
HAL Id: tel-02925914
https://theses.hal.science/tel-02925914

Submitted on 31 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesizing invariants : a constraint programming
approach based on zonotopic abstraction

Bibek Kabi

To cite this version:
Bibek Kabi. Synthesizing invariants : a constraint programming approach based on zonotopic ab-
straction. Computer science. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAX017�.
�tel-02925914�

https://theses.hal.science/tel-02925914
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

X
01

7

Synthesizing invariants: a constraint
programming approach based on

zonotopic abstraction
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Paris, France, le 24 Juin 2020, par

BIBEK KABI

Composition du Jury :

Laurent Fribourg
Directeur de Recherche, ENS Paris-Saclay (LSV) Président

Charlotte Truchet
Maı̂tre de Conférences, Université de Nantes (LINA) Rapportrice

Michel Rueher
Professeur Emérite, Université Cote d’Azur Rapporteur

Khalil Ghorbal
Chargé de Recherche, INRIA Rennes Examinateur

Antoine Miné
Professeur, Sorbone Université (LIP6) Examinateur

Eric Goubault
Professeur, École polytechnique (LIX)) Examinateur

Sylvie Putot
Professeur, École polytechnique (LIX) Directrice de thèse

Eric Goubault
Professeur, École polytechnique (LIX) Co-directeur de thèse

Résumé

Les systèmes dynamiques sont des modèles mathématiques pour décrire l’évo-
lution temporelle de l’état d’un système. Il y a deux classes de systèmes
dynamiques pertinentes à cette thèse : les systèmes discrets et les systèmes
continus. Dans les systèmes dynamiques discrets (ou les programmes informa-
tiques classiques), l’état évolue avec un pas de temps discrets. Dans les systèmes
dynamiques continus, l’état du système est fonction du temps continu, et son
évolution caractérisée par des équations différentielles. Étant donné que ces
systèmes peuvent prendre des décisions critiques, il est important de pou-
voir vérifier des propriétés garantissant leur sûreté. Par exemple, sur un
programme, l’absence de débordement arithmétique.

Dans cette thèse, nous développons un cadre pour la vérification auto-
matique des propriétés de sûreté des programmes. Un élément clé de cette
vérification est la preuve de propriétés invariantes. Nous développons ici
un algorithme pour synthétiser des invariants inductifs (des propriétés vraies
pour l’état initial, qui sont stables dans l’évolution des états du programme,
donc sont toujours vraies par récurrence) pour des programmes numériques.
L’interprétation abstraite (IA) est une approche traditionnelle pour la recherche
d’invariants inductifs des programmes numériques. L’IA interprète les ins-
tructions du programme dans un domaine abstrait (par exemple intervalles,
octogones, polyèdres, zonotopes), domaine qui est choisi en fonction des
propriétés à prouver. Un invariant inductif peut être calculé comme limite
possiblement infinie des itérées d’une fonctionnelle croissante. L’analyse peut
recourir aux opérateurs d’élargissement pour forcer la convergence, au détriment
de la précision. Si l’invariant n’est pas prouvé, une solution standard est de
remplacer le domaine par un nouveau domaine abstrait davantage susceptible
de représenter précisément l’invariant.

La programmation par contraintes (PPC) est une approche alternative pour
synthétiser des invariants, traduisant un programme en contraintes, et les
résolvant en utilisant des solveurs de contraintes. Les contraintes peuvent opé-
rer sur des domaines soit discrets, soit continus. La programmation classique
par contraintes continues est basée sur un domaine d’intervalle, mais peut
approximer une forme invariante complexe par une collection d’éléments abs-
traits. Une approche existante combine IA et PPC, raffinant de façon itérative,
par découpage et contraction, une collection d’éléments abstraits, jusqu’à obte-
nir un invariant inductif. Celle-ci a été initialement présentée en combinaison
avec intervalles et octogones. La nouveauté de notre travail est d’étendre ce
cadre au domaine abstrait des zonotopes, un domaine sous-polyédrique qui
présente un bon compromis en terme de précision et de coût. Cette extension
demande de définir de nouveaux opérateurs sur les zonotopes, pour permettre

1

Résumé

le découpage et la contraction, ainsi que d’adapter l’algorithme générique.
Nous introduisons notamment un nouvel algorithme de découpage de

zonotopes basé sur un pavage par sous-zonotopes et parallélotopes. Nous
proposons également des alternatives à certains opérateurs existants sur les
zonotopes, mieux adaptés que les existants à la méthode. Nous avons implé-
menté ces opérations dans la bibliothèque APRON et avons testé l’approche
sur des programmes présentant des invariants complexes, éventuellement
non convexes. Les résultats démontrent un bon compromis par rapport à
l’utilisation de domaines simples, comme les intervalles et les octogones, ou
d’un domaine plus couteux comme les polyèdres. Enfin, nous discutons de
l’extension de l’approche pour trouver des ensembles d’invariants positifs
pour des systèmes dynamiques continus.

2

Abstract

Dynamical systems are mathematical models for describing temporal evolution
of the state of a system. There are two classes of dynamical systems relevant to
this thesis : discrete and continuous. In discrete dynamical systems (or classical
computer programs), the state evolves in discrete time steps, as described by
difference equations. In continuous dynamical systems, the state of the system is
a function of continuous time, characterized by differential equations. When
we analyse the behaviour of a dynamical system, we usually want to make
sure that it satisfies a safety property expressing that nothing bad happens. An
example of a safety property of programs is the absence of arithmetic overflows.
In this thesis, we design a framework related to the automatic verification
of the safety properties of programs. Proving that a program satisfies a safety
property of interest involves an invariance argument.

We develop an algorithm for inferring invariants more precisely inductive
invariants (properties which hold during the initial state, remains stable under
the program evolution, and hence hold always due to induction) for numerical
programs. A traditional approach for finding inductive invariants in programs
is abstract interpretation (AI) that interprets the states of a program in an
abstract domain (intervals, polyhedra, octagon, zonotopes) of choice. This
choice is made based on the property of interest to be inferred. Using the
AI framework, inductive invariant can be computed as limits of iterations of
functions. However, for abstract domains which feature infinite increasing
chain, for instance, interval, these computations may fail to converge. Then, the
classical solution would be to withdraw that particular domain and in its place
redesign a new abstract domain which can represent the shape of the invariant.
One may also use convergence techniques like widening to enforce convergence,
but this may come at the cost of precision. Another approach called constraint
programming (CP), can be used to find invariants by translating a program
into constraints and solving them by using constraint solvers. Constraints in
CP primarily operate on domains that are either discrete or continuous.

Classical continuous constraint programming corresponds to interval domain
and can approximate a complex shape invariant by a set of boxes, for instance,
upto a precision criterion. An existing framework combines AI and continuous
CP inspired by iterative refinement, splitting and tightening a collection of
abstract elements. This was initially presented in combination with simple
underlying abstract elements, boxes and octagons. The novelty of our work is
to extend this framework by using zonotopes, a sub-polyhedric domain that
shows a good compromise between cost and precision. However, zonotopes
are not closed under intersection, and we had to extend the existing framework,
in addition to designing new operations on zonotopes.

3

Abstract

We introduce a novel splitting algorithm based on tiling zonotopes by sub-
zonotopes and parallelotopes. We also propose few alternative operators to
the existing ones for a better efficiency of the method. We implemented these
operations on top of the APRON library, and tested it on programs with non-
linear loops that present complex, possibly non-convex, invariants. We present
some results demonstrating the interest of this splitting-based algorithm to
synthesize invariants on such programs. This algorithm also shows a good
compromise by its use in combination with zonotopes as regards to its use
with both simpler domains such as boxes and octagons, and more expressive
domains like polyhedra. Finally, we discuss the extension of the approach to
infer positive invariant sets for dynamical systems.

4

Contents

Résumé 1

Abstract 3

List of Figures 7

List of Tables 10

List of Algorithms 10

I Introduction and State of the Art 13

1 Introduction 14
1.1 Motivation . 14

1.1.1 Safety properties of programs 14
1.2 Our contribution . 20
1.3 Thesis outline . 21

2 Abstract Interpretation 22
2.1 Abstract interpretation . 22
2.2 Notations and Definitions . 23
2.3 Numerical abstract domains . 31

2.3.1 Non-Relational Abstract Domain 32
2.3.2 Relational Abstract Domains 33

Polyhedras . 33
Ellipsoids . 35

2.3.3 Weakly-relational abstract domains 35
Octagons . 37
Template polyhedra 38
Affine sets or zonotopes 38
Parallelotope abstract domains 45

2.3.4 Combining abstract domains 46
2.3.5 Support libraries . 47
2.3.6 Abstract interpretation tools 47

3 Constraint Programming 49
3.1 From AI to CP . 49
3.2 Constraint programming . 50

3.2.1 Propagation . 51

5

Abstract

3.2.2 Splitting . 52
3.2.3 A continuous solver . 52

4 Interactions between Abstract Interpretation and Constraint

Programming 54
4.1 Are we introducing AI ideas into CP or CP into AI? 54
4.2 Refinement-based inductive invariant inference 55

4.2.1 Concrete semantics. 55
4.2.2 Target invariant. 56
4.2.3 Abstract semantics. 56

4.3 Search algorithm. 58
4.3.1 Coverage . 60
4.3.2 Tightening . 62
4.3.3 Splitting . 62
4.3.4 Size . 62
4.3.5 Failure . 62
4.3.6 Data structure. 63

4.4 Related work . 64
4.4.1 CP using SAT/SMT solvers 64
4.4.2 SAT-based model checking 65
4.4.3 Combined AI and CP approaches 65
4.4.4 Learning loop invariants 66
4.4.5 Eigen vectors as invariants 67

II Invariants of discrete systems 68

5 Zonotopes and constraint solving 69
5.1 Constraint solving algorithm on zonotopes 69
5.2 Inclusion test . 71
5.3 Intersection test . 74
5.4 Meet . 74
5.5 Size . 81
5.6 Volume of a zonotope. 82
5.7 Coverage metric . 83

5.7.1 Test for benign. 85
5.8 Splitting . 86

5.8.1 Splitting with overlap . 86
5.8.2 Effect of partitioning on splitting 88
5.8.3 Splitting zonotopes by tiling 91

Concepts and Definitions 91
A survey on zonotopal tilings 94

De Bruijn grids school 94
Hyperplane arrangement-matroid theory school . 97

Is zonotopal tiling a vertex enumeration problem? . . . 98
Our tiling algorithm . 101

Hyperplane arrangements and zonotopes 101
Enumerating sign vectors 102
Notions whose sequel is the tiling algorithm . . . 102

Examples . 105

6

6 Implementation and experiments on programs 118
6.1 Implementation . 118

6.1.1 Apron . 118
6.1.2 Taylor1+ . 118
6.1.3 Our contribution with respect to implementation 119

6.2 Experiments . 119
6.3 Conclusion . 130

III Invariants of Continuous Systems 132

7 Invariants of Dynamical Systems 133
7.1 Preliminaries . 133
7.2 The CP algorithm revisited . 136
7.3 Taylor model approximation of flow map 148

7.3.1 Picard iteration . 152
Operations on Taylor models 157

7.4 Examples: illustrating evaluation of remainder interval by Pi-
card operator . 158

7.5 Conclusion . 171

Conclusion and Future Scope 172

Bibliography 174

List of Figures

1.1 Example program. 16
1.2 Non-inductive invariants for the program in Figure 1.1. 16
1.3 Inductive invariant found for the program in Figure 1.1 18
1.3 Inductive invariant found for the program in Figure 1.1 19

2.1 (a) Example program; (b) The reachable states (s0,s1) form an ellipsoid 26
2.2 Inductive invariant for the program in Figure 2.1 27
2.3 The image of abstract elements in Figure 2.2 by a loop iteration in

the abstract domain used for computing the inductive invariant . . 27
2.4 Superposition of the two figures 2.2 and 2.3 showing that 2.3 is

included in 2.2, i.e., 2.2 is inductive 28
2.5 Kleene iterations in the interval domain 29

7

Abstract

2.6 Example program . 33
2.7 (a) The interval abstract values for the target invariant of the program in Figure 2.7 and its

image after one iteration of the body loop; (b) In blue: the target invariant (X), in pink: F7pXq. 33
2.8 (a) Halfspace representation for the target invariant of the program in Figure 2.7 and its image

after one iteration of the body loop using polyhedra abstract domain; (b) H-representation, in

blue: the target invariant (X), in pink: F7pXq; (c) Vertex or V-representation, In blue: convex

hull of the vertices corresponding to the target invariant (X), in pink: convex hull of the vertices

corresponding to the image (F7pXq) of the target invariant. 36
2.9 (a) Octagonal constraints for the target invariant of the program in Figure 2.7 and its image

after one iteration of the body loop; (b) In blue: target invariant (X) abstracted using octagon

abstract domain, in pink: its image F7pXq. 39
2.10 Zonotope concretization γpAq . 41
2.11 Linear concretization γlinpA`q of affine set px̂, ŷq without its center 43
2.12 (a) Affine forms corresponding to the target invariant of the program in Figure 2.7 and its

image after one iteration of the body loop; (b) In blue: target invariant (X) abstracted using

zonotopic abstract domain, in pink: its image F7pXq. 45

4.1 Inductive invariant for the program in Figure 2.6 57
4.2 The image of abstract elements in Figure 2.2 by a loop iteration in

the abstract domain used for computing the inductive invariant . . 57
4.3 Superposition of the two figures 4.1 and 4.2 showing that 4.2 is

included in 4.1, i.e., 4.1 is inductive 58
4.4 A collection of abstract elements manipulated by the algorithm . . 59
4.5 Classification of abstract elements 59
4.6 Useful abstract elements . 60
4.7 Computation of coverage information 61

5.1 Intersecting case . 74
5.2 Point inclusion for intersecting case 74
5.3 Non-intersecting case . 75
5.4 Point inclusion for non-intersecting case 75
5.5 The zonotope concretization of S0 and F7pS0q 78
5.6 The hyperplanes with which the intersection of Z1 will be com-

puted . 79
5.7 The over-approximation of the intersection of Z1 and the half-space

in the direction u1 . 80
5.8 The over-approximation of the intersection of Z3 and the half-space

in the direction u2 . 80
5.9 The zonotopic over-approximation of the intersection Z1 X Z2 . . . 81
5.10 An overview of the data structure based on partitioning used for

Algorithm 5.1 . 84
5.11 Sub-zonotopes obtained after splitting 87
5.12 Computing the coverage measure in case of overlapping zonotopes 88
5.13 Split zonotopes for example 1 illustrating the issue with conven-

tional coverage measure . 89
5.14 Inductive invariant for the program in Figure 2.6 with the target

invariant being the box r´2, 2s abstracted using zonotopes 89
5.15 In red, the image of the zonotopes in Figure 5.14 by a loop iteration

in the zonotope abstract domain and superposition of both showing
that Figure 5.14 is inductive . 90

8

5.16 Partitioning and its effect on splitting by overlap 91
5.17 Figures illustrating the ideas of fixing and freeing the signs of

generators . 93
5.18 De Bruijn lines of a two-dimensional tiling. 95
5.19 Examples of tilings . 96
5.20 A hyperplane arrangment in R2 with four lines. 98
5.21 Polar dual of the hyperplane arrangement in Figure 5.20, i.e., a

zonotope. 99
5.22 A tiling of the zonotope in Figure 5.21 and the sign vectors of the

corresponding tiles. 100
5.23 25 vertices of the 5-dimensional hypercube projected with the

generator matrix. 100
5.24 Arrangement of hyperplanes. 103
5.25 Ray shooting and sign enumeration. 103
5.26 The primitive zonotope and its tiling 104
5.27 Illustrating, how fixing the sign of a zonotope defined by 3 genera-

tors in 2-dimension implicitly enumerates all the tiles 105
5.28 Illustrating, how fixing the sign of a zonotope defined by 4 genera-

tors in 4-dimension implicitly enumerates all the tiles 106
5.29 Illustrating one-by-one all sub-zonotopes obtained after fixing the

sign of generators . 108
5.30 Illustrating one-by-one all parallelotopic tiles being enumerated . . 110
5.31 Illustrating one-by-one all sub-zonotopes obtained after fixing the

sign of generators . 114
5.32 Illustrating one-by-one all parallelotopic tiles being enumerated . . 115
5.33 Illustrating one-by-one all parallelotopic tiles being enumerated . . 116
5.33 Illustrating one-by-one all parallelotopic tiles being enumerated . . 117
5.34 3-dimensional parallelotopic tiles delineating the zonotope in Fig-

ure 5.31a. 117

6.1 Inductive invariant for Filter example 122
6.1 Inductive invariant for Filter example 123
6.2 Inductive invariant for Sine example 124
6.2 Inductive invariant for Sine example 125
6.3 Inductive invariant for Newton example 126
6.3 Inductive invariant for Newton example 127
6.4 Inductive invariant for Newton2 example 128
6.4 Inductive invariant for Newton2 example 129
6.5 Structure of a program for the analyzer 131

7.1 Hénon attractor . 142
7.2 An outer-approximation of the positive invariant set of Hénon map

(in blue are the abstract elements which are benign, in pink are
the ones whose state cannot be decided by the algorithm, and in
red is the image of the abstract elements by a loop iteration in the
abstract domain used for computing the positive invariant set) . . 143

7.3 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2. 144

7.4 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3. 145

9

7.5 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4. 146

7.6 An outer-approximation of the positive invariant for the Van-der-
Pol oscillator described by the map shown in Equation 7.31 149

7.7 The image of abstract elements in Figure 7.6 by a loop iteration in
the abstract domain used for computing the positive invariant set 150

7.8 Superposition of the two figures 7.6 and 7.7 showing the abstract
elements which belong to the invariant set 151

7.9 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2. 152

7.10 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3. 153

7.11 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4. 154

7.12 The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4, F5. 155

7.13 Taylor model over-approximation for the function exppxq 157
7.14 The set obtained after using our CP Algorithm on every new Taylor

model (6 order) evaluated at each time step over an interval r0, 5.20s.168
7.15 The set obtained after using our CP Algorithm on every new Taylor

model (6 order) evaluated at each time step over an interval r0, 6.70s.169
7.16 The set obtained after using our CP Algorithm on every new Taylor

model (7 order) evaluated at each time step over an interval r0, 6.80s.170

List of Tables

6.1 Experimental results with tightening applied only during first
iteration. 120

6.2 Experimental results with tightening (tightening is applied after
each split). 130

List of Algorithms

3.1 A simple continuous solver . 53

10

4.1 A CP based AI algorithm for inferring inductive invariants [MBR16] 58
5.1 The zonotopic variant of the CP based AI algorithm 4.1 for inferring

inductive invariants . 71
5.2 Tiling Algorithm . 107
7.1 The zonotopic variant of the CP based AI algorithm 4.1 for inferring

inductive invariants while considering an iterated map sequence
F, F2, ¨ ¨ ¨ , Fn . 140

11

Part I

Introduction and State of

the Art

13

Chapter1
Introduction

1.1 Motivation

Cyber-physical systems (CPS) are systems which combine the cyber world
(computation/communication/data storage) with physical entities. A few
examples of CPS are robots, cars, air-crafts, power plants, etc. With their
ubiquitous presence in this society, verifying the correctness of programs and
systems is becoming a major challenge.

In order to rely on them so as not to put our lives at stake, it is crucial
to verify if they satisfy safety properties. For instance, an unmanned aerial
vehicle (UAV) includes a mechanical body, remote ground control system,
sensors (camera, inertial measurement unit, GPS, etc.), actuators, software and
additional hardware like battery, electronic speed controller (ESC) and motors.
All together it makes it a cyber-physical system. For such an UAV control
system, it is important to verify if the UAV could potentially be involved in a
collision within the next short period of time. This is where dynamical systems
play a major role in approaches for studying whether a CPS satisfies crucial
safety properties. They are mathematical models for describing temporal
evolution of the state of a system.

Dynamical systems can contain discrete and continuous components. In
discrete dynamical systems (or classical computer programs), the state evolves
in discrete time steps, as described by difference equations. In continuous
dynamical systems, the state of the system is a function of continuous time,
characterized by differential equations. Determining the safety of a dynamical
system requires to prove that the system is continuously safe.

A considerable part of this thesis is focused on developing method for
the verification of safety properties of numerical programs. Additionally,
we discuss the extension of this method to prove the safety properties for
continuous time dynamical systems. In order to motivate the readers, we will
present below a case study of verification of safety property of a computer
program. However, prior to that we will recall the concepts from program
verification that will constitute the background for all the chapters that follow.

1.1.1 Safety properties of programs

Ensuring whether or not a program satisfies a safety property is one of
the widely studied fields in program verification. Various mathematical
foundations aid the problem of program verification by providing proofs
which help users to ascertain that a program is free from errors or behaves as

14

1.1. Motivation

intended. However, for any Turing complete programming language [Tur37]
this problem is undecidable i.e., it is impossible to produce any sound and
complete non-trivial assertion about the computational result of any program.
That is Rice’s theorem [Ric53] which is a generalization of the well-known
Halting problem [Tur37]. Partly the reason for this undecidability issue is
loops. This is one of the reasons why analyzing loops is very crucial in
program verification.

An informal definition of safety property is, “nothing bad happens” or
“something bad never happens”, that is, a program never reaches an unac-
ceptable state. Safety properties on programs can be for instance, the fact
that program variables stay within their expected bounds or some region is
not reachable at some set of program locations. A safety property of interest
express conditions that should be continuously maintained by the program.
Hence, proving that a program satisfies a safety property of interest involves
an invariance argument which is why loop invariants is a key ingredient in
the verification of safety property on programs. An invariant is a property
that holds on every iteration of the loop. Reasoning on invariants frees us
from proving the safety of each loop iteration separately, which is costly for
large loops and impossible for programs exhibiting unbounded loops and an
infinite state space.

The classic method to prove that a set is indeed an invariant is to look
for an inductive invariant which implies it, i.e., a state property that is stable
by an iteration of the loop. An inductive invariant is an invariant (G) such
that FpGq Ď G, as is used in, e.g., Floyd Hoare logic [Hoa69] [Flo67]. Further-
more, Tarski’s theorem [Tar55] states that all inductive invariants are indeed
invariants.

Inductive invariants play a special role in program verification because they
can be checked by running a single loop iteration and checking its stability,
even for unbounded loops. It is often necessary, given a target invariant
property to prove, to first strengthen it into an inductive invariant.

We will motivate the importance of this thesis work further below with
the illustration of a piece of code.

Example 1.1 We illustrate the concept of inductive invariants on a program
in Figure 1.1 taken from the online additional material of [MBR16] (similar
benchmarks are considered in [Mar14]) having two variables, x and y whose
initial values lie in the box I def

“ r0.9, 1.1s2 and the effect of a loop iteration on a
set X of possible variable values px,yq P X given by the function F : PpR2q Ñ

PpR2q defined as the loop body of Figure 1.1.
We choose an axis aligned bounding box such as G “ r´2.1, 2.1s ˆ

r´2.1, 2.1s. Notice that the program state, considered as a point px,yq, is
guaranteed to lie inside G every time that execution reaches the head of the
loop. In other words, G includes notably all the states reachable at the loop
head, i.e.,

Ť

nPN
FnpIq Ď G. Then, the box G “ r´2.1, 2.1s ˆ r´2.1, 2.1s, shown

in blue in Figure 1.2, is a valid invariant. However, notice that FpGq Ę G:
indeed, the transformation induced by F on G maps the box G to a circle,
that goes a bit outside the box G, as illustrated in Figure 1.2. Consider the
four-petals-flower shape towards the center shown in Figure 1.2 : its interior
is not reachable from the initial box I, and it contains the four small circles

15

1. Introduction

x=[0.9 ,1.1];
y=[0.9 ,1.1];
while (True) {

xnew=2x/(0.2 + x^2 + y^2 + 1.53x^2y^2);
ynew=2y/(0.2 + x^2 + y^2 + 1.53x^2y^2);
x=xnew;
y=ynew;

}

Figure 1.1 – Example program.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 1.2 – Non-inductive invariants for the program in Figure 1.1.

in white which are the inverse image by F of the four parts of the circle
that go beyond box G. The offending four small circles in the interior are
not reachable program states. To prove this, using an axis aligned box, is
not possible. Rather, we need to infer a stronger form of invariant, for e.g.,
inductive invariant that is included in G to prove that G is an invariant for
executions beginning in I and precise enough to express that the small circles
inside each petal of G are not reachable states.

One of the current techniques which provides a classical method to effec-
tively compute inductive invariants in programs is Abstract interpretation (AI).

Abstract Interpretation. In general, AI is a theory of approximation of
lattices. An abstract domain is chosen to represent effectively sets of pro-
gram states. For environments over numeric variables, a wide set of abstract
domains were proposed, such as boxes or intervals, polyhedras, octagons,
zonotopes, ellipsoids, templates, etc. An abstract domain is adapted to a class
of invariants we want to express (such as variable bounds) while abstracting
away irrelevant information to improve efficiency. In other words, the abstrac-
tion is made based on some property of interest. Then the function, modeling

16

1.1. Motivation

the effect of a loop iteration of the program is also abstracted using the same
property. Now the inductive invariant is computed as limits of iterations of
functions. However, for abstract domains which feature infinite increasing
chain (for example, interval), these computations may fail to converge. In such
a case, the classical solution would be to withdraw that particular domain
and in its place redesign a new abstract domain which can represent the
shape of the invariant. One may also use techniques like widening to enforce
convergence, but this may come at the cost of precision.

In this thesis, we will focus on a particular abstract domain: zonotope.

Zonotope abstract domain. Zonotope is an implicitly relational abstract
domain. It is based on affine forms. It is a cost-effective, versatile, and precise
abstract domain that can represent restricted forms of polyhedra as Minkowski
sums of line segments. It features more lightweight algorithms than general
polyhedra, while being more expressive than other sub-polyhedra domains
(e.g., octagons). They are particularly well suited to approximate non-linear
functions. Zonotopes do not form a lattice and do not enjoy an exact intersec-
tion. Thus, the major subject of this thesis is the introduction of new operators
for this domain.

Another popular technique called constraint programming (CP), is used
to find invariants by translating a program into constraints and solving them
by using constraint solvers.

Constraint Programming. Constraint programming (CP) is a method for
solving combinatorial problems, by expressing them as conjunctions of first-
order logic formulas. It is a paradigm which formalizes invariant synthesis
problem using constraints and solves them using efficient algorithms. These
algorithms inherently know how to approximate a complex shape by a set of
boxes, for instance, up to a precision criterion. Constraints in CP primarily
operate on domains that are either discrete or continuous. Classical continuous
constraint solving, over real-valued variables, works by refining the domain of
the variables, i.e., a box representing candidate solutions: the box is tightened
as much as possible by removing variable values that cannot participate in
a solution. Whenever the box cannot be tightened anymore, it is split into
two or more boxes, that are tightened and split themselves iteratively, until
every box either contains only solutions, or no solution, or has a size below
a user-defined threshold. When the algorithm terminates, it returns a set of
definitive and candidate solutions as a collection of boxes.

Synthesizing invariants of programs has been an active research from early
days of computer science, and recently many techniques which combine AI
and CP have sprung up. In this thesis, we combine the zonotope based abstrac-
tion with an existing CP algorithm [MBR16] for inferring inductive invariants.
The idea of [MBR16], inspired from constraint programming approaches, is
to synthesize an inductive invariant as a collection of abstract elements, that
are iteratively split and refined. In set-based constraint programming, these
elements are generally boxes. Previous work [MBR16] was limited to abstract
domains that are closed by intersection and required non-standard opera-
tions: split and size, such as octagons. In this thesis, we extend this work

17

1. Introduction

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(a) Inductive invariant obtained by our algorithm
using boxes;

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(b) its image by a loop iteration;

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(c) octagons;

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(d) its image by a loop iteration;

Figure 1.3 – Inductive invariant found for the program in Figure 1.1

to zonotopes, which we show they provide an interesting trade-off between
expressiveness and efficiency for such a use, by comparing their use with that
of boxes, octagons, and polyhedra.

Example 1.2 Recall that no box is an inductive invariant for the program in
Figure 1.1. The possible shapes1 are as illustrated in Figures 1.3a, 1.3c, 1.3e
and 1.3g. Instead of trying to guess the shape of the invariant, we will look
for a set of abstract elements as shown in Figures 1.3a, 1.3c, 1.3e and 1.3g such
that one iteration of the loop that is its image (shown in Figures 1.3b, 1.3d,
1.3f and 1.3h obtained by a computable abstract function modeling the effect

1Method for synthesizing this inductive invariant set is discussed in the following chapter

18

1.1. Motivation

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(e) polyhedra and

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(f) its image by a loop iteration;

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(g) zonotopes and

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

(h) its image by a loop iteration

Figure 1.3 – Inductive invariant found for the program in Figure 1.1

19

1. Introduction

of a loop iteration on the abstract world) maps these set of abstract elements
into a subset of itself as shown in Figure 2.4. Even though no single abstract
element is an inductive invariant, a set of them can be inferred as an inductive
invariant.

Figures 1.3a-1.3g show the inductive invariant within G as found by the
CP algorithm in combination with box, octagon, polyhedron and zonotope
abstract domains. Inference with intervals (resp. octagons, polyhedra, and
zonotopes) takes 646.8 (resp. 8850.8, 126.8 and 35.6) seconds and produces
an inductive invariant composed of 129781 (resp. 129767, 2368 and 488) parts.
Less expressive domains such as boxes and octagons rely heavily on splitting,
hence output a large set of elements and are slower in total, in spite of a smaller
cost of manipulating a single abstract element. In particular, in polyhedra and
zonotopes, the image by the loop body in the abstract domain, of a box on the
left corner in Figure 1.3e-1.3g is within the collection of elements, thus proven
invariant, whereas it won’t be the case in the box or octagon abstract domains,
ultimately leading by splitting to the refinement of Figures 1.3a-1.3c.

Remark 1.3. An invariant associated with a safety property of interest can be
relatively simple. For example, the value of a variable is bounded by so-and-so
quantity. However, inductive invariants can have much more complex shapes
as shown in Figures 1.3a-1.3g which makes them difficult to compute.

1.2 Our contribution

Our main goal during this thesis research was to extend an existing contin-
uous constraint programming approach to domains which are not closed
under intersection for synthesizing numerical invariants. More precisely, our
contributions are:

• Zonotopes are not closed under intersection. So, we had to extend
the existing framework, in addition to designing new operations on
zonotopes, such as a novel splitting algorithm based on paving zonotopes
by parallelotopes. We improved the complexity of the inclusion test on
zonotopes by an exponential bound compared to the previous work. We
also propose a new meet operation on zonotopes which is geometrical
in nature. We implemented these operations in APRON library.

• We present a prototype that strengthens numerical invariants into induc-
tive ones on a small language, extending the Taylor1+ zonotope abstract
domain in the Apron library, and adapting the CP algorithm.

• We illustrate that the method is better than the previous one with an
experimental proof on a small set of benchmarks.

• Finally, we show that our constraint programming framework can be
used to find an over-approximation of positive invariants in continuous
systems.

Some results described in Chapters 3 to 6 have been the subject of publi-
cations in workshops [KGP16, KGP17, KGMP20]. We also co-wrote a paper
discussing the new splitting operator for zonotopes and also the implementa-
tion and experimentation with Apron.

20

1.3. Thesis outline

1.3 Thesis outline

This thesis is organised as follows. Chapter 1 to 3 provide the requisite notions
to understand this thesis research. Chapters 1 and 2 recall the concept of
program invariants and gives an illustrative explanation as to why they must
be inferred.

Chapter 2 recalls the formal framework of abstract interpretation and its
application to infer inductive invariants of programs. It discusses the different
abstract domains and the support libraries which implement their basic op-
erations. This chapter also provides a brief survey on abstract interpretation
based static analyzers. Chapter 3 gives the concepts of constraint program-
ming. Chapter 4 discusses the recent continuous constraint programming
approaches. It explains in detail an existing framework [MBR16] which com-
bines AI and continuous CP inspired by an iterative refinement, splitting and
tightening a collection of abstract elements. It will be extended throughout
the thesis to be combined with the zonotope abstraction.

Chapter 5 defines the zonotope domain. It discusses how the constraint
programming algorithm introduced in chapter 3 can be extended to domains
that are not intersection-closed. It introduces new operators, such as a novel
splitting algorithm based on tiling zonotopes by sub-zonotopes and parallelo-
topes. It provides an extensive literature survey on tiling and the prerequisites
to understand our tiling algorithm. It discusses the other zonotopic operators
like meet, test for inclusion and intersection, and size that we needed to re-
design in this context. Chapter 6 illustrates the experimental evaluation of our
zonotopic abstraction based constraint programming method on programs
with non-linear loops that present complex, possibly non-convex, invariants.

Chapter 7 demonstrates how the CP framework can be extended to find
invariants for continuous systems.

21

Chapter2
Abstract Interpretation

In the previous chapter, we exemplified why inferring invariant sets is impor-
tant. During this part of the thesis, we will be discussing the state-of-the-art
methods for computing these sets. This chapter talks about a method which is
a general theory for approximating the semantics of programs. The prominent
static analysis approaches1 are based on this method, otherwise known as
abstract interpretation (AI).

AI is an approach which computes properties of programs using math-
ematical structures (lattices), transfer functions and fixed-points. Here, we
discuss the key facts about abstract interpretation by introducing these mathe-
matical structures and different fixed-point theorems. We also introduce the
different existing abstractions (which are relevant to the present work) used
by the AI framework for expressing numerical properties of programs.

2.1 Abstract interpretation

Recall that the main principle for proving that a property is an invariant for
a loop of a program is to look for a stronger property that is an inductive
invariant. The least (i.e. most precise) inductive invariant is the set of program
states reachable from the initial states and can be expressed mathematically
as a least fixpoint 2. Computing this fixpoint using the real behavior of the
program, or otherwise known as concrete semantics3 (more precise) is in
general undecidable. Therefore, we have to rely on an interpretation which
is based on less precise or abstract semantics but computable, and hence
the name abstract interpretation [CC77]. It is a framework which expresses
program semantics as fixpoints of functions over some ordered mathematical
structures.

The relationship between the concrete semantics and abstract semantics is
formally known as abstraction. For example, the abstraction of the concrete
semantics could be the sign, or the range of the variables instead of their
precise values. Different properties of a program can be represented by
different abstract semantics. The different forms of abstraction over the

1These approaches analyze the program source code directly and without user intervention
at some level of abstraction.

2A least fixpoint (a fixpoint is any a such that Fpaq “ a where F is a function F : AÑ A
and a PA) of a function which is a mapping from a mathematical structure to itself is a fixpoint
smaller than one another fixpoint based on the structure’s order

3Semantics is the set of all possible executions in all possible environments. Informally, it is
the pseudo-code of one’s code, or what the code means.

22

2.2. Notations and Definitions

semantics are known as abstract domains4. Denoted by D7 such that D7 Ď
PpRnq, an abstract domain is a subset of properties of interest with a computer
representation, where PpRnq or D is the concrete domain. The transfer
function F7 in the abstract domain i.e., F7 : D7 Ñ D7, over-approximates the
effect of F : PpRnq Ñ PpRnq. Formally, this alternation between the concrete
and abstract world can be defined by functions: an abstraction function from
D to D7 and a concretization function from D7 to D.

One of the widely used abstract domains is interval which abstracts set of
points as a pair of bounds ra,bs where a ď b [CC76]. It is based on interval
arithmetic [Moo69], quite simple and inexpensive, but non-relational. There
are several other relational abstract domains like affine inequalities domain,
or polyhedra domain [CH78] which integrates the ability of interval abstract
domain in addition to the ability to infer relation among variables. This
makes the polyhedra domain very expressive. There are other restrictions of
polyhedra (weakly relational) like octagons [Min06], templates [SSM05] and
zonotopes [GP06, GGP09] which rely on different algorithmic axioms. We
will detail about the different abstract domains in the later part of this chapter.

Henceforth, we introduce the basic concepts of abstract interpretation
theory featuring the definitions of mathematical structures (partial order) and
their relation to programs, characterizations about concept of fixpoints and a
rich collection of fixpoint theorems. The readers can refer to [BCC`15, Min04,
M`17, Gho11, Urb15] for more information.

2.2 Notations and Definitions

We use standard notations from set theory: the empty set H, set union Y and
intersection X, set inclusion Ď, set membership P, set difference z. Consider
a set X, we denote as PpAq the set of all the sets included in X, otherwise
known as powerset. Provided with two sets X and Y, the set of functions
from X to Y is denoted by XÑ Y. We use standard notation for introducing
definitions def

“ or :“, logical operators: ^ for conjunction, _ for disjunction,
=ñ for implication, ðñ for equivalence , |= for entailment and quantifiers:
@ for universal quantification, D for existential quantification. The set of real
numbers, integers are denoted by R and Z respectively. Consider the sets
S1, . . . ,Sk Ď Rn, then the Minkowski sum (denoted by ‘) of S1, . . . ,Sk is the
set S1‘¨ ¨ ¨‘Sk “ ts1`¨ ¨ ¨` sk | si P Siu. Consider two vectors x and y in Rn.
The inner product denoted by xpx1, x2, ¨ ¨ ¨ , xnq, py1,y2, ¨ ¨ ¨ ,ynqy is given by

x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn.

The `1 norm of x is defined as

‖x‖1
def
“

n
ÿ

i“1

|xi|.

4It is a computer-representable abstract version of the concrete domain to compute semantic
over-approximations.

23

2. Abstract Interpretation

Consider a matrix M “

ˆ

a c
b d

˙

with column vectors. Its determinant is

denoted by detpMq and is computed as

det

ˆ

a c
b d

˙

“ ad´ bc.

A Cartesian product of n intervals is a box given by B “ I1ˆ¨ ¨ ¨ˆ In Consider
a program with initial values or entry sets as I Ď Rn and a transfer function
as F : DÑ D where D : “ PpRnq is the concrete domain.

Definition 2.1 (Concrete domain.) We are interested in inferring program
invariants, i.e., properties of the state (mapping of each variable to its value)
a program can be in at each program location. Thus, denoted by D, where
D : “ PpRnq a concrete domain corresponds to the values that can be taken
by the variables throughout the program.

Definition 2.2 (Transfer function.) Provided with a precondition or an initial
set of states, a transfer function F : PpRnq Ñ PpRnq maps sets of environments
to sets of environments after the execution of the line of code being analyzed.
When the transfer function is applied to a set of environments X, we denote it
by FpXq.

Definition 2.3 (Abstract domain.) Computing in PpRnq can be undecidable.
Therefore we need a computer-representable abstract version of the concrete
domain to compute semantic over-approximations. Thus denoted by D7 such
that D7 Ď PpRnq, an abstract domain is a subset of properties of interest with
a computer representation. The computable abstract function F7 : D7 Ñ D7

over-approximates the effect of F : DÑ D.

Definition 2.4 (Partially ordered set or poset.) A partial order Ď on a set X
is a relation which satisfies the following axioms:

• Reflexive: @x P X : x Ď x

• Anti-symmetric: @x,y P X : px Ď yq ^ py Ď xq Ñ x “ y

• Transitive: @x,y, z P X : px Ď yq ^ py Ď zq Ñ x Ď z

The set X armed with such a partial order relation5 Ď is called a partially
ordered set or poset and can be denoted as the pair pX, Ďq.

Remark 2.5. Partial orders are very crucial in theoretical computer science,
but they also provide a mathematical foundation in programs. Consider
a program prog which satisfies a specification spec, i.e., a property of the
program. One of these properties could be for instance, values of any variable
of prog during execution is always between a particular bound. That means,
whether or not the program prog satisfies the specification spec is equivalent
to a set inclusion problem, i.e., if prog Ď spec.

Definition 2.6 (Complete partial order.) A poset pX, Ďq is called complete
partial order or CPO if every totally ordered subset (M Ď X) in the poset X has

5A binary relation can also be pre-order, if a relation is reflexive, transitive, but not necessarily
anti-symmetric.

24

2.2. Notations and Definitions

a least upper bound, where totally ordered means px Ď yq_ py Ď xq @x,y PM.
When a poset pX, Ďq is a CPO then it is denoted as pX, Ď,\q

Remark 2.7. A totally ordered subset of a poset is otherwise known as a
chain.

Definition 2.8 (Lattice.) A lattice is a poset (L,Ď,\,[) where every collection
of elements has a least upper bound, denoted by \ and a greatest lower
bound, denoted by [. For example, consider any two elements a,b P L there
is a least upper bound or join, i.e., a \ b, and a greatest lower bound, i.e.,
a[b. We can claim that the lattice L is complete if every subset M of L has
a least upper bound \M and a greatest lower bound [M and L has a least
element K6.

Definition 2.9 (Monotonicity & Continuity.) Consider two posets pD1, Ď1q

and pD2, Ď2q. A function F : pD1, Ď1q Ñ pD2, Ď2q is called a monotonic function
if xĎ1y =ñ FpxqĎ2Fpyq@x,y P D1.

Consider two complete partial orders pD1, Ď1,\1q and pD2, Ď2,\2q. A
function F : pD1, Ď1,\1q Ñ pD2, Ď2,\2q is said to be a continuous function if
for every chain C Ď D1, FpCq is also a chain, i.e., FpCq Ď D2, and Fp\1Cq “
\2FpCq.

Definition 2.10 (Fixpoints.) Consider a partially ordered set pY, Ďq and a
function F which is a mapping from the poset to itself, i.e., F : Y Ñ Y. A
fixpoint of a transfer function F is any element X satisfying FpXq “ X | X P Y. A
pre-fixpoint X is such that FpXq Ě X and a post-fixpoint X such that FpXq Ď X.
We denote the least fixpoint of F as lfpXF which is defined as

lfpXF “ [tF’s post-fixpoints larger than Xu (2.1)

We will denote the greatest fixpoint of F by gfpXF which is defined as

gfpXF “ \tF’s pre-fixpoints smaller than Xu (2.2)

The existence of a least fixpoint and the fact that it is the meet of all the
post-fixpoints, both follow from Tarski’s theorem [Tar55] defined below.

Definition 2.11 (Tarski’s theorem.) If F : LÑ L is a monotonic function on
a complete lattice L, then the set of fixpoints of F is a non-empty complete
lattice and a least fixpoint exists.

Remark 2.12. Among the set of fixpoints, the least fixpoint is the smallest and
unique, if exists. It can refer to critical parts of the semantics of a program.
Below, we will illustrate the post-fixpoint of a computer program.

Example 2.13 Consider a simple program shown in Figure 2.1(a) taken from
[MBR16, Fer04] having two variables, s0 and s1, and its loop that implements
a second order digital filter. The variables s0 and s1 are initially set to values
in r´0.1, 0.1s. The numbers 1.5, ´0.7 are the coefficients of the filter. At each
loop iteration, the variable s0 denotes the value of the current filter output, the
variable s1 denotes the last value of the filter output and the interval r´0.1, 0.1s
denotes the value of the current filter input.

6K (also called bottom) and J (also called top) are the least and greatest elements of a poset, if
they exist.

25

2. Abstract Interpretation

s0=[-0.1 ,0.1];
s1=[-0.1 ,0.1];
while (True) {

r = 1.5*s0 - 0.7*s1 + [-0.1 ,0.1];
s1 = s0;
s0 = r;

}

Figure 2.1 – (a) Example program; (b) The reachable states (s0,s1) form an ellipsoid

The initial values of variables ps0, s1q are in the box I def
“ r´0.1, 0.1s ˆ

r´0.1, 0.1s and the effect of a loop iteration on a set X of possible variable
values ps0, s1q P X given by the function F : PpR2q Ñ PpR2q defined as FpXq def

“

tp1.5ˆ s0´ 0.7ˆ s1`r´0.1, 0.1s, s0q|ps0, s1q P Xu. The evaluation of the interval
r´0.1, 0.1s can be inferred as picking a different value between -0.1 and 0.1
at each loop iteration. This indeterminacy in the evaluation of the interval
makes the program non-deterministic.

For the above program semantics, a set G Ď Rn (here n “ 2) can be claimed
as inductive invariant if I Ď G^ FpGq Ď G with the least fixpoint of F or lfpIF
being the smallest one. In that case any set G satisfying that G Ě lfpIF is an
invariant which means that all inductive invariants are invariants but not all
invariants are always inductive. Notably, the set of program states reachable
from the initial states is the least (i.e. most precise) inductive invariant as
illustrated in Figure 2.1(b). Generally, this set is difficult to compute, so we
settle for an over-approximation, as any such over-approximation is also an
invariant. In other words, any post-fixpoint of F is a sound over-approximation
of the least fixpoint of F because lfpIF is characterized as the meet of all
post-fixpoints. Thus, any post-fixpoint is a constructive expression for an
inductive invariant. A post-fixpoint for the program in Figure 2.1(a) is shown
in Figures 2.2-2.4.

Remark 2.14. Note that in this thesis work, given a target invariant property
to prove, we first strengthen it into an inductive invariant.

Abstract interpretation provides tools to infer inductive invariants. For
instance, as the limit of an iteration sequence. We discuss this below in detail.

Remark 2.15. Although Tarski’s theorem ensures the existence of least fixpoint,
it does not provide any ground rule on how to compute them effectively. In
other words, it does not say how a post-fixpoint can be computed in abstract,
where the least fixpoint being the meet of all the post-fixpoints. Thus, one of
the variants of fixpoint approximation theorem is a classical method based on
the work of Kleene et al. [KdBdGZ52] was provided by Cousot and Cousot
[CC77] to infer inductive invariants, which states that least fixpoints can be

26

2.2. Notations and Definitions

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

s0

s
1

Figure 2.2 – Inductive invariant for the program in Figure 2.1

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

s0

s
1

Figure 2.3 – The image of abstract elements in Figure 2.2 by a loop iteration in
the abstract domain used for computing the inductive invariant

27

2. Abstract Interpretation

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

s0

s
1

Figure 2.4 – Superposition of the two figures 2.2 and 2.3 showing that 2.3 is
included in 2.2, i.e., 2.2 is inductive

computed as limits of iterations, or otherwise known as Kleene’s theorem
[Def. 2.16].

Definition 2.16 (Kleene’s Theorem.) If F : LÑ L is a continuous function in
a complete partial order L, then least fixpoint exists and it can be expressed
as:

lfp
K
F “ \

FipKq | i P N
(

(2.3)

where N is the set of natural integers.

Remark 2.17. Unlike Tarski’s fixpoint theorem, Kleene’s fixpoint theorem
[KdBdGZ52, CC77, CC79] requires only a complete partial order and more
intriguing is the fact that it characterizes the least fixpoint as a limit of value
iteration. This iteration is guaranteed to converge provided the complete
partial order has no infinite strictly increasing chain. Consider computing
these iterates pK, FpKq, FpFpKqq, ¨ ¨ ¨ , FnpKq, ¨ ¨ ¨ q of K which may converge but
to a useless one, i.e., J. To address this convergence issue, Cousot and Cousot
[CC77] introduced a widening operator ∇.

Kleene iteration. An abstract domain is chosen to represent effectively
specific sets of program states, such as boxes or convex polyhedra for envi-
ronments over numeric variables. It is adapted to a class of invariants we
want to express (such as variable bounds) while abstracting away irrelevant
information to improve efficiency. Then, a computable abstract function F7

modeling the effect of a loop iteration on the abstract world is defined (e.g.,
a function from boxes to boxes). The inductive invariant is computed as the
limit of a Kleene iteration sequence, iterating F7 from an abstract represen-
tation I of the set of states before entering the loop of a program: X0 “ I,
@k.Xk`1 “ Xk Y7 F7pXkq. In general, this sequence does not terminate. A
widening operator is employed to force termination so that, after a finite num-

28

2.2. Notations and Definitions

-50 0 50 100

-50

0

50

-50 0 50 100

-50

0

50

s0

s
1

Figure 2.5 – Kleene iterations in the interval domain

ber of iterations, we find an abstract inductive invariant Xk`1 Ď Xk. However,
the widening operator can lead to loss of precision.

Below, we will consider again the program in Figure 2.1(a) and illustrate
the Kleene iterations for inferring inductive invariant.

Example 2.18 Consider a box G “ r´4, 4s ˆ r´4, 4s. G is a valid invariant
for the program in Figure 2.1(a) because G includes notably all the program
states reachable at the loop head. On the domain of boxes, the kleene iteration
will continue with larger oxes, as shown in Figure 2.5, until it is widened to
r´8,`8s2, which does not imply our invariant G: the method fails as no box
is an inductive invariant (the transformation induced by F on G makes its
corners overflow G).

Remark 2.19. As of now, we have discussed Kleene iteration based fixpoint
computation. Below we will review one of its type, which is rather based on
policy iteration7 and not value iteration8.

Policy or strategy iterations. The inductive invariants (of course not
the strongest one) in programs can be expressed as a post-fixpoint. In the
static analysis community, Kleene iterations with widening is a well-known
approach for computing these fixpoint overapproximations [CC77]. Another
approach which solves similar problems, is policy iteration [AGG10]. For
instance, the policy iterations with ellipsoid abstract domain has been more

7In general, policy iteration algorithms start with a random policy, then finds the value
function of that policy, and then finds a new or improved policy based on the previous value
function.

8In value iteration, one starts with a random value function and then improves the value
function in an iterative way, until reaching the optimal value function. In value iteration, once the
value function reaches its optimal value, the policy out of it is optimal.

29

2. Abstract Interpretation

effective in inferring quadratic invariants compared to Kleene iterations with
ellipsoids [RG14].

The idea is to use appropriate mathematical solvers to solve the fixpoint
equation for a given abstract domain using policy iterations instead of optimal
value iteration (like Kleene). For instance, if the abstract domain and the
fixpoint equation use quadratic equations then semi-definite programming
is considered [AGG10]. Similarly, if linear equations are used then one can
benefit from linear programming [GGTZ07]. Thus, thanks to these solvers
that one can compute the solution without using the convergence techniques.

The policy iterations are otherwise known as strategy iterations [GS07a,
GS07b, GSA`12]. Both the iterations aim at fixpoint computation by a sym-
bolic reasoning based on mathematical solvers like semi-definite programming.
However, there is a minor difference in between the two iterations with respect
to the policies on which they iterate. For instance, in strategy iterations, one
iterates on max-policies, starting from bottom and increasing the bounds
until the fixpoint is reached, whereas policy iterations iterate on min-policies,
starting from an over-approximation and decreasing the bounds until the
fixpoint is attained. Thus, these approaches can be seen as an alternative to
Kleene iterations with widening.

There is a recent work [KMW16] which is based on max-policies and
formulates the policy iteration as traditional Kleene iteration, with a widening
operator.

Both the iterations require templates (appropriate shapes) to be given prior
to the analysis. Thus, before using any abstract domain with policy iterations,
it must be expressed in terms of template domains. This no doubt makes the
method less automatic. Also, the quality of the fixpoint reached by either of
the iterations depend on the initial policy used [RJGF12, RG14].

Definition 2.20 (Concretization & Abstraction function.) Consider two
posets: pD,ďq representing the concrete world and pD7, Ďq, the abstract world.
A concretization function γ : D7 Ñ D is a monotonic function which converts
each abstract element in D7 to a concrete one.

Consider a reverse function, called an abstraction function denoted by α
which converts from a concrete world back to an abstract one, i.e., α : DÑ D7.

Definition 2.21 (Widening.) Widening, on an abstract domain pD7, Ďq is an
operator ∇ : D7 ˆD7 Ñ D7 such that:

• @x,y P D7 : x,y Ď px∇yq, and

• for any sequence xi P D7 where i P N, the increasing sequence yi
calculated as

y0 :“ x0,yi`1 :“ yi∇xi`1

stabilizes after a finite number of iterations, i.e., Dk ě 0 : yk`1 “ yk.

Definition 2.22 (Galois connection.) Consider two posets pX,ďq (concrete)
and pY, Ďq (abstract), an abstraction function α : X Ñ Y, a concretization
function γ : Y Ñ X and @x P X,y P Y : αpxq Ď y ðñ x ď γpyq then the pair
xα,γy is a Galois connection denoted by:

pX, ďq ´́ Ñ́Ð́´́α
γ

pY, Ďq

30

2.3. Numerical abstract domains

Remark 2.23. An essential property established by Galois connection is the
strong connection between the concrete and the abstract world. However, not
all abstract domains enjoy a Galois connection because they may not have an
explicit α which is why the minimum requirement to interact between the two
worlds is to at least have a concretization function γ. This is what is called the
soundness property through concretization function.

Definition 2.24 (Soundness property.) Consider a concretization function
γ : pD7, Ďq Ñ pD,ďq, a concrete transfer function F : DÑ D, and an abstract
transfer function F7 : D7 Ñ D7. The function F7 is called a sound abstraction
of F if @x P D7 : Fpγpxqq ď γpF7pxqq.

2.3 Numerical abstract domains

In general, computing in concrete domain D : “ PpRnq can be undecidable
because the set of environments may need infinite memory to be represented
exactly, and computation of the set of locations infinite time. Therefore, we
reason in an approximation (abstract domain) where we forget some of the
properties of the concrete semantic domain (or in other words subset of
properties of interest) in order to get the domain computable and machine-
representable. Let D7 be the abstract domain such that D7 Ď PpRnq. To define
an abstract domain D7 one needs to characterize the following:

• a partial order Ď7 on D7,

• a concretization function γ : D7 Ñ D,

• a Galois connection, which is optional because there may not exist an
abstraction function α : D Ñ D7 to form a Galois connection pD, ď
q ´́ Ñ́Ð́´́α

γ
pD7, Ď7q. However, what we require at least is the soundness

property, i.e., properties of program proved to hold in abstract domain
also holds in the concrete one, when we do not have an abstraction
function ,

• a join operator Y7 (an abstraction of set union Y) and a meet operator
X7 (an abstraction of set intersection X) over the abstract elements,

• a smallest element K7 and a largest element J7,

• a widening operator ∇7.

Finally, we must note that the abstract domain needs only have a poset
structure, but not necessarily a CPO nor a lattice.

Many numerical abstract domains are developed because different domains
can be used to obtain different properties of programs. The major ones are
intervals [CC76] and polyhedra [CH78]. There are many new abstract domains
been developed over these years, capturing other properties, such as octagons
[Min06], template [SSM05], zonotopes [GP06, GGP09] and ellipsoids [Fer04].

31

2. Abstract Interpretation

2.3.1 Non-Relational Abstract Domain

The abstract domains of this family are the least expressive. They abstract the
set of possible values of each variable independently of the other variables,
and hence the name. The well-known in this area is the interval abstract
domain. It is based on interval arithmetic, introduced by Moore [Moo69] for
numeric analysis, and later adapted to static analysis by Cousot and Cousot
[CC76] with the inception of abstract interpretation.

The interval abstract domain, as its name implies, represents each variable
as an interval of its possible values, for e.g., ra,bs with a ď b. It represents
several variables by using a Cartesian product defined as

śn
i“1rai,bis | @i :

ai,bi P RY t´8,8u
(

. Even though it is a non-relational domain, but yet it is
simple and inexpensive to implement, and also it can infer useful properties
for program verification. However, being an abstract domain with strictly
infinite increasing chains, it requires widening to enforce convergence. Cousot
et al. in [CC76] showed that an interval analysis can over-approximate least
fixpoint with widening.

The basic operations available in the interval abstract domain are:

• concretization: γpra,bsq def
“

x P R | a ď x ď b
(

• ordering: ra,bsĎ7rc,ds ðñ pa ě cq ^ pb ď dq (semantically equivalent
to set inclusion, i.e., ra,bs Ď rc,ds)

• join: ra,bsY7rc,ds def
“ rminpa, cq, maxpb,dqs

• meet: ra,bsX7rc,ds def
“

#

rmaxpa, cq, minpb,dqs, if maxpa, cq ď minpb,dq
K7, otherwise

• addition: ra,bs`7rc,ds def
“ ra` c,b` ds

• subtraction: ra,bs´7 def
“ ra´ d,b´ cs

• multiplication: ra,bsˆ7 def
“ rminpac,ad,bc,bdq, maxpac,ad,bc,bdqs

• divison: ra,bs{7rc,ds def
“

$

’

&

’

%

rminpa{c,a{dq, maxpb{c,b{dqs, if 1 ď c
rminpb{c,b{dq, maxpa{c,a{dqs, if d ď ´1
pra,bs{7prc,dsX7r1,`8sqqY7pra,bs{7prc,ds X7 r´8,´1sqq, otherwise

Example 2.25 Consider a program shown in Figure 2.6 having two variables,
x and y, and its loop body performs a rotation of the point px,yq about
the origin, with a minor scaling penetrating inward. The initial values of
variables px,yq are in the box I def

“ r´1, 1s ˆ r´1, 1s and the effect of a loop
iteration on a set X of possible variable values px,yq P X given by the function
F : PpR2q Ñ PpR2q defined as FpXq def

“ tp0.7ˆ px´ yq, 0.7ˆ px` yqq|px,yq P Xu.
Provided with an interval r´2, 2s, we can define an axis aligned bounding

box such as X “ r´2, 2s ˆ r´2, 2s shown in Figure 2.7 in blue. The image
of this box by a loop iteration in the interval domain is F7pr´2, 2s, r´2, 2sq def

“

32

2.3. Numerical abstract domains

x=[-1,1];
y=[-1,1];
while (True) {

xnew =0.7*(x + y);
ynew =0.7*(x - y);
x=xnew;
y=ynew;

}

Figure 2.6 – Example program

X:
x P [-2,2];
y P [-2,2];
F7pXq:
x P [-2.8 ,2.8];
y P [-2.8 ,2.8];

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 2.7 – (a) The interval abstract values for the target invariant of the program in Figure 2.7 and its
image after one iteration of the body loop; (b) In blue: the target invariant (X), in pink: F7pXq.

pr0.7p´2´2q, 0.7p2`2qs, r0.7p´2´2q, 0.7p2`2qsqq, which is the box in Figure 2.7
in pink.

2.3.2 Relational Abstract Domains

Presumably, very often, for simple programs, the bound information provided
by interval abstract domain is sufficient. However, it does not guarantee the
tightest possible bounds. This led to the development of relational domains
(more expressive) which incorporate the properties inferred by non-relational
domains in conjunction with affine relationships among variables of a program.
One of the most widespread relational domains is affine inequalities domain
or polyhedra.

Polyhedras. The polyhedra abstract domain was introduced by Cousot and
Halbwachs [CH78]. As the name suggests, this domain abstracts a set of

33

2. Abstract Interpretation

points in the form of a convex polyhedron9. Recall that the existence of a best
abstraction is useful but not necessary. One of the examples is the polyhedra
domain which can abstract set of points as an unbounded convex polyhderon.

No Galois connection. There is no Galois connection for a polyhedra
because it lacks an abstraction function or has no best abstraction as a poly-
hedron. The reason for no abstraction function is owing to shapes, such as
circles, which do not have a smallest enclosing polyhedron. In other words, we
can have an infinity number of tangents to the circle leading to the existence
of a polyhedron with infinite number of constraints approximating the circle.

Few important results of polyhedra theory are the Farkas-Lemma and the
Weyl-Minkowski Theorem [Wey34, Sch98], which state that polyhedras have
dual representations: one using constraints, and one using generators. For a
subset P (polyhedron) of Rn, the following definitions are equivalent:

Definition 2.26 (H-Representation or exterior representation) A polyhe-
dron is defined as the intersection of finitely many halfspaces, i.e., there exists
a matrix A and a vector b with

P “

x P Rn | Ax ď b
(

(2.4)

where the halfspaces are represented by the inequalities Ax ď b and n
being the number of abstracted numerical variables. In other words, the
polyhedron P is the solution set x P Rn to a finite system of linear inequalities.

Definition 2.27 (V-Representation or interior representation) Given a finite
a set of extremal points or vertices (si, 1 ď i ď k or S) and a finite set of
extreme directions or rays (tj, 1 ď j ď m or T) a polyhedron can be defined as

P “ convpSq ` conepTq (2.5)

where convpYq denotes the convex hull of a set Y Ď Rn defined by

convpYq “
!

ÿ

yPY 1

αyy : Y 1 Ď Y, |Y 1| ă 8,
ÿ

yPY 1

αy “ 1,αy ě 0@y P Y 1
)

(2.6)

In other words, any point x P P can be represented as,

x “

k
ÿ

i“1

λisi `

m
ÿ

j“1

βjtj (2.7)

where λi ě 0, βj ě 0,
řk
i“1 λi “ 1.

A bounded polyhedron can be constructed simply by taking convex hull
of finite set of vertices. The definition by Equation (2.5) is more general,
i.e., by adding rays furthermore, one can obtain an unbounded polyhedron.
Switching between the two representations is a well-known result in the
polyhedral theory. Changing from H-representation to V-representation is
a vertex enumeration problem and the contrariwise is a facet enumeration
problem. The best representation varies from one operator to the other. For

9Polygon is a two-dimensional polytope. Polyhedra or polyhedron is a three-dimensional
polytope

34

2.3. Numerical abstract domains

instance, intersection can be modeled by joining constraints, whereas the
convex hull can be modeled by joining generators. Hence, it is necessary to
have a way to switch between representations. The standard algorithm for
the switching between representations was proposed by Chernikova [Che68]
and later improved by Le Verge [LV92]. We will be dealing with these kind of
problems in the later chapters.

Example 2.28 Consider the same example as in Example 2.25. Figure 2.8 illus-
trates the polyhedric abstraction using constraint and vertex representations.
All the constraints of the input and the effect on it after one iteration of the
body loop are also shown. Comparing the figures 2.25 and 2.8, it is clear that
the polyhedric abstraction is very expressive.

Abstract operators. The inclusion test, i.e., checking if γpX7q Ď γpY7q, is
equivalent to verifying if each generator of X7 satisfies every constraint of Y7.
The intersection of two polyhedra is exactly represented by a polyhedron, by
joining the set of constraints, and the join of two polyhedra is their convex
hull which is also a polyhedron. Note that, although polyhedras lack an
abstraction function α, yet there exists a smallest polyhedron entailing two
polyhedras. Thus, the polyhedra abstract domain defines a lattice by using the
convex hull as a join and the geometrical inclusion as a partial order. However,
the lattice is not complete, as we cannot extract a smallest over-approximation
of a circle as a convex polyhedron.

Ellipsoids. In the relational family, there exist domains which are specialized
in tracing quadratic invariants in digital filters, which include the ellipsoid
abstract domain [Fer04]. An ellipsoid is represented by a pair pP, λq where
P P Rnˆn is a symmetric positive definite matrix accounting for the shape
of the ellipsoid and λ is a scalar hinting to its ratio. Such a pair denotes the
following set:

γpP, λq def
“

x P Rn | xTPx ď λ
(

(2.8)

where γpP, λq is the concretization function. The set of ellipsoids provided
with the geometric inclusion order Ď is not a lattice. Moreover, there is no least
upper bound, i.e., there usually does not exists a smallest ellipsoid containing
two other ellipsoids.

2.3.3 Weakly-relational abstract domains

The motivation behind the inception of relational abstract domains like poly-
hedra is the fact that for many programs the interval domain is insufficient
to provide precise bounds for the variables. Unfortunately, the polyhedra
domain is very expensive: it has worst-case exponential space and time com-
plexity [NQ10, SPV17]. This instigated the introduction of so-called weakly
relational abstract domains, which offer a trade-off between expressiveness
and cost, and can represent some of the possible expressible properties be-
tween variables. They are usually sub-polyhedric domains relying on different
algorithmic principles, which include octagons by Miné [Min06], template
polyhedra by Sankaranarayanan et al. [SSM05], affine forms or zonotopes by
Goubault, Putot and Ghorbal [GP06, GGP09, GGP10a], and parallelotopes by
Amato and Scozzari [AS12a].

35

2. Abstract Interpretation

X:
(1): x <= 2
(2): y <= 2
(3): -y <= 2
(4): -x <= 2
F7pXq:
(5): 5x + 5y <= 14
(6): 5x - 5y <= 14
(7): -5x + 5y <= 14
(8): -5x - 5y <= 14

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

{-2., -2.}

{-2., 2.} {2., 2.}

{2., -2.}

{-2.8, 0.}

{0., 2.8}

{2.8, 0.}

{0., -2.8}

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 2.8 – (a) Halfspace representation for the target invariant of the program in Figure 2.7 and its
image after one iteration of the body loop using polyhedra abstract domain; (b) H-representation, in blue:
the target invariant (X), in pink: F7pXq; (c) Vertex or V-representation, In blue: convex hull of the vertices
corresponding to the target invariant (X), in pink: convex hull of the vertices corresponding to the image
(F7pXq) of the target invariant.

36

2.3. Numerical abstract domains

Octagons. As an extension of the zone abstract domain [Min01], which could
only express constraints of the form: x ´ y ď c, the octagon domain was
introduced by Miné [Min06], to precise octagonal constraints10: ˘x˘ y ď c.
With minimal c, the set of octagonal constraints are to be in their tightest
form. The name of this domain comes from shape of the concretization, i.e.,
the set of points that satisfy the congruence of the constraints, which is an
octagonal shape with eight corners in 2-dimension. This may not be true in
higher dimensions. In dimension p, an octagon has at most 2p2 faces.

An equivalent representation for an octagon with a set of octagonal con-
straints is the difference bound matrix11(DBM). Consider an octagon with the
constraints, ˘vi ˘ vj ď c. There are two variants to which the variable vi can
be maped, i.e., v 12i´1 and v 12i for `vi and ´vi respectively. Similarly, all the
octagonal constraints can be mapped as follows:

• vi ´ vj ď cÑ v 12i´1 ´ v
1
2j´1 ď c and v 12j ´ v 12i ď c

• vi ` vj ď cÑ v 12i´1 ´ v
1
2j ď c and v 12j´1 ´ v

1
2i ď c

• ´vi ´ vj ď cÑ v 12i ´ v
1
2j´1 ď c and v 12j ´ v 12i´1 ď c

• ´vi ` vj ď cÑ v 12i ´ v
1
2j ď c and v 12j´1 ´ v

1
2i´1 ď c

• vi ď cÑ v 12i´1 ´ v
1
2i ď 2c

• ´vi ď cÑ v 12i ´ v
1
2i´1 ď 2c

Thus, an octagon with n variables can be represented by 2nˆ2n size difference
bound matrix whose each element corresponding to row i and column j is the
constant c from the difference constraint v 1i ´ v 1j ď c. Consider two octagons
represented by their difference bound matrices, U 1 and V 1. The inclusion test,
checking if one octagon is contained inside the other, is equivalent to verifying
if U 1pi, jq ď V 1pi, jq. The octagons are closed under intersection (conjunction
of constraints maintaining a strict bound on the expression ˘x˘ y), but not
under union. However, there exists a smallest octagon containing any two
given octagons.

Example 2.29 Consider once again the same example as in Example 2.25.
Figure 2.9 illustrates the octagonal abstraction using constraint representation.
All the constraints of the input and the effect on it after one iteration of the
body loop are also shown. Even though the octagon abstract domain is more
expressive than intervals, the abstract semantics for addition and subtraction
is too coarse to obtain an octagonal shape rather than a box.

Let us denote the variables x and y from the example as v1 and v2 respec-
tively. Now, applying the above discussed rule for mapping the octagonal
constraints into difference constraints, the difference bound matrices obtained
for the octagonal constraints in Figure 2.9 are:

10Constraints with two variables and unit coefficients, i.e., each coefficient can be indepen-
dently `1 or ´1.

11It is based on normalization of the octagonal constraints, by mapping the octagonal con-
straints to difference constraints.

37

2. Abstract Interpretation

DBMX=

v 11 v 12 v 13 v 14
¨

˚

˝

˛

‹

‚

0 4 4 4 v 11
4 0 4 4 v 12
4 4 0 4 v 13
4 4 4 0 v 14

DBMF7pXq=

v 11 v 12 v 13 v 14
¨

˚

˝

˛

‹

‚

0 5.6 5.6 5.6 v 11
5.6 0 5.6 5.6 v 12
5.6 5.6 0 5.6 v 13
5.6 5.6 5.6 0 v 14

Template polyhedra. Like polyhedra domain, the template polyhedra abstract
domain introduced by Sankaranarayanan et al. [SSM05] deduces affine in-
equalities of the form Ax ď b among the program variables. Unlike polyhedra,
it is less expensive because the directions of the polyhedra are fixed during the
analysis. In other words, the coefficients of the variables in the constraints, are
fixed before the analysis is run, and not inferred during the analysis. No doubt,
this approach makes it less expressive compared to conventional polyhedra,
yet it also reduces the effort of switching between H and V-representations.
Thus, the core algorithm for template polyhedras is based on linear program-
ming which improves on the exponential bound bringing the complexity to
polynomial order in regard to the program variables. The matrix A is called
the template, and hence the name of the domain, template polyhedra.

The interval and octagon domains are special case of template polyhedra
domain under specific choices of matrix A or the template. Meaning, in these
domains, the matrix A is fixed by the domain and not the user, which is not
the case in template polyhedra. Thus, it gives the user more freedom within
the template polyhedra domain to freely decide on A before the analysis by
analyzing the cost versus precision trade-off.

Affine sets or zonotopes. Recall that interval abstract domain represent program
variables with intervals. There exists another type of representation which
can express variables in the form of an affine expression or affine combination
over a set of noise symbols εi

x̂ “ α0
x ` α1

xε1 ` ¨ ¨ ¨ ` αn
xεn,αix P R (2.9)

and hence the name, affine forms. Transfer function for arithmetic expres-
sion on these forms, first introduced by Stolfi and Figueiredo [SDF97, DFS04]
rely on affine arithmetic (AA) 12 to handle correlation among variables.
α0
x P R is the central value of the affine form. Coefficients αix P R are

the partial deviations. Given an interval ra,bs representing a variable x, we
can build an affine form

x̂ “
pa` bq

2
`
pb´ aq

2
εi (2.10)

where εi is a fresh noise symbol with value in r´1, 1s. Dually, given an affine
form x̂ “ α0

x `
řn
i“1 αi

xεi, the interval concretization is given by

x “ α0
x `

˜

n
ÿ

i“1

|αi
x|

¸

ˆ r´1, 1s.

12Affine arithmetic [SDF97] is an extension of interval arithmetic allowing to express depen-
dencies between variables.

38

2.3. Numerical abstract domains

X:
-x <= 2
x <= 2
x - y <= 4
-x - y <= 4
-y <= 2
x + y <= 4
-x + y <= 4
y <= 2
F7pXq:
-x <= 2.8
x <= 2.8
x - y <= 5.6
-x - y <= 5.6
-y <= 2.8
x + y <= 5.6
-x + y <= 5.6
y <= 2.8

x+y≤5.6

x-
y≤

4

-
x
≤

2

x
≤

2

-x-y≤4

-
x+

y≤
4

y≤2

-y≤2

x
≤

2
.8

-
x
≤

2
.8

y≤2.8

-y≤2.8

-
x+

y≤
5.

6

-x-y≤5.6

x-
y≤

5.
6

x+y≤4

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 2.9 – (a) Octagonal constraints for the target invariant of the program in Figure 2.7 and its image
after one iteration of the body loop; (b) In blue: target invariant (X) abstracted using octagon abstract domain,
in pink: its image F7pXq. 39

2. Abstract Interpretation

These forms express dependency by sharing the noise symbols εi among
variables. Meaning, there could be two affine forms representing two different
variables, but sharing the same noise symbols, i.e., those affine forms are not
independent. The noise symbols can not only model uncertainty due to input
data, but also account for uncertainty generated due to computations.

Arithmetic operations over the affine forms. Consider two affine forms
x̂ and ŷ. The linear operations like addition and subtraction operations can be
defined as

x̂˘ ŷ
def
“ pα0

x ˘ α0
yq `

n
ÿ

i“1

pαi
x ˘ αi

yqεi.

Non-affine operation like multiplication

x̂ˆ ŷ “ pα0
x `

n
ÿ

i“1

αi
xεiqpα0

y `

n
ÿ

j“1

αj
yεjq

“ α0
xα0

y `

n
ÿ

i“1

pα0
xαi

y ` α0
yαi

xqεi `

n
ÿ

i“1

n
ÿ

j“1

αi
xαj

yεiεj

(2.11)

The quadratic term αi
xαj

yεiεj in Equation (2.11) can be linearized by
adding a new noise symbol εn`1 for

řn
i“1 |αi

x| ˆ
řn
j“1 |αj

y| as shown in the
following equation

x̂ˆ ŷ “ α0
xα0

y `

n
ÿ

i“1

pα0
xαi

y ` α0
yαi

xqεi `

˜

n
ÿ

i“1

|αi
x| ˆ

n
ÿ

j“1

|αj
y|

¸

εn`1

(2.12)

There are several different ways described in [Gho11] to linearize the
non-linear term.

Affine forms to zonotopes. Recall that one of the significant features of
the affine forms is their ability to infer the dependency (partial) among the
variables they represent by sharing the noise symbols. This dependency can
be determined by the corresponding partial deviations. Consider two affine
forms x̂ and ŷ for two variables x and y, given by their affine combinations as

x̂ “ α0
x ` α1

xε1 ` ¨ ¨ ¨ ` αn
xεn,

ŷ “ α0
y ` α1

yε1 ` ¨ ¨ ¨ ` αn
yεn.

No doubt, the above affine forms imply interval bounds, i.e., x “ rα0
x ´

dx,α0
x ` dxs, y “ rα0

y ´ dy,α0
y ` dys where dx and dy are total deviations

of x̂ and ŷ respectively and dx is given by

dx “ |α0
x| ` ¨ ¨ ¨ ` |αn

x|.

Definition 2.30 (Geometric concretization.) Consider a tuple of affine forms

for p variables over n noise symbols εj, x̂i “ α0
xi `

n
ř

k“1
αk
xiεk.

X̂ “

$

’

’

’

’

&

’

’

’

’

%

x̂1 “ α0
x1 `

n
ř

k“1
αk
x1εk

x̂2 “ α0
x2 `

n
ř

k“1
αk
x2εk, pε1, ¨ ¨ ¨ , εnq P r´1, 1sn

x̂3 “ ¨ ¨ ¨

40

2.3. Numerical abstract domains

10 15 20 25 30

0

5

10

15

20

x

y

Figure 2.10 – Zonotope concretization γpAq

This defines a matrix A P Mpn ` 1,pq whose pj, iq entry, for i “ 1, . . . ,p,
j “ 0, . . . ,n is Aj,i “ αxij .

X̂ “

¨

˚

˝

α0
x1 ¨ ¨ ¨ αn

x1

...
...

α0
xp ¨ ¨ ¨ αn

xp

˛

‹

‚

loooooooooooomoooooooooooon

AT

ˆ

¨

˚

˚

˚

˝

ε0
ε1
...
εn

˛

‹

‹

‹

‚

loomoon

ε

, ε P 1ˆ r´1, 1sn

The partial dependency underlying the shared noise symbols signify that the
joint range is the set or the geometric concretization given by

γpAq “

#

ATε | ε P

1
(

ˆ r´1, 1sn
+

Ď Rp,A PMpn` 1,pq.

This set γpAq is the image of a hypercube13 r´1, 1sn under the affine transfor-
mation Rn Ñ Rp. γpAq is a class of polytope which exhibit special symme-
tries, i.e., a center-symmetric polytope (a bounded polyhedron) with center-
symmetric faces. This class of polytopes are known as zonotopes. Principally,
the joint range of p affine forms is a zonotope in Rp whose center is the vector
given by the first column of AT. The other vectors of AT are the generators of
the zonotope whose Minkowski sum of the line segments described by those
vectors is the zonotope itself.

Example 2.31 Consider the affine forms X “ px̂, ŷq with

x̂ “ 20´ 3ε1 ` 5ε2 ` 2ε3 ` 1ε4 ` 3ε5 (2.13)

ŷ “ 10´ 4ε1 ` 2ε2 ` 1ε4 ` 5ε5 (2.14)

For n “ 5 and p “ 2, the zonotope in Figure 2.10 is the concretization

of the affine forms X “ px̂, ŷq, that is, AT “

ˆ

20 ´3 5 2 1 3
10 4 2 0 1 5

˙

. In

13Hypercube is an n-dimensional correspondent of a square in 2-dimension or a cube in
3-dimension.

41

2. Abstract Interpretation

what follows, we note A` P Mpn,pq the submatrix of A P Mpn ` 1,pq,
without its first column, that corresponds to the center of the zonotope.
Each column of A` defines a generator of the zonotope, and we also rep-
resent zonotope A as pc,g1, . . .gnq, i.e., as its center c and its collection
of generators g1, . . . ,gn. For the example above, we would write A “

pp20, 10q, p´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq.

Consider the matrix A` associated to affine set px̂, ŷq without its center.
For A P Mpn ` 1,pq, A` P Mpn,pq is the submatrix A where we have been
removing the first column. Its affine concretization is the same zonotope as
γpAq but centered on 0, which we denote by γlinpAq (linear concretization),
as defined below :

Definition 2.32 (Linear concretization.) Consider p affine forms (p variables
with n noise symbols) given by

X̂ “

¨

˚

˝

α1
x1 ¨ ¨ ¨ αn

x1

...
...

α1
xp ¨ ¨ ¨ αn

xp

˛

‹

‚

loooooooooooomoooooooooooon

AT

ˆ

¨

˚

˝

ε1
...
εn

˛

‹

‚

loomoon

ε

, ε P r´1, 1sn.

Its geometric concretization is the zonotope defined as

γlinpAq
def
“

#

ATε | ε P r´1, 1sn
+

Ď Rp,A PMpn,pq.

which is centered on 0.

Remark 2.33. Thus, so far, we have seen three equivalent characterizations
for a zonotope. A zonotope in Rp is a polytope which can be represented
as a Minkowski sum of finitely many line segments. This leads to another
equivalent definition, i.e., a zonotope is a polytope in Rp whose k-dimensional
faces are centrally symmetric, @1 ď k ď p.

A third equivalent characterization for a zonotope is that it is the projection
of a n-dimensional cube or n-cube (also known as n-dimensional hypercube),
for some n by an affine map from Rn to Rp denoted by a real matrix G “
tg1,g2, . . . ,gnu of size p ˆ n and the columns g1,g2, . . . ,gn are called the
generators of the zonotope. The rank of the matrix G is the rank of the
zonotope defined by this G.

A rank k sub-zonotope formed from k generators (independent columns)
is a special kind of zonotope also known as parallelotope. We will detail them
in the later chapters.

Dual representation of a zonotope using support functions. Zonotopes,
being convex shaped objects, can be dually represented as intersection of
half-spaces, also known as support functions.

Definition 2.34 (Support function.) We know that a hyperplane can be
characterized by a direction u P Rp and a scalar b P R. We denote one such
hyperplane H “ pu,bq. The set of points y P Rp lying on this hyperplane can
be given by

xy,uy “ b

42

2.3. Numerical abstract domains

2
A
+ u

4
1

2

A
+
u

2
1

2A
+ u

1
1

2A
+ u

5
1

u2u 1

u4

u 5

2

A
+
u

3

1

u3

-10 -5 0 5 10

-15

-10

-5

0

5

10

15

x

y

Figure 2.11 – Linear concretization γlinpA`q of affine set px̂, ŷq without its
center

where x¨, ¨y is the inner product. For the set of points y lying on one side of
the hyperplane, we can write xy,uy ď b. Thus, for the direction u, finding
bpuq such that a convex set Z lies on one side of the hyperplane pu,bpuqq or in
other words, such that for all y P Z, xy,uy ď bpuq, corresponds to considering
the support function formally defined as

sup
yPZ

xy,uy.

Remark 2.35. Thus, from the above definition, it is implicit that a zonotope can
be understood as an intersection of all the half-spaces. The authors in [GP15]
(Lemma 2) have proved that given a matrix A PMpn,pq (a zonotope centered
on zero defined by n affine forms in p dimension) @u P Rp, the support
function, supyPγlinpAq

xy,uy “ ‖Au‖1. Below we consider the zonotope in
Figure 2.10 and illustrate its characterization by support functions.

Example 2.36 For l P R, u P Rp, the (l, u)-level set corresponds to points on
the hyperplane defined by: for x P Rp, pupxq “ xu, xy “ l. This hyperplane
is orthogonal to the line Lu with direction u. Given u a direction in R2,
the (l, u)-level set that intersects γlinpA`q with maximal value for l realizes
l “ supγlinpA`q

pupyq “ ||A`u||1 by Lemma 2 of [GP15]. Now, we take five
vectors u which are normal to the generators of γpAq or face of the zonotope
shown in Figure 2.11. It is quite apparent from the figure that γlinpA`q Ď Hui

where Hui
is the region between the two dashed lines orthogonal to ui. More

generally, given any matrix A, γlinpAq can be completely characterized by
providing the set of values ||Au||1.

43

2. Abstract Interpretation

Testing inclusion. By the proof of Lemma 3 in [GP15], we can say that
given two matrices X P Mpnx,pq and Y P Mpny,pq, γlinpXq Ď γlinpYq, iff
‖Xu‖1 ď ‖Yu‖1 for all u P Rp. As a generalization of the Lemma 3 to
zonotopes which are no longer centered on zero, the authors in [GP15] also
proved that given two matrices X P Mpnx ` 1,pq and Y P Mpny ` 1,pq,
γpXq Ď γpYq, iff @u P Rp∣∣∣xui,α0

xi ´ α0
yiy

∣∣∣ ď ||Y`ui||1 ´ ||X`ui||1, i “ 1, ¨ ¨ ¨ ,p (2.15)

where α0
xi , α0

yi for i “ 1, ¨ ¨ ¨ ,p are the centers of the zonotopes γpXq, γpYq
respectively.

Remark 2.37. We will prove in a later chapter that in order to test if γpXq Ď

γpYq, it is sufficient to verify the inequality
∣∣∣xui,α0

xi ´ α0
yiy

∣∣∣ ď ||Y`ui||1 ´
||X`ui||1, i “ 1, ¨ ¨ ¨ ,p for a fixed number of directions and not for all u P Rp.

No Galois connection. Recall that for the polyhedra abstract domain,
there does not exist a Galois connection owing to the fact that there is no
abstraction function α, e.g., no best outer-approximation of a circle. Likewise,
zonotopes which are some special class of polytopes, do not offer a smallest,
over-approximation of a set of points in Rn. Thus, the abstract interpretation
one can define with zonotopes is concretization based.

Ordering. If one is only interested in using affine forms to abstract current
value of the variables in a program, then one can consider, on the affine forms
a (partial) order relation which is the subset inclusion (Ď) of their geometric
concretizations, i.e., the affine set X is less or equal than Y, iff γpXq Ď γpYq
(geometric ordering on zonotopes), where γpXq Ď γpYq iff the inequality in
Equation (2.15) is satisfied for all u P Rp. There also exists a stronger order
on affine sets, in a sense that it tracks input/output relations, i.e., functional
ordering on zonotopes, which expresses the inclusion order on the geometric
concretization of the affine set augmented by the inputs of the program
[GP09, GPV12]. In this thesis, we will be using the geometric ordering on
zonotopes and we explain below why.

Remark 2.38. Recall the Figures 1.3a-1.3g from Chapter 1, where the final
inductive invariant clearly illustrates that one has to rely on a framework
not only inspired by abstraction but also splitting and discarding abstract
elements. A natural way of splitting a zonotope is to use a split operation on
the n-dimensional unit cube of which the zonotope is the projection of, where
n being the number of noise symbols. Consider a set of affine forms with
p variables defined over n noise symbols, whose joint range is a zonotope.
Splitting this zonotope is equivalent to bisecting into two the coefficient of the
jth noise symbol for all p variables [ASB08, WVL09]. However, we introduce
in this work a new splitting operator which can split a zonotope concretization
defined by a set of generators into a set of parallelotopes (subsequence of the
generators) where each adjacent parallelotope share utmost one noise symbol.
This splitting operator relies on geometrical and combinatorial properties
of a given a set of generators. Thus, for simplicity reasons, we stick to the
geometric ordering of zonotopes in the current work, which is still sound.

Remark 2.39. In this thesis work, because of the splitting in particular, we
use a purely geometrical interpretation of zonotopes, and not the functional

44

2.3. Numerical abstract domains

X:
x=0+2ε1
y=0+2ε2
F7pXq:
x=0+1.4ε1+1.4ε2
y=0+1.4ε1 -1.4ε2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 2.12 – (a) Affine forms corresponding to the target invariant of the program in Figure 2.7 and its
image after one iteration of the body loop; (b) In blue: target invariant (X) abstracted using zonotopic abstract
domain, in pink: its image F7pXq.

interpretation. If we had used the functional interpretation then it would
refer to the inclusion test of Definition 3 in [GP15]. It is not quite sure
whether the simpler test for inclusion based on Lemma 3 in [GP15] which we
introduce in Chapter 5 would still be applicable for the functional inclusion
test. Moreover, that is the same reason that the set operations like meet
defined for functional abstraction in [GGP10b] are not very well suited to
the geometrical interpretation, and which is why we will define our own
operations in Chapter 5.

Example 2.40 Figure 2.12 shows the zonotopic abstraction of the input (r´2, 2s)
to the program in Example 2.25 and its image after one iteration of the body
loop. The shared noise symbols between the affine forms associated with
the image (F7) results in a concretization more precise than the octagons
(Figure 2.9).

Remark 2.41. In terms of expressiveness, the zonotope abstract domain fills
the gap between weakly relational domains and fully linear relational domain
like the linear templates polyhedra domain. They definitely present a good
trade-off between cost and precision when it is used to analyze program with
non-linear operations. Compared to other restrictions of polyhedra, such
as octagons or templates, the directions of zonotopic faces are not fixed a
priori, providing some flexibility in the analysis. Zonotopes are closed under
Minkowski sum and difference. Non-affine arithmetic operations, including
float rounding, can easily be interpreted in zonotopes by computing an
approximate resulting affine form, and adding a new noise symbol to account
for the approximation error. Zonotopes have already proved to be a simple
and tractable set representation for program analysis [GP15, GGP09].

Parallelotope abstract domains. Recall that given a set of p independent vectors
(generators) in Rp whose Minkowski sum defines a zonotope, can be viewed

45

2. Abstract Interpretation

as a skewed, stretched or shrunken image of a cube, or otherwise known as
parallelotope. They can also be formally represented as a polyhedron defined
by at most n linearly independent constraints, where n being the number
of variables [AS12a]. In other words, parallelotope is a polyhedron whose
constraint matrix is square and invertible.

Also, recall that there exists a weaker relational variant of polyhedra known
as template polyhedra, where for each program the user fixes the constraint
matrix a priori unlike intervals or octagons (the constraint matrix is fixed for
all programs). Doubtlessly, this domain can handle expressive constraints but
the abstract operators are mainly based on linear programming and can be
computed in polynomial time. In order to have a better trade-off between
expressiveness and cost, Amato et al. [AS12a] introduced the parallelotope
domain where the number of constraints are limited to n linearly independent
ones, rather than restricting the syntactic form of constraints (as in template
polyhedra). This helped in designing efficient abstract operators without
relying on linear programming tools.

2.3.4 Combining abstract domains

Heretofore, we have seen that abstract interpretation framework uses several
different abstract domains. After all, a complex abstract domain can be disin-
tegrated into a combination of simpler ones. In other words, it is also possible
to build new abstract domains from the existing ones by generic operators like:
reduced product [CC79, CCM11], partitioning [Cou81] and logical product
[GT06, GGP10a], which leads to the design of a more expressive domain.

Reduced product combines two or more existing abstract domains, useful
to express conjunction of heterogenous properties. Bertrane et al. in [BCC`]
and Cousot et al. in [CCF`06] describe a reduced product of a large set of
abstract domains, including the interval, octagon and polyhedra domains.
Also, Amato et al. in [Rub18] described a reduced product of parallelotopes
[AS12a] and intervals.

In partitioning, instead of a single abstract domain element, one combines
several elements of the same abstract domain in order to express disjunctive
properties.

Remark 2.42. In this thesis, we will define some sort of partitioning, which
is disjunction of abstract elements instead of classical disjunctive-domain
techniques, such as disjunctive completion, or trace-partitioning.

A logical product is a method to combine abstract domains based on
decision procedures (Nelson-Oppen methodology [NO79]) and not just based
on their concretizations, which is the case in reduced product. It is a more
expressive (facilitates in better exchange of relations in between the involved
domains) combination compared to reduced product [GT06]. For instance,
Ghorbal et al. [GGP10a] designed a meet operation using a logical product
of the affine sets with an abstract domain (preferentially intervals, zones or
octagons so that the abstraction eventually is not expensive) over the noise
symbols. The constraints produced by the tests in a program are interpreted
over the noise symbols of the affine forms, and hence the name, constrained
affine sets.

46

2.3. Numerical abstract domains

2.3.5 Support libraries

There are several libraries being developed for the abstract domains and their
operators. Among the publicly available ones are Apron14 [JM09], ELINA15

[SPV17], the Parma Polyhedra library16 [BHZ08] and the Polka library17.
Apron is a C library covering a wide set of numerical abstract domains,

namely boxes, octagons, polyhedra, zonotopes (named after Taylor1+) and
also reduced products. The numerical abstractions provided by the library
can be used for static analysis in C, C++, OCaml and Java. It includes the
implementation of different abstract operators for e.g., meet, join, test for
inclusion and equality, verify if an abstract element is K7 or J7. It allows to
switch from one domain to another. The default constructor type argument
for any apron abstract domain is boxes. The constrained affine sets and
their abstract operators have been implemented in Apron [GGP09]. All the
experiments associated to the current work have been carried out with the
help of Apron library.

Recall that the polyhedra abstract domain has dual representations: one
using constraints, and one using generators. The standard algorithm for
switching between two representations was provided by Chernikova [Che68]
and later essentially enhanced by LeVerge [LV92]. This algorithm is imple-
mented in the Parma Polyhedra Library and the Polka Library. The polyhedra
abstract domain in APRON Library are based on these two implementa-
tions. There are other polyhedral libraries namely Komei Fukuda’s cddlib18,
PolyLib19 and ELINA. ELINA also covers few other domains like zones and
octagons. It includes an efficient implementation of polyhedra domain based
on decomposition of a large polyhedron into a set of smaller polyhedras, thus
reducing the asymptotic complexity of the domain, without losing precision
[SPV17].

2.3.6 Abstract interpretation tools

An important application of abstract interpretation is to provide complex
information (what are the reachable states?) about the behavior of a program
without requiring the users to provide specification or execute their programs,
in short known as static analysis. Even though the program being analyzed
does not terminate, its static analysis does.

There exist several abstract interpretation-based static analyzers among
which few of them are Astrée20 [CCF`05, BCC`, Mau04], Polyspace21, Fluc-
tuat22 [BCC`09, DGP`09, GPBG07].

Astrée is a static program analyzer used for proving the absence of runtime
errors in C programs. It has been successfully used to analyze the flight

14http://apron.cri.ensmp.fr/library/
15ELINA: ETH Library for Numerical Analysis. http://elina.ethz.ch
16PPL Project. The Parma Polyhedra Library. http://www.cs.unipr.it/ppl/
17http://www.inrialpes.fr/pop-art/people/bjeannet/newpolka
18https://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html
19http://icps.u-strasbg.fr/polylib/
20https://www.absint.com/astree/index.htm
21http://www.mathworks.fr/products/polyspace
22Static analysis for numerical precision. http://www-list.cea.fr/labos/gb/LSL/

fluctuat/index.html

47

http://apron.cri.ensmp.fr/library/
http://elina.ethz.ch
http://www.cs.unipr.it/ppl/
https://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html
http://icps.u-strasbg.fr/polylib/
https://www.absint.com/astree/index.htm
http://www.mathworks.fr/products/polyspace
http: //www-list.cea.fr/labos/gb/LSL/fluctuat/index.html
http: //www-list.cea.fr/labos/gb/LSL/fluctuat/index.html

2. Abstract Interpretation

control code of AIRBUS A340, A380 [SD07, DS07], and the source code of the
Monitoring and Safing Unit (MSU) of Astrium’s Automated Transfer Vehicle
(ATV) .

The Polyspace verifier tool of Mathworks was used to analyze the flight
control code for the Ariane 502 rocket [LMR`98].

Fluctuat is a static analyzer developed at the Laboratory for the Modelling
and Analysis of Interacting Systems (LMeASI) at CEA LIST. It is used to
study the propagation of uncertainties in C programs due to for instance finite
precision (floating-point or fixed-point) computations. It relies on abstract
domains like intervals and affine arithmetic (with zonotopic concretization). It
also addresses other issues like division by zero, overflows and also checking
complex functional specifications. Fluctuat was involved in analyzing the
source code of ATV [BCC`09]. For instance, it provided the output ranges of
some critical functions of the MSU of the ATV space vehicle. It also analyzed
the numerical stability of an 8-th order filter (used in the software of MSU)
by deriving its tight invariant. It has also been used by nuclear plants and
AIRBUS for the A350.

These analyzers have had different industrial applications. However, there
are few of them with more educational and scientific motivation. Interproc is
an analyzer based on Apron abstract domain library. Frama-C23 is an open
source C program analyzer [KKP`15]. Random24 is a R-based analyzer for
imperative programs [AS12b]. It covers numerical abstract domains, namely
intervals, parallelotopes, reduced product of intervals and parallelotopes.

23https://frama-c.com/
24https://www.sci.unich.it/~amato/random/

48

https://frama-c.com/
https://www.sci.unich.it/~amato/random/

Chapter 3
Constraint Programming

Besides abstract interpretation, there is another approach called constraint
programming (CP) which has also been used to discover invariants. Here we
discuss the key facts about constraint programming.

3.1 From AI to CP

Up to now, we have witnessed a large number of representations or abstract
domains with different shapes (box, ellipse, polyhedra and etc.) provided by
abstract interpretation.

Recall that for the example program in Figure 2.6, the analysis with boxes
will fail to find an inductive invariant and it is because of the same reason as
discussed in Example 2.18. Even if the inductive invariant is octagonal, the
abstraction of the body loop in the octagon domain is not precise enough to
show directly that it is inductive. Moreover, no box or octagon was stable for
such a program, but rather there is a stable polyhedric domain (with octagon
shape). In other words, the method would however succeed using the, more
costly, polyhedra domain. One drawback is that there is no way, by only
looking at the shape of the target invariant G, to guess that a more complex
domain is required to infer an adequate inductive invariant. Classic abstract
interpretation infers an abstract inductive invariant, i.e., an element or a shape
G7 that is stable by a loop iteration: F7pG7q Ď G7. As this implies by soundness
that FpγpG7qq Ď γpG7q while only requiring a computable abstract version F7

of F.
After having not much luck with boxes, the standard solution inspired

by abstract interpretation for the program in Figure 2.6 would be to design
a new abstract domain (more expressive) representing directly the octagon
shape that is the final inductive invariant in Figure 2.2. Moreover, it must
be redesigned for every different shape and there is no standardized way
to construct such a domain. Instead, we have to reason in a framework
based on disjunctive completion, PpD7q rather than D7: that will search for
an inductive invariant that can be expressed as a finite collection S Ď D7 of
abstract elements, i.e., S “ tS1, . . . ,Snu. For example, one can still use boxes,
and search for a disjunction of boxes which is inductive, rather than looking
for an inductive invariant in a single box. One such framework exists and
it is called continuous constraint programming (CP) inspired by splitting and
tightening abstract elements.

First, we shall recall about constraint programming in general, and then
go into details of continuous CP.

49

3. Constraint Programming

3.2 Constraint programming

Constraint programming is a method for solving combinatorial problems, by
expressing them as conjunctions of first-order logic formulas, called constraints
and solving them by off-the-shelf constraint solvers [Mon74]. It has been used
in a wide spectrum of applications:

• Job-shop scheduling [LP94] and manufacturing scheduling problems
[Bap96]

• Vehicle routing problems [Sha98]

• Handling ribonucleic acid (RNA) secondary structures [BKV96]

• Automatic composition of music [HLZ96], constraint programming
system for contemporary music [TAC01]

• Cryptoanalysis against block ciphers [GMS16]

• Urban planning [BCT14, BCT12]

• Finding invariants for program verification [GSV08]

Constraint programming is a programming paradigm which a computer
uses to solve a user defined problem, i.e., an aggregate of constraints. The
formal manner to state such problems to the computer is known as constraint
satisfaction problem (CSP) where the variables of the problem can be integer or
real number.

Definition 3.1 (Constraint satisfaction problem.) A constraint satisfaction
problem (CSP) is defined by a set of variables V

def
“

v1, . . . , vn
(

taking values
from a set of initial domains

D1, . . . ,Dn
(

where @i : Di P R, Di is bounded
in R or @i : Di P Z, Di is bounded in Z, and a set of relations or otherwise
known as constraints C

def
“

C1, . . . ,Cp
(

on a subset of variables.

Each variable vi can take values from the domain Di. A constraint Ci
defines a relation RCi

Ă D1 ˆ ¨ ¨ ¨ ˆDn where D
def
“ D1 ˆ ¨ ¨ ¨ ˆDn is the set of

all possible values that can be assigned to the variables, also known as search
space. The constraint Ci is satisfied if

v1, . . . , vn
(

P RCi
. Constraints in CP

primarily operate on domains that are either discrete (D Ď Zn) or continuous
(D Ď Rn) where n is the number of variables.

Remark 3.2. Consider the problems are continuous and the domain (Di) is an
interval. Then, each variable vi P V can take value in the interval Di and D is
the Cartesian product D1 ˆ ¨ ¨ ¨ ˆDn which is a box. In computers, we cannot
represent real numbers. Therefore, the bounds of an interval Di are defined
as floating-point numbers. We will denote the lower and upper bounds as Di
and Di respectively.

The solution to a CSP is the set of all points in domain D satisfying all
constraints C. In other words, a complete assignment of values to variables
satisfying all the constraints. In general, the solution set cannot be enumerated
exactly. Thus, in continuous constraint programming, we compute a collection

50

3.2. Constraint programming

of abstract elements, for instance, boxes with floating-point bounds, that will
contain all solutions and tightly fit the solution set.

The class of CP relevant to this thesis is the continuous constraint solving
[CDR98, PMTB13], over real-valued variables, that works by refining the
domain of the variables, i.e., a box representing candidate solutions: the box
is tightened (or reduced) as much as possible by removing variable values
that cannot participate in a solution. A continuous constraint solver alters two
kinds of steps: propagation and splitting [Pel15].

3.2.1 Propagation

Consider a CSP which is a set C
def
“

C1, . . . ,Cp
(

of constraints on a set of
variables

v1, . . . , vn
(

where each variable can have values from the domain

D1, . . . ,Dn
(

. Declaratively, a constraint defines a relation on the Cartesian
product D1 ˆ ¨ ¨ ¨ ˆDn of the corresponding domains. In general, it is compu-
tationally expensive to compute all the values that satisfy the constraint. Thus,
typically a constraint programming system filters or reduces the domain by
removing domain values which do not satisfy the constraints or cannot be a
part of the solution. These values are otherwise known as inconsistent. There
are several notions of consistencies proposed by the constraint programming
community, for example the hull consistency, box consistency (generalized arc
consistency for discrete constraints [Mac77a, Mac77b]) for continuous variable
domains [SHF96, Ilo99].

Definition 3.3 (Generalized Arc-consistency.) Consider a CSP problem de-
fined over the set

v1, . . . , vn
(

of variables taking values from discrete domains
D1 ¨ ¨ ¨Dn, Di Ď D̂i and a constraint C. Then the domains D1 ¨ ¨ ¨Dn are said
to be generalized arc-consistent, if and only if @i P J1,nK, @x P Di, x has a
support (xi P Di has a support if and only if @j P J1,nK, j ‰ i, Dxj P Dj such
that Cpx1, . . . , xnq is true).

Definition 3.4 (Hull-consistency.) Consider a CSP problem defined over the
set

v1, . . . , vn
(

of variables taking values from continuous domain character-
ized by intervals D1 ¨ ¨ ¨Dn where @i : Di P I and a constraint C. Then the
domains D1 ¨ ¨ ¨Dn are said to be hull consistent, if and only if the smallest
box represented by D1 ˆ ¨ ¨ ¨ ˆDn contains the solution for C.

Remark 3.5. Hull consistency is a relaxation of the arc-consistency which only
requires to check the arc-consistency property for each bound of the intervals
[CDR99].

The propagation algorithm used to enforce hull-consistency is known as
HC4 [Ilo99]. It takes as input a set of constraints and a box, and reduces the
domains of the variables as much as possible.

Generally speaking, a constraint programming system can have many
constraints. While one achieves consistency for one constraint by removing
the inconsistent values, other constraints, which were consistent earlier may
go inconsistent. Therefore, it is necessary to keep tightening the domain
repeatedly until it reaches the consistency (no further domain reduction is
possible), or in other words, cannot find anymore inconsistent (based on the
constraints) values. This process is called propagation.

51

3. Constraint Programming

3.2.2 Splitting

Usually, the propagation step is not sufficient to find the solutions. Therefore,
we need to cut the remaining search space into smaller domains. Whenever
a domain cannot be reduced anymore, it is split into two or more domains,
that are tightened and split themselves iteratively, until every domain either
contains only solutions, or no solution, or has a size below a user-defined
threshold. When the algorithm terminates, it returns a set of candidate
solutions as a collection of abstract elements. Below we define the size and
splitting operators for a box.

Definition 3.6 (Size of a box.) Consider D7 “ D1ˆ¨ ¨ ¨ˆDn a box where each
Di is an interval with its lower and upper bounds as Di and Di respectively.
Then, the size of the box D7 is given as

n
ÿ

i“1

`

Di ´Di
˘

(3.1)

A different notion of size can also be defined as the maximum width among
all variables, i.e.:

max

Di ´Di | i P r1,ns
(

(3.2)

Definition 3.7 (Splitting a box.) Consider a box D7 “ D1 ˆ ¨ ¨ ¨ ˆDn where
each interval domain Di is assigned to variable vi. The box D7 can be bisected
into two sub-boxes D

7

1 and D
7

2 by splitting the ith variable (vi). The two
sub-boxes can be defined as

D
7

1
def
“ D1 ˆ ¨ ¨ ¨

«

Di,
Di `Di

2

ff

¨ ¨ ¨ ˆDn (3.3)

D
7

2
def
“ D1 ˆ ¨ ¨ ¨

«

Di `Di

2
,Di

ff

¨ ¨ ¨ ˆDn (3.4)

Remark 3.8. Spitting and size operators for other abstract domains like oc-
tagon and polyhedra are defined in [PMTB13]. In a later chapter of this thesis,
we will be introducing these operators for zonotope abstract domain.

3.2.3 A continuous solver

Based on the propagation and splitting steps, below we describe a continuous
solver on boxes from [PMTB13, MBR16]. Recall that we are interested in a
real-valued program semantics, and we focus on continuous constraints. Each
domain is an interval of reals and so the initial search space G7 is a box. The
algorithm iteratively shrinks the boxes using the constraints (consistency),
keep them if they contain only solution and splits them until it reaches an
instance where all the boxes contain only solutions or shrink below a user
specified size limit. Thus, the solution set S is tightly enclosed by a set of
boxes such that S Ď YG7.

52

3.2. Constraint programming

Algorithm 3.1 – A simple continuous solver

solution set SÐH

search space, a set of boxes G7 :“

D
(

// D
def
“ D1 ˆ ¨ ¨ ¨ ˆDn

while G7 ‰ H do

S7 Ð pop a box from G7

S7 Ð hull-consistencypS7q
if S7 “ H then

continue
else if S7 contain only solution then

SÐ SY

S7
(

else if S7 ă ε then

SÐ SY

S7
(

else

split S7 in into S71 and S72 along the largest dimension
push S71 and S72 into G7

53

Chapter4
Interactions between Abstract

Interpretation and Constraint

Programming

As of now, we have discussed abstract interpretation and constraint program-
ming, the two important research areas in computer science. This thesis work
is at the interface between these two areas. AI aims at analyzing programs
by extracting properties through various representations. In CP, the goal is to
solve hard combinatorial problems efficiently. No doubt the problems of these
two areas are different and also their applications. However, both the areas
are linked with a common interest, i.e., to compute an over-approximation of
a desired set which is sometimes difficult or impossible.

In this chapter, we explain in detail the existing CP-based AI framework
that is further extended to zonotope abstract domain in the later part of the
thesis. This chapter also surveys a recent line of work which combines abstract
interpretation and constraint programming for inferring invariants.

4.1 Are we introducing AI ideas into CP or CP into AI?

The constraint programming community covers a huge amount of work on
continuous CP [eeBO97, CJ09, Rue05, PMTB13]. The classical continuous con-
straint programming corresponds to interval domain [PMR12, eeBO97, CJ09].
However, there are few recent works [PTB11, PTB14] in which the authors
propose consistency (using octagonal constraints to remove the domains) and
propagation algorithms for octagon domain. They also proposed a splitting
algorithm and a notion of precision or size adapted to the octagonal case.
These works are based on using abstract domains in a constraint programming
solver and solving actual constraints (system of equations) corresponding to
the domain used. More precisely speaking, they aim at designing a new class
of constraint solvers parameterized by abstract domains through introducing
abstract interpretation ideas into constraint programming.

A very recent line of work [MBR16] on which we extend our zonotopic
abstraction for finding invariants, is in the same spirit as [PTB14]. However,
the authors claim that they rather introduce techniques from constraint pro-
gramming in abstract interpretation since they aim at analyzing programs
which has been a typical AI application for years.

The authors in [MBR16] adapt constraint programming algorithms to infer
post-fixpoints of semantic functions associated with a program instead of
solving constraints. Their goal is to find a set of abstract elements G7 that
satisfy the following properties:

54

4.2. Refinement-based inductive invariant inference

• I7 Ď G7

• G7 Ď T 7

• F7pG7q Ď G7

Recall that, here the aim is to infer inductive invariants of numerical programs.
In the first property, I7 is the abstraction of the initial states of a program. For
example, recall the program in Figure 2.6, the initial states of the program
with respect to interval domain is the box r´1, 1s ˆ r´1, 1s.

In the second property, T 7 (for instance, the box r´2, 2s ˆ r´2, 2s for the
program in Figure 2.6 with interval domain) is the target invariant which is
strengthened into an inductive invariant G7.

If one uses only abstract interpretation to satisfy the above properties then
the set is composed of a single abstract element, trying to infer an inductive
invariant in it. However, when combined with CP, the set becomes a union
or collection of abstract elements. Thus, it wouldn’t be wrong to say that this
technique is also a CP based AI framework which solves constraints on sets.
There is a recent work of Jaulin et al. [Jau12] which solves similar problems,
and they call it set-based constraint satisfaction problems.

The idea of [MBR16], inspired from constraint programming approaches,
is to synthesize an inductive invariant as a collection of abstract elements,
that are iteratively split and refined. In set-based constraint programming,
these elements are generally boxes. Previous work [MBR16] was limited to
abstract domains that are closed by intersection and required non-standard
operations: split and size, such as octagons. In this thesis, we extend this work
to zonotopes, which we show they provide an interesting trade-off between
expressiveness and efficiency for such a use, by comparing their use with
that of boxes, octagons, and polyhedra. In the forthcoming chapters, we will
introduce the operators required to combine the zonotopic abstraction with
the CP algorithm.

4.2 Refinement-based inductive invariant inference

Here we recall the algorithm from [MBR16] to tighten an invariant into
an inductive invariant, by splitting and tightening a collection of abstract
elements. We further extend this algorithm with zonotopic abstraction for
finding inductive invariants.

4.2.1 Concrete semantics.

Recall that we analyze a loop in a numeric program. We assume without
loss of generality that variables are real-valued (which includes integers and
non-special float values). A program environment is a subset of Rn, where
n is the number of variables. The concrete semantics of a program is the
collecting semantics1 of [CC77] : it is given as the least fixpoint of a function
F : PpRnq Ñ PpRnq over an initial environment I Ď Rn ; typically, when a
program consists of just one loop, F is the transfer function for one iteration
of the loop.

1It is the strongest program property of interest and computing it would answer all safety
queries. However, it is impossible (except for finite systems) to compute this collecting semantics.

55

4. Interactions between Abstract Interpretation and Constraint

Programming

4.2.2 Target invariant.

We also assume that we are given a target invariant T Ď PpRnq. We wish
to infer an inductive invariant G Ď PpRnq that proves that T is indeed an
invariant. This requires finding G such that: I Ď G (includes the initial states),
FpGq Ď G (induction), and G Ď T (invariant entailment). Note that the least
fixpoint of F greater than I, lfpIF, is always a solution as it is the smallest
invariant and it is inductive. However, neither F, nor lfpIF is computable in
general.

4.2.3 Abstract semantics.

As a first step, we replace computations in PpRnq with computations in an
abstract domain D7 Ď PpRnq, that is, a set of well-chosen abstract elements
that can be efficiently represented in memory. Moreover, we replace the
concrete function F with a computable version F7 : D7 Ñ D7 within the
abstract world. As generally the image by F of an abstract element is not
exactly representable in the abstract, F7 computes an approximation that, to
be sound, over-approximates the set of environments.

Abstract interpretation provides a library of domains D7 as well as sys-
tematic methods to derive a sound abstract F7 from the program source; for
instance, D7 can be the axis-aligned boxes (i.e., the interval domain) and F7 is
derived through interval arithmetic.

Classic abstract interpretation would infer an abstract inductive invariant,
i.e., an element G7 such that F7pG7q Ď G7, as this implies by soundness that
FpG7q Ď G7 while only requiring a computable abstract version F7 of F. The
algorithm proposed in [MBR16] reasons instead in the disjunctive completion,
PpD7q: it searches for an inductive invariant that can be expressed as a finite
collection G7 Ď D7 of abstract elements, i.e., G7 “ tS71, . . . ,S7nu that satisfies:

Property 1. S71 ‰ S
7

2 P G
7 =ñ volpS71 X S

7

2q “ 0

Property 2. I7 Ď Y
i
S
7

i

Property 3. @k : F7pS7kq Ď Y
i
S
7

i

Property 4. @k : S7k Ď T
7

which implies that Y
i
S
7

i is an inductive invariant. Property 1 ensures that

the boxes in G7 do not overlap. The authors in [MBR16] use the interval
abstract domain, which allows non-strict inequality constraints only. They
do not enforce that G7 forms a partition. So, if the boxes do intersect, their
intersection has a null volume. Property 2 certifies that G7 covers initial set
I7. Property 3 implies F7pY

k
S
7

kq Ď Y
i
S
7

i, i.e., G7 is inductive and property 4

ensures that G7 implies the candidate invariant.
To simplify, it is assumed that both the initial states I7 and the target

invariant T 7 are exactly expressible in the abstract domain D7 (this is often the
case, e.g., if both represent variable bounds, expressible with boxes). On the
other hand, the disjunctive completion of D7, where G7 lives, is strictly more

56

4.2. Refinement-based inductive invariant inference

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 4.1 – Inductive invariant for the program in Figure 2.6

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 4.2 – The image of abstract elements in Figure 2.2 by a loop iteration in
the abstract domain used for computing the inductive invariant

expressive than D7, as abstract domains are seldom closed by set union Y. For
instance, the algorithm can find an inductive invariant that is a collection of
boxes that cannot be exactly expressed as a single box. This feature is key to
avoid the expressiveness escalation observed in classic abstract interpretation,
where one must design more complex abstract domains to handle programs
with complex inductive invariants. This feature is illustrated below with the
help of an example.

Example 4.1 Consider the example in Figure 2.6 again. This time, we will use
the CP algorithm of [MBR16] parameterized by the interval abstract domain.
It searches for an inductive invariant by strengthening a user provided initial
invariant which is here the r´2, 2s ˆ r´2, 2s box. Indeed, the algorithm finds
an inductive invariant inferred by a collection of boxes in Figure 4.1.

Figure 4.3 illustrates that these set of boxes are stable by the body loop
iteration (Figure 4.2) of the program: F7pG7q Ď G7 where G7 is the set of boxes
inferring the inductive invariant.

Remark 4.2. Thus, with the ideas from constraint programming, it is possible
to approximate complex shapes using non-relational abstract domains. We

57

4. Interactions between Abstract Interpretation and Constraint

Programming

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 4.3 – Superposition of the two figures 4.1 and 4.2 showing that 4.2 is
included in 4.1, i.e., 4.1 is inductive

Algorithm 4.1 – A CP based AI algorithm for inferring inductive invariants
[MBR16]

FunctiontSearchInvariantutI7, F7, T 7u
search space & final solution set, a set of abstract elements G7 :“

T 7
(

while G7 ‰ H do

S7 Ð pop an abstract element from G7 // Based on minimum coverage
if coveragepS7,G7 Y

S7
(

q = 1 then

return G7 Y

S7
(

else if S7 is not necessary and pcoveragepS7,G7 Y

S7
(

q ă

εc or sizepS7q ă εs or S7 is not useful q then

remove S7

else if sizepS7q ă εs then

return failure
else

split S7 in into S71 and S72 // every split element is also tightened
push S71 and S72 into G7

EndFunction

are further interested in investigating if CP influences relational domains
like zonotopes. This curiosity is due to the fact that zonotopes, being a sub-
polyhedric domain that shows a good compromise between cost and precision,
combined with CP can prove efficient in analyzing programs with non-linear
loops that present complex, possibly non-convex, invariants.

4.3 Search algorithm.

The CP based AI framework for finding inductive invariants is shown
in Algorithm 4.1. The algorithm maintains a finite collection G7 Ď D7 that
forms a candidate inductive invariant. This is illustrated in Figure 4.4. It is
initialized with the target invariant: G7 “ tT 7u. It is ensured at all times that
I7 Ď Y

i
S7i Ď T

7, and iteratively refine G7 until it becomes inductive, i.e., until

@k : F7pS7kq Ď Y
i
S
7

i. While G7 is not inductive, the following steps are iterated:

58

4.3. Search algorithm.

ⅈ
♯

G
♯

S1

♯ S2

♯

S3

♯
S7

♯

S6

♯

S5

♯

S8

♯

S4

♯

S9

♯

Figure 4.4 – A collection of abstract elements manipulated by the algorithm

(a) Examples of ab-
stract elements that
should be discarded,

(b) kept, or (c) split, based on the
intersection of its im-
age by F7 (in red
dashed lines) with
the other abstract ele-
ments.

Figure 4.5 – Classification of abstract elements

• pick an element S7k P G
7 with F7pS7kq Ę Y

i
S
7

i, i.e., preventing inductive-
ness;

• either discard S7k from G7, split it into two elements that are added back
to G7, or tighten it.

Remark 4.3. The algorithm presented in Figure 8 in [MBR16] splits an abstract
element always into two sub-parts. However, in the zonotopic abstracted
version of the algorithm, we split a zonotope into a partition of more than two
sub-zonotopes. We will discuss this splitting method in the later part of the
thesis.

To decide the action to perform, it is important to classify an abstract
element S7k in relation to the other elements in G7 and their image by F7. Thus,
an abstract element S7k can be classified in different ways:

• doomed if F7pS7kq X pY
i
S
7

iq “ H (Figure 4.5a); such an element will always

prevent inductiveness and must be discarded;

• benign if F7pS7kq Ď Y
i
S
7

i, i.e., it does not prevent inductiveness and does

not need to be changed (Figure 4.5b);

59

4. Interactions between Abstract Interpretation and Constraint

Programming

Figure 4.6 – Useful abstract elements

• necessary if S7k X I
7 ‰ H, i.e., it cannot be discarded, to keep ensuring

that I7 Ď Y
i
S
7

i always holds;

• useful if S7k X pY
i
F7pS

7

iqq ‰ H, i.e., an element of G7 relies on S7k to be

benign.

Example 4.4 In the figure, the box S7k intersects the image of a box S7l
under F7 which implies that F7pS7lq Ď YiS

7

i, i.e., S7k helps make S7l benign.
If S7k is discarded then it leaves S7l non-benign, i.e., F7pS7lq Ę Yi‰kS

7

i and
eventually the algorithm fails.

The algorithm first selects a non-benign element S7k. It is discarded if it is
either doomed or not useful, unless it is necessary. Otherwise, it is generally
split, as exemplified in Figure 4.5c. By splitting S7k, we can hope to isolate the
part that is doomed, and is ultimately discarded, from the part that is benign,
and kept in the final inductive invariant.

4.3.1 Coverage

It is also possible to discard a useful, non-benign S7k. On the one hand, this
is beneficial as it removes an offender preventing inductiveness, as it is not
benign. On the other hand, discarding an element that is useful means that
other elements that depend on it to be benign (i.e., S7k intersects the image by
F7 of these elements) will not be benign anymore, triggering a sequence of
splits and removals. We exercise this option when we deem that it is not worth
splitting S7k to expose benign parts. To guide our choice, a useful quantitative
measure is that of coverage:

coveragepS7kq :“

ř

i

volpF7pS7kq X pY
i
S
7

iqq

volpF7pS7kqq
(4.1)

where volpX7q is the volume of an abstract element X7. Intuitively, the coverage
measure is: how much the image of S7k lies in the candidate invariant. Or in

60

4.3. Search algorithm.

Figure 4.7 – Computation of coverage information

other words how much it is inductive. Note that, for this to make sense, it is
important to rely on the fact that the S7k do not overlap (up to the common
borders that have a null volume).

Example 4.5 Consider the box in red color and its image in green shown
in Figure 4.7. The coverage information for this box can be computed as
red`gray
green

.

Remark 4.6. Coverage is first used to decide which S7i in G7 to consider. Then,
it is used to decide whether to split or discard. Computing

ř

i

volpF7pS7kq X pY
i
S
7

iqq

can be fairly expensive. So, in the later part of the thesis, we propose a cover-
age metric which no longer relies on volume computation to decide whether
to split an abstract element or not.

Note that benign elements have a coverage of 1, and doomed elements have
a coverage below the user specified threshold εc. The algorithm systematically
picks the element S7k P G

7 with the least coverage in priority, as these require
the most urgent actions. For deciding if an abstract element is benign, the
algorithm does not use coverage measure, and we will discuss why in the later
part of this chapter. Rather, the benigness property is evaluated by inclusion
checking.

Remark 4.7. In [MBR16], elements with a very low coverage are systemati-
cally discarded, as unlikely to become benign. However, it is possible that
an abstract element may intersect every inductive invariant, in which case
discarding this element will result in a failure. So, in the current work, we
only discard an abstract element if it has a coverage of 0.

61

4. Interactions between Abstract Interpretation and Constraint

Programming

4.3.2 Tightening

As in constraint programming, the abstract elements can also be tightened by
removing useless parts. More precisely, any part of S7k that does not intersect
any F7pS7iq is not useful and can safely be discarded, improving the likelihood
that S7k becomes benign, without making other benign elements non-benign.
More precisely, tightening replaces S7k with:

Y
i
pS
7

k X F
7pS

7

iqq Y pS
7

k X I
7q (4.2)

suitably over-approximated to an element in the abstract domain (e.g., in the
interval domain, Equation (4.2) is a union of boxes, and we compute its box
hull).

4.3.3 Splitting

Consider an abstract element S7k which is not benign but cannot be discarded
since it is either necessary or useful. So, the Algorithm 4.1 performs splitting
operation on S7k to help make it benign. S7k is split into its two sub-parts S7k1

and S7k2
such that S7k1

Y S
7

k2
“ S

7

k. It is split, unless it is either benign or too
small to split it anymore.

While replacing S7k with S7k1
and S7k2

does not change G7 but it is possible
to reduce the size of F7pG7q, helping G7 to become benign, F7pG7q Ď G7.

Remark 4.8. It is important to note that, currently the split operation on boxes,
octagons and polyhedras, in the algorithm splits an abstract element into
its two sub-parts. We introduce in the next chapter a splitting operation on
zonotopes adapted with the algorithm which allows a zonotope to be cut into
more than two sub-parts.

4.3.4 Size

In constraint programming, a complex shape invariant is approximated by a
collection of abstract elements up to a precision or size criterion. Thus, the
Algorithm 4.1 requires a threshold εs for the size-parameter below which
it restrains from splitting the abstract elements. An approximate notion of
size is sufficient for the algorithm. Thus, it simply uses as size of an abstract
element the size of its bounding box, which is very easy to compute.

4.3.5 Failure

Unlike constraint programming but similarly to abstract interpretation, the
algorithm can fail to find an inductive invariant. This comes from several
reasons. One of them is the bad decision to discard an element containing en-
vironments required in all inductive invariants. For instance, a useful abstract
element that actually intersects the smallest inductive invariant. Moreover,
because the algorithm starts from the target invariant and discards portions
of it until it becomes inductive, it often outputs inductive invariants near the
weakest invariants able to prove the property. This is in contrast with abstract

62

4.3. Search algorithm.

interpretation, which goes upwards and over-approximates the strongest
invariant.

The algorithm can also terminate with a failure if it cannot find an inductive
invariant after finitely many splits with the size of the abstract elements
reaching less than εs.

When there is a failure, values of εs and εc are lowered and the algorithm
is called again with few additional steps:

• discarding abstract elements from G7 which are not reachable from the
entry states

• splitting abstract elements actively or re-splitting them to isolate the
doomed parts

This procedure is applied iteratively until an inductive invariant is found.
Note that iteratively reapplying the algorithm followed by the failure recovery
steps can be very costly.

Remark 4.9. In that way, the algorithm is relatively-complete, i.e., if there is an
inductive invariant in the abstract domain then the algorithm will find it.

4.3.6 Data structure.

Recall that the Algorithm 4.1 requires maintaining information about abstract
elements in G7, such as their coverage and whether they are benign or useful.
It is important to note that modifying a single abstract element in G7 may not
only modify the coverage or class of the modified abstract element, but also
of other abstract elements in G7. We discuss here data structures which was
already proposed in [MBR16] to perform such updates efficiently, without
examining G7 entirely after each operation.

Throughout the execution of the algorithm, a set of abstract elements B7 is
maintained, similarly to the set G7 of abstract elements which is ultimately
going to partition the inductive invariant, by initializing it as the initial
(tightened) invariant, and splitting it the same way G7 is split. Unlike G7

where we also discard some (sub-)abstract elements, B7 always covers the
whole (tightened) initial invariant space. Therefore, an abstract element in
B7 is matched by at most one abstract element from G7. This notion can be
ensured by maintaining a contents-of function cnt : B7 Ñ pG7Y

H
(

q indicating
which abstract element of G7, if any, is contained in the partition B7.

Remark 4.10. Maintaining B7 is an optimization to compute the coverage
easily. The idea is that, with B7, the algorithm does not need to consider all
abstract elements in the volume computation, and it is easy to maintain B7

when G7 evolves.

A map post : G7 Ñ PpB7q is retained to indicate which parts of B7 intersect
the image of an abstract element S7k P G

7:

postpS7kq :“

P7 P B7 | F7pS
7

kq X P
7 ‰ H

(

(4.3)

The map post is further used to compute coverage and also to decide whether
a box is benign or not. The coverage of an abstract element S7k, defined in

63

4. Interactions between Abstract Interpretation and Constraint

Programming

Equation (4.1), can be computed as:

coveragepS7kq :“
ř

volpF7pS
7

kq X cntpP7qq | P7 P postpS7kq
(

volpF7pS
7

kqq
(4.4)

Remark 4.11. The coverage information is first used to decide which Si in G7

to consider. Then, it is used to decide whether to split or discard. To guide
the split, this is just a heuristic without much requirement. In [MBR16], in
order to compute this heuristic, the authors used as the volume of an abstract
element the volume of its bounding box, which is very easy to compute. In
this thesis work, we introduce a simple heuristic which does not rely anymore
on computing volume. We will discuss this in the next chapter.

It will not be safe to use coverage information to determine whether an
abstract element is benign or not because the computation in Equation (4.4)
is subject to floating-point round-off error. Thus, in order to check for induc-
tiveness or benigness, a sound coverage test is needed, but this is inclusion
checking.

An abstract element is inductive or benign, if whenever F7pS7kq intersects
some partition P7 P B7, is included in cntpP7q P B7. It is also additionally
checked if F7pS7kq is included within the candidate invariant T 7. Thus, the
formal representation of the benign test is,

S
7

kis benign ðñ @P7 P postpS7kq : P
7 X F7pS

7

kq Ď cntpP7q ^ F7pS7kq Ď T
7 (4.5)

4.4 Related work

By this time, we have discussed how iterative fixpoint computation based
technique like abstract interpretation has been combined with continuous
constraint programming for discovering inductive invariants. However, re-
cent years have seen many satisfiability based constraint solvers (they encode
programs as formulas) at the core of program analysis and verification tools.
So, we will be reviewing the state-of-the-art methods which combine tech-
niques based on abstract interpretation and based on satisfiability for inferring
inductive invariants.

4.4.1 CP using SAT/SMT solvers

In program verification, the problem of finding inductive invariants can
be boiled down to the problem of solving second-order constraints because
programs can be translated into constraints [GSV08, CSS03]. One can use fixed-
point based techniques like abstract interpretation to solve these constraints.
Besides, there also exist constraint-based invariant generation techniques
where the constraints are solved by already existing constraint solvers like
SAT/SMT2 [DMB08]. However, in these techniques the analysis problem
have to be converted into constraints that can be solved by the SAT/SMT
solvers. For instance, first, the second-order constraints have to be converted
into the first-order constraints because SAT/SMT solvers are based on some

2SAT-Boolean satisfiability, SMT-Non-boolean satisfiability

64

4.4. Related work

logical theories to determine if a first-order formula is satisfiable. Then, these
first-order constraints are converted into a SAT/SMT formula using bit-vector
modeling. Thus, these constraint-based invariant generation techniques have
to rely on lot of preprocessing before solving the constraints for finding the
inductive invariant.

There are also linear and non-linear solvers which are used for inferring
inductive invariants [CSS03].

4.4.2 SAT-based model checking

Like abstract interpretation, model checking (MC) is also an iterative fixed-point
technique. Provided with a property (ϕ) of a system and a structure (S),
model checking verifies if the structure meets the property or in other words
if S is a model of ϕ (i.e., S |= ϕ). In particular, it checks if S with an initial
state s is a model of ϕ (i.e., S, s |= ϕ). It verifies if all the computations of S
meet ϕ from the initial state s.

A simple example of such a model checking problem is propositional
satisfiability, i.e., given a formula ϕ and an assignment σ (which maps propo-
sitional variables to truth table values) whether σ is a model of ϕ. With the
advent and popularity of SAT algorithms, SAT-based model checking became
the core of many program analysis tools.

SAT-based model checking algorithms like IC3 (Incremental Construction
of Inductive Clauses for Indubitable Correctness) [Bra11], PDR (Property
Directed Reachability) [HB12] are used for inferring safe inductive invariants.
These algorithms work iteratively, either strengthening a candidate invariant
into an inductive invariant or find a counter example.

IC3 is an incremental SAT-based MC algorithm which maintains a collec-
tion of candidates. It strengthens and weakens the candidates based on the
examples provided by the SAT-solver until one of them becomes a safe induc-
tive invariant. IC3 has been successfully used for hardware model checking
[Bra11, een11].

4.4.3 Combined AI and CP approaches

There are various ways in which abstract interpretation and constraint pro-
gramming frameworks have been combined together for inferring inductive
invariant in programs. Below we discuss them in detail.

Decision procedure based abstract interpreters. Abstract interpretation
and constraint programming are combined in a way to automate AI framework
by designing a sound abstract transfer function or transformer3 using SMT
solvers [TLLR15, RT16]. The authors show, how sound abstract transformers
can be constructed by using logic: they call this connection (using logic
to define program semantics) between abstract interpretation and logic as
symbolic abstraction.

Definition 4.12 (Symbolic abstraction.) Consider a formula ϕ P L, where
L is a logic, and an abstract domain A. Then, symbolic abstraction can be

3Functions on an abstract domain are called abstract transformers and those on a concrete
domain are concrete transformers.

65

4. Interactions between Abstract Interpretation and Constraint

Programming

defined as the relationship that maps ϕ to the best or most-precise value (A7)
in the abstract domain A that over-approximates ϕ.

Remark 4.13. If such a precise descriptorA7 exists in A which over-approximates
the formula ϕ (i.e., vϕw Ď γpA7q) then

α̂Apϕq “ αApvϕwq (4.6)

where α̂Apϕq denotes the symbolic abstraction of ϕwith respect to the abstract
domain A.

Similarly, the authors defined symbolic concretization, a relationship which
maps an abstract value A7 P A to a formula. In [TLLR15], the authors discuss,
how they use symbolic abstraction (α̂Apϕq) for finding the most precise
inductive A-invariant for a given program and an abstract domain A. There
are several algorithms for computing the symbolic abstraction: RSY algorithm
[RSY04], bilateral algorithm [TER12]. The key notion of both the algorithms is
to use SMT solver for the logic L to look for models4 (σ |= ϕ) of the formula
ϕ. These models (σ) are used to compute the abstract values A7.

Characterizing satisfiability algorithms using fixpoints. There are other
recent works [DHK12, DHK14], in which AI and CP have been integrated
together to help design efficient satisfiability algorithms using abstract inter-
pretation. The authors show that the algorithms for solving satisfiability have
abstract interpretation characterizations, i.e., satisfiability solvers are abstract
interpreters. They do so by deriving fixpoint (least and greatest fixpoints)
descriptions of models and countermodels5 of a formula.

4.4.4 Learning loop invariants

Besides AI and CP, there are other approaches for inferring invariants that are
based on learning paradigms, i.e., they try to learn from the past mistakes as
opposed to search based methods like abstract interpretation.

Garg et al. [GLMN14, GNMR16] developed a machine learning-based
paradigm for loop invariant synthesis known as ICE, where the learner syn-
thesizes a candidate invariant and the teacher verifies it using a constraint
solver. The teacher also provides feedback in the form of a positive or neg-
ative examples. The learner uses the example to enhance its inference. This
process continues until the teacher concludes that the candidate invariant is
strengthened into an inductive invariant.

The ML-based invariant inference techniques use different learning algo-
rithms: decision trees [GNMR16], neural networks [SDR`18].

IC3 (the SAT-based model checker) and ICE have few similarities at a high-
level abstraction. For example, the SAT solver in IC3 can be considered as a
teacher and the rest of the algorithm as a learner with satisfying assignments
playing the role of examples [VGSM17].

4In propositional logic, σ is an assignment that maps variables to truth table values, i.e., true
or false. If an assignment σ satisfies a formula ϕ then it is a model of ϕ.

5An assignment σ is a counter model if it does not satisfy a formula ϕ (i.e., σ * ϕ)

66

4.4. Related work

4.4.5 Eigen vectors as invariants

The authors in [dOBP16, dOBP17, DO18] presented a technique based on
linear algebra concept of eigenspace for inferring linear invariants of linear
loops. They proved that the left eigenvectors of a loop transformation F are the
set of invariants of a loop. However, in order to compute the eigenvectors, first
they had to reduce the polynomial loop into a linear one using linearization
procedures (the problem boils down to searching for linear invariants).

Remark 4.14. Essentially, the recent line of work dedicated to synthesizing
invariants combines abstract interpretation and constraint-based techniques.
In constraint-based techniques, we reviewed techniques based on continu-
ous constraint programming, working on geometric entities, such as boxes,
octagons, polyhedras and techniques on SAT/SMT working on formulas (a
model based on Boolean variables) for which the algorithms are dedicated.
There are similarities between the solving process of these two techniques.
However, both the model and the solving methods differ.

67

Part II

Invariants of discrete

systems

68

Chapter 5
Zonotopes and constraint solving

We have already seen that the algorithm discussed in the previous chapter is
parameterized by a choice of abstract domain D7. In addition to an abstract
version F7 of F, already provided by abstract interpretation, it requires a split
operator, a test for deciding if two abstract elements intersect and similarly the
test for inclusion. Such operators have been proposed for boxes and octagons
in [MBR16]. This chapter recalls the zonotope domain, introduces our new
operators (provide the missing operators for zonotopes), and discusses how
to handle domains that are not intersection-closed.

The missing operator for zonotopes is mainly the splitting. An obvious
way to split a zonotope is with overlap which is simple, close to that on boxes.
We introduce a novel splitting based on paving zonotopes by sub-zonotopes
and parallelotopes.

We have designed a new inclusion test for zonotopes based on the work of
Goubault et al. [GP15] improving the complexity of the test by an exponential
bound compared to the previous work.

Regarding the meet operator, there exists already the work of Ghorbal et
al. [GGP10b] by using constrained affine sets: the constraints produced by
the tests in a program are interpreted over the noise symbols of the affine
forms. Unlike the previous work which is a meet operation over the affine
forms, here we introduce a new meet operation on zonotopes which is rather
a geometrical meet between two zonotopes keeping in mind the geometrical
aspect of our splitting operator applied later. Also, this meet introduces new
direction of faces which is useful for our splitting by tiling fashion, paving the
zonotope obtained after the meet into sub-zonotopes.

5.1 Constraint solving algorithm on zonotopes

The framework illustrated in Algorithm 5.1 is the CP based AI Algorithm 4.1
on zonotope abstract domain. As discussed in Section 4.3.2 in the base algo-
rithm, tightening (Equation (4.2)) is applied at each iteration after the split
operation for boxes and octagons. However, in the algorithm on zonotopes
tightening is only applied during the first iteration as shown in Algorithm 5.1.
Recall that tightening requires set-theoritic operation like meet and the pre-
cision and efficiency of the meet operation plays an important role in the
effectiveness of tightening. Since tightening removes parts of an abstract
element that prevents it from becoming necessary or useful, it is important to
have a meet operation which is exact.

It is well-known that zonotope is a sub-polyhedric abstract domain which
does not enjoy the property of being closed under intersection. In the later

69

5. Zonotopes and constraint solving

part of the thesis, we propose a meet operator that over-approximates the
intersection of zonotopes. Applying this over-approximated meet operation is
crucial for the initial states, but applying it in further iterations proved to gain
little. So, for this current work, we restrict the tightening operation only to
the first iteration. However, applying tightening at every iteration for abstract
domains which are not closed under intersection is a scope for future work.

The algorithm 5.1 maintains, in G7, a set of zonotopes to explore, initialized
with the tightened candidate invariant T 7 of interest. Then, while there
are zonotopes to explore, the zonotope S7 with coverage (Equation (4.1) or
Equation (4.4)) equal to 0 is removed from G7. Coverage is also used to
pick any zonotope from G7 with least coverage value (but not zero) because
this zonotope requires urgent action to become benign. As discussed in
Section 4.3.1 and 4.3.6 the coverage information is a heuristic and it is not
required to compute the exact volume of the abstract element to calculate the
coverage measure. Moreover, computing the volume of a zonotope can be
reasonably expensive and we will illustrate this with an example afterwards.
In the later part of this chapter, we propose a simpler and efficient coverage
metric to guide the splitting operation. Recall that however to decide whether
a zonotope is benign, the algorithm requires inclusion checking (Equation (4.5)
in Section 4.3.6). So, it is important to have a test for inclusion check which
must be exact. We will define later a cost-effective test based on an earlier
work on inclusion tests for zonotopes.

If a zonotope S7 is benign, and so are the remaining zonotopes in G7; hence
all of the zonotopes are benign and the algorithm has found an inductive
invariant: we add back S7 to G7 and return that set of zonotopes. Otherwise,
we split S7 to help make S7 benign. In that way, a sequence of splits will reduce
a zonotope’s size. The algorithm refrains from splitting zonotopes below a
certain size-parameter cut-off εs and so the algorithm requires a size measure
for zonotopes. Recall that an approximate notion of size is sufficient for the
algorithm. For instance, the size of a zonotope can be over-approximated as
the size of its bounding box.

In the general case, where a zonotope S7 is not necessary (does not intersect
I7), we are free to discard S7, which we do if it is useless. To decide if a
zonotope is necessary or useless, the algorithm requires test for intersection
check. Moreover, recall that it is possible that a zonotope may intersect every
inductive invariant, in which case discarding this zonotope will result in a
failure. Hence, the test for intersection check must be an exact one. We discuss
the test for intersection check on zonotopes in the later part of this chapter.

Thus, the list of operations required by the Algorithm 5.1 that must be
defined for the zonotope abstract domain are:

• inclusion test,

• intersection test,

• meet,

• volume,

• coverage metric,

• size, and

70

5.2. Inclusion test

Algorithm 5.1 – The zonotopic variant of the CP based AI algorithm 4.1 for
inferring inductive invariants

FunctiontSearchInvariantutI7, F7, T 7u
T 7 Ð T 7 X F7pT 7q // Tightening the target invariant
search space & final solution set, a set of zonotopes G7 :“

T 7
(

while G7 ‰ H do

S7 Ð pop a zonotope from G7 // Based on minimum coverage
if S7 is benign then

return G7 Y

S7
(

else if S7 is not necessary and pcoveragepS7,G7Y

S7
(

q “ 0 or sizepS7q ă
εs or S7 is not useful q then

remove S7

else if sizepS7q ă εs then

return failure
else

split S7 into a set

S
7

1,S72, ¨ ¨ ¨
(

such that S7 “ YiS
7

i

push

S
7

1,S72, ¨ ¨ ¨
(

into G7

EndFunction

• splitting.

Remark 5.1. We will be using the same example from Figure 2.10 for the rest
part of this chapter. Recall that for n “ 5 and p “ 2, the zonotope was the
concretization of the affine forms X “ px̂, ŷqwith x̂ “ 20´3ε1`5ε2`2ε3`1ε4`

3ε5, ŷ “ 10 ´ 4ε1 ` 2ε2 ` 1ε4 ` 5ε5, that is, AT “

ˆ

20 ´3 5 2 1 3
10 ´4 2 0 1 5

˙

.

We will represent zonotope A as pc,g1, . . .gnq, i.e., as its center c and its
collection of generators g1, . . . ,gn. For the example above, we would write
A “ pp20, 10q, p´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq

5.2 Inclusion test

We know from Equation (4.5) in Section 4.3.6 that the algorithm requires
inclusion checking to verify if an abstract element is benign (Equation (5.22)).
We proceed as decribed below.

The best known method for inclusion tests are known to have exponential
time (in terms of the number of generators) for zonotopes [GP15]. Lemma 5.2
below is an extension of Lemma 4 of [GP15], which transforms the inclusion
test into an infinite number of simple inequalities, that in turn translate into
an exponential number of linear programs to be solved. Here we can further
decrease the number of linear programs to solve to a polynomial number.

Lemma 5.2 For two zonotopes given by matrices X P MpnX ` 1,pq and Y P
MpnY ` 1,pq, let u “

u1, ¨ ¨ ¨ ,uk
(

be vectors in Rp such that each face in γpYq
has a vector in u that is normal to it. Then γpXq Ď γpYq if and only if∣∣∣xui, cx ´ cyy∣∣∣ ď ||Y`ui||1 ´ ||X`ui||1,@i “ 1, ¨ ¨ ¨ ,k (5.1)

where cx, cy are the centers of the zonotopes γpXq, γpYq respectively

71

5. Zonotopes and constraint solving

Proof. Let us prove first that inequalities in Equation (5.1) are sufficient condi-
tions for inclusion of X into Y.

Based on Lemma 1 of [GP15], let us define γlinpY`q as

γlinpY`q “
č

1ďiďk

#

x P Rp|
ˇ

ˇui
Tx
ˇ

ˇ ď ||Y`ui||1

+

where each ui is normal to the faces of γpYq (or equivalently of γlinpY`q). Let
x be any point such that x P γpXq. Let x “ x1` cx such that x1 P γlinpX`q and
x2 be any point such that x2 “ x1` pcx ´ cyq. Let us assume that∣∣∣xui, cx ´ cyy∣∣∣ ď ||Y`ui||1 ´ ||X`ui||1,@i “ 1, ¨ ¨ ¨ ,k.

Under this assumption and also by Lemma 2 of [GP15] i.e., sup
x
1
PγlinpX`q

xu, x1y “

||X`u||1, we can say that∣∣∣xui, cx ´ cyy∣∣∣` xui, x1y ď ||Y`ui||1.

This implies xui, x2y ď ||Y`ui||1 which means x2 P γlinpY`q. Thus, x P γpYq
where the difference between γlinpY`q and γpYq is the translation cy.

Let us prove now that inequalities in Equation (5.1) are necessary condi-
tions for inclusion of X into Y.

By Lemma 4 of [GP15], we know that if γpXq Ď γpYq then @u,
∣∣∣xui, cx ´

cyy
∣∣∣ ď ||Y`u||1 ´ ||X`u||1. Thus, we can say that if γpXq Ď γpYq then

@i “ 1, ¨ ¨ ¨ ,k
∣∣∣xui, cx ´ cyy∣∣∣ ď ||Y`ui||1 ´ ||X`ui||1 l

Remark 5.3. For a zonotope of dimension p with n generators, the upper
bound on the number of faces, and thus on vectors ui, is 2

`

n
p´1

˘

. Thus, the
complexity of the inclusion test is 2

`

n
p´1

˘

ˆ Opnpq which improves on the
exponential bound of [GP15]. Indeed, the authors proved in [GP15] that
γpXq Ď γpYq, if and only if Equation (5.1) is satisfied for all u P Rp. Lemma
5.2 shows that it is sufficient to check the inequality in Equation (5.1) for only
a finite (polynomial in p) number of u. It is not necessary to test the Lemma
for u and ´u because zonotope is center symmetric. When p “ 2, the ui
correspond to the normals to each generator.

Example 5.4 (Computing u) Consider the set of generators
pp´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq where each generator is a vector spec-
ified by px,yq and x, y being the components. Computing ui for this set is
straightforward: by computing p´y, xq for each vector. Thus, the normal
vectors are: pp´4,´3q, p´2, 5q, p0, 2q, p´1, 1q, p´5, 3qq.

When p “ 3, one can still use the cross product to find the normals ui.
However, in higher dimension, we had to resort to linear algebra methods
(singular value decomposition (SVD)) for computing these normals. Singular
value decomposition (SVD) is a well-known numerical linear algebra technique
for factorizing any given matrix M with real entries and of size mˆ n into an

72

5.2. Inclusion test

mˆm orthogonal matrix U (left singular vectors), a diagonal mˆ n matrix Σ
(diagonal entries are singular values) and an nˆn orthogonal matrix V (right
singular vectors) such that

M “ U ¨ Σ ¨ VT (5.2)

The geometrical intuition of Equation (5.2) is, the matrices U and V being
orthogonal, the columns of U form an orthogonal basis of Rm and the columns
of V produce an orthogonal basis of Rn.

Consider a linearly independent set of generators
pp2,´4, 2q, p´1, 2,´4q, p0, 0, 1q, p0, 1, 0qq or the generator matrix

¨

˝

2 ´1 0 0
´4 2 0 1
2 ´4 1 0

˛

‚ (5.3)

which defines a zonotope in dimension p “ 3. We want to compute the
normals ui such that each face (dimension p´ 1) of the zonotope has a vector
in u that is normal to it (Lemma 5.2), where a face in this example is defined
by a 2-membered subset of the set of generators. So, in total, there will be

`4
2

˘

or 6 faces. Thus, we have to compute 6 vectors where each of them is normal
to the corresponding face.

Consider one of the sub-matrices given by
¨

˝

2 ´1
´4 2
2 ´4

˛

‚ (5.4)

In order to find the vector normal to the face formed by the vectors in
Equation (5.4), we first compute its SVD:

¨

˝

2 ´1
´4 2
2 ´4

˛

‚“ UΣVT “ (5.5)

¨

˝

´0.3374 0.2935 ´0.8944
0.6748 ´0.5871 ´0.4472
´0.6564 ´0.7545 0.0000

˛

‚

¨

˝

6.3689 0
0 2.1066
0 0

˛

‚

ˆ

´0.7359 0.6771
0.6771 0.7359

˙

(5.6)

We know that, each singular value is linked to each left/right singular
vector. Thus, the matrix Σ in Equation (5.5) has two non-zero singular values
and a third one which is equal to zero. We also know from the definition
of SVD that the matrix U or the left singular vectors span the space of the
columns of the matrix whose SVD is computed. It yields an orthogonal basis
of Rm. So, the third vector of the matrix U associated to the third singular
value which is zero, will not be included in that plane, but normal to it. Thus,
the vector normal to the face defined by the sub-matrix in Equation (5.4) is

¨

˝

´0.8944
´0.4472
0.0000

˛

‚. (5.7)

73

5. Zonotopes and constraint solving

Figure 5.1 – Intersecting case

Figure 5.2 – Point inclusion for intersecting case

5.3 Intersection test

Recall that in the algorithm it is required to know when two abstract elements
intersect to decide if an abstract element is necessary or useful. We proceed
as described below. This can in general be done using intersection and a
test for non emptiness, but in the case of zonotopes, there is a more direct
method, that we develop below. Consider a zonotope Z1 given by its center c1
and generators g1, ¨ ¨ ¨ ,gk, and Z2 given by c2 and h1, ¨ ¨ ¨ ,hm. As observed in
[GNZ03], Z1XZ2 ‰ H if the point c1´ c2 is included in the zonotope centered
at the origin, with generators g1, ¨ ¨ ¨ ,gk,h1, ¨ ¨ ¨ ,hm. This is solved by finding
the values of the noise symbols εi, which is a simple linear satisfiability
problem.

Example 5.5 We present some case studies (Figure 5.1–5.4) where we detect
the intersection between the zonotopes, if any, using the above-discussed
method. Figure 5.1 shows that two zonotopes intersect and so the point corre-
sponding to the difference between the centers of the zonotopes is entailed
inside the new zonotope as illustrated in Figure 5.2. Just opposite is the case
for Figure 5.3 as illustrated in Figure 5.4.

5.4 Meet

Recall that zonotopes are closed under linear transformation and under the
Minkowski sum, but the set-theoretic intersection of zonotopes is not always
a zonotope [GP15]. We know from previous works in [LSA`13, TS13] that
in order to find an intersection of a zonotope and a polyhedron, we need to

74

5.4. Meet

Figure 5.3 – Non-intersecting case

Figure 5.4 – Point inclusion for non-intersecting case

compute the intersection of a zonotope and a half-space. If this intersection
is over-approximated by a zonotope then the intersection of a zonotope and
a polyhedron can be found by sequential computation of intersection of the
zonotope and the half-spaces1. Similarly, the problem of computing the meet
between two zonotopes can be reduced to the problem of computing the meet
between a zonotope and a linear space. Several methods have been proposed
to compute an over-approximation (e.g., in [GGP10b, GLG08, CZL08]) of the
intersection of a zonotope and a linear space.

Girard et al. [GLG08] transformed the problem of computing an over-
approximation of the intersection of a zonotope with a hyperplane to the
problem of computing several intersections of a 2-dimensional zonotope with
a plane by applying projections. However, the over-approximation of the
intersection is a polytope for which a tight zonotope over-approximation
must be computed. A solution based on zonotope/polytope transformation
has been proposed by Althoff et al. in [ASB10] where the polytope is over-
approximated using parallelotopes. However, the conversion from half-space
to generator representation can be costly. Combastel et al. [Com03, CZL08]
introduced an algorithm for computing an approximation of the intersection
of a zonotope with a hyperplane based on singular value decomposition.
Tabatabaeipour et al. [TS13] proposed that in order to over-approximate the
intersection of a zonotope Z “ tx P Rn | x “ c`Gε, ε P r´1, 1smu and a half-
space H “ tx P Rn | xu, xy ď γu by a zonotope, first the support functions of Z

1A polyhedron is the intersection of a finite number of half-spaces.

75

5. Zonotopes and constraint solving

in the direction u and in the direction ´u must be computed. In other words
we must compute a zonotope support strip2: SZ “ tx P Rn | ql ď xu, xy ď quu
where ql and qu are given by

ql “ u
Tc´ ||GTu||1 (5.8)

qu “ u
Tc` ||GTu||1 (5.9)

An intersection between the zonotope Z and the half-space H is possible
only under the condition:

ql ď γ ď qu.

This intersection is bounded in the direction u by the hyperplane tx P Rn |
xu, xy “ γu and in the direction ´u by the hyperplane tx P Rn | x´u, xy “ qlu.
This is true while over-approximating an intersection of a zonotope and a
polyhedron. However, between a zonotope-zonotope intersection, zonotope
being a center symmetric polyhedron, the value of ql is ´γ. Thus, the tight
zonotope strip bounding the intersection is:

SZXH “ tx P Rn | ql ď xu, xy ď γu (5.10)

where ql “ ´γ. Equation (5.10) is a strip S with σ “ γ´ql

2 and d “ ql`γ
2

where recall that a strip S is given by S “ tx P Rn | |uTx´d| ď σu. So, here in a
zonotope-zonotope intersection σ “ γ and d “ 0. The problem finally boils to
finding the intersection between a zonotope and a strip. This intersection can
be over-approximated by a zonotope Ẑ “ tx P Rn | x “ ĉ` Ĝε, ε P r´1, 1sm`1

u

which is parameterized by a vector λ that affects the size and bound of
intersection and can be computed by minimizing the Frobenius norm of
matrix Ĝ [ABC05]. Thus, the vector λ, the center ĉ and the generator matrix
Ĝ can be computed as

λ “
GGTu

uTGGTu` σ2 (5.11)

ĉ “ c` λpd´ uTcq (5.12)

Ĝ “
“

pI´ λuTqG σλ
‰

(5.13)

All the above discussed methods focus on computing the intersection of a
zonotope and a linear space geometrically. In other words, no information is
kept concerning the input/output relationships.

Ghorbal et al. [GGP10b] proposed a method based on functional interpre-
tation of the intersection of a zonotope with a guard. It computes a simple
yet sufficiently precise over-approximation by using constrained affine sets:
the constraints produced by the tests in a program are interpreted over the
noise symbols of the affine forms. Note that, the noise symbols will longer be
defined in the range r´1, 1s, but rather in the range of the values accounting
for the abstraction of the constraints on the noise symbols. Formally, con-
strained affine sets can be seen as a (logical) product of the abstract domain of

2A strip is denoted as S “ tx P Rn | |uTx´d| ď σu

76

5.4. Meet

affine sets with a lattice structure that abstracts the value of the noise symbols
taking into account the constraints induced by tests.

Computing the meet of a zonotope with another one as the sequence of
meet of the zonotope with the faces of the other can be imprecise, as the meet
with linear space is an over-approximation, and imprecision will accumulate
quickly. Moreover, it depends on the number of faces. Hence, the need for a
zonotope meet that can take into account all faces of the second argument at
once.

There are methods which directly focus on meet between zonotopes by set
representations based on collection of sets. For instance, Althoff et al. [AK11]
introduced zonotope bundles, defined as the intersection of a set of zonotopes.
Consider a finite set of zonotopes Z, a zonotope bundle is ZX “ t

Şs
i“1 Zi|Zi P

Zu, i.e., the intersection of zonotopes Zi where Z “ pc,gp1q, . . . ,gppqq. A bundle
tZ1, . . . ,Zsu allows to symbolically represent a polytope ZX “ tZ1, . . . ,ZsuX.
Note that the intersection is not computed explicitely. Rather the zonotopes
are stored in a list and all operations are performed on individual zonotopes.
A similar method has been proposed in [DDP16] for parallelotopes. These
methods can be accurate, but the related cost increases with the number of
sets required, which can be large.

Here, we develop a simple meet operation based on the following observa-
tion. Let Z1 (resp. Z2) be a zonotope represented by matrix M1 (resp. M2) and
let x be a point in the intersection of Z1 and Z2. Then, there exists e P r´1, 1sp

(resp. e 1 P r´1, 1sp) such that x “ MT
1

ˆ

1
e

˙

and x “ MT
2

ˆ

1
e 1

˙

. For any

α P r0, 1s, trivially, x “ αx` p1´ αqx, therefore:

Z1 X Z2 Ď

#

αMT
1

ˆ

1
e

˙

` p1´ αqMT
2

ˆ

1
e 1

˙

, ||e||8 ď 1, ||e 1||8 ď 1

+

(5.14)

The right hand side of the inclusion above is the zonotope obtained as the
Minkowski sum of zonotope Z1 (scaled by coefficient α) with zonotope Z2
(scaled by coefficient 1´α), up to some translation: αc1`p1´αqc2 where c1 and
c2 are the centers of zonotopes Z1 and Z2. If we substitute in Equation (5.14)
α “ 0, we have Z2 else if we substitute α “ 1, we obtain Z1 and any value
between 0, 1 would result in a zonotope intervening the two intersecting
zonotopes and including the actual intersection. Taking the barycenters (with
weight α) of zonotopes Z1 and Z2 will always give something containing the
intersection. This is because a point in the intersection of Z1 and Z2 (seen as
functions of the ε), satisfies Z1pεiq “ Z2pεjq only for some values of εi, εj. So,
for these values, we have

αˆ Z1pεiq ` p1´ αq ˆ Z2pεjq “ Z1pεiq “ Z2pεjq (5.15)

which is this point in the (set theoretic) intersection. Thus the right side in
Equation (5.14) is always going to include the intersection.

Example 5.6 Consider the example of Figure 2.6. We set Z1 to be the initial
box px,yq P S0 “ r´2, 2s2 that can be abstracted using zonotopes as Z1 “
`

2ε1 2ε2
˘T. Consider now Z2 to be the effect of the body loop on Z2 “ Z1:

F7pS0q “

ˆ

1.4ε1 1.4ε2
1.4ε1 ´1.4ε2

˙

.

77

5. Zonotopes and constraint solving

1

2

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Figure 5.5 – The zonotope concretization of S0 and F7pS0q

The zonotopes Z1 and Z2 are shown in Figure 5.5. In the parametrization of
S0 and F7pS0q by the same noise symbols ε1 and ε2, we consider each point of
S0 and its image F7. To get a geometric intersection of the two zonotopes, we
need to parameterize them with different noise symbols.

First, we will illustrate how the intersection S0 X F
7pS0q can be over-

approximated by a sequential computation of intersection of the zonotope Z1
and the faces of Z2 and later we will discuss how to over-approximate this
intersection using our proposed method. As discussed earlier the intersection
Z1 X Z2 can be reduced to the problem to finding the intersection of Z1 and
the strips whose meet is the zonotope Z2.

Initially, we need to compute the half-spaces (Hi “ tx P R2 | xu, xy ď γu)
whose intersection is the zonotope Z2. We already know from Section 5.2 and
Definition 2.34 that computing γ requires to find the support function in the
direction u. Moreover, recall that each ui is normal to the faces of Z2. Thus,
for Z2, the ui’s are

u1 “

ˆ

´1.4
1.4

˙

(5.16)

u2 “

ˆ

1.4
1.4

˙

(5.17)

As Z2 is centered on zero, the value of γ in the direction u1 can be simply
computed as ||Aui||1 “ 3.92 where AT is the generator matrix of Z2, i.e.,
ˆ

1.4 1.4
1.4 ´1.4

˙

.

The next step is to find the tight supporting strip bounding the intersection.
As already discussed in a zonotope-zonotope intersection, this strip is the
support function of Z2 in the direction u1 and ´u1. Thus, the values of ql

78

5.4. Meet

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Figure 5.6 – The hyperplanes with which the intersection of Z1 will be com-
puted

and qu in Equations (5.8) and (5.9) are equal to ´3.92 and 3.92 respectively.
Subsequently, the values of σ and d are 3.92 and 0. The hyperplanes in the
direction u1 and u2 with which we will compute the intersection of Z1 are
shown in Figure 5.6.

Now, we compute the value of λ and accordingly the center and the
generator matrix of the zonotope over-approximation of the intersection
Z1 X H1 using Equations (5.12)-(5.11). This zonotope over-approximation
denoted as Z3 and shown in Figure 5.7 is characterized by the generator
matrix given by

ˆ

1.4949 0.5051 ´0.7071
0.5051 1.4949 0.7071

˙

(5.18)

and is centered on zero.
Following the above steps, now in the direction u2 (Equation (5.17)), the

tight supporting strip and the over-approximation of its intersection with the
zonotope Z3 whose generator matrix is in Equation (5.18) is computed. Let’s
denote this zonotope over-approximation as Z4 which is shown in Figure 5.8.
It is centered on zero and its generator matrix is given by

ˆ

0.9898 0 ´0.7071 0.7071
0 0.9898 0.7071 0.7071

˙

.

Example 5.7 In the previous example, we illustrated the computation of meet
S0 X F

7pS0q by computing sequentially the intersection of S0 and the faces of
F7pS0q. Now, we will find the over-approximation of the intersection S0XF

7pS0q

by taking into account all faces of F7pS0q at once. Thus, the intersection will

79

5. Zonotopes and constraint solving

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Figure 5.7 – The over-approximation of the intersection of Z1 and the half-space
in the direction u1

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Figure 5.8 – The over-approximation of the intersection of Z3 and the half-space
in the direction u2

80

5.5. Size

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Figure 5.9 – The zonotopic over-approximation of the intersection Z1 X Z2

be over-approximated by

α

ˆ

2ε1
2ε2

˙

` p1´ αq
ˆ

1.4ˆ pε3 ` ε4q

1.4ˆ pε3 ´ ε4q

˙

.

We then choose α so as to minimize the distance ||A`ui||1 (which can be
solved by linear programming), for ui the normals to the faces of zonotopes
Z1 and Z2 (in dimension 2, those ui are directly given by the generators).
Here, we obtain α equal to 0.5. Thus, the zonotope over-approximating the
intersection is shown in Figure 5.9. This approach only provides an over-
approximation of the intersection. Therefore, when using the Algorithm 5.1,
we will not apply the tightening in Equation (4.2) at each step, but only at
the initial step. We comment on this in the chapter dedicated to experiments.
Future work can include using a tighter intersection operator, for instance
relying on zonotopes tilings.

Remark 5.8. The volume of the zonotopes shown in Figure 5.8 and 5.9 which
over-approximate the intersection S0 X F

7pS0q is 19.2.

5.5 Size

Recall that a key requirement of the Algorithm 4.1 is to provide it with the
size information of an abstract element below which it restrains from splitting
the abstract elements. Thus, the size of a zonotope can be computed in the
following way.

Consider a zonotope given by matrix X P MpnX ` 1,pq. Let u “

u1, ¨ ¨ ¨ ,uk
(

be vectors in Rp such that each face in γpXq has a vector in
u that is normal to it. Similar to boxes (Equation (3.2)), the size of a zonotope
can defined as the maximum width among all variables, i.e.:

81

5. Zonotopes and constraint solving

max

Hui
| i P

1, ¨ ¨ ¨ ,k
((

(5.19)

where Hui
is the region between the two hyperplanes orthogonal to the

lines in the direction ui (shown in Figure 2.11) such that γlinpX`q Ď Hui
. The

width of this region can be computed as 2||X`u||1.

Remark 5.9. The algorithm never discards a zonotope if its size-parameter
εs reaches less than the cut-off value. By that moment, if the algorithm has
not discovered inductive invariant then it terminates with a failure. Later
the algorithm is reapplied with lower cut-off values for εs until it finds the
inductive invariant. So, within the implementation of the algorithm we do not
require to compute the size of a zonotope precisely by Equation (5.19). Rather,
we choose to approximate the size of a zonotope as the size of its bounding
box, which is far easier to compute.

Remark 5.10. The algorithm from Section 4.2 needs to compute some informa-
tion about abstract elements, such as their coverage and whether the abstract
elements are benign or useful.

Recall that the coverage information of an abstract element required com-
puting volume of the abstract elements, which for zonotopes can be fairly
expensive. We adapt the data structure to develop a coverage metric to de-
cide whether to split an abstract element or not, instead of computing their
volumes.

We also demonstrate with the help of examples, why resorting to such
space-partitioning data structure technique constrained to have us design a
splitting method based on tiling a zonotope by parallelotopes.

5.6 Volume of a zonotope.

Recall that the Algorithm 5.1 needs to compute coverage information to
find which abstract element to be treated first. Then it is used to decide
if an abstract element is to be discarded (i.e., it is doomed) or to be split.
The coverage defined in Equation (4.1) or Equation (4.4) requires computing
volume of the abstract elements. Computing volume of a zonotope can be
fairly expensive, and we see below why.

Consider a zonotope ZpVq in p-dimension for any vector configuration
V “ tv1, . . . , vnu. Recall that tiling of the zonotope ZpVq is an arrangement of
tiles or sub-zonotopes (a sub-zonotope is a zonotope generated by a subset
tvi1 , . . . , viku of V) such that intersection of any two such tiles is a face of both
the tiles and the union of all the tiles equals ZpVq. We can have an equivalent
interpretation for tiling with respect to the volume of the zonotope.

Tiling of the zonotope ZpVq is an arrangement of tiles such that intersection
of any two tiles has zero volume and the total volume of the set of zonotopal
tiles is equal to the volume of ZpVq [She74, RGZ94]. Considering a tiling by
parallelotopes, one can compute the volume of the zonotope from the total
sum of the volume of all the parallelotopic tiles. Below we define how the
volume can be computed.

Definition 5.11 (See [RGZ94, GK10] for the proof) The volume of a zonotope
ZpVq defined by a set of n vectors V “ tv1, . . . , vnu in p-dimension is given by

2p ¨
ÿ

| detpvi1 , . . . , vipq | (5.20)

82

5.7. Coverage metric

where the summation is over all p-memebered subsets ti1, . . . , ipu of t1, . . . ,nu
and each p-memebered subset is a p-dimensional parallelotope.

Example 5.12 Consider a set of vectors V “ pp´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq
which defines a zonotope in Figure 2.10. Recall that with our tiling algorithm
we could enumerate all the

`5
2

˘

parallelotopic tiles whose total volume can be
computed as

volpZpVqq “ det
ˆ

´3 5
´4 2

˙

` det
ˆ

´3 2
´4 0

˙

` det
ˆ

´3 1
´4 1

˙

`

det
ˆ

´3 3
´4 5

˙

` det
ˆ

5 2
2 0

˙

` det
ˆ

5 1
2 1

˙

`

det
ˆ

5 3
2 5

˙

` det
ˆ

2 1
0 1

˙

` det
ˆ

2 3
0 5

˙

` det
ˆ

1 3
1 5

˙

Remark 5.13. Computing all the determinants of the sub-matrices of a zono-
tope can be fairly expensive. Also, the coverage calculation is subject to
floating-point round-off error, so it will not be safe to use Equation (4.4) to
compute the coverage and determine whether a zonotope is benign or not.
Therefore, it is critical that we rely on some other measure to compute the
coverage.

5.7 Coverage metric

Note that the implementation of the Algorithm 4.1 presented in Section 4.3
computed volume of the bounding boxes of the abstract elements to calculate
the coverage information. Recall that to compute and maintain the coverage
information efficiently, the algorithm depends on the data structure introduced
in Section 4.3.6 which allows to consider all abstract elements in the volume
computation without scanning G7 entirely after each operation.

Here we will introduce a cheaper coverage metric which does not rely
on any kind of volume computation except the data structure. First, we will
recall quickly about the data structure before introducing the coverage metric.

As discussed in Section 4.3.6 the algorithm is enhanced with a data struc-
ture based on partitioning which allows maintaining efficiently the coverage
information and the state (whether they are benign or useful) of the abstract
elements after any test or operation. For instance when the algorithm dis-
cards an abstract element based on any test or splits, it may not only modify
the coverage of that element, but also of other abstract elements. This data
structure allows maintaining two sets of zonotopes: B7 and G7, throughout
the operation of the algorithm. We know that G7 is the set of zonotopes which
will divide the inductive invariant. B7 is the set of zonotopes split in the
similar manner as G7. The only difference between the two is that unlike G7

where (sub-)zonotopes can be discarded following the outcome of any test,
B7 always covers the whole (tightened) initial invariant space. Therefore, a
zonotope in B7 is matched by at most one zonotope from G7.

A contents-of function cnt : B7 Ñ pG7 Y

H
(

q is maintained indicating
which zonotope of G7, if any, is contained in the partition B7.

A map post : G7 Ñ PpB7q as presented in Equation (4.3) is maintained to
indicate which parts of B7 intersect the image of a zonotope S7k P G

7. The map

83

5. Zonotopes and constraint solving

Sk

♯

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

(a) Set of zonotopes G7 partitioning the inductive
invariant

P
♯

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

(b) Partitions B7

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

(c) Contents-of function

F
♯ (S k

♯

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

(d) The image of the set of zonotopes G7

2

3

4

1

5

F
♯ (S k

♯

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x

y

(e) The map post

Figure 5.10 – An overview of the data structure based on partitioning used
for Algorithm 5.184

5.7. Coverage metric

post is further used to compute coverage and also to decide whether a box is
benign or not.

Example 5.14 Consider the program in Figure 2.6 for which the set of zono-
topes G7 partitioning the inductive invariant is shown in Figure 5.10a. Fig-
ure 5.10b illustrates the set of partitions B7 which covers the whole invariant
space. We superimpose the Figures 5.10a and 5.10b in Figure 5.10c to demon-
strate the notion of contents-of function. Consider the zonotope partition noted
P7 in Figure 5.10b. The contents-of function corresponding to P7 (i.e., cntpP7q)
will return the parallelotope S7k marked in Figure 5.10a. The image of the
zonotopes in Figure 5.10a by a loop iteration is shown in Figure 5.10d. Let’s
superimpose the Figures 5.10b and 5.10d in Figure 5.10e that shows which
parts of B7 intersect the image of a zonotope S7k P G

7. That is the map post.

Thanks to the partitioning data structure that we will not be needing the
coverage measure to decide whether a zonotope is benign. Rather, it can be
a simple test that we will discuss later in this chapter. Still, the algorithm
requires some form of coverage measure to decide which zonotope to further
split. We actually only need some approximation (with bounded ratio) of
the coverage for deciding to split elements. We use here a heuristic measure
instead of computing volume.

We count the number of zonotopes P7 P B7 which intersect F7pS7kq, i.e.,

#tP7 | P7 P postpS7kqu.

Then, among these zonotopes, we count the ones for which cntpP7q ‰ H, i.e.,
we compute

#tP7 | cntpP7q ‰ H,P7 P postpS7kqu.

Our heuristic measure is thus:

coveragepS7kq :“
#tP7 | cntpP7q ‰ H,P7 P postpS7kqu

#tP7 | P7 P postpS7kqu
(5.21)

Example 5.15 Consider the zonotope S7k shown in Figure 5.10a (the parallelo-
tope labeled as S7k), its image under F7 is the zonotope labeled as F7pS7kq in
Figure 5.10d and the partition P7 P B7 containing S7k. The sub-parallelotopes
numbers 1, 2, up to 5 in Figure 5.10e are thus in postpS7kq. All the partitions
(1, 2, up to 5) in B7 contain one zonotope each from G7.

Thus, we compute the coverage of S
7

k by Equation (5.21) and
coveragepS7kq “ 1. Thus, S7k need not be split further.

We extend further the covergae metric to design a test for deciding if a
zonotope is benign or not.

5.7.1 Test for benign.

In the above example, although coveragepS7kq “ 1, we cannot insist that
S
7

k is benign because the coverage metric does not guarantee if the image
of S7k under F7 is entailed inside the candidate invariant. For instance the
image F7pS7kq may intersect with partitions whose contents-of function (cnt)

85

5. Zonotopes and constraint solving

is not empty but a part of the image can be outside the candidate invariant.
Therefore, additionally we check if F7pS7kq is included in the initial target
invariant T 7. Thus, formally we can write,

S
7

kis benign ðñ @P7 P postpS7kq : cntpP7q ‰ H^ F7pS
7

kq Ď T
7 (5.22)

Remark 5.16. In practice, in Equation (5.22) we first verify, if @P7 P postpS7kq :
cntpP7q ‰ H satisfies because it is computationally less expensive (due to the
partitioning data structure) compared to the inclusion test, F7pS7kq Ď T

7.

5.8 Splitting

5.8.1 Splitting with overlap

A key requirement for the Algorithm 5.1 is the ability to split a zonotope
into smaller zonotopes. For this, it is useful to view a zonotope as the
affine projection of an n-dimensional unit cube (n being the number of
noise symbols) onto a p-dimensional space (p being the number of program
variable), and perform the split operation on the unit cube to define a splitting
operation on the resulting zonotope. Thus, a zonotope Z “ pc,g1, ¨ ¨ ¨ ,gnq can
be bisected into two sub-zonotopes Z1 and Z2 by splitting the jth generator of
Z such that Z1 Y Z2 “ Z. The two sub-zonotopes can be determined as:

Z1 “ pc´
1
2
gj,g1, ¨ ¨ ¨ ,gj´1,

1
2
gj,gj`1, ¨ ¨ ¨ ,gnq (5.23)

and

Z2 “ pc`
1
2
gj,g1, ¨ ¨ ¨ ,gj´1,

1
2
gj,gj`1, ¨ ¨ ¨ ,gnq (5.24)

where the index j is denoted to be:

j “

i | maxp}gi}1q, i “ 1, ¨ ¨ ¨ ,n
(

(5.25)

Example 5.17 Consider the following affine forms:

x̂ “ 20´ 3ε1 ` 5ε2 ` 2ε3 ` 1ε4 ` 3ε5 (5.26)

ŷ “ 10´ 4ε1 ` 2ε2 ` 1ε4 ` 5ε5 (5.27)

as earlier whose concretization is a zonotope in Figure 2.10. Taking this
zonotope as an example, the above-discussed bisection method returns two
sub-zonotopes, which are shown in Figure 5.11 and their affine forms are

x̂ “ 18.5´ 3ε1 ` 5ε2 ` 2ε3 ` 1ε4 ` 1.5ε5 (5.28)

ŷ “ 7.5´ 4ε1 ` 2ε2 ` 1ε4 ` 2.5ε5 (5.29)

and

x̂ “ 21.5´ 3ε1 ` 5ε2 ` 2ε3 ` 1ε4 ` 1.5ε5 (5.30)

ŷ “ 12.5´ 4ε1 ` 2ε2 ` 1ε4 ` 2.5ε5 (5.31)

respectively.

86

5.8. Splitting

Figure 5.11 – Sub-zonotopes obtained after splitting

Splitting with overlap is simple, close to that on boxes (as we split the box
which the zonotope is a projection of). It also helps in keeping the same kind
of shape and the direction of the faces fixed. However, we had to resort to
a different splitting technique (we will see later) because of the choices we
made about the data structure of the search algorithm. These choices were
meant for an efficient implementation of the algorithm. The data structure
relied on the fact that the zonotopes must not overlap. Maintaining a similar
data strcture for the resulting algorithm with the overlapping zonotopes was
not feasible. We will provide more details about this in the following.

In order to give a short intuition on the resulting algorithm while splitting
a zonotope along one of its line segments as in Equation (5.23) and (5.24), we
provide below an example.

Example 5.18 We developed a prototype of the Algorithm 5.1 in MATLAB
using the CORA Toolbox [Alt15]. As data structures, we used a simple binary
search tree. Note that for this prototype, the zonotopes were bisected along the
line segment generator with maximum length, and hence always producing
two sub-zonotopes. We used the coverage information to split, discard and
also to decide whether a zonotope is benign. So, for computing volpF7pS7kqq
and eventually the coverage by Equation (4.1) we used the exact volume
calculation of zonotopes provided in Equation (5.20). For computing the
volume: volpF7pS7kq X pY

i
S
7

iqq, first we computed the intersection: F7pS7kq X S
7

i.

Since we had to compute an exact coverage measure, we calculated the
intersection by set representations based on collection of sets or zonotope
bundles [AK11]. After constructing the zonotope bundle, the volume is
computed by converting it to a polytope and using a volume computation of
polytopes.

Consider the example in Figure 2.6 for which we will use the Algorithm 5.1
with the above setting for finding inductive invariant. The zonotope in red
shown in Figure 5.12 is the target invariant about to be strengthened into
an inductive invariant. Its image under F7 is the zonotope in black. Recall
that the splitting approach based on bisecting the jth noise symbol produces
overlapping zonotopes. Thus, splitting the zonotope in red produces two
sub-zonotopes, one in blue and the other in green. Lets compute the coverage
information of the sub-zonotope in blue. Recall that for computing coverage

87

5. Zonotopes and constraint solving

y

x

Figure 5.12 – Computing the coverage measure in case of overlapping zono-
topes

we must find how much the image (the zonotope in cyan color) of the zonotope
in blue lies in the candidate invariant. While doing so, the volume of the
region of overlap between the image (the zonotope in cyan) and the polytope
representing the overlay between the split zonotopes (blue and green) must
be removed. This region of overlap is the gray color area shown in Figure 5.12.
To do so, first a zonotope bundle is constructed for the overlap between the
two split zonotopes and then form another zonotope bundle accounting for
the overlap between the image and the old zonotope bundle. The volume of
this new zonotope bundle is subtracted from the total volume.

This is just a simple case study with two split zonotopes, but as the
algorithm iterates further this overlap increases and leads to inefficiency. For
instance, we ran the algorithm for 14354.702 secs producing 12 zonotopes
in G7 shown in Figure 5.13 and yet could not find the inductive invariant.
On the contrary, if the same algorithm is run but this time with the target
invariant abstracted using zonotope abstract domain as a box:

`

2ε1 2ε2
˘T,

we managed to infer an inductive invariant in 45.274 secs with the zonotopes
shown in Figure 5.14-5.15. Although we used the same splitting strategy,
since the target invariant was a box this time, the splitting did not produce
any overlap. Accordingly, we did a time profiling for the algorithm while it
produced overlapping zonotopes and it turns out that from 14354.702 secs
the algorithm spent 14204.930 secs on calculating:

ř

i

volpF7pS7kq X pY
i
S
7

iqq for

coverage measure. Thus, a simple data structure like a binary search tree is
not sufficient for an efficient implementation of the algorithm and maintain
overlapping zonotopes.

5.8.2 Effect of partitioning on splitting

The whole notion of partitioning is based on the fact that we maintain a set
of zonotopes (partitions) B7 that, similarly to G7, do not overlap. Thanks to
tiling a zonotope by parallelotopes that we could maintain this data structure.

88

5.8. Splitting

y

x

Figure 5.13 – Split zonotopes for example 1 illustrating the issue with conven-
tional coverage measure

y

x

Figure 5.14 – Inductive invariant for the program in Figure 2.6 with the target
invariant being the box r´2, 2s abstracted using zonotopes

89

5. Zonotopes and constraint solving

y

x

Figure 5.15 – In red, the image of the zonotopes in Figure 5.14 by a loop
iteration in the zonotope abstract domain and superposition of both showing
that Figure 5.14 is inductive

Splitting a zonotope by overlap and maintaining the partitioning is possible
but complicated. We exemplify this below.

Example 5.19 Consider the Figure 5.16a that illustrates a collection of zono-
topes that are being split by overlap. The partitions of these zonotopes are
shown in Figure 5.16b that are split in the same way as the set in Figure 5.16a,
but never discarded even though its contents-of function (cnt) is discarded as
a result of any test.

Consider the zonotope in Figure 5.16a with the edgeform color in blue.
We will denote this zonotope as S7k. Its image by F7 is the zonotope with a
dashed edgeform in red color, shown among the partitions in Figure 5.16b.
Now, checking if S7k is benign by the test in Equation (5.22) will return “no”
because among the partitions P7 P postpS7kq, there is one partition (the one
with edgeform color in green) whose contents-of function is equal to zero.
However, S7k here is actually benign because its image F7pS7kq is covered by the
set of zonotopes shown in Figure 5.16a.

Remark 5.20. From the above experiments (Examples 5.18 and 5.19, we can
infer that fitting the splitting via overlap approach within the framework of
Algorithm 5.1 is feasible, but would require some careful re-design of the
overall algorithm, with more complex data-structures. It is realizable but
what is gained by a simpler splitting algorithm is lost by a more complicated
fixed-point solving algorithm.

Remark 5.21. Another, natural way to split zonotopes, without overlapping

90

5.8. Splitting

(a) Set of zonotopes, that are being split by overlap (b) Partitions P7 for the set of zonotopes shown in
Figure 5.16a

Figure 5.16 – Partitioning and its effect on splitting by overlap

this time, is to use the property that zonotopes can be tiled, using generally
more than 2 sub-zonotopes. These tiles are more precisely parallelotopes, as
we describe below.

5.8.3 Splitting zonotopes by tiling

Zonotopes are Minkowski sums of segments, and tiling of a zonotope Z are
polytopal subdivisions of Z into smaller zonotopes. These smaller zonotopes
can be obtained by the solution of a tiling problem, that we define below.

Definition 5.22 (Tiling problem.) A tiling problem is defined by a finite set
of tiles T , called the prototiles, and a polygon P. A solution to this problem is
a tiling: an arrangement of translated copies of prototiles which covers exactly
P with no gap and no overlap.

The study of these problems is an important topic in mathematics which
had its inception from more recreational point of view and now it has con-
nections with combinatorics, topology. We are concerned here with tilings of
p-dimensional zonotopes with p-dimensional or p-parallelotopic tiles. Triv-
ially, a zonotope decomposes into zonotopes and hence into parallelotopes
(by a theorem of Shephard and McMullen [She74, McM76]). In the literature
associated with tiling, it is said, if a zonotopal tiling is only composed of
parallelotopes then the tiling is tight.

Concepts and Definitions Consider a zonotope ZpVq on a set of gener-
ators V “ pv1, ¨ ¨ ¨ , vnq P Rp.n. A zonotopal tiling of ZpVq is a set of tiles

Z1,Z2, ¨ ¨ ¨ ,ZM
(

constructed from the vectors in V such that
M
Y
i“1
Zi “ ZpVq.

91

5. Zonotopes and constraint solving

Provided with a sign vector σ P

`,´, 0
(n we can define a zonotope:

Zσ :“
ÿ

iPσ0

r´vi,`vis `
ÿ

iPσ`

vi ´
ÿ

iPσ´

vi (5.32)

with the vector vi associating the line segment r´vi,`vis, where Zp0,0,¨¨¨ ,0q
is the largest zonotope obtainable, i.e., ZpVq and for all other sign vectors
we obtain zonotopes which are contained in ZpVq. The zero entries of σ
characterize the shape of Zσ and the non-zero entries describe how Zσ will
be translated with respect to the origin. Thus, given a set of vectors V P Rp.n,
which generates Z :“ ZpVq, we can associate a zonotopal tiling Zσ Ď ZpVq with
every sign vector σ P

`,´, 0
(rns. One such special kind of tiling is known

as a parallelotope tiling, i.e., a tiling formed from all linearly independent
subsets of tv1, v2, ¨ ¨ ¨ , vnu. Thus, a zonotope can be decomposed into

`

n
p

˘

parallelotopes whose total volume equals the volume of Z (see the work of
Shephard [She74] and Richter-Gebert et al. [RGZ94] for the proof on volume).
This set of parallelotopic tiles is unique, i.e., for every set of zones3 of the
zonotope we obtain an exactly one full-dimensional tile.

A sub-zonotope is obtained by removing any one of the generators of a
zonotope. This operation can be defined as follows.

Definition 5.23 Let

`,´, 0
(n be a collection of sign vectors. A (single-

element) fixing defines a sub-zonotope

ZpVzjt`,´uq :“
ÿ

iP

0
(pn´1q

r´vi,`vis `
ÿ

iP

`,´
(

vi ´
ÿ

iP

`,´
(

vi (5.33)

where j P 1, ¨ ¨ ¨ ,n.

Definition 5.24 Let

`,´, 0
(pn´1q be a collection of sign vectors with an

element already fixed. A (single-element) freeing defines a zonotope

ZpV̂{jt`,´uq :“
ÿ

iP

0
(n

r´vi,`vis (5.34)

where j P 1, ¨ ¨ ¨ ,n.

Notation and Terminology. We shall be using certain notations and
nomenclatures throughout the tiling section. The original zonotope to be split
into parallelotopic tiles is denoted by ZpVq and we will use the term primitive
zonotope to describe it. Any zonotope (which is not a p-parallelotope) con-
structed after fixing a sign of one of the generators is denoted by ZpVzjt`,´uq

where j P 1, ¨ ¨ ¨ ,n and phrased as sub-zonotope. We may use different ter-
minologies to describe a p-parallelotope: p-dimensional parallelotopic tile or
p-parallelotopic tile or parallelotopic tile or simply tile.

Example 5.25 Consider the zonotope in Figure 5.17a with its center and its
collection of generators as c “ p20, 10q, V “ pp´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq.
If we fix the sign of the first generator to ‘-’ we obtain a sub-zonotope. We
shall denote it by ZpVz1´q according to Definition 5.23. This sub-zonotope is

3A zonotope Z with n zones in Rp is the Minkowski sum of n line segments.

92

5.8. Splitting

15 20 25 30

x

5

10

15

20

y

(a) 2-dimensional zonotope with five generators

15 20 25 30

x

5

10

15

20

y

(b) Sub-zonotope obtained fixing the first generator
to ‘-’

15 20 25 30

x

5

10

15

20

y

(c) Sub-zonotope obtained fixing the first generator
to ‘+’

Figure 5.17 – Figures illustrating the ideas of fixing and freeing the signs of
generators

shown in Figure 5.17b whose extremal points are marked in red. Its center
can be determined as
`

20, 10
˘

`p´1q
`

´3, ´4
˘

`0
`

5, 2
˘

`0
`

2, 0
˘

`0
`

1, 1
˘

`0
`

3, 5
˘

where
`

20, 10
˘

is the center of the primitive zonotope ZpVq. In the similar
manner, if you fix the first generator to ‘+’ we obtain a sub-zonotope (ZpVz1`

shown in Figure 5.17c) different from the one in Figure 5.17b. The center of
this new sub-zonotope can be determined as
`

20, 10
˘

`p`1q
`

´3, ´4
˘

`0
`

5, 2
˘

`0
`

2, 0
˘

`0
`

1, 1
˘

`0
`

3, 5
˘

.

93

5. Zonotopes and constraint solving

Remark 5.26. By definition 5.23 and 5.24, we know that a sub-zonotope
is obtained by fixing the sign of any one of the generators of a zonotope.
Thus, a parallelotopic tile is also a zonotope with p linearly independent
generators free and n´p generators fixed. The zero entries of the sign vectors
corresponding to the p generators characterize the shape of the tile and the
non-zero entries of the sign vectors corresponding to the n ´ p generators
describe how the tile will be translated with respect to the center of the
primitive zonotope. Using (5.32) a parallelotopic tile can be defined as:

Zσ :“
ÿ

iP

0
(p

r´vi,`vis `
ÿ

iP

`,´
(pn´pq

vi ´
ÿ

iP

`,´
(pn´pq

vi (5.35)

A survey on zonotopal tilings About tilings, mainly two different
“schools” exist in the zonotopal tiling community. One of these schools
focussed on enumerating the set of tilings possible for a given zonotope where
two tilings are connected if one can reach from one tiling to the other by a
local transformation. We will call this school, the “de Bruijn grids school”. A
parallel study has been done by the other school, “hyperplane arrangement-
matroid theory”, which claims that tilings of zonotopes can also be interpreted
as extensions of matroids, i.e., collection of sign vectors.

De Bruijn grids school. Recall that tiling of a zonotope means a set of tiles
(translated copies of prototiles) which covers the zonotope exactly with no
gap and overlap. Whereas set of tilings means all different ways of tiling the
same zonotope with a given set of prototiles. One can reach from one tiling to
the other by endowing a local rearrangement of tiles.

This school offers to enumerate all the p-dimensional tiles of a zonotope
by deriving the relationship between a tiling and de Bruijn surfaces. De Bruijn
grids are pp´ 1q-dimensional surfaces which join together the middles of the
two opposite sides of each tile [dB81, DB86]. De Bruijn proved that these grids
are dual representations of the rhombus tilings4 of a zonotope.

De Bruijn surfaces and its connection with tiles. The set of tiles traversed
by a de Bruijn surface are always adjacent. In p “ 2, de Bruijn surfaces are
lines which join together the opposite edges of the rhombic tiles. Each tile is
crossed by exactly p de Bruijn surfaces, i.e., 2 de Bruijn lines in dimension 2 or
3 de Bruijn surfaces in dimension 3. All the adjacent tiles that are joined by a
de Bruijn line, share an edge of the same orientation. Likewise, in dimension
3, there is a de Bruijn surface that joins the adjacent tiles sharing a face of the
same orientation. Thus, we can define a de Bruijn family of tiles characterized
by a vector among the ones which generate the tiled zonotope and this family
contains all the tiles which have this vector as an edge. The de Bruijn surfaces
of the same family never intersect. Below, we see these characteristics of de
Bruijn lines with the help of an example.

Example 5.27 An example of de Bruijn lines and a zonotopal tiling is shown
in Figure 5.18. There are four de Bruijn lines (a,b,c,d) corresponding to four
de Bruijn family of tiles where each family contain the set of adjacent tiles that

4Rhombic tiling of a zonotope defined by n vectors in p-dimension is a set of rhombus tiles
obtained as the Minkowski sum of p vectors among the ones which generate the zonotope we
want to tile. They are also known as parallelotopic tiles.

94

5.8. Splitting

V1

V2 V3

V4

b

d

c

a

Figure 5.18 – De Bruijn lines of a two-dimensional tiling.

share the same vector as an edge orientation. The de Bruijn lines join together
the middle of the edges of the rhombic or parallelotopic tiles. Notice that, the
intersection of a set of 2 de Bruijn lines that are pairwise not parallel is a tile.

From de Bruijn lines to enumerating tiles Consider a zonotope defined
by the Minkowski sum of n vectors in p-dimension. We will denote by nÑ p
a rhombic tiling of this zonotope. Provided with such a nÑ p tiling which
is composed of set of distinguished tiles, if one deletes a de Bruijn family of
tiles sharing the same vector as an edge orientation then it gives a n´ 1 Ñ p
tiling. Correpondingly, one can construct n` 1 Ñ p tiling from a nÑ p tiling
for any n [DMB97, Lat00, DD05].

Destainville et al. in [DMB97] and Latapy in [Lat00] defined a dual graph
for a tiling whose set of vertices is the set of intersection points of de Bruijn
lines, and there is an edge pi, jq if and only if i and j belong to the adjacent
tiles. From the dual graph of a n Ñ p tiling, the authors define a partition
problem, the solutions of which are equivalent to the nÑ p tiling. They claim
that the tiling associated to a partition is a bijection from the set of partitions
solutions to the problems for all dual graph of a n Ñ p tiling to the set of
n` 1 Ñ p tilings.

Example 5.28 Figure 5.19 shows an example of 4 Ñ 2 tiling. One possible
vector v4 is indicated in the figure. All the shaded tiles in Figure 5.19a share
this vector and belong to the same de Bruijn family. Notice that if we delete the
shaded tiles in the 4 Ñ 2 tiling then we obtain a 3 Ñ 2 tiling in Figure 5.19b.
One can refer to Figure 3 in [DMB97], Figures 5 and 7 in [Lat00] and Figures

95

5. Zonotopes and constraint solving

v4

(a) 4 Ñ 2 tiling (b) 3 Ñ 2 tiling

Figure 5.19 – Examples of tilings

2 and 3 in [DD05] for more such examples.

De Bruijn lines and flip transformation. This duality between the de
Bruijn grids and tiling was useful in constructing all the p-dimensional tilings
of a zonotope (i.e., all the different ways one can tile a given zonotope using
the same tiles but locally rearranged).

Consider a zonotope with two tilings T and T 1 which have the same
set of tiles but locally rearranged. T 1 can be obtained from T through a
transformation called flip, if and only if it involves at least one tile of the de
bruijn family of tiles. Also known as phason-flip or phason, in dimension p,
a flip is an operation which rearranges p ` 1 tiles in a zonotope inside the
tiling, e.g., in dimension 2, it is a rearrangement of three rhombus tiles inside
a hexagon. The name flip comes from the tranformations which occur in the
field of quasicrystals5 [SBGC84, LCCG96].

One can enumerate all the tilings of a zonotope from a given one by
iterating the following rule, i.e., a dynamics can be defined over the tiling T ,
T Ñ T 1 such that the tiling T 1 can be obtained from T by a flip. However, is it
true for all dimensions? This is known as the famous generalized Baues problem
[Rei99], i.e., are all the cubical tilings of a zonotope and their cube-flips connected?
It is a challenging question involving issues like Markov chain ergodicity.
The fact that all the tilings are flip-connected was proved for 2-dimension by
Kenyon [Ken93], Elnitsky [Eln97], Latapy (see Figure 5 in [Lat00]) , Chavanon
(see Figure 10 in [CR06]) and in 3-dimension by Desoutter (see Figure 3 in
[DD05]). The flip-connectivity problem is still an open problem in higher
dimensions.

5The study of tilings evolved a special interest with the uncovering of quasicrystals because
tiling could extract some significant property like non-periodicity by analyzing the manner in
which the neighboring tiles match

96

5.8. Splitting

Hyperplane arrangement-matroid theory school. Recall that a zonotope can de-
fined in various ways: for instance, Minkowski sum of lines segments, linear
projection of a cube, a convex polytope with centrally symmetric faces in all di-
mension. However, there exists an another characterization which a zonotope
is a polar dual of hyperplane arrangement [McM71, She74, Sta98, S`04, Bai97].

The second school has been indispensable towards the tiling problem
of zonotopes. By using the dual relationship between a zonotope and its
corresponding hyperplane arrangement it proved that given a set of tiles which
defines a tiling of a zonotope, each of the tiles can be uniquely represented by
a collection of sign vectors or matroid6 [HR11, Arb16, Zie12, Fel12, ZRG17].
In order to continue with the relationship between tiling and sign vectors, we
need to recall the classical notions of hyperplane arrangement.

An arrangement of hyperplane is a collection A :“

h1, . . . ,hn
(

of finitely
many hyperplanes in Rp, where each hi is of the form hi “

x P Rp | vT
ix “ 0

(

for some vi P Rp. This kind of representation of hyperplanes is called the
central hyperplane arrangement (i.e., all the hyperplanes are passing through
the origin). The hyperplane arrangement A decomposes Rp into a fan like
structure where the cones of the fan are referred to as cells of the hyperplane
arrangement. One can extract information about the configuration of the
vectors

v1, . . . , vn
(

from the combinatorics of the cones.
Characterizing tiles by sign vectors. Dually, provided with a vector con-

figuration V “

v1, . . . , vn
(

which defines a zonotope ZpVq by their Minkowski
sum, one can define the associated central arrangement A “ ApVq of n hyper-
planes in Rp, each having vi as its normal vector : ApVq “

hi | i “ 1, 2, ¨ ¨ ¨ ,n
(

where hi “

x P Rp | vT
ix “ 0

(

for i “ 1, 2, ¨ ¨ ¨ ,n. For each of these hyper-
planes hi, there is a positive halfspace given by h`i “

x | vT
ix ą 0

(

and the
negative one h´i “

x | vT
ix ă 0

(

. The position of x with respect to the set

hi,h`i ,h´i
(

is determined by the sign of vT
ix. Indeed, if signpvT

ixq “ 0, then x
lies in hi; if the sign is `, then x lies inward of h`i ; and if it is ´, then x lies
inward of h´i . Thus, for specific cells of the hyperplane arrangement there
are specific sign vectors. This means that the combinatorial structure of a
zonotope can be defined by a collection of sign vectors otherwise known as
matroid. In fact, there is a natural bijection between the sign vectors of the
vertices of the zonotope ZpVq and the cells of the hyperplane arrangement
ApVq. This bijection could be further used to solve tiling problem by the
notion that tilings of zonotopes can be interpreted as extensions of matroids,
which is well-known as Bohne-Dress Theorem [Boh92, RGZ94].

We show an example below illustrating that given a tiling of a zonotope,
how all the tiles can be characterized by their associated sign vectors uniquely.

Example 5.29 Figure 5.20 gives an example of a set of vectors V “

v1, . . . , v3
(

(V “ pp0.8, 0q, p0, 0.8q, p0.816, 0.816q, p´0.816, 0.816qq) and its associated hyper-
plane arrangement A :“

h1, . . . ,h4
(

in R2. In red, are illustrated the sign of
vT
ix, where the position of x is given by the sign vector: signpxVq P

`,´, 0
(2,

whose first coordinate traces the corresponding position in regard to h1, the
second coordinate associates to h2, and so forth. For instance, the sign vectors

6Given a vector configuration V P Rp.n, which generates Z :“ ZpVq a polytope in Rp then
the matroid is a collection of sign vectors

97

5. Zonotopes and constraint solving

(0,0,0,0)

(+,+,+,0)

(+,0,+,-)

(+,- ,0,-)

(0,- ,- ,-)

(- ,- ,- ,0)

(- ,0,- ,+)

(- ,+,0,+)

(0,+,+,+)

(+,+,+,+)(- ,+,+,+)

(- ,+,- ,+)

(- ,- ,- ,+)

(- ,- ,- ,-) (+,- ,- ,-)

(+,- ,+,-)

(+,+,+,-)

v1h1

h2

v2

h3 v3
h4

v4

Figure 5.20 – A hyperplane arrangment in R2 with four lines.

p`,`,`,´q marked in Figure 5.20 refers to a point which lies interior of
h`1 ,h`2 ,h`3 but belongs to the negative half-space of h4.

Example 5.30 Consider the Minkowski sum of the above set of vectors which
is a convex polytope, a zonotope polar to the hyperplane arrangement A, as
shown in Figure 5.21. Notice that the vertices of this zonotope are in bijection
with the cells of the hyperplane arrangement, i.e., they have the same sign
vectors.

Figure 5.22 illustrates a tiling of the zonotope composing of four tiles. Each
of these tiles are formed from the subset of the vectors

v1, . . . , v3
(

and trans-
lated based on the dual representation of hyperplane arrangement. Observe,
the parallelotopic or rhombic tile marked with the sign vector p0,`, 0,`q. It
points to the position of this zonotopic tile formed by the vectors v1, v3, and
hence ‘0’ on their respective coordinates. It has a ‘+’ sign on second and fourth
coordinates because the tile is located on the positive half-space with respect
to h2,h4 hyperplanes.

Later in this chapter, we will be using the duality principle (between
zonotopic tiles and matroids) for developing our tiling algorithm.

Is zonotopal tiling a vertex enumeration problem? Vertex enumeration
is a well-known problem in polyhedras while switching from H (hyperplane)-

98

5.8. Splitting

(0,0,0,0)

(+,+,+,0)

(+,0,+,+)

(-,-,0,-)

(0,-,-,-)

(-,-,-,0)

(-,0,-,-)

(+,+,0,+)

(0,+,+,+)

(+,+,+,+)(-,+,+,+)

(-,+,-,+)

(-,-,-,+)

(-,-,-,-) (+,-,-,-)

(+,-,+,-)

(+,+,+,-)

v1
h1

h2

v2

h3 v3
h4

v4

(-,+,0,+)

(+,0,+,-)(-,0,-,+)

(+,-,0,-)

Figure 5.21 – Polar dual of the hyperplane arrangement in Figure 5.20, i.e., a
zonotope.

representation to V (vertex)-representation [AF92],[Zie12]. Now, we shall see
this connection with respect to a zonotopal tiling.

Recall that a zonotope defining p variables over n noise symbols is a
projection of the n-dimensional hypercube by an affine map in a p-dimensional
space. The vertices of a zonotope are a projection of a subset of the corners of
the hypercube—i.e., n-vectors with elements in t´1, 1u—projected with the
generator matrix. Some of the 2n vertices are extremal points of the zonotope
(the red ones of Figure 5.23). In other words, a subset of projected vertices
that define the zonotope. However, there are some projected vertices of the
hypercube which do not map to the vertices of the zonotope. In total, there
are 2n corners of the n-dimensional hypercube which can be projected with
the generator matrix.

Example 5.31 Consider the zonotope shown in Figure 2.10 which is a projec-
tion of 5-dimensional hypercube by an affine map in a 2-dimensional space.
Figure 5.23 illustrates all the 25 vertices (black circles) of the 5-dimensional
hypercube projected with the generator matrix. The red markers describe the
subset of projected vertices that define this zonotope.

Remark 5.32. Thus, one can say that the solution to tiling problem is finding
sufficiently many of these not existant vertices that are not part of the extremal
points of the zonotope to be tiled. In other words, the non-extremal projections

99

5. Zonotopes and constraint solving

(0,+,0,+)

(0,0,-,+)

(0,-,-,0)

(+,0,0,0)

h3 v3

h1

v1
v4

h4

v2

h2

Figure 5.22 – A tiling of the zonotope in Figure 5.21 and the sign vectors of
the corresponding tiles.

Figure 5.23 – 25 vertices of the 5-dimensional hypercube projected with the
generator matrix.

100

5.8. Splitting

become the extremal points of the parallelotopes in the tiling. Thus, tiling
indeed is a vertex enumeration problem.

Our tiling algorithm We develop below an algorithm for tiling, illustrated
in Algorithm 5.2 which instead of enumerating all the vertices, enumerate
only the vertices characterizing the sub-zonotopes tiling a given zonotope. We
use ideas issued from matroid theory established by Bohne-Dress theorem
[RGZ94], i.e., there is a close connection between a zonotope and the signs of
its vectors since they abstract combinatorial facts about the structure of the
zonotope. Thus, the key objective of the algorithm is to enumerate the vertices
of the tiles as sign vectors of the so-called hyperplane arrangement [FFL05]
corresponding to a zonotope, that we are going to define now.

Hyperplane arrangements and zonotopes. A finite family A “

hj : j “ 1, ¨ ¨ ¨ ,m
(

of hyperplanes in Rp is called an arrangement of hyperplanes. Any hy-
perplane partitions the space Rp into three sets: h`j “

x | vT
j x ą bj

(

,
h0
j “

x | vT
j x “ bj

(

and h´j “

x | vT
j x ă bj

(

. For each point x in Rp, there is

a sign vector σpxq P

`,´, 0
(rns giving its relative location with respect to the

hyperplane arrangement, defined as follows:

σpxqj “

$

’

&

’

%

`, if x P h`j
´, if x P h´j
0, if x P h0

j

(5.36)

The set of points with a given sign vector is an open polyhedron, whose
faces of every dimension (including full dimensional p-dimensional cells
partitioning the polyhedron) are determined by the intersection of some sets
of the form h0

j , h
´
j and h`j , hence are in one-to-one correspondence with sign

vectors. Such a set is a cell if the corresponding sign vectors do not have zero
entries.

For a zonotope Z “ ZpVq generated by the columns of V , we define the
associated central arrangement A “ ApVq of n hyperplanes in Rp, each
having vj as its normal vector : ApVq “

h0
j | j “ 1, 2, ¨ ¨ ¨ ,n

(

where
h0
j “

x P Rp | vT
j x “ 0

(

for j “ 1, 2, ¨ ¨ ¨ ,n. There is a duality relation
between a zonotope and its corresponding hyperplane arrangement. Every
d-dimensional open polyhedron in A determined by its sign vectors corre-
sponds to a p´ d-dimensional region of a zonotope where d ď p for e.g., a
full-dimensional open polyhedron corresponds to the vertices of the zonotope.

We denote by Σ “ ΣpVq a set of sign vectors of cells of the arrangement
where each vector correponds to a cell. For example, Figure 5.24 illustrates
an arrangement of 5 hyperplanes in R2. Each cell is represented by a sign
vector of dimension 5. Furthermore, two extreme points in Z are adjacent in
Z if and only if the associated cells are adjacent, (i.e. sharing a (p´ 1) face).
This notion can be extended to the fact that two tiles are adjacent if they share
a whole facet7 which we will observe later. We assume certain regularities
in the structure of the matrix V . Under those regularity assumptions, two
cells are adjacent if and only if their sign vectors are different in exactly one
component.

7A facet of a polytope of dimension p is a face which has dimension p´ 1.

101

5. Zonotopes and constraint solving

Assumption. There are no zero vectors in V and no two vectors are
linearly dependent. If two vectors are parallel, one can add both the vectors
without changing the combinatorial structure of the hyperplane arrangement.
Provided that two vectors are multiples of each other, then they determine
the same hyperplane in the arrangement which means one of them can be
removed for sake of simplicity. Then this simplified hyperplane arrangement
can be used to obtain the original sign vectors.

Enumerating sign vectors. Recall that finding the tiles for a zonotope is equiv-
alent to enumerating the vertices of the tilings as sign vectors of the so-called
hyperplane arrangement corresponding to a zonotope. Computing the sign
vectors is thus a cell enumeration problem. There are several algorithms for
the cell enumeration for a general arrangement. One of the widely used
algorithm is reverse search. It is a framework for solving various enumeration
problems on graphs. We use here a reverse search algorithm [FFL05] that
has a time complexity of Opn p LPpn,pq |Σ|q to compute Σ “ ΣpVq for any
given rational p ˆ n matrix V , where LPpn,pq is the time to solve a linear
programming problem with n inequalities in p variables.

Reverse search algorithm. Let c‹ be any cell in Σ. Finding one cell is
relatively simple: for example by selecting an arbitrary point in Rp. Without
loss of generality, we may assume c‹ is the vector p´,`,`,`,`q. Consider
a cell c‹ with the sign configuration p´,`,`,`,`q from the hyperplane
arrangement shown in Figure 5.25. One may also assume c‹ is the vector of
all `’s or ´’s based on which we might have to replace some columns by
their negatives or positives and it does not affect the arrangement. Now, we
will use the reverse search algorithm to trace all the members of Σ by trying
to reach the goal cell c‹ from another cell c such that c P Σzc‹. The principal
idea is to use ray shooting. For this, we need two points, one interior point p‹

of the goal cell c‹ and one interior point p of a cell c. Then, shoot a ray from
p to p‹. It will hit all hyperplanes separating c and c‹. Let the interior point p
belongs to the cell with the sign configuration p`,´,`,´,´q. We select the
first hyperplane hit by the ray. In here it is the second hyperplane, and we flip
the sign of the second generator modifying the sign vector to p`,`,`,´,´q.
In the similar manner the ray hits the fourth and first hyperplane consecutively
before reaching p‹ and we modify the signs accordingly. Note that while
tracing the ray from p to p‹ we have enumerated the three extremal points
with the following sign vectors p`,`,`,´,´q, p`,`,`,`,´q, p´,`,`,`,´q.
Notice that in order to find an interior of a cell, we use linear programming
because we ensure that the interior point is defined uniquely. Thus, in the
above manner we list all the cells in a hyperplane arrangement in Rp and
their sign vectors.

Notions whose sequel is the tiling algorithm. As already observed in Figure 5.17,
a sub-zonotope can be enumerated from a given zonotope by fixing the sign of
one of its generators and if we keep repeating the procedure then eventually
we obtain a p-parallelotope. We believe that during the process of enumerating
the first parallelotopic tile, we have enumerated sufficiently many non-existent
vertices to obtain all the remaining tiles. This can be proved by mathematical

102

5.8. Splitting

Figure 5.24 – Arrangement of hyperplanes.

Figure 5.25 – Ray shooting and sign enumeration.

103

5. Zonotopes and constraint solving

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

(a) Sign vectors of the extremal points of Z

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++----+-

(b) Sign vectors of the extremal points of all the
parallelotopic tiles covering Z

Figure 5.26 – The primitive zonotope and its tiling

induction, i.e., if every sub-problem of tiling is denoted by Pk then

p@P, rP1 _ p@k ě 1qPk =ñ Pk`1qs =ñ r@pk ě 1qPks.

Lemma 5.33 Let ZpVq be a zonotope formed on a set of generators V “ pv1, ¨ ¨ ¨ , vnq
P Rp.n where p is the dimension and n ě p. Incrementally fixing the sign of the
generators until we enumerate the first p-parallelotopic tile is equivalent to the fact
that we have enumerated sufficient number of hidden vertices (with respect to the
original zonotope) corresponding to the extremal points of each sub-zonotope to
construct the remaining parallelotopic tiles.

Proof. Base case, n “ p` 1:
It is trivial that for a zonotope with the number of generators equal

to n “ p ` 1, fixing the sign of one of its generators would produce a p-
parallelotope.

Consider a zonotope in R2 shown in Figure 5.27a. Fixing the sign of one of
its generators would immediately enumerate a parallelotope (extremal points
marked in red in Figure 5.27b) with the two remaining parallelotopic tiles
linked by an edge being enumerated implicitly.

Now, consider a zonotope in R3 illustrated in Figure 5.28a. As earlier,
once you obtain a 3-parallelotope (shown in Figure 5.28b with extremal points
noted in red), we have sufficient number of vertices to enumerate rest of the 3-
parallelotopic tiles (all of it are illustrated one-by-one from Figure 5.28c-5.28e).

Hence, for n “ p` 1 case, it is true that once we obtain a parallelotopic
tile, we have enumerated sufficiently many non-existent vertices to obtain all
the remaining parallelotopic tiles.

Inductive step, for all integers k ě 1:
Hypothesis: true for n “ p` k
To prove: true for n “ p` k` 1
The problem of tiling the zonotope with n “ p`k`1 number of generators

can be partitioned into the problem of tiling the zonotope with n “ p ` k
generators, plus tiling the zonotope with n “ p ` 1 generators and plus a

104

5.8. Splitting

(a) A zonotope defined by three generators
in 2-dimension

(b) All parallelotopic tiles for the zonotope
in Figure 5.27a

Figure 5.27 – Illustrating, how fixing the sign of a zonotope defined by 3
generators in 2-dimension implicitly enumerates all the tiles

p-parallelotopic tile, i.e., n “ p. Tiling the zonotope with n “ p` 1 generators
into parallelotopes is the base case. For the zonotope with n “ p ` k, the
tiling using parallelotopes can be accomplished by inductive hypothesis.

l

Remark 5.34. A consequence of the Lemma 5.33 is a recursive algorithm for
tiling which we discuss below in detail.

Tiling algorithm. Algorithm 5.2 illustrates a recursive algorithm for com-
puting all the p-parallelotopic tiles (also called p-dimensional parallelotopic
tiling) characterizing a given p-dimensional zonotope Z “ Zpc, v1, v2, ¨ ¨ ¨ , vnq.
First it checks if the input is already a tile i.e., n ““ p, then it returns the
singleton containing the zonotope itself, otherwise it arbitrarily chooses a
sign to fix the first generator. Fixing v1 will produce a sub-zonotope defined
by: Zsub “ Zppσ1, 0, ¨ ¨ ¨ , 0qq computed according to (5.32) where σ1 is either
‘+’ or ‘-’. We consider the fact that tilings of a zonotope by zonotopes are in
bijection with fixing the sign of a generator which is essentially Bohne-Dress
theorem [Boh92, Dre89]. Then we make a recursive call of the tiling function
on Zsub which computes its tiling and stores the result in T . The remaining
step consist in finding all the adjacent p-parallelotopic tiles of Zsub. First we
compute the sign vectors (Σ 1) of Zsub and prepend to them the sign of the first
generator (σ1) and add all the non-existent sign vectors to Σ. This corresponds
to the extremal points of Zsub which are not extremal points of Z. We know
that the first generator was fixed for computing Zsub. Now, we free it and for
all subset of generators v2 ¨ ¨ ¨ vn of length p´ 1 we compute the parallelotopes
for the p free generators t1u Y S.

Examples Below, we consider few examples in 2 and 3-dimension zonotopes
on which we illustrate step-by-step the tiling algorithm.

105

5. Zonotopes and constraint solving

(a) A zonotope defined by four generators
in 3-dimension

(b) The first parallelotopic tile obtained after
fixing the sign of one of the generators

(c) Tile adjacent to the parallelotope enumer-
ated in Figure 5.28b

(d) Another parallelotopic tile adjacent to
the tile in Figure 5.28c

(e) All the parallelotopic tiles

Figure 5.28 – Illustrating, how fixing the sign of a zonotope defined by 4
generators in 4-dimension implicitly enumerates all the tiles

106

5.8. Splitting

Algorithm 5.2 – Tiling Algorithm

FunctiontTILINGSutZu
if n ““ p then

return tZu
else

Compute Σ “ ΣpVq
Compute Zsub “ Zppσ1, 0, ¨ ¨ ¨ , 0qq
T “ TILINGStZsubu
Σ 1 “ ΣpV 1q where V 1 are the generators of Zsub
Prepend σ1 to Σ 1, and add to Σ
// Find all tiles adjacent to Zsub
for S in 2t2,¨¨¨ ,nu of length p´ 1 do

Find all p-parallelotopic tiles for S in Σ
Add to T

return T
EndFunction

Example 5.35 Consider the zonotope shown in Figure 5.26a with its associated
hyperplane arrangement in Figure 5.24. The region between two adjacent
hyperplanes is a cell corresponding to a vertex of the zonotope. The signs for
each of the vertices are illustrated in Figure 5.26a which are p´,´,´,´,`q,
p´,´,´,`,`q, p´,`,´,`,`q, p´,`,`,`,`q, p´,`,`,`,´q. Recall that for
a given zonotope the associated hyperplane arrangement is central, so we
will only compute one half of the sign vectors and the rest is its negative
counterpart. Subsequently, the sign for the vertices of all the tiles are shown
in Figure 5.26b.

Fixing the sign of first generator. As an example, fixing the first generator
of the zonotope Z or ZpVq (V “ pp´3, 4q, p5, 2q, p2, 0q, p1, 1q, p3, 5qq and the
center is p20, 10q) to ‘-’, we obtain a sub-zonotope (Zsub or ZpVz1´q) shown
in Fig. 5.29a (the extremal points marked in red). The remaining generators
characterize this sub-zonotope and the one fixed will be used to describe the
translation with respect to the original center. The center of this sub-zonotope
can be determined as
`

20, 10
˘

`p´1q
`

´3, ´4
˘

`0
`

5, 2
˘

`0
`

2, 0
˘

`0
`

1, 1
˘

`0
`

3, 5
˘

where
`

20, 10
˘

is the center of the primitive zonotope ZpVq. Sign 0 is
associated to vectors

`

5, 2
˘

,
`

2, 0
˘

,
`

1, 1
˘

and
`

3, 5
˘

because
they belong to the generators of the sub-zonotope. Once we have generated
this sub-zonotope the next step is to enumerate the sign vectors corresponding
to its extremal points. However, it is not necessary to call the reverse search
algorithm again for computing the signs of ZpVz1´q. It can be enumerated
from the signs of ZpVq in the following way.

Enumerating the vertices of the first sub-zonotope. We know that the
first generator of ZpVq was fixed for determining ZpVz1´q which means the
sign for the first generator will remain same for all the vertices of ZpVz1´q i.e.,
now there will be four free generators. So, certainly all the extremal points
of ZpVq which have ‘-’ sign on the first generator are also going to be the
extremal points of ZpVz1´q i.e. p´,´,´,´,`q, p´,´,´,`,`q, p´,`,´,`,`q,

107

5. Zonotopes and constraint solving

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++++

-+++-

-++--

(a) Sign vectors after fixing the first generator to ‘-’

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++-

(b) Sign vectors after fixing the first and second gen-
erators to ‘-’

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++----+-

(c) Sign vectors after fixing the first, second and third gen-
erators to ‘-’

Figure 5.29 – Illustrating one-by-one all sub-zonotopes obtained after fixing
the sign of generators

108

5.8. Splitting

p´,`,`,`,`q, p´,`,`,`,´q as shown in Figure 5.29a. If we take the com-
plement of the sign of the first generator for the extremal points of ZpVq which
have a ‘+’ sign on the first generator then we enumerate the sign vectors
of the remaining vertices of ZpVz1´q i.e., p`,´,´,´,`q Ñ p´,´,´,´,`q,
p`,´,´,´,´q Ñ p´,´,´,´,´q, p`,´,`,´,´q Ñ p´,´,`,´,´q,
p`,`,`,´,´q Ñ p´,`,`,´,´q, p`,`,`,`,´q Ñ p´,`,`,`,´q. Among
these sign vectors of ZpVz1´q there are few which were non-existent (corre-
sponding to the vertices interior of zonotope ZpVq and not on its boundary)
in the sign vectors of the primitive zonotope ZpVq, for e.g., p´,´,´,´,´q,
p´,´,`,´,´q and p´,`,`,´,´q. They correspond to the extremal points of
ZpVz1´q which are not extremal points of ZpVq.

Recall that the key idea of the algorithm is to enumerate sufficiently many
of these non-existent sign vectors so as to find all the parallelotopic tiles.
Notice that, since ZpVz1´q was obtained by fixing the first generator of ZpVq
it would be correct to use the notation that the sign vectors of ZpVz1´q are
p´,´,´,´q, p´,´,´,`q, p´,´,`,`q, p`,´,`,`q, p`,`,`,`q, p`,`,`,´q,
p`,`,´,´q and p´,`,´,´q respectively.

Fixing the sign of second generator. Now, fixing the first generator to ‘-’
again, we obtain another sub-zonotope ZpVzt1´2´uq shown in Figure 5.29b
(the extremal points marked in red). The center of this sub-zonotope can be
determined as

`

23, 14
˘

`´1
`

5, 2
˘

` 0
`

2, 0
˘

` 0
`

1, 1
˘

` 0
`

3, 5
˘

where
`

23, 14
˘

is the center of the sub-zonotope ZpVz1´q, (the extremal
points marked in red shown in Figure 5.29a) generated after fixing the first
generator of the primitive zonotope to ‘-’. Sign 0 is associated to vectors
`

2, 0
˘

,
`

1, 1
˘

and
`

3, 5
˘

because they belong to the generators of
the sub-zonotope.

Enumerating the vertices of ZpVzt1´2´uq. Similar to the previous
case, we can obtain the non-existent sign vectors by just complimenting
the sign for those vertices which has a ‘+’ on the first generator for e.g.,
p`,`,´,´q Ñ p´,`,´,´q, p`,`,`,´q Ñ p´,`,`,´q, p`,`,`,`q Ñ
p´,`,`,`q, p`,´,`,`q Ñ p´,´,`,`q. As earlier, the sign vectors corre-
sponding to the vertices which have ‘-’ sign on the first generator of ZpVz1´q
also share the corresponding vertices as the extremal points of the new sub-
zonotope ZpVzt1´2´uq. Accordingly, once again we have enumerated all the
sign vectors of ZpVzt1´2´uq including the non-existent ones with respect to
the ZpVz1´q from which ZpVzt1´2´uq was obtained.

The first parallelotopic tile. Repeating this iterative procedure, we enu-
merate the sign vectors of another sub-zonotope (ZpVzt1´2´3´uq shown in
Figure 5.29c) which is a parallelotopic tile. The sign vectors corresponding to
the vertices of this tile are p´,´q, p`,´q, p`,`q, p´,`q with the sign of the
first three generators being fixed to ‘-’. The center of the parallelotope tile can
be determined as

`

18, 12
˘

´ 1
`

2, 0
˘

` 0
`

1, 1
˘

` 0
`

3, 5
˘

where
`

18, 12
˘

is the center of the sub-zonotope ZpVzt1´2´uq and vec-
tors

`

1, 1
˘

and
`

3, 5
˘

are the free generators corresponding to the
parallelotopic tile.

109

5. Zonotopes and constraint solving

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++----+-

(a) Tiles adjacent to the sub-zonotope from Fig-
ure 5.29a and their sign vectors

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++----+-

(b) Parallelotopic tiles adjacent to the sub-zonotope
from Figure 5.29b and their sign vectors

+-+--+----

+---+

----+

---++

-+-++ -++++

-+++-

++++-

+++--

--+-------

-++--

--+++

--++----+-

(c) Tiles adjacent to the sub-zonotope from Fig-
ure 5.29c and their sign vectors

Figure 5.30 – Illustrating one-by-one all parallelotopic tiles being enumerated

Freeing the already fixed generators. Once we have generated a parallelo-
topic tile we stop fixing the sign of the generators since we have enumerated
sufficiently many non-existent vertices (which are not extremal points of the
primitive zonotope) to construct the remaining parallelotopic tiles. We shall be
using this tile to generate the others which is the second part of the algorithm
i.e., “finding all tiles adjacent to Zsub” in Algorithm 5.2.

Enumerating the remaining tiles of ZpVzt1´2´uq. The free generators of
the sub-zonotope ZpVzt1´2´uq (the one whose extremal points are marked
in red, shown in Figure 5.29b) from which the first parallelotopic tile is ob-
tained are

`

2, 0
˘

,
`

1, 1
˘

and
`

3, 5
˘

respectively. The third generator
`

2, 0
˘

of the primitive zonotope ZpVq was fixed in order to generate the
tile. Now, we free the third generator (v3) and for all subset of generators
v4, v5 of length p ´ 1 we compute the parallelotopes. That means we can
generate two parallelotopic tiles with the following free generators’ combina-
tion, i.e., pv3, v4q and pv3, v5q. They correspond to the two parallelotopic tiles

110

5.8. Splitting

adjacent to our first tile ZpVzt1´2´3´uq. Notice that finding the parallelotopes
for a given free generator combination is straightforward and below we ex-
plain it in detail. Consider the above-mentioned free generation combination
(v3, v4) with the vectors v1, v2 and v5 being fixed. Now, in order to enumerate
a parallelotope we examine the sign vectors corresponding to the vertices
of the sub-zonotope ZpVzt1´2´uq which are p´,´,´,´,´q, p´,´,´,´,`q,
p´,´,´,`,`q, p´,´,`,`,`q, p´,´,`,´,´q, p´,´,`,`,´q, p´,´,´,`,´q.
Observe that few of these sign vectors are marked in red and those characterize
a parallelotope: p´,´,´,´,´q, p´,´,`,´,´q, p´,´,`,`,´q, p´,´,´,`,´q.
That means we check for the fixed generators v1, v2 and v5 which are the sign
vectors which match among themselves so that they form a parallelotope8.
Similarly, when vectors v3 and v5 are free, the matching sign vectors are:
p´,´,´,`,`q, p´,´,`,`,`q, p´,´,`,`,´q, p´,´,´,`,´q, which enumer-
ates the another parallelotopic tile. The center of these tiles can be determined
as

`

18, 12
˘

` 0
`

2, 0
˘

` 0
`

1, 1
˘

` p´1q
`

3, 5
˘

and
`

18, 12
˘

` 0
`

2, 0
˘

` p`1q
`

1, 1
˘

` 0
`

3, 5
˘

where
`

18, 12
˘

is the center of the sub-zonotope ZpVzt1´2´uq (the one
whose extremal points are marked in red in Figure 5.29b) to which these tiles
belong. The center of these two tiles can also be determined as

`

20, 10
˘

` p´1q
`

´3, ´4
˘

` p´1q
`

5, 2
˘

` 0
`

2, 0
˘

`

0
`

1, 1
˘

` p´1q
`

3, 5
˘

and
`

20, 10
˘

` p´1q
`

´3, ´4
˘

` p´1q
`

5, 2
˘

` 0
`

2, 0
˘

`

p`1q
`

1, 1
˘

` 0
`

3, 5
˘

where
`

20, 10
˘

is the center of the primitive zonotope ZpVq. The sign vec-
tors of the extremal points of these two tiles are p´,´,´,´,´q, p´,´,`,´,´q,
p´,´,`,`,´q, p´,´,´,`,´q (for free generators v3, v4) and p´,´,´,`,´q,
p´,´,`,`,´q, p´,´,`,`,`q, p´,´,´,`,`q (for free generators v3, v5) re-
spectively as shown in Figure 5.30a.

Enumerating the remaining tiles of ZpVzt1´uq. As far, we have tiled
the sub-zonotope ZpVzt1´2´uq of Figure 5.29b (extremal points marked in
red) into three possible parallelotopic tiles. Now, we shall find the other
adjacent tiles of the sub-zonotope ZpVz1´q (shown in Figure 5.29a with vertices
noted in red) whose free generators are

`

5, 2
˘

,
`

2, 0
˘

,
`

1, 1
˘

and
`

3, 5
˘

respectively. Notice that the second generator, i.e.,
`

5, 2
˘

relative
to the primitive zonotope was fixed in order to generate the sub-zonotope
ZpVzt1´2´uq. Now, we free this generator (v2) and for all subset of generators
v3, v4, v5 of length p´1 we compute three parallelotopic tiles with the following
combinations, i.e., pv2, v5q,pv2, v4q and pv2, v3q. They correspond to the three

8Here p=2, so there are four sign vectors corresponding to four vertices of the parallelotope.
Accordingly, when p=3, there will be eight sign vectors corresponding to eight vertices of a
3-parallelotope.

111

5. Zonotopes and constraint solving

parallelotopic tiles adjacent to the sub-zonotope ZpVzt1´2´uq (extremal points
noted in red in Figure 5.29b). The center of these tiles can be determined as
`

23, 14
˘

` 0
`

5, 2
˘

` p`1q
`

2, 0
˘

` p`1q
`

1, 1
˘

` 0
`

3, 5
˘

,

`

23, 14
˘

` 0
`

5, 2
˘

` p`1q
`

2, 0
˘

` 0
`

1, 1
˘

` p´1q
`

3, 5
˘

and
`

23, 14
˘

` 0
`

5, 2
˘

` 0
`

2, 0
˘

` p`1q
`

1, 1
˘

` p`1q
`

3, 5
˘

where
`

23, 14
˘

is the center of the sub-zonotope ZpVz1´q (the one whose
extremal points are marked in red in Figure 5.29a) to which these tiles be-
long. The sign vectors of the vertices of these three tiles are p´,´,`,`,`q,
p´,´,`,`,´q, p´,`,`,`,´q, p´,`,`,`,`q (for free generators v2, v5),
p´,´,`,´,´q, p´,`,`,`,´q, p´,`,`,´,´q, p´,´,`,`,´q (for free genera-
tors v2, v4) and p´,´,´,`,`q, p´,`,`,`,`q, p´,`,´,`,`q, p´,´,`,`,`q
(for free generators v2, v3) respectively as shown in Figure 5.30b.

All the
`5

2

˘

parallelotopic tiles. At this time, the only remaining par-
allelotopic tiles to be enumerated are the ones which are adjacent to the
sub-zonotope ZpVz1´q. We free the first generator v1 of the primitive zono-
tope which leaves four combinations of free generators which are pv1, v5q,
pv1, v3q, pv1, v2q and pv1, v4q respectively. These combinations will produce the
remaining four parallelotopic tiles whose center can be characterized as

`

20, 10
˘

` 0
`

´3, ´4
˘

` p´1q
`

5, 2
˘

` p´1q
`

2, 0
˘

`

p´1q
`

1, 1
˘

` 0
`

3, 5
˘

,

`

20, 10
˘

` 0
`

´3, ´4
˘

` p`1q
`

5, 2
˘

` p`1q
`

2, 0
˘

`

0
`

1, 1
˘

` p´1q
`

3, 5
˘

,
`

20, 10
˘

` 0
`

´3, ´4
˘

` p´1q
`

5, 2
˘

` 0
`

2, 0
˘

`

p´1q
`

1, 1
˘

` p´1q
`

3, 5
˘

and
`

20, 10
˘

` 0
`

´3, ´4
˘

` 0
`

5, 2
˘

` p`1q
`

2, 0
˘

`

p´1q
`

1, 1
˘

` p´1q
`

3, 5
˘

where
`

20, 10
˘

is the center of the primitive zonotope ZpVq. All these tiles
are illustrated in Figure 5.30c whose vertices have the following sign vectors:
p´,´,´,´,`q, p´,´,´,´,´q, p`,´,´,´,´q, p`,´,´,´,`q (for free gen-
erators v1, v5), p´,`,`,`,´q, p´,`,`,´,´q, p`,`,`,´,´q, p`,`,`,`,´q
(for free generators v1, v4), p´,´,´,´,´q, p´,´,`,´,´q, p`,´,´,´,´q,
p`,´,`,´,´q (for free generators v1, v3) and p´,´,`,´,´q, p´,`,`,´,´q,
p`,´,`,´,´q, p`,`,`,´,´q (for free generators v1, v3).

Example 5.36 Now, we illustrate the different steps of the tiling algorithm on
a 3-dimensional zonotope shown in Figure 5.31a. For n “ 5 and p “ 3, the
zonotope in Figure 5.31a is the concretization of the affine forms X “ px̂, ŷ, ẑq

112

5.8. Splitting

with x̂ “ 0´ 1ε1 ` 1ε4 ` 1ε5, ŷ “ 0` 2ε1 ` 1ε3 ` 1ε5, ẑ “ 0´ 4ε1 ` 1ε3 ` 1ε5,
that is,

AT “

¨

˝

0 ´1 0 0 1 1
0 2 0 1 0 1
0 ´4 1 0 0 1

˛

‚ (5.37)

or we would write A “ pp0, 0, 0q, p´1, 2, 4q, p0, 0, 1q, p0, 1, 0q, p1, 0, 0q, p1, 1, 1qq.
We denote the original zonotope by ZpVq where V “

pp´1, 2, 4q, p0, 0, 1q, p0, 1, 0q, p1, 0, 0q, p1, 1, 1qq. The very first step is to
compute the sign vectors corresponding to the extremal points of the
zonotope using the reverse search algorithm. Then we keep fixing the
sign of the generators prior to obtaining a 3-parallelotope or 3-dimensional
parallelotope. Once a 3-parallelotopic tile is enumerated, we have listed
sufficient number of interior vertices of the primitive zonotope. Fixing the
first generator to ‘-’ will generate a sub-zonotope ZpVz1´q (the zonotope in
green with extremal points marked in red shown in Figure 5.31b) given by the
vectors pp0, 0, 1q, p0, 1, 0q, p1, 0, 0q, p1, 1, 1qq whose center can be determined as

`

0, 0, 0
˘

` p´1q
`

´1, 2, ´4
˘

` 0
`

0, 0, 1
˘

`

0
`

0, 1, 0
˘

` 0
`

1, 0, 0
˘

` 0
`

1, 1, 1
˘

where
`

0, 0, 0
˘

is the center of the primitive zonotope. We repeat
the procedure again and this time we obtain a parallelotope ZpVz1´2´q
(the zonotope in blue shown in Figure 5.31c) with the following vectors
pp0, 1, 0q, p1, 0, 0q, p1, 1, 1qq. The center of the parallelotopic tile can be charac-
terized as
`

1, ´2, 4
˘

` p´1q
`

0, 0, 1
˘

` 0
`

0, 1, 0
˘

` 0
`

1, 0, 0
˘

`

0
`

1, 1, 1
˘

where
`

1, ´2, 4
˘

is the center of the sub-zonotope ZpVz1´q. Heretofore,
we have enumerated enough hidden vertices to construct the remaning ad-
jacent tiles. Henceforth, we free the generator which was fixed to obtain the
first tile, and we enumerate its adjacent tiles which are illustrated one at a
time in Figure 5.32a-5.32d.

The free generators of the sub-zonotope ZpVz1´q (zonotope in green in Fig-
ure 5.31b) from which the first parallelotopic tile is obtained are

`

0, 0, 1
˘

,
`

0, 1, 0
˘ `

1, 0, 0
˘

and
`

1, 1, 1
˘

respectively. The sign of the
second generator, i.e.,

`

0, 0, 1
˘

with respect to the primitive zonotope
ZpVq was fixed to generate the tile. Now, we free this generator (v2) and for all
subset of generators v2, v3, v4, v5 of length p´ 1 we compute the parallelotopes.
That means we can generate three parallelotopic tiles with the following free
generators’ combination, i.e., pv2, v4, v5q, pv2, v3, v5q and pv2, v3, v4q. They cor-
respond to the three parallelotopic tiles in Figure 5.32a-5.32d adjacent to our
first tile ZpVzt1´2´uq. In the similar manner we construct all the remaining
adjacent 3-parallelotopic tiles shown in Figure 5.33a-5.33f. The final tiling is
illustrated in Figure 5.34.

113

5. Zonotopes and constraint solving

(a) Zonotope concretization for the ma-
trix in (5.37)

(b) Sub-zonotope in green after fixing the
first generator to ‘-’

(c) Sub-zonotope in blue after fixing the
first and second generators to ‘-’

Figure 5.31 – Illustrating one-by-one all sub-zonotopes obtained after fixing
the sign of generators

114

5.8. Splitting

(a) First parallelotopic tile enumerated af-
ter fixing the first and second generators
to ‘-’

(b) Parallelotopic tile adjacent to the tile
from Figure 5.32a

(c) Parallelotopic tile adjacent to the tile
from Figure 5.32b

(d) Parallelotopic tile adjacent to the tile
from Figure 5.32c

Figure 5.32 – Illustrating one-by-one all parallelotopic tiles being enumerated

115

5. Zonotopes and constraint solving

(a) First parallelotopic tile of the sub-
zonotope in green from Figure 5.31b

(b) Parallelotopic tile adjacent to tile in
Figure 5.33a

(c) Parallelotopic tile adjacent to tile in
Figure 5.33b

(d) Parallelotopic tile adjacent to tile in
Figure 5.33c

Figure 5.33 – Illustrating one-by-one all parallelotopic tiles being enumerated

116

5.8. Splitting

(e) Parallelotopic tile adjacent to tile in
Figure 5.33d

(f) Parallelotopic tile adjacent to tile in
Figure 5.33e

Figure 5.33 – Illustrating one-by-one all parallelotopic tiles being enumerated

Figure 5.34 – 3-dimensional parallelotopic tiles delineating the zonotope in
Figure 5.31a.

117

Chapter6
Implementation and experiments on

programs

All the elements presented in this chapter have been implemented as a protype
analyzer. This analyzer was already developed in [MBR16] which imple-
mented the algorithm of Section 4.2 using the boxes and octagons abstract
domains of the Apron [JM09] library. We adapted the prototype analyzer,
as described in Section 5.7, in order to use the zonotopic abstract domain
[GGP09] and polyhedra abstract domain New Polka of Apron. We added
the operations split, intersection test, meet, coverage measure and the new
inclusion test described in Section 5.1 in Apron for the zonotopic abstract
domain. The analyzer is composed of two parts:

• The core mathematical computations are done with Apron library (a
C library of numerical abstract domains), from an OCaml front-end.
This part implements the set of functions, for e.g., test for inclusion,
intersection, splitting for every abstract domain. Computation in Apron
are done using double precision floats.

• The front-end is an OCaml code. It implements the algorithm presented
in Section 4.2. It loads the different abstract elements and interacts with
Apron to compute the different sequence of calls to Apron functions.

6.1 Implementation

6.1.1 Apron

One of the most important components of the analyzer is the Apron library.
This C library presents a set of numerical abstract domains, namely Boxes,
Octagons, Polyhedra and Zonotopes. It permits bindings for languages
like C, C++ and OCaml. All the abstract domains in Apron come with a
common interface, allowing to switch from one domain to another without
any additional effort. In that way, one can easily compare results of different
numerical domains, or combine them for a better precision.

6.1.2 Taylor1+

The domain for zonotopes in Apron is called Taylor1+ [GGP09, Gho11]. Its
API (Application Programming Interface) is fully compliant with the Apron
library. Any analyzer using Apron library can avail Taylor1+ with all its
functions.

118

6.2. Experiments

Data structure of Taylor1+. An affine set in Taylor1+ is represented by
an array of pointers of size p (the number of the numerical variables) and a
generic abstract object for the noise symbols. An affine form is encoded by a
special structure pointed by each pointer. The data structure of an affine form
is a coefficient plus a list of terms. Each term contains a non-zero coefficient
and a pointer to a noise symbol. The data structure of an affine set is a matrix
of size pˆ n (n is the number of noise symbols) where the first column of the
matrix is the center corresponding to the geometric concretization of the affine
set and the rest of the columns are the generators. The entries of the matrix
are extracted from the terms of the affine forms using a hash table where the
keys are the noise symbols and the values are the coefficients associated with
each of these noise symbols.

New noise symbols are created for the affine forms after every split opera-
tion.

6.1.3 Our contribution with respect to implementation

• We had to implement test for inclusion and intersection, splitting and
meet operators in order to extend the analyzer with zonotope abstract
domain.

• Initially, the analyzer was designed to handle only two sub-parts after
every split operation. Since, our split operator on zonotopes can produce
more than two sub-zonotopes, we had to modify the analyzer to handle
multiple sub-parts.

• Originally, the analyzer computed the volume of the abstract elements to
calculate the coverage information. In our version, we have implemented
the coverage metric and the test for benign, as described in Section 5.7.
This modified version of the analyzer is compliant with different abstract
domains (tested for boxes, octagons, polyhedra and zonotopes).

• Apron is a C library of numerical abstract domains mainly used for static
analysis of programs by abstract interpretation. So, obviously there is
no split operation implemented for any abstract domain in Apron. For
boxes and octagons, the authors in [MBR16] implemented the respective
split operation directly within the OCaml code of the analyzer. In an
effort to make the split operator more generic, we implemented the
tiling function for zonotopes inside Apron. However, in order to interact
with the analyzer we had to write the OCaml bindings.

The code of the analyzer with the new elements and the benchmarks
are released under a GPL license and is available at https://github.com/
bibekkabi/Prototype_analyzerwithApron. The APRON library with all the
new set-theoritic operations is available at https://github.com/bibekkabi/
taylor1plus.

6.2 Experiments

Experiments were conducted on a set of programs with non-linear loops
that present complex, possibly non-convex, invariants. These programs were

119

https://github.com/bibekkabi/Prototype_analyzerwithApron
https://github.com/bibekkabi/Prototype_analyzerwithApron
https://github.com/bibekkabi/taylor1plus
https://github.com/bibekkabi/taylor1plus

6. Implementation and experiments on programs

extracted from [MBR16], [AGG10], [RG13], [DHKT12]. A number of these
programs are typical model-checking benchmarks, for example from SV-
COMP1.

In Table 6.1, we compare on some small but challenging loops the results
of the algorithm applied with boxes, octagons, polyhedra and zonotopes. For
each abstract domain, we give the number of iterations and time until a first
inductive invariant is found, and the number of elements that compose this
invariant. Table 6.1 illustrates the results, with tightening (Equation (4.2))
used only during the first iteration.

For each example, we highlight in bold in Table 6.1 the entries corre-
sponding to the smaller number of elements, iterations, or execution time.

Program Boxes Octagons Zonotopes Polyhedras
#elems. #iters. time(s) #elems. #iters. time(s) #elems. #iters. time(s) #elems. #iters. time(s)

Octagon 752 2621 0.1042 752 2756 0.6115 1 1 0.0001 1 1 0.0001
Filter 238 1310 0.1029 74 736 0.2105 38 222 0.5020 42 312 0.2554
Arrow-Hurwicz 1784 1643 0.4033 369 931 0.5147 15 38 0.0235 134 484 1.0059
Filter2 14 58 0.0034 7 13 0.0013 8 16 0.0045 1 1 0.0009
Harm 87 438 0.0112 88 448 0.0647 60 254 0.5143 53 243 0.2442
Harm-reset 87 438 0.0204 88 446 0.1478 60 268 0.9717 53 253 0.3867
Harm-saturated 23 15 0.0011 24 16 0.0112 9 14 0.0157 5 9 0.0124
Lead-lag - - - - - - - - - - - -
Lead-lag-reset - - - - - - - - - - - -
Lead-lag-saturated - - - - - - - - - - - -
Sine 240 1448 0.4395 154 348 0.1102 21 33 0.0547 136 286 1.1145
Square root 7 10 0.0005 4 4 0.0016 1 1 0.0001 4 4 0.0066
Newton 200 102 0.1097 158 76 0.1785 11 17 0.0197 64 26 2.0660
Newton2 1806 499 6.6861 709 430 2.2207 8 6 0.0193 12 12 2.7498
Corner 129781 1847 646.8494 129767 1847 8850.8766 488 999 35.6245 2368 4248 126.7980

Table 6.1 – Experimental results with tightening applied only during first
iteration.

Example Octagon in Table 6.1 corresponds to the motivational example
from [MBR16]. Its loop body performs a 45-degree rotation around the origin,
with a slight inward scaling. The initial element obtained after the first
tightening step is already inductive with zonotopes and polyhedras. The
classical abstract semantics for addition and subtraction on octagons is too
coarse to prove this is an inductive invariant, explaining why the analyzer
had to iterate a lot, contrarily to the zonotopic case.

Filter is a second-order digital filter (Figure 2.1) taken from [MBR16]. The
candidate invariant provided to the algorithm is r´4, 4s which is not inductive.
For Filter2 from [AGG10], our inductive invariant shows that x and y remain
within r´0.2, 1s2.

Figure 6.1a, 6.1b, 6.1c and 6.1d compare the result of the algorithm on the
Filter program using intervals, octagons, polyhedras and zonotopes. Natural
inductive invariants of such filters are ellipsoids. The inductive invariant
found within each abstraction is indeed the approximation of an ellipsoid. It
is composed of fewer zonotopes and polyhedra than boxes and, to a lesser
extent, octagons, and requires fewer iterations to be synthesized. In order to
compare the inductive invariants obtained, we computed the area covered by
the invariant for each domain: they are respectively 28.8125, 28.875, 24.1343
and 20.732 for boxes, octagons, polyhedras and zonotopes (see Figures 6.1e–
6.1g), so the inductive invariant inferred by zonotopes is tighter than that with
boxes, octagons and polyhedras.

1https://github.com/sosy-lab/sv-benchmarks/tree/master/c/floats-cdfpl

120

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/floats-cdfpl

6.2. Experiments

We analyzed the Arrow-Hurwicz2 loop (taken from [AGG10]) as a two-
variable program by eliminating the loop condition and the two variables u
and v that are not needed in the body of the loop; the algorithm with boxes,
octagons, polyhedras and zonotopes was able to verify that the variables x
and y remain within the bound r´1.73, 1.73s2. The analysis with zonotopes
was faster and composed of far fewer abstract elements compared to other
domains. We were not able to verify the bounds using boxes, octagons and
polyhedras even with tightening. However, for a wider goal compared to
r´1.7, 1.7s2, the algorithm could infer an inductive invariant with all four
abstract domains.

Harm is a harmonic oscillator program from [AGG10]. Its loop body is
close to identity. The programs Harm-reset and Harm-saturated add some
non-determinism in the body loop. The polyhedras require fewer elements
and iterations, but more time, compared to boxes and octagons. On too simple
cases, the use of complicated abstraction is not competitive, as expected.

For the lead-lag controllers (program Lead-lag, Lead-lag-reset and Lead-lag-
saturated from [RG15]), none of the abstract domains could find an inductive
invariant before timeout while using tightening only during the first iteration.

Sine, Square root, Newton, Newton2 (taken from [DHKT12]) and Corner are
programs with non-linear loop bodies. Sine computes the corresponding
mathematical function through Taylor expansion and Square root computes the
polynomial interpolation function for square root, while Newton and Newton2
perform one step and two steps of Newton solving respectively. In all the
four cases, the inductive invariant (see Figure 6.2, 6.3 and 6.4) inferred by
the algorithm matches closely the graph of the function, ensuring functional
correctness.

Zonotopes are the fastest on all these examples: they require much
fewer iterations and elements compared to intervals, octagons and poly-
hedras. For the Sine program, we check bounds on the result of com-
puting a sine approximation under the input range x “ r´Π2 , Π2 s or x “
r´1.57079632679, 1.57079632679s in radians. The inductive invariant must
include both the initial state, where y “ 0, and the end state, where y is
the approximate sine. The candidate invariant provided to the algorithm is
r´1.05, 1.05s (the results shown in Figures 6.2a, 6.2b, 6.2c and 6.2d are within
the bound r´1.05, 1.05s on the x-axis). Figure 6.2a, 6.2b, 6.2c and 6.2d compare
the result of the algorithm on the Sine program using intervals, octagons,
polyhedras and zonotopes. The area covered by the inductive invariant for
boxes, octagons and polyhedras are 4.9957, 4.9752, 4.5822, which are tighter
compared to 5.1207 obtained with zonotopes (see Figures 6.2e–6.2g). Accord-
ing to the authors in [DHKT12], the actual maximum of the function lies
at about 1.00921. We also ran the experiment with the candidate invariant
as r´1.00921, 1.00921s, and the algorithm was only able to find an inductive
invariant with zonotopes.

Similar is the analysis (inductive invariant for boxes, octagons and poly-
hedras are relatively tighter compared to zonotopes) in case of Newton (see
Figures 6.3e–6.3g) and Newton2 (see Figures 6.4e–6.4g). Our zonotopes-based
method is better for the specific aim of proving as fast as possible that the ini-

2Arrow-Hurwicz is an algorithm to compute both primal and dual solutions for convex
constrained optimization problems.

121

6. Implementation and experiments on programs

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(a) Inductive invariant for Filter example: 238 boxes
1310 iterations, 0.1029 s

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(b) 74 octagons, 736 iterations, 0.2105 s

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(c) 42 polyhedras, 312 iterations, 0.2554 s

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(d) 38 zonotopes, 222 iterations, 0.5020 s

Figure 6.1 – Inductive invariant for Filter example

tial invariant holds, strengthening it into an inductive invariant. Indeed, with
a better interpretation of non affine operations, less splitting steps are needed
before getting an inductive invariant. For example, zonotopes enabled us to
prove the initial invariant as inductive for the Square root program. Finally,
zonotopes are again faster in the case of the Newton and Newton2 programs
compared to intervals, octagons and polyhedras.

Corner (similar benchmarks are considered in [Mar14]) is the program in
Figure 1.1 that presents a non-convex inductive invariant, with a hole in the
middle. It is important to note that, unlike constraint solvers, but similarly
to iteration with widening, the CP algorithm may fail to find an inductive

122

6.2. Experiments

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(e) Superimposing Fig. 6.1a and 6.1d

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(f) Superimposing Fig. 6.1b and 6.1d

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(g) Superimposing Fig. 6.1c and 6.1d

Figure 6.1 – Inductive invariant for Filter example

123

6. Implementation and experiments on programs

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(a) Inductive invariant for Sine example:
238 boxes 1448 iterations, 0.4395 s

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(b) 154 octagons, 348 iterations, 0.1102 s

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(c) 136 polyhedras, 286 iterations, 1.1145
s

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(d) 21 zonotopes, 33 iterations, 0.0547 s

Figure 6.2 – Inductive invariant for Sine example

124

6.2. Experiments

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(e) Superimposing Fig. 6.2a and 6.2d

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(f) Superimposing Fig. 6.2b and 6.2d

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

x

y

(g) Superimposing Fig. 6.2c and 6.2d

Figure 6.2 – Inductive invariant for Sine example

125

6. Implementation and experiments on programs

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(a) Inductive invariant for Newton example: 200
boxes 102 iterations, 0.1029 s

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(b) 158 octagons, 76 iterations, 0.1785 s

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(c) 64 polyhedras, 26 iterations, 2.0660 s

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(d) 11 zonotopes, 17 iterations, 0.0197 s

Figure 6.3 – Inductive invariant for Newton example

126

6.2. Experiments

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(e) Superimposing Fig. 6.3a and 6.3d

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(f) Superimposing Fig. 6.3b and 6.3d

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(g) Superimposing Fig. 6.3c and 6.3d

Figure 6.3 – Inductive invariant for Newton example

127

6. Implementation and experiments on programs

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(a) Inductive invariant for
Newton2 example: 1806
boxes 499 iterations, 6.6861 s

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(b) 709 octagons, 430 itera-
tions, 2.2207 s

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(c) 12 polyhedras, 12 itera-
tions, 2.7498 s

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(d) 8 zonotopes, 6 iterations,
0.0193 s

Figure 6.4 – Inductive invariant for Newton2 example

128

6.2. Experiments

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(e) Superimposing Fig. 6.4a
and 6.4d

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x

y

(f) Superimposing Fig. 6.4b
and 6.4d

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x
y

(g) Superimposing Fig. 6.4c
and 6.4d

Figure 6.4 – Inductive invariant for Newton2 example

invariant, even if there exists one that can be represented with the abstract
elements whose size is greater than a user-specified size. A way to avoid this
is to lower the value of user-specified size, but this change can also make the
algorithm slower, because it can now spend more time splitting boxes that
cannot be part of an inductive invariant.

For the Corner program, while using the box/octagon abstract domain,
the image by the loop body in the abstract domain, could not be within the
collection of elements, and hence not proven invariant. A natural fix was to
lower the value of user-specified threshold for size (εs) and apply the failure
recovery steps. Thus, boxes and octagons rely heavily on re-splitting, hence
output a large set of elements and have a comparatively higher run-time
compared to polyhedra and zonotopes.

These experiments confirm that zonotopes provide a very interesting trade-
off between a general purpose abstraction, that stands the comparison to
simpler abstractions on basic linear examples, and the abstraction of more
complex, non affine, behaviors where it is faster and more flexible. In par-
ticular, the fact that they allow to represent inductive invariants with fewer
elements will be even more crucial for the scalability of the approach to higher
dimension programs.

Tightening at every iteration. Recall that in Table 6.1 tightening was only
applied during the first iteration. Now, we shall illustrate the results with
tightening after each split operation for boxes, octagons and polyhedras except
for zonotopes (only during the first iteration as shown in Table 6.1). As already
discussed in Section 4.2, the precision and efficiency of the meet operation

129

6. Implementation and experiments on programs

plays an important role in the effectiveness of tightening. In Section 5.4, we
proposed a meet operator that overapproximates the intersection of zonotopes.
Applying this over-approximated meet operation is crucial for the initial states,
but applying it in further iterations proved to gain little.

Table 6.2 highlights the results, with tightening applied at all iterations
for boxes, octagons and polyhedra. Compared to Table 6.1, the number of
abstract elements and the iterations have reduced compared to Table 6.1. In
case of the Lead-Lag controllers, the algorithm is now able to find an inductive
invariant. This indicates that a tightening at each iteration of the algorithm is
actually useful in inferring an inductive invariant. However, if the aim of the
analysis is simply to prove as fast as possible that the initial invariant holds,
because we could strengthen it in an inductive invariant, then our zonotopic
analysis is better in case of complex and non-affine behaviors.

Program Boxes Octagons Polyhedra
#elems. #iters. time(s) #elems. #iters. time(s) #elems. #iters. time(s)

Octagon 619 2240 0.1001 560 2268 0.5268 1 1 0.0001
Filter 203 1115 0.0601 57 261 0.0493 4 4 0.0155
Arrow-Hurwicz 577 1297 0.1361 39 96 0.0318 4 5 0.0165
Filter2 9 45 0.0015 5 5 0.0012 1 1 0.0009
Harm 34 38 0.0071 47 51 0.0270 12 12 0.0504
Harm-reset 40 46 0.0063 -4 -4 -4 12 12 0.0747
Harm-saturated 4 4 0.0006 3 3 0.0057 2 2 0.0035
Lead-lag 16154 10 20.3362 16154 10 157.5281 14 14 0.1181
Lead-lag-reset 1024 8 0.2236 1024 8 1.4561 10 10 0.0674
Lead-lag-saturated 16154 10 20.4759 16154 10 157.4786 14 14 0.1058
Sine 237 1290 0.3954 145 200 0.1546 113 149 1.3816
Square root 8 8 0.0005 4 4 0.0007 4 4 0.0066
Newton 128 77 0.0374 78 23 0.0513 56 17 0.5081
Newton2 2598 246 0.8878 350 103 0.2791 12 12 1.0878
Corner -4 -4 -4 -4 -4 -4 -4 -4 -4

Table 6.2 – Experimental results with tightening (tightening is applied after
each split).

Programs. All the programs can be found in the Appendix. The programs
are illustrated as shown in the Figure 6.5, a structure compliant with respect
to the analyzer. In Figure 6.5, init stands for the initial states of the program,
which the final inductive invariant must contain. If any abstract element does
not intersect with the init, then it is not a necessary abstract element. Body
denotes the loop of the program and the goal is the candidate invariant. All
the input types for the variables representing the init and goal states are in the
form of an interval and are abstracted accordingly depending on the domain.

6.3 Conclusion

The interest of zonotopes on the simpler examples is no doubt limited but
on programs with non trivial mathematical operations the zonotopes allow
inductive invariants to be calculated much faster than methods based on
octagons or polyhedra. In addition, these inductive invariants contain much
lesser elements than those obtained with these latter methods. Methods based
on polyhedra are more effective if the contraction operation is repeated with
each iteration. However, the zonotope-based approach remains the most
effective in showing that the initial invariant is correct.

130

6.3. Conclusion

init
{

}
body

{

}
goal

{

}

Figure 6.5 – Structure of a program for the analyzer

131

Part III

Invariants of Continuous

Systems

132

Chapter 7
Invariants of Dynamical Systems

Dynamical systems are mathematical objects used to model physical phenom-
ena whose behavior (the state) changes over time. Their theory describes
in form of mathematical equations, the changes over time that occur in bi-
ological, chemical, economical, financial and electronic systems. Examples
of such systems include the physiological model of glucose metabolism in
man and its use to design and assess improved insulin therapies for diabetes
[ATS09, Sor85], the stock market, the long-term behavior of solar system (sun
and planets) or galaxies.

When differential equations are used, the theory of dynamical systems
is called continuous dynamical systems. One of the significant aspects of
continuous dynamical system is the positive invariant sets. It has many
applications such as verification of the safety of any physical phenomena
modeled by dynamical systems. In this chapter, we will first introduce the
notation and definitions of dynamical systems. Further we will prove that our
CP algorithm will obtain an outer-approximation of the positive invariant. For
deriving the proof, we will again consider discrete maps or the corresponding
discrete system after discretizing a continuous system. We will illustrate
through an example, how our zonotopic abstraction based CP algorithm
can be used to find an outer-approximation of the positive invariant sets in
dynamical systems.

7.1 Preliminaries

Basic definitions and main concepts of invariant sets in dynamical systems
are presented briefly hereafter, following [Ste10, HK02, Mis99, NP19].

Definition 7.1 (Map.) Consider a function given by

F : XÑ X (7.1)

This function F is called a map which is an evolution rule with discrete time,
and a continuous state space.

Remark 7.2. A dynamical system with discrete time is defined by a map,

xn “ F
npx0q (7.2)

where xn is the state resulting from the initial state x0 after the n-th iterate of
F.

133

7. Invariants of Dynamical Systems

Definition 7.3 (Flow map.) Consider a function given by

ϕ : Rˆ XÑ X (7.3)

We call the function ϕ, a flow map which is a continuous dynamical system
on a manifold, X continuously differentiable with respect to time.

Remark 7.4. A dynamical system with continuous time is defined by a flow
map,

xptq “ ϕpxp0q, tq (7.4)

where xp0q and xptq are the states at time 0 and t respectively.

Definition 7.5 (Forward or positive invariant.) Consider a flow map given
by ϕ : R ˆ X Ñ X and a subset B (B Ď X) of X. The set B is called forward
invariant or positively invariant if

ϕpB, tq Ď B, @t ě 0 (7.5)

Similarly, for a map F : X Ñ X, a forward invariant is the set B (B P X) such
that FpBq Ď B

Remark 7.6. If a system reaches a positive invariant set, its future evolution
remains inside this set. Positively invariant sets are often encountered as
absorbing sets, which is a first step in order to prove the existence of an
attractor.

Definition 7.7 (Backward invariant.) Consider a flow map given by ϕ : Rˆ
XÑ X and a subset B (B Ď X) of X. The set B is called backward invariant if

B Ď ϕpB, tq, @t ě 0 (7.6)

Remark 7.8. For certain differential equations, the solution may also exist for
negative time t ă 0. If a set is invariant under the negative time flow map of
a differential equation, we say the set is negatively invariant.

Definition 7.9 (Invariant.) The set B is invariant for the flow map ϕ if

ϕpB, tq “ B, @t P R (7.7)

and similarly for a map F if FpBq “ B. If the map is invertible then it is
analogous to F´1pBq “ B

Remark 7.10. Thus, an invariant set is a subset of the state-space which is
positively invariant under the flow, and positively invariant under the opposite
flow (i.e. it is also negatively invariant). In other words, a set is invariant if it
is both positive and negative invariant.

A fundamental requirement for verifying safety properties in discrete,
continuous and hybrid systems is to compute over-approximations of the
reachable set [RSÁ14]. Among the number of tools and methods that have
been developed for reachable set over-approximation in continuous systems,
most are geared towards invariant computation and flowpipe construction.

The invariant computation methods capable of proving safety properties
often rely on constructing continuous invariants [PC09, LZZ11, GT08, SSM04].

134

7.1. Preliminaries

Such invariants can be considered as a generalization of positively invariant
sets (see e.g. [Bla99]). Recall that positive invariant set is a classical notion
in reachable set over-approximation. These sets are analogous to inductive
invariants used in computer science to reason about the correctness of discrete
programs (example: Chapter 6) using Hoare logic. The exact reachable sets of
any given state x0 of the system are the smallest positively invariant sets one
can hope to find that include x0.

Methods geared towards flowpipe construction employ set reachabil-
ity computations based on constructing over-approximating enclosures of
the reachable states of ordinary differential equations [CK98, SNÁ17, SJJ17,
CAS12, FLGD`11, ERNF15, GP17] because ODEs are used to describe the
evolution in continuous time t of a dynamical system. Thus, a continuous
time system can be defined as follows.

Definition 7.11 (Continuous time systems) Consider a vector field f (See
Definition 7.12) which maps each point x to the corresponding tangent space
at time t. Such a vector field can be associated with an ordinary differential
equation given by

9x “ fpx, tq. (7.8)

Such an ODE also defines a continuous time system where x are the state
variables and t is the time variable.

Definition 7.12 (Vector field) A vector field f over Rn associates each point
x P Rn with a derivative vector fpxq P Rn.

Remark 7.13. The flow map ϕf (Definition 7.3) is the general solution of
Equation (7.8), i.e., the curve ϕfpx0, tq is the solution of Equation (7.8) with
the initial condition xp0q “ x0. The problem of finding the solution xptq over
some time interval T containing 0 for an ODE in Equation (7.8) with initial
condition xp0q “ x0 is commonly known as an initial value problem (IVP). In
the context of continuous systems defined by the ODE in Equation (7.8) the
problem is analogous to computing the reachable set ϕfpx0, tq.

It is often needed to solve an initial value problem for computing the reach-
able set of a continuous system. Moreover, it is well-known that numerical
integration methods like Euler’s method, Taylor’s method and Runge-Kutta
method are used to generate numerical solutions for IVPs. Recall that a safety
verification problem is concerned with establishing that once the state of
a system enters a set of safe states, the state of the system may noy leave
this set within time t. Unfortunately, this property may be only established
when the ODEs have closed-form solutions because these integration methods
provide only approximate values for the solution. In the absence of closed-
form solutions, guaranteed bounds for the flow of an ODE, including all
discretization and roundoff errors in the computation can be computed by val-
idated integration methods [NJC99, BM98]. We can also compute successive
over-approximating enclosures (known as flowpipes) of the reachable states
in discrete time steps.

Flowpipe construction [CK98, SNÁ17, SJJ17, CAS12, FLGD`11, GP17] is
one of the widely used techniques for over-approximating reachable sets for
continuous time systems. It can be defined as follows.

135

7. Invariants of Dynamical Systems

Definition 7.14 (Flowpipe) Given a time interval r0, ts, an over-
approximation of the reachable set in r0, ts is iteratively computed by dividing
the time interval r0, ts into N segments and enclosing each segment with a
convex geometric object (example: convex polyhedra, zonotopes and ellip-
soids). Thus, the complete over-approximation of the rechable set in r0, ts is
the union of N flowpipe segments.

Remark 7.15. Consider a continuous time system defined by 9x “ fpx, tq and
represented by a flow ϕf. Flowpipe is the set of states reachable from an
initial state X0 in a time interval

a
denoted by

tϕfpx0, tq | x0 P X0, t P
i
u.

One of the popular methods for computing flowpipe over-approximations is
based on Taylor models [SJJ17, RSÁ14, Che15, GP17].

In this work, we will only recall the classical Taylor models based on Taylor
model arithmetic developed by Berz and Makino [Ber99, MB03, MB09, BM98,
Jol11]. As a scope for future work, we would like to extend our algorithm
of Section 5.1 for flowpipes to over-approximate the set of reachable states
in continuous and hybrid systems. So, in order to encourage our work and
motivate the readers, we will illustrate the step-by-step procedure for finding
Taylor models of one and two dimensional ODEs. These examples are taken
from the benchmarks of Flow* [CÁS13, Che15].

Recall that our CP algorithm is parameterized by a choice of abstract do-
main D7 and an abstract version F7 of a continuous map F. Before introducing
Taylor models, we will prove that provided with a continuous map F, our
algorithm will find an over-approximation of positive invariant set. We will
illustrate this property by running the algorithm on a discrete time dynamical
system: Hénon map.

We know that flow maps have been largely studied because of their
usefulness as solutions of differential equations. Nevertheless, maps have
also proven useful for a few reasons: they better represent discrete systems,
and they help us understand some flow maps better. That is, we can break
flow maps into their fixed time maps. In other words, we can discretize them.
We will use Taylor based approximation and discretize the continuous time
system to estimate an approximation of the flow map. We will illustrate this
through Van-der-Pol oscillator. This is the first step towards extending our CP
algorithm to flowpipes.

7.2 The CP algorithm revisited

In this chapter we will apply our CP algorithm with two different settings.
The first one is, we will discretize the continuous time system using Taylor
method and apply the CP algorithm on the discretized map. Recall that
for a continuous time system Taylor based discretization method provides
only approximate values for the solution. However, Taylor models provide
guaranteed bounds for the flow of an ODE. Therefore, the second formulation
is, we will evaluate a Taylor model on each time step and apply our CP
algorithm on every new Taylor model. In the first case the map is a simple
polynomial and in the second case it is a polynomial plus an interval term.

136

7.2. The CP algorithm revisited

Nevertheless, in both cases they are discretized maps. So, in this section we
will prove that our CP algorithm will find an over-approximation of positive
invariant set by again considering maps.

Recall that the CP algorithm (Section 5.1) searches for an invariant that can
be expressed as a finite collection of abstract elements, i.e., S “ tS1, . . . ,Snu.
We discard Sk if

FpSkq X pY
i
Siq “ H.

We would like to prove that our CP algorithm will obtain an outer-
approximation of the positive invariant. For deriving the proof, we again
consider discrete maps or the corresponding discrete system after discretiz-
ing a continuous system. We illustrate the proof on a discrete map because
for a sufficiently small step size an invariant set for a continuous system,
is also an invariant set for the corresponding derived discrete system (see
[Bla99, HST18, HST17, BM96]).

Lemma 7.16 Consider a flow map ϕfptq representing a continuous time system.
After discretization, we obtain a discrete map F. Our CP algorithm discards an
abstract element Sk if

FpSkq X pY
i
Siq “ H. (7.9)

With the test shown in Equation (7.9) the CP algorithm will find an outer-
approximation of the positive invariant set.

Before deriving the proof, we will recap the definition of a positive invari-
ant set.

Definition 7.17 The positive invariant (pinvYF) is equal to

pinvYF “ \

X : X Ď Y ^ FpXq Ď X
(

(7.10)

Let Y
i
Si “ Gk

7 at kth iteration. Recall that we use Equation (7.9) to

generate Gk7. Then,

pinvYF Ď YG0
7
“ Y (7.11)

and

pinvYF Ď YGk
7
@k ą 0. (7.12)

We suppose that pinvYF Ď YGk
7 is true at iteration k. Now, in order to

prove the lemma we must show that pinvYF Ď YGk
7 is true at k+1.

Proof. Suppose Dx P pinvYF which is not present in YGk`1
7 (not Gk7). Then

as it was (by induction) in YGk7, that means it has been removed. There is
a rxs P Gk7 such that x P rxs wherein rxs is a box. Recall that the test for
discarding elements is: we remove an abstract element if

FpSkq X pY
i
Siq “ H (7.13)

137

7. Invariants of Dynamical Systems

Now, assume that rxs does satisfy the condition in Equation (7.13) and can be
removed which implies

Fprxsq X YGk
7
“ H (7.14)

Recall that x was in YGk7 by induction but has been removed, i.e., Equa-
tion (7.13) thus Equation (7.14) hold, and we know that YGk7 Ě pinvYF. So,
we can say that Fprxsq does not intersect pinvYF, i.e.,

Fprxsq X pinvYF “ H,

thus Fpxq is not in pinvYF, i.e.,

Fpxq X pinvYF “ HÑ Fpxq R pinvYF.

This contradicts the fact that x P pinvYF since this implies

Fpxq P pinvYF.

Thus, pinvYF Ď YGk
7 is also true at iteration k` 1. l

Example 7.18 (Hénon attractor) Before we introduce Hénon attractor, we will
discuss attractors and their relationship to positive invariant sets.

Consider a map F on a space X. Let N be a subset of X such that N Ď X.
The set N can be called as an isolating neighborhood if the invariant set
INVpN, Fq defined as

INVpN, Fq “
8
č

m“´8

FmpNq (7.15)

is a subset of the interior (IntN) of N.
It can also be defined as

INVpN, Fq “

x P N | Fnpxq Ď N,n P Z
(

Ď IntN (7.16)

or for a flow ϕ on a space X as

INVpN,ϕq “

x P N | ϕtpxq Ď N, t P R
(

Ď IntN (7.17)

A set S is called isolated invariant set if there exists an isolating neighbor-
hood N with S “ INVpN, Fq.

An attractor is a special case of an isolated invariant set. Consider A Ď X
is a subset and there is a neighborhood N of A such that FpNq Ď IntN and A
is the intersection of forward images of N, i.e.,

č

ně0
FnpNq “ A, (7.18)

then A is called an attractor and N is its isolating neighborhood. Consider
the set V such that V “ XzIntN. As a model of Poincaré map to study the
dynamics of the Lorenz system, Hénon in 1976 [Hén76] proposed the famous
two-dimensional Hénon map that is defined by the following equation:

138

7.2. The CP algorithm revisited

xn`1 “ 1´ axn2 ` yn

yn`1 “ bxn
(7.19)

It is an invertible map. The inverse of the Hénon map or the backward
iteration in time is given by

xn`1 “
yn

β

yn`1 “ xn ´ 1`
αyn

2

β2

(7.20)

Hénon claimed that for the parameters pa,bq “ p1.4, 0.3q the Henon map
converges to a strange attractor. Note that Hénon map does not have a strange
attractor for all values of the parameters a and b. The parameter a controls
the amount of stretching and the parameter b controls the thickness of folding.
A range of values of a and b for which the Hénon map preserves the Hénon
attractor is a P r1.16, 1.41s and b P r0.2, 0.3s. From these ranges, a slight change
in the values of a and b can affect the Hénon attractor, but a small change of
F does not affect the attractor [Rue06, Wen14].

A visualization of the Hénon attractor can be done in the following manner.
Consider an initial point px0,y0q “ p0, 0q. Taking this point and iterating

Equation (7.19) and plotting the results on the (xn`1,yn`1) plane, we can
get a sketch of the dynamics of the Hénon map. Note that if we plot the
points xn “ Fnp0, 0q they accumulate, for n Ñ 8, on a convoluted fractal
set A known as the Hénon attractor. An iteration of 20,000 with initial point
(0, 0) is plotted in Figure 7.1 (See Figure 1 in [SWYZ09], [Rue06], Fig. 1 in
[Wen14]). An Henon attractor is also illustrated in a Mathematica notebook
in the appendix.

In the remaining part of this example, we will discuss the experiments
related to computing an over-approximation of the positive invariant set
using our zonotope abstraction absed CP algorithm. The CP algorithm has
an abstract version F7 of the Hénon map F, already provided by abstract
interpretation. The remaining operations of the algorithm remain the same.
For instance, the algorithm requires the split operator, as well as a notion of
size of abstract elements (to ensure termination by avoiding splitting beyond
a certain size), intersection test, inclusion test and the coverage heuristic
for splitting. The candidate invariant provided to the algorithm is the box
r´2, 2s ˆ r´2, 2s.

Recall that, we proved through Lemma 7.16 that our CP algorithm finds
an outer-approximation of the positive invariant. We ran the algorithm and
removed the abstract elements which are not part of the positive invariant
set and the result we obtained is illustrated in Figure 7.2. The figure shows
boxes with three colors: the ones in blue belong to the positive invariant set;
the ones in pink, their state could not be decided by the algorithm and the
red ones are the images of abstract elements (blue and pink) by an iteration
of the Hénon map in the abstract domain used for computing the positive
invariant set. Thus, we get an outer-approximation of the positive invariant
set upto a precision criterion. Note that the map applied is only F. Later, we
will illustrate some experiments with F2, F3 and F4 maps. We adapted our CP
algorithm for using the functions Fn where n P N. We present the modified
algorithm in Algorithm 7.1.

139

7. Invariants of Dynamical Systems

Algorithm 7.1 – The zonotopic variant of the CP based AI algorithm 4.1 for
inferring inductive invariants while considering an iterated map sequence
F, F2, ¨ ¨ ¨ , Fn

FunctiontSearchInvariantutI7, F7, T 7u
T 7 Ð T 7 X F7pT 7q // Tightening the target invariant
search space & final solution set, a set of zonotopes G7 :“

T 7
(

while G7 ‰ H do

S7 Ð pop a zonotope from G7 // Based on minimum coverage
if F7pS7q Ď YiS

7

i and F7pF7pS7qq Ď YiS
7

i ¨ ¨ ¨ and F7npS7q Ď YiS
7

i then

return G7 Y

S7
(

else if pcoveragepS7,G7 Y

S7
(

q “ 0 or sizepS7q ă εs or S7 is not useful q
then

remove S7

else if sizepS7q ă εs then

return failure
else

split S7 into a set

S
7

1,S72, ¨ ¨ ¨
(

such that S7 “ YiS
7

i

push

S
7

1,S72, ¨ ¨ ¨
(

into G7

EndFunction

Note that in Algorithm 7.1 when an iterated map sequence the map
F, F2, ¨ ¨ ¨ , Fn is considered, an element is benign only if it satisfies the condi-
tion:

F7pS7q Ď YiS
7

i and F7pF7pS7qq Ď YiS
7

i ¨ ¨ ¨ and F7
k
pS7q Ď YiS

7

i.

Recall that for splitting we still need a sound coverage measure, and we
compute it as explained below.

Coverage Recall the coverage measure from Chapter 4 in Section 4.3. We
rewrite below the Equation (4.4) that defines coverage

coveragepS7kq :“
ř

volpF7pS
7

kq X cntpP7qq | P7 P postpS7kq
(

volpF7pS
7

kqq
(7.21)

Recall that the map post in Equation (7.21) is computed as

postpS7kq :“

P7 P B7 | F7pS
7

kq X P
7 ‰ H

(

(7.22)

Please follow Chapter 4 and 5 for the definition of partitions P7 P B7. In
Chapter 5 under Section 5.7 we developed a heuristic measure for the coverage
computation that is sound enough to select abstract elements which require
immediate action. This heuristic measure (already defined in Equation (5.21))
is

coveragepS7kq :“
#tP7 | cntpP7q ‰ H,P7 P postpS7kqu

#tP7 | P7 P postpS7kqu
(7.23)

Now, for instance consider that we will be using the function F2. First, we will
compute the map post with respect to F2. We will denote this new post as
postppostpS7kqq and can be defined as

postppostpS7kqq :“

P7 P B7 | F7pF7pS
7

kqq X P
7 ‰ H

(

(7.24)

140

7.2. The CP algorithm revisited

Now, we compute the coverage with respect to F and F2. They are:

coverage1pS
7

kq :“
#tP7 | cntpP7q ‰ H,P7 P postpS7kqu

#tP7 | P7 P postpS7kqu
(7.25)

coverage2pS
7

kq :“
#tP7 | cntpP7q ‰ H,P7 P postppostpS7kqqu

#tP7 | P7 P postppostpS7kqqu
(7.26)

Then we take the minimum from the two coverage values to prioritize the
splitting operation. Thus, in this manner we compute the coverage in Algo-
rithm 7.1. We remove an abstract element with the useless test if it is either
way useless with respect to F7 or F7pF7q.

Observe that the images (in red) of the abstract elements shown in Fig-
ures 7.2 are only the forward images of the abstract elements. If we compare
the images (in red) of the abstract elements shown in Figures 7.2 with the
Hénon attractor in Figure 7.1, the images or the set F7pY

i
Siq is related to the

Hénon attractor (fractal set).
The CP Algorithm had to rely heavily on splitting to obtain the set shown

in Figure 7.2. So, further we will experiment with the CP Algorithm 7.1
on the map sequence F, F2, ¨ ¨ ¨ , Fn and see if it helps to remove abstract
elements and obtain the attractor. For instance, the set in Figure 7.3 is obtained
on the map F, F2. We consider an abstract element is benign if F7pS7q Ď
YiS

7

i and F7pF7pS7qq Ď YiS
7

i. In blue are the abstract elements which are part
of the positive invariant set, in pink are the ones whose state could not be
decided by the algorithm and in red is the image of the abstract elements by a
loop iteration in the abstract domain used for computing the positive invariant
set. Similarly, we also experimented with F, F2, F3 and F, F2, F3, F4. Comparing
the set in Figures 7.3, 7.4 and 7.5 with the one in Figure 7.2, we observe that
the algorithm manages to further remove abstract elements which are not part
of the positive invariant set. However, this does not help much because the
over-approximaton due to the abstraction becomes larger (see the images of
the abstract elements in red in Figure 7.5) and eventually does not help the
tests in discarding elements.

Example 7.19 (Van-der-Pol oscillator) Now, we will consider a well-known
continuous time system, the Van-der-Pol oscillator. It is defined by

9x “ 2y

9y “ ´0.8x´ 10px2 ´ 0.21qy
(7.27)

with the initial set x0 P r´1.2, 1.2s and y0 P r´1.2, 1.2s. This example is
taken from [HK13].

We will use our CP algorithm for finding an over-approximation of the
positive invariant for Van-der-Pol oscillator. We derived a 2 order polynomial
after Taylor discretization for a step size t “ 0.05 as follows. Before we
illustrate the derivation, we will introduce briefly about Taylor approximation.
We detail it in Section 7.3. Consider a univariate function f which is k times
differentiable over the domain ra,bs P R. The k order Taylor approximation

141

7. Invariants of Dynamical Systems

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

x

y

Figure 7.1 – Hénon attractor

142

7.2. The CP algorithm revisited

-
1

.5
-

1
.0

-
0

.5
0

.0
0

.5
1

.0
1

.5

-
0

.4

-
0

.2

0
.0

0
.2

0
.4 -

1
.5

-
1

.0
-

0
.5

0
.0

0
.5

1
.0

1
.5-

0
.4

-
0

.2

0
.0

0
.2

0
.4

x

y

Figure 7.2 – An outer-approximation of the positive invariant set of Hénon
map (in blue are the abstract elements which are benign, in pink are the ones
whose state cannot be decided by the algorithm, and in red is the image
of the abstract elements by a loop iteration in the abstract domain used for
computing the positive invariant set)

143

7. Invariants of Dynamical Systems

-
1

.5
-

1
.0

-
0

.5
0

.0
0

.5
1

.0
1

.5

-
0

.4

-
0

.2

0
.0

0
.2

0
.4

-
1

.5
-

1
.0

-
0

.5
0

.0
0

.5
1

.0
1

.5-
0

.4

-
0

.2

0
.0

0
.2

0
.4

x

y

Figure 7.3 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2.

144

7.2. The CP algorithm revisited

-
2.0

-
1.5

-
1.0

-
0.5

0.0
0.5

1.0
1.5

-
0.6

-
0.4

-
0.2

0.0

0.2

0.4

-
2.0

-
1.5

-
1.0

-
0.5

0.0
0.5

1.0
1.5-

0.6

-
0.4

-
0.2

0.0

0.2

0.4

x

y

Figure 7.4 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3.

145

7. Invariants of Dynamical Systems

Figure 7.5 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4.

146

7.2. The CP algorithm revisited

of f at x “ c for some c P ra,bs is

pkpxq “ fpxq “ fpcq ` f
p1qpcqpx´ cq `

1
2
fp2qpcqpx´ cq2 ` ¨ ¨ ¨

`
1
k!
fp2qpcqpx´ cq2

(7.28)

such that fipcq denotes the i´th order derivative of f at x “ c.
Similarly, for multivariate functions, the k order Taylor approximation of a

multivariate function f at −Ñx “ −Ñc is given by

pkp
−Ñx q “ fp−Ñc q `

n
ÿ

i“1

˜

Bf

Bxi
p−Ñc q ¨ pxi ´ ciq

¸

` ¨ ¨ ¨

`
1
k!

ÿ

j1`j2`¨¨¨`jn“k

˜

Bkf

Bxj11 ¨ ¨ ¨ Bx
jn
n

p−Ñc q ¨
n
ź

i“1

pxi ´ ciq
ji

¸ (7.29)

Now, we will generate a second order Taylor approximation for the Van-
der-Pol oscillator defined by Equation (7.27) for t “ 0.05. The first order
derivative is given by

ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

which is the Equation (7.27) defining the Van-der-pol oscillator.
The second order derivative or the Jacobian is derived as:

˜

B 9x
Bx

B 9x
By

B 9y
Bx

B 9y
By

¸

ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

ˆ

0 2
´0.8´ 20xy ´10x2 ` 2.1

˙ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

ˆ

´1.6x´ 20x2y` 4.2y
´1.68x` 8x3 ` 2.81y´ 42x2y` 100x4y´ 40xy2

˙

.

To construct the polynomial we consider the following expansion:
ˆ

x
y

˙

`

ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

t`

ˆ

´1.6x´ 20x2y` 4.2y
´1.68x` 8x3 ` 2.81y´ 42x2y` 100x4y´ 40xy2

˙

t2

2
.

(7.30)

Hence, the discretized map obtained for t “ 0.05 is given by

x “ 0.998x` 0.10525y´ 0.025x2y,

y “ 0.01x3 ` 1.10851y´ 0.5525x2y` 0.125x4y` xp´0.0421´ 0.05y2q.
(7.31)

We also have illustrated the computation of this polynomial pictorially
in a Mathematica notebook shown in the appendix. Recall that by proof of
Lemma 7.16, our algorithm finds an over-approximation of positive invariant

147

7. Invariants of Dynamical Systems

set. Thus, when we ran the algorithm using the map provided in Equa-
tion (7.31), we obtain the set shown in Figure 7.6 (See the yellow region in Fig.
10 in [LMJZ17] which the authors claim to be the first positive invariant).

We ran the algorithm and removed the zonotopes which are not part of the
positive invariant set and the result we obtained is illustrated in Figures 7.6-
7.8. The figure shows boxes with three colors: the ones in blue belong to the
positive invariant set; the ones in pink, their state could not be decided by
the algorithm and the red ones are the images of abstract elements (blue and
pink) by an iteration of the map (Equation (7.46)) in the zonotope abstract
domain used for computing the invariant set.

Similar to the Hénon example, we conducted experiments with maps F2,
F3, F4 and F5. Again the aim of the experiment was the same, to see if using
the map sequence F, F2, ¨ ¨ ¨ , Fn helps in removing abstract elements which are
not part of the positive invariant set. We use the CP Algorithm 7.1 and the set
obtained with map sequence F, F2; F, F2, F3; F, F2, F3, F4 and F, F2, F3, F4, F5 are
shown in Figures 7.9–7.12. In blue are the abstract elements which are benign
under the condition:

F7pS7q Ď YiS
7

i and F7pF7pS7qq Ď YiS
7

i ¨ ¨ ¨ and F7
k
pS7q Ď YiS

7

i,

in pink are the ones whose state cannot be decided by the algorithm, and in red
is the image of the abstract elements by a loop iteration in the abstract domain
used for computing the positive invariant set. Comparing the set in Figure 7.8
with the ones in Figures 7.9–7.12 we observe that the algorithm manages to
remove abstract elements which are not part of the positive invariant set. Also,
the set in Figure 7.12 is related to the outer-approximation of the region of
attraction reported in Figure 2 by the authors in [HK13].

Remark 7.20. So, far we have conducted experiment on a continuous time
system by using its map obtained after Taylor based discretization. However,
we know that numerical integration methods provide only approximate values
for the solution. So, further in this chapter we will introduce Taylor models
and illustrate how they can be used to provide guaranteed bounds for the
flow of an ODE. Later we will evaluate a Taylor model for the Vanderpol
oscillator on each time step and apply our CP algorithm on every new Taylor
model obtained to compute the positive invariant set.

7.3 Taylor model approximation of flow map

Consider a function f defined over an interval domain D. Assume that
f can be expanded in the form a polynomial approximation. In order to
find an accurate or rigorous approximation for the function f one must also
consider approximation error. Thus, the approximation problem is: finding
the coefficients of a polynomial approximation p along with a rigorous bound
I such that ||f ´ p|| ď I. Developed by Berz and Makino [Ber99, MB03,
MB09, BM98, Jol11] a well-known tool for obtaining rigorous polynomial
approximations based on Taylor approximations is Taylor models. It can be
defined as follows.

Definition 7.21 (Taylor model) A Taylor model of order n ą 0 for a function
f defined over an interval domain D is represented by a pair pp, Iq formed by
a polynomial of degree n and an interval I, such that fpxq ´ Ppxq P I,@x P D.

148

7.3. Taylor model approximation of flow map

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 7.6 – An outer-approximation of the positive invariant for the Van-der-
Pol oscillator described by the map shown in Equation 7.31

Remark 7.22. The degree n polynomial P can be computed by the Taylor
expansion of the function f at a given point. The interval I is the remainder
interval which provides an enclosure for the approximation errors due to
truncation or rounding. Thus, taylor model can be seen as a tube around the
function f.

For computing the Taylor model approximation of a flow map, the steps
are:

• computing a Taylor expansion pn of order n for the flow map either by
using Lie derivates or by Picard iteration,

• and finding the remainder interval for the Taylor polynomial [RSÁ14,
Che15, Jol11, GP17, CAS12, SJJ17].

Remark 7.23. For the Example 7.19, a Taylor model can be derived which
would hold for just times in r0, 0.05s. As earlier, we can still apply our CP

149

7. Invariants of Dynamical Systems

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 7.7 – The image of abstract elements in Figure 7.6 by a loop iteration in
the abstract domain used for computing the positive invariant set

algorithm on this Taylor model and the test in Equation (7.9) should work.
We will derive a Taylor model for Van-der-Pol oscillator later in this chapter.

An ideal solution for a given IVP is to compute the map ϕf by solving
the given ODE analytically. However, this cannot be done exactly, since most
of the ODEs do not have closed form solutions. A classic approach is to
approximate the solution by a conservative Taylor model pp, Iq wherein the
Taylor polynomial is computed based on the higher-order Lie derivatives of
the vector field. Thus, a Lie derivative can de defined as follows.

Definition 7.24 (Lie derivative) Consider an ODE 9x “ fpx, tq (a continuous
time dynamical systems) and g be a variable in the state space such that
gpxptqq is a solution to the ODE. The Lie derivative Lf “ f ¨

`
`B{Bt of the

differentiable function gpxptqq is given by

Lfpgq “
Bg

Bx
¨ f`

Bg

Bt
(7.32)

150

7.3. Taylor model approximation of flow map

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 7.8 – Superposition of the two figures 7.6 and 7.7 showing the abstract
elements which belong to the invariant set

Remark 7.25. If g is k times differentiable, the higher order Lie derivatives of
it are defined recursively as

Lm`1
f pgq “ LfpL

m
f pgqq

for m “ 1, 2, . . . , k´ 1.

Thus, the polynomial pn of the order n Taylor model that over-
approximates the flow map can be computed as

gpxp0qq ` Lfpgpxp0qqqt` L2
fpgpxp0qqq

t2

2!
` ¨ ¨ ¨ ` Lnf pgpxp0qqq

tn

n!
(7.33)

In other words, Equation 7.33 is a Taylor expansion (see Definition 7.36) of
gpxptqq. We will recap the definitions of Taylor approximation later in this
section.

The polynomial p can also be computed by applying Picard iteration. We
will discuss it in the following section.

151

7. Invariants of Dynamical Systems

Figure 7.9 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2.

7.3.1 Picard iteration

One of the most important theorems in ODEs is to prove the existence of a so-
lution to an ordinary differential equation. Picard iteration plays a significant
role in proving the existence and it can de defined as follows.

Definition 7.26 (Picard iteration) Consider an ODE 9x “ fpxptq, tq and an
initial condition xp0q “ x0, the picard iteration sequence is defined as

x0ptq “ x0

xn`1ptq “ Pfpxq “ x0 `

ż t

0
fpxnpsq, sqds

(7.34)

where Pfpxq is called the Picard-Lindelöf operator.

Example 7.27 Consider an ODE 9x “ 2tp1 ´ xq with the initial condition
xp0q “ 2. The Picard iteration sequence with x0ptq “ 2 is given by

x1ptq “ 2`
ż t

0
2sp1´ 2qds “ 2´ t2

152

7.3. Taylor model approximation of flow map

Figure 7.10 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3.

x2ptq “ 2`
ż t

0
2sps2 ´ 1qds “ 2´ t2 `

t4

2

x3ptq “ 2`
ż t

0
2sps2 ´

s4

2
´ 1qds “ 2´ t2 `

t4

2
´
t6

6

Remark 7.28. Given an ODE, a n-order approximation to flow map (which
is assumed not to be known) can be computed by applying at most n Picard
iterations.

We will discuss further how Picard-Lindelöf operator can also be used to
compute the remainder interval of a Taylor model while over-approximating
a flow map over a time interval.

Consider an ODE given by

9x “ fpxptq, tq (7.35)

with the initial condition xp0q “ x0. Equation (7.35) is an initial value problem
in its general form. We are interested in solving this IVP to find xptq. Note that
the Picard operator in Equation (7.34) is related to the integral form of the IVP.
So, the solution of the IVP corresponds to the fixpoint of the Picard operator
Pfpxq. In other words, the solution of the Picard operator in Equation (7.34) is

153

7. Invariants of Dynamical Systems

Figure 7.11 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4.

also the solution of IVP. To find a fixpoint of the transformation Pfpxq using
Picard iteration, we start with the function x0ptq “ x0 and then iterate using
Equation (7.34) to produce the sequence of functions x0ptq, x1ptq, x2ptq, If
this sequence converges, the limit function will be a fixpoint of Pfpxq. Thus,
the problem of finding a solution to the differential equation is reduced to a
fixpoint problem

x “ Pfpxq.

If f is continuous on r0, tsˆRn and bounded there then Schauder’s fixpoint
theorem asserts the existence of a solution of an ODE over the interval r0, ts.
Schauder’s fixed-point theorem can be spelled as follows.

Definition 7.29 (Schauder’s Fixpoint Theorem [Con13]) Let K be a locally
convex topological vector space, and X Ă K be a non-empty, compact, and
convex set. Then given any continuous mapping f : XÑ X there exists x P X
such that fpxq “ x.

The Definition 7.29 can be generalized to Taylor models as follows.

Definition 7.30 (Schauder’s Fixpoint Theorem to obtain a Taylor Model for
the flow map) Let K be a Banach space, and X Ă K be a non-empty, compact,
and convex set. Let Pf be a continuous operator on the Banach space K, and

154

7.3. Taylor model approximation of flow map

Figure 7.12 – The set obtained using the CP Algorithm 7.1 upto a size criterion
for an iterated function sequence F, F2, F3, F4, F5.

PfpXq Ă X. Then there exists x P X such that Pf has a fixpoint in X, i.e.,
Pfpxq “ x.

If f is Lipschitz continuous (see Definition 7.31) then the operator Pfpxq is
contractive and its unique fixpoint defines the solution to the ODE. This is
asserted by Banach’s fixpoint theorem (See Definition 7.32).

Definition 7.31 (Lipschitz continuity) Consider a function f : X Ñ R. The
function f can be called Lipschitz continuous if there exists K P R, K ą 0 such
that @x,y P X the following inequality holds.

|fpxq ´ fpyq| ď K|x´ y| (7.36)

Definition 7.32 (Banach’s fixpoint theorem) Let pX,dq be a complete metric
space and g : XÑ X such that

dpgpxq,gpyqq ď cdpx,yq

for c P r0, 1s and @x,y P X. Then g has a unique fixed-point in X

Remark 7.33. The condition dpgpxq,gpyqq ď cdpx,yq makes g a contraction.
Hence, Banach’s fixpoint theorem is otherwise known as Contraction mapping
theorem.

155

7. Invariants of Dynamical Systems

Remark 7.34. As stated by the Banach’s fixpoint theorem (Definition 7.32)
Picard-Lindelöf operator is used to check the contraction of the solution on
an integration step in order to prove the existence and the uniqueness of the
solution of an IVP. Hence, this operator is to compute the remainder interval
of a Taylor model while over-approximating a flow map over a time interval.

Remark 7.35. Note that one of the challenging tasks in flowpipe construction
is to find a safe remainder interval such that the Taylor model ppfpx, tq, Ifq
is an over-approximation of the flow map ϕfpx, tq over t P r0, δs. In order to
find such a remainder interval one may start with an estimation, and then
conservatively check the contractiveness of the Picard operation. Note that,
the initial estimation may be incorrect. The initial estimate of the remainder
interval for an order n Taylor model approximation of a flow map can be
computed by Taylor-Lagrange formula (Definition 7.37):

1
pn` 1q!

Lk`1
f pϕfpx, ξqq ¨ tn`1 (7.37)

for some constant ξ between 0 and t.

Later, in this section we will illustrate how to derive a Taylor model. Before
that, we will introduce the definitions of Taylor approximation. An order n
Taylor expansion can be defined as follows.

Definition 7.36 (Taylor series) Consider a univariate function f which is
n times differentiable over the domain D “ ra,bs P R. The order n Taylor
approximation of f at x “ x0 for some x0 P D is given by

pnpxq “ fpxq “ fpx0q ` f
p1qpx0qpx´ x0q `

1
2
fp2qpx0qpx´ x0q

2
` ¨ ¨ ¨

`
1
n!
fp2qpx0qpx´ x0q

2
(7.38)

such that fipx0q denotes the i´th order derivative of f at x “ x0.

Definition 7.36 can be extended to function f that is n`1 times continuously
differentiable and it is defined as follows.

Definition 7.37 (Taylor-Lagrange Formula.) If f is n` 1 times continuously
differentiable on the domain D, then we can expand f in its Taylor series
around any point x0 P D and we have according to Lagrange formula:

@x P I, Dξ between x0 and x1, s.t fpxq “
ˆ n
ÿ

i“0

fpiqpx0q

i!
px´ x0q

i

˙

loooooooooooooomoooooooooooooon

pnpxq

`
fpn`1qpξq

pn` 1q!
px´ x0q

n`1

loooooooooooomoooooooooooon

rnpxq

(7.39)

wherein rnpxq “ fpxq ´ pnpxq is the Lagrange remainder.

Remark 7.38. If f is a continuous function and differentiable at least to order
n` 1 then the last term of the Taylor series is the remainder rnpxq.

Example 7.39 Let I P r´1, 1s, fpxq “ exppxq. Its Taylor series around x0 “ 0 is:
fpxq “

ř8

i“0
1
i! px

iq. Now consider its order 2 Taylor approximation: p2pxq “

156

7.3. Taylor model approximation of flow map

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

(a) The function exppxq

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

(b) A Taylor model p1`x` x
2

2! , r´0.45305, 0.45305sq
of order 2 for exppxq

Figure 7.13 – Taylor model over-approximation for the function exppxq

1 ` x ` 0.5x2. Thus, an order 2 Taylor model of the function exppxq over is
given by r´1, 1s

p1` x`
x2

2!
, r´0.45305, 0.45305sq (7.40)

such that remainder interval is obtained using the Lagrange formula (Equa-
tion 7.39) as 1

p2`1q! ¨ exppr´0.5, 0.5sq ¨ r´0.5, 0.5s3

In Figure 7.13b, the Taylor model (Equation 7.40) can be seen as a tube
around the function exppxq.

Operations on Taylor models. Consider two n-th order Taylor models T1 “

pp1, I1q and T2 “ pp2, I2q around x0 over the domain D. The addition operation
is defined as

T1 ` T2 “ pp1 ` p2, I1 ` I2q.

The multiplication operation is defined as

T1 ¨ T2 “ pp1¨2, I1¨2q

where p1¨2 is the part of the polynomial p1 ¨ p2 up to order n and

I1¨2 “ Bppeq ` Bpp1q ¨ I2 ` Bpp2q ¨ I1 ` I1 ¨ I2

where pe is the part of the polynomial p1 ¨p2 of orders pn` 1q to 2n, and Bppq
denotes a bound of p on the domain D.

The inverse derivation operation on Taylor models is given by

B´1pp, Iq “
ż bi

ai

pppxq ´ pepxq, pBppeq ` Iq ¨ rai,bisq (7.41)

Example 7.40 Consider the 2 order Taylor model shown in Equation (7.40) for
the function exppxq. We would like to compute:

p1` x`
x2

2!
, r´0.45305, 0.45305sq ¨ p1` x`

x2

2!
, r´0.45305, 0.45305sq

157

7. Invariants of Dynamical Systems

wherein p1` x` x2

2! , r´0.45305, 0.45305sq “ pp1, I1q and pp2, I2q “ pp1, I1q. The
resulting polynomial after removing the terms (Pe “ x3` 0.25x4) having order
ą 2 is

1` 2x` 2x2.

The remainder interval can be computed by evaluating the polynomial pe
over the interval r´1, 1s:

Bppeq “ pr´1, 1sq3 ` 0.25pr´1, 1sq4 “ r´1, 1.25s

Bpp1q¨I2 “ pr1, 1s`r´1, 1s`0.5pr´1, 1sq2q¨r´0.45305, 0.45305s “ r´1.13262, 1.13262s

Bpp2q¨I1 “ pr1, 1s`r´1, 1s`0.5pr´1, 1sq2q¨r´0.45305, 0.45305s “ r´1.13262, 1.13262s

I1 ¨ I2 “ r´0.45305, 0.45305s ¨ r´0.45305, 0.45305s “ r´0.20525, 0.20525s

Bppeq ` Bpp1q ¨ I2 ` Bpp2q ¨ I1 ` I1 ¨ I2 “ r´3.47050, 3.72050s

Thus, the 2 order Taylor model approximation for

p1` x`
x2

2!
, r´0.45305, 0.45305sq ¨ p1` x`

x2

2!
, r´0.45305, 0.45305sq

is
p1` 2x` 2x2, r´3.47050, 3.72050sq.

7.4 Examples: illustrating evaluation of remainder interval by

Picard operator

Example 7.41 In the following examples we will compute an n-th order Taylor
polynomial of the flow either by using Lie derivates or by Picard iteration.
Thereupon we will find an interval I such that evaluating the Picard operator
over ppn, Iq yields a Taylor model of the form ppn, Jq wherein J Ď I. In
other words, we wish to find an interval I over which the Picard iteration is
contractive.

Consider the ODE 9x “ fpxq “ sinpxq. We want to illustrate that the 3 order
Taylor model given by

x0 ` x0t` 0.5x0t
2, r´0.1, 0.1s

is an over-approximation of the solution xptq over the time r0, 0.02swith the ini-
tial condition xp0q “ x0 where x0 P r´1, 1s. The order 3 Taylor approximation
of fpxq is ppxq “ x´ x3

6 .
We wish to compute the polynomial p3 representing the Taylor expansion

of degree 3 for the flow map. Recall that this polynomial can be computed by
Lie derivatives or Picard iteration. We will compute the polynomial by Lie
derivates which are:

Lpxq “ x´
x3

6
,

L2pxq “ Lpx´
x3

6
q “ x´

2
3
x3 `

x5

2
,

and

L3pxq “ Lpx´
2
3
x3 `

x5

2
q “ x´

x3

6
´ 2x3 `

x5

3
`

5
2
x5 ´

5
12
x7.

158

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

The polynomial p3 is computed by considering the expansion around
x “ x0 and t “ 0, i.e.,

p3px0, tq “ x0 ` px0 ´
x3

0

6
qt` px´

2
3
x3

0 `
x5

0

12
q
t2

2!
` px0 ´

13
6
x3

0 ´
1

12
x5

0 `
5

72
x7

0q
t3

3!

Next, we compute a polynomial of order 3 for the truncated Lie series by
removing monomials of degree greater than 3. As a result, the polynomial
obtained is

p3 “ x0 ` x0t` 0.5x0t
2.

We wish to consider the Taylor model pp3, r´0.1, 0.1sq. We then evaluate the
Picard operator over pp3, r´0.1, 0.1sq to compute a Taylor model pp3, Jq. If
the Picard operator is contractive on pp3, r´0.1, 0.1sq, i.e., J Ď r´0.1, 0.1s then
pp3; r´0.1, 0.1sq is a valid over-approximation for the solution xptq over the
time interval r0, 0.02s.

Thus, the Taylor model Picard operator is given by

Pfpp3, r´0.1, 0.1sq “ x0 `

ż t

0
ppp3, r´0.1, 0.1sq ´

pp3, r´0.1, 0.1sq3

6
q (7.42)

In Equation (7.42), we will break the integration step into several sub-steps.
For instance, first we will compute the 3 order Taylor model approximation
for

pp3, r´0.1, 0.1sq2

followed by

1´
1
6
pp3, r´0.1, 0.1sq2

and finally

pp3, r´0.1, 0.1sqp1´
1
6
pp3, r´0.1, 0.1sq2q.

For computing the 3 order Taylor approximation of ppp3, r´0.1, 0.1sqq2 we
drop the terms with degree greater than 3 in

x2
0 ` x

2
0t

2 ` 0.25x2
0t

4 ` 2x2
0t` x

2
0t

2 ` x2
0t

3

and we obtain the 3 order polynomial as

x2
0 ` 2x2

0t,

and the remainder polynomial is given by

pe “ 2x2
0t

2 ` 0.25x2
0t

4 ` x2
0t

3.

We will use the Taylor model arithmetic of multiplication operator for two
Taylor models to compute the remainder interval:

Bppeq ` Bppq ¨ I` Bppq ¨ I` I ¨ I.

The bound of pe over the interval r´1, 1s can be computed as

159

7. Invariants of Dynamical Systems

Bppeq “ 2pr´1, 1sq2pr0, 0.02sq2 ` 0.25pr´1, 1sq2pr0, 0.02sq4 ` pr´1, 1sq2qpr0, 0.02sq3 “
r0.00000, 0.00081s

The bound of polynomial p3 over the interval I “ r´1, 1s is

Bppq “ r´1, 1s`pr´1, 1sqpr0, 0.02sq`0.5pr´1, 1sqpr0, 0.02sq2 “ r´1.02020, 1.02020s,

Bppq ¨ I “ r´0.10202, 0.10202s,

and
I1 ¨ I2 “ r´0.1, 0.1s ¨ r´0.1, 0.1s “ r0, 0.01s.

Thus, the remainder interval is

Bppeq ` Bppq ¨ I` Bppq ¨ I` I ¨ I “ r´0.20404, 0.21485s,

and the Taylor model approximation for ppp3, r´0.1, 0.1sqq2 is

px2
0 ` 2x2

0t, r´0.20404, 0.21485sq.

Using this we can compute the Taylor approximation of 1´ 1
6 pp3, r´0.1, 0.1sq2

which is
1´

1
6
px2

0 ` 2x2
0t, r´0.03581, 0.03401sq.

Next we will compute the 3 order Taylor approximation of

pp3, r´0.1, 0.1sqp1´
1
6
pp3, r´0.1, 0.1sq2q,

or

px0 ` x0t` 0.5x0t
2, r´0.1, 0.1sq ¨ p1´

1
6
px2

0 ` 2x2
0t, r´0.03581, 0.03401sq

wherein
px0 ` x0t` 0.5x0t

2, r´0.1, 0.1sq “ pp1, I1q,

and
p1´

1
6
px2

0 ` 2x2
0t, r´0.03581, 0.03401sq “ pp2, I2q.

The multiplication of two polynomials yield

x0 ´
x3

0

6
´
x3

0t

3
` x0t´

x3
0t

6
´
x3

0t
2

3
` 0.5x0t

2 ´
0.5
6
x3

0t
2 ´

0.5
3
x3

0t
3

wherein the remainder polynomial is given by

pe “ ´
x3

0t

3
´
x3

0t

6
´
x3

0t
2

3
´

0.5
6
x3

0t
2 ´

0.5
3
x3

0t
3.

The bound of the remainder polynomial can be computed as

Bppeq “ ´
1
3
pr´1, 1sq3pr0, 0.02sq ´

1
6
pr´1, 1sq3pr0, 0.02sq ´

1
3
pr´1, 1sq3pr0.02sq2´

0.5
6
pr´1, 1sq3pr0.02sq2 ´

0.5
3
pr´1, 1sq3pr0.02sq3 “ r´0.01017, 0.01017s

and the remaining bounds for calculating the remainder interval for the
multiplication operation are computed as follows:

160

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

Bpp1q “ r´1, 1s`pr´1, 1sqpr0, 0.02sq`0.5pr´1, 1sqpr0.02sq2 “ r´1.02020, 1.02020s

Bpp1q ¨ I2 “ r´1.02020, 1.02020s ¨ r´0.03581, 0.03401s

Bpp2q ¨ I1 “ pr´1, 1s ´
1
6
pr´1, 1sq2 ´

1
3
pr´1, 1sq2pr0, 0.02sq ¨ r´0.1, 0.1s

I1 ¨ I2 “ r´0.03581, 0.03401s ¨ r´0.1, 0.1s

Thus, the remainder interval of 3 order Taylor approximation for
pp3, r´0.1, 0.1sqp1´ 1

6 pp3, r´0.1, 0.1sq2q is

Bppeq ` Bpp1q ¨ I2 ` Bpp2q ¨ I1 ` I1 ¨ I2 “ r´0.15028, 0.15028s,

and the Taylor model approximation is given by

px0 ´
x3

0

6
` x0t` 0.5x0t

2, r´0.15028, 0.15028sq (7.43)

We substitute the Taylor model (Equation (7.43)) in Equation (7.42) and
the Picard operator becomes

Pfpp3, r´0.1, 0.1sq “ x0 `

ż t

0
px0 ´

x3
0

6
` x0s` 0.5x0s

2, r´0.15028, 0.15028sq

“ px0 ` x0t` x0
t2

2
, pBp´

x3
0

6
t` 0.5x0

t3

3
q ` r´0.15028, 0.15028sq ¨ r0, 0.02sq

“ pp3, pBp´
x3

0

6
t` 0.5x0

t3

3
q ` r´0.15028, 0.15028sq ¨ r0, 0.02sq

The bound of ´x
3
0

6 t` 0.5x0
t3

3 can be computed as

0.5
3
r´1, 1spr0, 0.02sq3q ´

1
6
pr´1, 1sq3r0, 0.02s “ r0.00333, 0.00333s.

Thus, the Picard operator over p3 ` r´0.1, 0.1s yield pp3, Jq, i.e.,

pp3, r´0.00307, 0.00307s.

As a result, the Picard operator is contractive on pp3, r´0.1, 0.1sq. This
suggests that pp3, r´0.1, 0.1sq is a valid over-approximation over the time
interval [0, 0.02].

Remark 7.42. The steps illustrated in the above example for constructing
a flowpipe produces a Taylor model that over-approximates the flow map
ϕfpx0, tq for t P r0, δs.

Example 7.43 As of now we saw how to evaluate if a Taylor model is an
over-approximation of a flow map. Now, we consider a two dimensional ODE
ˆ

9x
9y

˙

“ fpx,yq “
ˆ

1` y
´x2

˙

over the domain x P r´1, 1s, y P r´0.5, 0.5s. We

want to compute a 3 order Taylor model and then evaluate using the Picard
operator if this model is an over-approximation of the flow map over a time

161

7. Invariants of Dynamical Systems

interval t P r0, 0.02s. First, we will compute an order 3 polynomial. Recall that
the polynomial can be computed in two ways: (a) using a truncated Lie series
by computing Lie derivatives or (b) applying Picard iteration. Here, we will
use Picard iteration and the sequence is

p0px,y, tq “
ˆ

x
y

˙

p1px,y, tq “
ˆ

x
y

˙

`

ż t

0

ˆ

1` y
´x2

˙

ds “

ˆ

x` t
y

˙

p2px,y, tq “
ˆ

x
y

˙

`

ż t

0

ˆ

1` y
´px` sq2

˙

ds “

ˆ

x` t` yt
y

˙

p3px,y, tq “
ˆ

x
y

˙

`

ż t

0

ˆ

1` y
´px` s` ysq2

˙

ds “

ˆ

x` t` yt

y´ x2t´ xt2 ´ 1
3t

3

˙

Consider an initial estimate of the remainder interval as I0 “
ˆ

r´0.1, 0.1s
r´0.1, 0.1s

˙

The Picard operator is given by

Pfpp3, I0q “
ˆ

x
y

˙

`

ż t

0

ˆ

1` py´ x2s´ xs2 ´ 1
3s

3, r´0.1, 0.1sq
´ppx` s` ys, r´0.1, 0.1sqq2

˙

ds (7.44)

First, we will compute the 3 order Taylor model approximation for ppx`
t` yt, r´0.1, 0.1sqq2.

We will use the Taylor order arithmetic of multiplication operator for
Taylor models to compute the remainder interval.

The polynomial obtained after the multiplication is given by

x2 ` t2 ` y2t2 ` 2xt` 2xyt` 2yt2,

wherein the remainder polynomial is

Pe “ y
2t2.

The bound of the remainder polynomial can be computed as

Bppeq “ pr´0.5, 0.5sq2pr0, 0.02sq2 “ r0.00000, 0.00010s,

and the other bounds for calculating the remainder interval for the multiplica-
tion operation are computed as follows:

Bppq “ r´1, 1s ` r0, 0.02s ` r´0.5, 0.5s ¨ r0, 0.02s “ r´1.01000, 1.03000s

Bppq ¨ I “ r´0.10300, 0.10300s

I1 ¨ I2 “ r´0.1, 0.1s ¨ r´0.1, 0.1s “ r0, 0.01s

Hence the remainder interval is

Bppeq ` Bpp1q ¨ I2 ` Bpp2q ¨ I1 ` I1 ¨ I2 “ r´0.20600, 0.21610s,

162

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

and the 3 order Taylor approximation of px` t` yt, r´0.1, 0.1sq2 is

px2 ` t2 ` 2xt` 2xyt` 2yt2, r´0.20600, 0.21610sq.

As a result, the Picard operator in Equation (7.44) becomes

Pfpp3, I0q “
ˆ

x
y

˙

`

ż t

0

ˆ

1` py´ x2s´ xs2 ´ 1
3s

3, r´0.1, 0.1sq
´px2 ` s2 ` 2xs` 2xys` 2ys2, r´0.20600, 0.21610sq

˙

ds

“

ˆ

x
y

˙

`

ż t

0

ˆ

1` py´ x2s´ xs2 ´ 1
3s

3, r´0.1, 0.1sq
´x2 ´ s2 ´ 2xs´ 2xys´ 2ys2, r´0.21610, 0.20600sq

˙

ds

“

ˆ

x
y

˙

`

˜

t` yt, ppBp´x2 t2

2 ´ x
t3

3 ´
1
3
t3

12 q ` r´0.1, 0.1sq ¨ r0, 0.02sq
´x2t´ t3

3 ´ xt
2, ppBp´xyt2 ´ 2

3yt
3q ` r´0.21610, 0.20600sq ¨ r0, 0.02sq

¸

“

ˆ

px` t` yt, r´0.00200, 0.00200sq
py´ x2t´ t3

3 ´ xt
2, r´0.00433, 0.00412sq

˙

“

ˆ

px` t` yt, r´0.00200, 0.00200sq
py´ x2t´ t3

3 ´ xt
2, r´0.00433, 0.00412sq

˙

.

Accordingly, the Picard operator is contractive on
ˆ

px` t` yt, r´0.00200, 0.00200sq
py´ x2t´ t3

3 ´ xt
2, r´0.00433, 0.00412sq

˙

,

and hence it is a valid over-approximation over the time interval [0, 0.02].

Remark 7.44. Recall that one of the challenges in flowpipe construction is
the evaluation of a safe remainder interval I for a time interval such that the
Taylor model pp, Iq is an over-approximation of the flow map. By Banach
fixed-point theorem, this remainder interval is sufficient if the Picard operator
is contractive on pp, Iq. Initially, we estimate this interval and check the
contractiveness of Picard operator. However, this initial estimation can be
incorrect and may not result in a contractive interval.

Example 7.45 (Taylor model for Van-der-Pol oscillator) We will use the same
Vanderpol example described earlier in this chapter and was defined by

9x “ 2y

9y “ ´0.8x´ 10px2 ´ 0.21qy
(7.45)

with the initial set x0 P r´1.2, 1.2s and y0 P r´1.2, 1.2s. This example is
taken from [HK13]. We want to compute a 3 order Taylor model and then
evaluate using the Picard operator if this model is an over-approximation of
the flow map over a time interval t P r0, 0.05s with an initial estimate of the

remainder interval as I0 “
ˆ

r´0.1, 0.1s
r´0.1, 0.1s

˙

.

We first generate the Taylor polynomial by Lie derivatives sequence given
by

Lf

ˆˆ

x
y

˙˙

“

ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

163

7. Invariants of Dynamical Systems

L2
f

ˆˆ

x
y

˙˙

“

ˆ

´1.6x´ 20x2y` 4.2y
´1.68x` 8x3 ` 2.81y´ 42x2y` 100x4y´ 40xy2

˙

To construct the polynomial we consider the following expansion
ˆ

x
y

˙

`

ˆ

2y
´0.8x´ 10x2y` 2.1y

˙

t`

ˆ

´1.6x´ 20x2y` 4.2y
´1.68x` 8x3 ` 2.81y´ 42x2y` 100x4y´ 40xy2

˙

t2

2
.

(7.46)

After removing the monomials of degree greater than 3 the polynomial
obtained is

p3px,y, tq “

˜

x` 2yt´ 1.6x t
2

2 ` 4.2y t
2

2
y´ 0.8xt` 2.1yt´ 1.68x t

2

2 ` 2.81y t
2

2

¸

.

We start with the remainder estimate I0 “
ˆ

r´0.1, 0.1s
r´0.1, 0.1s

˙

for the order

3 Taylor expansion, and we compute the following order 3 Taylor model
extension of the Picard operation, i.e.,

Pfpp3, I0q “
ˆ

x
y

˙

`

ż t

0

ˆ

2b
´0.8a´ 10a2b` 2.1b

˙

ds (7.47)

wherein

a “ px` 2ys´ 1.6x
s2

2
` 4.2y

s2

2
, r´0.1, 0.1sq,

and

b “ py´ 0.8xs` 2.1ys´ 1.68x
s2

2
` 2.81y

s2

2
, r´0.1, 0.1sq.

We will simplify Equation (7.47) by computing the 3 order Taylor model
approximations of a2 and 10a2b before performing the integration step. We
will begin with

ppx` 2ys´ 1.6x
s2

2
` 4.2y

s2

2
, r´0.1, 0.1sqq2.

After multiplying the polynomials and dropping the monomials of degree
greater than 3 the polynomial obtained is

p “ x2 ` 4txy,

and the remainder polynomial is

pe “ ´1.6t2x2`0.64t4x2`4.2t2xy´3.2t3xy´3.36t4xy`4t2y2`8.4t3y2`4.41t4y2

The bound of the pe over x,y P r´1.2, 1.2s and t P r0, 0.05s is

Bppeq “ r´0.28723, 0.30741s.

The remaining bounds for computing the remainder interval for the Taylor
model approximation of a2 are

164

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

Bpx` 2ys´ 1.6x
s2

2
` 4.2y

s2

2
q ¨ r´0.1, 0.1s

“ r´1.32870, 1.32870s ¨ r´0.1, 0.1s “ r´0.13287, 0.13287s.

and hence the remainder interval can be computed as

r´0.28723, 0.30741s ` r´0.13287, 0.13287s ` r´0.13287, 0.13287s ` r´0.1, 0.1s ¨ r´0.1, 0.1s
“ r´0.28723, 0.30741s

So, the 3 order Taylor model approximation of a2 is

px2 ` 4txy, r´0.28723, 0.30741sq.

The next step is to compute the 3 order Taylor model approximation for
a2b or

px2`4txy, r´0.28723, 0.30741sqpy´0.8xt`2.1yt´1.68x
t2

2
`2.81y

t2

2
, r´0.1, 0.1sq

The 3 degree polynomial obtained is x2y with the remainder polynomial is

pe “ ´0.8tx3´0.84t2x3`2.1tx2y´1.795t2x2y´3.36t3x2y`4txy2`8.4t2xy2`5.62t3xy2,

whose bound evaluated over x,y P r´1.2, 1.2s and t P r0, 0.05s is

Bppeq “ r´0.64577, 0.64577s.

We compute the following bounds:

Bpx2`4txyq¨r´0.1, 0.1s “ r´0.28800, 1.72800s¨r´0.1, 0.1s “ r´0.17280, 0.17280s

Bpy´ 0.8xt` 2.1yt´ 1.68x
t2

2
` 2.81y

t2

2
q ¨ r´0.28723, 0.30741s

“ r´1.38074, 1.38074s ¨ r´0.28723, 0.30741s “ r´0.42445, 0.42445s

for calculating the remainder interval for the Taylor model approximation
of 10a2b which is

r´0.64577, 0.64577s ` r´0.17280, 0.17280s ` r´0.42445, 0.42445s`
r´0.28723, 0.30741s ¨ r´0.1, 0.1s “ r´1.27376, 1.27376s,

and hence the Taylor model approximation is

p10x2y, r´12.7376, 12.7376sq.

Substituting the Taylor model approximation of 10a2b in Equation (7.47)
we perform the integration step and the Picard operator is
˜

px` 2yt´ 1.6x t
2

2 ` 4.2y t
2

2 , pBp´1.68xt3 ` 2.81yt3q ` r´0.2, 0.2sq ¨ r0, 0.05sq
py´ 0.8xt´ 0.8yt2 ` 2.1yt´ 1.68x t

2

2 ` 2.81y t
2

2 , pBq ¨ r0, 0.05sq

¸

wherein B “ Bppeq ` r´0.1, 0.1s ` r´0.1, 0.1s ` r´12.7376, 12.7376s and

pe “ 0.8 ¨ 0.8x
t3

3
´ 2.1 ¨ 0.8y

t3

3
´ 1.68x

t3

6
` 2.81y

t3

6
´ 10x2yt.

165

7. Invariants of Dynamical Systems

The Picard operator yields a Taylor model pp3, I1q given by
˜

px` 2yt´ 1.6x t
2

2 ` 4.2y t
2

2 , r´0.01014, 0.01014sq
py´ 0.8xt´ 0.8yt2 ` 2.1yt´ 1.68x t

2

2 ` 2.81y t
2

2 , r´0.69012, 0.69012sq

¸

.

As a result, the Picard operator is not contractive on pp3, I0q.

Remark 7.46. If the Picard operator is not contractive on the initial estimate
of the remainder interval, normally the interval is shrunk and verified again
[RSÁ14, SC16]. We used Flow* [CÁS13] and also the prototype from [GP17] to
derive a Taylor model for the Vanderpol oscillator defined by Equation (7.45),
but could not evaluate an order 2 Taylor model for a time step t “ 0.05. The
reason for the remainder interval not being contractive is that the time interval
is too wide. Also, the initial estimate is too bounded.

We managed to derive an order 8 Taylor model (shown in Equations (7.48)
and (7.49)) for a step size of t “ 0.0007 and an initial remainder estimate of
r´0.00001, 0.00001s.

x “ 1.2 ˚ x` 2.4 ˚ t ˚ y` 2.52 ˚ t2 ˚ y´ 9.6e´ 1 ˚ t2 ˚ x`

1.124 ˚ t3 ˚ y´ 6.72e´ 1 ˚ t3 ˚ x´ 1.728e1 ˚ t2 ˚ x2 ˚ y`

2.541e´ 1 ˚ t4 ˚ y´ 2.248e´ 1 ˚ t4 ˚ x´ 2.304e1 ˚ t3 ˚ x ˚ y2´

2.4192e1 ˚ t3 ˚ x2 ˚ y` 4.608 ˚ t3 ˚ x3 ` 1.6802e´ 2 ˚ t5 ˚ y´

4.0656e´ 2 ˚ t5 ˚ x` r´8.7694e´ 8, 8.7694e´ 8s

(7.48)

y “ 1.2 ˚ y` 2.52 ˚ t ˚ y´ 9.6e´ 1 ˚ t ˚ x` 1.686 ˚ t2 ˚ y´

1.008 ˚ t2 ˚ x´ 1.728e1 ˚ t ˚ x2 ˚ y` 5.082e´ 1 ˚ t3 ˚ y´

4.496e´ 1 ˚ t3 ˚ x´ 3.456e1 ˚ t2 ˚ x ˚ y2 ´ 3.6288e1 ˚ t2 ˚ x2 ˚ y`

6.912 ˚ t2 ˚ x3 ` 4.2005e´ 2 ˚ t4 ˚ y´ 1.0164e´ 1 ˚ t4 ˚ x´

2.304e1 ˚ t3 ˚ y3 ´ 9.6768e1 ˚ t3 ˚ x ˚ y2 ´ 1.2384 ˚ t3 ˚ x2 ˚ y`

9.6768 ˚ t3 ˚ x3 ´ 2.30139e´ 2 ˚ t5 ˚ y´ 6.7208e´ 3 ˚ t5 ˚ x`

1.24416e2 ˚ t2 ˚ x4 ˚ y´ 8.4672e1 ˚ t4 ˚ y3 ´ 8.90208e1 ˚ t4 ˚ x ˚ y2`

5.074272e1 ˚ t4 ˚ x2 ˚ y` 2.4768e´ 1 ˚ t4 ˚ x3 ´ 1.0295e´ 2 ˚ t6 ˚ y`

3.06852e´ 3 ˚ t6 ˚ x` r´1.6266e´ 6, 1.6266e´ 6s

(7.49)

Further on we will use the Vanderpol oscillator from [CAS12] and defined
by

9x “ y

9y “ y´ x´ x2y
(7.50)

with the initial set x0 P r1.1, 1.4s and y0 P r2.35, 2.45s.

We compute a 6 order Taylor model that is an over-approximation of the
flow map over a time interval t P r0, 0.02s with an initial estimate of the

remainder interval as I0 “
ˆ

r´0.00001, 0.00001s
r´0.00001, 0.00001s

˙

.

166

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

The Taylor model obtained is given by the following Equations (7.51) and
(7.52)

x “ 1.25` 0.14999x` 2.4 ˚ 0.02` 0.05 ˚ 0.02 ˚ y´ 1.3 ˚ 0.0004´
0.0140625 ˚ 0.0004 ˚ y´ 0.525 ˚ 0.0004 ˚ x´ 2.55625 ˚ 0.000008´

0.009375 ˚ 0.0004 ˚ x ˚ y´ 0.027 ˚ 0.0004 ˚ x ˚ x´
0.1056966 ˚ 0.000008 ˚ y´ 0.0270625 ˚ 0.000008 ˚ x`

1.265805 ˚ 0.00000016` r´0.00000187, 0.00000391s

(7.51)

y “ 2.4` 0.05 ˚ y´ 2.60 ˚ 0.02´ 0.028125 ˚ 0.02 ˚ y´ 1.05 ˚ 0.02 ˚ x´
7.66875 ˚ 0.0004´ 0.01875 ˚ 0.02 ˚ x ˚ y´ 0.054 ˚ 0.02 ˚ x ˚ x´

0.3170898 ˚ 0.0004 ˚ y´ 0.0811875 ˚ 0.0004 ˚ x` 5.06322395 ˚ 0.000008´
0.001125 ˚ 0.02 ˚ x ˚ x ˚ y´ 0.003125 ˚ 0.0004 ˚ y ˚ y´ 0.02545312 ˚ 0.0004 ˚ x ˚ y`

0.2413125 ˚ 0.0004 ˚ x ˚ x` 0.02301684 ˚ 0.000008 ˚ y` 5.2348164 ˚ 0.000008 ˚ x`
20.6400466 ˚ 0.00000016´ 0.000375 ˚ 0.0004 ˚ x ˚ y ˚ y`

0.0041484 ˚ 0.0004 ˚ x ˚ x ˚ y` 0.0219375 ˚ 0.0004 ˚ x ˚ x ˚ x´
0.00365625 ˚ 0.000008 ˚ y ˚ y` 0.1990336 ˚ 0.000008 ˚ x ˚ y`

0.57141796 ˚ 0.000008 ˚ x ˚ x` 1.3241952 ˚ 0.00000016 ˚ y`
1.863067 ˚ 0.00000016 ˚ x´ 7.8098148 ˚ 0.0000000032` r´0.00000497, 0.00000411s

(7.52)

In Equations (7.51) and (7.52) is the first Taylor model in time r0, 0.02s. Recall
that methods relying on flowpipe construction approach compute a flowpipe
segment for every time step in an interval rt1, t2s of interest. Thus, the solution
to an IVP problem is the set union of these flowpipe segments computed
during the time interval rt1, t2s. For our experiment, we will do something
similar. We will evaluate a Taylor model on each time step and apply the CP
algorithm on it. For instance, starting with the initial set x0 P r1.1, 1.4s and
y0 P r2.35, 2.45s, we compute an approximation (collection of zonotopes) for
the states reachable from the initial set in time r0, 0.02s. We advance similarly
for a time interval r0, 6.70s. Thus, the positive invariant is the set union of the
zonotopes that cover the time interval r0, 6.70s.

The Taylor models over the time interval r0, 0.08s for a step size
of 0.02 is shown in the appendix. With a time step of 0.02 and or-
der 6 Taylor models, we managed to evaluate 335 Taylor model flow-
pipes over a time interval of r0, 6.70s. All the Taylor models are
shown in https://github.com/bibekkabi/Prototype_analyzerwithApron/
blob/master/Taylormodels_520.txt.

We apply our CP algorithm on every new Taylor model we evaluate on
each time step. For the time interval r0, 5.20s and r0, 6.70s the set obtained
are shown in Figure 7.14 amd 7.15. Each time we apply the CP algorithm,
we stop as soon as we find a set of abstract elements whose image by a loop
iteration in the abstract domain used for computing the positive invariant
set is included inside this set. Then, we again apply the algorithm on a new
Taylor model being evaluated. If we compare the Figure 7.15 with the Figure 1
in [CAS12] (which is illustrating the Taylor model flowpipes for the oscillator)
they are related. The authors in [CAS12] compute the Taylor model flowpipes

167

https://github.com/bibekkabi/Prototype_analyzerwithApron/blob/master/Taylormodels_520.txt
https://github.com/bibekkabi/Prototype_analyzerwithApron/blob/master/Taylormodels_520.txt

7. Invariants of Dynamical Systems

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 7.14 – The set obtained after using our CP Algorithm on every new
Taylor model (6 order) evaluated at each time step over an interval r0, 5.20s.

until oscillation is detected. We can do the same and evaluate Taylor model
flowpipes beyond 6.70 either by using smaller time step or by increasing the
order of Taylor models. For instance, we computed 340 Taylor models of
order 7 over a time interval r0, 6.80s for a time step t “ 0.02 and applied the
CP algorithm on these Taylor models. The set union of zonotopes that cover
the time interval r0, 6.80s approximating the positive invariant is shown in
Figure 7.16. A prototype analyzer, written in OCaml connected to APRON
Abstract Domain Library for finding positive invariant of continuous time
systems is available at https://github.com/bibekkabi/Continuous_time_
system_analyzer.

168

https://github.com/bibekkabi/Continuous_time_system_analyzer
https://github.com/bibekkabi/Continuous_time_system_analyzer

7.4. Examples: illustrating evaluation of remainder interval by Picard operator

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 7.15 – The set obtained after using our CP Algorithm on every new
Taylor model (6 order) evaluated at each time step over an interval r0, 6.70s.

169

7. Invariants of Dynamical Systems

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Figure 7.16 – The set obtained after using our CP Algorithm on every new
Taylor model (7 order) evaluated at each time step over an interval r0, 6.80s.

170

7.5. Conclusion

7.5 Conclusion

In this chapter, we have illustrated that it is possible to find an outer-
approximation of the positive invariant set for continuous dynamical systems
using our new algorithm based on constraint programming and zonotopes.
This time the functions analyzed by our method are developed in Taylor
models, which seems particularly well suited to use zonotopes.

171

Conclusion and Future Scope

In this thesis, we extend an existing framework combining abstract inter-
pretation and continuous constraint programming for numerical invariant
synthesis, by using more expressive underlying abstract domains, such as
zonotopes. As zonotopes are not closed under intersection, we had to ex-
tend the existing framework, in addition to designing new operations on
zonotopes, such as a novel splitting algorithm based on paving zonotopes
by sub-zonotopes and parallelotopes. We implemented this method on top
of the APRON library, and tested it on programs with non-linear loops that
present complex, possibly non-convex, invariants. We present some results
demonstrating both the interest of this splitting-based algorithm to synthesize
invariants on such programs, and the good compromise presented by its
use in combination with zonotopes with respect to its use with both simpler
domains such as boxes and octagons, and more expressive domains such as
polyhedra. The main contribution of the thesis is briefly reviewed as below.

• We explored in detail the CP based AI approaches for finding invariants.
We investigated the use of constraint-solving inspired algorithms for
inferring inductive invariants. The CP algorithm is characterized on a
numeric abstract domain, which takes care of the evaluation of the body
loop semantics and it works by iteratively splitting and tightening a set
of abstract elements until an inductive invariant is found.

• Our main contribution was to extend the type of abstract elements this
algorithm can rely on, in particular when there is no natural bisection
method. We instantiated it to the case of zonotopes, and demonstrated
that they provide a good tradeoff, in particular on non-linear programs,
and scale up much better than the same algorithm based on simpler
domains, such as boxes. These experiments conducted confirm that
zonotopes provide a very interesting trade-off between a general purpose
abstraction, that stand the comparison with simpler abstractions on basic
linear examples, but are also faster and more flexible for the abstraction
of more complex, non affine behaviors. In particular, the fact that they
allow representing inductive invariants with fewer elements will be even
more crucial for the scalability of the approach to higher dimension
programs.

• We also explored the use of such techniques for finding an over-
approximation of the reachable sets of continuous systems. This serves
as a good promise for hybrid system verification in future.

172

As a scope of future work there are several directions in which we would
like to extend our work. They are listed as follows.

• Using the CP framework based on zonotopic abstraction for finding
invariants in higher dimensional programs.

• Refining our method using tightening at each iteration of our algorithm,
possibly, for non-lattice abstract domains, based on splitting as well as
zonotope intersections.

• Recently complex zonotopes have had strong implication in proving
safety properties of hybrid systems providing a wider set of representa-
tion: non-polytopic as well as polytopic zonotopes [Adi18]. Thus, one
of our future endeavors is to extend the set-theoritic operations like
inclusion checking and splitting (introduced in Chapter 5), for complex
zonotopes.

173

Bibliography

[ABC05] Teodoro Alamo, José Manuel Bravo, and Eduardo F Camacho,
Guaranteed state estimation by zonotopes, Automatica 41 (2005),
no. 6, 1035–1043.

[Adi18] Santosh Arvind Adimoolam, A calculus of complex zonotopes for
invariance and stability verification of hybrid systems, Ph.D. thesis,
2018.

[AF92] David Avis and Komei Fukuda, A pivoting algorithm for convex
hulls and vertex enumeration of arrangements and polyhedra, Discrete
& Computational Geometry 8 (1992), no. 3, 295–313.

[AGG10] Assalé Adjé, Stéphane Gaubert, and Eric Goubault, Coupling
policy iteration with semi-definite relaxation to compute accurate
numerical invariants in static analysis, European Symposium on
Programming, Springer, 2010, pp. 23–42.

[AK11] Matthias Althoff and Bruce H Krogh, Zonotope bundles for the
efficient computation of reachable sets, 2011 50th IEEE conference
on decision and control and European control conference, IEEE,
2011, pp. 6814–6821.

[Alt15] Matthias Althoff, An introduction to cora 2015, Proc. of the Work-
shop on Applied Verification for Continuous and Hybrid Sys-
tems, 2015.

[Arb16] Matthew Arbo, Zonotopes and hypertoric varieties.

[AS12a] Gianluca Amato and Francesca Scozzari, The abstract domain of
parallelotopes, Electronic Notes in Theoretical Computer Science
287 (2012), 17–28.

[AS12b] , Random: R-based analyzer for numerical domains, Interna-
tional Conference on Logic for Programming Artificial Intelli-
gence and Reasoning, Springer, 2012, pp. 375–382.

[ASB08] Matthias Althoff, Olaf Stursberg, and Martin Buss, Reachability
analysis of nonlinear systems with uncertain parameters using conser-
vative linearization, Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, IEEE, 2008, pp. 4042–4048.

[ASB10] , Computing reachable sets of hybrid systems using a com-
bination of zonotopes and polytopes, Nonlinear analysis: hybrid
systems 4 (2010), no. 2, 233–249.

174

Bibliography

[ATS09] Alessandro Abate, Ashish Tiwari, and Shankar Sastry, Box in-
variance in biologically-inspired dynamical systems, Automatica 45
(2009), no. 7, 1601–1610.

[Bai97] Guy David Bailey, Tilings of zonotopes: Discriminantal arrange-
ments, oriented matroids and enumeration, University of Minnesota,
1997.

[Bap96] Philippe Baptiste, Disjunctive constraints for manufacturing schedul-
ing: Principles and extensions, International Journal of Computer
Integrated Manufacturing 9 (1996), no. 4, 306–310.

[BCC`] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, and Xavier Rival, Static anal-
ysis and verification of aerospace software by abstract interpretation,
AIAA Infotech@ Aerospace 2010, p. 3385.

[BCC`09] Olivier Bouissou, Eric Conquet, Patrick Cousot, Radhia Cousot,
Jérôme Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Lau-
rent Mauborgne, Antoine Miné, et al., Space software validation
using abstract interpretation, The International Space System En-
gineering Conference: Data Systems in Aerospace-DASIA 2009,
vol. 1, European Space Agency, 2009, pp. 1–7.

[BCC`15] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, Xavier Rival, et al., Static
analysis and verification of aerospace software by abstract interpreta-
tion, Foundations and Trends® in Programming Languages 2
(2015), no. 2-3, 71–190.

[BCT12] Bruno Belin, Marc Christie, and Charlotte Truchet, Interactive
urban planning with local search techniques: the sustains project,
CompSust’12-3rd International Conference on Computational
Sustainability, 2012.

[BCT14] , Interactive design of sustainable cities with a distributed local
search solver, International Conference on AI and OR Techniques
in Constriant Programming for Combinatorial Optimization
Problems, Springer, 2014, pp. 104–119.

[Ber99] M Berz, Modern map methods in particle beam physics, Adv. Imag-
ing Electron Phys. 108 (1999), 1–318.

[BHZ08] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella, The parma
polyhedra library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software systems,
Science of Computer Programming 72 (2008), no. 1-2, 3–21.

[BKV96] Bernard Billoud, Milutin Kontic, and Alain Viari, Palingol: a
declarative programming language to describe nucleic acids’ secondary
structures and to scan sequence databases, Nucleic acids research
24 (1996), no. 8, 1395–1403.

175

Bibliography

[Bla99] Franco Blanchini, Set invariance in control, Automatica 35 (1999),
no. 11, 1747–1767.

[BM96] Franco Blanchini and Stefano Miani, Constrained stabilization of
continuous-time linear systems, Systems & control letters 28 (1996),
no. 2, 95–102.

[BM98] Martin Berz and Kyoko Makino, Verified integration of odes and
flows using differential algebraic methods on high-order taylor models,
Reliable computing 4 (1998), no. 4, 361–369.

[Boh92] Jochen Bohne, Eine kombinatorische analyse zonotopaler rau-
maufteilungen. univ., diss, 1992.

[Bra11] Aaron R Bradley, Sat-based model checking without unrolling, In-
ternational Workshop on Verification, Model Checking, and
Abstract Interpretation, Springer, 2011, pp. 70–87.

[CAS12] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan, Taylor
model flowpipe construction for non-linear hybrid systems, 2012 IEEE
33rd Real-Time Systems Symposium, IEEE, 2012, pp. 183–192.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan, Flow*:
An analyzer for non-linear hybrid systems, International Conference
on Computer Aided Verification, Springer, 2013, pp. 258–263.

[CC76] Patrick Cousot and Radhia Cousot, Static determination of dy-
namic properties of programs, Proceedings of the 2nd International
Symposium on Programming, Paris, France, Dunod, 1976.

[CC77] , Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,
Proceedings of POPL, ACM, 1977, pp. 238–252.

[CC79] , Systematic design of program analysis frameworks, Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, ACM, 1979, pp. 269–282.

[CCF`05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Ri-
val, The astrée analyzer, European Symposium on Programming,
Springer, 2005, pp. 21–30.

[CCF`06] , Combination of abstractions in the astrée static analyzer,
Annual Asian Computing Science Conference, Springer, 2006,
pp. 272–300.

[CCM11] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne, The
reduced product of abstract domains and the combination of decision
procedures, International Conference on Foundations of Software
Science and Computational Structures, Springer, 2011, pp. 456–
472.

176

Bibliography

[CDR98] Hélène Collavizza, François Delobel, and Michel Rueher, A note
on partial consistencies over continuous domains, International Con-
ference on Principles and Practice of Constraint Programming,
Springer, 1998, pp. 147–161.

[CDR99] Hélene Collavizza, François Delobel, and Michel Rueher, Com-
paring partial consistencies, Reliable computing 5 (1999), no. 3,
213–228.

[CH78] Patrick Cousot and Nicolas Halbwachs, Automatic discovery of
linear restraints among variables of a program, Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, ACM, 1978, pp. 84–96.

[Che68] NV Chernikoba, Algorithm for discovering the set of all the solutions
of a linear programming problem, USSR Computational Mathemat-
ics and Mathematical Physics 8 (1968), no. 6, 282–293.

[Che15] Xin Chen, Reachability analysis of non-linear hybrid systems us-
ing taylor models, Ph.D. thesis, Fachgruppe Informatik, RWTH
Aachen University, 2015.

[CJ09] Gilles Chabert and Luc Jaulin, Contractor programming, Artificial
Intelligence 173 (2009), 1079–1100.

[CK98] Alongkrit Chutinan and Bruce H Krogh, Computing polyhedral
approximations to flow pipes for dynamic systems, Proceedings of
the 37th IEEE Conference on Decision and Control (Cat. No.
98CH36171), vol. 2, IEEE, 1998, pp. 2089–2094.

[Com03] C Combastel, A state bounding observer based on zonotopes, 2003
European Control Conference (ECC), IEEE, 2003, pp. 2589–2594.

[Con13] John B Conway, A course in functional analysis, vol. 96, Springer
Science & Business Media, 2013.

[Cou81] Patrick Cousot, Semantic foundations of program analysis, Program
flow analysis: theory and applications, Prentice Hall, 1981.

[CR06] Frédéric Chavanon and Eric Remila, Rhombus tilings: decomposi-
tion and space structure, Discrete & Computational Geometry 35
(2006), no. 2, 329–358.

[CSS03] Michael A Colón, Sriram Sankaranarayanan, and Henny B
Sipma, Linear invariant generation using non-linear constraint solv-
ing, Proceedings of CAV, Springer, 2003, pp. 420–432.

[CZL08] Christophe Combastel, Qinghua Zhang, and Abdelhalim Lalami,
Fault diagnosis based on the enclosure of parameters estimated with
an adaptive observer, IFAC Proceedings Volumes 41 (2008), no. 2,
7314–7319.

[dB81] Nicolaas Govert de Bruijn, Algebraic theory of penrose’s non-
periodic tilings of the plane, Kon. Nederl. Akad. Wetensch. Proc.
Ser. A 43 (1981), no. 84, 1–7.

177

Bibliography

[DB86] NG De Bruijn, Dualization of multigrids, Le Journal de Physique
Colloques 47 (1986), no. C3, C3–9.

[DD05] Vianney Desoutter and Nicolas Destainville, Flip dynamics in
three-dimensional random tilings, Journal of Physics A: Mathemat-
ical and General 38 (2005), no. 1, 17.

[DDP16] Tommaso Dreossi, Thao Dang, and Carla Piazza, Parallelotope
bundles for polynomial reachability, Proceedings of the 19th In-
ternational Conference on Hybrid Systems: Computation and
Control, ACM, 2016, pp. 297–306.

[DFS04] Luiz Henrique De Figueiredo and Jorge Stolfi, Affine arithmetic:
concepts and applications, Numerical Algorithms 37 (2004), no. 1-4,
147–158.

[DGP`09] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim
Tekkal, and Franck Védrine, Towards an industrial use of fluctuat
on safety-critical avionics software, International Workshop on
Formal Methods for Industrial Critical Systems, Springer, 2009,
pp. 53–69.

[DHK12] Vijay D’Silva, Leopold Haller, and Daniel Kroening, Satisfiability
solvers are static analysers, International Static Analysis Sympo-
sium, Springer, 2012, pp. 317–333.

[DHK14] Vijay D’Silva, Leopold Haller, and Daniel Kroening, Abstract
satisfaction, ACM SIGPLAN Notices 49 (2014), no. 1, 139–150.

[DHKT12] Vijay D’Silva, Leopold Haller, Daniel Kroening, and Michael
Tautschnig, Numeric bounds analysis with conflict-driven learning,
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, Springer, 2012, pp. 48–63.

[DMB97] N Destainville, R Mosseri, and F Bailly, Configurational entropy of
codimension-one tilings and directed membranes, Journal of statisti-
cal physics 87 (1997), no. 3-4, 697–754.

[DMB08] Leonardo De Moura and Nikolaj Bjørner, Z3: An efficient smt
solver, International conference on Tools and Algorithms for the
Construction and Analysis of Systems, Springer, 2008, pp. 337–
340.

[DO18] Steven De Oliveira, Finding constancy in linear routines, Ph.D.
thesis, Université Paris-Saclay, 2018.

[dOBP16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto, Poly-
nomial invariants by linear algebra, International Symposium on
Automated Technology for Verification and Analysis, Springer,
2016, pp. 479–494.

[dOBP17] , Synthesizing invariants by solving solvable loops, Proceed-
ings of ATVA, Springer, 2017, pp. 327–343.

178

Bibliography

[Dre89] Andreas WM Dress, Oriented matroids and penrose-type tilings,
Lecture at thezSymposium on Combinatorics and Geometry",
organized by A. Bj orner, KTH Stockholm, 1989.

[DS07] David Delmas and Jean Souyris, Astrée: from research to indus-
try, International Static Analysis Symposium, Springer, 2007,
pp. 437–451.

[eeBO97] Fr ed eric Benhamou and William J Older, Interval constraints,
Journal of logic Programming 32 (1997), no. 1, 1–24.

[een11] Efficient implementation of property directed reachability, Proceed-
ings of the International Conference on Formal Methods in
Computer-Aided Design, FMCAD Inc, 2011, pp. 125–134.

[Eln97] Serge Elnitsky, Rhombic tilings of polygons and classes of reduced
words in coxeter groups, journal of combinatorial theory, Series A
77 (1997), no. 2, 193–221.

[ERNF15] Andreas Eggers, Nacim Ramdani, Nedialko S Nedialkov, and
Martin Fränzle, Improving the sat modulo ode approach to hybrid
systems analysis by combining different enclosure methods, Software
& Systems Modeling 14 (2015), no. 1, 121–148.

[Fel12] Stefan Felsner, Geometric graphs and arrangements: some chapters
from combinatorial geometry, Springer Science & Business Media,
2012.

[Fer04] Jérôme Feret, Static analysis of digital filters, European Sympo-
sium on Programming, Springer, 2004, pp. 33–48.

[FFL05] J-A Ferrez, Komei Fukuda, and Th M Liebling, Solving the fixed
rank convex quadratic maximization in binary variables by a parallel
zonotope construction algorithm, European Journal of Operational
Research 166 (2005), no. 1, 35–50.

[FLGD`11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard,
Thao Dang, and Oded Maler, Spaceex: Scalable verification of
hybrid systems, International Conference on Computer Aided
Verification, Springer, 2011, pp. 379–395.

[Flo67] Robert W Floyd, Assigning meanings to programs, Mathematical
aspects of computer science 19 (1967), no. 19-32, 1.

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot, The zonotope
abstract domain taylor1+, International Conference on Computer
Aided Verification, Springer, 2009, pp. 627–633.

[GGP10a] , A logical product approach to zonotope intersection, Inter-
national Conference on Computer Aided Verification, Springer,
2010, pp. 212–226.

179

Bibliography

[GGP10b] Khalil Ghorbal, Eric Goubault, and Sylvie Putot, A logical prod-
uct approach to zonotope intersection, Proceedings of CAV, 2010,
pp. 212–226.

[GGTZ07] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zen-
nou, Static analysis by policy iteration on relational domains, Euro-
pean symposium on programming, Springer, 2007, pp. 237–252.

[Gho11] Khalil Ghorbal, Static analysis of numerical programs: constrained
affine sets abstract domain, Ph.D. thesis, Ecole Polytechnique X,
2011.

[GK10] Eugene Gover and Nishan Krikorian, Determinants and the vol-
umes of parallelotopes and zonotopes, Linear Algebra and its Appli-
cations 433 (2010), no. 1, 28–40.

[GLG08] Antoine Girard and Colas Le Guernic, Zonotope/hyperplane inter-
section for hybrid systems reachability analysis, International Work-
shop on Hybrid Systems: Computation and Control, Springer,
2008, pp. 215–228.

[GLMN14] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Nei-
der, Ice: A robust framework for learning invariants, Proceedings of
CAV, Springer, 2014, pp. 69–87.

[GMS16] David Gerault, Marine Minier, and Christine Solnon, Constraint
programming models for chosen key differential cryptanalysis, Inter-
national Conference on Principles and Practice of Constraint
Programming, Springer, 2016, pp. 584–601.

[GNMR16] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and
Dan Roth, Learning invariants using decision trees and implica-
tion counterexamples, ACM Sigplan Notices, vol. 51, ACM, 2016,
pp. 499–512.

[GNZ03] Leonidas J Guibas, An Nguyen, and Li Zhang, Zonotopes as
bounding volumes, Proceedings of the ACM-SIAM symposium
on Discrete algorithms, 2003, pp. 803–812.

[GP06] Eric Goubault and Sylvie Putot, Static analysis of numerical algo-
rithms, International Static Analysis Symposium, Springer, 2006,
pp. 18–34.

[GP09] , A zonotopic framework for functional abstractions, arXiv
preprint arXiv:0910.1763 (2009).

[GP15] , A zonotopic framework for functional abstractions, Formal
Methods in System Design 47 (2015), no. 3, 302–360.

[GP17] , Forward inner-approximated reachability of non-linear con-
tinuous systems, Proceedings of the 20th International Confer-
ence on Hybrid Systems: Computation and Control, ACM, 2017,
pp. 1–10.

180

Bibliography

[GPBG07] Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean
Gassino, Static analysis of the accuracy in control systems: Principles
and experiments, International Workshop on Formal Methods for
Industrial Critical Systems, Springer, 2007, pp. 3–20.

[GPV12] Eric Goubault, Sylvie Putot, and Franck Védrine, Modular static
analysis with zonotopes, International Static Analysis Symposium,
Springer, 2012, pp. 24–40.

[GS07a] Thomas Gawlitza and Helmut Seidl, Precise fixpoint computation
through strategy iteration, European symposium on programming,
Springer, 2007, pp. 300–315.

[GS07b] , Precise relational invariants through strategy iteration, Inter-
national Workshop on Computer Science Logic, Springer, 2007,
pp. 23–40.

[GSA`12] Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane
Gaubert, and Éric Goubault, Abstract interpretation meets convex
optimization, Journal of Symbolic Computation 47 (2012), no. 12,
1416–1446.

[GSV08] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkate-
san, Program analysis as constraint solving, ACM SIGPLAN No-
tices 43 (2008), no. 6, 281–292.

[GT06] Sumit Gulwani and Ashish Tiwari, Combining abstract interpreters,
ACM SIGPLAN Notices, vol. 41, ACM, 2006, pp. 376–386.

[GT08] , Constraint-based approach for analysis of hybrid systems,
International Conference on Computer Aided Verification,
Springer, 2008, pp. 190–203.

[HB12] Kryštof Hoder and Nikolaj Bjørner, Generalized property directed
reachability, International Conference on Theory and Applica-
tions of Satisfiability Testing, Springer, 2012, pp. 157–171.

[Hén76] Michel Hénon, A two-dimensional mapping with a strange attractor,
The Theory of Chaotic Attractors, Springer, 1976, pp. 94–102.

[HK02] Boris Hasselblatt and Anatole Katok, Handbook of dynamical
systems, Elsevier, 2002.

[HK13] Didier Henrion and Milan Korda, Convex computation of the
region of attraction of polynomial control systems, IEEE Transactions
on Automatic Control 59 (2013), no. 2, 297–312.

[HLZ96] Martin Henz, Stefan Lauer, and Detlev Zimmermann, Compoze-
intention-based music composition through constraint programming,
Tools with Artificial Intelligence, 1996., Proceedings Eighth IEEE
International Conference on, IEEE, 1996, pp. 118–121.

[Hoa69] Charles Antony Richard Hoare, An axiomatic basis for computer
programming, Communications of the ACM 12 (1969), no. 10,
576–580.

181

Bibliography

[HR11] Olga Holtz and Amos Ron, Zonotopal algebra, Advances in Math-
ematics 227 (2011), no. 2, 847–894.

[HST17] Zoltán Horváth, Yunfei Song, and Tamás Terlaky, A novel uni-
fied approach to invariance conditions for a linear dynamical system,
Applied Mathematics and Computation 298 (2017), 351–367.

[HST18] , Invariance preserving discretization methods of dynamical
systems, Vietnam Journal of Mathematics 46 (2018), no. 4, 803–
823.

[Ilo99] S Ilog, Revising hull and box consistency, Logic Programming:
Proceedings of the 1999 International Conference on Logic Pro-
gramming, MIT press, 1999, p. 230.

[Jau12] Luc Jaulin, Solving set-valued constraint satisfaction problems, Com-
puting 94 (2012), no. 2-4, 297–311.

[JM09] Bertrand Jeannet and Antoine Miné, Apron: A library of numerical
abstract domains for static analysis, Proceedings of CAV, Springer,
2009, pp. 661–667.

[Jol11] Mioara Maria Joldes, Rigorous polynomial approximations and ap-
plications, Ph.D. thesis, 2011.

[KdBdGZ52] Stephen Cole Kleene, NG de Bruijn, J de Groot, and Adri-
aan Cornelis Zaanen, Introduction to metamathematics, vol. 483,
van Nostrand New York, 1952.

[Ken93] Richard Kenyon, Tiling a polygon with parallelograms, Algorith-
mica 9 (1993), no. 4, 382–397.

[KGMP20] Bibek Kabi, Eric Goubault, Antoine Mine, and Sylvie Putot, Com-
bining zonotope abstraction and constraint programming for synthe-
sizing inductive invariants, International Workshop on Numerical
Software Verification, Springer, 2020.

[KGP16] Bibek Kabi, Eric Goubault, and Sylvie Putot, A concoction of
zonotope abstraction and constraint programming for finding an
invariant, https://swim2016.sciencesconf.org/data/pages/
Kabi_Goubault_Putot.pdf, 2016.

[KGP17] , Combining zonotope abstraction and constraint program-
ming for finding an invariant, https://asimod.in.tum.de/2017/
posters/Kabi_Bibek.pdf, 2017.

[KKP`15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski, Frama-c: A software analysis
perspective, Formal Aspects of Computing 27 (2015), no. 3, 573–
609.

[KMW16] Egor George Karpenkov, David Monniaux, and Philipp Wendler,
Program analysis with local policy iteration, International Confer-
ence on Verification, Model Checking, and Abstract Interpreta-
tion, Springer, 2016, pp. 127–146.

182

https://swim2016.sciencesconf.org/data/pages/Kabi_Goubault_Putot.pdf
https://swim2016.sciencesconf.org/data/pages/Kabi_Goubault_Putot.pdf
https://asimod.in.tum.de/2017/posters/Kabi_Bibek.pdf
https://asimod.in.tum.de/2017/posters/Kabi_Bibek.pdf

Bibliography

[Lat00] Matthieu Latapy, Generalized integer partitions, tilings of zonotopes
and lattices, Formal Power Series and Algebraic Combinatorics,
Springer, 2000, pp. 256–267.

[LCCG96] Sandrine Lyonnard, Gerrit Coddens, Yvonne Calvayrac, and
Denis Gratias, Atomic (phason) hopping in perfect icosahedral qua-
sicrystals al 70.3 pd 21.4 mn 8.3 by time-of-flight quasielastic neutron
scattering, Physical Review B 53 (1996), no. 6, 3150.

[LMJZ17] Thomas Le Mézo, Luc Jaulin, and Benoit Zerr, An interval ap-
proach to compute invariant sets, IEEE Transactions on Automatic
Control 62 (2017), no. 8, 4236–4242.

[LMR`98] Ph Lacan, Jean Noel Monfort, LVQ Ribal, A Deutsch, and
G Gonthier, Ariane 5-the software reliability verification process,
DASIA 98-Data Systems in Aerospace, vol. 422, 1998, p. 201.

[LP94] Claude Le Pape, Using a constraint-based scheduling library to solve
a specific scheduling problem, 1994.

[LSA`13] Vu Tuan Hieu Le, Cristina Stoica, Teodoro Alamo, Eduardo F
Camacho, and Didier Dumur, Zonotope-based set-membership esti-
mation for multi-output uncertain systems, 2013 IEEE International
Symposium on Intelligent Control (ISIC), IEEE, 2013, pp. 212–
217.

[LV92] Hervé Le Verge, A note on chernikova’s algorithm, Ph.D. thesis,
INRIA, 1992.

[LZZ11] Jiang Liu, Naijun Zhan, and Hengjun Zhao, Computing semi-
algebraic invariants for polynomial dynamical systems, Proceedings
of the ninth ACM international conference on Embedded soft-
ware, ACM, 2011, pp. 97–106.

[M`17] Antoine Miné et al., Tutorial on static inference of numeric in-
variants by abstract interpretation, Foundations and Trends® in
Programming Languages 4 (2017), no. 3-4, 120–372.

[Mac77a] Alan K Mackworth, Consistency in networks of relations, Artificial
intelligence 8 (1977), no. 1, 99–118.

[Mac77b] , On reading sketch maps, Department of Computer Sci-
ence, University of British Columbia, 1977.

[Mar14] Benjamin Martin, Rigorous algorithms for nonlinear biobjective opti-
mization, Ph.D. thesis, Université de Nantes, 2014.

[Mau04] Laurent Mauborgne, Astrée: Verification of absence of runtime error,
Building the Information Society, Springer, 2004, pp. 385–392.

[MB03] Kyoko Makino and Martin Berz, Taylor models and other validated
functional inclusion methods, International Journal of Pure and
Applied Mathematics 6 (2003), 239–316.

183

Bibliography

[MB09] , Rigorous integration of flows and odes using taylor mod-
els, Proceedings of the 2009 conference on Symbolic Numeric
Computation, ACM, 2009, pp. 79–84.

[MBR16] Antoine Miné, Jason Breck, and Thomas Reps, An algorithm
inspired by constraint solvers to infer inductive invariants in numeric
programs, Proceedings of ESOP, 2016, pp. 560–588.

[McM71] Peter McMullen, On zonotopes, Transactions of the American
Mathematical Society 159 (1971), 91–109.

[McM76] PETER McMullen, Polytopes with centrally symmetric facets, Israel
Journal of Mathematics 23 (1976), no. 3-4, 337–338.

[Min01] Antoine Miné, A new numerical abstract domain based on difference-
bound matrices, Programs as Data Objects, Springer, 2001, pp. 155–
172.

[Min04] , Weakly relational numerical abstract domains.(domaines
numériques abstraits faiblement relationnels)., Ph.D. thesis, École
Polytechnique, Palaiseau, France, 2004.

[Min06] , The octagon abstract domain, Higher-order and symbolic
computation 19 (2006), no. 1, 31–100.

[Mis99] Konstantin Mischaikow, The conley index theory: a brief introduc-
tion, Banach Center Publications 47 (1999), no. 1, 9–19.

[Mon74] Ugo Montanari, Networks of constraints: Fundamental properties
and applications to picture processing, Information sciences 7 (1974),
95–132.

[Moo69] Ramon E Moore, Interval analysis. 1966, Prince-Hall, Englewood
Cliffs, NJ (1969).

[NJC99] Nedialko S Nedialkov, Kenneth R Jackson, and George F Corliss,
Validated solutions of initial value problems for ordinary differential
equations, Applied Mathematics and Computation 105 (1999),
no. 1, 21–68.

[NO79] Greg Nelson and Derek C Oppen, Simplification by cooperating de-
cision procedures, ACM Transactions on Programming Languages
and Systems (TOPLAS) 1 (1979), no. 2, 245–257.

[NP19] Shannon Negaard-Paper, Attractors and attracting neighborhoods
for multiflows, arXiv preprint arXiv:1905.06473 (2019).

[NQ10] Duong Nguyen Que, Robust and generic abstract domain for static
program analyses: the polyhedral case, Ph.D. thesis, Paris, ENMP,
2010.

[PC09] André Platzer and Edmund M Clarke, Computing differential
invariants of hybrid systems as fixedpoints, Formal Methods in
System Design 35 (2009), no. 1, 98–120.

184

Bibliography

[Pel15] Marie Pelleau, Abstract domains in constraint programming, Else-
vier, 2015.

[PMR12] Olivier Ponsini, Claude Michel, and Michel Rueher, Combining
constraint programming and abstract interpretation for value analysis
of floating-point programs, 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation, IEEE, 2012,
pp. 775–776.

[PMTB13] Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric
Benhamou, A constraint solver based on abstract domains, Interna-
tional Workshop on Verification, Model Checking, and Abstract
Interpretation, Springer, 2013, pp. 434–454.

[PTB11] Marie Pelleau, Charlotte Truchet, and Frédéric Benhamou, Octag-
onal domains for continuous constraints, International Conference
on Principles and Practice of Constraint Programming, Springer,
2011, pp. 706–720.

[PTB14] , The octagon abstract domain for continuous constraints,
Constraints 19 (2014), no. 3, 309–337.

[Rei99] Victor Reiner, The generalized baues problem, New perspectives in
algebraic combinatorics 38 (1999), 293–336.

[RG13] Pierre Roux and Pierre-Loïc Garoche, Integrating policy iterations
in abstract interpreters, Automated Technology for Verification
and Analysis, Springer, 2013, pp. 240–254.

[RG14] , Computing quadratic invariants with min-and max-policy
iterations: A practical comparison, International Symposium on
Formal Methods, Springer, 2014, pp. 563–578.

[RG15] , Practical policy iterations, Formal Methods in System
Design 46 (2015), no. 2, 163–196.

[RGZ94] Jürgen Richter-Gebert and Günter M Ziegler, Zonotopal tilings
and the bohne-dress theorem, Contemporary Mathematics 178
(1994), 211–211.

[Ric53] Henry Gordon Rice, Classes of recursively enumerable sets and their
decision problems, Transactions of the American Mathematical
Society 74 (1953), no. 2, 358–366.

[RJGF12] Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, and Éric
Féron, A generic ellipsoid abstract domain for linear time invariant
systems, Proceedings of the 15th ACM international conference
on Hybrid Systems: Computation and Control, ACM, 2012,
pp. 105–114.

[RSÁ14] Xin Chen Rwth, Sriram Sankaranarayanan, and Erika Ábrahám,
Under-approximate flowpipes for non-linear continuous systems, 2014
Formal Methods in Computer-Aided Design (FMCAD), IEEE,
2014, pp. 59–66.

185

Bibliography

[RSY04] Thomas Reps, Mooly Sagiv, and Greta Yorsh, Symbolic implemen-
tation of the best transformer, International Workshop on Verifi-
cation, Model Checking, and Abstract Interpretation, Springer,
2004, pp. 252–266.

[RT16] Thomas Reps and Aditya Thakur, Automating abstract interpreta-
tion, International Conference on Verification, Model Checking,
and Abstract Interpretation, Springer, 2016, pp. 3–40.

[Rub18] Gianluca Amato Marco Rubino, Experimental evaluation of numer-
ical domains for inferring ranges, Electronic Notes in Theoretical
Computer Science 334 (2018), 3–16.

[Rue05] Michel Rueher, Solving continuous constraint systems, Interna-
tional Conference on Computer Graphics and Artificial Intelli-
gence, vol. 1, 2005, pp. 2–2.

[Rue06] David Ruelle, What is a strange attractor, Notices of the AMS 53
(2006), no. 7, 764–765.

[S`04] Richard P Stanley et al., An introduction to hyperplane arrange-
ments, Geometric combinatorics 13 (2004), 389–496.

[SBGC84] Dan Shechtman, Ilan Blech, Denis Gratias, and John W Cahn,
Metallic phase with long-range orientational order and no translational
symmetry, Physical review letters 53 (1984), no. 20, 1951.

[SC16] Julien Alexandre Dit Sandretto and Alexandre Chapoutot, Vali-
dated simulation of differential algebraic equations with runge-kutta
methods.

[Sch98] Alexander Schrijver, Theory of linear and integer programming,
John Wiley & Sons, 1998.

[SD07] Jean Souyris and David Delmas, Experimental assessment of as-
trée on safety-critical avionics software, International Conference
on Computer Safety, Reliability, and Security, Springer, 2007,
pp. 479–490.

[SDF97] Jorge Stolfi and Luiz Henrique De Figueiredo, Self-validated
numerical methods and applications, Monograph for 21st Brazilian
Mathematics Colloquium, IMPA, 1997.

[SDR`18] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik,
and Le Song, Learning loop invariants for program verification,
Advances in Neural Information Processing Systems, 2018,
pp. 7762–7773.

[Sha98] Paul Shaw, Using constraint programming and local search methods
to solve vehicle routing problems, International conference on prin-
ciples and practice of constraint programming, Springer, 1998,
pp. 417–431.

[She74] Geoffrey C Shephard, Combinatorial properties of associated zono-
topes, Canadian Journal of Mathematics 26 (1974), no. 2, 302–321.

186

Bibliography

[SHF96] Djamila Sam-Haroud and Boi Faltings, Consistency techniques for
continuous constraints, Constraints 1 (1996), no. 1-2, 85–118.

[SJJ17] Andrew Sogokon, Paul B Jackson, and Taylor T Johnson, Verify-
ing safety and persistence properties of hybrid systems using flowpipes
and continuous invariants, NASA Formal Methods Symposium,
Springer, 2017, pp. 194–211.

[SNÁ17] Stefan Schupp, Johanna Nellen, and Erika Ábrahám, Divide
and conquer: Variable set separation in hybrid systems reachability
analysis, arXiv preprint arXiv:1707.04851 (2017).

[Sor85] John Thomas Sorensen, A physiologic model of glucose metabolism
in man and its use to design and assess improved insulin therapies
for diabetes, Ph.D. thesis, Massachusetts Institute of Technology,
1985.

[SPV17] Gagandeep Singh, Markus Püschel, and Martin Vechev, Fast
polyhedra abstract domain, ACM SIGPLAN Notices, vol. 52, ACM,
2017, pp. 46–59.

[SSM04] Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna,
Constructing invariants for hybrid systems, International Workshop
on Hybrid Systems: Computation and Control, Springer, 2004,
pp. 539–554.

[SSM05] , Scalable analysis of linear systems using mathematical pro-
gramming, International Workshop on Verification, Model Check-
ing, and Abstract Interpretation, Springer, 2005, pp. 25–41.

[Sta98] Richard P Stanley, Hyperplane arrangements, parking functions and
tree inversions, Mathematical essays in honor of Gian-Carlo Rota,
Springer, 1998, pp. 359–375.

[Ste10] Shlomo Sternberg, Dynamical systems, Courier Corporation,
2010.

[SWYZ09] Liyong Shen, Min Wu, Zhengfeng Yang, and Zhenbing Zeng,
Finding positively invariant sets of a class of nonlinear loops via curve
fitting, Proceedings of the 2009 conference on Symbolic numeric
computation, ACM, 2009, pp. 185–190.

[TAC01] Charlotte Truchet, Gérard Assayag, and Philippe Codognet,
Visual and adaptive constraint programming in music., ICMC, 2001.

[Tar55] Alfred Tarski, A lattice-theoretical fixpoint theorem and its applica-
tions, Pacific journal of Mathematics 5 (1955), no. 2, 285–309.

[TER12] Aditya Thakur, Matt Elder, and Thomas Reps, Bilateral algorithms
for symbolic abstraction, International Static Analysis Symposium,
Springer, 2012, pp. 111–128.

[TLLR15] Aditya Thakur, Akash Lal, Junghee Lim, and Thomas Reps,
Posthat and all that: Automating abstract interpretation, Electronic
Notes in Theoretical Computer Science 311 (2015), 15–32.

187

Bibliography

[TS13] S Mojtaba Tabatabaeipour and Jakob Stoustrup, Set-membership
state estimation for discrete time piecewise affine systems using zono-
topes, 2013 European Control Conference (ECC), IEEE, 2013,
pp. 3143–3148.

[Tur37] Alan M Turing, On computable numbers, with an application to the
entscheidungsproblem, Proceedings of the London mathematical
society 2 (1937), no. 1, 230–265.

[Urb15] Caterina Urban, Static analysis by abstract interpretation of func-
tional temporal properties of programs, Ph.D. thesis, Paris, Ecole
normale supérieure, 2015.

[VGSM17] Yakir Vizel, Arie Gurfinkel, Sharon Shoham, and Sharad Malik,
Ic3-flipping the e in ice, International Conference on Verification,
Model Checking, and Abstract Interpretation, Springer, 2017,
pp. 521–538.

[Wen14] Haoran Wen, A review of the hénon map and its physical interpreta-
tions, Sch. Phys. Georg. Inst. Technol. Atlanta, GA 30332–0430
(2014), 1–9.

[Wey34] Hermann Weyl, Elementare theorie der konvexen polyeder, Com-
mentarii Mathematici Helvetici 7 (1934), no. 1, 290–306.

[WVL09] Jian Wan, Josep Vehi, and Ningsu Luo, A numerical approach to
design control invariant sets for constrained nonlinear discrete-time
systems with guaranteed optimality, Journal of Global Optimization
44 (2009), no. 3, 395–407.

[Zie12] Günter M Ziegler, Lectures on polytopes, vol. 152, Springer Science
& Business Media, 2012.

[ZRG17] Günter M Ziegler and Jürgen Richter-Gebert, 6: Oriented ma-
troids, Handbook of Discrete and Computational Geometry,
Third Edition, Chapman and Hall/CRC, 2017, pp. 159–184.

188

Appendices

190

Programs

Octagon

init {
x=[-1,1];
y=[-1,1];

}

body {
t=0.7*(x+y);
y=0.7*(x-y);
x=t;

}

goal {
x=[-2,2];
y=[-2,2];

}

Filter

init
{
x=[-0.1 ,0.1];
y=[-0.1 ,0.1];
}

body
{
r = 1.5*x - 0.7*y + [-0.1 ,0.1];
y = x;
x = r;
}

goal
{
x=[-4,4];
y=[-4,4];
}

Filter2

init {
x=[0 ,1];
y=[0 ,1];

}

body {
x = (3.0/4.0) * x - (1.0/8.0)* y;
y = x;

}

goal {
// This goal was not taken from the paper itself ,
// but was chosen as a reasonable property to prove.
x=[-0.2 ,1];
y=[-0.2 ,1];

}
/*
Example file: from LMCS '12: ACCURATE NUMERICAL INVARIANTS

by Adje , Gaubert , and Goubault
Figure 11: The program Filter

*/

/*
// Code from the paper:
x = [0,1];
y = [0,1];
while (true) {

x = (3/4)* x -(1/8)*y;
y = x;

}
*/

Arrow-Hurwicz

/* Example file: from ESOP '10: Coupling Policy Iteration with
Semi -definite Relaxation to Compute
Accurate Numerical Invariants in Static
Analysis by Adje , Gaubert , and Goubault

NOTE: This is a *modified* version of the Arrow -Hurwicz example

because it does not represent u and v as separate
variables , and it has no loop condition.

*/
/*

// Original code from
// http ://www.lix.polytechnique.fr/~adje/uploads/Codes.pdf
a = 1;b = -1;c = -1;r = 1/2;
u = [0, 1];v = [0, 1];x = [0, 3/2];y = [3/8, 11/8];
while (max(|x-u|, |y-v|) > 1e-9) {

u = x;
v = y;
x = u - r * (a * u + b * v);
y = v + (r / 2) * (b * u - c);
if (y <= 0) {

y = 0;
}

}
*/
init {

x = [0 ,1.5];
y = [0.375 ,1.375];

}
body {

// Note: We have removed the loop condition ,
// so u and v are temporary variables ,
// not carried from one iteration to the next.
// We have also substituted in constants a,b,c,r
u = x;
v = y;
x = u - 0.5 * (1 * u + (-1) * v);
y = v + (0.5 / 2) * ((-1) * u - (-1));
if (y <= 0) {

y = 0;
}

}
goal {
// Note: these bounds are not from the paper ,
// they are simply a reasonable guess.

x = [-1.73 ,1.73];
y = [-1.73 ,1.73];

}

Harm

init {
x0=[0 ,1];
x1=[0 ,1];

}

body {
x0p = x0; x1p = x1;
x0 = 0.95* x0p + 0.09975* x1p;
x1 = -0.1 *x0p + 0.95 *x1p;

}

goal {
// Bounds given in the Roux paper (Table 3)
x0=[-1.27 ,1.27];
x1=[-1.27 ,1.27];
// Goal from ESOP '10 paper (policy iteration goal)
//x=[-1.42 ,1.42];
//v=[-1.42 ,1.42];

}

/*
Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.8 (Harmonic oscillator)
ultimately from LMCS '12: ACCURATE NUMERICAL INVARIANTS
by Adje , Gaubert , and Goubault
Figure 12: An implementation of the Symplectic method

*/
/*

// Code from benchmarks tarball
node top(ix0 , ix1 : real) returns (x0, x1 : real);
let

assert(ix0 > 0. and ix0 < 1.);
assert(ix1 > 0. and ix1 < 1.);
x0 = ix0 -> 0.95 * pre x0 + 0.09975 * pre x1;
x1 = ix1 -> -0.1 * pre x0 + 0.95 * pre x1;

tel
*/
/*

// Original code from the Goubault paper
tau = 0.1;
x = [0,1];
v = [0,1];
while (true) {

x = (1-(tau / 2)) * x + (tau -((tau^3) / 4)) * v ;
v = -tau *x+(1-(tau / 2))* v ;

}
*/

Harm-reset

init {
x0=[0 ,1];
x1=[0 ,1];

}
body {

x0p = x0; x1p = x1;
x0 = 0.95* x0p + 0.09975* x1p;
x1 = -0.1 *x0p + 0.95 *x1p;
if ([0,1] > 0.5) {

x0 = 1;
x1 = 1;

}
}
goal {

// Bounds given in the Roux paper (Table 3) (for reset Ex8)
//x0=[-1.00 ,1.00];
//x1=[-1.01 ,1.01];
// Bounds given in the Roux paper (Table 3) (for original Ex8)
x0=[-1.27 ,1.27];
x1=[-1.27 ,1.27];
// Goal from ESOP '10 paper (policy iteration goal)
//x=[-1.42 ,1.42];
//v=[-1.42 ,1.42];

}
/* Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.8 (Harmonic oscillator reset)
ultimately from LMCS '12: ACCURATE NUMERICAL INVARIANTS
by Adje , Gaubert , and Goubault
Figure 12: An implementation of the Symplectic method */

/*
// Code from benchmarks tarball
node top(r : bool; ix0 , ix1 : real) returns (x0, x1 : real);
let

assert(ix0 > 0. and ix0 < 1.);
assert(ix1 > 0. and ix1 < 1.);
x0 = ix0 -> if r then 1. else 0.95* pre x0 + 0.09975* pre x1;
x1 = ix1 -> if r then 1. else -0.1*pre x0 + 0.95* pre x1;

tel
*/
/* Original code from the Goubault paper

tau = 0.1;
x = [0,1];
v = [0,1];
while (true) {

x = (1-(tau / 2)) * x + (tau -((tau^ 3) / 4)) * v ;
v = -tau *x+(1-(tau / 2))* v ;

}
*/

Harm-saturated

init {
x0=[0 ,1];
x1=[0 ,1];

}
body {

x0p = x0; x1p = x1;
x0 = 0.95* x0p + 0.09975* x1p;
x1 = -0.1 *x0p + 0.95* x1p;

if (x0 > 0.5) { x0 = 0.5; }
if (x0 < -0.5) { x0 = -0.5; }

}
goal {

// Bounds given in the Roux paper (Table 3)
x0=[-1.27 ,1.27];
x1=[-1.27 ,1.27];
// Goal from ESOP '10 paper (policy iteration goal)
//x=[-1.42 ,1.42];
//v=[-1.42 ,1.42];

}
/* Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.8 (Harmonic oscillator saturate)
ultimately from LMCS '12: ACCURATE NUMERICAL INVARIANTS
by Adje , Gaubert , and Goubault
Figure 12: An implementation of the Symplectic method

*/
/* Code from benchmarks tarball

node top(ix0 , ix1 : real) returns (sx0 , x0 , x1 : real);
let

assert(ix0 > 0. and ix0 < 1.);
assert(ix1 > 0. and ix1 < 1.);
x0=ix0 -> 0.95 * pre sx0 + 0.09975 * pre x1;
x1=ix1 -> -0.1 * pre sx0 + 0.95 * pre x1;
sx0=if x0 > 0.5 then 0.5 else if x0 <-0.5 then -0.5 else x0;

tel
*/
/*

// Original code from the Goubault paper
tau = 0.1;
x = [0,1];
v = [0,1];
while (true) {

x = (1-(tau / 2)) * x + (tau -((tau^3) / 4)) * v ;
v = -tau *x+(1-(tau / 2))* v ;

}
*/

Lead-lag

init {
// True initial conditions from paper:
x0 = [0,0];
x1 = [0,0];

}

body {
in0 = [-1,1];
x0p = x0; x1p = x1;

x0 = 0.499* x0p - 0.05* x1p + in0;
x1 = 0.010* x0p + x1p;

}

goal {
// Bounds given in the Roux paper (Table 3)
x0 = [-4.03 ,4.03];
x1 = [-20.41 ,20.41];

}
/* Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.3 (Discretized lead -lag controller)*/

/*
// Code from benchmarks tarball
node top(in0 : real) returns (x, y : real);
let

assert(in0 >= -1. and in0 <= 1.);
x = 0. -> 1.5 * pre x - 0.7 * pre y + 1.6 * in0;
y = 0. -> pre x;

tel
*/

Lead-lag-reset

init {
// True initial conditions from paper:
x0 = [0,0];
x1 = [0,0];

}

body {
in0 = [-1,1];
x0p = x0; x1p = x1;

x0 = 0.499* x0p - 0.05* x1p + in0;
x1 = 0.010* x0p + x1p;

if ([0,1] > 0.5) {
x0 = 1;
x1 = 1;

}

}

goal {
// Bounds given in the Roux paper (Table 3)
x0 = [-4.14 ,4.14];
x1 = [-21.41 ,21.41];

}
/* Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.3 (Discretized lead -lag controller)

*/
/*
// Code from benchmarks tarball
node top(r : bool; in0 : real) returns (x0 , x1 : real);
let

assert(in0 >= -1. and in0 <= 1.);
x0=0. -> if r then 1. else 0.499* pre x0 - 0.05* pre x1 + in0;
x1=0. -> if r then 1. else 0.01* pre x0 + pre x1;

tel
*/

Lead-lag-saturated

init {
// True initial conditions from paper:
x0 = [0,0];
x1 = [0,0];

}

body {
in0 = [-1,1];
x0p = x0; x1p = x1;

x0 = 0.499* x0p - 0.05* x1p + in0;
x1 = 0.010* x0p + x1p;

if (x0 > 50) { x0 = 50; }
if (x0 < -50) { x0 = -50; }

}

goal {
// Bounds given in the Roux paper (Table 3)
x0 = [-4.03 ,4.03];
x1 = [-20.41 ,20.41];

}
/* Example file:

Practical policy iterations
Roux and Garoche
Form Methods Syst Des 2015
DOI 10.1007/ s10703 -015 -0230 -7
Also known as Ex.3 (Discretized lead -lag controller)*/

/*
// Code from benchmarks tarball:
node top(in0 : real) returns (sx0 , x0, x1 : real);
let

assert(in0 >= -1. and in0 <= 1.);
x0=0. -> 0.499 * pre sx0 - 0.05 * pre x1 + in0;
x1=0. -> 0.01 * pre sx0 + pre x1;
sx0=if x0 > 50. then 50. else if x0 < -50. then -50. else x0;

tel
*/

Sine

init
{
x = [-1.57079632679 ,1.57079632679];
y=[0 ,0];
}

body
{
y=x - x^3/6 + x^5/120 - x^7/5040;
}

goal
{
x=[-2,2];
y=[-1.05 ,1.05];
}

/*
Example file from Leopold Haller 's benchmark
Original code from
http ://www.cprover.org/cdfpl/
Simple Taylor expansion of sine

=>
can prove a bound of 1.05 for the output
We wanted to illustrate that it works for tighter bounds

the vertical bar for y=0 is expected
(the inductive invariant must
include both the init state ,
where y=0, and the end state , where
y is the approximate sine)

*/

Newton

init {
x=[-1,1];
out =[0 ,0];

}

body {
y = x - x*x*x/6 + x*x*x*x*x/120 + x*x*x*x*x*x*x/5040;
z = 1 - x*x/2 + x*x*x*x/24 + x*x*x*x*x*x/720;
x = x - y / z;
out = x;

}

goal {
x=[-1,1];
out =[-0.56 ,0.56];

}
/*

Example file from Leopold Haller 's benchmark
Original code from
http ://www.cprover.org/cdfpl/
Newton iterations: one step
=>
can prove an output bound of 0.56

*/

Newton2

init {
x=[-1,1];
out =[0 ,0];

}

body {
y = x - x*x*x/6 + x*x*x*x*x/120 + x*x*x*x*x*x*x/5040;
z = 1 - x*x/2 + x*x*x*x/24 + x*x*x*x*x*x/720;
x = x - y / z;

y = x - x*x*x/6 + x*x*x*x*x/120 + x*x*x*x*x*x*x/5040;
z = 1 - x*x/2 + x*x*x*x/24 + x*x*x*x*x*x/720;
x = x - y / z;

out = x;
}

goal {
x=[-1,1];
out =[-0.1 ,0.1];

}
/*
Example file from Leopold Haller 's benchmark

Original code from
http ://www.cprover.org/cdfpl/
Newton iterations: two steps
=>
works for bound of 0.1

*/

Square root

init {
x=[0 ,1];
out =[0 ,0];

}

body {
out = 1 + 0.5*x - 0.125*x*x + 0.0625*x*x*x - 0.0390625*x*x*x*x;
}

goal {
x=[0 ,1];
out =[0 ,1.5];

}
/*

Example file from Leopold Haller 's benchmark
Original code from
http ://www.cprover.org/cdfpl/
Simple polynomial interpolation function for square root.
=>
we can prove that the output is <= 1.5
we can prove tighter bound (such as 1.4 or 1.39844)
using zonotopes but not using boxes and octagons

*/

Corner

init {
x=[0.9 ,1.1];
y=[0.9 ,1.1];

}

body {
d = (0.2 + x*x + y*y + 1.53*x*x*y*y)/2;
x = x / d;
y = y / d;

}

goal {
x=[-2.1 ,2.1];
y=[-2.1 ,2.1];

}

Henon
henonalpha_, beta_[{x_, y_}] := y + 1 - alpha x^2, beta x
list = NestListhenon[1.4, 0.3], {0, 0}, 20000;
ListPlotlist, Frame → True, FrameLabel → {x, y}

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

x

y

(*ManipulateListPlotNestListhenonalpha,0.3,{1,1},20000,
alpha,1.3,1.4,ContinuousAction→False*)

Van der Pol example from [HK13]

f[{x_, y_}] := -{-2 y, 0.8 x + 10 (x^2 - 0.21) y}

sp = StreamPlotf[{x, y}], {x, -2, 2}, {y, -2, 2}

-2 -1 0 1 2

-2

-1

0

1

2

sol = NDSolvex'[t] ⩵ f[{x[t], y[t]}][[1]],

y'[t] ⩵ f[{x[t], y[t]}][[2]], x[0] ⩵ -1.2, y[0] ⩵ -1.2, {x, y}, {t, 0, 10}

x → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

,

y → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

2 taylorDiscretization (copy).nb

rpp = ParametricPlot{x[t], y[t]} /. sol, {t, 0, 10}, PlotStyle → Black

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

Show[sp, rpp]

-2 -1 0 1 2

-2

-1

0

1

2

taylorDiscretization (copy).nb 3

Euler approxima�on of Van der Pol
deltaT = 0.05;

lp = NestList# + f[#] deltaT &, {-1.2, -1.2}, Ceiling10 deltaT;
onep = ListPlotlp, Joined → True, PlotStyle → Red, PlotRange → {{-2, 2}, {-2, 2}}

-2 -1 1 2

-2

-1

1

2

4 taylorDiscretization (copy).nb

Show[sp, rpp, onep]

-2 -1 0 1 2

-2

-1

0

1

2

Taylor approxima�on of Van der Pol

f2[{x_, y_}] := Gradfa, b, a, b /. a → x, b → y.f[{x, y}]

taylorDiscretization (copy).nb 5

lpt =

NestList# + f[#] deltaT + f2[#] deltaT^2 2 &, {-1.2, -1.2}, Ceiling10 deltaT;
taylorp = ListPlotlpt, Joined → True, PlotStyle → Darker[Green],

PlotRange → {{-2, 2}, {-2, 2}};
(*taylorp1=ListPlotlpt+0.1,lpt-0.1, Joined→True,PlotStyle→Darker[Green],

PlotRange→{{-2,2},{-2,2}},,Filling→{1→{2}};*)
Showsp, rpp, onep, taylorp

-2 -1 0 1 2

-2

-1

0

1

2

+ f[#] deltaT + f2[#] deltaT^2 2 &[{x, y}] // Simplify

0.998 x + 0.10525 y - 0.025 x2 y,

0.01 x3 + 1.10851 y - 0.5525 x2 y + 0.125 x4 y + x -0.0421 - 0.05 y2

6 taylorDiscretization (copy).nb

Style0.9980000000000001` x + 0.10525000000000002` y - 0.025000000000000005` x2 y,

0.010000000000000002` x3 + 1.1085125` y - 0.5525` x2 y + 0.12500000000000003` x4 y +

x -0.042100000000000005` - 0.05000000000000001` y2, Bold, FontSize → 20

0.998 x + 0.10525 y - 0.025 x2 y, 0.01 x3 + 1.10851 y -

0.5525 x2 y + 0.125 x4 y + x -0.0421 - 0.05 y2

f[{x_, y_}] := -{-y, x + 1 (x^2 - 1) y}

sp1 = StreamPlotf[{x, y}], {x, -3, 3}, {y, -3, 3}

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

sol1 = NDSolvex'[t] ⩵ f[{x[t], y[t]}][[1]],

y'[t] ⩵ f[{x[t], y[t]}][[2]], x[0] ⩵ 1.1, y[0] ⩵ 2.35, {x, y}, {t, 0, 10}

x → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

,

y → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

taylorDiscretization (copy).nb 7

Van der pol example from [CAS12]

In[10]:= f[{x_, y_}] := -{-y, x + 1 (x^2 - 1) y}

sp1 = StreamPlotf[{x, y}], {x, -3, 3}, {y, -3, 3}

Out[11]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

In[12]:= sol1 = NDSolvex'[t] ⩵ f[{x[t], y[t]}][[1]],

y'[t] ⩵ f[{x[t], y[t]}][[2]], x[0] ⩵ 1.1, y[0] ⩵ 2.35, {x, y}, {t, 0, 10}

Out[12]= x → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

,

y → InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

In[13]:= rpp1 = ParametricPlot{x[t], y[t]} /. sol1, {t, 0, 10}, PlotStyle → Black

Out[13]=
-2 -1 1 2

-2

-1

1

2

2 vanderpolcas12.nb

In[14]:= Show[sp1, rpp1]

Out[14]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

vanderpolcas12.nb 3

Taylor models

x = 1.250000000000000 + 0.149999999999999 * x + 2.400000000000000 * 0.020000000000000 +

0.050000000000000 * 0.020000000000000 * y + -1.300000000000010 * 0.000400000000000 +

-0.014062500000000 * 0.000400000000000 * y +

-0.525000000000001 * 0.000400000000000 * x + -2.556250000000010 *

0.000008000000000 + -0.009375000000000 * 0.000400000000000 * x * y +

-0.027000000000000 * 0.000400000000000 * x * x + -0.105696614583334 *

0.000008000000000 * y + -0.027062500000000 * 0.000008000000000 * x +

1.265805989583330 * 0.000000160000000 + [-0.00000187, 0.00000391];

y = 2.400000000000000 + 0.050000000000000 * y + -2.600000000000010 * 0.020000000000000 +

-0.028125000000000 * 0.020000000000000 * y + -1.050000000000010 *

0.020000000000000 * x + -7.668750000000010 * 0.000400000000000 +

-0.018750000000000 * 0.020000000000000 * x * y + -0.054000000000000 *

0.020000000000000 * x * x + -0.317089843750000 * 0.000400000000000 * y +

-0.081187500000001 * 0.000400000000000 * x + 5.063223958333320 * 0.000008000000000 +

-0.001125000000000 * 0.020000000000000 * x * x * y +

-0.003125000000000 * 0.000400000000000 * y * y +

-0.025453125000000 * 0.000400000000000 * x * y + 0.241312499999999 *

0.000400000000000 * x * x + 0.023016845703125 * 0.000008000000000 * y +

5.234816406249990 * 0.000008000000000 * x + 20.640046630859299 * 0.000000160000000 +

-0.000375000000000 * 0.000400000000000 * x * y * y +

0.004148437500000 * 0.000400000000000 * x * x * y +

0.021937500000000 * 0.000400000000000 * x * x * x +

-0.003656250000000 * 0.000008000000000 * y * y +

0.199033691406248 * 0.000008000000000 * x * y +

0.571417968749998 * 0.000008000000000 * x * x + 1.324195222218820 *

0.000000160000000 * y + 1.863067321777330 * 0.000000160000000 * x +

-7.809814881388410 * 0.000000003200000 + [-0.00000497, 0.00000411];

x = 1.297460774828650 + 0.000993529427083 * y + 0.149789783499999 * x +

2.344975851362140 * 0.020000000000000 + -0.000003750000000 * x * y +

-0.000010800000000 * x * x + 0.049311060068501 * 0.020000000000000 * y +

-0.020990298377979 * 0.020000000000000 * x + -1.450013867722650 *

0.000400000000000 + -0.000001279250000 * 0.020000000000000 * y * y +

-0.000383588980469 * 0.020000000000000 * x * y + -0.000978903656250 *

0.020000000000000 * x * x + -0.020369291332501 * 0.000400000000000 * y +

-0.523460001038831 * 0.000400000000000 * x + -2.438721423199720 *

0.000008000000000 + -0.000000150000000 * 0.020000000000000 * x * y * y +

-0.000020840625000 * 0.020000000000000 * x * x * y + 0.000008775000000 *

0.020000000000000 * x * x * x + -0.000064285425443 * 0.000400000000000 * y * y +

-0.009760990561122 * 0.000400000000000 * x * y + -0.021854946267443 *

0.000400000000000 * x * x + -0.104173089989881 * 0.000008000000000 * y +

0.078628556796722 * 0.000008000000000 * x + 1.668768707932040 * 0.000000160000000 +

0.000000001649037 * 0.000400000000000 * y * y * y +

0.000001043002865 * 0.000400000000000 * x * y * y +

0.000084863493700 * 0.000400000000000 * x * x * y +

0.000190747342518 * 0.000400000000000 * x * x * x +

0.000002708388674 * 0.000008000000000 * y * y +

0.000811266854204 * 0.000008000000000 * x * y +

0.002070039621642 * 0.000008000000000 * x * x +

0.000000000187136 * 0.000400000000000 * x * y * y * y +

0.000000054116128 * 0.000400000000000 * x * x * y * y +

0.000004028755362 * 0.000400000000000 * x * x * x * y +

-0.000001719243105 * 0.000400000000000 * x * x * x * x +

0.000000317575377 * 0.000008000000000 * x * y * y +

0.000044123128946 * 0.000008000000000 * x * x * y +

-0.000018578159556 * 0.000008000000000 * x * x * x + [-0.000005, 0.000005];

y = 2.344975851362140 + 0.049311060068501 * y +

-0.020990298377979 * x + -2.900027735445300 * 0.020000000000000 +

-0.000001279250000 * y * y + -0.000383588980469 * x * y +

-0.000978903656250 * x * x + -0.040738582665002 * 0.020000000000000 * y +

-1.046920002077670 * 0.020000000000000 * x +

-7.316164269599150 * 0.000400000000000 + -0.000000150000000 * x * y * y +

-0.000020840625000 * x * x * y + 0.000008775000000 * x * x * x +

-0.000128570850887 * 0.020000000000000 * y * y +

-0.019521981122245 * 0.020000000000000 * x * y + -0.043709892534886 *

0.020000000000000 * x * x + -0.312519269969641 * 0.000400000000000 * y +

0.235885670390167 * 0.000400000000000 * x + 6.675074831728170 * 0.000008000000000 +

-0.000000045376909 * 0.020000000000000 * y * y * y +

-0.000012570273660 * 0.020000000000000 * x * y * y +

-0.000930416667882 * 0.020000000000000 * x * x * y +

0.000852453574004 * 0.020000000000000 * x * x * x +

-0.003278347717570 * 0.000400000000000 * y * y +

-0.012955979927548 * 0.000400000000000 * x * y + 0.271573835910568 *

0.000400000000000 * x * x + 0.129357858163038 * 0.000008000000000 * y +

5.309022682764400 * 0.000008000000000 * x + 19.554460248285199 * 0.000000160000000 +

0.000000000001263 * 0.020000000000000 * y * y * y * y +

0.000000001501110 * 0.020000000000000 * x * y * y * y +

0.000000308371906 * 0.020000000000000 * x * x * y * y +

0.000017090963173 * 0.020000000000000 * x * x * x * y +

0.000018457241547 * 0.020000000000000 * x * x * x * x +

-0.000002044847252 * 0.000400000000000 * y * y * y +

-0.000247796329925 * 0.000400000000000 * x * y * y +

0.005601208918108 * 0.000400000000000 * x * x * y +

0.020438597603958 * 0.000400000000000 * x * x * x +

-0.001425966550607 * 0.000008000000000 * y * y +

0.216066804280903 * 0.000008000000000 * x * y + 0.433192114128132 *

0.000008000000000 * x * x + 1.325571097710350 * 0.000000160000000 * y +

-0.022250595729791 * 0.000000160000000 * x + -13.857181294106701 *

0.000000003200000 + 0.000000000000139 * 0.020000000000000 * x * y * y * y * y +

0.000000000058742 * 0.020000000000000 * x * x * y * y * y +

2 Taylormodelsnew.nb

0.000000008898612 * 0.020000000000000 * x * x * x * y * y +

0.000000462124328 * 0.020000000000000 * x * x * x * x * y +

-0.000000199803327 * 0.020000000000000 * x * x * x * x * x +

0.000000000118108 * 0.000400000000000 * y * y * y * y +

0.000000079252484 * 0.000400000000000 * x * y * y * y +

0.000007510353115 * 0.000400000000000 * x * x * y * y +

-0.000020500747434 * 0.000400000000000 * x * x * x * y +

-0.000104248648700 * 0.000400000000000 * x * x * x * x +

0.000000110874443 * 0.000008000000000 * y * y * y +

0.000022112852103 * 0.000008000000000 * x * y * y +

-0.001632329352903 * 0.000008000000000 * x * x * y +

-0.004232503557940 * 0.000008000000000 * x * x * x + -0.000034295568214 *

0.000000160000000 * y * y + -0.010297214428379 * 0.000000160000000 * x * y +

-0.026282515936326 * 0.000000160000000 * x * x + [-0.00001, 0.00001];

x = 1.343762120812580 + 0.001970769527200 * y +

0.149161222560479 * x + 2.284104820433750 * 0.020000000000000 +

-0.000000051277503 * y * y + -0.000015319685699 * x * y +

-0.000039103491315 * x * x + 0.048372527661454 * 0.020000000000000 * y +

-0.041791875530009 * 0.020000000000000 * x +

-1.592028846973500 * 0.000400000000000 + 0.000000000000660 * y * y * y +

-0.000000002580258 * x * y * y + -0.000000382514117 * x * x * y +

0.000000251650312 * x * x * x + -0.000005173419324 * 0.020000000000000 * y * y +

-0.000777484108005 * 0.020000000000000 * x * y +

-0.001741010640873 * 0.020000000000000 * x * x + -0.026521046375673 *

0.000400000000000 * y + -0.515564400964093 * 0.000400000000000 * x +

-2.289982762127380 * 0.000008000000000 + 0.000000000000075 * x * y * y * y +

0.000000000021646 * x * x * y * y + 0.000000001611502 * x * x * x * y +

-0.000000000687697 * x * x * x * x + -0.000000001724590 * 0.020000000000000 * y * y * y +

-0.000000500347746 * 0.020000000000000 * x * y * y +

-0.000037221622820 * 0.020000000000000 * x * x * y +

0.000033965688133 * 0.020000000000000 * x * x * x +

-0.000130270852546 * 0.000400000000000 * y * y +

-0.009888531190765 * 0.000400000000000 * x * y + -0.016192022784668 *

0.000400000000000 * x * x + -0.100535641042507 * 0.000008000000000 * y +

0.184278970194921 * 0.000008000000000 * x + 2.044088614581010 * 0.000000160000000 +

0.000000000000073 * 0.020000000000000 * y * y * y * y +

0.000000000061819 * 0.020000000000000 * x * y * y * y +

0.000000009179844 * 0.020000000000000 * x * x * y * y +

0.000000332895749 * 0.020000000000000 * x * x * x * y +

0.000000327738620 * 0.020000000000000 * x * x * x * x +

0.000000017956799 * 0.000400000000000 * y * y * y +

0.000004386037167 * 0.000400000000000 * x * y * y +

0.000183884216745 * 0.000400000000000 * x * x * y +

0.000345508632357 * 0.000400000000000 * x * x * x +

0.000010855234122 * 0.000008000000000 * y * y +

0.001626455712536 * 0.000008000000000 * x * y + 0.003639003852049 *

0.000008000000000 * x * x + 0.000000000004132 * 0.000400000000000 * y * y * y * y +

Taylormodelsnew.nb 3

0.000000001662825 * 0.000400000000000 * x * y * y * y + 0.000000205735154 *

0.000400000000000 * x * x * y * y + 0.000007244078502 * 0.000400000000000 * x * x * x * y +

-0.000007102395848 * 0.000400000000000 * x * x * x * x +

0.000000003630121 * 0.000008000000000 * y * y * y + 0.000001051401279 *

0.000008000000000 * x * y * y + 0.000078092268443 * 0.000008000000000 * x * x * y +

-0.000071324101806 * 0.000008000000000 * x * x * x + [-0.000009, 0.00001];

y = 2.284104820433750 + 0.048372527661454 * y +

-0.041791875530009 * x + -3.184057693947000 * 0.020000000000000 +

-0.000005173419324 * y * y + -0.000777484108005 * x * y +

-0.001741010640873 * x * x + -0.053042092751346 * 0.020000000000000 * y +

-1.031128801928190 * 0.020000000000000 * x +

-6.869948286382120 * 0.000400000000000 + -0.000000001724590 * y * y * y +

-0.000000500347746 * x * y * y + -0.000037221622820 * x * x * y +

0.000033965688133 * x * x * x + -0.000260541705092 * 0.020000000000000 * y * y +

-0.019777062381530 * 0.020000000000000 * x * y + -0.032384045569336 *

0.020000000000000 * x * x + -0.301606923127520 * 0.000400000000000 * y +

0.552836910584765 * 0.000400000000000 * x + 8.176354458324040 * 0.000008000000000 +

0.000000000000073 * y * y * y * y + 0.000000000061819 * x * y * y * y +

0.000000009179844 * x * x * y * y + 0.000000332895749 * x * x * x * y +

0.000000327738620 * x * x * x * x + -0.000000151962037 * 0.020000000000000 * y * y * y +

-0.000019505016723 * 0.020000000000000 * x * y * y +

-0.000683904856401 * 0.020000000000000 * x * x * y +

0.001620847642007 * 0.020000000000000 * x * x * x +

-0.003293760456925 * 0.000400000000000 * y * y +

0.000289475752754 * 0.000400000000000 * x * y + 0.292868151442852 *

0.000400000000000 * x * x + 0.233706537681607 * 0.000008000000000 * y +

5.230244782780160 * 0.000008000000000 * x + 17.882827958977700 * 0.000000160000000 +

0.000000000038134 * 0.020000000000000 * y * y * y * y +

0.000000013039331 * 0.020000000000000 * x * y * y * y +

0.000001215803377 * 0.020000000000000 * x * x * y * y +

0.000033176887379 * 0.020000000000000 * x * x * x * y +

0.000024043555475 * 0.020000000000000 * x * x * x * x +

-0.000003019269423 * 0.000400000000000 * y * y * y +

-0.000094570784590 * 0.000400000000000 * x * y * y +

0.006724253313122 * 0.000400000000000 * x * x * y +

0.017733161836865 * 0.000400000000000 * x * x * x +

0.000918763969927 * 0.000008000000000 * y * y + 0.223822022223906 *

0.000008000000000 * x * y + 0.273886467503252 * 0.000008000000000 * x * x +

1.274395031891770 * 0.000000160000000 * y + -1.945143601429410 *

0.000000160000000 * x + -19.478260107031701 * 0.000000003200000 +

0.000000000000005 * 0.020000000000000 * y * y * y * y * y +

0.000000000002273 * 0.020000000000000 * x * y * y * y * y +

0.000000000378396 * 0.020000000000000 * x * x * y * y * y +

0.000000026252562 * 0.020000000000000 * x * x * x * y * y +

0.000000642664873 * 0.020000000000000 * x * x * x * x * y +

-0.000000899012044 * 0.020000000000000 * x * x * x * x * x +

0.000000001165744 * 0.000400000000000 * y * y * y * y +

4 Taylormodelsnew.nb

0.000000269540031 * 0.000400000000000 * x * y * y * y +

0.000011864752566 * 0.000400000000000 * x * x * y * y +

-0.000077495924813 * 0.000400000000000 * x * x * x * y +

-0.000221624901250 * 0.000400000000000 * x * x * x * x +

0.000000035270696 * 0.000008000000000 * y * y * y +

-0.000030618855085 * 0.000008000000000 * x * y * y +

-0.003724434210715 * 0.000008000000000 * x * x * y +

-0.007886401324901 * 0.000008000000000 * x * x * x + -0.000137188369559 *

0.000000160000000 * y * y + -0.020574669671808 * 0.000000160000000 * x * y +

-0.046045758162329 * 0.000000160000000 * x * x + [-0.00002, 0.0002];

x = 1.388790528377040 + 0.002926807376751 * y +

0.148120633521254 * x + 2.217743353255480 * 0.020000000000000 +

-0.000000206767389 * y * y + -0.000034811768690 * x * y +

-0.000080371401216 * x * x + 0.047193116592683 * 0.020000000000000 * y +

-0.062151786069053 * 0.020000000000000 * x +

-1.724247782317400 * 0.000400000000000 + -0.000000000026620 * y * y * y +

-0.000000010824387 * x * y * y + -0.000001052768149 * x * x * y +

0.000001068596935 * x * x * x + -0.000011694429447 * 0.020000000000000 * y * y +

-0.001171122281104 * 0.020000000000000 * x * y +

-0.002269360567264 * 0.020000000000000 * x * x + -0.032392961755710 *

0.000400000000000 * y + -0.501407650374760 * 0.000400000000000 * x +

-2.112700866032790 * 0.000008000000000 + 0.000000000000003 * y * y * y * y +

0.000000000001975 * x * y * y * y + 0.000000000287383 * x * x * y * y +

0.000000011161452 * x * x * x * y + 0.000000003020595 * x * x * x * x +

-0.000000005971264 * 0.020000000000000 * y * y * y +

-0.000000928523470 * 0.020000000000000 * x * y * y +

-0.000048239972011 * 0.020000000000000 * x * x * y +

0.000073412958686 * 0.020000000000000 * x * x * x +

-0.000195154974095 * 0.000400000000000 * y * y +

-0.009748375354397 * 0.000400000000000 * x * y + -0.010201633605169 *

0.000400000000000 * x * x + -0.094865912898692 * 0.000008000000000 * y +

0.286825336626227 * 0.000008000000000 * x + 2.380573069100150 * 0.000000160000000 +

0.000000000001303 * 0.020000000000000 * y * y * y * y +

0.000000000430397 * 0.020000000000000 * x * y * y * y +

0.000000038224981 * 0.020000000000000 * x * x * y * y +

0.000000964086594 * 0.020000000000000 * x * x * x * y +

0.000000721195337 * 0.020000000000000 * x * x * x * x +

0.000000065296705 * 0.000400000000000 * y * y * y +

0.000010193504856 * 0.000400000000000 * x * y * y +

0.000290524200886 * 0.000400000000000 * x * x * y + 0.000448374696657 *

0.000400000000000 * x * x * x + 0.000024060043898 * 0.000008000000000 * y * y +

0.002394433871851 * 0.000008000000000 * x * y + 0.004626094901613 *

0.000008000000000 * x * x + 0.000000000022167 * 0.000400000000000 * y * y * y * y +

0.000000004664106 * 0.000400000000000 * x * y * y * y + 0.000000386805636 *

0.000400000000000 * x * x * y * y + 0.000009068664284 * 0.000400000000000 * x * x * x * y +

-0.000015966643929 * 0.000400000000000 * x * x * x * x +

0.000000012369347 * 0.000008000000000 * y * y * y + 0.000001916295773 *

Taylormodelsnew.nb 5

0.000008000000000 * x * y * y + 0.000099035725391 * 0.000008000000000 * x * x * y +

-0.000151283721521 * 0.000008000000000 * x * x * x + [-0.00001, 0.00001];

y = 2.217743353255480 + 0.047193116592683 * y +

-0.062151786069053 * x + -3.448495564634790 * 0.020000000000000 +

-0.000011694429447 * y * y + -0.001171122281104 * x * y +

-0.002269360567264 * x * x + -0.064785923511421 * 0.020000000000000 * y +

-1.002815300749520 * 0.020000000000000 * x +

-6.338102598098360 * 0.000400000000000 + -0.000000005971264 * y * y * y +

-0.000000928523470 * x * y * y + -0.000048239972011 * x * x * y +

0.000073412958686 * x * x * x + -0.000390309948190 * 0.020000000000000 * y * y +

-0.019496750708795 * 0.020000000000000 * x * y + -0.020403267210338 *

0.020000000000000 * x * x + -0.284597738696077 * 0.000400000000000 * y +

0.860476009878683 * 0.000400000000000 * x + 9.522292276400600 * 0.000008000000000 +

0.000000000001303 * y * y * y * y + 0.000000000430397 * x * y * y * y +

0.000000038224981 * x * x * y * y + 0.000000964086594 * x * x * x * y +

0.000000721195337 * x * x * x * x + -0.000000273672332 * 0.020000000000000 * y * y * y +

-0.000019998958506 * 0.020000000000000 * x * y * y +

-0.000400467305555 * 0.020000000000000 * x * x * y +

0.002260342306117 * 0.020000000000000 * x * x * x +

-0.003168486782666 * 0.000400000000000 * y * y +

0.013704598605890 * 0.000400000000000 * x * y + 0.304184312374466 *

0.000400000000000 * x * x + 0.331906823692361 * 0.000008000000000 * y +

4.999438502677970 * 0.000008000000000 * x + 15.682999698478900 * 0.000000160000000 +

0.000000000201631 * 0.020000000000000 * y * y * y * y +

0.000000041932093 * 0.020000000000000 * x * y * y * y +

0.000002557453090 * 0.020000000000000 * x * x * y * y +

0.000046252499394 * 0.020000000000000 * x * x * x * y +

0.000016376060156 * 0.020000000000000 * x * x * x * x +

-0.000002780370495 * 0.000400000000000 * y * y * y +

0.000072403301582 * 0.000400000000000 * x * y * y +

0.007431097002517 * 0.000400000000000 * x * x * y +

0.014011038493892 * 0.000400000000000 * x * x * x +

0.003239782903041 * 0.000008000000000 * y * y + 0.221679942965125 *

0.000008000000000 * x * y + 0.102172960912431 * 0.000008000000000 * x * x +

1.172444868656590 * 0.000000160000000 * y + -3.806384018159250 *

0.000000160000000 * x + -24.374005375373901 * 0.000000003200000 +

0.000000000000027 * 0.020000000000000 * y * y * y * y * y +

0.000000000005407 * 0.020000000000000 * x * y * y * y * y +

0.000000000568726 * 0.020000000000000 * x * x * y * y * y +

0.000000027950411 * 0.020000000000000 * x * x * x * y * y +

0.000000493087093 * 0.020000000000000 * x * x * x * x * y +

-0.000001919285337 * 0.020000000000000 * x * x * x * x * x +

0.000000003516395 * 0.000400000000000 * y * y * y * y +

0.000000479163501 * 0.000400000000000 * x * y * y * y +

0.000011463007978 * 0.000400000000000 * x * x * y * y +

-0.000165002122827 * 0.000400000000000 * x * x * x * y +

-0.000323178151073 * 0.000400000000000 * x * x * x * x +

6 Taylormodelsnew.nb

-0.000000857425884 * 0.000008000000000 * y * y * y +

-0.000164589901815 * 0.000008000000000 * x * y * y +

-0.006032666279263 * 0.000008000000000 * x * x * y +

-0.010387488329342 * 0.000008000000000 * x * x * x + -0.000298249558236 *

0.000000160000000 * y * y + -0.029657811832356 * 0.000000160000000 * x * y +

-0.057277646086715 * 0.000000160000000 * x * x + [-0.00002, 0.00002];

Taylormodelsnew.nb 7

Titre : Synthèse d’invariants : une approche programmation par contraintes basée sur l’abstraction zonoto-
pique

Mots clés : Systèmes dynamiques, vérification de programme, génération d’invariants, interprétation abs-
traite, programmation par contraintes, zonotopes

Résumé : Les systèmes dynamiques sont des
modèles mathématiques pour décrire l’évolution tem-
porelle de l’état d’un système. Il y a deux classes
de systèmes dynamiques pertinentes à cette thèse :
les systèmes discrets et les systèmes continus.
Dans les systèmes dynamiques discrets (ou les
programmes informatiques classiques), l’état évolue
avec un pas de temps discrets. Dans les systèmes
dynamiques continus, l’état du système est fonction
du temps continu, et son évolution caractérisée par
des équations différentielles. Étant donné que ces
systèmes peuvent prendre des décisions critiques, il
est important de pouvoir vérifier des propriétés garan-
tissant leur sûreté. Par exemple, sur un programme,
l’absence de débordement arithmétique. Dans cette
thèse, nous développons un cadre pour la vérification
automatique des propriétés de sûreté des pro-
grammes. Un élément clé de cette vérification est la
preuve de propriétés invariantes. Nous développons
ici un algorithme pour synthétiser des invariants in-
ductifs (des propriétés vraies pour l’état initial, qui
sont stables dans l’évolution des états du programme,
donc sont toujours vraies par récurrence) pour des
programmes numériques. L’interprétation abstraite
(IA) est une approche traditionnelle pour la recherche
d’invariants inductifs des programmes numériques.
L’IA interprète les instructions du programme dans
un domaine abstrait (par exemple intervalles, octo-
gones, polyèdres, zonotopes), domaine qui est choisi
en fonction des propriétés à prouver. Un invariant in-
ductif peut être calculé comme limite possiblement in-
finie des itérées d’une fonctionnelle croissante. L’ana-
lyse peut recourir aux opérateurs d’élargissement
pour forcer la convergence, au détriment de la
précision. Si l’invariant n’est pas prouvé, une solu-
tion standard est de remplacer le domaine par un
nouveau domaine abstrait davantage susceptible de
représenter précisément l’invariant. La programma-

tion par contraintes (PPC) est une approche alter-
native pour synthétiser des invariants, traduisant un
programme en contraintes, et les résolvant en uti-
lisant des solveurs de contraintes. Les contraintes
peuvent opérer sur des domaines soit discrets, soit
continus. La programmation classique par contraintes
continues est basée sur un domaine d’intervalle, mais
peut approximer une forme invariante complexe par
une collection d’éléments abstraits. Une approche
existante combine IA et PPC, raffinant de façon
itérative, par découpage et contraction, une collection
d’éléments abstraits, jusqu’à obtenir un invariant in-
ductif. Celle-ci a été initialement présentée en com-
binaison avec intervalles et octogones. La nouveauté
de notre travail est d’étendre ce cadre au domaine
abstrait des zonotopes, un domaine sous-polyédrique
qui présente un bon compromis en terme de précision
et de coût. Cette extension demande de définir de
nouveaux opérateurs sur les zonotopes, pour per-
mettre le découpage et la contraction, ainsi que
d’adapter l’algorithme générique. Nous introduisons
notamment un nouvel algorithme de découpage de
zonotopes basé sur un pavage par sous-zonotopes
et parallélotopes. Nous proposons également des
alternatives à certains opérateurs existants sur les
zonotopes, mieux adaptés que les existants à la
méthode. Nous avons implémenté ces opérations
dans la bibliothèque APRON et avons testé l’ap-
proche sur des programmes présentant des inva-
riants complexes, éventuellement non convexes. Les
résultats démontrent un bon compromis par rapport
à l’utilisation de domaines simples, comme les inter-
valles et les octogones, ou d’un domaine plus cou-
teux comme les polyèdres. Enfin, nous discutons de
l’extension de l’approche pour trouver des ensembles
d’invariants positifs pour des systèmes dynamiques
continus.

Title : Synthesizing invariants : a constraint programming approach based on zonotopic abstraction

Keywords : Dynamical systems, program verification, invariant generation, abstract interpretation, constraint
programming, zonotopes

Abstract : Dynamical systems are mathematical mo-
dels for describing temporal evolution of the state of
a system. There are two classes of dynamical sys-
tems relevant to this thesis : discrete and continuous.
In discrete dynamical systems (or classical computer
programs), the state evolves in discrete time steps,
as described by difference equations. In continuous
dynamical systems, the state of the system is a func-
tion of continuous time, characterized by differential
equations. When we analyse the behaviour of a dy-
namical system, we usually want to make sure that
it satisfies a safety property expressing that nothing
bad happens. An example of a safety property of pro-
grams is the absence of arithmetic overflows. In this
thesis, we design a framework related to the automa-
tic verification of the safety properties of programs.
Proving that a program satisfies a safety property of
interest involves an invariance argument. We deve-
lop an algorithm for inferring invariants more preci-
sely inductive invariants (properties which hold du-
ring the initial state, remains stable under the pro-
gram evolution, and hence hold always due to induc-
tion) for numerical programs. A traditional approach
for finding inductive invariants in programs is abstract
interpretation (AI) that interprets the states of a pro-
gram in an abstract domain (intervals, polyhedra, oc-
tagon, zonotopes) of choice. This choice is made ba-
sed on the property of interest to be inferred. Using
the AI framework, inductive invariant can be computed
as limits of iterations of functions. However, for abs-
tract domains which feature infinite increasing chain,
for instance, interval, these computations may fail to
converge. Then, the classical solution would be to wi-
thdraw that particular domain and in its place rede-
sign a new abstract domain which can represent the
shape of the invariant. One may also use convergence
techniques like widening to enforce convergence, but

this may come at the cost of precision. Another ap-
proach called constraint programming (CP), can be
used to find invariants by translating a program into
constraints and solving them by using constraint sol-
vers. Constraints in CP primarily operate on domains
that are either discrete or continuous. Classical conti-
nuous constraint programming corresponds to inter-
val domain and can approximate a complex shape in-
variant by a set of boxes, for instance, upto a preci-
sion criterion. An existing framework combines AI and
continuous CP inspired by iterative refinement, split-
ting and tightening a collection of abstract elements.
This was initially presented in combination with simple
underlying abstract elements, boxes and octagons.
The novelty of our work is to extend this framework by
using zonotopes, a sub-polyhedric domain that shows
a good compromise between cost and precision. Ho-
wever, zonotopes are not closed under intersection,
and we had to extend the existing framework, in addi-
tion to designing new operations on zonotopes. We
introduce a novel splitting algorithm based on tiling
zonotopes by sub-zonotopes and parallelotopes. We
also propose few alternative operators to the existing
ones for a better efficiency of the method. We im-
plemented these operations on top of the APRON li-
brary, and tested it on programs with non-linear loops
that present complex, possibly non-convex, invariants.
We present some results demonstrating the interest
of this splitting-based algorithm to synthesize inva-
riants on such programs. This algorithm also shows a
good compromise by its use in combination with zono-
topes as regards to its use with both simpler domains
such as boxes and octagons, and more expressive
domains like polyhedra. Finally, we discuss the exten-
sion of the approach to infer positive invariant sets for
dynamical systems.

Institut Polytechnique de Paris
91120 Palaiseau, France

