Q. Al-awqati and X. B. Gao, Differentiation of intercalated cells in the kidney, Physiology (Bethesda), vol.26, issue.4, pp.266-272, 2011.

S. L. Alper, Genetic diseases of acid-base transporters, Annu Rev Physiol, vol.64, pp.899-923, 2002.

P. S. Aronson and G. Giebisch, Effects of pH on potassium: new explanations for old observations, J Am Soc Nephrol, vol.22, issue.11, pp.1981-1989, 2011.

J. P. Arroyo, C. Ronzaud, D. Lagnaz, O. Staub, and G. Gamba, , 2011.

, Aldosterone paradox: differential regulation of ion transport in distal nephron, Physiology (Bethesda), vol.26, issue.2, pp.115-123

P. Bartter and M. Gill, Hyperplasia of the juxtaglomerular complex with hyperaldosteronis and hypokalemic alkalosis, Journal of the American Society of Nephrology, vol.33, pp.811-828, 1962.

R. Birkenhager, E. Otto, M. J. Schurmann, M. Vollmer, E. M. Ruf et al.,

A. Beekmann, H. Fekete, D. Omran, D. V. Feldmann, N. Milford et al., Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure, Nat Genet, vol.29, issue.3, pp.310-314, 2001.

W. F. Boron and E. L. Boulpaep, Boron and Boulpaep Medical Physiology 2e Update, 2012.

L. M. Boyden, M. Choi, K. A. Choate, C. J. Nelson-williams, A. Farhi et al.,

A. Semmekrot, A. Poujol, M. J. Valimaki, M. E. De-ferrari, S. A. Sanjad et al.,

M. L. Anand, I. D. Whiteford, S. B. Davis, A. Dewar, J. J. Bettinelli et al.,

W. Belsha, T. E. Hunley, R. D. Nelson, H. Trachtman, T. R. Cole et al.,

M. Bockenhauer, P. Shenoy, J. W. Vaidyanathan, M. Foreman, and F. Rasoulpour,

H. Z. Thameem, J. Al-shahrouri, A. G. Radhakrishnan, B. Gharavi, and R. Goilav,

P. Lifton, Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, vol.482, issue.7383, pp.98-102, 2012.

. Brenner and . Rector's, The Kidney, 2012.

M. Burg, J. Grantham, M. Abramow, and J. Orloff, Preparation and study of fragments of single rabbit nephrons, Am J Physiol, vol.210, issue.6, pp.1293-1298, 1966.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al.,

T. Mueller, M. W. Nolan, G. L. Pfaffl, J. Shipley, C. T. Vandesompele et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin Chem, vol.55, issue.4, pp.611-622, 2009.

M. Castaneda-bueno, L. G. Cervantes-perez, N. Vazquez, N. Uribe, and S. ,

L. Kantesaria, N. A. Moria, A. Bobadilla, D. R. Doucet, G. Alessi et al., Activation of the renal NaCl cotransporter by angiotensin II is a WNK4-dependent process, Proc Natl Acad Sci U S A, vol.109, pp.7929-7934, 2012.

R. Chambrey, I. Kurth, J. Peti-peterdi, P. Houillier, J. M. Purkerson et al.,

A. A. Hentschke, G. J. Zdebik, C. A. Schwartz, D. Hubner, and . Eladari, , 2013.

, Renal intercalated cells are rather energized by a proton than a sodium pump, Proc Natl Acad Sci U S A, vol.110, pp.7928-7933

R. Chambrey and F. Trepiccione, Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure, Curr Hypertens Rep, vol.17, issue.4, p.538, 2015.

M. Chavez-canales, J. P. Arroyo, B. Ko, N. Vazquez, R. Bautista et al.,

N. A. Bueno, R. S. Bobadilla, G. Hoover, and . Gamba, Insulin increases the functional activity of the renal NaCl cotransporter, J Hypertens, vol.31, issue.2, pp.303-311, 2013.

M. Chavez-canales, C. Zhang, C. Soukaseum, E. Moreno, D. Pacheco-alvarez et al.,

S. Meermeier, X. Rogers, C. L. Jeunemaitre, D. H. Yang, G. Ellison et al.,

. Hadchouel, WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4, Hypertension, vol.64, issue.5, pp.1047-1053, 2014.

L. S. Costanzo, Physiology, 2011.

C. A. Cuevas, X. T. Su, M. X. Wang, A. S. Terker, D. H. Lin et al.,

L. Yang, D. H. Ellison, and W. H. Wang, Potassium Sensing by Renal Distal Tubules Requires Kir4.1, J Am Soc Nephrol, vol.28, issue.6, pp.1814-1825, 2017.

C. Delaloy, E. Elvira-matelot, M. Clemessy, X. O. Zhou, M. Imbert-teboul et al.,

X. Houot, J. Jeunemaitre, and . Hadchouel, Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues, Hypertension, vol.52, issue.6, pp.1149-1154, 2008.

C. Delaloy, J. Lu, A. M. Houot, S. Disse-nicodeme, J. M. Gasc et al.,

. Jeunemaitre, Multiple Promoters in the WNK1 Gene: One Controls Expression of a Kidney-Specific Kinase-Defective Isoform, Molecular and Cellular Biology, vol.23, issue.24, pp.9208-9221, 2003.

T. D. Dubose and . Jr, Hyperkalemic hyperchloremic metabolic acidosis: pathophysiologic insights, Kidney Int, vol.51, issue.2, pp.591-602, 1997.

J. C. Edwards, Chloride transport, Compr Physiol, vol.2, issue.2, pp.1061-1092, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02453160

D. Eladari, R. Chambrey, and J. Peti-peterdi, A new look at electrolyte transport in the distal tubule, Annu Rev Physiol, vol.74, pp.325-349, 2012.

D. Eladari, R. Chambrey, N. Picard, and J. Hadchouel, Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation, Cell Mol Life Sci, vol.71, issue.15, pp.2879-2895, 2014.

D. Eladari and C. A. Hubner, Novel mechanisms for NaCl reabsorption in the collecting duct, Curr Opin Nephrol Hypertens, vol.20, issue.5, pp.506-511, 2011.

D. Eladari and Y. Kumai, Renal acid-base regulation: new insights from animal models, Pflugers Arch, vol.467, issue.8, pp.1623-1641, 2015.

. Estevez, . Boettgerr, . Stein, T. J. Bikenhager, and . Jentsch, Barttin is a Clchannel B-subunit crucial for renal Cl-reabsotion and inner ear K+ secretion, Nature, vol.414, 2001.

L. A. Everett, I. A. Belyantseva, K. Noben-trauth, R. Cantos, A. Chen et al.,

S. L. Thakkar, B. Hoogstraten-miller, D. K. Kachar, E. D. Wu, and . Green, , 2001.

, Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome, Hum Mol Genet, vol.10, issue.2, pp.153-161

G. Gitelman and W. , A familial disorder characterized by hypokalemia and hypomagnesemia, Annals New York Academy of Sciences, 1966.

R. Greene, M. E. Quinones, and K. Edwards, Evaluation of thiazide diuretic use as preferred therapy in uncomplicated essential hypertension patients, Pharmacy practice, vol.5, issue.3, pp.130-134, 2007.

P. R. Grimm, R. Coleman, E. Delpire, and P. A. Welling, Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules, J Am Soc Nephrol, vol.28, issue.9, pp.2597-2606, 2017.

V. Gueutin, M. Vallet, M. Jayat, J. Peti-peterdi, N. Corniere et al.,

A. Wagner, D. Eladari, and R. Chambrey, Renal beta-intercalated cells maintain body fluid and electrolyte balance, J Clin Invest, vol.123, issue.10, pp.4219-4231, 2013.

A. C. Guyton, T. G. Coleman, A. V. Cowley, K. W. Scheel, M. R. et al.,

J. Norman, Arterial pressure regultation. Overriding Dominance of the Kidneys in Long-Term Regulation and in Hypertension, Am j Med, vol.52, issue.5, pp.584-594, 1972.

J. Hadchouel, C. Soukaseum, C. Busst, X. O. Zhou, V. Baudrie et al.,

J. L. Cambillau, R. P. Elghozi, J. Lifton, X. Loffing, and . Jeunemaitre, , 2010.

, Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension, Proc Natl Acad Sci U S A, vol.107, issue.42, pp.18109-18114

S. K. Haque, G. Ariceta, and D. Batlle, Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies, Nephrol Dial Transplant, vol.27, issue.12, pp.4273-4287, 2012.

J. C. Hennings, O. Andrini, N. Picard, M. Paulais, A. K. Huebner et al., The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron, J Am Soc Nephrol, vol.28, issue.1, pp.209-217, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02265462

E. J. Hoorn, S. B. Walsh, J. A. Mccormick, A. Furstenberg, C. L. Yang et al.,

A. Roeschel, A. J. Paliege, J. Howie, S. Conley, R. J. Bachmann et al.,

. Ellison, The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension, Nat Med, vol.17, issue.10, pp.1304-1309, 2011.

T. Jacques, N. Picard, R. L. Miller, K. A. Riemondy, P. Houillier et al.,

C. J. Ramakrishnan, M. Busst, N. Jayat, H. Corniere, P. S. Hassan et al.,

C. A. Hennings, R. D. Hubner, R. Nelson, D. Chambrey, and . Eladari, , 2013.

, Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension, J Am Soc Nephrol, vol.24, issue.7, pp.1104-1113

T. J. Jentsch, Chloride transport in the kidney: lessons from human disease and knockout mice, J Am Soc Nephrol, vol.16, issue.6, pp.1549-1561, 2005.

K. T. Kahle, F. H. Wilson, Q. Leng, M. D. Lalioti, A. D. O'connell et al.,

G. G. Rapson, G. Macgregor, S. C. Giebisch, R. P. Hebert, and . Lifton, , 2003.

, WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion, Nat Genet, vol.35, issue.4, pp.372-376

K. T. Kahle, F. H. Wilson, and R. P. Lifton, Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch, Trends Endocrinol Metab, vol.16, issue.3, pp.98-103, 2005.

F. E. Karet, Mechanisms in hyperkalemic renal tubular acidosis, J Am Soc Nephrol, vol.20, issue.2, pp.251-254, 2009.

K. Keven, R. Ozturk, S. Sengul, S. Kutlay, I. Ergun et al., , 2007.

, Renal tubular acidosis after kidney transplantation--incidence, risk factors and clinical implications, Nephrol Dial Transplant, vol.22, issue.3, pp.906-910

G. Kim, S. Masilamani, R. Turner, C. Mitchell, J. B. Wade et al., The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein, Proc Natl Acad Sci, 1998.

Y. H. Kim, V. Pech, K. B. Spencer, W. H. Beierwaltes, L. A. Everett et al., Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrinnull mice, Am J Physiol Renal Physiol, vol.293, issue.4, pp.1314-1324, 2007.

B. Ko, L. L. Cooke, and R. S. Hoover, , 2011.

, Ras-GRP1) and extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway, Transl Res, vol.158, issue.5, pp.282-289

M. D. Lalioti, J. Zhang, H. M. Volkman, K. T. Kahle, K. E. Hoffmann et al.,

P. Lifton, Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule, Nat Genet, vol.38, issue.10, pp.1124-1132, 2006.

Y. Lazo-fernandez, G. Aguilera, T. D. Pham, A. Y. Park, W. H. Beierwaltes et al.,

J. W. Sutliff, K. Verlander, A. O. Pacak, C. L. Osunkoya, Y. H. Ellis et al.,

B. M. Shipley, R. S. Wynne, S. K. Hoover, P. M. Sen, S. M. Plotsky et al., Pendrin localizes to the adrenal medulla and modulates catecholamine release, Am J Physiol Endocrinol Metab, vol.309, issue.6, pp.534-545, 2015.

F. Leviel, C. A. Hubner, P. Houillier, L. Morla, S. E. Moghrabi et al.,

M. D. Hassan, I. Parker, A. Kurth, A. Kougioumtzes, V. Sinning et al.,

R. L. Riemondy, E. Miller, G. E. Hummler, P. S. Shull, A. Aronson et al.,

R. Wall, D. Chambrey, and . Eladari, The Na+-dependent chloridebicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice, J Clin Invest, vol.120, issue.5, pp.1627-1635, 2010.

R. P. Lifton, A. G. Gharavi, and D. S. Geller, Molecular Mechanisms of human hypertation, Cell, vol.104, pp.545-556, 2001.

Y. Liu, X. Song, Y. Shi, Z. Shi, W. Niu et al.,

J. Eaton, H. Zhuang, and . Cai, WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling, J Am Soc Nephrol, vol.26, issue.4, pp.844-854, 2015.

J. Loffing, V. Vallon, D. Loffing-cueni, F. Aregger, K. Richter et al.,

J. G. Faure, G. E. Hoenderop, P. Shull, B. Meneton, and . Kaissling, Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome, J Am Soc Nephrol, vol.15, issue.9, pp.2276-2288, 2004.

K. I. Lopez-cayuqueo, G. Pena-munzenmayer, M. I. Niemeyer, F. V. Sepulveda, and L. P. Cid, TASK-2 K(2)p K(+) channel: thoughts about gating and its fitness to physiological function, Pflugers Arch, vol.467, issue.5, pp.1043-1053, 2015.

H. Louis-dit-picard, J. Barc, D. Trujillano, S. Miserey-lenkei, N. Bouatia-naji et al.,

G. Pylypenko, A. Beaurain, O. Bonnefond, C. Sand, E. Simian et al.,

C. Soukaseum, F. Mandet, O. Broux, M. Chabre, V. Delahousse et al.,

P. Fiquet, C. I. Houillier, J. Bagnis, M. Koenig, P. Konrad et al.,

V. Niaudet, C. Probst, R. J. Thauvin, S. D. Unwin, G. Soroka et al., International Consortium for Blood

J. Froguel, J. J. Hadchouel, X. Schott, and . Jeunemaitre, KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron, Nat Genet, vol.44, issue.4, pp.451-453, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02349651

S. Masilamani, G. Kim, C. Mitchell, J. B. Wade, and M. A. Knepper, , 1999.

, Aldosterone-mediated regulation of ENaC ?, ?, and ? subunit proteins in rat kidney, The Journal of Clinical Investigation, vol.104

J. A. Mccormick, K. Mutig, J. H. Nelson, T. Saritas, E. J. Hoorn et al.,

J. Rogers, E. Curry, S. Delpire, D. H. Bachmann, and . Ellison, A SPAK isoform switch modulates renal salt transport and blood pressure, Cell Metab, vol.14, issue.3, pp.352-364, 2011.

J. A. Mccormick, J. H. Nelson, C. L. Yang, J. N. Curry, and D. H. Ellison, , 2011.

, Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic hypertension, Hypertension, vol.58, issue.5, pp.888-894

J. A. Mccormick, C. L. Yang, C. Zhang, B. Davidge, K. I. Blankenstein et al.,

B. Terker, N. P. Yarbrough, H. J. Meermeier, B. Park, M. Mccully et al.,

J. D. Gamba, D. H. Singer, and . Ellison, Hyperkalemic hypertensionassociated cullin 3 promotes WNK signaling by degrading KLHL3, J Clin Invest, vol.124, issue.11, pp.4723-4736, 2014.

T. Moriguchi, S. Urushiyama, N. Hisamoto, S. Iemura, S. Uchida et al., WNK1 regulates phosphorylation of cationchloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1, J Biol Chem, vol.280, issue.52, pp.42685-42693, 2005.

M. Murthy, T. Kurz, and K. M. O'shaughnessy, WNK signalling pathways in blood pressure regulation, Cell Mol Life Sci, vol.74, issue.7, pp.1261-1280, 2017.

K. Mutig, T. Kahl, T. Saritas, M. Godes, P. Persson et al.,

S. Rampoldi, C. Uchida, C. Hille, S. Dosche, M. Kumar et al., , 2011.

K. Na+, NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner, J Biol Chem, vol.286, issue.34, pp.30200-30210

K. M. O'shaughnessy, Gordon Syndrome: a continuing story, Pediatr Nephrol, vol.30, issue.11, pp.1903-1908, 2015.

M. Ohno, K. Uchida, T. Ohashi, K. Nitta, A. Ohta et al.,

. Uchida, Immunolocalization of WNK4 in mouse kidney, Histochem Cell Biol, vol.136, issue.1, pp.25-35, 2011.

A. Ohta, T. Rai, N. Yui, M. Chiga, S. S. Yang et al., Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure, Hum Mol Genet, vol.18, issue.20, pp.3978-3986, 2009.

A. Ohta, F. R. Schumacher, Y. Mehellou, C. Johnson, A. Knebel et al., The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction, Biochem J, vol.451, issue.1, pp.111-122, 2013.

B. F. Palmer, Regulation of Potassium Homeostasis, Clin J Am Soc Nephrol, vol.10, issue.6, pp.1050-1060, 2015.

M. A. Pfaffl, A new mathematical model for relative quantification in realtime RT-PCR, Nucleic Acids Res, vol.29, issue.9, 2001.

A. T. Piala, T. M. Moon, R. Akella, H. He, M. H. Cobb et al., , 2014.

, Chloride sensing by WNK1 involves inhibition of autophosphorylation, Sci Signal, vol.7, issue.324, p.41

R. Soriano and J. , Renal tubular acidosis: the clinical entity, J Am Soc Nephrol, vol.13, issue.8, pp.2160-2170, 2002.

R. Soriano, J. , H. Boichis, H. Stark, and C. M. Edelmann, , 1967.

, Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification, Pediatr Res, vol.1, issue.2, pp.81-98

C. Ronzaud, D. Loffing-cueni, P. Hausel, A. Debonneville, S. R. Malsure et al.,

N. A. Fowler-jaeger, R. Boase, M. Perrier, B. Maillard, J. B. Yang et al.,

S. Koesters, E. Kumar, J. Hummler, O. Loffing, and . Staub, Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension, J Clin Invest, vol.123, issue.2, pp.657-665, 2013.

I. E. Royaux, S. M. Wall, L. P. Karniski, L. A. Everett, K. Suzuki et al., Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion, Proc Natl Acad Sci U S A, vol.98, issue.7, pp.4221-4226, 2001.

E. Sabath, P. Meade, J. Berkman, P. De-los-heros, E. Moreno et al., Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease, Am J Physiol Renal Physiol, vol.287, pp.195-203, 2004.

P. San-cristobal, D. Pacheco-alvarez, C. Richardson, A. M. Ring, N. Vazquez et al.,

H. Rafiqi, D. Chari, K. T. Kahle, Q. Leng, N. A. Bobadilla et al.,

R. P. Alessi, G. Lifton, and . Gamba, Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway, Proc Natl Acad Sci U S A, vol.106, issue.11, pp.4384-4389, 2009.

T. Saritas, A. Borschewski, J. A. Mccormick, A. Paliege, C. Dathe et al.,

S. Ellison, K. Bachmann, and . Mutig, SPAK differentially mediates vasopressin effects on sodium cotransporters, J Am Soc Nephrol, vol.24, issue.3, pp.407-418, 2013.

M. Schambelan, A. Sebastian, and F. C. Rector, Mineralocorticoidresistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption, Kidney Int, vol.19, issue.5, pp.716-727, 1981.

S. J. Scheinman, L. M. Guay-woodford, R. V. Thakker, and D. G. Warnock, , 1999.

, Genetic disorders of renal electrolyte transport, N Engl J Med, vol.340, issue.15, pp.1177-1187

P. J. Schultheis, J. N. Lorenz, P. Meneton, M. L. Nieman, T. M. Riddle et al.,

J. J. Flagella, T. Duffy, M. L. Doetschman, G. E. Miller, and . Shull, , 1998.

, Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Clcotransporter of the distal convoluted tubule, J Biol Chem, vol.273, issue.44, pp.29150-29155

F. R. Schumacher, K. Siew, J. Zhang, C. Johnson, N. Wood et al.,

J. T. Maskari, I. Ferryman, Y. Hardege, N. L. Figg, R. Enchev et al.,

M. Shaughnessy and T. Kurz, Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia, EMBO Mol Med, vol.7, issue.10, pp.1285-1306, 2015.

G. J. Schwartz, J. Barasch, and Q. Al-awqati, Plasticity of functional epithelial polarity, Nature, vol.318, issue.6044, pp.368-371, 1985.

D. A. Scott, R. Wang, T. M. Kreman, V. C. Sheffield, and L. P. Karniski, , 1999.

, The Pendred syndrome gene encodes a chloride-iodide transport protein, Nat Genet, vol.21, issue.4, pp.440-443

M. Shekarabi, J. Zhang, A. R. Khanna, D. H. Ellison, E. Delpire et al., WNK Kinase Signaling in Ion Homeostasis and Human Disease, Cell Metab, vol.25, issue.2, pp.285-299, 2017.

S. Shibata, J. Rinehart, J. Zhang, G. Moeckel, M. Castaneda-bueno et al.,

T. J. Stiegler, G. Boggon, R. P. Gamba, and . Lifton, Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia, Cell Metab, vol.18, issue.5, pp.660-671, 2013.

D. B. Simon, R. S. Bindra, T. A. Mansfield, C. Nelson-williams, and J. Rodriguez,

H. Soriano, R. P. Trachtman, and . Lifton, Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III, Nat Genet, 1997.

D. B. Simon, F. E. Karet, J. M. Hamdan, A. Dipietro, S. A. Sanjad et al., Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutation in the Na-K-2Cl contransporter NKCC2, Nat Genet, 1996.

D. B. Simon, F. E. Karet, J. Rodriguez-soriano, J. H. Hamdan, P. Dipietri et al.,

S. A. Trachtman, R. P. Sanjad, and . Lifton, Genetic heterogeneity of, 1996.

, Bartter's syndrome revealed by mutations in the K+ channel, ROMK, Nature genetics

D. B. Simon, C. Nelson-williams, M. J. Bia, D. Ellison, F. E. Karet et al., Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl contransporter, Nat Genet, 1996.

J. D. Singer, M. Gurian-west, B. Clurman, and J. M. Roberts, Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells, Genes Dev, vol.13, pp.2375-2387, 1999.

A. Sinning, L. Liebmann, A. Kougioumtzes, M. Westermann, C. Bruehl et al.,

. Hubner, Synaptic glutamate release is modulated by the Na+ -driven Cl-/HCO(3)(-) exchanger Slc4a8, J Neurosci, vol.31, issue.20, pp.7300-7311, 2011.

A. Sinning, N. Radionov, F. Trepiccione, K. I. Lopez-cayuqueo, M. Jayat et al.,

N. Baron, R. T. Corniere, J. Alexander, D. Hadchouel, C. A. Eladari et al., Double Knockout of the Na+-Driven Cl-/HCO3-Exchanger and Na+/Cl-Cotransporter Induces Hypokalemia and Volume Depletion, J Am Soc Nephrol, vol.28, issue.1, pp.130-139, 2017.

E. Sohara and S. Uchida, Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder, Nephrol Dial Transplant, vol.31, issue.9, pp.1417-1424, 2016.

M. V. Sorensen, S. Grossmann, M. Roesinger, N. Gresko, A. P. Todkar et al.,

U. Barmettler, A. Ziegler, D. Odermatt, J. Loffing-cueni, and . Loffing, Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice, Kidney Int, vol.83, issue.5, pp.811-824, 2013.

J. R. Soriano, H. Boichis, and C. M. Edelmann, Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis, J Pediatr, vol.71, issue.6, pp.802-813, 1967.

P. A. Stehberger, , 2003.

H. Vacuolar, Subunit Defective in an Inherited Form of Distal Renal Tubular Acidosis, Journal of the American Society of Nephrology, vol.14, issue.12, pp.3027-3038

M. Tanrisev, O. Gungor, I. Kocyigit, Y. Kurtulmus, C. Tugmen et al.,

E. Altunoren, C. Kebapci, and . Karaca, Renal tubular acidosis in renal transplant patients: the effect of immunosuppressive drugs, Ann Transplant, vol.20, pp.85-91, 2015.

A. S. Terker, C. Zhang, K. J. Erspamer, G. Gamba, C. L. Yang et al., Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis, Kidney Int, vol.89, issue.1, pp.127-134, 2016.

A. S. Terker, C. Zhang, J. A. Mccormick, R. A. Lazelle, C. Zhang et al.,

D. A. Meermeier, H. J. Siler, Y. Park, D. M. Fu, A. M. Cohen et al.,

C. L. Wang, D. H. Yang, and . Ellison, Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride, Cell Metab, vol.21, issue.1, pp.39-50, 2015.

F. Trepiccione, C. Soukaseum, V. Baudrie, Y. Kumai, J. Teulon et al.,

P. Corniere, A. J. Wangemann, Y. Griffith, J. Choi, R. Hadchouel et al., Acute genetic ablation of pendrin lowers blood pressure in mice, Nephrol Dial Transplant, 2017.

F. Trepiccione, M. Zacchia, and G. Capasso, The role of the kidney in saltsensitive hypertension, Clin Exp Nephrol, vol.16, issue.1, pp.68-72, 2012.

M. Vallet, N. Picard, D. Loffing-cueni, M. Fysekidis, M. Bloch-faure et al.,

S. Deschenes, P. Breton, J. Meneton, P. S. Loffing, R. Aronson et al.,

. Eladari, Pendrin regulation in mouse kidney primarily is chloridedependent, J Am Soc Nephrol, vol.17, issue.8, pp.2153-2163, 2006.

J. W. Verlander, K. A. Hassell, I. E. Royaux, D. M. Glapion, M. E. Wang et al.,

E. D. Everett, S. M. Green, and . Wall, Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension, Hypertension, vol.42, issue.3, pp.356-362, 2003.

E. Vidal-petiot, E. Elvira-matelot, K. Mutig, C. Soukaseum, V. Baudrie et al.,

E. Cheval, M. Huc, S. Cambillau, A. Bachmann, X. Doucet et al.,

. Hadchouel, WNK1-related Familial Hyperkalemic Hypertension results from an increased expression of L-WNK1 specifically in the distal nephron, Proc Natl Acad Sci U S A, vol.110, issue.35, pp.14366-14371, 2013.

S. M. Wall, Renal intercalated cells and blood pressure regulation, Kidney Res Clin Pract, vol.36, issue.4, pp.305-317, 2017.

S. M. Wall, Y. H. Kim, L. Stanley, D. M. Glapion, L. A. Everett et al.,

W. Verlander, NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl-conservation, Hypertension, vol.44, issue.6, pp.982-987, 2004.

S. M. Wall and Y. Lazo-fernandez, The role of pendrin in renal physiology, Annu Rev Physiol, vol.77, pp.363-378, 2015.

W. H. Wang, Regulation of the hyperpolarization-activated K+ channel in the lateral membrane of the cortical collecting duct, J Gen Physiol, vol.106, issue.1, pp.25-43, 1995.

W. H. Wang, A. Schwab, and G. Giebisch, Regulation of smallconductance K+ channel in apical membrane of rat cortical collecting tubule, Am J Physiol, vol.259, pp.494-502, 1990.

D. G. Warnock, Liddle Syndrome: Genetics and Mechanisms of Na+ Channel Defects, The American Journal of the Medical Sciences, vol.322, issue.6, pp.302-307, 2001.

P. A. Welling, Roles and Regulation of Renal K Channels, Annu Rev Physiol, vol.78, pp.415-435, 2016.

F. H. Wilson, S. Disse-nicodeme, K. A. Choate, K. Ishikawa, and C. Nelson-williams,

I. Desitter, M. Gunel, D. V. Milford, G. W. Lipkin, J. M. Achard et al.,

Y. Dussol, R. J. Berland, H. Unwin, D. B. Mayan, Z. Simon et al., Human hypertension caused by mutations in WNK kinases, Science, vol.293, issue.5532, pp.1107-1112, 2001.

N. Xu, D. Hirohama, K. Ishizawa, W. X. Chang, T. Shimosawa et al., Hypokalemia and Pendrin Induction by Aldosterone, Hypertension, vol.69, issue.5, pp.855-862, 2017.

S. S. Yang, T. Morimoto, T. Rai, M. Chiga, E. Sohara et al.,

T. Lin, H. Moriguchi, Y. Shibuya, S. Kondo, S. Sasaki et al., , 2007.

, Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model, Cell Metab, vol.5, issue.5, pp.331-344

C. Zhang, L. Wang, X. T. Su, J. Zhang, D. H. Lin et al., ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4PHAII mice, Am J Physiol Renal Physiol, vol.312, issue.4, pp.682-688, 2017.

C. Zhang, L. Wang, J. Zhang, X. T. Su, D. H. Lin et al., , 2014.

N. Cotransporter, NCC) in the early distal convoluted tubule (DCT1), Proc Natl Acad Sci U S A, vol.111, issue.32, pp.11864-11869

J. Zhuang, X. Zhang, D. Wang, J. Li, B. Zhou et al., WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism, Am J Physiol Renal Physiol, vol.301, issue.2, pp.410-419, 2011.