. Afnor, Management des systèmes-ingénierie intégrée -concepts généraux et introduction aux méthodes d'application. Norme NF X50-415. Normes, lois et Rapports de l'État, 1994.

A. Mécatronique--vocabulaire, volume Norme NF E01-010. Normes -lois et rapports de l'État, 2008.

D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, and G. Ferreres, , 1999.

C. P. Anton, H. Haruhiko, and . Asada, Integrated structure/control design of mechatronic systems using a recursive experimental optimization method, IEEE/ASME transactions on mechatronics, vol.1, pp.191-203, 1996.

M. M. Arezki, A. Smaïl, and B. Djamel, Modélisation et Simulation par Bond Graph d'un Système Mécatronique pour la Conception Integrée de Supervision, 2011.

D. Arzelier and J. Bernussou, Journal sur l'Enseignement des Sciences et Technologies de l'Information et des Systèmes, J3EA, 2003.

. Asme-y14, Dimensioning and tolerancing. The American Society of Mechanical Engineers National Standard. The American Society of Mechanical Engineers, pp.5-2009, 2009.

J. P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps And Viability Theory, 1984.

B. W. Boehm, A spiral model of software development and enhancement, Computer, issue.5, pp.61-72, 1988.

E. K. Boukas, Systèmes asservis, Presses inter Polytechnique, p.323, 1995.

T. Brezina, Z. Hadas, and J. Vetiska, Using of Co-simulation ADAMS-SIMULINK for development of mechatronic systems, MECHATRONIKA, 14th International Symposium, pp.59-64, 2014.

D. Brück, H. Elmqvist, S. E. Mattsson, and H. Olsson, Dymola for multiengineering modeling and simulation, Proceedings of Modelica, 2002.

S. R. Buss, Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods, IEEE Journal of Robotics and Automation, vol.17, p.16, 2004.

M. M. Chaabane, Modélisation géométrique et mécanique pour les systèmes mécatroniques, 2014.

J. Choley and A. Rivière, Variation of the Geometrical Parameters for Datums Association. Managing Geometric Uncertainty in the Product Lifecycle, The 8th CIRP International Seminar on Computer Aided-Tolerancing, 2003.

J. Choley, Une approche variationnelle de l'association des références en tolérancement géométrique, 2005.

J. Choley, A. Rivière, and A. Clement, A new variational association process for the verification of geometrical specifications, Journal of computing and information science in engineering, vol.7, issue.1, pp.66-71, 2007.

E. Crawley, O. De-weck, S. Eppinger, C. Magee, J. Moses et al.,

J. Schindall, D. Wallace, and D. Whitney, The influence of architecture in engineering systems, 2004.

R. W. Daniel and J. R. Hewit, Editorial, Mechatronics, vol.1, pp.i-ii, 1991.

J. Dantan, A. Hassan, A. Etienne, and A. Siadat, Information modeling for variation management during the product and manufacturing process design, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.2, issue.2, pp.107-118, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02168330

D. Silva, C. , and W. , Mechatronic systems: Devices, Design, Control, Operation and Monitoring (Mechanical and Aerospace Engineering Series), 2007.

M. Désenfant, N. Fischer, B. Blanquart, and N. Édiat, Evaluation de l'incertitude en utilisant les méthodes Monte Carlo, 13 ème Congrès international de métrologie, pp.18-21, 2007.

M. El-feki, Analyse et synthèse de tolérance pour la conception et le dimensionnement des systèmes mécatroniques, 2011.

H. Elmqvist, S. Mattsson, and M. Otter, Modelica: The new object-oriented modeling language, The 12th European Simulation Multi-conference, p.100, 1998.

M. Ferber, A. Korniienko, J. Löfberg, F. Morel, G. Scorletti et al., Efficient worst-case analysis of electronic networks in intervals of frequency, Electronic Networks, Devices and Fields, vol.2, p.2249, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01559420

P. M. Frank, Introduction to system sensitivity theory, 1978.

E. Freund, ISO/IEC 15288: 2002, Systems Engineering-System Life-Cycle Processes, Software Quality Professional, vol.8, p.42, 2005.

P. Fritzson and V. Engelson, Modelica-A unified object-oriented language for system modeling and simulation, European Conference on Object-Oriented Programming, pp.67-90, 1998.

E. T. Frotini, Dimensioning for interchangeable manufacture, 1967.

S. Gaaloul-chouikh, Interopérabilité basée sur les standards Modelica et composant logiciel pour la simulation énergétique des systèmes de Bâtiment, 2012.

S. Ghosh and K. Roy, Parameter variation tolerance and error resiliency: New design paradigm for the nanoscale era, Proceedings of the IEEE, vol.98, pp.1718-1751, 2010.

G. H. Golub, The Singular Value Decomposition with Applications, Advanced Mathematical Tools in Metrology II, 1996.

A. Guizani, Approche multi-agents pour la conception optimale des systèmes mécatroniques, 2016.

A. Guizani, M. Hammadi, J. Choley, T. Soriano, M. Abbes et al., Electric vehicle design, modelling and optimization, Mechanics & Industry, vol.17, p.405, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331980

M. Hammadi, J. Choley, O. Penas, and A. Riviere, Multidisciplinary approach for modelling and optimization of Road Electric Vehicles in conceptual design level, Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), p.101, 2012.

G. Hamza, Contribution aux développements des modèles analytiques compacts pour l'analyse vibratoire des systèmes mécatroniques, 2016.

G. Hamza, M. Hammadi, M. Barkallah, J. Choley, A. Riviere et al., Conceptual design methodology for the preliminary study of a mechatronic system: application to wind turbine system, Mechanics & Industry 18, p.413, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589598

G. Harmel, Vers une conception conjointe des architectures du produit et de l'organisation du projet dans le cadre de l'Ingénierie Système, 2007.

A. Hassani, N. Aifaoui, A. Benamara, and S. Samper, Tolerance analyses and optimizations methodology in integrated design, 2008.

, Mechanics & industry, vol.9, pp.381-395

, TC 4.2 IFAC Technical Committee. Mechatronic systems, 2013.

R. Isermann, Mechatronic Systems : Fundamentals, 2005.

R. Isermann, Mechatronic systems-Innovative products with embedded control, Control Engineering Practice, vol.16, pp.14-29, 2008.

, Systems Engineering Handbook, Version 2.0, International Council on Systems Engineering(INCOSE), INCOSE, 2000.

M. K. Jabali, M. El-fahime, B. Rzine, M. Radouani, J. Louati et al., Computer-Aided Dimensioning of multi-physics system design in a strategy: Application to a slider crank mechanism, International Journal of Research and Reviews in Mechatronic Design and Simulation, 2011.

J. Jacques, Contributions to the sensitivity analysis and generalized discriminant analysis, 2005.

P. Jagou, Concurrent engineering : la maîtrise des coûts, des délais et de la qualité, 1993.

A. Jardin, Contribution à une méthodologie de dimensionnement des systèmes mécatroniques : analyse structurelle et couplage à l'optimisation dynamique, 2010.

M. Jha, G. Dauphin-tanguy, and B. Ould-bouamama, Robust fault detection with Interval Valued Uncertainties in Bond Graph Framework, Control Engineering Practice, vol.71, pp.61-78, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01728226

, Références bibliographiques, p.102

F. Jian, M. Jean-charles, Y. Liming, and F. Yongling, Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft, 2018.

, Chinese Journal of Aeronautics, vol.31, issue.5, pp.892-913

N. Jouilel, M. Radouani, M. El-gadari, and E. F. Benaissa, Mechatronic tolerancing: Bond graph approach, International Journal of Advanced Computer Technology, Compusoft, vol.5, issue.2, p.2063, 2016.

C. S. Kam, Les bond graphs pour la modélisation des systèmes linéaires incertains, 2001.

N. Kharrat-abdeljabbar, R. Plateaux, M. Chaabane-miladi, J. Choley, C. Karra et al., Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick, Comptes Rendus Mécanique, vol.346, issue.5, pp.351-365, 2018.

N. Kyura and H. Oho, Mechatronics-an industrial perspective, IEEE/ASME Transactions on Mechatronics, vol.1, pp.10-15, 1996.

A. Lanzotti and S. Patalano, Mechatronic Futures -Challenges and Solutions for Mechatronic Systems and their Designers, pp.113-128, 2016.

D. Mami, Définition, conception et expérimentation de structures d'actionneurs électromécaniques innovants incluant par conception des fonctionnalités de sûreté et de sécurité de fonctionnement, 2010.

H. Mcmanus and D. Hastings, A Framework for Understanding Uncertainty And Its Mitigation, Exploitation in Complex Systems, INCOSE International, vol.15, issue.1, p.503, 2005.

A. Mezghani, Optimisation du calcul des dispersions angulaires Tridimensionnelles, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00576363

R. E. Moore, , vol.4, 1966.

R. E. Moore, Methods and applications of interval analysis, Society for Industrial and Applied Mathematics, 1979.

T. Mori, Yaskawa internal trademark application, 1969.

E. Morse, J. Dantan, N. Anwer, R. Söderberg, G. Moroni et al.,

X. Jiang and L. Mathieu, Tolerancing: Managing uncertainty from conceptual design to final product, CIRP Annals -Manufacturing Technology, vol.67, pp.695-717, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01940533

V. H. Nguyen, Synthèse de tolérance pour la conception des systèmes mécatroniques : Approche par bond graph inverse, 2014.

, OMG Systems Modeling Language (OMG SysML), 2012.

S. A. Raka, Méthodes et outils ensemblistes pour le pré-dimensionnement de systèmes mécatroniques, 2011.

A. Reysset, Conception préliminaire d'actionneurs électromécaniquesoutils d'aide à la spécification et à la génération de procédures de dimensionnement pour l'optimisation, 2015.

R. Sanchez, Application des bond graphs à la modélisation et à la commande de réseaux électriques à structure variable, 2010.

P. Serré, A. Rivière, and A. Clément, Parametric Specification of Mechanisms, Geometric tolerancing of products, pp.183-205, 2010.

H. Siala, F. Mhenni, J. Choley, M. Barkallah, J. Louati et al., General tolerance for mechatronic system, Systems Engineering Symposium (ISSE, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01988172

H. Siala, F. Mhenni, J. Choley, M. Barkallah, J. Louati et al., Parametric tolerance specification of an electromechanical actuator, 12th France-Japan and 10th, Europe-Asia Congress on Mechatronics, 2018.

C. M. Soize, Modélisation probabiliste, identification et propagation des incertitudes dans les modèles numériques des systèmes mécaniques complexes, 9 ème Colloque National en Calcul des Structures (CSMA), pp.1-12, 2009.

T. Soriano, M. Zerelli, T. H. Gallois, and A. Warniez, Quantifying reliability of a mechatronic system using Hausdorff distance in state space, Mechatronics, 10th France-Japan/8th Europe-Asia Congress on, pp.47-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01723802

M. F. Spotts, Allocation of Tolerances to Minimize Cost of, Assembly J. Eng. Ind, vol.95, issue.3, pp.762-764, 1973.

, Références bibliographiques 104

V. Srinivasan, An integrated view of geometrical product specification and verification, The 7th CIRP International Seminar on Computer Aided-Tolerancing, 2001.

H. Trabelsi, Contribution à la prise en compte d'exigences dynamiques en conception préliminaire de systèmes complexes, 2014.

H. Trabelsi, P. A. Yvars, J. Louati, and M. Haddar, Evaluation of the effectiveness of the interval computation method to simulate the dynamic behavior of subdefinite system: application on an active suspension system, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.9, issue.2, pp.83-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01912051

Y. Touati, R. Merzouki, and B. O. Bouamama, Robust diagnosis to measurement uncertainties using bond graph approach: Application to intelligent autonomous vehicle, Mechatronics, vol.22, issue.8, pp.1148-1160, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749169

S. Turki, Ingénierie système guidée par les modèles : Application du standard IEEE15288, de l'architecture MDA et du langage SysML à la conception des systèmes mécatroniques, 2008.

M. Vergé and D. Jaume, Modélisation structurée des systèmes avec les bonds graphs, TECHNIP, 2003.

H. Weis, F. Hilbrunner, T. Fröhlich, and G. Jäger, Parametric mechatronic model of a load cell with electromagnetic force compensation, Proceedings IMEKO TC3, 2010.

M. Zerelli and T. Soriano, Application of impulse differential inclusion for uncertainty analysis of mechatronic hybrid system, the 9th France-Japan & 7th, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01723825

. Europe-asia, Congress on Mechatronics (MECATRONICS)/13th Int'l Workshop on Research and Education in Mechatronics (REM)

M. Zerelli, Systèmes mécatroniques à paramètres variables : analyse du comportement et approche du tolérancement, 2014.

G. Zhai, Y. Zhou, X. Ye, and B. Hu, A method of multi-objective reliability tolerance design for electronic circuits, Chinese Journal of Aeronautics, vol.26, issue.1, pp.161-170, 2013.

, Références bibliographiques 105

Y. M. Zhao, D. S. Liu, and Z. J. Wen, Optimal Tolerance Design of Product Based on Service Quality Loss, The International Journal of Advanced Manufacturing Technology, vol.82, issue.9, pp.1715-1724, 2016.

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., Variational Approach for Mechatronic Tolerancing: Application to a DC motor, Mechanics and Industry, 2019.

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., Variational approach for Robust Design and Sensitivity Analysis of Mechatronic Systems, 2019.

S. Hana, M. Faïda, C. Jean-yves, B. Maher, L. Jamel et al., Toward a robust design of an Aileron Electromechanical Actuator (EMA): Sensitivity Analysis and Parametric Tolerancing using a Variational Approach, IEEE Systems Journals, 2020.

?. Liste, S. Hana, M. Faïda, B. Maher, L. Jamel et al., Robustness analysis of mechatronic system: Application to a DC motor, The International Congress Design and Modelling of Mechanical Systems (CMSM'2017), 2017.

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., General tolerance for mechatronic system, IEEE International Symposium on Systems Engineering, 2017.

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., Tolerance specification of an electromechanical actuator, The International Conference on Acoustics and Vibration (ICAV2018) 19th-Références bibliographiques 107

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., Parametric tolerance specification of an electromechanical actuator, vol.12, 2018.

S. Hana, M. Faïda, B. Maher, L. Jamel, C. Jean-yves et al., The influence of thermal effect on tolerance specification of a mechatronic system, A3M, 2018.

, Annexes Annexes Z=Ja*alphasecond(i,2)+M*g*a*cos(alpha(i,2))+cst*(sin(alpha(i,2), p.2

. C=la*la*sin, , p.0

, )))/sqrt(Y)-(sqrt(Y)*la*sin, p.0

/. C^2],

, )))/sqrt(Y)-(sqrt(Y)*La*sin, p.0

/. C^2],

/. C^2],

. Drvja=sqrt(y)*alphasecond,

, *a*sin(alpha(i,2))+2*cst*sin(alpha(i,2))*cos

*. Fe=y, *. Ja, and . Alphasecond, 2)+M*g*a*cos(alpha(c,2))+cst*(sin(alpha(c,2)))^2)/C

, I(i,2)*Wm(i,2), -Wm(i,2)* dWmdt(i,2),-Fe*Wm(i,2)/(2*pi*red), -(p*Wm(i,2)*drvLa/(2*pi*red)),-(p*Wm(i,2)*drvla/(2*pi*red)), -(p*Wm(i,2)*drvalpha0/(2*pi*red)),-(p*Wm(i,2)*drvJa/(2*pi*red)), -(p*Wm(i,2)*drvM/(2*pi*red)), 2000.

*. Z=ja and . Alphasecond, 2)+M*g*a*cos(alpha(c,2))+cst*(sin(alpha, p.2

. C=la*la*sin, , p.0

, )))/sqrt(Y)-(sqrt(Y)*la*sin, p.0

/. C^2],

, )))/sqrt(Y)-(sqrt(Y)*La*sin, p.0

/. C^2],

/. C^2],

. Drvja=sqrt(y)*alphasecond,

, *a*sin(alpha(c,2))+2*cst*sin(alpha(c,2))*cos

*. Fe=y, *. Ja, and . Alphasecond, 2)+M*g*a*cos(alpha(c,2))+cst*(sin(alpha(c,2)))^2)/C

. B-=[b,

, U(c,2)-k*Wm(c,2)-2*R*I(c,2)-L*dIdt(c,2),-k*I(c,2),0;0,-k*Wm(c,2),(Jeq*dWmdt(c,2))-(k*I(c,2))+Fe*p/(2*pi*red)

=. Umax and . Max,

=. Imax and . Max,

=. Wmmax and . Max, Wm

, Z=ff*(B)*[dU(ii)

, dI(cc);dWm(dd)

, dR(kk)=abs(Z(1))

, dL(kk)=abs(Z(2))

, dk(kk)=abs(Z(3))

, dJeq(kk)= abs

, dp(kk)= abs

, dLa(kk)= abs

, dla(kk)= abs

, dalpha0(kk)= abs

, dJa(kk)= abs

, dM(kk)= abs

, da(kk)= abs

, prk=(ddk(1,1)/k)*100

, prJeq=(ddJeq(1,1)/Jeq)*100

, prLa=(ddLa(1,1)/La)*100

, prla=(ddla(1,1)/la)*100

, prJa=(ddJa(1,1)/Ja)*100

, prM=(ddM, p.100

, pra=(dda, p.100