al., Characterization of Micromachined On-Wafer Probes for the 600-900 GHz Waveguide Band, IEEE Trans. Terahertz Sci. Technol, vol.4, issue.4, pp.527-529, 2014.

R. Campbell, M. Andrews, L. Samoska, and A. Fung, Membrane Tip Probes for On-Wafer Measurements in the 220 to 325 GHz Band, 18th International Symposium on space Terahertz Technology, pp.141-149, 2007.

R. L. Campbell, M. Andrews, T. Lesher, and C. Wai, 220 GHz wafer probe membrane tips and waveguide-to-coax transitions, 35th European Microwave Conference 2005 -Conference Proceedings, vol.2, pp.1003-1006, 2005.

C. Zhang, M. F. Bauwens, L. Xie, M. E. Cyberey, N. S. Barker et al., A Micromachined Differential Probe for On-Wafer Measurements in the WM-1295 ( 140 -220 GHz ) Band, vol.1295, pp.1088-1090, 2017.

Q. Yu, M. Bauwens, C. Zhang, A. W. Lichtenberger, R. M. Ii et al., Integrated Strain Sensor for Micromachined Terahertz On-Wafer Probe, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.1-4, 2013.

M. F. Bauwens, Micromachined probes for on-wafer characterization of terahertz and submillimeter-wave components, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, pp.1-2

R. M. Weikle, N. S. Barker, A. W. Lichtenberger, and M. F. Bauwens, Micromachined Probes for On-Wafer Measurement of Millimeter-and Submillimeter-Wave Devices and Components, 2013 IEEE Glob. Conf. Signal Inf. Process, pp.707-710, 2013.

L. Chen, C. Zhang, T. J. Reck, C. Groppil, A. Arsenovic et al., Terahertz Micromachined On-wafer Probes : Repeatability and Robustness, 2011 IEEE MTT-S International Microwave Symposium, pp.1-4

K. Daffé, G. Dambrine, F. V. Kleist-retzow, and K. Haddadi, RF Wafer Probing with Improved Contact Repeatability Using Nanometer Positioning, pp.2-5, 2016.

Q. Yu, M. Bauwens, A. W. Lichtenberger, R. M. Weikle, and N. S. Barker, Measurement Uncertainty Characterization of Terahertz Large Wafer Probing, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-4, 2014.

Q. Yu, M. F. Bauwens, C. Zhang, A. W. Lichtenberger, R. M. Weikle et al., Improved micromachined terahertz on-wafer probe using integrated strain sensor, IEEE Trans. Microw. Theory Tech, vol.61, issue.12, pp.4613-4620, 2013.

J. A. Byford and P. Chahal, Broad-band dielectric probes for on-wafer characterization of terahertz devices, Proc. -Electron. Components Technol. Conf., vol, pp.2367-2373, 2018.

C. Caglayan and K. Sertel, Experimental Analysis of Repeatability and Calibration Residuals in On-Wafer Non-Contact Probing, IEEE Trans. Microw. Theory Tech, vol.65, issue.6, pp.2185-2191, 2017.

C. Caglayan and K. Sertel, Noncontact On-Wafer Characterization of Submillimeter-Wave Devices and Integrated Circuits, IEEE Trans. Microw. Theory Tech, vol.64, issue.2, pp.3911-3917, 2016.

C. Caglayan, G. C. Trichopoulos, and K. Sertel, Non-Contact Probes for On-Wafer Characterization of Sub-millimeter Wave Devices and Integrated, IEEE Trans. Terahertz Sci. Technol, pp.1-10, 2013.

K. Sertel, Automated Performance of On-wafer Calibration and Characterization Using Noncontact Probes, 2019 92nd ARFTG Microwave Measurement Conference (ARFTG), pp.1-4, 2019.

Y. Cui and G. C. Trichopoulos, Toward a terahertz quasi-optical vector network analyzer, 2017 IEEE Antennas and Propagation Society International Symposium, pp.1511-1512, 2017.

Y. Cui and G. C. Trichopoulos, A Quasi-Optical Testbed for Wideband THz, IEEE Trans. Terahertz Sci. Technol, vol.9, issue.2, pp.126-135, 2019.

J. H. Lau, Overview and outlook of through-silicon via (TSV) and 3D integrations, Microelectron. Int, vol.28, issue.2, pp.8-22, 2011.

F. Altmann and M. Petzold, Innovative Failure Analysis Techniques for 3-D Packaging Developments, IEEE Des. Test, vol.33, issue.3, pp.46-55, 2016.

Y. Li, P. K. Srinath, and D. Goyal, A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages, J. Electron. Mater, vol.45, issue.1, pp.116-124, 2015.

F. Altmann, S. Brand, and M. Petzold, Failure analysis techniques for 3d packages, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, pp.1-8, 2018.

O. Breitenstein, J. P. Rakotoniaina, F. Altmann, T. Riediger, and M. Gradhand, New developments in IR lock-in thermography, Proc. 30th ISTFA, pp.595-599, 2004.

M. Xie, T. Begala, K. Kijkanjanapaiboon, and D. Goyal, Innovations in Fault Isolation Methods for 3D Packages with 10X Improvement in Accuracy, IEEE 66th Electron. Components Technol. Conf, vol.2, pp.755-765, 2016.

Q. Shi, Y. Chen, and P. Lai, Advanced Fault Isolation Techniques for 3D Packaging, 2016 IEEE 23rd International Symposium on the Physical and Failure Analysis ofIntegrated Circuits (IPFA), pp.212-215, 2016.

J. Gaudestad, V. Talanov, and M. Marchetti, Opens localization on silicon level in a Chip Scale Package using space domain reflectometry, Microelectron. Reliab, vol.53, issue.9, pp.1418-1421, 2013.

W. Qiu, S. Tan, M. Tay, J. Gaudestad, and M. W. Vv-talanov, Non destructive open Fault isolation Bibliography 167 in Flip Chip devices with SDR, pp.332-336, 2013.

J. Gaudestad and D. Vallett, Magnetic Field Imaging for Non-Destructive 3D Package Fault Isolation, Int. Symp. Microelectron, vol.2014, issue.1, pp.635-000640, 2015.

D. Abessolo-bidzo, P. Poirier, P. Descamps, and B. Domengès, Isolating failing sites in IC packages using time domain reflectometry: Case studies, Microelectron. Reliab, vol.45, issue.9, pp.1639-1644, 2005.

L. Cao, L. Tran, A. R. Prabhu, and M. Y. Tay, Flip-chip package soft failure analysis and case studies using time domain reflectometry, vol.1, pp.1-4, 2010.

. Teravie, TeraView | Electro Optical Terahertz Pulse Reflectometry, p.23, 2019.

. Teraview, Introduction in French Situés entre deux domaines bien développés, à savoir les micro-ondes et l'infrarouge, les radiations térahertz ont attiré l'attention des observateurs pour leurs propriétés a priori séduisantes, parmi lesquelles on peut classer leur nature non ionisante, leur capacité à pénétrer à travers des matériaux optiquement opaques, ou encore leur sensibilité aux discontinuités diélectriques. Le développement des techniques spectroscopiques dans le régime du térahertz s'est progressivement étendu à l'imagerie, ce qui permet aujourd'hui aux domaines académique et industriel de réaliser un large panel de tests non destructifs allant du contrôle qualité à l, 2017.

, D'un point de vue pratique, un système de mesure du térahertz compact en mode réflexion plutôt qu'en géométrie de transmission est plus avantageux. Plus précisément, par rapport à la configuration de transmission qui impose des restrictions sur la forme et les propriétés d'un objet testé, une géométrie de réflexion est plus adaptée à une grande variété d'échantillons. Ceci étant dit, bien qu'elle soit plus susceptible d'être utilisée sur une grande variété d'objets, la complexité et la compréhension de la réponse qui accompagnent une configuration en mode réflexion est par conséquent plus élevée. En fait, les géométries de réflexion nécessitent généralement la mise en oeuvre d'éléments quasi-optiques supplémentaires tels que des lentilles ou des séparateurs de faisceau. En plus d'induire des travaux supplémentaires pour obtenir un alignement correct le long du chemin de propagation, ces ajouts entravent les possibilités d'atteindre la compacité et l'intégration de tels systèmes. Pour remédier à ce problème, la mise en oeuvre de guides d'ondes térahertz est proposée dans le présent travail comme une solution prometteuse pour conduire les signaux d'interrogation vers la zone ciblée d'un échantillon. Une fois qu'un canal de communication unique sans optique est établi par un guide d'ondes entre l'émetteur-récepteur et l'échantillon, la structure des guides d'ondes stipule directement le chemin de propagation, Il est clair que les configurations des systèmes jouent un rôle important dans les utilisations pratiques, ce qui a un impact sur le champ d'application de la technologie térahertz

, L'objectif principal du présent travail est de mettre en oeuvre un système compact de réflectométrie guidée par ondes térahertz (TGR) après une sélection exigeante dans la vaste bibliothèque de composants existants

, En effet, grâce aux progrès des technologies des semi-conducteurs et des techniques de conditionnement en 3D, de nombreux dispositifs à grande vitesse ont été proposés au cours de la dernière décennie. Pour vérifier et valider les nouveaux concepts avant la production en série, le processus de recherche et de développement des TMIC doit inclure des mesures sur plaquettes. Par rapport aux sources à ondes continues accordables classiques, un signal impulsionnel généré par une source optoélectronique couvre une plus grande région de fréquence dans le spectre, ce qui permet d'obtenir les paramètres de diffusion dans une bande extra-large par une seule mesure. Non seulement le processus de mesure peut être simplifié par le déploiement d'une source optoélectronique, mais le coût de la plate-forme de mesure dans une gamme de fréquences extrêmement large peut également être réduit. Par conséquent, une partie de ce manuscrit est consacrée à la mise en oeuvre d'un système de réflectométrie sur plaquette en utilisant une sonde RF sur plaquette en association avec un émetteur-récepteur large bande à double ACP. Comme il s'agit de la première tentative à délivrer un signal d'impulsion dans un échantillon sur plaquette, les principaux défis à relever sont de savoir comment coupler efficacement un signal d, Outre la construction d'un système TGR à des fins de détection et d'imagerie, les mesures au niveau des plaquettes/emballages dans la bande térahertz présentent un grand intérêt en raison du développement rapide des circuits intégrés monolithiques térahertz (TMIC)

, Le premier chapitre offre une vue d'ensemble des développements de la technologie térahertz, y compris les progrès des dispositifs térahertz (sources, détecteurs et guides d'ondes), les configurations des systèmes et les applications. Par rapport à deux sources et détecteurs distincts, un émetteur-récepteur compact permet d'alléger la configuration du système en supprimant le séparateur ou le coupleur de faisceau utilisé pour séparer le faisceau incident et le faisceau réfléchi. Par conséquent, les études sur les émetteurs-récepteurs en térahertz sont passées en revue de manière approfondie, Compte tenu des objectifs susmentionnés, l'ensemble du manuscrit est composé de quatre chapitres qui sont décrits succinctement ci-après

. Dans-le-deuxième-chapitre, Sur la base des études préliminaires, les guides d'ondes anti-résonants à noyau creux sont considérés comme un candidat approprié pour assurer la transmission du signal entre les émetteurs-récepteurs et un échantillon. Leurs bandes de transmission sont vérifiées par des mesures THz-TDS, correspondant à une bande de fréquence de fonctionnement optimisée de l'émetteur-récepteur à double ACP (de 400 GHz à 500 GHz), à la fois en mode transmission et en mode réflexion. La technique de fabrication additive (impression 3D), qui permet une chaîne de développement rapide, trois unités d'émission-réception sélectionnées, c'est-à-dire un émetteurrécepteur à double ACP sans lentille, un module FMCW basé sur la technologie III-V et un radar basé sur la technologie Si, sont testés séparément pour évaluer leurs performances

, En ce qui concerne les systèmes TGR-P, deux guides d'ondes diélectriques à noyau creux sélectionnés sont testés pour établir un canal de communication unique sans optique entre l'émetteur-récepteur à double ACP et un échantillon. En plus de la caractérisation de la forme d'onde dans le domaine temporel, les applications d'imagerie et de détection des systèmes sont également délimitées. Alors que le système TGR-G exploitant un guide d'ondes à noyau creux en silice de 3 mm de diamètre affiche un pouvoir de résolution d'environ 700 ?m, les autres systèmes TGR-G comprenant un guide d'ondes en plastique de 6 mm de diamètre affichent le potentiel de détection de la profondeur des liquides. En ce qui concerne les systèmes TGR-FMCW, Le troisième chapitre présente les systèmes TGR construits et leurs performances correspondantes en tirant parti des émetteurs-récepteurs et des guides d'ondes susmentionnés

, L'effet fantôme indésirable est ensuite corrigé par l'intégration d'une lentille hémisphérique supplémentaire de terminaison, ce qui permet d'améliorer la capacité d'imagerie. En plus des installations et des applications expérimentales, des recherches sur les propriétés du champ à l'intérieur du système sont menées à l'aide de la simulation 3D pleine onde, ce qui permet d'analyser les comportements de propagation des ondes le long du guide d'ondes

. Le-dernier-chapitre and T. De-la, Outre les mesures sur les plaquettes, la détection des défauts au niveau de l'emballage a bénéficié des progrès des dispositifs optoélectroniques. La technique EOTPR exploitant des dispositifs PCA avec une sonde RF, est particulièrement détaillée. Inspirées par le système EOTPR, deux sondes RF dans la bande de fréquences de 140-220 GHz et 330 GHz à 500 GHz sont déployées séparément pour diriger un signal d'impulsion du double émetteur-récepteur PCA vers un échantillon sur la plaquette

, La mise en oeuvre et l'analyse des systèmes de réflectométrie térahertz guidée ont été réalisées dans le laboratoire de l'IMS sous la supervision du Dr. Patrick Mounaix et du Dr, Les travaux présentés dans ce manuscrit ont été réalisés dans le cadre d'une collaboration qui a rassemblé plusieurs équipes de recherche

S. Fregonese, La conception et la fabrication des guides d'ondes à courbure négative imprimés en 3D ont été réalisées par le professeur Cristiano M.B. Cordeiro de l'UNICAMP (Brésil), Georges Humbert de l'Institut de recherche XLIM

, Guided terahertz pulse reflectometry with double photoconductive antenna Mingming Pan, vol.59, pp.1641-1647, 2020.

, Iterative Tree Algorithm to Evaluate Terahertz Signal Contribution of Specific Optical Paths Within Multilayered Materials

A. Cassar, F. Chopard, J. Fauquet, M. Guillet, J. Pan et al., IEEE Transactions on Terahertz Science and Technology, vol.9, issue.6, pp.684-694, 2019.

A. Chopard, F. Fauquet, P. Mounaix, and J. Guillet, Guided Reflectometry Imaging Unit using Millimeter Wave FMCW Radars M. Pan, 2020.

, Teragogic: Open source platform for low cost millimeter wave sensing, terahertz imaging and control (submission)

A. Chopard, F. Fauquet, . Jing-shun, M. Goh, A. Pan et al., Conferences and communication 1. Guided terahertz FMCW radars for reflectometry probing purposes, 2020.

M. Chopard, F. Pan, J. P. Fauquet, P. Guillet, and . Mounaix, 9th International Workshop on Terahertz Technology and Applications, 2019.

M. Pan, M. B. Cristiano, F. Cordeiro, P. Fauquet, . Mounaix et al., 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp.1-1, 2019.

, THz imaging with a hollow core waveguide (Oral)

M. Pan, J. Guillet, G. Humbert, F. Fauquet, D. Lewis et al., 2019 French-German THz Conference, 2019.

, Comparative study of terahertz waveguide in reflective mode configuration (Oral)

M. Pan, J. Guillet, G. Humbert, F. Fauquet, D. Lewis et al., 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves, pp.1-2, 2018.

, Réflectométrie dans le domaine temporel pour l'optique guidée terahertz

. Ed-spi-day, , 2018.

, Guided terahertz pulsed reflectometry: a remote probe for near-field imaging (Oral)

M. Pan, F. Fauquet, D. Lewis, F. Darracq, P. Mounaix et al., Proc. SPIE 10531, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, 105310L, 2018.

, Guided terahertz waves in reflection mode (Poster)

M. Pan, J. Guillet, F. Fauquet, D. Lewis, and P. Mounaix, GDR NanoTeraMIR, 2017.

, Guided terahertz pulsed reflectometry simulation with near field probe (Oral)

M. Pan, J. Guillet, F. Fauquet, D. Lewis, and M. Patrick, 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves, pp.1-2, 2017.