. .. , Synthèse des différentes particules zwitterioniques

, Synthèse des polymères zwitterioniques et caractérisations, p.62

. .. , Synthèse des polymères dibloc zwitterion-imidazole, p.62

, Échange de ligands à la surface des Quantum Dots, p.65

. .. , Comparaison des différentes chimies de surface, p.67

. .. , Quantification des interactions non spécifiques, p.69

, Mesures in vitro de la couronne dure de protéines : dosage à la fluorescamine

, Mesures in vitro de la couronne dynamique de protéines : mesures par FCS

, Mesures dans des cellules vivantes de la couronne de protéines : suivi de QD unique dans le cytoplasme

. .. , Comparaison des différents QD-zwitterions, p.75

, Influence de l'ajout de fonctions chimiques chargées, p.81

, Influence de la fonction d'ancrage des polymères à la surface des QD, vol.84

, Importance de la pureté des polymères

, Imagerie in vivo dans les cellules et marquage biologique, p.88

. .. , III.1.1 Études réalisées sur des copolymères sulfadimethoxines (SDM), p.98

. .. , Études réalisées sur des copolymères sulfamethazine (SMZ), p.103

. .. , Nano-sonde de pH avec des QD visibles, p.107

, Assemblage de la nano-sonde de pH

. .. Swir, III.3 Nano-sonde de pH dans l'infrarouge court, p.117

, Synthèse de la nano-sonde SWIR

. .. , Comparaison entre la théorie et l'expérience, p.123

. .. , Échange de ligands sensibles au pH sur les NP, p.138

, Synthèse des polymères pDPA et pDPA/LA sensibles au pH, p.138

. .. , Caractérisations des polymères sensibles au pH, p.140

. .. , Échange de ligands sur des AuNP sphériques, p.142

. .. Swir, IV.1.4 Échange de ligands sur des QD visibles et, p.143

, Micelles de copolymère pDPA-b-SB sensibles au pH, p.145

. .. , Synthèse des copolymères surfactants pDPA-b-SB, p.145

. .. , Caractérisations des polymères surfactants pDPA-b-SB, p.147

, Analyse des micelles avec du pyrène

/. .. La, Auto-assemblage des micelles autour des NP-pDPA, p.155

/. .. La, IV.3.1 Micelles encapsulant les AuG-pDPA, p.155
URL : https://hal.archives-ouvertes.fr/pasteur-01374951

/. .. La, Micelles encapsulant les QD-pDPA, p.156

, Micelles encapsulant les AuNP-pDPA/LA et les QD-pDPA/LA, p.157

, Micelles fluorescentes sensibles au pH

. .. , Influence de la présence du surfactant pH-labile, p.158

. .. , Influence de la quantité du surfactant pH-labile, p.160

, Influence de la taille du polymère surfactant pH-labile, p.160

, Influence de la taille et de la quantité des AuNP, p.161

, Résultats préliminaires avec des sondes visibles et SWIR en mesures ratiométriques

, Le produit a été dissous dans de l'eau et passé sur une résine échangeuse d'ions Amberlyst@A-26(OH) afin d'hydrolyser la fonction terminale ester. L'eau a été éliminée sous vide. Rendement = 80-90%, opération a été répétée deux fois

, 32 (C10), 22 (C6), vol.63, p.36

, Monomère lipoamide méthacrylamide : LA Figure VII.4 -Synthèse du monomère LA

T. De-la, Une extraction liquide-liquide est ensuite effectuée. Le milieu réactionnel est lavée avec une solution aqueuse à 0,1 M de HCl (2 x 50 ml), de l'eau désionisée (1 x 50 ml) et une solution basique de NaOH à 0,2 M (2 x 50 ml). La phase organique a été séparée, séchée sur MgS0 4 , filtrée et concentrée sous pression réduite, ,5 ml, 17,9 mmol) a été ajoutée à une suspension de APMA-HCl (2 g, 11,2 mmol) dans du dichlorométhane (20 mL)

, 03 (s, 1H), vol.7

L. Ligand, . La-sulfobétaïne, and . Lasb,

, Cette synthèse a été effectuée en deux étapes. La première est un couplage peptidique entre l'acide lipoïque et le DMED (N,N-diméthylethylenediamine). Typiquement, l'acide lipoïque (20 mmol) et le CDI (1,1-carbonyldiimidazole) (26 mmol) sont dissous dans du chloroforme VII, p.17

. Méthodes-de-caractérisation,

, Varian Cary-5E équipé d'une lampe halogène pour la gamme 350-3300 nm et d'une lampe au deutérium pour la gamme 175-350 nm. Les échantillons sont placés dans une cuve en quartz : 3 mL pour les échantillons pour lesquels la quantité est suffisante ou 600 µL pour les autres. Ces cuves présentent une absorption limitée sur la gamme UV-Vis-NIR. Les spectres sont acquis avec un pas d'un nanomètre. Pour l'acquisition des spectres, les NPs sont en suspension dans un solvant et la référence se, Absorption Les mesures d'absorbance ont été réalisées sur un spectrophotomètre ultraviolet (UV)-visible (Vis)-proche infrarouge (NIR)

, Il est équipé d'une lampe blanche continue qui, combinée avec un monochromateur de largeur variable, permet de choisir la longueur d'onde d'excitation. Ce spectrofluorimètre possède quatre détecteurs mais seulement trois ont été utilisés : l'un, très sensible, couvre la gamme du visible (400-800 nm), un autre, un peu moins sensible, couvre une gamme spectrale plus large (500-1000 nm) et le troisième permet de travailler dans le SWIR (900-1600 nm). Ce spectromètre est également équipé d'une diode laser pulsée émettant à 376 nm avec une fréquence de pulse variable entre 50 ns et 50 µs qui

, Microscopie Electronique à Transmission (TEM)

, Les particules sont déposées (deux ou trois gouttes) sur des grilles de TEM en cuivre (200 lignes par pouce). Ces grilles sont ensuite mises à dégazer toute la nuit sous un vide secondaire. Les images sont acquises avec différents grandissements au moyen d'un microscope JEOL, Pour les images de TEM, les nanoparticules sont lavées puis dispersées dans un solvant à des concentrations de l'ordre du µM, 2010.

, Exclusion Stérique (SEC) Les masses molaires moyennes en nombre (Mn) et en poids (Mw) ainsi que l'indice de polydispersité (Ip = Mw/Mn) des différents polymères ont été déterminés par chromatographie d'exclusion stérique, vol.18

. Produits and . Utilises,

S. Bsa, ;. Aldrich, . Sb, and . Raschig-gmbh, Sigma Aldrich), biotine (Sigma), 2,2-Bis(2,5-dioxo-3-sulfo-1-pyrrolidinyl)octanedioate (BS3, C 16 H 18 N 2 Na 2 O 14 S 2 , Thermofisher), chloroforme (CHCl 3 ,VWR), chlorure de sodium (NaCl, Sigma-Aldrich), décahydrate de carbonate de sodium (Na 2 CO 3 .10H 2 O, Prolabo), 2,2'-[1,2-diazènediyl]bis(2-méthylpropanimidamide)chlorohydrate (V50, 97%, (NC(CH 3 ) 2 C(NH)NH 2 ) 2 .2HCl, Aldrich), hydroxysuccinimide ester, N-(3-aminopropyl)méthacrylamide chlorhydrate (APMA.HCl, C 7 H 14 N 2 O.HCl), ammoniaque (NH 4 OH, 28-30%, Aldrich), bicarbonate de sodium, vol.14

. Bibliographie,

, Les nanomédicaments, alliés de la médecine de demain ?

V. John and . Frangioni, In vivo near-infrared fluorescence imaging, Current opinion in chemical biology, vol.7, issue.5, pp.626-634, 2003.

T. Vo-dinh, Biomedical photonics handbook, 2003.

, Near-infrared window in biological tissue

T. Oliver, T. S. Bruns, . Bischof, K. Daniel, D. Harris et al., Next-generation in vivo optical imaging with short-wave infrared quantum dots, Nature biomedical engineering, vol.1, issue.4, p.56, 2017.

C. Richard, H. A. Benson, and . Kues, Absorption and fluorescence properties of cyanine dyes, Journal of Chemical and Engineering Data, vol.22, issue.4, pp.379-383, 1977.

F. Wang and X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews, vol.38, issue.4, pp.976-989, 2009.

A. J. Dev-k-chatterjee, Y. Rufaihah, and . Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals, Biomaterials, vol.29, issue.7, pp.937-943, 2008.

K. Welsher, P. Sarah, H. Sherlock, and . Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window, Proceedings of the National Academy of Sciences, vol.108, issue.22, pp.8943-8948, 2011.

M. E. Peter-l-choyke, J. A. Girton, E. M. Frank, H. Vaughan, and . Austin, Clearance of gadolinium chelates by hemodialysis : an in vitro study, Journal of Magnetic Resonance Imaging, vol.5, issue.4, pp.470-472, 1995.

A. Mark and . Perazella, Current status of gadolinium toxicity in patients with kidney disease, Clinical Journal of the American Society of Nephrology, vol.4, issue.2, pp.461-469, 2009.

P. Caravan, J. Jeffrey, T. J. Ellison, R. B. Mcmurry, and . Lauffer, Gadolinium (iii) chelates as mri contrast agents : structure, dynamics, and applications, Chemical reviews, vol.99, issue.9, pp.2293-2352, 1999.

N. Kenneth, . Raymond, C. Valérie, and . Pierre, Next generation, high relaxivity gadolinium mri agents, Bioconjugate chemistry, vol.16, issue.1, pp.3-8, 2005.

P. Caravan, Strategies for increasing the sensitivity of gadolinium based mri contrast agents, Chemical Society Reviews, vol.35, issue.6, pp.512-523, 2006.

J. Natalie and . Serkova, Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation, Frontiers in immunology, vol.8, p.590, 2017.

F. Cheng, C. Su, Y. Yang, C. Yeh, C. Tsai et al., Characterization of aqueous dispersions of fe3o4 nanoparticles and their biomedical applications, Biomaterials, vol.26, issue.7, pp.729-738, 2005.

M. J. Baek, J. Y. Park, W. Xu, K. Kattel, H. G. Kim et al., Watersoluble mno nanocolloid for a molecular t 1 mr imaging : a facile one-pot synthesis, in vivo t 1 mr images, and account for relaxivities, ACS applied materials & interfaces, vol.2, issue.10, pp.2949-2955, 2010.

C. Huang, N. Khu, and C. Yeh, The characteristics of sub 10 nm manganese oxide t 1 contrast agents of different nanostructured morphologies, Biomaterials, vol.31, issue.14, pp.4073-4078, 2010.

W. Xu, K. Kattel, J. Y. Park, Y. Chang, T. Kim et al., Paramagnetic nanoparticle t 1 and t 2 mri contrast agents, Physical Chemistry Chemical Physics, vol.14, issue.37, pp.12687-12700, 2012.

M. Gaceur, . Giraud, . Hemadi, N. Nowak, . Menguy et al., Polyol-synthesized zn0. 9mn0. 1s nanoparticles as potential luminescent and magnetic bimodal imaging probes : synthesis, characterization, and toxicity study, Journal of Nanoparticle Research, vol.14, issue.7, pp.1-15, 2012.

S. Mallidi, M. Wang, M. Mehrmohammadi, Y. Qu, P. Chen et al., Ultrasound-based imaging of nanoparticles : From molecular and cellular imaging to therapy guidance, IEEE International Ultrasonics Symposium, pp.27-36, 2009.

F. Hao, K. Zhang, M. Maslov, G. Sivaramakrishnan, . Stoica et al., Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy, Applied physics letters, vol.90, issue.5, p.53901, 2007.

M. Eghtedari, A. Oraevsky, A. John, . Copland, A. Nicholas et al., High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system, Nano letters, vol.7, issue.7, pp.1914-1918, 2007.

A. Prost, Photoacoustic imaging : application to the control of ultrasound therapy and investigatio Theses, 2014.

G. Von-maltzahn, J. Park, A. Agrawal, K. Nanda, . Bandaru et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer research, vol.69, issue.9, pp.3892-3900, 2009.

H. Lusic, W. Mark, and . Grinstaff, X-ray-computed tomography contrast agents, Chemical reviews, vol.113, issue.3, pp.1641-1666, 2012.

F. Hyafil, J. Cornily, J. E. Feig, R. Gordon, E. Vucic et al., Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography, Nature medicine, vol.13, issue.5, p.636, 2007.

R. Kumar, M. Nyk, Y. Tymish, . Ohulchanskyy, A. Christopher et al., Combined optical and mr bioimaging using rare earth ion doped nayf4 nanocrystals, Advanced Functional Materials, vol.19, issue.6, pp.853-859, 2009.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging, Journal of the American Chemical Society, vol.129, issue.24, pp.7661-7665, 2007.

F. Kiessling, J. Bernd, and . Pichler, Small animal imaging : basics and practical guide, 2010.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao et al., Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid, ACS nano, vol.6, issue.7, pp.6337-6344, 2012.

H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok et al., Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo, Angewandte Chemie International Edition, vol.51, issue.33, pp.8373-8377, 2012.

R. Tong, D. Houman, R. Hemmati, D. S. Langer, and . Kohane, Photoswitchable nanoparticles for triggered tissue penetration and drug delivery, Journal of the American Chemical Society, vol.134, issue.21, pp.8848-8855, 2012.

Y. Natalya, A. M. Rapoport, J. E. Kennedy, C. L. Shea, K. Scaife et al., Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles, Journal of Controlled Release, vol.138, issue.3, pp.268-276, 2009.

A. Schroeder, R. Honen, K. Turjeman, A. Gabizon, J. Kost et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors, Journal of controlled release, vol.137, issue.1, pp.63-68, 2009.

A. Kheirolomoom, M. Lisa, C. Mahakian, H. A. Lai, J. W. Lindfors et al., Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity, Molecular pharmaceutics, vol.7, issue.6, pp.1948-1958, 2010.

L. Zhang, T. Wang, L. Yang, C. Liu, C. Wang et al., General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules : a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Chemistry-A European Journal, vol.18, issue.39, pp.12512-12521, 2012.

M. Hua, H. Liu, H. Yang, P. Chen, R. Tsai et al., The effectiveness of a magnetic nanoparticle-based delivery system for bcnu in the treatment of gliomas, Biomaterials, vol.32, issue.2, pp.516-527, 2011.

V. Plassat, C. Wilhelm, V. Marsaud, C. Ménager, F. Gazeau et al., Anti-estrogen-loaded superparamagnetic liposomes for intracellular magnetic targeting and treatment of breast cancer tumors, Advanced Functional Materials, vol.21, issue.1, pp.83-92, 2011.

F. Zhang, B. Gary, A. Braun, Y. Pallaoro, Y. Zhang et al., Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy, Nano letters, vol.12, issue.1, pp.61-67, 2011.

J. Ge, E. Neofytou, T. J. Cahill, I. Ramin, E. Beygui et al., Drug release from electric-field-responsive nanoparticles, ACS nano, vol.6, issue.1, pp.227-233, 2011.

. Ji-s-im, C. Byong, Y. Bai, and . Lee, The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system, Biomaterials, vol.31, issue.6, pp.1414-1419, 2010.

H. Kim, S. Jeong, and J. Park, Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod-coils, Journal of the American Chemical Society, vol.133, issue.14, pp.5206-5209, 2011.

B. Jeong, Y. Han-bae, and S. W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of peg-plga-peg triblock copolymers, Journal of controlled release, vol.63, issue.1-2, pp.155-163, 2000.

T. Tagami, D. Warren, . Foltz, J. Mark, C. M. Ernsting et al., Mri monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome, Biomaterials, vol.32, issue.27, pp.6570-6578, 2011.

. Zahraa-s-al-ahmady, &. Wafa, V. Jeroen, . Bossche, T. Tam et al., Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo, ACS nano, vol.6, issue.10, pp.9335-9346, 2012.

K. Chen, H. Liang, H. Chen, Y. Wang, P. Cheng et al., A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery, ACS nano, vol.7, issue.1, pp.438-446, 2012.

W. Gao, J. M. Chan, C. Omid, and . Farokhzad, ph-responsive nanoparticles for drug delivery, Molecular pharmaceutics, vol.7, issue.6, pp.1913-1920, 2010.

J. Kyung-hyun-min, S. M. Kim, H. Bae, M. S. Shin, S. Kim et al., Tumoral acidic ph-responsive mpeg-poly (?-amino ester) polymeric micelles for cancer targeting therapy, Journal of Controlled Release, vol.144, issue.2, pp.259-266, 2010.

G. Hui-gao, M. J. Park, Y. Li, G. Ho-im, J. Kim et al., Oh Young Bang, Jung Hee Lee, et al. The use of ph-sensitive positively charged polymeric micelles for protein delivery, Biomaterials, vol.33, issue.35, pp.9157-9164, 2012.

G. Saito, J. A. Swanson, and K. Lee, Drug delivery strategy utilizing conjugation via reversible disulfide linkages : role and site of cellular reducing activities, Advanced drug delivery reviews, vol.55, pp.199-215, 2003.

H. Kim, S. Kim, C. Park, H. Lee, H. Park et al., Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers, Advanced Materials, vol.22, issue.38, pp.4280-4283, 2010.

E. Yunus, . Kurtoglu, S. Raghavendra, B. Navath, S. Wang et al., Poly (amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery, Biomaterials, vol.30, issue.11, pp.2112-2121, 2009.

W. Ong, Y. Yang, A. C. Cruciano, and R. L. Mccarley, Redoxtriggered contents release from liposomes, Journal of the American Chemical Society, vol.130, issue.44, pp.14739-14744, 2008.

J. Todd, G. Harris, M. E. Von-maltzahn, J. Lord, A. Park et al., Protease-triggered unveiling of bioactive nanoparticles. small, vol.4, pp.1307-1312, 2008.

H. Hatakeyama, H. Akita, E. Ito, Y. Hayashi, M. Oishi et al., Systemic delivery of sirna to tumors using a lipid nanoparticle containing a tumor-specific cleavable peg-lipid, Biomaterials, vol.32, issue.18, pp.4306-4316, 2011.

J. Banerjee, A. J. Hanson, B. Gadam, S. Adekunle-i-elegbede, B. Tobwala et al.,

, Bioconjugate chemistry, vol.20, issue.7, pp.1332-1339, 2009.

N. Singh, A. Karambelkar, L. Gu, K. Lin, S. Jordan et al., Bioresponsive mesoporous silica nanoparticles for triggered drug release, Journal of the American Chemical Society, vol.133, issue.49, pp.19582-19585, 2011.

S. Uthaman, I. Kang-moo-huh, and . Park, Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications, Biomaterials research, vol.22, issue.1, p.22, 2018.

L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch et al., Nanoscale radiotherapy with hafnium oxide nanoparticles, Future oncology, vol.8, issue.9, pp.1167-1181, 2012.

J. Deng, S. Xu, W. Hu, X. Xun, L. Zheng et al., Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced x-ray radiation therapy of breast cancer, Biomaterials, vol.154, pp.24-33, 2018.

H. Yang, H. Liu, M. Li, I. Hsi, C. Fan et al., Magnetic goldnanorod/pnipaamma nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy, Biomaterials, vol.34, issue.22, pp.5651-5660, 2013.

E. C. Erin-b-dickerson, X. Dreaden, . Huang, H. Ivan, H. El-sayed et al., Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice, Cancer letters, vol.269, issue.1, pp.57-66, 2008.

P. Vladimir, E. N. Zharov, C. Galitovskaya, T. Johnson, and . Kelly, Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters : potential for cancer therapy. Lasers in surgery and medicine, vol.37, pp.219-226, 2005.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano letters, vol.5, issue.4, pp.709-711, 2005.

J. Li, D. Day, and M. Gu, Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods, Advanced materials, vol.20, issue.20, pp.3866-3871, 2008.

J. Won-il-choi, C. Kim, C. C. Kang, Y. H. Byeon, G. Kim et al., Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers, ACS nano, vol.5, issue.3, pp.1995-2003, 2011.

S. Wilhelm, J. Anthony, Q. Tavares, S. Dai, J. Ohta et al., Analysis of nanoparticle delivery to tumours, Nature reviews materials, vol.1, issue.5, p.16014, 2016.

K. Victor, . Lamer, H. Robert, and . Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, Journal of the American Chemical Society, vol.72, issue.11, pp.4847-4854, 1950.

C. Murray, J. David, M. Norris, and . Bawendi, Synthesis and characterization of nearly monodisperse cde (e= sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, pp.8706-8715, 1993.

F. Wang, R. Tang, and W. E. Buhro, The trouble with topo ; identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires, Nano letters, vol.8, issue.10, pp.3521-3524, 2008.

. Hl-ding, . Zhang, . Wang, . Xu, G. H. Xu et al., Fe3o4@ sio2 core/shell nanoparticles : the silica coating regulations with a single core for different core sizes and shell thicknesses, Chemistry of Materials, vol.24, issue.23, pp.4572-4580, 2012.

T. Nann and P. Mulvaney, Single quantum dots in spherical silica particles, Angewandte Chemie International Edition, vol.43, issue.40, pp.5393-5396, 2004.

M. Brust, D. Fink, . Bethell, C. Dj-schiffrin, and . Kiely, Synthesis and reactions of functionalised gold nanoparticles, Journal of the Chemical Society, Chemical Communications, issue.16, pp.1655-1656, 1995.

J. Vignolle and . Tilley, N-heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3d superlattices, Chemical Communications, issue.46, pp.7230-7232, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00947078

M. Das, D. Mishra, P. Dhak, S. Gupta, T. Kumar-maiti et al., Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging, Small, vol.5, issue.24, pp.2883-2893, 2009.

E. Amstad, T. Gillich, I. Bilecka, M. Textor, and E. Reimhult, Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups, Nano letters, vol.9, issue.12, pp.4042-4048, 2009.

F. Chen, G. Wang, J. I. Griffin, B. Brenneman, K. Nirmal et al., Seyed Moein Moghimi, and Dmitri Simberg. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo, Nature nanotechnology, vol.12, issue.4, p.387, 2017.

J. Zhou, M. Deng, M. Liang, I. Monteiro, R. F. Toth et al., Nanoparticle-induced unfolding of fibrinogen promotes mac-1 receptor activation and inflammation, Nature nanotechnology, vol.6, issue.1, p.39, 2011.

C. Marco-p-monopoli, A. Åberg, K. Salvati, and . Dawson, Biomolecular coronas provide the biological identity of nanosized materials, Nature nanotechnology, vol.7, issue.12, p.779, 2012.

S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nature nanotechnology, vol.8, issue.10, p.772, 2013.

M. Hadjidemetriou and K. Kostarelos, Nanomedicine : evolution of the nanoparticle corona, Nature nanotechnology, vol.12, issue.4, p.288, 2017.

H. Otsuka, Y. Nagasaki, and K. Kataoka, Pegylated nanoparticles for biological and pharmaceutical applications, Advanced drug delivery reviews, vol.64, pp.246-255, 2012.

L. Li, S. Chen, J. Zheng, D. Buddy, S. Ratner et al., Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers : the molecular basis for nonfouling behavior, The Journal of Physical Chemistry B, vol.109, issue.7, pp.2934-2941, 2005.

. Si-jeon, . Lee, P. Andrade, and . Gennes, Protein-surface interactions in the presence of polyethylene oxide : I. simplified theory, Journal of colloid and interface science, vol.142, issue.1, pp.149-158, 1991.

D. Pozzi, G. Caracciolo, A. L. Capriotti, C. Cavaliere, G. L. Barbera et al., Surface chemistry and serum type both determine the nanoparticle-protein corona, Journal of proteomics, vol.119, pp.209-217, 2015.

R. Gref, P. Lück, M. Quellec, E. Marchand, . Dellacherie et al., 'stealth'corona-core nanoparticles surface modified by polyethylene glycol (peg) : influences of the corona (peg chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B : Biointerfaces, vol.18, issue.3-4, pp.301-313, 2000.

B. Joseph and . Schlenoff, Zwitteration : coating surfaces with zwitterionic functionality to reduce nonspecific adsorption, Langmuir, vol.30, issue.32, pp.9625-9636, 2014.

S. Jiang and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Advanced materials, vol.22, issue.9, pp.920-932, 2010.

H. Wei, N. Insin, J. Lee, H. Han, J. M. Cordero et al., Compact zwitterion-coated iron oxide nanoparticles for biological applications, Nano letters, vol.12, issue.1, pp.22-25, 2011.

. Zaki-g-estephan, A. Jad, J. B. Jaber, and . Schlenoff, Zwitterion-stabilized silica nanoparticles : toward nonstick nano, Langmuir, vol.26, issue.22, pp.16884-16889, 2010.

Q. Jin, J. Xu, J. Ji, and J. Shen, Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles, Chemical Communications, issue.26, pp.3058-3060, 2008.

B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaële, J. Hoebeke et al., Design of folic acid-conjugated nanoparticles for drug targeting, Journal of pharmaceutical sciences, vol.89, issue.11, pp.1452-1464, 2000.

J. M. Willem, G. J. Mulder, G. A. Strijkers, . Van-tilborg, W. Arjan et al., NMR in Biomedicine : An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, vol.19, pp.142-164, 2006.

R. Bakalova, Z. Zhelev, I. Aoki, and I. Kanno, Designing quantum-dot probes, Nature Photonics, vol.1, issue.9, p.487, 2007.

F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Ménager et al., Fluorescence-modified superparamagnetic nanoparticles : intracellular uptake and use in cellular imaging, Langmuir, vol.22, issue.12, pp.5385-5391, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00127105

D. Wang, J. He, N. Rosenzweig, and Z. Rosenzweig, Superparamagnetic fe2o3 beads-cdse/zns quantum dots core-shell nanocomposite particles for cell separation, Nano Letters, vol.4, issue.3, pp.409-413, 2004.

J. Shi, F. Tian, J. Lyu, and M. Yang, Nanoparticle based fluorescence resonance energy transfer (fret) for biosensing applications, Journal of materials chemistry B, vol.3, issue.35, pp.6989-7005, 2015.

W. Liu, M. Howarth, B. Andrew, Y. Greytak, . Zheng et al., Compact biocompatible quantum dots functionalized for cellular imaging, Journal of the American Chemical Society, vol.130, issue.4, pp.1274-1284, 2008.

. Alison-m-funston, J. Jacek, P. Jasieniak, and . Mulvaney, Complete quenching of cdse nanocrystal photoluminescence by single dye molecules, Advanced Materials, vol.20, issue.22, pp.4274-4280, 2008.

M. Protière, Synthèse de nanocristaux fluorescents de semi-conducteurs II-VI et III-V. Augmentation de l'échelle de synthèse, 2007.

P. Reiss and C. Frédéric, Nanocristaux semi-conducteurs fluorescents. des nanoparticules aux applications multiples. Techniques de l'ingénieur Les grands rendez-vous de l'année, 2015.

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. Sargent, 25th anniversary article : Colloidal quantum dot materials and devices : A quarter-century of advances, Advanced Materials, vol.25, issue.36, pp.4986-5010, 2013.

Y. Jang, A. Shapiro, M. Isarov, A. Rubin-brusilovski, A. Safran et al., Interface control of electronic and optical properties in iv-vi and ii-vi core/shell colloidal quantum dots : a review, Chemical Communications, vol.53, issue.6, pp.1002-1024, 2017.

P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, and S. Tamang, Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials, Chemical reviews, vol.116, issue.18, pp.10731-10819, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01930635

T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya et al., Cadmium-free cuins2/zns quantum dots for sentinel lymph node imaging with reduced toxicity, ACS nano, vol.4, issue.5, pp.2531-2538, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00479841

I. Moreels, Y. Justo, K. Bram-de-geyter, . Haustraete, C. José et al., Size-tunable, bright, and stable pbs quantum dots : a surface chemistry study, ACS nano, vol.5, issue.3, pp.2004-2012, 2011.

I. Alexey, A. A. Ekimov, and . Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals, Jetp Lett, vol.34, issue.6, pp.345-349, 1981.

E. Louis and . Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state, The Journal of chemical physics, vol.80, issue.9, pp.4403-4409, 1984.

. Paul-alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, science, vol.271, issue.5251, pp.933-937, 1996.

E. V. Dmitri-v-talapin, . Shevchenko, B. Christopher, A. Murray, S. Kornowski et al., Cdse and cdse/cds nanorod solids, Journal of the American Chemical Society, vol.126, issue.40, pp.12984-12988, 2004.

C. Bouet, D. Mickael, S. Tessier, B. Ithurria, B. Mahler et al., Flat colloidal semiconductor nanoplatelets, Chemistry of Materials, vol.25, issue.8, pp.1262-1271, 2013.

J. David, M. G. Norris, and . Bawendi, Measurement and assignment of the size-dependent optical spectrum in cdse quantum dots, Physical Review B, vol.53, issue.24, p.16338, 1996.

R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, and C. Donegá, Size effects on semiconductor nanoparticles, Nanoparticles, pp.13-51, 2014.

C. Yeh, . Lu, A. Froyen, and . Zunger, Zinc-blende-wurtzite polytypism in semiconductors, Physical Review B, vol.46, issue.16, p.10086, 1992.

A. Margaret, P. Hines, and . Guyot-sionnest, Synthesis and characterization of strongly luminescing zns-capped cdse nanocrystals, The Journal of Physical Chemistry, vol.100, issue.2, pp.468-471, 1996.

R. David, . Baker, V. Prashant, and . Kamat, Tuning the emission of cdse quantum dots by controlled trap enhancement, Langmuir, vol.26, issue.13, pp.11272-11276, 2010.

P. Reiss, M. Protiere, and L. Li, Core/shell semiconductor nanocrystals, small, vol.5, issue.2, pp.154-168, 2009.

M. Andrew, H. Smith, . Duan, M. Aaron, S. Mohs et al., Bioconjugated quantum dots for in vivo molecular and cellular imaging, vol.60, pp.1226-1240, 2008.

X. Peng, C. Michael, A. V. Schlamp, and . Kadavanich, Epitaxial growth of highly luminescent cdse/cds core/shell nanocrystals with photostability and electronic accessibility, Journal of the American Chemical Society, vol.119, issue.30, pp.7019-7029, 1997.

J. Li, A. Wang, W. Guo, J. C. Keay, D. Tetsuya et al., Large-scale synthesis of nearly monodisperse cdse/cds core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, Journal of the American Chemical Society, vol.125, issue.41, pp.12567-12575, 2003.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, Synthesis and characterization of highly luminescent cdse-core cds/zn0. 5cd0. 5s/zns multishell nanocrystals, Journal of the American Chemical Society, vol.127, issue.20, pp.7480-7488, 2005.

. Dong-hee-son, M. Steven, Y. Hughes, and . Yin, Cation exchange reactions in ionic nanocrystals, Science, vol.306, issue.5698, pp.1009-1012, 2004.

R. Dmitri-v-talapin, S. Koeppe, A. Götzinger, . Kornowski, A. L. John-m-lupton et al., Highly emissive colloidal cdse/cds heterostructures of mixed dimensionality, Nano Letters, vol.3, issue.12, pp.1677-1681, 2003.

S. Ithurria and . Dmitri-v-talapin, Colloidal atomic layer deposition (c-ald) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media, Journal of the American Chemical Society, vol.134, issue.45, pp.18585-18590, 2012.

A. Peng and X. Peng, Formation of high-quality cdte, cdse, and cds nanocrystals using cdo as precursor, Journal of the American Chemical Society, vol.123, issue.1, pp.183-184, 2001.

E. Cassette, T. Pons, C. Bouet, M. Helle, and L. Bezdetnaya, Synthesis and characterization of near-infrared cu-in-se/zns core/shell quantum dots for in vivo imaging, Chemistry of Materials, vol.22, issue.22, pp.6117-6124, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548762

Y. Justo, P. Geiregat, K. Van-hoecke, and F. Vanhaecke, Celso De Mello Donega, and Zeger Hens. Optical properties of pbs/cds core/shell quantum dots, The Journal of Physical Chemistry C, vol.117, issue.39, pp.20171-20177, 2013.

L. Cademartiri, J. Bertolotti, R. Sapienza, S. Diederik, G. Wiersma et al., Multigram scale, solventless, and diffusioncontrolled route to highly monodisperse pbs nanocrystals, The Journal of Physical Chemistry B, vol.110, issue.2, pp.671-673, 2006.

W. Laxmi-kishore-sagar, Q. Walravens, and . Zhao, André Vantomme, Pieter Geiregat, and Zeger Hens. Pbs/cds core/shell quantum dots by additive, layer-by-layer shell growth, Chemistry of Materials, vol.28, issue.19, pp.6953-6959, 2016.

T. Mangeolle, I. Yakavets, S. Marchal, M. Debayle, T. Pons et al., Fluorescent nanoparticles for the guided surgery of ovarian peritoneal carcinomatosis, Nanomaterials, vol.8, issue.8, p.572, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860308

E. Mikhail, D. Kandel, A. M. Fernandes, H. Taylor, C. Shakir et al., Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy, Cytometry Part A, vol.91, issue.5, pp.519-526, 2017.

V. John and . Frangioni, In vivo near-infrared fluorescence imaging, Current opinion in chemical biology, vol.7, issue.5, pp.626-634, 2003.

G. Hong, S. Diao, A. L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chemical reviews, vol.115, pp.10816-10906, 2015.

U. Resch-genger, M. Grabolle, S. Cavaliere-jaricot, R. Nitschke, and T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature methods, vol.5, issue.9, p.763, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00798911

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway et al., Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots, Nature biotechnology, vol.21, issue.1, p.41, 2003.

S. Bouccara, A. Fragola, E. Giovanelli, G. Sitbon, N. Lequeux et al., Time-gated cell imaging using long lifetime nearinfrared-emitting quantum dots for autofluorescence rejection, Journal of biomedical optics, vol.19, issue.5, p.51208, 2014.

C. Richard, H. A. Benson, and . Kues, Absorption and fluorescence properties of cyanine dyes, Journal of Chemical and Engineering Data, vol.22, issue.4, pp.379-383, 1977.

R. C. Benson and H. A. Kues, Fluorescence properties of indocyanine green as related to angiography, Physics in Medicine & Biology, vol.23, issue.1, p.159, 1978.

K. Rurack and M. Spieles, Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm, Analytical chemistry, vol.83, issue.4, pp.1232-1242, 2011.

D. Gerion, F. Pinaud, C. Shara, W. J. Williams, D. Parak et al., Synthesis and properties of biocompatible watersoluble silica-coated cdse/zns semiconductor quantum dots, The Journal of Physical Chemistry B, vol.105, issue.37, pp.8861-8871, 2001.

H. Mattoussi, M. Mauro, E. R. Goldman, G. P. Anderson, C. Vikram et al., Self-assembly of cdse-zns quantum dot bioconjugates using an engineered recombinant protein, Journal of the American Chemical Society, vol.122, issue.49, pp.12142-12150, 2000.

E. Muro, A. Fragola, T. Pons, N. Lequeux, A. Ioannou et al., Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells, Small, vol.8, issue.7, pp.1029-1037, 2012.

E. Giovanelli, E. Muro, G. Sitbon, and M. Hanafi, Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging, Thomas Pons, Benoît Dubertret, and Nicolas Lequeux, vol.28, pp.15177-15184, 2012.

M. Tasso, E. Giovanelli, D. Zala, S. Bouccara, A. Fragola et al., Sulfobetainevinylimidazole block copolymers : A robust quantum dot surface chemistry expanding bioimaging's horizons, ACS nano, vol.9, issue.11, pp.11479-11489, 2015.

W. Maret, Zinc and sulfur : a critical biological partnership, Biochemistry, vol.43, issue.12, pp.3301-3309, 2004.

C. W. Warren, S. Chan, and . Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, vol.281, issue.5385, pp.2016-2018, 1998.

W. Liu, H. S. Choi, J. P. Zimmer, E. Tanaka, V. John et al., Compact cysteine-coated cdse (zncds) quantum dots for in vivo applications, Journal of the American Chemical Society, vol.129, issue.47, pp.14530-14531, 2007.

P. Gregory, C. A. Mitchell, R. L. Mirkin, and . Letsinger, Programmed assembly of dna functionalized quantum dots, Journal of the American Chemical Society, vol.121, issue.35, pp.8122-8123, 1999.

P. Babu, S. Sinha, and A. Surolia, Sugar-quantum dot conjugates for a selective and sensitive detection of lectins, Bioconjugate chemistry, vol.18, issue.1, pp.146-151, 2007.

J. Wolfgang, D. Parak, T. Gerion, D. Pellegrino, C. Zanchet et al., Biological applications of colloidal nanocrystals. Nanotechnology, vol.14, issue.7, p.15, 2003.

K. Susumu, I. L. Tetsuo-uyeda, T. Medintz, . Pons, B. James et al., Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands, Journal of the American Chemical Society, vol.129, issue.45, pp.13987-13996, 2007.

P. Charles, V. Stubbs, C. Soto, B. Martin, B. White et al., Reduction of non-specific protein adsorption using poly (ethylene) glycol (peg) modified polyacrylate hydrogels in immunoassays for staphylococcal enterotoxin b detection, Sensors, vol.9, issue.1, pp.645-655, 2009.

H. Michael, K. Stewart, . Susumu, C. Bing, I. L. Mei et al., Multidentate poly (ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions, Journal of the American Chemical Society, vol.132, issue.28, pp.9804-9813, 2010.

I. Yildiz, E. Deniz, B. Mccaughan, F. Stuart, J. F. Cruickshank et al., Hydrophilic cdse-zns core-shell quantum dots with reactive functional groups on their surface, Langmuir, vol.26, issue.13, pp.11503-11511, 2010.

W. Liu, B. Andrew, J. Greytak, . Lee, R. Cliff et al., Compact biocompatible quantum dots via raft-mediated synthesis of imidazole-based random copolymer ligand, Journal of the American Chemical Society, vol.132, issue.2, pp.472-483, 2009.

K. Susumu, E. Oh, B. James, F. Delehanty, K. B. Pinaud et al., A new family of pyridine-appended multidentate polymers as hydrophilic surface ligands for preparing stable biocompatible quantum dots, Chemistry of Materials, vol.26, issue.18, pp.5327-5344, 2014.

H. John, A. F. Dunlap, . Loszko, A. Raeven, Y. Flake et al., Multiply-binding polymeric imidazole ligands : Influence of molecular weight and monomer sequence on colloidal quantum dot stability, The Journal of Physical Chemistry C, vol.122, issue.46, pp.26756-26763, 2018.

N. Hildebrandt, M. Christopher, R. Spillmann, T. Algar, . Pons et al., Energy transfer with semiconductor quantum dot bioconjugates : a versatile platform for biosensing, energy harvesting, and other developing applications, Chemical reviews, vol.117, issue.2, pp.536-711, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02281950

. Tl-jennings, G. F. Singh, and . Strouse, Fluorescent lifetime quenching near d= 1.5 nm gold nanoparticles : probing nset validity, Journal of the American Chemical Society, vol.128, issue.16, pp.5462-5467, 2006.

K. Prashant-k-jain, . Lee, H. Ivan, M. El-sayed, and . El-sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition : applications in biological imaging and biomedicine, The journal of physical chemistry B, vol.110, issue.14, pp.7238-7248, 2006.

E. Dulkeith, . Ringler, . Ta-klar, . Feldmann, W. J. Munoz-javier et al., Gold nanoparticles quench fluorescence by phase induced radiative rate suppression, Nano letters, vol.5, issue.4, pp.585-589, 2005.

J. Gersten and A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles, The Journal of Chemical Physics, vol.75, issue.3, pp.1139-1152, 1981.

H. Chew, Transition rates of atoms near spherical surfaces, The Journal of chemical physics, vol.87, issue.2, pp.1355-1360, 1987.

N. Vitaliy, . Pustovit, and . Tigran-v-shahbazyan, Fluorescence quenching near small metal nanoparticles, The Journal of chemical physics, vol.136, issue.20, p.204701, 2012.

D. Ghosh and N. Chattopadhyay, Gold nanoparticles : acceptors for efficient energy transfer from the photoexcited fluorophores, Optics and Photonics Journal, vol.3, issue.01, p.18, 2013.

H. Han, V. Valle, and M. Maye, Probing the quenching of cdse/zns qdots by au, au/ag, and au/pd nanoparticles, Nanotechnology, vol.23, issue.43, p.435401, 2012.

. Rr-chance, R. Prock, and . Silbey, Comments on the classical theory of energy transfer, The Journal of Chemical Physics, vol.62, issue.6, pp.2245-2253, 1975.

J. Christopher, R. A. Breshike, G. F. Riskowski, and . Strouse, Leaving forster resonance energy transfer behind : Nanometal surface energy transfer predicts the sizeenhanced energy coupling between a metal nanoparticle and an emitting dipole, The Journal of Physical Chemistry C, vol.117, issue.45, pp.23942-23949, 2013.

T. Pons, L. Igor, K. E. Medintz, S. Sapsford, A. F. Higashiya et al., On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles, Nano letters, vol.7, issue.10, pp.3157-3164, 2007.

M. Li, K. Scott, Q. Cushing, X. Wang, . Shi et al., Size-dependent energy transfer between cdse/zns quantum dots and gold nanoparticles, The Journal of Physical Chemistry Letters, vol.2, issue.17, pp.2125-2129, 2011.

R. Brent, H. Fisher, N. E. Eisler, M. Stott, and . Bawendi, Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes, The Journal of Physical Chemistry B, vol.108, issue.1, pp.143-148, 2004.

M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall et al., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14265-14270, 2008.

J. B. Carl-d-walkey, H. Olsen, A. Guo, W. Emili, and . Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake, Journal of the American Chemical Society, vol.134, issue.4, pp.2139-2147, 2012.

A. Salvati, A. S. Pitek, P. Marco, K. Monopoli, F. B. Prapainop et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nature nanotechnology, vol.8, issue.2, p.137, 2013.

R. Gref, P. Lück, M. Quellec, E. Marchand, . Dellacherie et al., 'stealth'corona-core nanoparticles surface modified by polyethylene glycol (peg) : influences of the corona (peg chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B : Biointerfaces, vol.18, issue.3-4, pp.301-313, 2000.

H. Kim, K. Andrieux, C. Delomenie, H. Chacun, M. Appel et al., Analysis of plasma protein adsorption onto pegylated nanoparticles by complementary methods : 2-de, ce and protein lab-on-chip® system, Electrophoresis, vol.28, issue.13, pp.2252-2261, 2007.

B. Pelaz, P. Del-pino, P. Maffre, R. Hartmann, M. Gallego et al., Surface functionalization of nanoparticles with polyethylene glycol : effects on protein adsorption and cellular uptake, ACS nano, vol.9, issue.7, pp.6996-7008, 2015.

N. Bertrand, P. Grenier, M. Mahmoudi, E. M. Lima, E. A. Appel et al., Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics, Nature communications, vol.8, issue.1, p.777, 2017.

S. Schöttler, G. Becker, S. Winzen, T. Steinbach, K. Mohr et al., Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers, Nature nanotechnology, vol.11, issue.4, p.372, 2016.

P. Ricardo, R. Garay, J. K. El-gewely, G. Armstrong, P. Garratty et al., Antibodies against polyethylene glycol in healthy subjects and in patients treated with peg-conjugated agents, 2012.

Q. Shao, Y. He, D. Andrew, S. White, and . Jiang, Difference in hydration between carboxybetaine and sulfobetaine, The Journal of Physical Chemistry B, vol.114, issue.49, pp.16625-16631, 2010.

Q. Shao, L. Mi, X. Han, T. Bai, S. Liu et al., Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses, The journal of physical chemistry B, vol.118, issue.24, pp.6956-6962, 2014.

. Zaki-g-estephan, A. Jad, J. B. Jaber, and . Schlenoff, Zwitterion-stabilized silica nanoparticles : toward nonstick nano, Langmuir, vol.26, issue.22, pp.16884-16889, 2010.

K. Pombo-garcía, K. Zarschler, L. Barbaro, A. José, . Barreto et al., Zwitterionic-coated "stealth" nanoparticles for biomedical applications : recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system, Small, vol.10, issue.13, pp.2516-2529, 2014.

P. Brianna-r-knowles, S. Wagner, . Maclaughlin, J. Michael, P. J. Higgins et al., Silica nanoparticles functionalized with zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system, ACS applied materials & interfaces, vol.9, issue.22, pp.18584-18594, 2017.

F. Dembele, M. Tasso, L. Trapiella-alfonso, and X. Xu, Zwitterionic silane copolymer for ultrastable and bright biomolecular probes based on fluorescent quantum dot nanoclusters, ACS applied materials & interfaces, vol.9, issue.21, pp.18161-18169, 2017.

R. Tatumi and H. Fujihara, Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid, Chemical Communications, issue.1, pp.83-85, 2005.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki et al., Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity, Langmuir, vol.22, issue.1, pp.2-5, 2006.

. Layal-l-rouhana, A. Jad, J. B. Jaber, and . Schlenoff, Aggregation-resistant watersoluble gold nanoparticles, Langmuir, vol.23, issue.26, pp.12799-12801, 2007.

W. Yang, L. Zhang, S. Wang, D. Andrew, S. White et al., Functionalizable and ultra stable nanoparticles coated with zwitterionic poly (carboxybetaine) in undiluted blood serum, Biomaterials, vol.30, issue.29, pp.5617-5621, 2009.

W. Zhou, J. Shao, Q. Jin, Q. Wei, J. Tang et al., Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells, Chemical communications, vol.46, issue.9, pp.1479-1481, 2010.

X. Chen, J. Lawrence, S. Parelkar, and T. Emrick, Novel zwitterionic copolymers with dihydrolipoic acid : synthesis and preparation of nonfouling nanorods, Macromolecules, vol.46, issue.1, pp.119-127, 2012.

F. Daniel, K. Moyano, G. Saha, B. Prakash, H. Yan et al., Fabrication of corona-free nanoparticles with tunable hydrophobicity, ACS nano, vol.8, issue.7, pp.6748-6755, 2014.

C. Durand-gasselin, R. Koerin, J. Rieger, N. Lequeux, and N. Sanson, Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water, Journal of colloid and interface science, vol.434, pp.188-194, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01515946

W. Wang, X. Ji, L. Du, and H. Mattoussi, Enhanced colloidal stability of various gold nanostructures using a multicoordinating polymer coating, The Journal of Physical Chemistry C, vol.121, issue.41, pp.22901-22913, 2017.

W. Hak-soo-choi, P. Liu, E. Misra, . Tanaka, P. John et al., Renal clearance of quantum dots, Nature biotechnology, vol.25, issue.10, p.1165, 2007.

V. Vladimir, C. D. Breus, K. Heyes, G. Tron, and . Nienhaus, Zwitterionic biocompatible quantum dots for wide ph stability and weak nonspecific binding to cells, Acs Nano, vol.3, issue.9, pp.2573-2580, 2009.

M. Tasso, E. Giovanelli, D. Zala, S. Bouccara, A. Fragola et al., Sulfobetainevinylimidazole block copolymers : A robust quantum dot surface chemistry expanding bioimaging's horizons, ACS nano, vol.9, issue.11, pp.11479-11489, 2015.

W. Wang, X. Ji, A. Kapur, C. Zhang, and H. Mattoussi, A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots, Journal of the American Chemical Society, vol.137, issue.44, pp.14158-14172, 2015.

H. Wang, L. Shang, P. Maffre, S. Hohmann, F. Kirschhöfer et al., The nature of a hard protein corona forming on quantum dots exposed to human blood serum, Small, vol.12, issue.42, pp.5836-5844, 2016.

S. Ashraf, J. Park, M. A. Bichelberger, K. Kantner, R. Hartmann et al., Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake, Nanoscale, vol.8, issue.41, pp.17794-17800, 2016.

W. Yang, J. Ella-menye, T. Bai, A. Sinclair, and S. Jiang, Stable and functionalizable quantum dots with a thin zwitterionic carboxybetaine layer, Langmuir, vol.33, issue.35, pp.8784-8789, 2017.

E. Muro, T. Pons, N. Lequeux, A. Fragola, N. Sanson et al., Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging, Journal of the American Chemical Society, vol.132, issue.13, pp.4556-4557, 2010.

J. Park, J. Nam, N. Won, S. Ho-jin, S. Jung et al., Compact and stable quantum dots with positive, negative, or zwitterionic surface : specific cell interactions and non-specific adsorptions by the surface charges, Advanced Functional Materials, vol.21, issue.9, pp.1558-1566, 2011.

E. Giovanelli, E. Muro, G. Sitbon, and M. Hanafi, Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging, Thomas Pons, Benoît Dubertret, and Nicolas Lequeux, vol.28, pp.15177-15184, 2012.

E. Muro, A. Fragola, T. Pons, N. Lequeux, A. Ioannou et al., Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells, Small, vol.8, issue.7, pp.1029-1037, 2012.

H. Han, J. D. Martin, J. Lee, K. Daniel, D. Harris et al., Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo, Angewandte Chemie International Edition, vol.52, issue.5, pp.1414-1419, 2013.

F. Aldeek, M. Safi, N. Zhan, G. Palui, and H. Mattoussi, Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination, ACS nano, vol.7, issue.11, pp.10197-10210, 2013.

M. Sun, L. Yang, P. Jose, L. Wang, and J. Zweit, Functionalization of quantum dots with multidentate zwitterionic ligands : impact on cellular interactions and cytotoxicity, Journal of Materials Chemistry B, vol.1, issue.44, pp.6137-6146, 2013.

N. Zhan, G. Palui, M. Safi, X. Ji, and H. Mattoussi, Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots, Journal of the American Chemical Society, vol.135, issue.37, pp.13786-13795, 2013.

L. Zhang, H. Xue, C. Gao, L. Carr, J. Wang et al., Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3, 4-dihydroxyphenyl-lalanine linkages, Biomaterials, vol.31, issue.25, pp.6582-6588, 2010.

H. Wei, T. Oliver, . Bruns, G. Michael, E. C. Kaul et al., Exceedingly small iron oxide nanoparticles as positive mri contrast agents, Proceedings of the National Academy of Sciences, vol.114, issue.9, pp.2325-2330, 2017.

D. Kim, M. K. Chae, H. J. Joo, I. Jeong, J. Cho et al., Facile preparation of zwitterion-stabilized superparamagnetic iron oxide nanoparticles (zspions) as an mr contrast agent for in vivo applications, Langmuir, vol.28, issue.25, pp.9634-9639, 2012.

T. Blin, A. Kakinen, H. Emily, A. Pilkington, F. Ivask et al., Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol, Polymer Chemistry, vol.7, issue.10, pp.1931-1944, 2016.

A. Meredith, T. A. Jackson, E. J. Werfel, F. Curvino, T. E. Yu et al., Zwitterionic nanocarrier surface chemistry improves sirna tumor delivery and silencing activity relative to polyethylene glycol, ACS nano, vol.11, issue.6, pp.5680-5696, 2017.

P. Zhang, F. Sun, C. Tsao, S. Liu, P. Jain et al., Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity, Proceedings of the National Academy of Sciences, vol.112, issue.39, pp.12046-12051, 2015.

B. Li, J. Xie, Z. Yuan, P. Jain, X. Lin et al., Mitigation of inflammatory immune responses with hydrophilic nanoparticles

, Angewandte Chemie International Edition, vol.57, issue.17, pp.4527-4531, 2018.

S. Ashraf, J. Park, M. A. Bichelberger, K. Kantner, R. Hartmann et al., Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake, Nanoscale, vol.8, issue.41, pp.17794-17800, 2016.

Y. Yang, H. Wu, K. R. Williams, and Y. Cao, Synthesis of cdse and cdte nanocrystals without precursor injection, Angewandte Chemie, vol.117, issue.41, pp.6870-6873, 2005.

G. Moad, E. Rizzardo, H. San, and . Thang, Living radical polymerization by the raft process, Australian journal of chemistry, vol.58, issue.6, pp.379-410, 2005.

J. B. Carl-d-walkey, H. Olsen, A. Guo, W. Emili, and . Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake, Journal of the American Chemical Society, vol.134, issue.4, pp.2139-2147, 2012.

F. Etoc, E. Balloul, C. Vicario, D. Normanno, D. Liße et al., Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells, Nat. Mater, vol.17, issue.8, p.740, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871099

N. Yu-kostina, S. Sharifi, A. De-los, S. Pereira, J. Michálek et al., Novel antifouling self-healing poly (carboxybetaine methacrylamide-co-hema) nanocomposite hydrogels with superior mechanical properties, Journal of Materials Chemistry B, vol.1, issue.41, pp.5644-5650, 2013.

C. Huang and Y. Chang, In situ surface tailoring with zwitterionic carboxybetaine moieties on self-assembled thin film for antifouling biointerfaces, Materials, vol.7, issue.1, pp.130-142, 2014.

V. Adrian, S. Fuchs, S. Ritz, V. Pütz, K. Mailänder et al., Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties, Biomaterials Science, vol.1, issue.5, pp.470-477, 2013.

B. Wang, T. Blin, A. Käkinen, X. Ge, H. Emily et al., Brushed polyethylene glycol and phosphorylcholine for grafting nanoparticles against protein binding, Polymer chemistry, vol.7, issue.45, pp.6875-6879, 2016.

H. Wang, Y. Lin, K. Nienhaus, and G. Nienhaus, The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective, Wiley Interdisciplinary Reviews : Nanomedicine and Nanobiotechnology, vol.10, issue.4, p.1500, 2018.

D. Kim and . Collins, Charge density-dependent strength of hydration and biological structure, Biophysical journal, vol.72, issue.1, pp.65-76, 1997.

D. Kim, G. W. Collins, J. E. Neilson, and . Enderby, Ions in water : characterizing the forces that control chemical processes and biological structure, Biophysical chemistry, vol.128, issue.2-3, pp.95-104, 2007.

Q. Shao and S. Jiang, Molecular understanding and design of zwitterionic materials, Advanced Materials, vol.27, issue.1, pp.15-26, 2015.

R. Nagumo, R. Suzuki, T. Miyake, H. Furukawa, S. Iwata et al., Molecular dynamics study of the correlation between the solvation structures and the antifouling properties of three types of betaine moieties, Journal of Chemical Engineering of Japan, vol.50, issue.5, pp.333-338, 2017.

C. Rodriguez-emmenegger, V. Bernhard, Z. Schmidt, V. Sedlakova, A. B. ?ubr et al., Low temperature aqueous living/controlled (raft) polymerization of carboxybetaine methacrylamide up to high molecular weights, Macromolecular rapid communications, vol.32, issue.13, pp.958-965, 2011.

L. A. Erich-e-kathmann, C. White, and . Mccormick, Water soluble polymers : 69. ph and electrolyte responsive copolymers of acrylamide and the zwitterionic monomer 4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate : synthesis and solution behaviour, Polymer, vol.38, issue.4, pp.871-878, 1997.

G. Boncompain, S. Divoux, N. Gareil, H. D. Forges, A. Lescure et al., Synchronization of secretory protein traffic in populations of cells, Nature methods, vol.9, issue.5, p.493, 2012.

B. Marie-caline-z-abadjian, C. J. Edwards, and . Anderson, Imaging the tumor microenvironment, Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy, pp.229-257, 2017.

S. Akocak, A. M. Alam, R. Shabana, D. Sanku, H. Vullo et al., Pegylated bis-sulfonamide carbonic anhydrase inhibitors can efficiently control the growth of several carbonic anhydrase ix-expressing carcinomas, Journal of medicinal chemistry, vol.59, issue.10, pp.5077-5088, 2016.

K. Engin, . Leeper, . Cater, . Aj-thistlethwaite, J. D. Tupchong et al., Extracellular ph distribution in human tumours, International Journal of Hyperthermia, vol.11, issue.2, pp.211-216, 1995.

E. Seong-lee, Z. Gao, and Y. Bae, Recent progress in tumor ph targeting nanotechnology, Journal of Controlled Release, vol.132, issue.3, pp.164-170, 2008.

F. Ian, D. Tannock, and . Rotin, Acid ph in tumors and its potential for therapeutic exploitation, Cancer research, vol.49, issue.16, pp.4373-4384, 1989.

M. Stubbs, M. J. Paul, J. R. Mcsheehy, C. Griffiths, and . Bashford, Causes and consequences of tumour acidity and implications for treatment, Molecular medicine today, vol.6, issue.1, pp.15-19, 2000.

Y. Duan and B. Liu, Recent advances of optical imaging in the second near-infrared window, Advanced Materials, vol.30, issue.47, p.1802394, 2018.

E. Cassette, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret et al., Design of new quantum dot materials for deep tissue infrared imaging, Advanced drug delivery reviews, vol.65, pp.719-731, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00739386

X. Michalet, L. A. Pinaud, . Bentolila, . Tsay, . Sjjl-doose et al., Quantum dots for live cells, in vivo imaging, and diagnostics. science, vol.307, pp.538-544, 2005.

A. Aharoni, T. Mokari, I. Popov, and U. Banin, Synthesis of inas/cdse/znse core/shell1/shell2 structures with bright and stable near-infrared fluorescence, Journal of the American Chemical Society, vol.128, issue.1, pp.257-264, 2006.

L. Bakueva, I. Gorelikov, S. Musikhin, S. Xu, . Zhao et al., Pbs quantum dots with stable efficient luminescence in the near-ir spectral range, Advanced Materials, vol.16, issue.11, pp.926-929, 2004.

. Igor-l-medintz, E. R. Tetsuo-uyeda, H. Goldman, and . Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature materials, vol.4, issue.6, p.435, 2005.

A. May, S. Bhaumik, S. Sanjiv, C. Gambhir, S. Zhan et al., Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection, Journal of biomedical optics, vol.14, issue.6, p.60504, 2009.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda et al., Synthesis and optical properties of emission-tunable pbs/cds core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window, vol.4, pp.41164-41171, 2014.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang et al., Facile synthesis of highly photoluminescent ag2se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging, Chemistry of Materials, vol.25, issue.12, pp.2503-2509, 2013.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie et al., Multifunctional in vivo vascular imaging using nearinfrared ii fluorescence, Nature medicine, vol.18, issue.12, p.1841, 2012.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen et al., Through-skull fluorescence imaging of the brain in a new near-infrared window, Nature photonics, vol.8, issue.9, p.723, 2014.

S. Kim, Y. T. Lim, E. G. Soltesz, A. Grand, J. Lee et al., Near-infrared fluorescent type ii quantum dots for sentinel lymph node mapping, Nature biotechnology, vol.22, issue.1, p.93, 2004.

W. Cai, D. Shin, K. Chen, O. Gheysens, Q. Cao et al., Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects, Nano letters, vol.6, issue.4, pp.669-676, 2006.

Z. Bryan-ronain-smith, A. Cheng, A. L. De, R. Koh, S. Sinclair et al., Real-time intravital imaging of rgd-quantum dot binding to luminal endothelium in mouse tumor neovasculature, Nano letters, vol.8, issue.9, pp.2599-2606, 2008.

R. C. Preston-t-snee, G. Somers, . Nair, P. John, . Zimmer et al., A ratiometric cdse/zns nanocrystal ph sensor, Journal of the American Chemical Society, vol.128, issue.41, pp.13320-13321, 2006.

M. Allison, W. Dennis, D. Jong-rhee, . Sotto, G. Steven-n-dublin et al., Quantum dot-fluorescent protein fret probes for sensing intracellular ph, ACS nano, vol.6, issue.4, pp.2917-2924, 2012.

F. Bruni, J. Pedrini, C. Bossio, B. Santiago-gonzalez, F. Meinardi et al., Twocolor emitting colloidal nanocrystals as single-particle ratiometric probes of intracellular ph, Advanced Functional Materials, vol.27, issue.12, p.1605533, 2017.

S. Hong, K. Kim, J. Huh, C. Ahn, W. Ho et al., Design and synthesis of a new ph sensitive polymeric sensor using fluorescence resonance energy transfer, Chemistry of materials, vol.17, issue.25, pp.6213-6215, 2005.

A. Brooks, . Abel, B. Michael, C. Sims, and . Mccormick, Tunable ph-and co2-responsive sulfonamide-containing polymers by raft polymerization, Macromolecules, vol.48, issue.16, pp.5487-5495, 2015.

S. Link, A. Mostafa, and . El-sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, The Journal of Physical Chemistry B, vol.103, issue.21, pp.4212-4217, 1999.

E. Oh, . Susumu, . Blanco-canosa, . Medintz, H. Dawson et al., Preparation of stable maleimide-functionalized au nanoparticles and their use in counting surface ligands, Small, vol.6, issue.12, pp.1273-1278, 2010.

X. Han, C. Wang, and Z. Liu, Red blood cells as smart delivery systems, Bioconjugate chemistry, vol.29, issue.4, pp.852-860, 2018.

A. Antonelli, C. Sfara, S. Battistelli, B. Canonico, M. Arcangeletti et al., New strategies to prolong the in vivo life span of iron-based contrast agents for mri, PLoS One, vol.8, issue.10, p.78542, 2013.

. B-deuticke, C. Kim, and . Zöllner, The influence of amphotericin b on the permeability of mammalian erythrocytes to nonelectrolytes, anions and cations, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.318, issue.3, pp.345-359, 1973.

A. William, R. D. Donald, J. T. Leib, M. F. O'brien, E. R. Bush et al., Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase, Journal of the American Chemical Society, vol.130, issue.11, pp.3371-3381, 2008.

. Ms-neo, . Venkatram, . Li, W. Chin, and . Ji, Synthesis of pbs/cds core-shell qds and their nonlinear optical properties, The Journal of Physical Chemistry C, vol.114, issue.42, pp.18037-18044, 2010.

C. Oerlemans, W. Bult, M. Bos, G. Storm, W. E. Frank-w-nijsen et al., Polymeric micelles in anticancer therapy : targeting, imaging and triggered release, Pharmaceutical research, vol.27, issue.12, pp.2569-2589, 2010.

. Vladimir-p-torchilin, Micellar nanocarriers : pharmaceutical perspectives, Pharmaceutical research, vol.24, issue.1, p.1, 2007.

M. , C. Jones, and J. Leroux, Polymeric micelles-a new generation of colloidal drug carriers, European journal of pharmaceutics and biopharmaceutics, vol.48, issue.2, pp.101-111, 1999.

L. Monica, A. Adams, G. S. Lavasanifar, and . Kwon, Amphiphilic block copolymers for drug delivery, Journal of pharmaceutical sciences, vol.92, issue.7, pp.1343-1355, 2003.

D. Sutton, N. Nasongkla, E. Blanco, and J. Gao, Functionalized micellar systems for cancer targeted drug delivery, Pharmaceutical research, vol.24, issue.6, pp.1029-1046, 2007.

D. Bobo, J. Kye, J. Robinson, K. J. Islam, . Thurecht et al., Nanoparticle-based medicines : a review of fda-approved materials and clinical trials to date, Pharmaceutical research, vol.33, issue.10, pp.2373-2387, 2016.

. Cjf-rijcken, . Soga, . Hennink, and . Van-nostrum, Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity : an attractive tool for drug delivery, Journal of controlled release, vol.120, issue.3, pp.131-148, 2007.

G. Howard and . Schild, Poly (n-isopropylacrylamide) : experiment, theory and application. Progress in polymer science, vol.17, pp.163-249, 1992.

. Mdc-topp, J. Pieter, H. Dijkstra, J. Talsma, and . Feijen, Thermosensitive micelleforming block copolymers of poly (ethylene glycol) and poly (n-isopropylacrylamide)

, Macromolecules, vol.30, issue.26, pp.8518-8520, 1997.

N. Munshi, N. Rapoport, and W. Pitt, Ultrasonic activated drug delivery from pluronic p-105 micelles, Cancer Letters, vol.118, issue.1, pp.13-19, 1997.

Y. Zhao, Rational design of light-controllable polymer micelles, The Chemical Record, vol.7, issue.5, pp.286-294, 2007.

R. Pelton, Temperature-sensitive aqueous microgels, Advances in colloid and interface science, vol.85, issue.1, pp.1-33, 2000.

W. Chen, F. Meng, and F. Li, Shun-Jun Ji, and Zhiyuan Zhong. ph-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe : synthesis and triggered drug release, vol.10, pp.1727-1735, 2009.

E. Seong-lee, K. T. Oh, D. Kim, Y. Seok-youn, and Y. Bae, Tumor ph-responsive flower-like micelles of poly (l-lactic acid)-b-poly (ethylene glycol)-b-poly (l-histidine), Journal of Controlled Release, vol.123, issue.1, pp.19-26, 2007.

U. Borchert, U. Lipprandt, M. Bilang, A. Kimpfler, A. Rank et al., ph-induced release from p2vp-peo block copolymer vesicles, Langmuir, vol.22, issue.13, pp.5843-5847, 2006.

A. Karanikolas, G. Tsolakis, C. Bokias, and . Tsitsilianis, Stimuli-responsive poly (ethylene oxide)-b-poly (2-vinylpyridine)-b-poly (ethylene oxide) triblock copolymers and complexation with poly (acrylic acid) at low ph, The European Physical Journal E, vol.27, issue.3, pp.335-343, 2008.

K. Zhou, Y. Wang, X. Huang, K. Luby-phelps, D. Baran et al., Tunable, ultrasensitive ph-responsive nanoparticles targeting specific endocytic organelles in living cells, Angewandte Chemie International Edition, vol.50, issue.27, pp.6109-6114, 2011.

Y. Wang, K. Zhou, G. Huang, C. Hensley, X. Huang et al., A nanoparticlebased strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals, Nature materials, vol.13, issue.2, p.204, 2014.

X. Ma, Y. Wang, T. Zhao, Y. Li, L. Su et al., Ultra-ph-sensitive nanoprobe library with broad ph tunability and fluorescence emissions, Journal of the American Chemical Society, vol.136, issue.31, pp.11085-11092, 2014.

G. Palui, T. Avellini, N. Zhan, F. Pan, D. Gray et al., Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media, Journal of the American Chemical Society, vol.134, issue.39, pp.16370-16378, 2012.

J. Zhou, Y. Liu, J. Tang, and W. Tang, Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications, Materials Today, vol.20, issue.7, pp.360-376, 2017.

W. Li, H. Chung, C. Daeffler, J. A. Johnson, and R. Grubbs, Application of 1h dosy for facile measurement of polymer molecular weights, Macromolecules, vol.45, issue.24, pp.9595-9603, 2012.

J. Viéville, M. Tanty, and M. Delsuc, Polydispersity index of polymers revealed by dosy nmr, Journal of magnetic resonance, vol.212, issue.1, pp.169-173, 2011.

K. Lee, S. Shin, and I. Oh, Fluorescence spectroscopy studies on micellization of poloxamer 407 solution, Archives of pharmacal research, vol.26, issue.8, pp.653-658, 2003.

N. Oh and J. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells, International journal of nanomedicine, issue.9, p.51, 2014.

É. Hémond, Les cellules cancéreuses qui nous habitent

A. Lesart, Modélisation théorique du développement tumoral sous fenêtre dorsale : Vers un outil clinique d'individualisation et d'optimisation de la thérapie, 2013.

L. Igor, A. R. Medintz, F. M. Clapp, T. Brunel, . Tiefenbrunn et al., Proteolytic activity monitored by fluorescence resonance energy transfer through quantumdot-peptide conjugates, Nature materials, vol.5, issue.7, p.581, 2006.

A. Sebastián, A. P. Díaz, K. Malonoski, . Susumu, V. Romina et al., Probing the kinetics of quantum dot-based proteolytic sensors, Analytical and bioanalytical chemistry, vol.407, issue.24, pp.7307-7318, 2015.

E. Cassette, T. Pons, C. Bouet, M. Helle, and L. Bezdetnaya, Synthesis and characterization of near-infrared cu-in-se/zns core/shell quantum dots for in vivo imaging, Chemistry of Materials, vol.22, issue.22, pp.6117-6124, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548762

S. Bouccara, Time-gated detection of near-infrared emitting quantum dots for in vivo cell tracking
URL : https://hal.archives-ouvertes.fr/tel-01083824

T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya et al., Cadmium-free cuins2/zns quantum dots for sentinel lymph node imaging with reduced toxicity, ACS nano, vol.4, issue.5, pp.2531-2538, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00479841

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata et al., Tunable photoluminescence wavelength of chalcopyrite cuins2-based semiconductor nanocrystals synthesized in a colloidal system, Chemistry of Materials, vol.18, issue.14, pp.3330-3335, 2006.

W. Li, Z. Pan, and X. Zhong, Cuinse 2 and cuinse 2-zns based high efficiency "green" quantum dot sensitized solar cells, Journal of Materials Chemistry A, vol.3, issue.4, pp.1649-1655, 2015.

S. Schorr, . Riede, T. Spemann, and . Doering, Electronic band gap of zn 2x (cuin) 1-x x 2 solid solution series (x= s, se, te), Journal of alloys and compounds, vol.414, issue.1, pp.26-30, 2006.

C. Rincon and R. Marquez, Defect physics of the cuinse2 chalcopyrite semiconductor, Journal of Physics and Chemistry of Solids, vol.60, issue.11, pp.1865-1873, 1999.

L. Stephanie, S. G. Castro, . Bailey, . Ryne-p-raffaelle, K. Kulbinder et al., Nanocrystalline chalcopyrite materials (cuins2 and cuinse2) via lowtemperature pyrolysis of molecular single-source precursors, Chemistry of Materials, vol.15, issue.16, pp.3142-3147, 2003.

P. Bishnu, A. Khanal, L. Pandey, Q. Li, W. K. Lin et al., Generalized synthesis of hybrid metalsemiconductor nanostructures tunable from the visible to the infrared, ACS nano, vol.6, issue.5, pp.3832-3840, 2012.

. Jjm-binsma, J. Giling, and . Bloem, Luminescence of cuins2 : I. the broad band emission and its dependence on the defect chemistry, Journal of Luminescence, vol.27, issue.1, pp.35-53, 1982.

M. Dahan, . Laurence, . Pinaud, . Ds-chemla, M. Ap-alivisatos et al., Timegated biological imaging by use of colloidal quantum dots, Optics letters, vol.26, issue.11, pp.825-827, 2001.

T. Pons, S. Bouccara, V. Loriette, and N. Lequeux, In vivo imaging of single tumor cells in fast-flowing bloodstream using near infrared quantum dots and time-gated imaging, ACS nano, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02189522

G. Daniel, A. Duff, P. Baiker, and . Edwards, A new hydrosol of gold clusters, Journal of the Chemical Society, Chemical Communications, issue.1, pp.96-98, 1993.

. Kenneth-r-brown, G. Daniel, M. J. Walter, and . Natan, Seeding of colloidal au nanoparticle solutions. 2. improved control of particle size and shape, Chemistry of Materials, vol.12, issue.2, pp.306-313, 2000.

J. Piella, G. Neus, V. Bastus, and . Puntes, Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties, Chemistry of Materials, vol.28, issue.4, pp.1066-1075, 2016.

J. Park, J. Nam, N. Won, S. Ho-jin, S. Jung et al., Compact and stable quantum dots with positive, negative, or zwitterionic surface : specific cell interactions and non-specific adsorptions by the surface charges, Advanced Functional Materials, vol.21, issue.9, pp.1558-1566, 2011.

O. Edward, J. E. Stejskal, and . Tanner, Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient. The journal of chemical physics, vol.42, pp.288-292, 1965.

J. Vaysse-dufaure, Apport de la résonance magnétique nucléaire pour le contrôle et la qualité de médicaments conventionnels

D. Thierry-gostan, E. Tramesel, and . Brun, Yann Prigent, and Marc-André Delsuc. L'experience dosy, une puissante méthode rmn pour l'analyse de mélanges complexes et la détection de traces. Spectra analyse, vol.33, pp.26-32, 2004.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multipletarget tracing to probe spatiotemporal cartography of cell membranes, Nature methods, vol.5, issue.8, p.687, 2008.