, Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1-xTex Nanoplatelet Heterostructures Using Band-Offset Tuning, The Journal of Physical Chemistry C, vol.121, pp.24816-24823, 2017.

M. Dufour, E. Izquierdo, C. Livache, B. Martinez, G. Mathieu et al., -Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets, vol.11, pp.10128-10134, 2019.

, -Halide Ligands to Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness, vol.13, pp.55326-5334, 2019.

R. Pandya, Y. S. Richard, A. Chen, M. Cheminal, J. M. Dufour et al., Autres publications : -Exciton-Phonon Interactions Govern Charge-Transfer-State Dynamics in CdSe/CdTe TwoDimensional Colloidal Heterostructures, vol.140, pp.14097-14111, 2018.

C. Gréboval, E. Izquierdo, C. Livache, B. Martinez, M. Dufour et al., -Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals, vol.11, pp.3905-3915, 2019.

, -Coupled HgSe Colloidal Quantum Wells through a Tunable Barrier: A Strategy To Uncouple Optical and Transport Band Gap, vol.30, pp.4065-4072, 2018.

C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci et al., -Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells, vol.17, pp.4067-4074, 2017.

H. -electronic-structure-of-cdse-zns-2d-nanoplatelets, C. Cruguel1, B. Livache, S. Martinez, D. Pedetti et al., Fine structure and spin dynamics of linearly polarized charge transfer excitons in two-dimensional CdSe/CdTe colloidal hétérostructures, Raj Pandya, Appl. Phys. Lett, vol.110, pp.10140-10153, 2017.

I. -strong, H. Shlesinger, J. Monin, J. Moreau, M. Hugonin et al., Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1-xTex Nanoplatelet Heterostructures Using Band-Offset Tuning, Sandrine Ithurria. GRC Colloidal semiconductor nanocrystals, 2018.

M. Dufour, V. Steinmetz, E. Izquierdo, T. Pons, N. Lequeux et al., Workshop sur les nanocristaux colloidaux, Bicolor Emission in 2D Core/Crown CdSe/CdSe1-xTex Nanoplatelet Heterostructures Using Band-Offset Tuning, vol.1

, Acétate de cadmium dihydrate (Sigma-Aldrich, 98%), oxyde de cadmium (Strem, 99.99%), acide myristique (Aldrich, >99%), acide oléique (Aldrich 90%), trioctylphosphine (Aldrich, 97%), sélénium (Strem Chemicals 99.99%), tellure (Aldrich, 30 mesh, 99.997%), behenate d'argent (Alfa, 94%), acide propionique (Aldrich, 99%), oleylamine (Acros, 80-90%), tributylphosphine (TBP), vol.1, p.polyethylene glycol

, 99%), bromure de manganèse tetrahydrate (MnBr2,4H2O Aldrich, 98%), bromure de nickel monohydrate (NiBr2,H2O Aldrich, 98%), bromure de zinc dihydrate (ZnBr2,2H2O Aldrich, 99%), bromure d'ammonium (NH4Br, vol.99

, Liste des solvants

C. Hexane and . Erba, 95%), éthanol (Carlo Erba, 99.9%), méthanol (Carlo Erba, 99.9%), octadécène (Aldrich, 90%), octane (SDS, 99%), N-methylformamide (NMF; Carlo Erba, 99%)

, Cd(Myr), vol.2

, 20 mmol) et 11 g d'acide myristique (50 mmol) sont mélangés et dégazés à 80 °C pendant 30 min. Sous argon, la solution est alors chauffée à 200°C pendant environ 40 min jusqu'à ce qu'elle devienne incolore. Le mélange est alors refroidi. A 60 °C, 30mL de méthanol sont ajoutés pour solubiliser l'excès d'acide myristique. Le myristate de cadmium formé est lavé 5 fois par ajout de méthanol, agitation et centrifugation puis est séché une nuit sous vide à 70 °C, Dans un ballon de 50 ml, 2.56 g d'oxyde de cadmium

, 3 mmol) et 50 mL d'acide propionique sont mélangés. Sous argon, la température est montée à 70 °C. Après une heure, le mélange est placé sous vide jusqu'à ce que le volume initial soit diminué de moitié. Cette étape a pour objectif de retirer une partie de l'eau formée et une partie de l'acide propionique en excès. La solution est alors refroidie. Le précipité formé est lavé 4 fois par précipitation après ajout d'acétone pour éliminer l'excès d'acide propionique, Dans un ballon de 100 mL, 5.18 mg d'oxyde de cadmium, vol.40

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc, vol.115, issue.19, pp.8706-8715, 1993.

A. Buffard, S. Dreyfuss, B. Nadal, H. Heuclin, X. Xu et al., Mechanistic Insight and Optimization of InP Nanocrystals Synthesized with Aminophosphines, Chem. Mater, vol.28, issue.16, pp.5925-5934, 2016.

S. Keuleyan, E. Lhuillier, and P. Guyot-sionnest, Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection, J. Am. Chem. Soc, vol.133, pp.16422-16424, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01438554

D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler et al., Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies, Nano Lett, vol.7, issue.10, pp.2951-2959, 2007.

S. Ithurria and B. Dubertret, Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level, J. Am. Chem. Soc, vol.130, issue.49, p.16504, 2008.

A. Yeltik, S. Delikanli, M. Olutas, Y. Kelestemur, B. Guzelturk et al., Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets, J. Phys. Chem. C, vol.119, issue.47, pp.26768-26775, 2015.

M. D. Tessier, C. Javaux, I. Maksimovic, V. Loriette, and B. Dubertret, Spectroscopy of single CdSe nanoplatelets, ACS Nano, vol.6, issue.8, pp.6751-6758, 2012.

Z. Chen, B. Nadal, B. Mahler, H. Aubin, and B. Dubertret, Quasi-2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence, Adv. Funct. Mater, vol.24, issue.3, pp.295-302, 2014.

E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, and B. Dubertret, Electrolyte-gated colloidal nanoplatelets-based phototransistor and its use for bicolor detection, Nano Lett, vol.14, issue.5, pp.2715-2719, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01438564

M. Olutas, H. V. Demir, Y. Kelestemur, B. Guzelturk, and S. Delikanli, Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets, ACS Nano, vol.8, issue.7, pp.6599-6605, 2014.

C. F. Usanmaz, O. Erdem, Y. Kelestemur, H. V. Demir, K. Gungor et al., Alloyed Heterostructures of CdSe x S 1-x Nanoplatelets with Highly Tunable Optical Gain Performance, Chem. Mater, vol.29, issue.11, pp.4857-4865, 2017.

M. Sharma, K. Gungor, A. Yeltik, M. Olutas, B. Guzelturk et al., Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators, Adv. Mater, vol.29, issue.30, pp.1-10, 2017.

C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci et al., Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells, Nano Lett, vol.17, issue.7, pp.4067-4074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541341

S. Ithurria and D. V. Talapin, Colloidal Atomic Layer Deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media, J. Am. Chem. Soc, vol.134, issue.45, pp.18585-18590, 2012.

B. Mahler, B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret, Core / shell colloidal semiconductor nanoplatelets, J. Am. Chem. Soc, vol.134, pp.18591-18598, 2012.

H. Cruguel, C. Livache, B. Martinez, S. Pedetti, D. Pierucci et al., Electronic structure of CdSe-ZnS 2D nanoplatelets, Appl. Phys. Lett, vol.110, issue.152103, pp.1-5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508744

A. Prudnikau, A. Chuvilin, and M. Artemyev, CdSe?CdS Nanoheteroplatelets with Efficient Photoexcitation of Central CdSe Region through Epitaxially Grown CdS Wings, 2013.

D. Tessier, P. Spinicelli, D. Dupont, G. Patriarche, S. Ithurria et al., Efficient Exciton Concentrators Built from Colloidal Core/Crown CdSe/CdS Semiconductor Nanoplatelets, 2014.

Y. Kelestemur, M. Olutas, S. Delikanli, B. Guzelturk, M. Z. Akgul et al., Type-II colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets, J. Phys. Chem. C, vol.119, issue.4, pp.2177-2185, 2015.

S. Pedetti, S. Ithurria, H. Heuclin, G. Patriarche, and B. Dubertret, Type-II CdSe/CdTe core/crown semiconductor nanoplatelets, J. Am. Chem. Soc, vol.136, issue.46, pp.16430-16438, 2014.

F. C. Peter-reiss, Nanocristaux semi-conducteurs fluorescents . Des nanoparticules aux applications multiples, Tech. l'Ingénieur, vol.33, 2016.

A. Wolcott, T. Van-buuren, L. J. Terminello, R. W. Meulenberg, J. R. Lee et al., Determination of the Exciton Binding Energy in CdSe Quantum Dots, ACS Nano, vol.3, issue.2, pp.325-330, 2009.

E. Izquierdo, Synthèse et caractérisation d'homostructures et d'hétérostructures de nanoplaquettes de chalcogénures de mercure, 2018.

L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, Journal of Physical Chemistry, vol.90, issue.12, pp.2555-2560, 1986.

Y. C. Chang, H. Luo, S. F. Ren, Y. D. Kim, N. Samarth et al., Optical properties of zinc-blende CdSe and Znx Cd1?x Se films grown on GaAs, Phys. Rev. B, vol.49, issue.11, pp.7262-7270, 2002.

Y. Zhou, F. Wang, and W. E. Buhro, Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals, J. Am. Chem. Soc, vol.137, issue.48, pp.15198-15208, 2015.

J. S. Son, J. H. Yu, T. Hyeon, J. Joo, and S. G. Kwon, Low-Temperature Solution-Phase Synthesis of Quantum Well Structured CdSe Nanoribbons, J. Am. Chem. Soc, vol.128, issue.17, pp.5632-5633, 2006.

S. Ithurria, M. D. Tessier, B. Mahler, R. P. Lobo, B. Dubertret et al., Colloidal nanoplatelets with two-dimensional electronic structure, Nat. Mater, vol.10, issue.12, pp.936-941, 2011.

Z. Li, H. Qin, D. Guzun, M. Benamara, G. Salamo et al., Uniform thickness and colloidalstable CdS quantum disks with tunable thickness: Synthesis and properties, Nano Res, vol.5, issue.5, pp.337-351, 2012.

S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet et al., Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films, Chem. Mater, vol.25, issue.12, pp.2455-2462, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01438558

A. Szemjonov, T. Pauporté, S. Ithurria, N. Lequeux, B. Dubertret et al., Ligandstabilized CdSe nanoplatelet hybrid structures with tailored geometric and electronic properties, RSC Adv, vol.4, issue.99, pp.55980-55989, 2014.

S. Singh, R. Tomar, S. Brinck, J. De-roo, P. Geiregat et al., Colloidal CdSe Nanoplatelets, A Model for Surface Chemistry/Optoelectronic Property Relations in Semiconductor Nanocrystals, J. Am. Chem. Soc, vol.140, issue.41, pp.13292-13300, 2018.

M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton state, Phys. Rev. B, vol.54, issue.7, pp.4843-4856, 1996.

S. Ithurria and B. Dubertret, Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level, J. Am. Chem. Soc, vol.130, issue.49, pp.16504-16505, 2008.

A. W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei, M. V. Artemyev et al., Electronic structure and exciton-phonon interaction in two-dimensional colloidal cdse nanosheets, Nano Lett, vol.12, issue.6, pp.3151-3157, 2012.

R. Benchamekh, N. A. Gippius, J. Even, M. O. Nestoklon, J. M. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Phys. Rev. B, vol.89, issue.3, pp.1-7, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942566

A. Franceschetti and A. Zunger, Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots, 1997.

R. Benchamekh, N. A. Gippius, J. Even, M. O. Nestoklon, J. M. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Phys. Rev. B -Condens. Matter Mater. Phys, vol.89, issue.3, p.35307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942566

W. Cho, S. Kim, I. Coropceanu, V. Srivastava, B. T. Diroll et al., Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm, Chem. Mater, vol.30, issue.20, pp.6957-6960, 2018.

S. Christodoulou, J. I. Climente, J. Planelles, R. Brescia, M. Prato et al., Chloride-Induced Thickness Control in CdSe Nanoplatelets, Nano Lett, vol.18, issue.10, pp.6248-6254, 2018.

Y. Chen, D. Chen, Z. Li, and X. Peng, Symmetry-Breaking for Formation of Rectangular CdSe Two-Dimensional Nanocrystals in Zinc-Blende Structure, J. Am. Chem. Soc, vol.139, issue.29, pp.10009-10019, 2017.

A. Riedinger, F. D. Ott, A. Mule, S. Mazzotti, P. N. Knüsel et al., An intrinsic growth instability in isotropic materials leads to quasi-twodimensional nanoplatelets, Nat. Mater, vol.16, issue.7, pp.743-748, 2017.

S. Ithurria, G. Bousquet, and B. Dubertret, Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets, J. Am. Chem. Soc, vol.133, issue.9, pp.3070-3077, 2011.

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures, J. Am. Chem. Soc, vol.125, issue.38, pp.11466-11467, 2003.

A. A. Rossinelli, A. Riedinger, P. Marqués-gallego, P. N. Knüsel, F. V. Antolinez et al., High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets, Chem. Commun, vol.53, issue.71, pp.9938-9941, 2017.

M. A. Hines and P. Guyot-sionnest, Synthesis and characterization of strongly luminescing ZnScapped CdSe nanocrystals, J. Phys. Chem, vol.100, issue.2, pp.468-471, 1996.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions, Nat. Nanotechnol, vol.9, issue.12, pp.1024-1030, 2014.

E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin et al., Two-Dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications, Acc. Chem. Res, vol.48, issue.1, pp.22-30, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01438557

Y. Altintas, U. Quliyeva, K. Gungor, O. Erdem, Y. Kelestemur et al., Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth, Small, vol.1804854, pp.1-11, 2019.

A. V. Antanovich, A. V. Prudnikau, D. Melnikau, Y. P. Rakovich, A. Chuvilin et al., Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets, Nanoscale, vol.7, issue.17, pp.8084-8092, 2015.

Q. Li, Z. Xu, J. R. Mcbride, and T. Lian, Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures, ACS Nano, 2017.

A. Nag, S. Chakraborty, and D. D. Sarma, To dope Mn2+ in a semiconducting nanocrystal, J. Am. Chem. Soc, vol.130, issue.32, pp.10605-10611, 2008.

D. J. Norris, A. L. Efros, and S. C. Erwin, Doped nanocrystals, Science, vol.319, issue.5871, pp.1776-1779, 2008.

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc, vol.128, issue.38, pp.12428-12429, 2006.

A. Nag and D. D. Sarma, White light from Mn2+-doped CdS nanocrystals: A new approach, J. Phys. Chem. C, vol.111, issue.37, pp.13641-13644, 2007.

A. W. Wills, M. S. Kang, K. M. Wentz, S. E. Hayes, A. Sahu et al., Synthesis and characterization of Al-and In-doped CdSe nanocrystals, J. Mater. Chem, vol.22, issue.13, pp.6335-6342, 2012.

M. Sharma, M. Olutas, A. Yeltik, Y. Kelestemur, A. Sharma et al., Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions, Chem. Mater, vol.30, issue.10, pp.3265-3275, 2018.

S. Delikanli, M. Z. Akgul, J. R. Murphy, B. Barman, Y. Tsai et al., Mn2+-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions, ACS Nano, vol.9, issue.12, pp.12473-12479, 2015.

K. E. Knowles, K. H. Hartstein, T. B. Kilburn, A. Marchioro, H. D. Nelson et al., Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications, Chemical Reviews, vol.116, issue.18, pp.10820-10851, 2016.

S. Yadav, A. Singh, L. Thulasidharan, and S. Sapra, Surface Decides the Photoluminescence of Colloidal CdSe Nanoplatelets Based Core/Shell Heterostructures, J. Phys. Chem. C, vol.122, issue.1, pp.820-829, 2018.

A. J. Houtepen, Z. Hens, J. S. Owen, and I. Infante, On the Origin of Surface Traps in Colloidal II-VI Semiconductor Nanocrystals, Chem. Mater, vol.29, issue.2, pp.752-761, 2017.

D. Kechkeche, E. Cao, C. Grazon, F. Caschera, V. Noireaux et al., Semiconductor Nanoplatelets: A New Class of Ultrabright Fluorescent Probes for Cytometric and Imaging Applications, ACS Appl. Mater. Interfaces, vol.10, issue.29, pp.24739-24749, 2018.

M. Kovalenko, M. Scheele, and D. V. Talapinl, Colloidal nanocrystals with molecular metal chalcogenide surface ligands, Science (80-. ), vol.324, issue.5933, pp.1417-1420, 2009.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami et al., Robust, Functional Nanocrystal Solids by Infilling with Atomic Layer Deposition, Nano Lett, vol.11, issue.12, pp.5349-5355, 2011.

M. V. Kovalenko, M. I. Bodnarchuk, J. Zaumseil, J. S. Lee, and D. V. Talapin, Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands, J. Am. Chem. Soc, vol.132, issue.29, pp.10085-10092, 2010.

A. Antanovich, A. W. Achtstein, A. Matsukovich, A. Prudnikau, P. Bhaskar et al., A strain-induced exciton transition energy shift in CdSe nanoplatelets: The impact of an organic ligand shell, Nanoscale, vol.9, issue.45, pp.18042-18053, 2017.

U. Giovanella, M. Pasini, M. Lorenzon, F. Galeotti, C. Lucchi et al., Efficient solution-processed nanoplatelets-based light emitting diodes with high operational stability in air, Nano Lett, vol.18, pp.3441-3448, 2018.

F. Fan, P. Kanjanaboos, M. Saravanapavanantham, E. Beauregard, G. Ingram et al., Colloidal CdSe 1?x S x Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence, 2015.

Y. Gao, M. Li, S. Delikanli, H. Zheng, B. Liu et al., Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets, Nanoscale, vol.10, issue.20, pp.9466-9475, 2018.

R. D. Schaller, C. She, P. D. Dahlberg, D. V. Talapin, D. S. Dolzhnikov et al., Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets, ACS Nano, vol.9, issue.10, pp.9475-9485, 2015.

J. Q. Grim, S. Christodoulou, F. D. Stasio, R. Krahne, R. Cingolani et al., Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells, Nat. Nanotechnol, vol.9, issue.11, pp.891-895, 2014.

E. Lhuillier, S. Pedetti, S. Ithurria, H. Heuclin, B. Nadal et al., Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets, ACS Nano, vol.8, issue.4, pp.3813-3820, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01438569

E. Lhuillier, S. Ithurria, A. Descamps-mandine, T. Douillard, R. Castaing et al., Investigating the n-and p-Type Electrolytic Charging of Colloidal Nanoplatelets, J. Phys. Chem. C, vol.119, issue.38, pp.21795-21799, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01476148

G. Yang, M. Kazes, and D. Oron, Chiral 2D Colloidal Semiconductor Quantum Wells, Adv. Funct. Mater, vol.28, issue.28, pp.1-9, 2018.

X. Wang, J. Hao, J. Cheng, J. Li, J. Miao et al., Chiral CdSe Nanoplatelets as an Ultrasensitive Probe for Lead Ion Sensing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02138867

P. D. Cunningham, J. B. Souza, I. Fedin, C. She, B. Lee et al., Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology, ACS Nano, vol.10, issue.6, pp.5769-5781, 2016.

D. Yoon, W. D. Kim, D. Kim, D. Lee, S. Koh et al., Origin of ShapeDependent Fluorescence Polarization from CdSe Nanoplatelets, J. Phys. Chem. C, vol.121, issue.44, pp.24837-24844, 2017.

Y. Kelestemur, B. Guzelturk, O. Erdem, M. Olutas, K. Gungor et al., Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets, Adv. Funct. Mater, vol.26, issue.21, pp.3570-3579, 2016.

R. Tenne, S. Pedetti, M. Kazes, S. Ithurria, L. Houben et al., From dilute isovalent substitution to alloying in CdSeTe nanoplatelets, Phys. Chem. Chem. Phys, vol.18, issue.22, pp.15295-15303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332361

S. H. Wei, S. B. Zhang, and A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, J. Appl. Phys, vol.87, issue.3, pp.1304-1311, 2000.

E. Beauregard, F. Fan, E. Yassitepe, G. Ingram, O. Voznyy et al., Colloidal CdSe 1-x S x Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence, Nano Lett, vol.15, issue.7, pp.4611-4615, 2015.

N. N. Schlenskaya, Y. Yao, T. Mano, T. Kuroda, A. V. Garshev et al., Scroll-like Alloyed CdSxSe1-x Nanoplatelets: Facile Synthesis and Detailed Analysis of Tunable Optical Properties, Chem. Mater, vol.29, issue.2, pp.579-586, 2017.

Y. Kelestemur, B. Guzelturk, O. Erdem, M. Olutas, T. Erdem et al., CdSe/CdSe1-xTex Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness, J. Phys. Chem. C, 2017.

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli et al., Lateral SizeDependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets, ACS Nano, vol.9, issue.5, pp.5041-5050, 2015.

V. Pinchetti, F. Meinardi, A. Camellini, G. Sirigu, S. Christodoulou et al., Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals, ACS Nano, vol.10, issue.7, pp.6877-6887, 2016.

S. Brovelli, W. K. Bae, F. Meinardi, B. Santiago-gonzález, M. Lorenzon et al., Electrochemical control of two-color emission from colloidal dot-in-bulk nanocrystals, Nano Lett, vol.14, issue.7, pp.3855-3863, 2014.

Q. Lin, N. S. Makarov, W. K. Koh, K. A. Velizhanin, C. M. Cirloganu et al., Design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared, ACS Nano, vol.9, issue.1, pp.539-547, 2015.

S. K. Panda, S. G. Hickey, H. V. Demir, and A. Eychmüller, Bright white-light emitting manganese and copper co-doped ZnSe quantum dots, Angew. Chemie -Int. Ed, vol.50, issue.19, pp.4432-4436, 2011.

V. A. Vlaskin, N. Janssen, J. Van-rijssel, R. Beaulac, and D. R. Gamelin, Tunable dual emission in doped semiconductor nanocrystals, Nano Lett, vol.10, issue.9, pp.3670-3674, 2010.

Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-biro, and D. Oron, Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals, Nano Lett, vol.12, issue.6, pp.2948-2952, 2012.

T. Takagahara, Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals, Phys. Rev. Lett, vol.71, issue.21, pp.3577-3580, 1993.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila et al., Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton?Phonon Coupling and the Optimization of Spectral Linewidths, Nano Lett, vol.16, pp.289-296, 2016.

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, pp.149-154, 1967.

M. D. Tessier, C. Javaux, I. Maksimovic, V. Loriette, and B. Dubertret, Spectroscopy of single CdSe nanoplatelets, ACS Nano, vol.6, issue.8, pp.6751-6758, 2012.

Q. Li, B. Zhou, J. R. Mcbride, and T. Lian, Efficient Diffusive Transport of Hot and Cold Excitons in Colloidal Type II CdSe/CdTe Core/Crown Nanoplatelet Heterostructures, ACS Energy Lett, vol.2, issue.1, pp.174-181, 2017.

E. Cassette, S. Pedetti, B. Mahler, S. Ithurria, B. Dubertret et al., Ultrafast exciton dynamics in 2D in-plane hetero-nanostructures: Delocalization and charge transfer, Phys. Chem. Chem. Phys, vol.19, issue.12, pp.8373-8379, 2017.

R. Pandya, R. Y. Chen, A. Cheminal, M. Dufour, J. M. Richter et al., Exciton-Phonon Interactions Govern Charge-Transfer-State Dynamics in CdSe/CdTe TwoDimensional Colloidal Heterostructures, J. Am. Chem. Soc, 2018.

R. Scott, A. W. Achtstein, A. V. Prudnikau, A. Antanovich, L. D. Siebbeles et al., Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates, Nano Lett, vol.16, issue.10, pp.6576-6583, 2016.

A. W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei, M. V. Artemyev et al., Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets, Nano Lett, vol.12, issue.6, pp.3151-3157, 2012.

R. Benchamekh, N. A. Gippius, J. Even, M. O. Nestoklon, J. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Phys. Rev. B, vol.89, issue.3, p.35307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942566

A. Robin, E. Lhuillier, X. Z. Xu, S. Ithurria, H. Aubin et al., Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors, Sci. Rep, vol.6, issue.1, p.24909, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438636

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

B. Sturman, E. Podivilov, and M. Gorkunov, Origin of stretched exponential relaxation for hopping-transport models, Phys. Rev. Lett, vol.91, issue.17, p.176602, 2003.

F. T. Rabouw, J. C. Van-der, P. Bok, M. Spinicelli, S. Nasilowski et al., Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets, Nano Lett, 2016.

K. Wu, Q. Li, Y. Jia, J. R. Mcbride, Z. X. Xie et al., Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets, ACS Nano, vol.9, issue.1, pp.961-968, 2015.

B. Liu, S. Delikanli, Y. Gao, D. Dede, K. Gungor et al., Nanocrystal light-emitting diodes based on type II nanoplatelets, Nano Energy, vol.47, pp.115-122, 2018.

Y. Gao, M. Li, S. Delikanli, H. Zheng, B. Liu et al., Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets, Nanoscale, vol.10, issue.20, pp.9466-9475, 2018.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian et al., High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells, J. Phys. Chem. Lett, vol.8, issue.21, pp.5317-5324, 2017.

D. Dede, N. Taghipour, U. Quliyeva, M. Sak, Y. Kelestemur et al., Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain, Chem. Mater, vol.31, issue.5, pp.1818-1826, 2019.

J. B. Rivest and P. K. Jain, Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing, Chem. Soc. Rev, vol.42, issue.1, pp.89-96, 2013.

A. Sahu, M. S. Kang, A. Kompch, C. Notthoff, A. W. Wills et al., Electronic impurity doping in CdSe nanocrystals, Nano Lett, vol.12, issue.5, pp.2587-2594, 2012.

A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, and E. A. Meulenkamp, Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling, Phys. Rev. Lett, vol.89, issue.3, p.36801, 2002.

C. Wang, M. Shim, and P. Guyot-sionnest, Electrochromic nanocrystal quantum dots, vol.291, pp.2390-2392, 2001.

D. Talapin and C. B. Murray, Applied physics: PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors, Science (80-. ), vol.310, issue.5745, pp.86-89, 2005.

M. Shim and P. Guyot-sionnest, n-Type colloidal semiconductor nanocrystals, Nature, vol.407, issue.6807, pp.981-983, 2000.

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul-alivisatos, Cation exchange reactions in ionic nanocrystals, Science, vol.306, issue.5698, pp.1009-1012, 2004.

H. D. Nelson, X. Li, and D. R. Gamelin, Computational Studies of the Electronic Structures of Copper-Doped CdSe Nanocrystals: Oxidation States, Jahn-Teller Distortions, Vibronic Bandshapes, and Singlet-Triplet Splittings, J. Phys. Chem. C, vol.120, issue.10, pp.5714-5723, 2016.

H. D. Nelson, S. O. Hinterding, R. Fainblat, S. E. Creutz, X. Li et al., Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu + -and Ag + -Doped CdSe Nanocrystals

, J. Am. Chem. Soc, vol.139, issue.18, pp.6411-6421, 2017.

X. Yuan, S. Ji, M. C. De-siena, L. Fei, Z. Zhao et al., Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration, Chem. Mater, vol.29, issue.18, pp.8003-8011, 2017.

K. E. Hughes, K. H. Hartstein, and D. R. Gamelin, Photodoping and Transient Spectroscopies of Copper-Doped CdSe/CdS Nanocrystals, ACS Nano, vol.12, issue.1, pp.718-728, 2018.

R. Fainblat, C. J. Barrows, E. Hopmann, S. Siebeneicher, V. A. Vlaskin et al., Giant Excitonic Exchange Splittings at Zero Field in Single Colloidal CdSe Quantum Dots Doped with Individual Mn2+ Impurities, Nano Lett, vol.16, issue.10, pp.6371-6377, 2016.

L. Yang, K. E. Knowles, A. Gopalan, K. E. Hughes, M. C. James et al., One-Pot Synthesis of Monodisperse Colloidal Copper-Doped CdSe Nanocrystals Mediated by LigandCopper Interactions, Chem. Mater, vol.28, issue.20, pp.7375-7384, 2016.

S. Brovelli, C. Galland, R. Viswanatha, and V. I. Klimov, Tuning radiative recombination in cudoped nanocrystals via electrochemical control of surface trapping, Nano Lett, vol.12, issue.8, pp.4372-4379, 2012.

A. Yeltik, M. Olutas, M. Sharma, K. Gungor, and H. V. Demir, Nonradiative Energy Transfer between Doped and Undoped Flat Semiconductor Nanocrystals of Colloidal Quasi-2D Nanoplatelets, J. Phys. Chem. C, vol.123, issue.2, pp.1470-1476, 2019.

R. Viswanatha, S. Brovelli, A. Pandey, S. A. Crooker, and V. I. Klimov, Copper-Doped Inverted Core/Shell Nanocrystals with 'Permanent' Optically Active Holes, Nano Lett, vol.11, issue.11, pp.4753-4758, 2011.

A. Antanovich, A. W. Achtstein, A. Matsukovich, A. Prudnikau, P. Bhaskar et al., A strain-induced exciton transition energy shift in CdSe nanoplatelets: The impact of an organic ligand shell, Nanoscale, vol.9, issue.45, pp.18042-18053, 2017.

A. H. Khan, V. Pinchetti, I. Tanghe, Z. Dang, B. Martín-garcía et al., Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets, Chem. Mater, vol.31, issue.4, pp.1450-1459, 2019.

Y. Wang, M. Zhukovskyi, P. Tongying, Y. Tian, and M. Kuno, Synthesis of ultrathin and thickness-controlled Cu2-xSe nanosheets via cation exchange, J. Phys. Chem. Lett, vol.5, issue.21, pp.3608-3613, 2014.

C. Bouet, D. Laufer, B. Mahler, B. Nadal, H. Heuclin et al., Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions, Chem. Mater, vol.26, issue.9, pp.3002-3008, 2014.

T. Galle, M. Khoshkhoo, B. Martin-garcia, C. Meerbach, V. Sayevich et al., Colloidal PbSe Nanoplatelets of Varied Thickness with Tunable Optical Properties, Chem. Mater, vol.31, issue.10, pp.3803-3811, 2019.

E. Izquierdo, A. Robin, S. Keuleyan, N. Lequeux, E. Lhuillier et al., Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters, J. Am. Chem. Soc, vol.138, issue.33, pp.10496-10501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01420371

F. D. Ott, L. L. Spiegel, D. J. Norris, and S. C. Erwin, Microscopic theory of cation exchange in CdSe nanocrystals, Phys. Rev. Lett, vol.113, issue.15, p.156803, 2014.

O. , Otfried) Madelung, Semiconductors : data handbook, 2004.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff et al., Site-selective noble metal growth on CdSe nanoplatelets, Chem. Mater, vol.27, issue.8, pp.3159-3166, 2015.

M. Zhukovskyi, P. Tongying, H. Yashan, Y. Wang, and M. Kuno, Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets, ACS Catal, vol.5, issue.11, pp.6615-6623, 2015.

B. Mahler, L. Guillemot, L. Bossard-giannesini, S. Ithurria, D. Pierucci et al., Metallic Functionalization of CdSe 2D Nanoplatelets and Its Impact on Electronic Transport, J. Phys. Chem. C, vol.120, issue.23, pp.12351-12361, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01347065

A. H. Khan, V. Pinchetti, I. Tanghe, Z. Dang, B. Martín-garcía et al., Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets, Chem. Mater, vol.31, issue.4, pp.1450-1459, 2019.

D. Morgan and D. F. Kelley, Role of Surface States in Silver-Doped CdSe and CdSe/CdS Quantum Dots, J. Phys. Chem. C, vol.122, issue.19, pp.10627-10636, 2018.

W. Cho, S. Kim, I. Coropceanu, V. Srivastava, B. T. Diroll et al., Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm, Chem. Mater, vol.30, 2018.

C. Bouet, B. Mahler, B. Nadal, B. Abecassis, M. D. Tessier et al., Two-Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets, Chem. Mater, vol.25, issue.4, pp.639-645, 2013.

R. B. Vasiliev, E. P. Lazareva, D. A. Karlova, A. V. Garshev, Y. Yao et al., Spontaneous Folding of CdTe Nanosheets Induced by Ligand Exchange, Chem. Mater, vol.30, issue.5, pp.1710-1717, 2018.

E. Rosencher, B. Vinter, and O. , , 2002.

A. Chu, C. Livache, S. Ithurria, and E. Lhuillier, Electronic structure robustness and design rules for 2D colloidal heterostructures, J. Appl. Phys, vol.123, issue.3, p.35701, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707928

M. Avinor and G. Meijer, Emission of activated cadmium selenide phosphors, J. Chem. Phys, vol.32, issue.5, pp.1456-1458, 1960.

A. Robin, Opto-électronique de boîtes et puits quantiques colloïdaux -Application au phototransport, 2017.

A. M. Schimpf, K. E. Knowles, G. M. Carroll, and D. R. Gamelin, Electronic Doping and RedoxPotential Tuning in Colloidal Semiconductor Nanocrystals, Acc. Chem. Res, vol.48, issue.7, pp.1929-1937, 2015.

A. J. Houtepen, Z. Hens, J. S. Owen, and I. Infante, On the Origin of Surface Traps in Colloidal II-VI Semiconductor Nanocrystals, Chem. Mater, vol.29, issue.2, pp.752-761, 2017.

S. Singh, R. Tomar, S. Brinck, J. De-roo, P. Geiregat et al., Colloidal CdSe Nanoplatelets, A Model for Surface Chemistry/Optoelectronic Property Relations in Semiconductor Nanocrystals, J. Am. Chem. Soc, vol.140, issue.41, pp.13292-13300, 2018.

S. Yadav, A. Singh, L. Thulasidharan, and S. Sapra, Surface Decides the Photoluminescence of Colloidal CdSe Nanoplatelets Based Core/Shell Heterostructures, J. Phys. Chem. C, vol.122, issue.1, pp.820-829, 2018.

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, The surface science of nanocrystals, Nature Materials, vol.15, issue.2, pp.141-153, 2016.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metalcarboxylate displacement and binding, J. Am. Chem. Soc, vol.135, issue.49, pp.18536-18548, 2013.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metalcarboxylate displacement and binding, J. Am. Chem. Soc, vol.135, issue.49, pp.18536-18548, 2013.

B. Mahler, B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret, Core/shell colloidal semiconductor nanoplatelets, J. Am. Chem. Soc, vol.134, issue.45, pp.18591-18598, 2012.

S. Ghosh and L. Manna, The Many 'Facets' of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals, Chem. Rev, vol.118, issue.16, pp.7804-7864, 2018.

Z. M. Norman, N. C. Anderson, and J. S. Owen, Electrical transport and grain growth in solutioncast, chloride-terminated cadmium selenide nanocrystal thin films, ACS Nano, vol.8, issue.7, pp.7513-7521, 2014.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu et al., Colloidalquantum-dot photovoltaics using atomic-ligand passivation, Nat. Mater, vol.10, issue.10, pp.765-71, 2011.

F. Gerdes, C. Navío, B. H. Juárez, and C. Klinke, Size, Shape, and Phase Control in Ultrathin CdSe Nanosheets, Nano Lett, vol.17, issue.7, pp.4165-4171, 2017.

Y. Yao, Y. Zhou, W. M. Sanderson, R. A. Loomis, and W. E. Buhro, Metal-Halide-Ligated Cadmium Selenide Quantum Belts by Facile Surface Exchange, Chem. Mater, vol.30, issue.8, pp.2848-2857, 2018.

N. Kirkwood, J. O. Monchen, R. W. Crisp, G. Grimaldi, H. A. Bergstein et al., Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation, J. Am. Chem. Soc, vol.140, issue.46, pp.15712-15723, 2018.

S. Christodoulou, J. I. Climente, J. Planelles, R. Brescia, M. Prato et al., Chloride-Induced Thickness Control in CdSe Nanoplatelets, Nano Lett, vol.18, issue.10, pp.6248-6254, 2018.

S. Armon, E. Efrati, R. Kupferman, and E. Sharon, Geometry and Mechanics in the Opening of Chiral Seed Pods, Science (80-. ), vol.333, issue.6050, pp.1726-1730, 2011.

L. Brammer, E. A. Bruton, and P. Sherwood, Understanding the Behavior of Halogens as Hydrogen Bond Acceptors, Cryst. Growth Des, vol.1, issue.4, pp.277-290, 2001.

A. Naumkin, A. Kraut-vass, and C. Powell, NIST X-ray photoelectron spectroscopy database, 2008.

E. Prince,

D. Chen, Y. Gao, Y. Chen, Y. Ren, and X. Peng, Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes, Nano Lett, vol.15, issue.7, pp.4477-4482, 2015.

A. Chu, C. Livache, S. Ithurria, and E. Lhuillier, Electronic structure robustness and design rules for 2D colloidal heterostructures, J. Appl. Phys, vol.123, issue.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707928

E. Deligoz, K. Colakoglu, and Y. Ciftci, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe, Phys. B Condens. Matter, vol.373, issue.1, pp.124-130, 2006.

J. Li and L. Wang, Deformation potentials of CdSe quantum dots, Appl. Phys. Lett, vol.85, issue.14, pp.2929-2931, 2004.

G. G. Angilella, N. H. March, I. A. Howard, and R. Pucci, Pressure dependence of the energy gaps in diamond-type semiconductors, and their III-V analogues such as InSb, Journal of Physics: Conference Series, vol.121, 2008.

U. Soni, A. Pal, S. Singh, M. Mittal, S. Yadav et al., Simultaneous Type-I/Type-II emission from CdSe/CdS/ZnSe nano-heterostructures, ACS Nano, vol.8, issue.1, pp.113-123, 2014.

D. Battaglia, B. Blackman, and X. Peng, Coupled and decoupled dual quantum systems in one semiconductor nanocrystal, J. Am. Chem. Soc, vol.127, issue.31, pp.10889-10897, 2005.

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, Colloidal Double Quantum Dots, Acc. Chem. Res, vol.49, issue.5, pp.902-910, 2016.

C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci et al., Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells, Nano Lett, vol.17, issue.7, pp.4067-4074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541341

Z. Li, H. Qin, D. Guzun, M. Benamara, G. Salamo et al., Uniform thickness and colloidalstable CdS quantum disks with tunable thickness: Synthesis and properties, Nano Res, vol.5, issue.5, pp.337-351, 2012.

E. Kalesaki, W. H. Evers, G. Allan, D. Vanmaekelbergh, and C. Delerue, Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two, Phys. Rev. B -Condens. Matter Mater. Phys, vol.88, issue.11, p.115431, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871971