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Résumé

Les méthodes parcimonieuses suscitent un vif intérêt pour l’estimation, de

par leur capacité à proposer automatiquement un modèle interprétable ayant un

très bon pouvoir prédictif. Ces méthodes se formulent comme des problèmes

d’optimisation bi-critères où l’on cherche à obtenir un modèle minimisant simul-

tanément un terme d’attache aux données et une pénalité visant à promouvoir la

parcimonie via la sélection de caractéristiques pertinentes. Ce type de problème est

aussi référencé sous le nom de codage parcimonieux.

Dans ce cadre, les données disponibles sont représentées par une matrice, con-

sidérée comme un dictionnaire, dont chaque colonne représente une caractéris-

tique encore appelée atome. Le choix de ce dictionnaire joue un rôle très im-

portant et sa détermination est donc primordiale. Certaines études préconisent

l’utilisation d’un dictionnaire prédéfini, par exemple à l’aide de polynômes ou

d’ondelettes. Mais récemment, pour différentes applications, il s’est avéré plus

efficace d’apprendre un dictionnaire dédié plutôt que d’utiliser un dictionnaire

prédéfini. C’est le cas notamment en traitement du signal et des images, ainsi qu’en

vision et en reconnaissance des formes.

Cette monographie traite de l’étude d’algorithmes d’apprentissage de diction-

naire, lorsque la parcimonie est favorisée par l’utilisation de la norme `0, c’est-à-

dire par le contrôle explicite du nombre de caractéristiques à considérer. Elle est

organisée en cinq chapitres. Le premier chapitre donne une brève introduction sur

le contexte et les motivations du travail. Les contributions de la thèse et le plan du

manuscrit sont également présentés.

Le deuxième chapitre porte sur la théorie de l’apprentissage de dictionnaire

parcimonieux et notamment sur les problématiques d’optimisation bi-critères as-

sociées. Trois différents choix de pénalités pour le codage parcimonieux sont con-

sidérés : une mesure de comptage encore appelée pseudo-norme `0 (ou norme par

abus de langage), la norme `1 et les normes `p avec p > 1 ou 0 < p < 1. L’intérêt de la
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norme `0 est qu’elle permet de compter et donc de contrôler explicitement le nom-

bre de composantes d’un modèle. Ainsi, à performance de prédiction analogue,

les modèles résultant de l’usage de la norme `0 sont plus parcimonieux que ceux

obtenus en utilisant les autres normes `1 ou `p (0 < p < 1 et 1 < p). Cependant, les

problèmes d’optimisation associés à l’usage de la norme `0 sont combinatoires, non

convexes, non différentiables et NP-difficiles. Pour ces raisons, il sont généralement

considérés comme difficiles à résoudre et ne passant pas à l’échelle.

Le troisième chapitre donne un état de l’art sur les méthodes permettant de ré-

soudre le problème de codage parcimonieux pour l’apprentissage de dictionnaire.

Il commence par présenter trois stratégies fréquemment considérées. La première

est basée sur l’utilisation d’un algorithme glouton qui a donné les méthodes de

poursuite et ses variantes (matching pursuit et orthogonal matching pursuit) pour

obtenir une bonne approximation de la solution optimale globale du problème. La

deuxième porte sur la relaxation de la norme `0 via l’utilisation de la norme `1 et les

algorithmes associés comme le LASSO ou la « poursuite de base » (Basis Pursuit). La

troisième utilise des méthodes du gradient, comme les méthodes de seuillage ou la

méthode du gradient proximal.

Ce chapitre se poursuit par une présentation du problème d’apprentissage de

dictionnaire qui consiste à estimer conjointement un dictionnaire pertinent et les

coefficients pondérant ces atomes. Le problème d’optimisation associé est à la

fois non convexe et NP-difficile. La manière classique d’aborder ce problème est

d’utiliser une procédure de relaxation alternée en deux phases à la Gauss Seidel : 1)

la phase de codage parcimonieux (sparse coding), qui consiste à estimer les coef-

ficients de pondération en supposant le dictionnaire connu; 2) la phase de réac-

tualisation de dictionnaire, qui consiste à estimer le dictionnaire en supposant

cette fois les coefficients de pondération connus. La dernière partie de ce chapitre

présente les principaux algorithmes existants permettant de résoudre le problème

d’apprentissage de dictionnaire associé à la norme `0 : MOD (Method of Optimal

Direction), K-SVD (K- Singular Value Decomposition) et SOUPDIL (Sum of OUter

Products Dictionary Learning).

Le quatrième chapitre introduit une nouvelle méthode d’apprentissage de dic-

tionnaire utilisant la norme `0. Comme le problème d’optimisation associé à cette

norme `0 est NP-difficile, les stratégies développées dans la littérature sont basées

sur des approximations ne permettant d’obtenir que des solutions locales. Notre

idée est de développer une approche alternative permettant d’obtenir la solution
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globale du problème en un temps raisonnable. Pour ce faire, nous proposons de re-

formuler le problème du codage parcimonieux comme un programme quadratique

mixte en nombres entiers (MIQP) et d’utiliser un logiciel d’optimisation, comme par

exemple Gurobi ou Cplex, pour obtenir cet optimum global. La principale difficulté

de cette approche étant le temps de calcul, nous proposons deux méthodes permet-

tant de la surmonter : l’ajout de contraintes complémentaires accélérant la conver-

gence de l’algorithme et son initialisation par un minimum local obtenu grâce à une

méthode du premier ordre de type gradient proximal. La méthode ainsi obtenue,

nommée MIQP accéléré (AcMIQP) permet de diminuer significativement les temps

de calculs de la procédure d’optimisation et d’augmenter la taille des problèmes

pouvant être ainsi traités. Notre méthode d’apprentissage de dictionnaire AcMIQP

a été appliquée sur un problème de débruitage d’images démontrant sa faisabilité

et sa pertinence. Les résultats montent que notre méthode est plus performante

que les méthodes de références, comme le gradient proximal et l’algorithme K-SVD,

et atteint des résultats comparables à ceux de SOUPDIL.

Un autre intérêt de la formulation quadratique mixte en nombres entiers est sa

flexibilité. Il est facile d’introduire dans le problème d’optimisation MIQP de nou-

velles contraintes pourvues qu’elles soient linéaires. Tirant profit de cet avantage,

le cinquième chapitre traite de l’apprentissage de dictionnaire à faible cohérence,

c’est-à-dire à faible corrélation entre ses atomes. Si, nous l’avons vu, la norme `0

permet le contrôle du niveau de parcimonie, elle ne dit rien en revanche sur la co-

hérence de ce dictionnaire. Or, plusieurs études théoriques ont montré la perti-

nence, pour un dictionnaire, d’avoir une faible cohérence. Les méthodes existantes

qui s’attaquent à ce problème reposent sur la relaxation des contraintes, par exem-

ple en ajoutant une étape de décorrélation à chaque itération.

Nous proposons une alternative originale, basée sur les travaux du chapitre

précédent, visant à résoudre ce problème d’apprentissage de dictionnaire à faible

cohérence en intégrant explicitement des contraintes favorisant l’indépendance

des atomes. L’estimation du dictionnaire sous contraintes d’incohérence est abor-

dée en combinant la méthode du lagrangien augmenté (ADMM) et la méthode du

gradient proximal alterné étendu (Extended Proximal Alternating Linearized Mini-

mization, EPALM), adaptée à des familles de problèmes non convexes. L’efficacité

de la méthode AcMIQP+EPALM est démontrée sur une application de reconstruc-

tion d’image.

Finalement, nous conclurons nos travaux et donnerons des perspectives de

notre recherche.
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Chapter 1

Introduction

“ Scientists must use the simplest means of

arriving at their results and exclude everything

not perceived by the senses. ”

Ernst Mach

Sommaire

1.1 Evolution in sparse representation . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions of the research . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the monograph . . . . . . . . . . . . . . . . . . . . . . . . 7

Today, people live in a world surrounded by diverse data. By improving smart-

phone technologies with cameras of higher and higher resolution or by alleviating

user-generated content in the so-called data web such as Facebook and YouTube,

large volume data of high dimension is produced every day. It makes a lot of de-

mands on the storage capacity of the device, and moreover, to deal with these data,

the high computation complexity is foreseen. However, it is noticed that in natural

signals, namely audio, image, video, text and document, the number of informa-

tion that makes sense is very small comparing to the whole signal, that is to say,

the underlying model is sparse. The property of sparseness makes it possible to

find a representation quite sparse replacing the original signal. As a result, the work

on the sparse representation, rather than the signal, can greatly reduce computing

complexity and decrease needs on storage capacity, which makes the research on
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CHAPTER 1. INTRODUCTION

sparse representation crucial with real benefits.

Sparse representation aims at representing a signal as linear combination, of

which most coefficients are zeros, over a set of elementary signals where the set is

called dictionary and the elementary signals are the atoms. The problem is often

raised to find signals’ regularity in signal processing or to extract images’ features

for tasks in pattern recognition [SMF15]. When the given dictionary is a basis, the

problem involves solving a matrix equation, which is easy by introducing the matrix

inverse. However, dictionaries with orthogonal atoms are not often able to take the

most of sparse representations and signal reconstruction. Therefore, in most cases,

the dictionary is learned as a redundant matrix, for which the resolution above is no

more available. In fact, with a redundant dictionary, a solution to the problem may

not be unique. Then, many problems will be raised: What is the condition for the

uniqueness of the solution with sparsity constraint on the composition coefficients?

How to handle the problem of simultaneously keeping the signal reconstructed to a

great extent and adapting it to certain task? Even today, the studies on these prob-

lems are still challenging and open.

1.1 Evolution in sparse representation

During the past decades, sparse representation has attracted numerous research

attentions. Originally, it is inspired by the decomposition of a studied signal over

a well-defined basis in signal processing. In the beginning, the Fourier transform

projects the signal in a basis formed by sine and cosine functions of different fre-

quencies [BB86]. Thus, the signal defined in the time space can be analyzed in the

frequency space. For the signal with simple composition in the frequency space, its

coefficients before most basis functions are zeros, namely the representation of the

signal in the frequency space is sparse. However, the Fourier analysis is merely on

the frequency space, ignoring the information on time space. The natural signals

such as music (audio) and video contain information both in time and frequency

space. To deal with signals as music, a time-frequency dictionary by windowed

Fourier transform is designed with success to analyze the variation of frequency

over time, but it is limited to the signals with the same time and frequency resolu-

tion. The wavelets are thus proposed with the purpose of overcoming this limitation

[Mal99].

The wavelet transform, considered to be time-frequency representation of sig-

2



CHAPTER 1. INTRODUCTION

Figure 1.1 – Example of wavelet functions

nals [Gra95, Chu16], has played an important role in the development of sparse

representation theory. Different from the Fourier transform defining the basis with

known functions, the design of a basis is crucial in wavelet transform. To be precise,

a prototype is defined by introducing "mother wavelet"Φ(x) [Mey95, CH97, Dau88]

(Figure 1.1 shows 4 examples of a mother wavelet function). Then, an orthonormal

bases Φ(x)a,b is able to be constructed by dilation and scaling, with a and b being

the scale and position parameters respectively. With specially constructed wavelet

basis, the wavelet transform is used to analyze signals with much more complex

structure [Lee96, RBE10, SCD02]. Specifically, transient structure and singularities

are revealed through the signals’ representation on a wavelet basis [Mal99], that is,

the large-amplitude wavelet coefficient is detected in the surrounding of transient

structure and singularities [LPM00]. In image processing, it means the edge and tex-

ture features [Uns95]. Based on its properties, the wavelet transform allows to cre-

ate sparse representations of signals. However, the wavelet basis is predefined and

signal-independent, which makes it necessary to construct an orthonormal wavelet

3



CHAPTER 1. INTRODUCTION

basis adapted to each category of signals and the task at hand. For example, the Ga-

bor wavelet models the impulse responses of the visual cortex, curvelet frames for

edge detection, bandlet transform designed to adapt to the geometric image regu-

larity, see chapter 5 and chapter 12 in [Mal99] for details. The wavelet transform for

sparse representation is widely developed and applied with success in compressed

sensing [Lee96], image denoising [CYV00a, CYV00b], multiresolution image repre-

sentation [DV05], classification [Uns95, CK93], etc. Nevertheless, the sparse repre-

sentation capacity of small dictionaries such as orthonormal wavelet basis is lim-

ited. Moreover, there is no off-the-shelf mathematical model for a predefined dic-

tionary to represent any signal, such as natural images that contain for example

textures.

In 1996, by studying the properties of receptive field of simple cells in mam-

malian primary visual cortex, Bruno Olshausen and David Field proposed a learn-

ing algorithm for sparse representation of a natural image, which allows to learn an

overcomplete dictionary from the image at hand [OF96]. Since then, the overcom-

plete dictionary learning has become a hot topic in machine learning, as it allows to

outperform predefined dictionaries like orthonormal wavelet bases.

Dictionary learning is defined as an optimization problem with respect to two

vectors of optimization, sparse code (i.e., the coefficients of the linear model) and

dictionary, which makes the problem harder to solve. Generally, researchers take

the strategy of reaching the optimal solution by iteratively processing two alternat-

ing steps:

• Sparse Coding. It concerns the optimization problem with respect to sparse

code by supposing the dictionary is already known. This sub-problem can be

diversely formulated by introducing different functions for sparsity control-

ling, e.g. the `0-norm function which is even non-smooth and non-convex.

For solving this problem, numerous algorithms are designed such as match-

ing pursuit [MZ93] and basic pursuit [CD95].

• Dictionary Updating. This step deals with the optimization problem with re-

spect to the dictionary while keeping the sparse code fixed. Unlike the sub-

problem of sparse coding, the sub-problem of renewing the dictionary is often

convex and differentiable. The algorithms representative for updating dictio-

nary contains, the Method of Optimal Direction (MOD) [EAH99] and the co-

ordinate descent algorithm with each atom updated by exploiting the singular
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value decomposition (SVD) [MBPS10, EA06].

The algorithms of dictionary learning are then developed by combining the algo-

rithm of sparse coding and that of dictionary updating, like K-SVD [AEB+06, EA06],

proximal method [JMOB10], and online dictionary learning method [MBPS09]. Fur-

thermore, for certain tasks, the specified dictionary can be leaned by adding an ap-

propriate term of regularization. For instance, a discriminative dictionary is learned

by proposing the regularization of classification error [ZL10, MBP11], and an inco-

herent dictionary is learned via the introduction of constraints on the off-diagonal

entries of Gram matrix of dictionary [LDHL17].

The sparse representation by learning a dictionary has thus gained great suc-

cess in the field of signal processing, image processing, pattern recognition, and

computer vision [MCW05a, MBP+14]. Specifically, sparse representation with the

learned dictionary is successfully used to accomplish tasks like image denoising,

deblurring, inpainting, face recognition, visual tracking, and classification (see

[MBP+14] and therein).

1.2 Contributions of the research

This monograph concentrates on the study of dictionary learning for sparse repre-

sentations. More precisely, it corresponds to the optimization problem of minimiz-

ing the reconstruction error with limiting the sparsity of decomposition coefficients.

As is known, originally, the sparsity is explicitly expressed by using the `0-norm.

This function can exactly control the sparsity level, however, with a shortcoming

of non-convexity and non-differentiability, which makes it the obstacle to over-

come. The existing methods for solving this problem can be roughly grouped in two

major classes: Greedy algorithms attains the solution by iteratively providing sub-

optimal solutions, such as matching pursuit (MP) and its variants [Tro04, BRF11],

or gradient descent based algorithms such as Iterative Hard Thresholding (IHT)

algorithm [GK09] or proximal method [BJQS14]. The second class corresponds to

methods that relax the `0-norm by replacing it with the `1-norm, which is still non-

smooth but convex and continuous. This leads to a classical problem, often called

the problem of LASSO [MY09] or Basis Pursuit [CD95] (technically, LASSO or Basis

pursuit principle are the methods for solving the `1-norm based sparse representa-

tion problem). However, now in the research community, it is called directly LASSO
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problem or Basis pursuit problem [MBP+14]). This relaxation simplifies the prob-

lem and makes it possible to transform the original problem into a certain standard

optimization problem so that one can exploit optimization techniques such as the

simplex method [NW06]. However, the `1-norm cannot always guarantee the re-

quired sparsity level [AGH18] and even the sparse representation is produced but

with shrinkage [DDDM04].

When referring to the problem of dictionary learning, as aforementioned, it cor-

responds to two vectors of optimization and the strategy is to solve it by iteratively

alternating two steps, sparse coding and dictionary updating. This will raise the dif-

ficulty. The purpose of our research is thus to find a method to learn the dictionary

by solving exactly the `0-norm based problem. The main contributions of our work

can be summarized as follows.

We work on the `0-norm constrained dictionary learning problem. For reaching

the optimal solution, we take the frequently used strategy of iterative processing two

alternating steps: sparse coding and dictionary updating. Specifically, in the step of

sparse coding, we reformulate the original problem as a problem of mixed integer

quadratic programming (MIQP) and solve it by the optimization method for MIQP

problem, without using any greedy algorithm, or relaxation. The second step takes

advantage of the coordinate descent algorithm (precisely, each atom is updated by

SVD). Hence, it is the first time that the dictionary is learned with MIQP for sparse

coding.

We propose two techniques for accelerating the algorithm of exact sparse cod-

ing. One is to offer an initialization when solving the MIQP problem. This value

obtained by using the proximal method is considered to be an approximation of

the optimal solution of the original problem. The other is to relax the problem by

achieving a convex envelop of the region defined by all the constraints. With the

help of these two acceleration methods, the MIQP is not limited to dealing with

synthetic data problems but real data. For the demonstration, the accelerated MIQP

(AcMIQP) is applied for denoising well-known images (Barbara, Lena etc). Further-

more, the results show the superiority of the dictionary learning algorithm with ex-

act sparse coding method AcMIQP comparing to the methods of proximal and OMP

in processing the image with high noise level.

Furthermore, we study incoherent dictionary learning. The coherence is re-

garded as one important quality of dictionary [Tro04]. The uniqueness of the so-

lution of the problem of sparse representation is proved to rely on the coherence
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of dictionary [Ela10], and even some (greedy) algorithms can be precisely executed

under the condition of incoherence of dictionary [Tro04]. Untill now, the meth-

ods for learning incoherent dictionary are either by adding a decorrelation step fol-

lowing the dictionary update, such as INK-SVD [MBP12], or by formulating the op-

timization problem by introducing a regularization term on the dictionary coher-

ence [RLS09]. Unlike these methods, we seek to solve the exact incoherent dictio-

nary learning problem, with explicit constraints on the dictionary and the `0-norm

sparse code. The corresponding dictionary learning algorithm operates two steps,

as in the classical problem, sparse coding and dictionary updating at each iteration.

In this problem, the sparse coding is solved exactly with the AcMIQP method. For

updating the dictionary, we exploit methods of the augmented Lagrangian and the

proximal alternating linearized minimization. Moreover, the convergence of the al-

gorithm is guaranteed.

The incoherent dictionary learning algorithm is used for estimating the relation-

ship of image reconstruction with coherence of dictionary. It is worthy noting that

with the proposed incoherent dictionary learning algorithm, the best results are ob-

tained comparing with the methods INK-SVD [MBP12] and the incoherent dictio-

nary learning algorithm by iterative projection and rotation (IPR) [DM13]. More-

over, the fact is proved, to our best knowledge, for the first time, that an appropriate

higher incoherence favors the image reconstruction.

1.3 Outline of the monograph

The monograph focuses on the study of dictionary learning with `0-norm for spar-

sity promoting. The rest of the monograph is organized as follow.

Chapter 2 introduces the mathematical framework of the sparse model. We talk

about the three main functions `0-norm, `1-norm and `p -norm (0 < p < 1), which

are frequently used to control the sparsity. By analyzing the three functions in ability

of sparsity controlling, convexity and influence on the accuracy of sparse code, we

show the interest of studies on the `0-norm based sparse representation problems.

Chapter 3 presents the state-of-the-art algorithms for the sparse representation.

These algorithms are divided into two parts: algorithms for sparse coding and those

for dictionary learning. Specifically, we detail greedy algorithms, relaxation meth-

ods, gradient descent, proximal method and other optimization methods.

Chapter 4 develops a dictionary learning method in the same spirit of the K-SVD
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algorithm. The point of innovation is that an exact optimization technique named

mixed integer programming with quadratic objective function (MIQP) is proposed

for the sparse coding phase. Furthermore, two optimization techniques are intro-

duced in MIQP to accelerate the algorithm, which makes the algorithm feasible in

real image processing, such as image denoising.

Chapter 5 focuses on the study of coherence of dictionary, which is one of the

dictionary’s important properties with proved theoretical results. Our work studies

explicitly the relationship between coherence of dictionary and image reconstruc-

tion performance. For this purpose, we study the dictionary learning problem with a

predefined coherence level and an exact `0-norm promoting sparsity. Then, an aug-

mented Lagrangian based algorithm combined with proximal alternating linearized

minimization is proposed. The model is finally applied in image reconstruction ex-

periments, whose results confirm the theoretical conclusion.

Chapter 6 gives the conclusion and provides some future work.

Publication

The main contributions presented in this monograph can also be found in our

publications:

Journal Papers

• Liu, Yuan, Canu, Stéphane, Honeine, Paul and Ruan, Su, Mixed integer pro-

gramming for sparse coding: Application to image denoising. IEEE Trans-

actions on Computational Imaging, vol. 5, no. 3, pp. 354-365, Sept. 2019.

• Liu, Yuan, Canu, Stéphane, Honeine, Paul and Ruan, Su, Incoherent dictio-

nary learning via mixed-integer programming and hybrid augmented la-

grangian. Submitted to Digital Signal Processing, Sept. 2019.

Conference Papers

• Liu, Yuan, Canu, Stéphane, Honeine, Paul and Ruan, Su, Une véritable ap-

proche `0 pour l’apprentissage de dictionnaire. Actes du 26ème colloque du

GRETSI en traitement du signal et des images, Juan Les Pins, 2017.
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• Liu, Yuan, Canu, Stéphane, Honeine, Paul and Ruan, Su, K-SVD with a real `0

optimization: Application to image denoising. Proc. of the 28th IEEE Inter-

national Workshop on Machine Learning for Signal Processing (MLSP), Aal-

borg, 2018

• Liu, Yuan, Canu, Stéphane, Honeine, Paul and Ruan, Su, Apprentissage de

dictionnaire faiblement cohérent par programmation quadratique mixte.

Actes du 27ème colloque du GRETSI en traitement du signal et des images,

Lille, 2019.

Notations

In this section, we give some mathematical notations used in this monograph.

The data is considered to be real-valued. Matrices are denoted by an uppercase

letter, vectors by a lowercase letter in bold and scalars by a lowercase letter. For ex-

ample, X ∈ Rm×n denotes a matrix with each column represented by the indexed

vector xi with the index i ∈ {1, . . . ,n}. The j th entry of xi is written as xi , j . A subset

of integer is represented by SI ⊂ {1, . . . ,n}, then a matrix XSI is a submatrix whose

columns are formed by the columns of X indexed by all elements in SI. The comple-

ment of SI is represented by SIc . We use XT to represent the transpose of X. If m = n

and X is non-singular, the inverse of X is denoted by X−1. More generally, for X with

m 6= n, X has its pseudo-inverse X+, also known as Moore–Penrose inverse. tr (X)

indicates the trace of a square matrix X, which is equal to the sum of all entries on

its main diagonal. The Frobenius norm of the matrix X is expressed as

‖X‖2
F =

∑
i , j

x2
i , j .

For two matrices A ∈ Rm×n and B ∈ Rm×n , the Frobenius inner product of the two

matrices is written as

〈A,B〉 = tr (ATB).

Given a function of X, denoted by f : Rn×m →R, its gradient represented by ∇X f is

a matrix of size n ×m where the entry in position (i , j ) is calculated via

(∇X f )i , j = ∂ f

∂xi , j
.
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Similarly, a vector x ∈ Rm is composed by m elements, its i th entry is denoted

by xi . The `0-norm of x, represented by ‖x‖0, indicates the number of nonzero ele-

ments in x. The `1-norm of x is the sum of its entries’ absolute value, denoted

‖x‖1 =
m∑

i=1
|xi |.

The `p -norm with is defined by

‖x‖p =
( m∑

i=1
xp

i

) 1
p

.

Specially, when p = 2, it is called Euclidean norm. For a function of vectors, written

as f : Rm → R, the gradient of the function is denoted by ∇x f . If the function f is

not differentibale at x, we calculate the Fréchet subdifferential of f , represented by

∂ f (x) and defined as follows.

Definition 1. ([Kru03]) Let f : Rn → R∪ {+∞} be a proper lower semicontinuous

function. For each x ∈ dom f (where dom f = {x ∈Rn | f (x) <+∞} ), the Fréchet (or

regular) subdifferential of f at x is

∂ f (x) =
{

x∗ ∈X | liminf
z→x

f (z)− f (x)−〈x∗,z−x〉
‖z−x‖ ≥ 0

}
, (1.1)

where X denotes the topological dual space of Rn .

In linear algebra, the restricted isometry property (RIP) characterizes matrices

that are nearly orthonormal. Supposing D a matrix of size n×m and k an integer, the

restricted isometry constant (RIC) of the matrix D is defined as the minimal value

δk ∈ (0,1) that

(1−δk )‖x‖2
2 ≤ ‖Dx‖2

2 ≤ (1+δk )‖x‖2
2, ∀x ∈Rm and ‖x‖0 ≤ k.

If the RIC δk exists, we say that the matrix D satisfies the k-restricted isometry prop-

erty.
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Chapter 2

Mathematical Framework of Sparse

Representation
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Given a signal x ∈Rn and a matrix D ∈Rn×m , providing a sparse representation

consists in finding the solution ααα ∈Rm of the system of linear equation with a regu-

larization term that promotes sparsity, that is

argmin
ααα

Ω(ααα) subject to x = Dααα, (2.1)

where Ω(ααα) measures the degree of sparsity of the solution ααα where smaller values

of R(ααα) indicate more sparse solution.

11



CHAPTER 2. MATHEMATICAL FRAMEWORK OF SPARSE REPRESENTATION

In practice, the dictionary D = [d1, . . . ,di , . . . ,dm] is defined in the set D = {D |
‖di‖2 = 1, ∀i = 1, . . . ,m}, which allows to avoid too large values in ααα. Moreover,

one must assure that the matrix D can span the entire space Rn to be sure of the

existence of the solution to problem (2.1). In spite of that, it is still difficult to give

the condition defining the uniqueness of its solution.

The choice of the function Ω(ααα) is diverse. Some favor functions explicitly pro-

moting sparsity, however, making the problem hard to deal with. Others operate

relaxation by taking advantage of convex function to make the problem easy to

solve. For instance, the `p -norm functions, especially for p = 0 and p = 1, are

frequently studied [XZJ13, Tib96]. Additionally, the family of functions such as

R(ααα) = ∑
(1−exp(|αi |)), Ω(ααα) = ∑

log(1+|αi |) and Ω(ααα) = |αi |/(1+|αi |) are also used

to promote sparsity [Ela10]. These will be introduced in this chapter.

2.1 The `0 based sparse representation

2.1.1 Introduction of `0-norm function

The `0-norm function is defined based on the concept of limit, which is:

‖ααα‖0 = lim
p→0

‖ααα‖p
p = lim

p→0

∑ |αi |p = card(ααα), (2.2)

where card(ααα) indicates the number of non-zero entries in the vector. However, de-

spite the name of ’norm’ is given, the `0-norm is not a strict ’norm’ function , since it

does not satisfy all the three conditions: 1) the triangle inequality, 2) absolute homo-

geneity and 3) being positive definite. Indeed, the `0-norm function, defined from

the domain of vectors Rm to the naturals N, obeys the triangle inequality, that is, for

any arbitrary two vectors u, v ∈Rm , we have

‖u+v‖0 ≤ ‖u‖0 +‖v‖0.

The third condition of positive definiteness is satisfied as well. For a vector v ∈Rm ,

if the equation ‖v‖0 = 0 holds, then it implies that v = 0. For the homogeneity con-

dition, it is easy to see that it is not satisfied, because the equation ‖av‖0 = |a|‖v‖0 is

not true for any scalar number a ∈R and vector v ∈Rm .

Even the `0-norm function is misleading in a sense, it presents powerful capacity

in promoting sparsity. Figure 2.1 illustrates some `p -norm functions by setting p =
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Figure 2.1 – Illustration of ‖ααα‖p
p in one dimension with p = 0, 0.1, 0.5, 0.8, 1, 2

0, 0.1, 0.5, 0.8, 1, 2 respectively. It is obvious that, when p > 1, the function ‖ααα‖p
p

is convex and differentiable which makes the problem easy to solve, but loosing the

sparsity. For p = 1, the function is convex but not differentiable at ααα = 000, making it

of interest as discussed in Section 2.2 [Tib96, MBPS09, CD95]. When 0 < p < 1, the

function becomes non-convex but continuous, and the smaller the p is, the closer

the norm will be to the `0-norm function. Therefore, an `p -norm function with 0 <
p < 1 can be used to approximate the `0-norm function [RSS10].

The `0-norm function, however, is non-convex and discontinuous. The opti-

mization problem based on `0-norm is NP-hard [Tro04]. It is difficult to solve it ex-

actly. On the other hand, the `0-norm explicitly measures the sparsity of the repre-

sentation. Thus, for all `p -norm, the `0-norm shows the best performance in terms

of sparsity control. Its proof is given in [Ela10] (see page 12 for details).

Despite the difficulty, a large number of researchers paid attention to the `0

based optimization problem [Nik13, AGH18, XZJ13]. The developments have been

made both in theory and applications. Tropp analyzed greedy algorithms to solve

`0 based sparse representation and summarized the sufficient condition for obtain-

ing an optimal solution [Tro04]. Soubies et al. provided the sufficient and neces-

sary condition for continuous function approximating `0-norm [SBFA17]. The `0
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norm is, thus, utilized in image processing [XZJ13, EA06, MP06], signal processing

[Mal99, LPM00], machine learning [BJQS14], etc.

2.1.2 The `0-norm function promoting sparsity

By setting the function Ω(ααα) = ‖ααα‖0, the optimization problem (2.1) becomes:

argmin
ααα

‖ααα‖0 subject to x = Dααα. (2.3)

The constraint x = Dααα gives a strict equality relation. In reality, caused by distortion

or noise perturbation from the device or information loss during the transmission,

x is not exactly the pure signal, but with some noise, which can be modeled:

x = Dααα+e, (2.4)

where e ∈Rm means the unfitness noise. Consequently, the problem (2.3) is refor-

mulated by the quadratic inequality constraint rather than the equality constraint,

that is,

argmin
ααα

‖ααα‖0 subject to ‖x−Dααα‖2
2 < ε, (2.5)

where ε is a parameter determining the tolerance of data fitting. Intrinsically, the

value of ε depends on the noise level of the signals. This formulation that assumes

knowing the noise level is usually used in image denoising [EA06], and seldom used

in classification [FNZ+15]. Nevertheless, given a signal, ε seems hardly to be well

estimated.

Another formulation consists in minimizing the reconstruct error in the feasible

region defined by the `0-norm constraint,

argmin
ααα

1
2‖x−Dααα‖2

2 subject to ‖ααα‖0 ≤ k, (2.6)

where k ∈ N and k ≥ 1 denotes the sparsity level. By setting in advance the spar-

sity level, this formulation helps to represent the signal by the linear combination

of less than k atoms in D. By exploiting this model, the signal can be sparsest repre-

sented, which can be proved by visualization the `p -norm based sparse model. As is

shown in Figure 2.2, the intersection of the objective function’s curve (the parabola

in blue) and the region determined by the unit-radius `p -ball (here the region in red)

locates the solution of the problem mentioned above with `0-norm and other three
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(a) `0-norm (b) `p -norm by setting p = 0.5

(c) `1-norm (d) `2-norm

Figure 2.2 – Illustration in 2D (i.e., ααα ∈R2) of the minimization of the quadratic reconstruc-
tion error (parabola in blue) in the feasible region defined by the `p -norm constraint (`p -ball
region in red) with sparsity level k = 1.

`p -norm (i.e., p = 0.5, 1, 2) promoting sparsity. It concludes that `0-based sparse

model can reveal always the sparse solution. However, for the `p -norm with p > 0,

the optimal solution risks to be dense. In other words, the solution of the problem

with `p -norm (p > 0) can be sparse only under certain conditions. By investigating

k-sparsity model in (2.6), researchers have addressed problems like matrix factor-

ization [PP12], image recovery [CYV00a, EA06], and feature extraction for classifica-

tion [HA07, Uns95].

We reformulate sparse representation problem by exploiting the Lagrangian

function of the optimization problem (2.6), therefore producing the regularized for-

mulation,

argmin
ααα

1
2‖x−Dααα‖2

2 +λ‖ααα‖0, (2.7)
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where λ > 0 is a hyperparameter balancing the minimization of the reconstruction

error and the maximization of sparsity. Nikolova has proved the relationship be-

tween the k-sparsity problem (2.6) and its regularized form (2.7) [Nik16]. Specif-

ically, when the choice of k corresponds to a λ in an interval (bounds depending

on the reconstruction error decrease with the representation’s sparsity), then the

optimal solutions to the two formulations become equivalent. Compared with the

k-sparsity problem (2.6), the regularized problem (2.7) and its variants are more fre-

quently applied in image processing [MP06] and machine learning [BJQS14, YLY12].

2.1.3 Some approximations of the `0-norm function

As aforementioned, the non-convexity and discontinuity of the `0-norm cause the

corresponding optimization problems to be NP-hard. One feasible method is to

approximate the optimal solution by a convergent series emerging from an iterative

process. Proposed resolution methods include the greedy algorithm [MZ93] and the

proximal method [BJQS14].

Another idea is inspired by reformulating the optimization problem with a

smooth function that is not exactly the `0-norm, but can exceedingly approach it,

that is

‖ααα‖0 ←
∑
φ(αi ), (2.8)

whereφ :R→R+ is a smooth function that can measure if the entryαi is zero or not.

The most important is that the optimal solution of this problem must coincides with

the one reached when applying the `0-norm. We talk about some representative

reformulations of `0-norm in the following.

The simplest proposition is to approximate `0-norm by `p -norm. By this think-

ing, F. Rinaldi et al. proposed two concave formulations tuned by some hyperpa-

rameters [RSS10]. The first formulation is

φκ(αi ) = (αi +κ)p , (2.9)

where 0 < p < 1 and 0 < κ are two hyperparameters. A variant of (2.9), is

φκ(αi ) =−(αi +κ)−p . (2.10)

These two functions are proved to be equivalent to the `0-norm function when p
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and k tend to zero, which is based on the fact that

lim
p→0,κ→0

∑
(αi +κ)p = lim

p→0,κ→0
−∑

(αi +κ)−p = ‖ααα‖0.

Thus the solution of the original problem can be reached by solving the reformu-

lated problem, by applying classical optimization techniques, e.g. Frank-Wolfe al-

gorithm [RSS10].

In [MBZJ07], Mohimani et al. introduced a function of zero-mean Gaussian fam-

ily to estimate the `0-norm. The expression of the function is

φσ(αi ) = 1−exp(−α2
i /2σ2), (2.11)

where σ denotes a bandwidth parameter. This function is smooth and differen-

tiable, which simplifies the problem; however, the effect of σ becomes significant.

To overcome this issue, the proposed algorithm decreases iteratively the value of σ,

allowing to exclude the dependency of the solution on the bandwidth value.

The reformulations (2.9), (2.10) and (2.11) are established by approximating the

`0-norm with smooth functions. Soubies et al. proposed another formulation to

define a continuous non-smooth and non-convex function [SBFA17]. The function

is a convex envelope of the original objective function in the optimization prob-

lem (2.7), which is created by applying twice the Legendre-Fenchel transformation.

Hence, the penalty at each coordinate λ‖αi‖0 can be estimated by the so-called con-

tinuous exact `0 penalty

φ(‖di‖2,λ,αi ) = λ− ‖di ‖2
2

2

(|αi |−
p

2λ
‖di ‖2

)2
δ{

|αi |≤
p

2λ
‖di ‖2

}(αi ), (2.12)

where, given a set C, δC represents the indicator function

δC(α) =
{

1 if α ∈C
0 else.

(2.13)

This formulation retains the equivalence of the global minimizer with the original

problem. Moreover, the equivalence between critical minimizers of the two formu-

lations is proved in Theorems 4.5, 4.7 and 4.8 in [SBFA17].
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2.1.4 Exact reformulation of `0-norm with complementary con-

straints

Very recently, a new strategy [SIBD11, FMP+18] inspired by the work of [KM82] is

emerging, where the `0-norm is reformulated by introducing complementary con-

straints. Specifically, this strategy consists in indicating if an entry of the vector ααα is

zero or not by an auxiliary variable z ∈Rm with the definition

zi = 1 ⇐⇒ αi = 0 ∀i = 1, . . . ,m (2.14)

where zi means the i th entry of z. Feng et al. presented two formulations in

[FMP+18]. The full-complementary formulation is

‖ααα‖0 =
m∑

i=1
(1− zi )

under constraints


ααα=ααα+−ααα−
zT(ααα++ααα−) = 0

ααα+,ααα− ≥ 0 and 0 ≤ z ≤111m ,

(2.15)

whereααα+ andααα− are the non-negative and non-positive parts ofααα respectively. The

second formulation, called half-complementary, takes the same strategy by only

changing the above constraints by {
0 ≤ z ≤111m

z◦ααα= 0,
(2.16)

where • ◦ • denotes the Hadamard (entrywise) product, and the above equality

constraint corresponds to the logical relation (2.14). This formulation can be fur-

ther reformulated by introducing a large value M, which is called big-M reformula-

tion [FMP+18]. The resulting optimization problem is a mixed integer programme

(MIP), which is the main topic of this monograph and will be discussed with detail

in the monograph.

2.1.5 Existence and uniqueness of the solution

Hereinabove, we know what the `0-norm function is, how the problem is formu-

lated with `0-norm function in sparse representation and some reformulations of

the `0-norm optimization problem. There is a precondition of all these discussions,
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namely the existence, and more strictly, the uniqueness, of the solution to the prob-

lem, which gives sense to the study.

The existence of a solution to the undetermined problem (2.1) is guaranteed un-

der the condition that D spans the feasible solution space. For the optimization

problem with regularization (2.7) or the other two constrained formulations (2.6)

and (2.5), it is clear that we can find a vector α̂αα in the feasible region with an objec-

tive value, denoted by F(α̂αα), that satisfies F(α̂αα) <∞. Besides, the objective functions

are all bounded below. Hence, there must be a solution to these sparse problems.

Nikolova stated in Theorem 4.4 in [Nik13] that not only the optimization problem

(2.7) has a global optimal solution, but also the optimal solution is unique.

The uniqueness of the solution depends on a concept named ’Spark’ of the dic-

tionary, which is defined as the smallest number of columns from D that are linearly

dependent. Theorem 2.4 in [Ela10] (or Theorem 1.2 in [DH01]) states the unique-

ness of the solution to the equality constrained sparse model:

Theorem 2.1.1. Uniqueness-Spark (Theorem 2.4 [Ela10]) If there is a solution α̂αα to

problem (2.1) with ‖α̂αα‖0 < Spark(D)/2, then α̂αα must be the sparsest one.

The above theorem offers the sparsity condition for the uniqueness of the opti-

mal solution. In fact, the Spark of a matrix is quite difficult to obtain, which restricts

the usage of the conclusion. Nikolova provided in [Nik13] the proof of uniqueness

of the minimizer by defining the conditions on D and x. Its conclusion for unique

global minimizer is described in Theorem 5.6 in [Nik13] (For the completeness of

the condition expression, the detail is not listed here).

2.2 The `1 based sparse representation

The `1-norm function is a convex and continuous function, and is the closest convex

approximation of the `0-norm, which explicitly expresses the sparsity.

There is no evidence in providing the relationship between `0-norm and `1-

norm in sparsity promoting. However, `1-norm is confirmed, in adequate condi-

tions detailed in [Don06, CRT06, ZY06], in resulting in a sparse solution. Donoho

proved in [DH01, Don06] that, when the representation is considerably sparse, the

`1-norm can reach the same solution obtained by exploiting `0-norm. Therefore, it

is frequently used as a relaxation of the `0-norm.

19



CHAPTER 2. MATHEMATICAL FRAMEWORK OF SPARSE REPRESENTATION

The sparse representation problem developed by the `1-norm has three formu-

lations, just like the `0-norm problem. The sparsity constrained formulation is writ-

ten as

argmin 1
2‖x−Dααα‖2

2 subject to ‖ααα‖1 ≤ λk , (2.17)

where λk controls the sparsity. The reconstruction error constrained formulation is

expressed by

argmin‖ααα‖1 subject to ‖x−Dααα‖2
2 ≤ ε. (2.18)

By adopting the `1 regularization term, the sparse model is developed of formula-

tion

argmin 1
2‖x−Dααα‖2

2 +λ‖ααα‖1, (2.19)

where λ ≥ 0 is the parameter governing the trade-off between the data-fitting and

sparsity criteria. This formulation is obtained from the Lagrangian function of the

constrained formulation. The formulations (2.17) and (2.19) are equivalent and can

yield the same optimal solution, where the relationship between λk and λ is data

dependent.

The `1-norm optimization problem (2.18) is also called Basic Pursuit (BP) prob-

lem [CDS01]. More precisely, the BP principle aims to tackle the problem (2.18) by

transforming it into a linear programming problem. The two equivalent (2.19) and

(2.17) optimization problem are also called Least Absolute Shrinkage and Selection

Operator (LASSO) problem [Tib96], which iteratively solves the quadratic optimiza-

tion problem.

A number of variants of the problem have been widely studied. The Bayesian

LASSO [PC08] solves the ordinary LASSO problem by applying Bayesian principle,

which improves the computing complexity, and the parameter λ or λk can be de-

rived via marginal maximum likelihood. The so-called group LASSO considers the

structure of the sparsity [RNCR15, ZHY+17]. The adaptive LASSO distributes adap-

tive weights for penalizing different coefficients in the `1-norm [Zou06]. In addi-

tion, considerable effort has been out on the algorithm design, resulting in methods

such as the root-finding algorithm by searching for a convex and continuously dif-

ferentiable curve that traces the optimal trade-off between the least-square fit and

the `1-norm of the solution [BEFP08], and the greedy coordinate descent algorithm

[WL08]. More recently, Arnold [AT16] and Markopoulos [MKCP17] have studied the

efficiency of the LASSO problem.

With the solid theoretically development on the `1-norm optimization problem,

20



CHAPTER 2. MATHEMATICAL FRAMEWORK OF SPARSE REPRESENTATION

it has been extensively used for image processing [MY09, LBRN07], classification

[RNCR15], object tracking [ZHY+17], face recognition [WYG+08], and even in com-

bination with graphical models [MB+06, AT16].

2.3 The `p based sparse representation

The `p -norm function with p < 1, as aforementioned, is closer to the `0-norm, than

`1-norm. This function shows some similar properties to `0-norm such as its non-

convexity. Besides, it is non-differentiable at 0. As a consequence, minimizing it is a

hard problem to solve. That is why the `p -norm when p < 1 is less popular than the

case where p = 0 and 1.

The optimization problem with `p -norm for penalty can be easily formulated

argmin 1
2‖x−Dααα‖2

2 +λ‖ααα‖p , (2.20)

where the trade-off parameter λ functions the same as that in the `0-norm or `1-

norm problems. This problem has obviously a solution. Furthermore, it is proved

that the optimal solution of the `p -norm based problem is equivalent to that of the

`0-norm based problem [FM11] under the condition that ‖ααα‖0 is upper bounded by

Ul = f1(D)p f2(D)

1+ f1(D)p
,

where f2 is the function indicating the spark of D, and f1 is the minimum of the

f2(D)th descent ordered NULL(D) [MCW04, MCW05a].

The `p -norm is usually used as an approximation to the `0-norm to make the

problem tractable. Nevertheless, it risks of heavy computation cost due to its non-

convexity and non-differentiability. To overcome these difficulties, another approx-

imation is needed to reach the solution of the problem, such as

‖ααα‖p
p =∑

(|α|2 +ε)p/2, (2.21)

where ε ≥ 0 is a smoothing parameter [MCW05a]. With this approximation re-

placing the `p -norm, the original optimization problem (2.20) can be solved by

half-quadratic regularization method or iterative method (see [MCW05a, CG15] and

therein for details).

Besides the `p -norm with p < 1, some other norms are used, such as the `2−1-
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norm used for face recognition [SYGL14] and feature selection [NHCD10]. The joint

use of several norms has been also considered, such as the combination of the `0

and `1 penalties [LW07].

2.4 Conclusion

This chapter introduced the mathematical framework of sparse representations. We

presented the most-known norm functions for sparsity promoting: `0-norm, `1-

norm and `p -norm with 0 < p < 1. The characteristics of each norm function were

discussed. Of particular interest is the `0-norm, which counts the number of non-

zeros of a vector and thus can strictly control the sparsity. Nevertheless, its undeni-

able shortcoming is that the function is non-smooth and non-convex, making the

problem NP-hard. The `1-norm is regarded as a relaxation of the `0-norm for the

sparsity-promoting. Unlike the `0-norm, this function is convex and differentiable

at all values except at the zero. The price to pay is the risk of missing the optimal

sparsest solution. The `p -norm with 0 < p < 1 is closer to the `0-norm function than

the `1-norm, thus it has stronger sparsity control ability than the latter; however, it

is a concave function. For each norm function, we detailed the formulations of the

optimization problems of sparse representation and also gave a problem transfor-

mation survey.

Next chapter presents algorithms for sparse representation learning.
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Sparse Representation Algorithms
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In the previous chapter, we presented the mathematical formulations of sparse

representation. It is revealed that the problem can be defined by inducing the spar-

sity with the `0-norm, `1-norm or `p -norm (with 0 < p < 1) functions. Owing to

its power in controlling explicitly the number of non-zero coefficients, the `0-norm

is theoretically the first choice to build sparse representations. However, the `0-

norm is non-smooth and non-convex, which makes the corresponding optimiza-

tion problem NP-hard. To overcome the shortcoming of the `0-norm, it is usually
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replace with the `1-norm, which is the closest convex norm function to `0-norm.

Moreover, it is proved that, in some conditions (e.g. when the sparse code is quite

sparse), the optimal solution of the `1-norm based optimization problem coincides

with that of the `0-norm based problem.

This chapter presents the state-of-the-art algorithms for sparse representation

learning. It considers two major problems: sparse coding and dictionary learning.

Sparse coding is the keystone in sparse representation learning. It consists in

estimating the sparse code (i.e., the coefficients of the linear model) while the dic-

tionary is already known. This optimization problem can be formulated by intro-

ducing sparsity-promoting constraints, mainly the `0-norm and the `1-norm de-

fined in the previous chapter. Since the 1990’s, extensive research efforts have been

made to address to solve the sparse coding optimization problem. Section 3.2 in

this chapter presents the prime algorithms for sparse coding, such as greedy algo-

rithms [Tro04] whose major representative is the Matching Pursuit [MZ93], relax-

ation methods with Basis Pursuit [MXAP11] and LASSO [Tib96], Gradient Descent

algorithms [KKK08] and Iterative Thresholding methods [Kow14].

In Sections 3.3 and 3.4, we will focus on the problems of dictionary learning. In

complement to estimating the sparse code as in sparse coding problems, dictionary

learning aims at estimating also the optimal dictionary, thus improving the perfor-

mance of the sparse representation. The dictionary learning aims at finding jointly

the optimal solution of the sparse code and of the dictionary. The resulting opti-

mization problem is non-convex and NP-hard, and is more difficult than solving

the single sparse coding problem. To overcome this issue, a good resolution strat-

egy is to iteratively alternating two steps: sparse coding and dictionary updating.

The sparse coding problem, as aforementioned, handles the estimation of the de-

composition coefficients with a fixed dictionary. While fixing these coefficients, dic-

tionary updating aims at estimating the optimal dictionary. In its general form, the

resulting optimization problem is a convex problem, which can be easily solved by

algorithms such as the Method of Optimal Direction [EAH99] and the Coordinate

Descent algorithm applied in K-SVD [AEB+06, MBPS09]. With appropriate sparse

coding algorithm and dictionary update algorithm, the state-of-the-art algorithms

for dictionary learning are introducing in the following, with the K-SVD algorithm

[AEB+06], the proximal method [JMOB10], and the Sum of OUter Products Dictio-

nary Learning (SOUPDIL) algorithm [RNF17].
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3.1 Sparse coding and dictionary learning

Given a matrix X = [x1, . . . ,xi , . . . ,x`] ∈Rn×` of ` signals of dimension n, and a (pre-

defined or learned) dictionary dictionary D = [d1, . . . ,dm] ∈ Rn×m the problem of

sparse representation consists in finding a matrix A = [ααα1, . . . ,ααα`] ∈Rm×` of decom-

position coefficients that satisfies X ≈ DA. The columns of the dictionary, i.e., d j for

j = 1, . . . ,m, are called atoms.

In signal or image data processing, the set of signals is typically larger than its

dimension, namely `À n. The sparse representation can be obtained by solving

the following optimization problem:

min
αααi∈Rm

1

`

∑̀
i=1

(1
2‖xi −Dαααi‖2

2 +λΩ(αααi )
)
. (3.1)

The first term 1
2‖xi −Dαααi‖2

2 is the reconstruction error with ‖ . ‖2 being the Euclidean

norm. The second one includes the regularization term Ω(αααi ) to enforce sparsity.

The regularization parameter λ > 0 controls the trade-off between data fitting and

sparsity of ααα. For the sake of clarity of this monograph, the reconstruction error is

measured with the square loss; generalization to other loss functions, such as the lo-

gistic and hinge losses, is straightforward [ŞE13]. Generally, the regularization func-

tion Ω is associated to a norm that promotes sparsity and its formulation depends

on the task at hand [BJQS14, AEB+06]. The natural definition of Ω to promote spar-

sity is, as mentioned in Chapter 2, the `0-norm.

With the assumption of independence of the signals, the optimization problem

(3.1) can be divided into ` independent subproblems

min
αααi∈Rm

1
2‖xi −Dαααi‖2

2 +λΩ(αααi ). (3.2)

When the `0-norm is adopted to promote the sparsity, this problem becomes non-

convex, non-smooth, and thus NP-hard, as analyzed in Chapter 2.

The dictionary plays a crucial role in sparse representation [Tro04, Ela10]. Nev-

ertheless, there is no predefined dictionary that can satisfy all tasks in processing

natural signals and images. For all these reasons, learning the dictionary from the

data is a main building block in sparse representation. And in general, D is an over-

complete dictionary, that is to say n < m, while the situation n > m is allowed for

some discrimination tasks [MPS+09]. To prevent the `2-norm of dictionary’s atoms
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from being arbitrarily large which leads to arbitrarily small decomposition coeffi-

cient in A, the dictionary D is supposed without loss of generality, to satisfy

D= {
D ∈Rn×m | ‖d j‖2 ≤ 1, ∀ j = 1, . . . ,m

}
. (3.3)

Beyond these considerations, the dictionary learning problem can be written in the

following general form,

min
αααi∈Rm ,D∈D

1

`

∑̀
i=1

(1
2‖xi −Dαααi‖2

2 +λΩ(αααi )
)
. (3.4)

This problem of estimating simultaneously A and D is non-convex and belongs to

NP-hard problems. It is often solved via an alternating strategy: 1) fixing D and find-

ing the sparse coefficients A, this becomes the problem of sparse coding as afore-

mentioned; 2) fixing A and searching for the solution D, this is the procedure of

dictionary updating. Several popular algorithms for sparse coding and dictionary

updating are described in the following, as well as the most known combinations of

these algorithms.

3.2 Algorithms for sparse coding

The optimization problem of sparse coding (3.2) consists in finding the sparse rep-

resentation ααα ∈Rm of x over the dictionary D, which can be specifically formulated

in different forms.

The k-sparse representation problem with maximal number of non-zero entries

fixed is modeled by

argmin
ααα

1
2‖x−Dααα‖2

2, ααα ∈Sk , (3.5)

where

Sk = {v ∈Rm | ‖v‖0 ≤ k}

means the set of k-sparse vectors.

By considering the constraint on the reconstruction error, the sparsest represen-

tation can be obtained via the problem

argmin
ααα

Ω(ααα) subject to ‖x−Dααα‖2
2 < ε, (3.6)
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where Ω(ααα) is a function of ααα which measures the sparsity of the vector. These con-

strained optimization problems can be addressed by considering the minimization

of the regularized reconstruction error,

argmin
ααα

1
2‖x−Dααα‖2

2 +λΩ(ααα), (3.7)

where λ introduced previously balances the effects of data fitting and sparsity.

As aforementioned, these three formulations are used for different tasks and

they can achieve the equivalent global optima under certain conditions. In contrast,

the strategies for tackling the problems of different formulations are quite differ-

ent. The `0-norm based problem is non-convex and non-continuous, which makes

it hard to be resolved directly. To overcome these difficulties, two major strate-

gies have been widely investigated. The first one use greedy algorithms, such as

Matching Pursuit [MZ93], Orthogonal Matching Pursuit [PRK93], subspace pursuit

[DM09], and even proximal method [PB14] to let it be tractable. The second strat-

egy is relaxation, since the `1-norm based problem, also sometimes called LASSO

problem, becomes convex which is solved by Basis Pursuit [CD95], by gradient de-

scent algorithm [KY03], by homotopy algorithm [GG09] or by thresholding method

[Mei07] and very recently, a novel strategy is emerging, by reformulating the prob-

lem as MIQP, which makes it possible to apply some optimization methods like the

branch-and-bound method [AGH18, BNCM15] or relaxing the integer constraints

to be continuous [BBF+16] and so on. The two major strategies with the main algo-

rithms for sparse coding are described in the following, while the novel strategy is

presented in next chapter.

3.2.1 Greedy algorithms

A greedy algorithm solves an optimization problem by searching for the optimal

solution of a subproblem at each step. For the sparse coding problem with `0-norm

for sparsity promoting, it selects at each step an atom over which the residual has

the maximal projection. Greedy algorithms provide a good sparse approximation

[Tro04] rather than the optimal sparse solution. In this part, we present the most

known greedy algorithms: matching pursuit and its variants.
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Matching pursuit

Matching pursuit (MP) is proposed in [MZ93] to deal with the problem of signal

decomposition. The algorithm is inspired by the fact that, giving a signal x and a

dictionary D with each atom of unit norm, denoted by di with i = 1, . . . ,m, then the

signal decomposition by orthogonal projection onto some selected atom dt1 is given

by

x = (
xTdt1

)
dt1 + r1, (3.8)

where r1 is the representation residual orthogonal to dt1 ,the latter being selected

based on the residual. This leads to the result,

‖x‖2 = |xTdt1 |2 +‖r1‖2. (3.9)

Then it is conducted that by minimizing ‖r1‖2, namely maximizing |xTdt1 |. The sig-

nal x can be maximally approximated in the space spanned by dt1 . By successively

doing k times orthogonal projections on selected atoms of D, the signal can be ap-

proximated by

x =
k∑

j=1
xTdt j + rk , (3.10)

where the sequence t j contains the indices of the selected atoms. With

limk→∞ ‖rk‖2 = 0, the signal x can be approximated with high precision. It induces

also the convergence of the algorithm.

The Matching Pursuit algorithm is exhibited in Algorithm 1. It is worthy to no-

tice that MP algorithm guarantees in each iteration the orthogonality between the

i th selected atom dti and the residual ri . Nevertheless, the space spanned by the se-

lected atoms [dt1 , . . . ,dti ] after i approximations is not guaranteed to be orthogonal

to ri . This risks of getting the sub-optimal solution in each step, which may cause

large error after a finite number of steps [PRK93].

Orthogonal matching pursuit

The Orthogonal Matching Pursuit (OMP) algorithm [PRK93] is proposed to over-

come the drawback of MP algorithm. Intrinsically, OMP inherits the spirit of MP,

which selects an atom at each step to decrease the residual. Thus, OMP is still a

greedy algorithm. However, unlike MP, OMP recalculates the composition in the

space spanned by the selected atoms, which guarantees always the orthogonality of
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Algorithm 1 Matching Pursuit Algorithm (MP)

Input: The given signal x, the fixed dictionary D, the stop criterion of sparsity k, the
stop criterion of reconstruct error ε.

Output: Sparse approximationααα
function SPARSE CODING

Initialization i = 1, the residual r0 = x, the approximation ααα= 0 and the initial
solution support T0 =;

while car d(Ti−1) < k +1 or ‖x−Dααα‖2
2 > ε do

Selecting the atom over which the residual ri−1 has the maximal magnitude
of orthogonal projection

ĵ = argmax
j=1,...,m

|〈ri−1,d j 〉|;

Updating support Ti = Ti−1 ∪ ĵ
Updating the residual after i th projection

ri = ri−1 −〈ri−1,d ĵ 〉d ĵ ;

Updating the coefficient corresponding to the ĵ th atom

ααα( ĵ ) = 〈ri−1,d ĵ 〉;

i = i +1;
end while

end function

representation residual and the spanned space.

The details of OMP algorithm are listed in Algorithm 2. Compared with MP al-

gorithm, OMP algorithm carries out one more operation (3.11) to lead to the best

approximation over the selected support [PRK93]. Tropp gave the theoretical sup-

port that, when the signal is sparse enough, OMP performs well in signal recovery

and approximation [Tro04], even with random measurement matrix such as Gaus-

sian and Bernoulli [TG07].

It is observed that OMP needs no more than k iterations to achieve the approx-

imate solution. Nevertheless, the computing cost in atom identification and coef-

ficient update (3.11) is unnegligible. A progressive Cholesky process is adopted to

handle the problem (3.11) and some implementation skills are used to accelerate

the algorithm [RZE08].

Furthermore, based on the OMP algorithm, some variants are proposed to re-

duce computation complexity by optimizing the identification step. The General-

ized Orthogonal Matching Pursuit algorithm (gOMP) [WKS12] speeds up the com-
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Algorithm 2 Orthogonal Matching Pursuit Algorithm (OMP)

Input: The signal for sparse coding x, the known dictionary D, the stopping crite-
rion of sparsity k or that of reconstruct error ε.

Output: The sparse representationααα.
1: function SPARSE CODING

2: Initialization i = 1, the residual r0 = x, the solution support T0 = ;, the
sparse approximationααα= 0

3: while i < k +1 or ‖ri−1‖2
2 > ε do

4: Finding the atom the highest correlated with the current residual, that is

ti = argmax
j∈{1,...,m}\Ti−1

|〈ri−1,d j 〉|;

where j ∈ {1, . . . ,m} \ Ti−1 means that j ∈ {1, . . . ,m} and j 6∈ Ti−1.
5: Adding the new atom index into the support

Ti = Ti−1 ∪ ti ;

6: Updating coefficient vector

αααTi = (DT
Ti

DTi )−1DT
Ti

x; (3.11)

Here we recall the notation of αααTi and DTi representing the sub-vector and sub-
matrix indexed by the elements in the set Ti .

7: Updating residual
ri = x−DTiαααTi ;

8: Increment i = i +1
9: end while

10: end function

putation by selecting more than one atom at each step. Through the method, a

k-sparse signal can be approximated by less than k iterations. However, gOMP is

not suitable for signals that are not strictly sparse.

The Regularized Orthogonal Matching Pursuit algorithm (ROMP), as is called,

is regularized version of OMP [NV09]. ROMP takes the same strategy as in gOMP to

recover sparse signals. At every iteration, all the atoms with comparable coordinates

are selected. This process named regularization is realized by:

|αααi | ≤ 2|ααα j | ∀i , j ∈Λs ,

where Λs denotes a subset of support Λ at i th iteration, which is formed by the k
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atoms with largest correlation to the sparse signal. ROMP gains success in dealing

with sparse signal reconstruction under the Restricted Isometry Condition (RIC).

Even for natural signals, which are not strictly sparse, the algorithm shows stability

in sparse approximation. However, the level of sparsity k can be missed with high

probability [WKS12].

Similarly, Donoho et al. proposed in [DDTS06] the algorithm Stagewise Orthog-

onal Matching Pursuit (StOMP). In this algorithm, numerous atoms are determined

at each stage by thresholding. The threshold b is defined as a function of the noise

level σ, that is,

b = pσ,

where p is a predefined parameter. With adequate threshold setting, StOMP is

proved to reach the exact sparse signal recovery as OMP but with higher speed. The

algorithm is also suitable to deal with noisy signals. However, in this case, the results

are not the one get by OMP.

OMP and its variants have been frequently used for sparse coding for dictionary

learning [AEB+06, MBP12, Sch14]. Likewise, algorithms applying the same spirit

of OMP are used in tasks such as classification [RS08, HA07, ZL10, MLB+08], face

recognition [ZL10] and image denoising [EA06].

Compressive sampling matching pursuit (CoSaMP) and subspace pursuit (SP)

The Compressive Sampling Matching Pursuit (CoSaMP) [NT09] and the Subspace

Pursuit (SP) [DM09] are two other sparse coding algorithms developed on OMP.

Nevertheless, the two algorithms are inspired by the fact that the energy in each

component of u = DTDααα approximates the energy in the corresponding compo-

nent of ααα, when D satisfies the RIC, namely the largest k elements in u point to the

largest k entries inααα. Thus, the k support ofααα can be predicted by u, which is called

here proxy. Then, by iteratively regulating support to minimize the residual, the k-

sparsity approximation or recovery problem can be solved.

The pseudocode of the CoSaMP algorithm is given in Algorithm 3. This algo-

rithm, in contrast with gOMP, StOMP and ROMP, can guarantee that the obtained

sparsity level is k. To this end, the rigorous condition of RIC on D needs to be estab-

lished. Thus, signal-to-noise ratio (SNR) reduction occurs in each iteration, which

induces the convergence of the algorithm. Moreover, based on analysis on SNR re-

duction, the number of iterations can be predicted. Even it is undeniable that the
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Algorithm 3 Compressive Sampling Matching Pursuit (CoSaMP)

Input: A given signal x, the fixed overcomplete dictionary D, maximal number of
iteration Ni ter , the sparsity level k.

Output: The sparse representationααα.
1: function SPARSE CODING

2: Initialization i = 1, the residual r0 = x, the solution support T0 = ;, the
sparse approximationααα= 0

3: while i < Ni ter +1 do
4: Calculating 2k largest elements in the proxy u = DTri−1, its support is thus

obtained
T = {t1, . . . , t2k };

where ti = argmax u{1,...,m}\{t1,...,ti−1} pointing to the i th largest entry in u.
5: Merging T and the current support Ti to update support

Ti = Ti−1 ∪T;

6: Updating projection value in the new support

αααTi = (DT
Ti

DTi )−1DT
Ti

x; (3.12)

7: Pruning elements in support to keep only the k atoms retaining the largest
correlation with x. The updated support is denoted by Ti .

8: Updating residual
ri = x−DTiαααTi ;

9: Increment i = i +1
10: end while
11: end function

number of iterations depends on the properties of the signal. Algorithm 3 limits

the iteration number to halt the loop. Besides, other stopping criteria have been

presented, such as the reconstruct error [NT09, Apprendix].

The algorithm SP is nearly the same as CoSaMP except for the number of iden-

tified atoms [DM09]. This algorithm also well performs under RIC with adequate

constant requirement. However, in SP, Dai and Milenkovic located only the k largest

components in proxy, rather than 2k ones. With this improvement, new theoreti-

cal analysis is made in [DM09] to guarantee the residual reduction in each iteration

and the convergence was proved with a limited number of iterations. In this case,

the halting criterion can adopt the difference between the residuals before and after

each iteration, that is to say, if ‖ri‖2 > ‖ri−1‖2, set Ti = Ti−1 and quit the iteration.
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Other matching pursuit

There are other variants of the MP, such as Hierarchical Matching Pursuit (HMP)

[BRF11], and (fast) Bayesian Matching Pursuit (BMP) [SPZ08, WYWW11, MAN13].

HMP was proposed by Bo et al. for high level image feature extraction [BRF13,

BRF11]. In contrast with classical OMP algorithms, HMP is designed with three cru-

cial factors: tree-structured dictionary for sparse coding with algorithm OMP, spatial

pyramid max pooling and normalization. HMP contains multi-level and each level

operates all the three above-mentioned processes. In this framework, the higher

level uses the output feature in the last level as the input data for tree OMP, and its

output passes to the next level for further learning. Image feature extracted by HMP

is then applied in classification. The performance exhibited in [BRF11] proved its

advantage even comparing with convolutional neural networks.

BMP regards the sparse representation of a signal as a random variable that

satisfies certain probabilistic distribution, rather than a deterministic one. For in-

stance, in [SPZ08], an i.i.d. random variable ααα is drawn from a Q-ary Gaussian mix-

ture parameterized by s = [s1, . . . , sm]T, that is, each entry αi corresponds to a certain

Gaussian distribution (si = q ) with mean µq and variance σ2
q ,

αi | si = q ∼ CN(µq ,σ2
i ).

With an appropriate Gaussian model (four models were introduced in [SPZ08]:

zeros-means binary prior, nonzero-mean binary prior, zero-mean tenary prior and

Q-ary circular prior), zero entries and non-zero entries in ααα can be exactly mod-

eled (si = 0 ⇒ αi = 0 and si 6= 0 ⇒ αi 6= 0). The probability p(s,x) is estimated by a

variable v(s,x) called model selection metric, with p(s,x) = ev(s,x) (see [SPZ08] for

details). The determination of the support of x is thus transformed into a problem

of finding the Gaussian mixture model with the largest probability. This problem is

formulated as a tree search with each node representing a possible mixture s, specif-

ically, the p-level node contains the mixtures with ‖s‖0 = p. By iteratively adding a

non-zero entry in s via selecting the one with the largest probability, the Gaussian

model can be finally reached. Then, the sparse code is computed by

α̂αα=∑
p(s,x)E(ααα | x,s),

where the expectation can be computed from the Gaussian model assumptions.
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3.2.2 `p-norm relaxation

By replacing the `0-norm by another `p -norm for sparsity prompting, the opti-

mization problems (3.5), (3.6) and (3.7) are transformed to become continuous,

and even convex (for p ≥ 1), and differentiable (for p > 1). The `1-norm, the

nearest norm function to the `0-norm that is convex, attracted most attention

[CDS01, MBPS09, Don06, MKCP17]. The resulting sparse representation problem

based on `1-norm is often solved with the Basis Pursuit [CDS01] and LASSO method

[Tib96].

Basis pursuit

The Basis Pursuit [MXAP11, CDS01] focuses on the linear constrained optimization

problem (3.6). As mentioned in [CDS01], the Basis Pursuit is a principle rather than

an algorithm. It reformulates the problem by separating the non-negative and the

non-positive parts ofααα, namelyααα=ααα+−ααα− withααα+ ≥ 0 andααα− ≥ 0. The optimization

problem is thus written by

argmincTv subject to [D,−D]v = x, v ≥ 0, (3.13)

where c =1112m is the vector of ones of size 2m, and variable v of size 2m is composed

by (ααα+,ααα−). The problem (3.13) is obviously the standard form of linear program-

ming. For denoising, the corresponding optimization problem, formulated with the

error constraint (3.6) or regularization term (3.7) [CD95], can be reformulated as a

problem of linear programming with quadratic constraints or quadratic program-

ming respectively. In this way, the `1-norm based problem can be solved via opti-

mization techniques, such as the simplex algorithm and the interior point method.

LASSO

LASSO provides a new point of view to solve the `1-norm constrained square error

minimization problem (3.5), or its regularized problem (3.7) [Tib96]. The method of

LASSO is realized by introducing an auxiliary matrix G whose rows contain the signs

of the correspondingααα. Consequently, the inequality constraint can be represented

by the linear inequality Gααα≤ λk111. With considering the sign of a real value being ei-

ther +1 or −1, there are totally 2p kinds of possible structures. The number of rows

of G is thus 2p . By eliminating calculations on G of too big size, an iterative process
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Algorithm 4 LASSO

Input: the signal x, the dictionary D, the sparsity λk

Output: The sparse representationααα.
1: function SPARSE CODING

2: Initialization ααα0 = (DTD)−1DTx, defining E = {i | gi
Tααα = λk } where gi is the

i th row of G and setting initial E = {i0 | gi0 = sign(ααα0)}.
3: do
4: Finding solution α̂αα to the problem of minimization,

argmin
ααα

1
2‖x−Dααα‖2 subject to GEααα≤ λk111|E| (3.14)

5: updating E = E∪ {i | gi = sign(α̂αα)}
6: while ‖ααα1‖ > λk

7: end function

is proposed in [Tib96]. The outline of the algorithm is summarized in Algorithm (4),

where the optimization problem (3.14) is a quadratic programming with linear in-

equality constraints, which can be solved with optimization problem methods such

as seeking the solution satisfying the Kuhn-Tucker conditions [Ber97].

In addition to reformulating the `1-norm regularized least square minimization

problem as a classical optimization problem, this problem can also be solved by

algorithms such as Least Angle Regression (LARS), homotopy algorithm or some

gradient based algorithms [KKK08, GK09](gradient algorithms will be presented in

the next subsection). The LARS algorithm updates the estimation iteratively along

the least angle direction until all non-zero elements are found [EHJ+04].

The homotopy algorithms [MCW05b, GG09] are developed based on the fact

that the solution to the regularized problem can be computed directly by letting

the zero vector belong to the subdifferential of the objective function, which was

presented in section 2 of [GG09], namely it exists a dαdαdα that satisfies

DT(Dααα−x)+λdαdαdα= 0, (3.15)

where dαdαdα denotes the subdifferential of the objective function of the regularized

problem, which takes the form

dαdαdα= ∂‖ααα‖1 =
{

v ∈Rm
∣∣∣∣{ vi = sign(αi ) if |αi | > 0

vi ∈ [−1,1] if αi = 0.

}
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Thus, with knowing the support and sign of the entries ααα, the problem parameter-

ized by a certain λ can be easily solved. The Lagrangian method turns the con-

strained optimization problem into a regularized least-square minimization prob-

lem. This optimization problem lies then on the determination of the support and

sign of ααα. Homotopy is the algorithm offering the way to find these two impor-

tant information about ααα. In [MCW05b], the authors regarded the optimal solu-

tion to the problem as a function of λ, expressed by ααα(λ). This function shows a

piecewise linear continuity, and the support and sign of ααα keep unchangeable in

a range [GG09, MY12]. With this characteristic, the support and sign can be suc-

cessively added or removed by getting the critical value of λ, namely the value that

makes a non-zero entries ofααα turn to zero and the subdifferential corresponding to

zero entries of ααα reaching the limit ‖dαdαdα‖∞ = 1. Thereupon, by decreasing λ from

‖DTx‖∞ to zero, we get the optimal solution corresponding to each λ. Choosing the

solution with the desirable number of zeros in α results in the final solution. The

searching path is given in [GG09, MY12, PH07]. Garrigues and Ghaoui [GG09] im-

proved the algorithm by rewriting the optimal solution of the problem as a function

of an auxiliary variable t and parameter λ, namely ααα(t ,λ). Moreover, λ is not di-

rectly set but reached by an increasing sequence {λn}. With these notations, they

design a path from ααα at the i th iteration αααi = ααα(0,λi ) to its value at iteration i + 1

with αααi+1 = ααα(1,λi+1), which is composed of two steps: 1) updating ααα(0,λi+1) from

ααα(0,λi ) with the method mentioned above; 2) fixing λ and varying t from 0 to 1.

Relaxation formulations by `p -norm with 0 < p < 1 are also studied in references

[FM11, RSS10, SBFA17, ZMZ+13]. However, the corresponding optimization prob-

lem is not convex, which makes it hard to solve.

3.2.3 Gradient descent and iterative thresholding algorithms

Iterative Thresholding methods [Kow14, BYD07] often take advantage of threshold-

ing gradient descent, which is used to solve sparse representation problems due to

its fast convergence and theoretical sparse approximation guarantee [Fou11, YLZ18,

GK09, KKK08]. It is noticed that Iterative Thresholding Algorithm can be adopted to

solve `0-norm based optimization problems [BYD07, GK09, YLZ14], and `1-norm

based optimization problems [FISI16, Mei07, WNF09, KXAH15].
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Algorithm 5 Iterative Hard Thresholding Algorithm for `0 Regularization

Input: the signal x, the dictionary D, the sparsity level k, the stepsize γ, the stopping
criterion ε.

Output: The sparse representationααα.
1: function SPARSE CODING

2: Initialization i = 1, the coefficient vectorααα0 = 0.
3: while ‖x−Dααα‖2

2 > ε do
4: Gradient Descent to reduce error ‖x−Dααα‖2

2,

αααm =αααi−1 + 1
γDT(x−Dαααi−1). (3.16)

5: Sorting all entries of |ααα| in descending order, that is, |αs(1)| ≥ · · · ≥ |αs(m)|.
Then, taking the k th largest one |αs(k)| the threshold. Theααα is thus updated by

αααi = T|αs(k)|(ααα),

where Tc (ααα) means that all entries of ααα larger than c in magnitude will be re-
tained while the others are set to 0.

6: Increment i = i +1
7: end while
8: end function

Gradient descent with projection on constraint set

Iterative Hard Thresholding (IHT), also called Gradient Descent with Sparsification

(GraDeS) in [GK09], creates a sequence ofαααi by iteratively reducing the square error

along the gradient direction by a step of length 1/γ followed by retraining the largest

k entries ofααα by thresholding. Its framework is described in Algorithm 5.

The IHT algorithm is proved to produce sparse approximation whenever the sig-

nal is noisy or not, under the condition that the dictionary D satisfies the RIC with

isometric constant δ2k < 1/3. Furthermore, the algorithm is proved to converge in

a limited number of iterations by setting γ = 1 [BD08, BD09, HGT06] or γ = 1+γ2k

[GK09]. Moreover, the update step size γ is allowed to vary according to iteration

[Fou11]. Foucart [Fou11] and Yuan et al [YLZ18] proposed a variant, Hard Thresh-

olding Pursuit (HTP), which combines the IHT method with CoSaMP. At each itera-

tion, following the thresholding step, HTP calculates the maximal projection in the

space spanned by the support ofαααi . Compared with IHT, HTP improves the perfor-

mance on error minimizing and holds on the high-speed computation.

37



CHAPTER 3. SPARSE REPRESENTATION ALGORITHMS

Besides, the IHT is intrinsically equivalent to the proximal method [BJQS14,

PB14] when dealing with a k-sparsity constrained problem (details given in section

4.1.2), although these two methods are developed in two different frameworks.

Iterative thresholding algorithm for regularized sparse problem

For the regularized optimization problem, the solution depends on the value of

trade-off parameter λ, which implies that the threshold in the algorithm is a func-

tion of λ, namely s(λ). The resolution of this problem is done with the aid of a sur-

rogate function [BYD07, BD08, DDDM04]. The surrogate function is obtained from

reformulating the original problem by introducing an auxiliary variable a ∈ Rm as

follows

argmin
ααα,a

1
2‖x−Dααα‖2

2 +λ‖ααα‖p −‖Dααα−Da‖2
2 +‖ααα−a‖2

2, (3.17)

where a is a variable closed toααα. Developing the problem (3.17), we have

argmin
ααα,a

∑
j

(α2
j −2α j (a+DTx−DTDa) j +λ|α j |p )+‖x‖2 +‖a‖2 −‖Da‖2. (3.18)

When p = 0, the objective function is non-differentiable. Considering the prob-

lem separately for the cases α j = 0 and α j 6= 0, then, its solution is of the form

ααα= Tλ0.5 (a+DT(x−Da)),

where Tλ0.5 is the thresholding operator defined as

Tλ0.5 (α) =
{

0 if |α| ≤ λ0.5

α if |α| > λ0.5.

Hence, replacing a by αααi , the solution can be reached by a convergent sequence

produced by using the IHT algorithm

αααi+1 = Tλ0.5

(
ai +DT(x−Dai )

)
.

It is noticed that, in this algorithm, the descent step size is set to be 1 which could

cause unstability. A sufficient condition for stability and convergence is having the

eigenvalues of I−DTD strictly between 0 and 1 [BD08, BYD07].

When p = 1, the surrogate function becomes differentiable only if α j 6= 0. Then,
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except for α j = 0, letting the derivative of the function be equal to 0, the solution is

expressed as

α j = TSλ/2(a j + (DT(x−Da)) j ),

where TSλ/2 is the soft thresholding operator with the definition of

TSλ/2(α) =


α−λ/2 if α ≥ λ/2

0 if |α| < λ/2

α+λ/2 if α ≤−λ/2.

By replacing a j by αi
j , which is the solution obtained in the i th iteration, and α j

by the updated solution αi+1
j after i + 1 iterations, the Iterative Soft Thresholding

algorithm (IST) is obtained with

αi+1
j = TSλ/2(αi

j + (DT(x−Dαi )) j ). (3.19)

The proof of convergence can be found in [DDDM04].

By soft thresholding, the non-zero coefficients are shrunken, namely there is a

bias in the coefficient estimation compared to the least-squares solution. Accord-

ingly, relaxed LASSO estimator was proposed in [Mei07], which tunes λ by another

parameter varying from 1 to 0. Fujiwara et al. [FISI16] improved the efficency of

the IST algorithm by a predetermined step in which the necessary updated coeffi-

cients are selected and the unnecessary ones are pruned. Moreover, Two-Step Iter-

ative Shrinkage/Thresholding Algorithm (TwIST) updates αααi+1 depending both on

αααi andαααi−1, which shows good performance on denoising and stability [BDF07].

Gradient descent algorithm

Due to the differentiability of the LASSO problem in all αi , except where αi = 0, the

gradient descent can be applied to the problem. However, as aforementioned, the

step size and its direction are difficult to determine in order to keep the updated co-

efficient in the acceptance constraint region. In this section, we present the gradient

LASSO proposed by Kim et al. in [KKK08], which is stable and convergent.

Similar to the iterative thresholding algorithm, the gradient descent LASSO is

composed of two steps: addition step and deletion step. The optimization problem
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is transformed, by using the variable changeωωω=ααα/λ, into

argmin
ωωω∈S

1
2‖x−λDωωω‖2

2,

where S = {v ∈ Rm | ‖v‖1 ≤ 1}. The idea of the gradient LASSO is to find a path of

descent ωωω to cause reduction of the square error and guarantee ωωω is always in the

setS, which is realized in [KKK08] with two steps: the first step decreases the square

error and the second step correctsωωω in the setS. The outline of the gradient descent

LASSO is presented in Algorithm 6. Next, we detail the addition and deletion steps.

The addition step takes advantage of the coordinate gradient descent algorithm

(CGD), namely at each iteration, an entry is updated. For instance, Kim et al. select

the one with the largest gradient component

ĵ = max
j

|∇ω j f (ωωω)|,

where fωωω = 1
2‖x−λDωωω‖2

2. Then ω ĵ is updated along the direction in S,

ωi+1
ĵ

=ωi
ĵ
+γ(v −ωi

ĵ
),

where v = sign(∇ω ĵ
f (ωωω)) and γ ∈ [0,1]. It is noticed that the direction of descent is

v−ωωω where v is the vector whose ĵ th component is v , namely v ∈S. With assump-

tion ofωωωi ∈S and γ varying from 0 to 1, each update is still in the setS. The descent

step γ is determined by minimizing

γ̂= argmin
γ∈[0,1]

f
(
(1−γ)ωωω+γv

)
.

The deletion step handles the problem by considering two possible cases: 1) the

updatedωωωi+1 does not achieve the optimal sparsity level, namely there is non-zero

entries in ωωωi+1 that ought to be zero in an optimal solution, 2) ωωωi+1 has the de-

sirable sparsity level but not optimal. The first case occurs when 〈∇ωωωi+1
I

f ,θθθI〉 < 0

and ‖ωωωi+1‖1 = 1, where I denotes the set of indices of the active entries I = { j |
ω j 6= 0}, where θθθ is a vector that contains all signs of updated coefficient vector

θθθ = sign(ωωωi+1). The notation of ωωωi+1
I

, as a component of ωωωi+1, is given in Chapter

1. Then the direction v was proved to be

vI =−∇ωωωi+1
I

f +
〈θθθI,∇ωωωi+1

I
f 〉

‖ωωωi+1‖0
θθθI.
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Algorithm 6 Gradient LASSO

Input: the signal x and the dictionary D, parameter λ, stopping criterion ε.
Output: The sparse representationααα.

1: function SPARSE CODING

2: Initialization i = 1, the coefficient vectorααα0 = 0
3: while ‖ωωωi −ωωωi−1‖2

2 > ε do
4: Addition step
5: Iteratively updating ωi by gradient descent algorithm

ωm
j = (1−γ)ωi

j + vγ,

where v = −sign(∇ω j ‖x−λDωωω‖2
2) and γ̂ = argminγ∈[0,1] f (ωωωi+1 +γv), where v ∈

Rm with the j th entry v j = v .
6: Deletion step
7: Finding the index set I which contains the indices of non-zero elements

inωωω.
8: Computing derivative of function f at the sub-vectorωωωI, namely ∇ωωωi+1

I
f .

9: if 〈∇ωωωi+1
I

f ,θθθI〉 < 0 or ‖ωωωi+1‖1 = 1 then

10: vI =−∇ωωωi+1
I

f +
〈θθθI,∇ωωωi+1

I
f 〉

‖ωωωi+1‖0
θθθI;

11: else
12: vI =−∇ωωωi+1

I
f ;

13: end if
14: Setting v the descent direction with all entries indexed by I the vector vI.
15: Updatingωωωi+1 =ωωωi+1 + γ̂v, where γ̂= argminγ∈J f (ωωωi+1 +γv)
16: Increment i = i +1
17: end while
18: end function

The second case is handled in the classical way of gradient descent, that is, vI =
−∇ωωωi+1

I
f . Then formulate v by assigning all entries indicated by I the corresponding

value and the others to zeros. The step size is obtained by minimizing the objective

function but is limited to the interval J = [0,min{−ωi+1
j /v j | ωi+1

j v j < 0, j ∈ I}]. In

this way, some coordinates of ωωωi+1 would decrease to 0, namely some entries are

deleted.

With a finite number of iterations, the gradient based LASSO is ensured to be

convergent and with a bounded error [KKK08]. Furthermore, this algorithm has no

RIC assumption but only requires the Lipschitz continuity of ∇ωωω f .
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3.3 Algorithms for dictionary updating

The subproblem of dictionary updating, aims at finding the local optimal solution

of the problem (3.4) while fixing the matrix of decomposition coefficients A of for-

mulation

min
D∈D

1

`

∑̀
i=1

1
2‖xi −Dαααi‖2

2 +λΩ(αααi ). (3.20)

By removing all the constant terms that are associated with the matrix of decompo-

sition coefficients A, this subproblem can be reduced to the following optimization

problem:

min
D∈D

1
2‖X−DA‖2

F, (3.21)

where ‖•‖F denotes the Frobenius norm. This problem is differentiable and convex,

which is thus much easier to be solved. In this section, we present two algorithms

for dictionary updating: the Method of Optimal Directions (MOD) [EAH99] and the

method of Coordinate Descent based on SVD [EA06].

3.3.1 The method of optimal directions (MOD)

The MOD algorithm proposed by Engan et al [EAH99] updates the dictionary D by

iteratively moving along the optimal direction that minimizes the representation

residual.

Supposing that the sparse representation A of the signal matrix X is obtained, its

representation residual can be expressed by

r (D) = ∑
i

ri (D)

= ∑
i
‖xi −Dαααi‖2

2

= ‖X−DA‖2
F. (3.22)

The objective is to update the dictionary D to D+∆, where the increment matrix ∆

is obtained by minimizing this residual, namely

argmin
∆∈Rn×m

r (D+∆). (3.23)

Moreover, r (D+∆) < r (D) would be satisfied to guarantee convergence of the algo-

rithm. By computing the gradient of the above cost function and setting it to zero,
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we achieve the result

∆AAT = (X−DA)AT.

Thus, D can be updated by D+∆, namely Di−1 + (X −Di−1A)AT(AAT)−1, which can

be simplified to Di = XAT(AAT)−1 [SE12].

The MOD algorithm is usually used for dictionary updating in sparse model

researches [MLB+08], Moreover, its variant, Method of Optimal COherence-

COnstrained Direction (MOCOD) is developed for incoherent dictionary learning

[RLS09].

3.3.2 The algorithm of coordinate descent based on SVD

While the MOD algorithm updates the whole dictionary at each iteration, the Co-

ordinate Descent algorithm based on Singular Value Decomposition (SVD) updates

successively the atoms of the dictionary. In the following, we introduce the algo-

rithm proposed in [AEB+06].

Let B = [b1, . . . ,bm] ∈Rl×m with B = AT, namely b j denotes the j th row of A. The

optimization problem with respect to D is then formulated by

D̂ = argminD∈D ‖X−DA‖2
F

= argminD∈D ‖(X−∑
j 6=i d j bT

j )−di bT
i ‖2

F,
(3.24)

thus the matrix multiplication DA is represented by the sum of outer products∑
j d j bT

j . When updating di with fixing all the other atoms, for keeping the coef-

ficient matrix in sparsity constraint, only the signals with j th entry non-zero are

considered. Let the set of these indices be denoted by J, thus the set of the signals

can be denoted by XJ. Supposing E = XJ−∑
j 6=i d j bT

j ,J, the problem with respect to

di is now

d̂i = argmin
‖di ‖2=1

‖E−di bT
i ,J‖2

F.

This problem aims at finding a normalized vector d̂i over which E achieves the

largest projection. The SVD algorithm is able to find the closest rank-1 matrix (i.e.,

vector) that approximates E with great extent. Thus, di and bi ,J will be simultane-

ously updated in this phase, this is unique in dictionary learning algorithm.
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3.4 Algorithms for dictionary learning

In this section, we restrict the presentation to the classical dictionary learning,

which has been extended to other tasks. Task-specified dictionaries are designed

by reformulating the problem with a special regularization term. For instance, dis-

criminative dictionaries are learned by introducing penalty on the classification er-

ror (e.g. measured by linear classifier [JLD13, ZL10], by logistic loss [MPS+09], or

by Fisher criterion [HA07]). Low-rank dictionaries are obtained by learned problem

with a regularization of the nuclear norm [ZJD13]. Incoherent dictionary learning is

realized by adding a regularization term about the difference between DTD and the

identity matrix of size m ×m, denoted by Im [MBP12, TLZ+19, AFS15, BQJ14] (this

problem will be discussed in detail in Chapter 5 of this monograph).

We will not present all the algorithms of dictionary learning for each special task

but only the classical one, that is, the signal denoising or signal reconstruction prob-

lem. We rewrite the optimization problem of dictionary learning (3.4),

argmin
A∈Rm×l ,D∈D

1
2‖X−DA‖2

F +λ
∑

i
Ω(αααi ), (3.25)

where the regularizationΩ(αααi ) can be ‖αααi‖0 or ‖αααi‖1, or any other sparse promoting

penalty. Like the sparse coding problem, the above dictionary learning problem has

also its constrained formulations, which are the sparsity constrained problem

argmin
A∈Rm×l ,D∈D

1
2‖X−DA‖2

F, αααi ∈Sk ∀i = 1, . . . , l , (3.26)

and the error constrained problem

argmin
A∈Rm×l ,D∈D

∑
i
Ω(αααi ) subject to ‖X−DA‖2

F < ε. (3.27)

The latter optimization problem, jointly on A and D, is NP-hard. It is difficult

to solve this problem by directly using optimization techniques. Thus, we takes

strategies of tackling the problem by two alternating steps: sparse coding, which

is a problem with respect to A by fixing D, and dictionary updating, which fixes A

and aims at computing D. The combination of sparse coding algorithms (in Section

3.2) and dictionary updating algorithm (in Section 3.3) allows to define dictionary

learning algorithms. This section introduces the most frequently used algorithms
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Algorithm 7 Algorithm of K-SVD

Input: Signals set X, sparsity level k, maximal number of iteration N.
Output: The sparse representation A and dictionary D.

1: Initialization The dictionary D0.
2: function DICTIONARY LEARNING

3: for i = 1 to N do
4: Sparse Coding
5: Computing sparse representationαααi

j for each signal x j with j varying from
1 to l by applying OMP algorithm.

6: Dictionary updating
7: m = the number of column of D0.
8: for j = 1 to m do
9: Finding all signals with j th entry non-zero which is indexed by J, de-

noted by XJ
10: Calculating E = XJ−∑

p 6= j dp (bi )T
p,J.

11: Doing SVD decomposition of E = USVT, then di
j = u1 and (bi )T

j ,J =
s(1,1)v1.

12: end for
13: end for
14: end function

for dictionary learning.

3.4.1 K-SVD

The K-SVD algorithm is a representative dictionary learning algorithm that is pro-

posed as a generalization of the k-means algorithm, but regarding a signal as a linear

combination of several atoms [AEB+06].

Since it was proposed, efforts have been conducted on the improvement of im-

plementation [RZE08] and some theoretical foundations [Sch14], which proved the

certainty of reaching a local minimum under the condition of coefficient sufficient

decay. Hence, the algorithm is widely applied with success in image denoising

[EA06], face recognition [ZL10] and classification [JLD13].

K-SVD deals with the optimization problem (3.26) by iteratively alternating the

two phases, sparse coding and dictionary updating as follows: it exploits OMP for

sparse coding, and dictionary update is operated using the Coordinate Descent

Method. While the MOD method updates the whole dictionary in each step, the

K-SVD updates each atom of the dictionary successively, through the singular value

decomposition (SVD) [AEB+06], as introduced in Section 3.3.2.
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The complete K-SVD algorithm is shown in Algorithm 7. In practice, for speed

consideration, the atoms of the dictionary are not updated in order but obeying a

random selection rule.

Due to the great achievements of the K-SVD algorithm [Sch14, RZE08, MBP12,

ZL10], some variants are developed on the algorithm. For example, the kernel K-

SVD provides a nonlinear variant of K-SVD [GE16, VNPNC12, ZSJ+16, KD16]. The

INK-SVD (for INcoherent K-SVD) allows to delete atoms by adding a decorrelation

step following the dictionary update [MBP12] (See Chapter 5 for details).

3.4.2 Sum of outer products dictionary learning

The Sum of OUter Products Dictionary Learning (SOUPDIL) algorithm, recently

proposed by Ravishankar et al [RNF17], is inspired by the K-SVD algorithm. Specif-

ically, the sparsity regularized dictionary learning problem (3.25) is rewritten as an

optimization problem with respect to the matrix B defined in the K-SVD algorithm,

rather than the original sparse representation A, that is,

argmin
B∈Rl×m ,D∈D

1
2‖X−DBT‖2

F +λ‖B‖0, (3.28)

where ‖B‖0 corresponds to the number of non-zero elements in matrix B. Then

applying the formulation of sum of outer products DBT = ∑
i di bT

i , the problem is

transformed into

argmin
B∈Rl×m ,D∈D

1
2‖X−∑

i
di bT

i ‖2
F +λ

∑
i
‖bi‖0. (3.29)

It is worth noting that the problem restricts the total number of non-zero elements

in all signal representations, in contrast with problem (3.25) that constrains only

the sparsity of each signal representation. Thus, this formulation allows a flexible

sparsity for different signals.

For solving the optimization problem (3.29), a block coordinate descent method

is applied. In SOUPDIL, the number of inner iterations is m, which indicates the row

size of dictionary D or that of matrix B. Thereby, in each iteration i , the i th column

of B, i.e., bi , and the i th column of D, i.e., di , are successively updated. Hereafter,

we focus on the algorithm details in each iteration.

For sparse coding, consider the problem of estimating a column bi of B, with D

and all b j with j 6= i being fixed. Let Ei = X−∑
j 6=i ,d j bT

j and B = {v ∈Rl | ‖v‖∞ < L}

be the set of admissible solutions of bi , where L is defined in [RNF17] to avoid the
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Algorithm 8 Sum of OUter Product Dictionary Learning (SOUPDIL)

Input: the input signals X, parameter λ, the upper bound L, maximal number of
outer iterations N, the unit-norm vector v with the first entry one and the rest
zeros.

Output: The transpose of sparse representation B and dictionary D.
1: function DICTIONARY LEARNING

2: Initialization the dictionary D0 and the matrix B0 = 0
3: for t = 1 to N do
4: for i = 1 to m do
5: Sparse Coding
6: Calculating Ei

Ei = X− ∑
j<i

dt
j bt

j
T − ∑

j>i
dt−1

j bt−1
j

T
;

7: Updating bt
i by

bi = min(|Ts(Ei
Tdt−1

i )|,L)¯ sign(Ts(Et
i

T
dt−1

i ));

8: Dictionary updating
9: Computing Ei bt

i .
10: Updating atom dt

i by

di =
{

Ei bi
‖Ei bi ‖2

if bi 6= 0

v else;

11: end for
12: end for
13: end function

non-coercive objective. This leads to the resulting optimization problem

argmin
b∈B

‖Ei −di bT
i ‖2

F +λ‖bi‖0. (3.30)

This problem can be handled by using the IHT algorithm with the threshold set to

s = λ. The closed-form solution is thus

bi = min(|Ts(ET
i di )|,L)¯ sign(Ts(ET

i di )),

where ¯ indicates the element-wise multiplication.

For updating an atom di while fixing all the other variables, the problem be-
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comes

argmin
‖di ‖2=1

‖Ei −di bT
i ‖2

F. (3.31)

The solution is obtained by

di =
{

Ei bi
‖Ei bi ‖2

if bi 6= 0

v else,

where v is a unit-norm vector. In [RNF17], the first column of the identity matrix is

used.

The SOUPDIL algorithm takes advantage of the manner of updating alterna-

tively di and bi , which is proved to be convergent in a limited number of iterations.

We summarize SOUPDIL in Algorithm 8.

3.4.3 Proximal method

The proximal method [PB14] is a tool for dealing with non-smooth, large-scale

problems. Furthermore, Bolte et al proved that the proximal method can reach con-

vergent result in non-convex problems [BST14]. Due to the advantages of the proxi-

mal method, it is used in image processing and machine learning [BJQS14, JMOB10,

LDL15]. Indeed, the proximal method is also widely used in dictionary learning

[JMOB10, CPR13], and moreover, it is proved to be globally convergent [BJQS14].

The dictionary learning problem can be rewritten in a generalized formulation

of non-convex and non-smooth problem with respect to the two variables A and D

argmin
A,D

f (A)+q(A,D)+ g (D), (3.32)

where f = ‖A‖0 (or f = ‖A‖0 + δA(A) ) and g (D) = δD(D) are proper lower semi-

continuous functions, and q(A,D) = 1
2‖X − DA‖2

F is a differentiable function with

a Lipschitz continuous with determined Lipschitz constants. In these expressions,

the indicator functions are defined on the sets A = {M ∈ Rm×l | ‖M‖1,∞ ≤ c} and

D= {D ∈Rn×m | ‖di‖2 = 1,∀i = 1, . . . ,m}.

The proximal method solves the optimization problem (3.32) by iteratively up-

dating A and D. Specifically, the linearized proximal minimization problem with
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respect to A, when fixing D, is

Â = argmin
A

f (A)+〈A−A
′
,∇Aq(A

′
,D′)〉+ t1

2 ‖A−A
′‖2

F, (3.33)

where ∇Aq(A
′
,D′) denotes the partial derivative with respect to q of A at point

(A
′
,D

′
) and t1 an appropriate step size. Similarly, the optimization problem with

respect to D is

D̂ = argmin
D

g (D)+〈D−D
′
,∇Dq(A

′′
,D′)〉+ t2

2 ‖D−D
′‖2

F, (3.34)

where ∇Dq(A
′′
,D′) is the partial derivative of q with respect to D at the point (A

′′
,D′)

and t2 the corresponds to the appropriately chosen step size. Thus, by replacing

Â, A
′
, A

′′
, D̂, D

′
by At+1, At , At+1, Dt+1, Dt respectively, processing iteratively the

problems (3.33) and (3.34) produces a convergent sequence {(At ,Dt )} (see proof in

[BJQS14]).

In fact the problem (3.33) can be solved by the IHT method and the solution

of problem (3.34) can be reached by optimization methods such as the Lagrangian

method [Ber97]. Specifically, Bao et al used a block coordinate descent algorithm

to get the optimal Dt+1. Here, we provide directly the closed-form solutions of the

optimization problems without the detail of calculation At+1 = min
(
Tp

2λ/t1
(At − 1

t1
∇Aq(At ,Dt )),c

)
dt+1

j = dm j /‖dm j ‖2,∀ j = 1, . . . ,m,

where dm j is calculated by a gradient descent, that is,

dm j = dt
j − 1

t2
∇d j q(At+1,Dt

j ),

where Dt
j is the dictionary in the (t + 1)th iteration where all its atoms for

i ≤ j are updated atoms dt+1
i and the other unchanged dt

i , namely Dt
j =

[dt+1
1 , . . . ,dt+1

j−1,dt
j+1, . . . ,dt

m].

Besides, the parameters determination is quite important in implementation of

proximal method. In general, one should ensure that t1 and t2 are not larger than

the Lipschitz constant of the gradient function with respect to A and d j , respectively

[PB14]. Hence, for proximal method, it is the direction and descent step, which

jointly ensure the reduction in the objective function. This is not the same with
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Algorithm 9 Proximal Method for `0-norm based Dictionary Learning

Input: the input signals X, parameter λ, the step size parameter t1 and t2, the max-
imal number of outer iterations N.

Output: The sparse representation A and the dictionary D.
1: function DICTIONARY LEARNING

2: Initialization the dictionary D0 and the matrix A0 = 0
3: for t = 1 to N do
4: Sparse Coding
5: Calculating At

At+1 = min
(
Tp

2λ/t1
(At − 1

t1
∇Aq(At ,Dt )),c

)
;

6: Dictionary updating
7: Updating iteratively atom dt

i by

dm j = dt
j − 1

t2
∇d j q(At+1,Dt

j );

dt+1
j = dm j /‖dm j ‖2;

8: end for
9: end function

greedy and IHT algorithms, since they require a strict condition on the constant of

the Restricted Isometry Condition (RIC).

3.5 Conclusion

This chapter presented the methods to solve the optimization problems of sparse

coding and dictionary learning for sparse representation. Specifically, the dictio-

nary learning problem, estimating jointly the sparse code and the dictionary, is NP-

hard and intractable. The frequently exploited strategy is to iteratively process two

alternating phases: sparse coding and dictionary updating. This optimization prob-

lem can thus be transformed into two tractable subproblems.

This chapter presented the state-of-the-art algorithms of sparse coding, of dic-

tionary updating and also of dictionary learning. In Section 3.2, the sparse coding

algorithms were discussed within three categories: 1) matching pursuit algorithms

for dealing with `0 based problems, 2) relaxation methods by replacing `0 with `p ,

specially the case p = 1 addressed with Basis Pursuit and LASSO, and 3) thresholding

algorithms that, in fact, cover both the first problem of `0 penalty or regularization,

and the second one, namely LASSO problem and Basis Pursuit. In Section 3.3, the
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main dictionary updating algorithms were introduced, with the representative algo-

rithm MOD and the Coordinate Descent algorithm based on SVD. In the last section,

we presented the main algorithms of dictionary learning that combine the appro-

priate sparse coding algorithm and dictionary updating algorithm. The well-known

algorithms are K-SVD, SOUPDIL, and proximal method.

In the next chapter, we will propose a novel strategy to address the exact `0-norm

optimization problem for dictionary learning.
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The problem of dictionary learning plays an important role in sparse represen-

tation. This problem with quadratic objective function involving two optimisa-

tion variables, the sparse code A and the dictionary D, is intractable. To address

this problem, one takes usually the strategy of iteratively alternating the two steps

of sparse coding and dictionary updating. The subproblem corresponding to the

dictionary updating is convex, which can be easily solved by algorithms such as

MOD and gradient descent with SVD, as described in Section 3.3. Nevertheless, the

subproblem of the sparse coding with the `0-norm constraint, due to the charac-

teristics of the `0-norm function, is non-smooth, non-convex, non-differentiable

and thus NP-hard [Ela10]. Generally, researchers take strategies like greedy algo-

rithms [PRK93], relaxation optimization techniques (LASSO [MY12] and concave
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function `p with 0 < p < 1 [RSS10]) or iteration shrinking/thresholding algorithms

[YPXD09]. However, all these methods risk of missing the global optimal solution

[BJQS14, ZXY+15].

In this chapter, we address the sparse coding with its original `0-norm formula-

tion. To this end, we reformulate the sparse representation problem as a mixed in-

teger programming (MIP) problem [BNCM15]. Thereby, the optimization problem

with `0 constraint is transformed into an optimization problem that can be solved

with off-the-shelf optimization software packages, such as CPLEX and Gurobi Opti-

mizer. Moreover, we propose two acceleration techniques that allow to take on real

datasets. Finally, we demonstrate the relevance of the proposed MIP based dictio-

nary learning in well-known image denoising tasks.

4.1 Optimized algorithm for exact `0 penalty problem

This section focuses on the problem (3.26) with Ω the `0-norm function. We recall

the problem that, given a set of l signals X = [x1, . . . ,x`] ∈ Rn×l of length n and a

given sparsity level k, sparse representation aims to find the optimal a linear com-

bination over an overcomplete dictionary D = [d1, . . . ,dm] ∈DwhereD= {D ∈Rn×m |
‖di‖2 = 1, ∀i = 1, . . . ,m} and sparse coefficient matrix A = [ααα1, . . . ,ααα`] ∈Rm×l , namely

by solving the problem

argmin
A∈Rm×l ,D∈D

1
2‖X−DA‖2

F, subject to ‖αααi‖0 ≤ k ∀i = 1, . . . , l . (4.1)

This optimization problem of estimating simultaneously the two variables A and

D is NP-hard. A strategy is to solve A and D alternatingly. When fixing A, D can be

effectively obtained by dictionary updating algorithms such as MOD. When fixing D,

the optimization problem with respect to A is the sparse coding problem, which has

convex objective functions but with a non-convex `0-norm constraint that makes

the optimization problem NP-hard. For the resolution of this problem, methods

that rely on a greedy algorithm [MZ93, PRK93, NT09], may produce a local optimal

[Tro04, BJQS14], while relaxation formulations, such as with LASSO may sometimes

achieve a solution not as sparse as that of the `0 constrained problem.

In this section, we will explore a novel approach to address the sparse coding

problem with the `0-norm constraint. By reformulating the `0 constrained problem,

it is transformed into a problem of MIP, which makes possible to exactly solve the `0
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based problem.

4.1.1 Mixed integer programming (MIP)

Mixed Integer Programming (MIP) refers to optimization problems where some

variables are restricted to be integer while others not. Commonly, MIP refers to

optimization problems with linear objective function and under linear constraints,

which is thus specially called Mixed Integer Linear Programming (MILP). When the

optimization problem has a quadratic objective function, it is called Mixed Inte-

ger Quadratic Programming (MIQP). When even the constraints are quadratic, it

is given the name Mixed Integer Quadratically Constrained Programming (MIQCP)

problem. In the following, we firstly give an introduction of MIP. Then, we refor-

mulate the problem of sparse coding as MIP. Finally, some advanced optimization

methods for dealing with MIP problems will be presented.

Introduction of MIP

The history of MIP dates back to the 1940s [Bix12]. Its development relies on the

algorithmic improvement on Linear Programming (LP) [Sol07, NW06], like the sim-

plex method [NM65], barrier methods [GMS+86], and the computational capability

of hardware. According to [Bix12], from 1988 to 2004, during these sixteen years,

the improvement factor exceeds six orders of magnitude. This significant progress

in LP solvers has been injected in solving MIP problems. This is possible thanks to

techniques like cutting plans, which bridges the gap between MIP and LP [SS06].

Hence, MIP is becoming tractable in real-world problems [SDMFH01]. However, its

application is still limited to small size problems [TS04, BE07].

The standard formulation of MIP problem with respect to a variable v ∈Rn is

argmin
v

vTQv+cTv (4.2)

subject to Ai nv ≤ bi n (4.3)

lb ≤ v ≤ ub (4.4)

vTQi v+cT
i v ≤ bi (4.5)

vI ∈Z, (4.6)

where Q ∈ Rn×n is a symmetric matrix and the vector c ∈ Rn corresponds to the
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linear part of the objective function. The (4.3) ∼ (4.6) are constraints. Specifically,

(4.3) is a linear inequality constraint where Ai n is a matrix of n columns with its

rows depending on the number of linear inequalities, bi n and bi are the right sides

of the linear constraint and quadratic constraint respectively, and (4.4) defines the

bounds for variable v where vectors lb ∈Rn and ub ∈Rn are respectively given lower

bound and upper bound. The constraints determined by the two bounds are funda-

mental in the complexity sense; without bound constraints, the problem becomes

undecidable [Jer73]. In contrast, by raising the lower bounds and reducing the up-

per bounds, the computation complexity can be easily decreased [NS04]. For (4.5),

it represents the quadratic constraint where Qi ∈ Rn×n and ci ∈ Rn . If Qi = 0, the

quadratic constraint (4.5) degenerates into a linear constraint. The last constraint

(4.6) defines the type of each element in v, namely I denotes a proper subset of

{1, . . . ,n} that identifies which entries of v are restricted to be integers.

Specially, if Q is semi-definite positive, the objective function in (4.2) becomes

convex. It is noticed that if Qi = 0, the problem turns into a MIQP. Moreover, if Q is

also equal to 0, the problem becomes a MILP.

Reformulation of sparse coding in MIP problem

The first attempt to tackle sparse coding as a MIP problem goes to Jokar and Pfetsch

[JP08]. They proposed to use the method of branch-and-cut for getting the exact

solution, which was regarded as the criterion to evaluate the performance of the

heuristic methods mentioned in [JP08] such as the BP and the OMP. Even though

this method is of high computational complexity, which limits its application to

small-scale instances. Nevertheless, it is worthy noting that the exact solution can

be used to verify the theoretical conclusion, namely when the optimal solution is

sparse enough, it can be found by the heuristics, e.g. greedy algorithms. However,

for the cases where the optimal solution has more non-zeros, the heuristics perform

usually bad. Quite recently, Bourguignon et al reformulated in [BNCM15] the `0

based sparse coding problem as MIP problem, by replacing the logic relation with

a big-M reformulation. Thus, MIP solver was applied in decomposition of small

scale synthetic data with added noise [BNCM15]. In our work, MIP solver is used

for sparse coding, which is further applied in dictionary learning [LCHR19]. Fur-

thermore, this model is not limited to small optimization problems but applied in

image processing thanks to two proposed acceleration techniques.

In this section, we focus on the phase of sparse coding of problem (4.1) which
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is the estimation of optimal A with fixing D. We recall that, by assuming indepen-

dence of signals in X, the sparse coding problem can be regarded as l subproblems

with respect toαααi respectively. For expression simplification, hereafter, xi andαααi are

expressed by x andααα respectively. Hence the problem is now

argmin
ααα∈Rm

1
2‖x−Dααα‖2

2, subject to ‖ααα‖0 ≤ k. (4.7)

This constrained optimization problem can thus be reformulated, with all the en-

tries of the sparse vector ααα indicated by a binary variable z ∈ {0,1}m , which can be

explained by the logical relation:{
αi = 0 if zi = 0

αi 6= 0 if zi = 1
, (4.8)

where zi and αi indicate the i -th entries of the vectors z and ααα respectively, i =
1, . . . ,m.

Since such logical relation cannot be easily integrated into the objective func-

tion, we recast the sparsity condition into a linear inequality by introducing a suffi-

ciently large value M > 0 ensuring that ‖α̂αα‖∞ < M for any desirable solution α̂αα, where

‖ · ‖∞ means the maximal magnitude of the vector’s entries. A too large M value

will result in an increased feasible region, which will make the problem less compu-

tational efficient. An appropriate value of M improves the performance. A method

providing a lower value for M to obtain tight bounds is crucial in algorithm improve-

ment.

Now the indicative function of z is ensured by satisfying the constraints:

− zi M ≤ αi ≤ zi M,. . .∀i ∈ {1, . . . ,m}. (4.9)

Then, the sparsity constraint ‖ααα‖0 ≤ T can be depicted by z as:

p∑
i=1

zi ≤ k. (4.10)

As a consequence, the `0-based sparse coding problem can have a ‘big-M’ reformu-
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lation, that is, for a given M large enough:

min
ααα∈Rm ,z∈{0,1}m

1
2‖x−Dααα‖2

2

subject to

{
−zM ≤ααα≤ zM

1T
mz ≤ k,

(4.11)

where 1m is the column vector of size m with all elements equal to one. In this

formulation, the optimization variablesααα and z are respectively continuous and in-

teger vectors. Hence, the sparse coding problem is reformulated as a mixed-integer

programming (MIP) problem.

The above reformulation (4.11) of the sparsity constrained problem (4.7) is valid,

as proven by the following proposition.

Proposition 1. The reformulated problem (4.11) is equivalent to its original problem

(4.7).

Proof. For proving the equivalence of the two problems, (4.11) and (4.7), we need to

prove both the equivalence of the objective functions and of the feasible regions of

ααα defined by their constraints.

It is obviously that the two objective functions are identical. Thus, it is sufficient

to prove the equivalence of the two feasible regions that are defined respectively by

A1 =
{
ααα ∈Rm | ‖ααα‖0 ≤ k

}
,

and

A2 =
{
ααα ∈Rm | z ∈ [0,1]m ,−zM ≤ααα≤ zM, 1T

mz ≤ k
}
.

First, we prove that A1 ⊆ A2. Supposing arbitrary v ∈ A1, thus, we have ‖v‖0 ≤
k. By considering the definition of z, and there exists M sufficiently large and M ≥
‖v‖∞, then it yields −zM ≤ v ≤ zM and 1T

mz ≤ k. Hence, v ∈ A2.

Then, we prove the reciprocal, namely A2 ⊆ A1. Let v be an arbitrary vector in A2,

then it satisfies the condition −zM ≤ v ≤ zM with z ∈ [0,1]m . It is easy to imply that,

if zi = 0, the corresponding entry vi will be equal to 0. By considering the condition

1T
mz ≤ k, we have that there are no more than k non-zero entries in v. That is to say

‖v‖0 ≤ k, namely v ∈ A1.

Finally, by combining A1 ⊆ A2 and A2 ⊆ A1, we conclude that A1 = A2.
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Moreover, our optimization problem defined in (4.11) with continuous and inte-

ger optimization variables, the objective function is quadratic and all the constraints

are linear. Consequently, the sparse coding can be interpreted as a MIQP. In the fol-

lowing, we will write this optimization problem in the standard form expressed in

(4.2) ∼ (4.6) in order to use off-the-shelf solvers. Specifically, in the standard MIQP

reformulation of sparse coding problem, v is obtained by combining the vectors ααα

and z, that is, let

v = (αααT,zT)T,

then the sparse coding problem is of form

min
v

1
2 vTQv+cTv

subject to Ai nv ≤ bi n

v j ∈ {0,1} ∀ j ∈ I,
(4.12)

where the symmetric matrix Q, defining quadratic part of the objective function, of

size 2m ×2m is made up of four sub-matrices, namely

Q =
(

DTD 0m,m

0m,m 0m,m

)
,

with 0m,m the zero matrix of size m×m, and c, defining the linear part in the objec-

tive function, is a column vector of size 2m that is defined by

c =
(
−DTx

0m,1

)
.

Now, consider the inequality constraint. The matrix of size (2m+1)×2m in the linear

inequality constraint is of the form

Ai n =


−Im −MIm

Im MIm

0T
m 1T

m

 ,

where Im denotes the identity matrix of size m ×m, and the (2m + 1)× 1 column

vector in the right-hand-size of the inequality is bi n = (0T
2m ,k)T. Finally, the set I in
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(4.12) indicates the integer components in the MIQP, namely

I= {m +1,m +2, . . . ,2m}.

During the implementation, the variable’s type is specialized as continuous or bi-

nary (namely variable’s type is a parameter in MIQP construction) in the input for

the solver at hand.

As an alternatve to interpreting the logical relation (4.8) by the big-M reformu-

lation, the indicator function was recently proposed to deal with the logical relation

problem, as explained next [BBF+16, BLTW15]. The logical relation (4.8) can be re-

formulated by introducing the indicator function as

αααT(111m −z) = 0,

where we can find that, when zi = 0, the entry αi is forced to be 0 (thus the equality

constraint is active), while zi = 1 disables the constraint. Specifically, in this prob-

lem, the indicator function z switches the constraint in a "complementary" way. By

adopting this interpretation, the sparse coding problem (4.7) is thus reformulated

as
min

ααα∈Rm ,z∈{0,1}m

1
2‖x−Dααα‖2

2

subject to

{
αααT(111m −z) = 0

1T
mz ≤ k.

(4.13)

This problem is an MIQP problem but with a nonlinear constraint. It is also called

disjunctive programming [BLTW15]. Unlike the big-M reformulation of which the

difficulty lies on the determination of an appropriate value for M, this reformulation

can be solved by exploiting the lift-and-project cutting technique [FLT11]. For some

special problems, for instance the SVM problem [BBF+16], the MIQP problem can

degenerate into its continuous version. However, this is not the case for the sparse

coding problem.

This reformulation risks to highly increase the computational complexity. In

Section 4.1.2, we provide two techniques to accelerate the resolution of the above

MIQP problem. The first one determines a relevant value of M, thus the big-M re-

formulation can be more efficiently implemented compared to that of disjunctive

programming. The second method considers a convex envelop of the feasible con-

tinuous variables, which allows to solve the problem more efficiently. But before,
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we present recent advanced optimization methods for MIP.

Advanced optimization methods for MIP

This section gives an introduction to advanced optimization techniques for solving

the MIP problem. By making clear the principle of the resolution of the MIP prob-

lem, it will help us in finding the way to accelerate the MIP solver. Thus, it offers

some theoretical support of the inspirations and the motivations for the accelera-

tion method we will propose in the following section.

Because of the optimization over both discrete and continuous variables, the

MIP problems cannot be solved by common LP solvers, such as simplex method

[NM65], dual-simplex method, interior point method [NW06] or barrier method

[GMS+86]. An effective method is the branch-and-bound technique [BM91, BM97,

BE07].

The branch-and-bound method processes the MIP problem by solving a se-

quence of relaxed LP problems. These relaxation subproblems are organized in a

tree structure. Each node of the tree contains a subproblem. Then the solution

searching process [VAN08, BM91] can be summarized as:

1) Initialization: Setting the parent node as an LP problem by relaxing all the

integer variables to become continuous. The initial upper bound ub is set to

+∞. This problem can be solved by using a conventional LP solver, such as

simplex method [VAN08] or interior point method [BM91].

2) Stopping criterion testing: If the active node set is empty, the obtained solu-

tion v̂ with v̂I ∈Z is optimal and it yields the incumbent objective value which

updates the upper bound ub. Otherwise, there is no feasible solution to the

problem.

3) Subproblem selection: By an adequate searching method [LS99], e.g. depth

first search strategy [BM91], the subproblem is successively selected and

solved.

4) Node deletion: When the objective value of the subproblem has the minimal

value lb > ub or there is no feasible solution produced, then this node will be

deleted.

5) Upper bound updating or branching: When a feasible solution is found with

its objective value l b, then if lb < ub, update ub = lb [GW13]. However, when
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the optimal solution with vi , i ∈ I is a fractional number, then branch the

problem and continue to solve this subproblem.

The branch-and-bound method makes the MIP problem tractable. However,

by only applying this method, the MIP problem is difficult to be solved efficiently.

Hence, another optimization technique, cutting plans [MMWW02] is integrated

with the branch-and-bound method, which is called branch-and-cut [Mit02, KG08].

The cutting plans method provides a way to relax the original problem [Mit02]. Sup-

pose that the feasible region is a polyhedron defined by all linear inequality con-

straints. If such a convex hull of feasible region is found, then the problem will turn

into an LP problem, which makes it much easier to be solved. The cutting plans

offer the method for iteratively generating this convex hull. When the cutting plans

method is used in branch-and-bound, it can be applied for all the problems or just

a subproblem in certain nodes [KG08].

Branch and cut algorithm makes a theoretically improvement in MIP solver.

Moreover, with development in hardware, the computational capability has been

greatly improved [BBL14].

It is worthy noting that in MIP solver, the upper bound ub has an important

effect on the computational efficiency. A samllest upper bound means fewer sub-

problems will be selected and solved. Besides, a good relaxation is crucial in approx-

imating the convex hull of the feasible region. These two methods will be discussed

in next section where we provide acceleration of MIQP solver for sparse coding.

For implementation of the MIQP solver, various optimization software packages

can be explored. The most known are CPLEX and Gurobi Optimizer. IBM devel-

ops CPLEX1 which integrates the latest MIP solvers to solve larger MILP problems

[BBL14]. The recently developed Gurobi Optimizer2 can have an equivalent per-

formance to CPLEX while the latest releases get some improvements [Bix12]. The

developed tools make it possible to apply MIQP into image processing, but by con-

sidering its computational complexity, some effort should be done to improve it, as

described next.

1https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/
UsrMan/topics/discr_optim/mip_quadratic/02_introMIQP.html

2https://www.gurobi.com/products/gurobi-optimizer
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4.1.2 Accelerated mixed integer programming (AcMIQP)

MIQP problem, as aforementioned, can be solved via bound and cut algorithm.

However, the problem of computational cost has been raised, especially when deal-

ing with real data, such as real images, even though the most advanced devices show

powerful ability in computing. In this section, we propose a method of initializa-

tion and a relaxation technique for speeding up the MIQP based sparse coding al-

gorithm.

Initialization by proximal method

A good initialization offers a warm start of the tree search, which will help to re-

duce the size of the problem. Furthermore, with good initial solution, we can get

a tighter upper bound by calculating its corresponding objective value and an ade-

quate value M which defines the scale of feasible region (a lower value of M means

a smaller search region). Thus, the initialization method acts importantly in the

acceleration of the MIQP solver.

In the following, the proximal method will be used for generating an initial solu-

tion [PB14, BJQS14], which is theoretically explicated by solving the problem,

argmin
ααα

1
2‖x−Dααα‖2

2 +δSk (ααα), (4.14)

where δS(ααα) denotes the indicator function on the setS of k-sparse vectors, namely

Sk = {
v ∈ Rm | ‖v‖0 ≤ k

}
. The proximal method can be regarded intrinsically as

finding the minimal upper bound of the objective function by first-order approxi-

mation, which is based on the fact that there exists a real value ρ that satisfies

1
2‖x−Dααα‖2

2 ≤ 1
2‖x−Dαααi‖2

2 +〈ααα−αααi ,DT(Dαααi −x)〉+ 1
ρ‖ααα−αααi‖2

2. (4.15)

Hence, the solution to the problem (4.14) will be reached by a convergent sequence

created by

αααi+1 = argmin
ααα

〈ααα−αααi ,DT(Dαααi −x)〉+ 1
ρ‖ααα−αααi‖2

2 +δSk (ααα), (4.16)

We solve this problem by introducing the proximal operator [PB14] defined by

proxt
h(u) = argmin

x

(
h(x)+ t

2
‖x−u‖2

)
,
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where h defines a proper and lower semi-continuous function, and t > 0 is a step

size parameter. See [BST14] for more detail. In problem (4.16), h(x) is the indicator

function δSk to make sure that the feasible region is in the space Sk of k-sparsity.

The proximal operator boils down to the projection onto the sparse space Sk :

PSk (u) = argmin
x∈Sk

(‖x−u‖2).

The solution of this problem can be easily obtained by keeping the k largest absolute

value components of u and setting the other components to zero:

PSk (u) =
{

u j if j ∈ {(1), . . . , (k)}

0 otherwise
,

where j is the index of the sequences that |u(1)| Ê |u(2)| Ê · · · Ê |u(p)|. Specifically, u

in problem (4.16) can be obtained as

u =αααi +ρDT(x−Dαααi ).

Thus, by applying a proximal algorithm, the sparse representation problem can be

solved through the iterative update process:

αααk+1 ∈ PSk

(
αααk +ρDT(x−Dαααi )

)
. (4.17)

After a finite number of iterations ni ter , theαααni ter will be much closer to the optimal

solution of the exact `0 problem.

By considering the definition of ‘big-M’, the constraints in the problem (4.11)

related to M can be well determined by an approximation of the optimal solution. A

simple method to determine an appropriate value for M can be:

M = η‖xni ter ‖∞. (4.18)

The much tighter bound defined by M and an approximate initialization allow to

speed up the algorithm. Its performance will be discussed in the following section.

It is noticed that the proximal method for `0 constrained sparse coding prob-

lem has exactly the same operation in the IHT algorithm (Algorithm 5) introduced

in Section 3.2, that is, the solution is reached by iteratively processing two alternat-

ing steps, gradient descent and projection. However, the two algorithms are built
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on different theoretically foundations. The IHT [GK09] assumes that the dictionary

D satisfies the RIC with the isometric constant δ2k < 1/3. And the step size ρ de-

pends on δ2k . In contrast, the proximal method has no assumption on D, except

that the gradient of the function 1
2‖x−Dααα‖2

2 with respect toααα is Lipchitz continuous

with constant L. The step size in the proximal method cannot be larger than this

constant.

Relaxation

The developments of the MIQP solvers have been following the progress in LP

theory. The advanced-start capabilities of simplex algorithms in the branch-and-

bound [vSG00] (or now more correctly, branch-and-cut [NS04]) search tree are well

exploited by MIQP solvers. No matter which optimization technique is used, the

search process remains the main time consumption factor. The searching time

heavily relies on the feasible region determined by the constraints. Hence, the ef-

fort spent on getting a good formulation of the constraints do help to accelerate the

resolution of the optimization problem.

Hoffman and Ralphs have proven in [HR13] that, if a feasible solution is obtained

by a relaxation, then it must also be the optimal solution to the original problem.

Especially, in the ideal case, if the convex envelope is found, a mixed integer pro-

gramming will be transformed to the classical linear programming problem. How-

ever, it is an NP-hard problem to find the constraints defining the convex envelop

[AOPT13]. The viable strategy is to create a convex envelop of the continuous vari-

ables

C=
{
ααα ∈Rm

∣∣ z ∈ {0,1}m ,
m∑

j=1
z j ≤ k, |ααα j | ≤ z j k,

}
,

by adding the constraint about `1-norm and `∞-norm ofααα:
m∑

i=1
|αi | < kM

|αi | < M ∀i = 1, . . . ,m.

The absolute values can be formulated as linear programs. To do so, we replace

each unrestricted variable αi , for i = 1, . . . ,m, with the difference of two restricted

variables, {
αi = α+i −α−i
α+i ,α−i Ê 0,
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namely in matrix form {
ααα=ααα+−ααα−
ααα+,ααα− Ê 0.

Then, the absolute value of αi in the above constraints can be represented in the

linear program as:

|αi | = α+i +α−i ∀i = 1, . . . ,m.

Thus, the constraints for MIQP can be summarized as:

∑m
i=1 α+i +α−i < kM

−zM < ααα+−ααα− < zM

0 ≤ α+i , α−i < Mz

1T
p z ≤ kz .

(4.19)

With the new constraints, MIQP can be reformulated as the standard formula-

tion by introducing as updated optimization variable v = (ααα+T,ααα−T,zT)T. Accord-

ingly, the model components Q, c, Ai n , bi n , l and u are updated respectively as fol-

lowing: The matrix Q becomes the 3m ×3m matrix

Q =


DTD −DTD 0m,m

−DTD DTD 0m,m

0m,m 0m,m 0m,m .

 .

By this representation, we know Q is symmetric and semi-definite positive. It en-

sures the convexity of the objective function. The vector c becomes the vector of

size 3m

c =


−DTx

DTx

0m,1.

 .

The linear constraint matrix Ai n ∈R(2m+2)×3m is now

Ai n =


1T

m 1T
m 0T

m

0T
m 0T

m 1T
m

−Im Im −MIm

Im −Im −MIm .

 ,
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and the right-hand-side of the inequality constraint becomes

bi n =


kM

k

0T
2m .

 .

The two bounds of the new variables v are now defined respectively as u =
(M1T

2m ,1T)T and l = 03m , and

I= {2m +1,2m +2, . . . ,3m}.

With the new formulation, the problem can be solved more efficiently.

Performance of the AcMIQP

In this section, we will give some experimental evaluations of the performance of

the proposed algorithm AcMIQP. The experiments are carried out on synthetic data

in order to assess the AcMIQP sparse coding algorithm. The classical MIQP solver,

proximal method and OMP are chosen for comparison. By analysis on the accuracy

of sparse representation and the computational complexity, the advantage of the

proposed AcMIQP becomes remarkable, which provides the support to use AcMIQP

in the more complex problem of dictionary learning and further apply it in image

processing.

For evaluating the AcMIQP solver in solving the sparse coding problem (4.7), a

sparse matrix A ∈R128×10000 is created with a column-wise maximum sparsity level

of 6, and the dictionary D ∈R64×128, which is column-wise normalized matrix ran-

domly generated from a Gaussian distribution. With the available matrices A and

D, the training data X is finally produced by the following equation

X = DA+κE, (4.20)

where E is a randomly generated zero-mean white Gaussian noise matrix and κ a

parameter controlling the noise level, set to κ= 0.01 in the experiments.

For statistical purpose, data of size 10000 is divided into 100 units. For each

unit Xi ∈ R64×100, a sparse code matrix Ai is estimated. This allows to provide the

median, the 5th and 95th percentiles.

The two MIQP sparse coding algorithms, with and without acceleration, are
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Table 4.1 – Computational time and accuracy results (100-batch median, 5th and 95th per-
centiles) on synthetic data [LCHR19].

Results

Method
OMP Proximal MIQP AcMIQP

Computational
P5 0.019 0.023 2002.5 286.98

time median 0.020 0.024 2002.6 415.34

P95 0.032 0.032 2002.7 543.90

Reconstruction P5 14.00 13.20 2.36 1.58

error median 15.90 15.14 2.84 2.74

‖Xi −DÂi‖2
F P95 17.45 16.19 2.86 3.51

Sparse coding P5 39.17 34.68 5.41 3.60

error median 44.84 42.33 6.45 6.06

‖Âi −Ai‖F P95 51.13 46.40 6.46 7.99

Position accuracy P5 98.16 98.42 99.73 99.94

of non-zero median 98.52 98.62 99.74 99.97

elements (%) P95 98.81 98.98 99.78 99.98

compared to the OMP and proximal methods. The performances of the sparse cod-

ing methods are evaluated with three criteria: the difference between Ai and the

estimated Âi , i.e., ‖Ai − Âi‖F, the reconstruction error, i.e., ‖Xi −DÂi‖2
F, and the per-

centage of zero and non-zero elements of the sparse code being found in the right

positions.

Table 4.1 presents the computational time and results, in terms of the recon-

struction error, the accuracy of the sparse coding estimation and the percentage

of number of zero and non-zero elements being recovered in the right position. It

shows that the errors obtained by MIQP are far less than that the ones of OMP and

proximal methods. Furthermore, the introduction of optimization techniques (in-

cluding initialization and relaxation) for acceleration has a little effect on the accu-

racy, while the computational cost is reduced by a factor of 5. In addition, more non-

zero elements are found in the right positions. These advantages make AcMIQP of

great interest to be used as a sparse coding algorithm and, in conjunction with a

dictionary updating rule, as a dictionary learning algorithm. In spite of the over-
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all strength of MIQP, its Achilles’ heel is the excessive computational complexity,

making it difficult to use for large-scale problems. However, as aforementioned,

the proposed acceleration opens the possibility to apply the MIQP-based dictionary

learning algorithm on large-scale problems, such as in image denoising. Note that,

in practice, to get an improvement over the proximal method, there is no need to

run the optimization until the global minimum. Whatever the computing budget is

allocated, the AcMIQP formulation allows to use it to improve the results.

4.1.3 Dictionary learning with AcMIQP for sparse coding

In the previous section, the proposed AcMIQP algorithm was used with success in

solving sparse coding problem. The experiments on synthetic data showed the fea-

sibility of the AcMIQP algorithm in processing data with high dimension. In this

section, AcMIQP will further be applied in a more sophisticated task: dictionary

learning, namely the problem (4.1) given at the beginning of Section 3.4. To this

end, the problem is addressed by iteratively processing two alternating steps: sparse

coding and dictionary updating.

In the sparse coding phase, the problem (4.7) is reformulated as an MIQP prob-

lem. By exploiting the AcMIQP algorithm, the sparse coefficient matrix can be esti-

mated at each iteration. Let Aq be the estimated coefficient matrix at the q th itera-

tion. For updating the dictionary, the problem with respect to D becomes convex,

that is, at the q th iteration, there is,

Dq = argmin
D∈D

1
2‖X−DAq‖2

F.

By writing DAq in the form of sum of outer product (3.24), we solve this problem

via a coordinate descent algorithm. More precisely, for updating each atom, the

method of SVD is applied.(See Section 3.3 for details). Simultaneously, this process

updates all the non-zero coefficients in the i th row of Aq . Therefore, the proposed

dictionary learning with AcMIQP for sparse coding can be regarded as an exact `0-

norm resolution of the K-SVD algorithm.

The summary of this method is illustrated in Algorithm 10. The proof of con-

vergence of the algorithm is out of scope due to the difficulty in the analysis of the

used MIQP solver. However, it is guaranteed that at each step, with sparse coding

and with dictionary updating, the objective value reduces.
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Algorithm 10 Dictionary learning algorithm via AcMIQP.

Input: Signals for training X, target sparsity k, step size ρ for updating approximate A by
proximal method, coefficient η for optimizing M, number of iteration for dictionary
learning Nd and for proximal method Np

Output: Optimized dictionary D and sparse coefficient matrix A.
1: Initialization of the dictionary D0 and the coefficients matrix A0 = 0,
2: for q = 1 to Nd do
3: Initializing X by proximal method:
4: Aq−1,0 = Aq−1

5: for p = 1 to Np do
6: Updating sparse approximation via

Aq−1,p = proxδSk

(
Aq−1,p−1 −ρ((Dq−1)TDq−1Aq−1,p−1 − (Dq−1)TX

))
7: end for
8: Aq−1 = Aq−1,Np

9: M = η‖A‖1,∞,
10: Optimization of A via MIQP solver:
11: for i = 1, . . . , l do
12: Initialization ofααα+i ,ααα−i , zi and then v,

13: ααα+i = max(0,αααq−1
i )

14: ααα−i = max(0,−αααq−1
i )

15: zi = abs(sign(αααq−1
i ))

16: v = (ααα+i
T,ααα−i

T,zT
i )T

17: Solving MIQP problem

min
v

1
2 vTQv+cTv

subject to Ai nv ≤ bi n ,

l ≤ v ≤ u,

v j ∈ {0,1}, . . .∀ j ∈ I.

18: Computing the solution ofαααq
i = v[1 : m]−v[m +1 : 2m]

19: end for
20: Update Dq with the coordinate descent algorithm (introduced in Algorithm 7)
21: end for

70



CHAPTER 4. EXACT `0-NORM FOR DICTIONARY LEARNING

4.2 Image denoising based on the exact `0

In the previous section, we introduced the AcMIQP algorithm for solving problem

based on exact `0-norm. Furthermore, a dictionary learning method by applying

AcMIQP algorithm for sparse coding was proposed. We showed that the good per-

formance in the signal recovery and that the learned dictionary is of good quality.

In this section, we address image processing with real well-known natural images,

such as Barbara and Lena.

Sparse representation is proved to be a good model in image processing, in-

cluding image denoising [EA06], image inpainting [MSE08], and image deblurring

[DZSW11]. The performance of sparse model on application of image processing

becomes an important criterion for evaluation of dictionary learned by solving spe-

cialized sparse representation problem. Thus, hereafter, the proposed AcMIQP for

exact `0 based dictionary learning will be used for image denoising on well-known

images.

4.2.1 Sparse representation for image denoising

In a natural image, spatial smooth structures appear much more frequently than

highly non-smooth and discontinuous structures. This fact acts as a proof of sparse-

ness in image representation [EFM10]. Hence, image can be formulated as a linear

combination of some few atoms of dictionary. However, because of imperfection

in imaging device, poor illumination and information loss during signal transmis-

sion, the observed image is contaminated by noise [Ela10]. Thus, the application

of image denoising is of great interest, and moreover, being an inverse problem, it

provides an evidence for testing image processing algorithms and techniques, with

a particular interest in demonstrating the relevance of sparse representations.

Considering an image x contaminated by a white Gaussian noise with zero-

mean and standard deviation σ, the observed image can be expressed by

y = x+e,

where y indicates the image of observation and e the Gaussian noise. When apply-

ing sparse representation model, the image x can be modeled as a linear combina-

tion of only a few atoms in a dictionary D, namely x = Dααα with ‖ααα‖0 ≤ k where ααα

denotes the sparse coefficient vector and D can be explained as "atomic" images
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(which is interpret as periodic-table in field of chemistry [EFM10]). By using this

relation, the observed image y can be modeled by

y = Dααα+e.

With knowledge on the energy bound of noise, namely ‖e‖2 ≤ ε, where ε is defined

by ε= 1.15nσ2 in [EFM10], the problem of image denoising can be formulated as

argmin
ααα

‖ααα‖0 subject to ‖y−Dααα‖2
2 ≤ ε. (4.21)

Therefore, this problem consists in finding the sparsest representation of the un-

derlying image x under the condition that the reconstructed one obtained by Dααα

has no more distance than ε with the noisy observation y. In fact, the representa-

tion is quite sparse, namely ‖ααα‖0 ≤ k. In this way, the image will be component-wise

denoised which is proved to be more efficient [HHO99].

Alternatively, one can formulate the image denoising problem by adopting the

Lagrangian function associated to the constrained problem (4.22), that is,

argmin
ααα

λ‖ααα‖0 + 1
2‖y−Dααα‖2

2, (4.22)

where λ is the parameter balancing the data-fitting and the sparsity ofααα. The bigger

λ is, the sparser the representation ααα is, which may remove some useful structural

information of the image, in addition to noise. As a result, an adequate λ setting is

important for achieving good performance in image denoising.

Besides, the corresponding sparsity constrained problem can be also reformu-

lated as

argmin
ααα,‖y−Dααα‖2

2≤ε
1
2‖y−Dααα‖2

2, subject to ‖ααα‖0 ≤ k. (4.23)

where the sparsity level k should be explicitly prefixed by the user.

Problems (4.21), (4.23) and (4.22) are exactly the problems of sparse represen-

tation with `0 promoting sparsity. When the dictionary D is given, these problems

can be solved via algorithms introduced in Section 3.2. If the optimal value α̂αα is

obtained, then, the underlying image can be constructed directly by

x̂ = Dα̂αα. (4.24)
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In the above discussion, the dictionary D is assumed to be known. However,

in practice, the determination of D plays an important role in image denoising

[ZXY+15]. At the beginning of the emergence of sparse representations, dictionar-

ies were predefined. Some special designed wavelet transforms [CYV00a] are used

for forming a dictionary, for instance, Gabor wavelet [Lee96] contains diverse shifts

of all entries in an orthogonal wavelet which will produce a shift-invariant repre-

sentation; or curvelet [SCD02] is used for extracting discontinuous structures of an

image. The application of those dictionaries gained significant improvement in im-

age denoising (see [EFM10] and therein). Then, with the theoretical development

in dictionary learning [MBPS09, AEB+06, BJQS14], data-driven dictionaries [EA06]

have been extensively used for image denoising.

Learned dictionary processes an image not as a whole but on small patches (8×8

is often chosen to conduct the experiments). Then by vectorization of all the pixels

in the patches, the matrix of signals Y = [y1, . . . ,yi , . . . ,y`] is produced. Then, taking

Y as the input signals, the optimal sparse representation A and dictionary D can be

learned as mentioned in Section 3.4. Each underlying patch can be recovered by

X = DA. (4.25)

Then by averaging the pixels value, the whole image can be reconstructed.

The above method reconstructs a whole image by removing noise in each patch.

Moreover, Elad et al [EA06] proposed a method for handling directly the entire im-

age, by formulating the problem of image denoising as

argmin
A,X,D

λ‖X−Y‖2
2 +

∑
i
ωi‖ααα‖0 +

∑
i
‖Dαααi −Ri X‖2

2, (4.26)

where the first term ‖X −Y‖2
2 measures the proximity of the observed image Y and

its reconstructed one X, and Ri is the matrix that projects the whole image to the

i th patch. This problem is solved by firstly applying the K-SVD algorithm to learn

an optimal dictionary D. Then, with the known D, the method alternatively solves

the problem with respect to A with fixed X, and with respect to X with fixed A. The

closed-form solution of X is given by

X =
(
λI+∑

i
RT

i Ri

)−1(
λY+∑

i
RT

i Dαααi

)
, (4.27)
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(a) Barbara (b) Cameraman (c) Elaine

(d) Lena (e) Man

Figure 4.1 – Examples in the USC-SIPI Image Database

where λ is set to 30/σ as recommended in [EA06].

In addition to the K-SVD method, sparse representation on image denoising has

also been addressed by methods like BM3D [DE07, KD09], and it has been recently

surpassed by convolutional neural networks [ZZC+17]. However, the experiments

on image denoising still provide a good assessment on sparse representation algo-

rithms [Buc14].

In this section, we choose segments of natural images in the USC-SIPI Image

Database 3 for experiments. The dataset contains five frequently used images in

signal and image processing, as presented in Figure 4.1. The images are of size 121×
121. The images in all experiments are corrupted with an additive zero-mean white

Gaussian noise.

The experiments are conducted with the Gurobi solver and the parameters set-

tings of Gurobi are: TimeLimit 50 and IterationLimit 500. For initialization with the

proximal method, the number of iterations is set to 200. The coefficient in (4.18)

to decrease M is set to η = 2.5. To assess the quality of denoising an image Y, we

3http://sipi.usc.edu/database/database.php?volume=misc
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consider the peak signal-to-noise ratio (PSNR), namely

PSNR =−10log
‖X−Y‖2

2552
,

where X denotes the reconstructed image.

4.2.2 Large-scale dictionary learning

This part considers the set of high-quality images in order to construct a unique

global dictionary that will serve to denoise every image. More than ` ≈ 1.6× 104

overlapping patches of size n = 8× 8 from the images are extracted to get a single

training dataset denoted Y. The number of atoms is set to p = 256 and the sparsity

level is k = 20 (these parameters are determined by preliminary experiments and

corroborated by other studies, such as [EA06]).

The dictionary learning algorithm with AcMIQP for sparse coding and coordi-

nate descent algorithm for dictionary updating (Algorithm 10) is executed for 30

iterations to learn the global dictionary. This number of iterations is more than

enough for convergence, as illustrated in Figure 4.2. This figure illustrates the learn-

ing curve, namely the evolution of the objective value at each iteration. It shows

how the AcMIQP based dictionary learning algorithm converges faster than the

other methods, namely K-SVD with OMP, proximal method and SOUPDIL algo-

rithm. Moreover, the limit objective value (here indicating the value obtained af-

ter 30 iterations, which is proved to be more than sufficient for converging) of the

AcMIQP based algorithm is the smallest comparing to the other methods. Conse-

quently, we can conclude that AcMIQP can yield more exact solution with few iter-

ations.

To measure the quality of the dictionaries, we consider the correlation, mea-

sured with the inner product between each pair of atoms of dictionary, thus mea-

suring how much two atoms in the dictionary are similar. This fundamental infor-

mation allows to define more powerful measures, such as the coherence and Babel

function [Tro04, Hon15a]. The coherence measure of a given dictionary, defined by

the maximum absolute inner product between two distinct atoms, provides strong

insights on the capacity of the dictionary to recover sparse signals. For instance,

it is shown in [Tro04] that a µ-coherence dictionary can recover a k-sparse signal

if µ < 1
2k−1 . It is well known that the OMP algorithm (e.g. K-SVD) often provides

dictionaries with high coherence, and most atoms are highly correlated. To over-
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Figure 4.2 – Convergence of the proposed algorithm and the comparison with K-SVD using
OMP, proximal method and SOUPDIL

come this issue, several strategies have been proposed to provide more incoherent

dictionaries. This issue will be addressed in the next chapter.

Figure 4.3 provides the histogram of the correlation between each pair of atoms

of the learned dictionaries, for each of the four methods under investigation. It is

observed that the distribution of the correlations of the obtained dictionaries can

be roughly ordered as follows

SOUPDIL ≺ AcMIQP ≺ Proximal method ≺ K-SVD.

For the purpose of studying the properties of the learned dictionary, the sparsity-

constrained formulation (4.23) and the error-constrained formulation (4.21) are re-

spectively investigated to learn the sparse code for reconstruction. The sparsity-

constrained formulation (4.23) defines a sparse coding problem with a predefined

sparsity parameter k. Considering the error-constrained optimization problem

(4.21), it is easy to make OMP satisfy the sparsity constraint by measuring the re-

construction error each time after adding a non-zero entry [EA06]; The proximal

method will search for the Pareto optimal when the sparsity level varies [SIDB15];

AcMIQP keeps all the signals in the constraint based on the decided sparsity of ini-

tialization obtained by the proximal method. As recommended in [EA06], ε= c nσ2

with c = 1.15 and a maximum sparsity parameter km (usually the same value as k)

set to assure the sparse level.

In order to understand the influence of the noise level on the results of the pro-

posed method, we consider additive Gaussian noise of different standard deviations
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Figure 4.3 – Histogram of the correlation of the learned dictionaries

(σ= 10,20,50 in the experiments). The reconstruction accuracy is given in Table 4.2

in terms of the PSNR. These results to evaluate sparse coding show that the sparsity-

constrained formulation (4.23) always outperforms the error-constrained formula-

tion (4.21) when σ = 10 (with an average improvement of 2.73dB) and σ = 20 (with

an average improvement of 1.95dB). At high noise level with σ = 50, their perfor-

mances are comparable.

In tests, we compare the following methods: sparse coding using OMP, proximal

method and AcMIQP, and dictionary updating with coordinate descent algorithm

introduced in the K-SVD algorithm. The performance of the reconstruction accu-

racy is given in Table 4.3. These results show that the proposed method outperforms

OMP and proximal methods in a high noise level. For the large-scale (global) dic-

tionary learning setting, MIQP provides important enhancements, with an average

improvement of 1.79 with regard to the proximal method, and 3.73 with regard to

the OMP algorithm. It is worthy noting that the enhancement is significant since,

the parameters were optimized for OMP, as recommended in [EA06]. According to

the experiments, we can conclude that the AcMIQP can reconstruct the signal more

accurately with a high tolerance to noise.
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Table 4.2 – Accuracy of the denoising in terms of the PSNR in the large-scale (global) dic-
tionary learning, for each of the five images at several noise levels, comparing the sparsity-
constrained formulation (4.23) and the error-constrained formulation (4.21)(the higher, the
better)

Image Sparse coding formulation σ=10 σ=20 σ= 50

Barbara
error-constrained 24.71 23.75 20.79

sparsity-constrained 26.77 25.24 20.14

Cameraman
error-constrained 24.93 23.90 20.16

sparsity-constrained 27.70 25.75 20.19

Elaine
error-constrained 26.78 25.64 21.57

sparsity-constrained 29.87 27.81 21.14

Lena
error-constrained 26.05 24.98 21.22

sparsity-constrained 28.83 26.93 20.92

Man
error-constrained 24.67 23.68 20.80

sparsity-constrained 27.60 25.97 20.10

Average
error-constrained 25.43 24.39 20.91

sparsity-constrained 28.15 21.15 20.49

4.2.3 Adapted dictionary learning

In this part, the dictionary is trained on the corrupted image under scrutiny, and

then used to denoise it; the dictionary is then “adapted” to the image at hand. As

in the last section, the signal matrix is created in the same way using overlapping

patches. For each corrupted image X̃, an adapted dictionary is trained on it and

then used for denoising the same image.

All three methods, OMP, proximal method and SOUPDIL, are compared with the

proposed AcMIQP based dictionary learning method. Moreover, we consider also

a variant of K-SVD with OMP, where the signals are pre-centered (subtracting the

image mean) prior to learning the dictionary [MBP+14]; connections between cen-

tered and uncentered data are studied in [Hon16]. In the experiments, SOUPDIL is

78



CHAPTER 4. EXACT `0-NORM FOR DICTIONARY LEARNING

Table 4.3 – Accuracy of the reconstruction in terms of the PSNR (the higher, the better)

Image Method Large-scale
dictionary learning,
reconstruction with

(4.25)

Large-scale
dictionary learning,
reconstruction with

(4.27)

Barbara
OMP 19.71 20.03

Prox 20.71 21.03

AcMIQP 22.73 22.73

Cameraman
OMP 19.46 19.78

Prox 21.11 21.43

AcMIQP 22.30 22.62

Elaine
OMP 19.73 20.05

Prox 22.87 23.19

AcMIQP 24.20 24.52

Lena
OMP 19.79 20.11

Prox 22.12 22.44

AcMIQP 24.20 24.52

Man
OMP 19.68 20.00

Prox 21.26 21.58

AcMIQP 23.59 23.91

Average
OMP 19.674 19.994

Prox 21.614 21.934

AcMIQP 23.404 23.724

implemented using the original Matlab code provided by its authors and available

here4. For the other three methods, the experiments details and the parameter set-

tings are given in the following. When dealing with noisy data in the training phase,

the knowledge about the noise level σ is used for restricting the reconstruction er-

ror, as shown in the constraint in the optimization problem (4.23) and the parame-

ter setting ε = c nσ2 with c = 1.15. These values, optimized for OMP in [EA06], are

used here for both proximal method and AcMIQP, thus putting our method in a less

favorable situation.

In this part, the error-constrained optimization problem (4.23) is used for sparse

coding. The method of realization is described in the large-scale dictionary learn-

ing. In order to ensure the sparsity of the signals, the upper bound k is set to 20

4https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat

79



CHAPTER 4. EXACT `0-NORM FOR DICTIONARY LEARNING

Table 4.4 – Denoising results in the adapted dictionary learning setting, for each of the five
images, as well as the average results (the higher, the better)

Image Method PSNR

Barbara

OMP 22.04

OMP (pre-centering) 21.97

proximal 22.54

SOUPDIL 22.30

AcMIQP 22.59

Cameramen

OMP 22.54

OMP (pre-centering) 22.63

proximal 22.49

SOUPDIL 22.79

AcMIQP 22.58

Elaine

OMP 23.00

OMP (pre-centering) 22.91

proximal 23.29

SOUPDIL 23.43

AcMIQP 23.39

Lena

OMP 22.48

OMP (pre-centering) 22.51

proximal 23.08

SOUPDIL 23.20

AcMIQP 23.09

Man

OMP 21.23

OMP (pre-centering) 21.32

proximal 21.70

SOUPDIL 21.67

MIQP 21.86
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for the proximal and AcMIQP methods, as in the first setting. By fixing the dictio-

nary updating method to coordinate descent algorithm (Algorithm 7, SVD method

is used for updating each atom in the dictionary) in all the methods, this allows

to have a fairly comparable setting to analyze and compare the performance of the

sparse coding methods. The number of atoms is set to p = 256 for OMP, as suggested

in [EA06] where extensive experiments were conducted. The number of atoms for

the proximal method is set to p = 65, which is obtained from a set of 14 candidate

values {50,55,60,65, . . . ,110,150,200,256,300} that encloses the most used values in

the literature. The same value is used for AcMIQP, which is a less favorable situa-

tion for our method. The total number of iterations is still 30 for the two-step sparse

coding and dictionary updating. The SOUPDIL method uses the same parameter

setting as recommended in [RNF17] after extensive experimental analysis.

With the learned dictionaries, the same reconstruction model (4.27) is used for

obtaining the denoised image. Table 4.4 gives the denoising accuracy in terms of

PSNR by using the three aforementioned dictionary learning methods. We notice

that the influence of data pre-centering is not always positive. It is observable that

MIQP can outperform the K-SVD and proximal methods almost in all cases. On av-

erage over all five images, the proposed method carries out an improvement of 0.45

with respect to OMP, and 0.08 with respect to the proximal method. These improve-

ments are important since, on one hand, PSNR is a logarithmic-scale measure and,

on the other hand, the parameters were optimized for OMP (e.g. ε, c = 1.15, p = 256)

and for the proximal method (p = 65). Even compared with the state-of-the-art dic-

tionary learning algorithm SOUPDIL, MIQP has comparable performance.

4.2.4 Analysis on the computational complexity

In spite of the great performance of the proposed AcMIQP method on all images

and compared to all the other methods, it has high computational complexity in

implementation. Because we have different sizes of the training data in each set-

ting (global dictionary learning and adapted dictionary training for each image),

the training time is not comparable. In the following, we focus on the average time

of a single image. While the OMP algorithm and the proximal method require only

a couple of minutes for completing the dictionary learning, AcMIQP needs about

one hour. See also Table 4.1 for results obtained on synthetic data. However, recent

advances in MIQP solvers allow to reduce this gap.
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Indeed, while the computational complexity remains the Achilles’ heel of such

methods, great improvements are being carried out these days on MIQP solvers.

For instance, the new Gurobi Optimizer v8.1 (released in October 2018) is 2.8 times

faster overall on MIQP problems, than v8.0 (released in May 2018), which is more

than 220% faster than the one used in this thesis (v7.0 released in October 2016).

Moreover, new advances in solvers are exploiting more and more the modern archi-

tectures and multi-core processors. Finally, currently available off-the-shelf solvers,

such as Gurobi and CPLEX, do not have GPU implementations, which could also

provide important computational improvements.

4.3 Conclusion

In this chapter, we proposed an exact optimization method AcMIQP for the exact `0

based sparse coding. Thanks to recent advances in linear programming techniques,

as well as more powerful hardware, the speed of solving MIQP problems has been

greatly improved. Furthermore, by introducing additive constraints and an appro-

priate proximal initialization, it was proved that it is feasible to use MIQP for sparse

coding with the proposed AcMIQP method. In conjunction with a dictionary up-

date, such as coordinate descent method used in K-SVD, we proposed a dictionary

learning algorithm with exact `0 based sparsity. Though, the AcMIQP method had

much more time complexity in implementation comparing with the approximate

methods, the feasibility of the method was proved for large-scale well-known im-

ages. Moreover, the image denoising experiments showed the advantage of the pro-

posed AcMIQP method. Furthermore, the high noise-tolerance of our method was

demonstrated on both the large-scale and the adapted dictionary learning settings.

Therefore, we have demonstrated that the exact `0 optimization problem in dic-

tionary learning can be solved for image processing, working on real images. While

having good performance amelioration, the Achilles’ heel of the proposed method is

the computational complexity. However, great improvements are being carried out

these days on MIQP solvers, with more than 220% speed enhancement in a single

year (e.g. Gurobi Optimizer v8.0 versus v7.0).

In the following chapter, we will study the problem of dictionary learning by con-

sidering learning incoherent dictionary. For handling the resulting constrained op-

timization problem, we will exploit the classic strategy of iteratively alternating two
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steps, sparse coding and dictionary updating. With the similarity of optimization

problem formulation in sparse coding, the proposed AcMIQP algorithm will still be

used. When updating the dictionary, a new algorithm will be proposed to address

the incoherence constraint.
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The coherence of a dictionary corresponds to the largest correlation between its

atoms (e.g. null coherence for dictionaries of orthogonal elements). Beyond be-

ing elementary and very simple to compute, the coherence is intimately related to

the sparsity level and the relevance of the resulting sparse representation. For ex-

ample, the uniqueness of solution in the sparse representation problem lies on the
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condition of incoherence of the dictionary [GJB15, Tro04, DH01]. Moreover, the co-

herence was used as a criterion in evaluation of the dictionary learned based on

the proposed AcMIQP algorithm (in Section 4.1.2). In sparse representation, the

coherence measure is crucial and acts as a fundamental measure to characterize a

dictionary.

Indeed, several theoretical studies have demonstrated the prominence of hav-

ing incoherent dictionaries, namely dictionaries having a low coherence measure

[Hon15b, Hon15a, Tro04]. Incoherent dictionary learning, as an extension of the

generic dictionary learning, aims at minimizing the reconstruction error by impos-

ing simultaneously the sparsity on the coefficients and the incoherence of the dic-

tionary. For this purpose, several incoherent dictionary learning algorithms have

been proposed, within three major strategies: either adding a decorrelation step af-

ter dictionary updating at each iteration, such as INK-SVD and related algorithms

[MBP12, DM13], or introducing an additional regularization on the coherence in the

optimization problem [RLS09, BQJ14].

In this chapter, we formulate the dictionary learning problem with an explicit

constraint on the coherence. Thus, we consider solving an optimization prob-

lem with quadratic objective function and quadratic constraints based on the `0-

norm. As the generic dictionary learning, the solution can be reached by iteratively

processing two alternating processes: sparse coding and dictionary updating. For

sparse coding, we use the proposed AcMIQP algorithm. For the dictionary updat-

ing, we propose a novel resolution method that combines the alternating direc-

tion method of multipliers (ADMM) and the method of extended proximal alternat-

ing linearized minimization. The relevance of the proposed incoherent dictionary

learning method is demonstrated with experiments on real data, compared to well-

known methods. Moreover, we provide a theoretical analysis on the convergence.

5.1 Coherence and sparse representation

Sparse representations require finding the sparest code of the given signal over a

determined dictionary. The value of the coherence of the dictionary has a significant

effect in the resolution of sparse coding and in the estimation of the dictionary, as

well as the evaluation of its quality. The coherence is thus obviously a major tool for

the dictionary analysis and synthesize in sparse representations.
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5.1.1 Definition of coherence

The coherence is defined as the greatest correlation, in absolute value, between

two distinct atoms of the dictionary under scrutiny. When dealing with unit-norm

atoms, the coherence of a given dictionary D = [d1, . . . ,dm] ∈Rn×m , is defined as ,

µ= max
i 6= j

|〈di ,d j 〉| = max
i 6= j

|dT
i d j |. (5.1)

For a dictionary, the coherence is a fundamental quality of assessment which es-

timates how much two atoms in dictionary are correlated. Specially, when µ = 0,

the dictionary become orthogonal. For redundant representations, the dictionary is

overcomplete with m > n, then, the coherence will be bounded by

µ≥
√

m−n
n(m−1) . (5.2)

The limit of dictionary coherence is met when the dictionary is an optimal Grass-

mannian frame [WGL17, SWDS15]. Consider for example, a dictionary of 256 atoms

living in a 64 dimensional space, its coherence cannot be less than 0.108, i.e., the

angle between any two distinct atoms of the dictionary cannot be bigger than 83.8◦.

Letting G = DTD be the Gram matrix of D, then the coherence of D is obtained

by searching the maximal absolute value of off-diagonal elements in G, namely µ=
supi 6= j |Gi j |. The coherence of the dictionary is also related to the RIC defined in

Chapter 1. The relationship is addressed in [Hon15a] with

δk = (m −1)µ.

The coherence considers only the extreme correlation of atoms rather the global

situation. For avoiding this shortcoming, another definition called cumulative co-

herence (or babel function) is created [Tro04]

µ1(g ) = max
|J|=g

max
i 6∈J

∑
J

|〈di ,d j 〉|, (5.3)

for any integer g , and where J is a subset of {1, . . . ,m}. This function is non-

decreasing. When the function varies little with g increasing, the dictionary is more

likely incoherent. For a given dictionary, its coherence µ and cumulative coherence

µ1(g ) satisfy the relation µ1(g ) ≤ gµ.
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5.1.2 Coherence of dictionary in sparse representations

The dictionary coherence has a great effect in sparse representations. First of all,

the uniqueness of solution to the problem of sparse representation can be ensured

by satisfying a condition on µ, that is,

Theorem 5.1.1. (Uniqueness-Coherence [Ela10]) If a problem of signal estimation

x = Dααα has a solution ααα with ‖ααα‖0 < 1
2 (1+ 1

µ ), then this solution is necessarily the

sparsest possible.

This theorem can be regarded as an inference of Theorem 2.1.1 by considering

the relation between spark(D) and µ(D),

spark(D) ≥ 1+ 1
µ(D) .

Via Theorem 5.1.1, the uniqueness of the solution to the problem (4.7) is ensured

when the sparsity obeys that k < 1
2 (1+ 1

µ ). Similarly, the uniqueness of the solution

can also be guaranteed by the cumulative coherence of D by considering the rela-

tionship

spark(D) ≤ min
1≤g≤m

{g |µ1(g −1) ≥ 1}.

The importance of the coherence measure to characterize dictionaries has been

demonstrated in several works [Hon15b, Hon15a, Tro04]. For example, it is proven

in [Tro04] that orthogonal matching pursuit and basis pursuit can correctly recover

the signal under the condition

max
i 6∈J

‖DT
Jdi‖ < 1.

Or if the signal is not strictly sparse, it can be approximated with a k−sparse vector

under the condition that k ≤ 1
3µ or µ1(k) ≤ 1

3 . Furthermore, Gribonval et al give

the cumulative coherence condition to make sure the signal with some noise can

be exactly recovered (see Proposition 3 in [GJB15]). Although these conditions may

not be the same for whichever the sparse coding methods are, the importance of

incoherent dictionary learning is undoubted.

More often, the low coherence between atoms or sub-blocks of dictionary

makes the dictionary gain the capability of discrimination in classification [WJY+16,

TLZ+19, LLF14]. In fact, some other discriminative dictionary learning via sparse

model can be regarded as implicitly learning a dictionary with low coherence
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[ZL10, MLB+08, MPS+09]. In this sense, incoherent dictionary learning attracts lots

of attentions. Great achievement on learning incoherent dictionary is gained and

there is still much space for further developments.

5.2 Methods of learning incoherent dictionary

The classical dictionary learning problem, with given matrix X = [x1, . . . ,xi , . . . ,x`] ∈
Rn×` of ` signals of dimension n, aims at finding a sparse representation of the

coefficient matrix A for a decomposition of the form X = DA, where the matrix

A = [ααα1, . . . ,ααα`] ∈Rm×` containing the decomposition coefficients is sparse, and the

matrix D = [d1, . . . ,dm] ∈Rn×m is the dictionary with each column called atom. The

optimization problem is written as

min
D∈C,αααi∈Rp

1

`

∑̀
i=1

1
2‖xi −Dαααi‖2

2

subject to ‖αααi‖0 ≤ k, i = 1, . . . ,`,

(5.4)

where the dictionary D is restricted in the constraint

C=
{

D ∈Rn×m
∣∣ dT

j d j = 1, ∀ j = 1, . . . , p
}

,

in order to prevent the `2-norm of dictionary’s atoms from being arbitrarily large,

which leads to arbitrarily small decomposition coefficients in X. However, by this

problem formulation, the resulting dictionary does not guarantee excellent perfor-

mance, because its atoms can be arbitrarily correlated. Thus, to learn dictionary

with low coherence is of great interest.

For learning incoherent dictionary, two main strategies have been considered:

1) Adding a decorrelation step following the phase of dictionary updating at each it-

eration. This strategy is applied in dictionary learning algorithms such as INK-SVD

and the incoherent dictionary learning algorithm via iteratively projection and ro-

tation (IPR) [MBP12, DM13]. 2) The second strategy learns an incoherent dictionary

by introducing the regularization term ‖DTD− Im‖2
F, where Im is the identity matrix

of size m ×m [RLS09, BQJ14]. The normalization is realized by adding the regular-

ization term
∑p

i=1(‖di‖2−1)2 [RLS09] or by a normalization step following the dictio-

nary updating [BQJ14]. In this chapter, we investigate a new strategy that models the

problem by proposing the explicit constraints on the coherence of the dictionary. By
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this method, the problem of incoherent dictionary learning becomes a constrained

optimization problem with quadratic objective function and quadratic constraints.

5.2.1 Dictionary learning with additive decorrelation

The conventional dictionary learning problem (5.4) is solved, via iteratively process-

ing two alternating steps, sparse coding and dictionary updating as described in

Chapter 3. A first approach to decorrelate was proposed in the implementation1 of

the conventional K-SVD (Algorithm 7), where the authors removed the atoms that

are highly correlated with each other. However, the resulting algorithm does not

ensure an optimal reconstruction performance.

For overcoming the difficulties, the leading method INK-SVD [MBP12] and inco-

herent dictionary learning algorithm via iterative projections and rotations [DM13]

are developed from the well-known K-SVD algorithm. The two algorithms take the

same strategy that adds a supplementary step following the phase of dictionary up-

dating at each iteration. These two algorithms are described in the following.

The INK-SVD is defined as follows. After obtaining the updated dictionary Dt

at the t th iteration, Mailhé et al proposed in [MBP12] to find the closest dictionary

to Dt with unit-norm atoms and a coherence below a predefined threshold µc . The

problem is formulated as

D̃t = argmin
D∈Dµ

‖D−Dt‖2
F,

where Dµ = {D ∈Rn×m | µ(D) ≤ µc ,‖di‖2 = 1,∀i = 1, . . . ,m}. To find the optimal so-

lution, an iterative algorithm is proposed by identifying the sub-dictionary (in the

same spirit as K-SVD) and decorrelating pairs of atoms with a greedy algorithm.

More precisely, at each iteration, a pair of atoms (di ,d j ) with inner product larger

than µc is selected and rotated symmetrically with respect to their mean vector un-

til the angle between them reaches θ, with cos(θ) = µc . The dictionary D̃t can be

reached within a finite number of iterations. The algorithm of decorrelation is sum-

marized in Algorithm 11.

The iterative projections and rotation (IPR), proposed by Barchiesi et al in

[DM13], optimizes the INK-SVD algorithm by considering simultaneously the mini-

mization of the residual error of sparse approximation when learning the dictionary

1http://www.cs.technion.ac.il/ ronrubin/software.html
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Algorithm 11 Algorithm of decorrelation in INK-SVD [MBP12]

Input: Initial dictionary D and required coherence µc .
Output: Approximate dictionary D̃ with maximal inner product of two atoms equal

to µc .
1: function DECORRELATION

2: t = 1
3: while maxi 6= j |〈di ,d j 〉| > ε do
4: Selection of a pair of atoms (di ,d j ) = argmax |DTD− Im |;
5: Decorrelation of the two atoms by rotating them until angle between

them reaches θ with cos(θ) =µc .
6: Increment i = i +1
7: end while
8: end function

with a fixed target coherence level, that is,

argmin
D∈D

‖X−DA‖2
F subject to µ(D) ≤µc .

The resolution of this problem consists of two steps:

• Decorrelation of atoms by projection method.

In this step, the Gram matrix G = DTD is considered, rather than processed di-

rectly with D. For obtaining the dictionary D with the required low coherence,

it is necessary to project G in the space defined by two constraints, named in

[DM13] the structural constraint

Gµc = {G ∈Rm×m | GT = G, diag(G) = 1m , max
i 6= j

gi j ≤µc }, (5.5)

and the spectral constraint

Gλ = {G ∈Rm×m | GT = G, eig(G) ≥ 0, rank(G) ≤ n}. (5.6)

For a given G, the projection on Gµc can be easily gained by the operations:

gi j =
{

1 if i = j

sign(gi j )min(|gi j |,µc ) if i 6= j .

For getting the projection on Gλ, it computes the eigenvalues λi , i = 1, . . . ,m,

by eigendecomposition of G = V∆VT where D is a diagonal matrix formed by
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the eigvenvalues of G and V formed by the corresponding eigenvectors, and

then, retains the largest n ones with ensuring their positivity and setting to

zero the remaining ones. However, after projection on Gλ, the incoherence of

D cannot be guaranteed any more. Hence, the projection on the intersection

of the two constraint spaces is not reached by only one projection, but by an

iterative process.

When the Gram matrix G belongs to this intersection, namely satisfying G ∈
Gµc ∩Gλ, then D can be recovered by

D =∆
1
2 VT. (5.7)

• Dictionary rotation for minimizing the reconstruction error while keeping the

dictionary with the required coherence level.

The dictionary rotation is realized by introducing an orthogonal transform

matrix W, by which the coherence quality is still held due to the fact that

(WD)T(WD) = G. Consequently, the reconstruction error minimizing prob-

lem is turned into an optimization problem with respect to W, that is,

W̃ = argmin
W∈N

‖X−WDA‖2
F,

where N denotes the set of orthogonal matrices of size m ×m. This problem

has a closed-form solution

W̃ = SUT,

where U and S are the left and right unitary matrices in the singular value

decomposition (SVD) of DAXT, namely DAXT = UΣST.

5.2.2 Regularized incoherent dictionary learning

Methods from the second strategy seek to learn an incoherent dictionary by min-

imizing a regularized objective function, where the regularization term constrains

the coherence. We describe in the following the most-known methods. The prob-

lem is formulated in [RLS09] as

argmin
D∈Rn×m ,A∈Rm×l

‖X−DA‖2
F+λ1

∑
j

∑
i

log(|αi j |+β)+λ2‖DTD−Im‖2
F+λ3

∑
k

(d2
k−1)2, (5.8)
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where the second term denotes the sparsity-promoting. This formulation is ob-

tained by using a universal models [RLS09]. The β is the parameter regulating the

universal model. The coefficients λ1, λ2 and λ3 are trade-off parameters. However,

here we focus on the step of dictionary updating. The optimization problem with

respect to D is of the form

argmin
D∈Rn×m

‖X−DA‖2
F +λ2‖DTD− Im‖2

F +λ3
∑
k

(d2
k −1)2,

where the second term measures the correlation of two distinct atoms in D, which

are the off-diagonal elements of DTD, and the last term makes sure that columns of

D are of norm close to 1. This optimization problem can be solved with the method

of optimal coherence-constraint directions (MOCOD) [RLS09], inspired from the

method of optimal direction (MOD), which updates D by

Dt+1 = (
X(At+1)T +2(λ2 +λ3)Dt )(At+1(At+1)T +2λ2(Dt )TDt +2λ3diag((Dt )TDt )

)−1
.

The MOCOD method is proved to outperform the MOD method in image recon-

struction.

In [BQJ14], the incoherent dictionary learning problem is formulated by intro-

ducing only the coherence regularization, namely the Frobenius norm of the differ-

ence of Gram matrix and identity,

argmin
D∈D,A∈Rm×l

1
2‖X−DA‖2

F +λ1‖A‖0 + λ2
2 ‖DTD− Im‖2

F.

The incoherent dictionary is learned via a hybrid alternating proximal method, of

which the dictionary is updated atom-by-atom using the operation

dt+1
j = proxδD

λt
j

(
dt − 1

λt
j
∇d j Q(At ,Dt

j )
)
,

where Q(A,D) = 1
2‖X−DA‖2

F+ λ2
2 ‖DTD−Im‖2

F and Dt
j = [dt+1

1 , . . . ,dt+1
j−1,dt

j , . . . ,dt
m], and

then the dictionary is normalized after the dictionary updating at each iteration.

Similarly, Abolghasemi et al [AFS15] tackled the problem with the same coher-

ence regularization as in [BQJ14]. However, they proposed an incoherent dictio-

nary learning algorithm with dictionary updating by a gradient descent method. In

addition, the coherence regularization was also measured by the sum of `1-norm

of every two different atoms [LHDL16, LDHL17]. Moreover, for some tasks such
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as classification, the Fisher criterion [LLF14] can be regarded as a coherence regu-

larization, which makes the sub-dictionary of different class coherent. Incoherent

dictionary learning algorithms of the second strategy achieve good performance in

data reconstruction [AFS15, LDHL17], classification [BQJ14, LLZ12, LHT+18] and

object recognition [LLF14, ZJD13]. However, they suffer from a major issue: it is

not possible to constraint exactly the coherence level to a fixed value, because the

relation between it and the regularization trade-off parameter is unknown.

5.2.3 Towards incoherence-constrained dictionary learning

The third strategy considers the simplest way to formulate the problem, by adding

the constraints of coherence and unit norm of the dictionary elements into the

generic dictionary learning problem. The coherence of the dictionary is constrained

with the inequality

|dT
p dq | ≤µc , ∀p, q ∈ {1,2, . . . ,m}, p 6= q, (5.9)

where µc is the predefined coherence level. The unit norm of the dictionary’s atoms

is modeled by the equality

dT
p dp = 1 ∀p = 1,2, . . . ,m. (5.10)

Thus, the problem of incoherent dictionary learning can be resumed as a con-

strained optimization problem with quadratic objective function and quadratic

constraints

min
D∈Rn×m ,αααi∈Rm

1

l

l∑
i=1

1
2‖xi −Dαααi‖2

2

subject to


|dT

p dq | ≤µc , ∀p, q ∈ {1,2, . . . ,m}, q 6= p

dT
p dp = 1, p = 1, . . . ,m

‖xi‖0 ≤ k, i = 1, . . . , l .

(5.11)

The problem of estimating simultaneously A and D is non-convex and non-smooth

because of the sparsity-prompting `0-norm and the constraints. To the best of our

knowledge, there is no work on incoherent dictionary learning by solving the prob-

lem with explicit constraints on dictionary coherence and its unit norm. To solve

this constrained optimization problem, we take advantage of recent developments
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in optimization problem with orthogonality constraints, with the augmented La-

grangian method and the alternating proximal minimization method.

The optimization problem with orthogonality constraints has been recently ad-

dressed in physics [UWY+15], mathematics [LCWM09] and information science

[CJY16]. The Lagrangian multiplier method [Ber99] is frequently used to deal with

such a problem [LCWM09, UWY+15]. However, it is not always easy to solve the La-

grangian function by satisfying the first order optimal condition. In [UWY+15], the

Kohn-Sham problem was reformulated by the Lagrangian multiplier method, and

the proximal gradient method was then proposed to solve the Lagrange function.

Moreover, it was proven that the algorithm has good convergence property. The or-

thogonality constrained optimization problem were also solved via the augmented

Lagrangian method [CJY16, ZZCL17]. Compared with the Lagrangian method, the

penalty method shows more stability [Ber99]. However, the reformulated problem

can be non-convex and non-smooth, which makes the problem hard to tackle. In

[CJY16], the alternating proximal method was combined with the augmented La-

grangian method and the existence of the sub-sequence to a KKT point was proven.

The new proposed algorithm was then applied in compressed mode for variational

problems in physics, illustrating the effectiveness and efficiency of the algorithm. In

[ZZCL17], an extended proximal alternating linearized minimization method was

introduced to solve the Lagrangian function, and its convergence was proven based

on the theory of the Kurdyka-Łojasiewicz inequality property [ABRS10].

5.3 Exact `0 based incoherent dictionary learning

This section gives a method to solving the exact `0 based incoherent dictionary

learning problem (5.11). Similar to all other dictionary learning algorithms pre-

sented in Section 3.4, we learn the incoherent dictionary via iteratively processing

two alternate steps: sparse coding and dictionary learning. The sparse coding prob-

lem of (5.11) is the `0-norm constrained problem, which is exactly the same as in the

generic sparse coding (4.7). Therefore, we use the AcMIQP algorithm proposed in

Section 4.1.2 to solve exactly the `0 constrained sparse coding problem. With a fixed

sparse code, the problem with respect to the dictionary D becomes a non-convex

constrained optimization problem. For solving this problem, the augmented La-

grange method and proximal alternating linearized minimization method are used.

The convergence of the proposed algorithm is analyzed in the following.

95



CHAPTER 5. INCOHERENT DICTIONARY LEARNING

5.3.1 Augmented Lagrangian method

The augmented Lagrangian method is used in this part to reformulate the

incoherence-constrained dictionary learning problem. The optimization problem

with respect to D is:

min
D∈Rn×m

1

l

l∑
i=1

(1
2‖xi −Dαααi‖2

2

)

subject to


|dT

p dq | ≤µc , ∀p, q ∈ {1,2, . . . ,m}, p 6= q

dT
p dp = 1, p = 1, . . . ,m.

(5.12)

By introducing a new variable G ∈Rm×m that satisfies the identity

G = DTD,

the problem can be written in the form2

min
D∈Rn×m ,G∈Rm×m

1
2‖X−DA‖2

F

subject to

 G = DTD, G ∈SG

dT
p dp = 1, p = 1, . . . ,m,

(5.13)

where

SG =
{

G ∈Rm×m
∣∣∣ |gi j | ≤µc , i , j = {1,2, . . . ,m}, i 6= j

}
.

Let δSG(G) be the indicator function on this set, namely

δSG (G) =
{

0, if G ∈SG

+∞, otherwise.
(5.14)

2Another formulation can be proposed, by putting the unit-norm constraint in the space defini-
tion [WGY10, YY13]. However, this formulation suffers from low convergence. For this reason, we
consider the optimization problem (5.13) where the explicit unit-norm constraint will be addressed
using the augmented Lagrangian method.
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The constrained optimization problem can be solved by considering the augmented

Lagrangian function:

L(c1,c2)(D,G,λλλ,H) = 1

2
‖X−DA‖2

F +
m∑

p=1
λp (dT

p dp −1)+ c1

2

m∑
p=1

(dT
p dp −1)2

+ tr(H(G−DTD))+ c2

2
‖G−DTD‖2

F +δSG (G), (5.15)

where λλλ = [λ1, . . . ,λm] and H are respectively the vector and matrix associated to

the equality constraints on the diagonal of DTD and on G, c1 and c2 are the positive

penalty parameters (the augmentation). When these parameters grow into infinity,

the optimal solution of the original problem (5.13) can be reached.

Therefore, the optimization problem becomes:

min
D∈Rn×m ,G∈Rm×m

L(c1,c2)(D,G,λλλ,H). (5.16)

It is not the standard augmented Lagrangian method (where the objective function

is convex and has only one term, in most case, the constraints are closed convex set).

While our problem is non-convex and non-smooth, it is still reasonable to consider

the inexact ADMM framework [Ber99]. The resulting algorithm is illustrated in Al-

gorithm 12.

As presented in Algorithm 12, the inexact augmented Lagrangian method op-

erates in three alternating steps: In Step 1, the primal variables are computed by

solving, as explained in next section, the optimization problem,

(Di ,Gi ) = argmin
D,G

L(c i
1,c i

2)(D,G,λλλi ,Hi ), (5.17)

where Di , Gi λλλi and Hi are the values in the i -th iteration; In Step 2, the Lagrangian

multipliersλλλ and H are updated; And in Step 3, the penalty parameters c1 and c2 are

increased. It is proven that the two parameters c1 and c2 can stay much smaller to

solve such optimization problem [Ber99].

5.3.2 Proximal alternating linearized minimization

The problem (5.17) is a non-convex and non-smooth optimization problem. It is

unsolvable by satisfying the Karush-Kuhn-Tucker (KKT) conditions. We propose to

use an alternating strategy to address this optimization problem. The optimal ma-
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Algorithm 12 The inexact ADMM framework for solving (5.16)

Input: The training data X and coefficient matrix A, the stop criteria (ε, Ni ter ).
Output: The optimal solution D∗

function DICTIONARYUPDATING

Initialization the parameters (λλλ0, D0, c0
1 , H0, G0, c0

2 , ρ1, ρ2)
for all i = 0 to Ni ter −1 do

1. Computing the optimal solution (Di ,Gi ):

(Di ,Gi ) = argminL(c i
1,c i

2)(D,G,λλλi ,Hi ).

2. Updating the Lagrangian multiplier (λλλi ,Hi ):{
λλλi+1 =λλλi + c i

1(diag((Di )TDi )−1);
Hi+1 = Hi + c i

2(Gi − (Di )TDi ).

3. Updating the penalty parameters (c i
1,c i

2):{
c i+1

1 = ρ1c i
1;

c i+1
2 = ρ2c i

2.

if max |(di
p )Tdi

p −1| ≤ ε and max |Gi − (Di )TDi | ≤ ε then
return,

end if
end for

end function

trices of D and G are obtained by alternating the gradient descent method and the

proximal method, which can be regarded as the special case of the extended proxi-

mal alternating linearized minimization (EPALM) [ZZCL17].

To investigate the EPALM method, we rewrite the objective function in problem

(5.17) in the form of three additive parts:

L(c i
1,c i

2)(D,G,λλλi ,Hi ) = f (D)+h(D,G)+ g (G), (5.18)

with the definition of:
f (D) = 1

2
‖X−DA‖2

F +
m∑

p=1
λi

p (åT
p dp −1)+ c i

1

2

m∑
p=1

(dT
p dp −1)2

h(D,G)= tr
(
Hi (G−DTD)

)+ c i
2

2
‖G−DTD‖2

F

g (G) = δSG (G).
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The problem is well defined with f : Rn×m → (−∞,+∞], h : Rn×m ×Rm×m →
(−∞,+∞] being aC1 function (i.e., continuously differentiable), and inf f (D) >−∞,

inf h(D,G) >−∞, g :Rp×p → [0,∞] a proper and lower semicontinuous function. In

addition, for guaranteeing the convergence of the EPALM method, the following as-

sumptions should be satisfied:

(i) The functions D → h(D,G) and G → h(D,G) have their gradients globally Lip-

schitz continuous with moduli LD and LG, respectively. In other words, the

partial gradients of h with respect to D and G verify the property:{
‖∇Dh(D,G)−∇Dh(D̄,G)‖F ≤ LD‖D− D̄‖F

‖∇Gh(D,G)−∇Gh(D,Ḡ)‖F ≤ LG ‖G− Ḡ‖F,
(5.19)

for all (D,D̄) and (G,Ḡ).

(ii) L(c i
1,c i

2)(D,G,λλλi ,Hi ) satisfies the Kurdyka-Łojasiewicz inequality [ZZCL17]. The

proof is given in Section 5.3.5.

The problem (5.17) can now be solved by alternating the optimization problems

with respect to D and G, respectively:



Di , j = argmin
D∈Rn×m

f (D)+h(Di , j−1,Gi , j−1)

+tr
(
(D−Di , j−1)T∇Dh(Di , j−1,Gi , j−1)

)
+ t̃1

2
‖D−Di , j−1‖2

F

Gi , j = argmin
G∈Rm×m

g (G)+h(Di , j ,Gi , j−1)

+〈G−Gi , j−1,∇Gh(Di , j ,Gi , j−1)〉

+ t2

2
‖G−Gi , j−1‖2

F,

(5.20)

where 〈M1,M2〉 = tr(MT
1 M2) is defined as the scalar product in the matrix space

Mn(R), t̃1 and t2 are the coefficients associated respectively to the second order ap-

proximation terms. By considering that the function f is differentiable, the problem
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of estimating D can be expressed as:

Di , j = argmin
D∈Rn×m

f (Di , j−1)+h(Di , j−1,Gi , j−1)

+tr
(
(D−Di , j−1)T∇D( f (Di , j−1)+h(Di , j−1,Gi , j−1)

)
+ t1

2
‖D−Di , j−1‖2

F.

(5.21)

To solve this optimization problem, it is easy to update D by the method of gradient

descent. As for the problem of estimating G in (5.20), the proximal method is ap-

plicable. By combining both steps, the solution of D and G can be achieved by the

following process:
Di , j = Di , j−1 − 1

t1
∇D

(
f (Di , j−1)+h(Di , j−1,Gi , j−1)

)
Gi , j = prox 1

t2
g

(
Gi , j−1 − 1

t2
∇G(h(Di , j ,Gi , j−1))

)
,

(5.22)

where the notation proxu f denotes the proximal operator, defined in Section 4.1.2,

of the scaled function u f (also called the proximal operator of g with parameter u),

namely

prox 1
t2

f (v) = argmin
x

f (x)+ 1
2t2

‖x−v‖2. (5.23)

The partial derivatives of the three parts of (5.18) are:


∇D f (Di , j−1) =−(Y−Di , j−1X)XT +2Di , j−1diag(λiλiλi )+2c i

1Di , j−1diag(vj−1)

∇Dh(Di , j−1,Gi , j−1)=−Di , j−1(Hi + (Hi )T)− c i
2Di , j−1

(
Gi , j−1 + (Gi , j−1)T −2(Di , j−1)TDi , j−1

)
∇Gh(Di , j ,Gi , j−1) =Hi + c i

2(Gi , j−1 − (Di , j )TDi , j ),
(5.24)

where vj−1 = diag
(
(Di , j−1)TDi , j−1 − Im

)
denotes the vector with the entries valued

by the diagonal of the matrix (Di , j−1)TDi , j−1 − Ip . The two expressions diag(λiλiλi ) and

diag(vj−1) return the matrix with the diagonal filled by the elements in the vectors

λiλiλi and vj−1, respectively. Moreover, Gi , j can be computed as:

Gi , j (ix , i y ) =


G̃(ix , i y ) if |G̃(ix , i y )| ≤µc

sign(G̃(ix , i y ))µc otherwise,

(5.25)

where G̃ = Gi , j−1− 1
t2
∇G

(
h(Di , j ,Gi , j−1)

)
, sign(G̃(ix , i y )) is the sign of the G̃(ix , i y ), i.e.,
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+1 if G̃(ix , i y ) ≥ 0 and −1 otherwise. In these expressions, ix and i y are respectively

the row and column indices of the matrix G̃, with ix , i y = 1,2, . . . ,m.

The proposed EPALM method for estimating D and G is summarized in Algo-

rithm 13. For the completeness of the algorithm, we provide next a convergence

analysis in terms of the subdifferential of the objective function in (5.17), as well as

the choice of the parameters.

A necessary but not sufficient condition for x ∈Rn to be a minimizer of f is 0 ∈
∂ f (x). Back to our optimization problem, the subdifferential of L(c i

1,c i
2)(D,G,λλλi ,Hi )

at (Di ,Gi ), denoted by Θi = (Θi
D,Θi

G) and expressed as

Θi = ∂L(c i
1,c i

2)(Di ,Gi ,λλλi ,Hi ),

can be computed directly and the result can be written in form of: Θi
D =∇D f (Di )+∇Dh(Di ,Gi )

Θi
G = t2(Gi−1 −Gi ).

(5.26)

Thus a solution of our optimization problem can be found when ‖Θi‖∞ → 0. Ac-

cording to the formulation of Θi in (5.26), Di is exactly the local optimal solution

of the subproblem with respect to D, and the sequence Gi , j is convergent, since

‖Gi −Gi−1‖F → 0.

Besides, it is noticed that to guarantee that every bounded sequence generated

by the proposed method converges to a critical point of L(c i
1,c i

2)(Di ,Gi ,λλλi ,Hi ), the

parameters c1, c2 and the stepsizes t1, t2 need to be appropriately chosen. The fol-

lowing can be noted:

• The initial positive penalty parameter c0
1 and c0

2 should be carefully chosen

to avoid ill-conditioning, i.e., they should satisfy the second-order sufficient

condition:

∇2
DDL(Di ,Gi ,λiλiλi ,Hi ) > 0.

Due to the complexity of the derivative of a matrix function with respect to

a matrix (the derivative of the function with respect to each element of the

matrix being a matrix), we do not give the detail here.

• The convergence of the algorithm requires that the descent stepsize, i.e., 1
t1

and 1
t2

, should not be too large, satisfying t1 > LD and t2 > LG.

101



CHAPTER 5. INCOHERENT DICTIONARY LEARNING

Algorithm 13 EPALM algorithm for solving subproblem (5.17)

Input: The training data X and coefficient matrix A, the parameters (λiλiλi , Hi , c i
1 and

c i
2, the step size t1 and t2), the stop criteria (εi , Ni

i ter , the subdifferential Θi of the

L(c i
1,c i

2)(Di ,Gi ,λλλi ,Hi ))

Output: The solution Di and Gi

function EPALM
Initialization j = 0, Di ,0 = Di−1,
Gi ,0 = (Di ,0)TDi ,0,
Gi ,0(ix , i y ) = sign(Gi ,0(ix , i y ))min(|Gi ,0(ix , i y )|,µc ),
Θi =Θi (Di ,0,Gi ,0).
while j < Ni

i ter and Θi > εi do
1. Updating Di , j by computing:

Di , j = Di , j−1 − 1
t1
∇D

(
f (Di , j−1)+h(Di , j−1,Gi , j−1)

)
.

2. Computing:

G̃ = Gi , j−1 − 1
t2
∇G

(
h(Di , j ,Gi , j−1)

)
.

3. Projecting the G̃ in the space SG:

Gi , j (ix , i y ) =
{

G̃(ix , i y ) if |G̃(ix , i y )| ≤µc ;
sign(G̃(ix , i y ))µc otherwise.

4. Calculating the subdifferential Θi (Di , j ,Gi , j ).
5. j = j +1.

end while
end function

Proposition 2. To sum up, a sequence (Di , j ,Gi , j ), j ∈ N is generated by using the

proposed method, then the following conditions will be satisfied:

• When j →∞, ‖Θi (Di , j ,Gi , j )‖∞ → 0.

• The sequence (Di , j ,Gi , j ) for j ∈N has a finite length, that is,

∞∑
j=1

‖(Di , j+1,Gi , j+1)− (Di , j ,Gi , j )‖F <∞. (5.27)
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5.3.3 Experiments to assess the dictionary updating algorithm

To assess the performance of the dictionary updating algorithm, it is tested on syn-

thetic data. Specifically, a sparse matrix A ∈R20×100 with the maximal column-wise

sparsity level 3 is manually created. A dictionary D ∈ R5×20 is generated from the

IPR incoherent dictionary learning algorithm [DM13] on an arbitrary image, with

the coherence parameter set to 0.6; The obtained dictionary has a coherence com-

puted by (5.1) of 0.608. Then, in each test, the set of signals X can be generated with

X = DA+ωE, (5.28)

where the second term in the right-hand-side corresponds to the unfitness noise,

where E a white Gaussian zero-mean matrix with a noise level set to ω= 0.1.

To provide an overall evaluation of the proposed algorithm, several coherence

parameter values µc = {0.5,0.55,0.6,0.7,0.8,0.9,1} are used. It is worth noting that

values below 0.4 cannot be reached due to geometric constraints, namely the co-

herence of an overcomplete dictionary of size n ×m is bounded by (5.2). The other

parameters values are set as follows: For Algorithm 12, we set: ADMM algorithm, the

maximal outer iteration number Ni ter = 50, the coefficient to update the penalty

parameter ρ1 = ρ2 = 1.5, the stopping criterion ε = 0.01; For Algorithm 13, we set:

EPALM algorithm, the maximal inner iteration number Ni
i ter = 1000, the stopping

criterion εi = ε0 = 0.01. For each coherence value, five independent Monte Carlo

simulations are conducted.

We analyze the algorithm through the accuracy ‖D̃ − D∗‖F and the objective

function value 1
2‖X − D̃A‖2

F, as well as the computing time, where D̃ is the out-

put of the algorithm and D∗ is the known optimal solution. Moreover, we also

study the iteration numbers with different coherence parameter settings. The re-

sults are listed in Table 5.1. These results show that, with the decrease of the co-

herent parameter µc , more iterations are needed to converge, and thus more time.

On the other hand, as the coherence parameter increases, the stopping criteria

max(|dT
p dp −1|) ≤ 0.01 and max |G−DTD| ≤ 0.01 can be easily satisfied. It is ob-

servable that when µc = 0.6, which is the closest value to the coherence of the target

dictionary D∗ (i.e., µ∗ = 0.607), the results have the greatest accuracy of 0.058. For

the other values of µc , the results remain consistent but with a deduced accuracy.

This is easy to understand since, for µc >µ∗, the optimal solution D∗ is in the feasi-

ble region, which should also be the output of the algorithm. But, influenced by the
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Table 5.1 – Accuracy results and computing time on synthetic data

Coherence parameter µc 0.5 0.55 0.6 0.7 0.8 0.9 1.0

Initial objective function

value: 1
2‖X−D0A‖2

F 9523 9592 9318 9643 9340 9483 9446

Final objective function

value: 1
2‖X− D̃A‖2

F 216.84 91.80 2.01 1.89 1.89 1.89 1.89

Accuracy: ‖D̃−D∗‖F 1.480 1.060 0.058 0.100 0.100 0.100 0.100

Outer iteration number:

Ni ter in Algorithm 12 50 22 9 4 4 4 4

Inner iteration number:

Ni
i ter in Algorithm 13 972 877 692 312 319 319 318

max |dT
p dp −1| 0.015 0.001 0.003 0.007 0.007 0.007 0.007

max |G−DTD| 0.052 0.0057 0.0084 10−8 10−8 10−8 10−8

Computing time 155.78 47.31 16.33 3.38 3.42 3.41 3.39

noise, the output of the algorithm cannot be exactly D∗. For this reason, the objec-

tive function for µc > µ∗ are always lower than that when µc = 0.6. However, when

µc < µ∗, the situation is totally different, because µ∗ is out of the feasible region.

Therefore, a solution that satisfies the coherence constraint can be found, but the

price to pay is an increase of the objective function, as well as the computational

cost to converge. Consequently, by appropriately choosing the coherent parameter,

an incoherent dictionary can be produced by this algorithm. Moreover, the smaller

the target coherent parameter is, the greater the computational complexity will be.

5.3.4 Incoherent dictionary learning algorithm

We get an incoherent dictionary learning method by combining the dictionary up-

dating method introduced in the previous section with a sparse coding method,

such as the proximal method or the AcMIQP introduced in Chapter 4. By consid-

ering AcMIQP, we get an incoherent dictionary learning algorithm with an exact `0

optimization. The outline is illustrated in Algorithm 14. In the reminder of this

section, we examine the relevance of two combinations: prox+EPALM, which com-

bines the proximal method with the hybrid algorithm of ADMM and EPALM, and

AcMIQP+EPALM, which combines AcMIQP with the proposed hybrid algorithm.
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Algorithm 14 Exact `0 based incoherent dictionary learning algorithm (5.17)

Input: The training data X, number of iterations N, all parameters and stropping
criterion needed in inexact ADMM algorithm (Algorithm 12) and EPALM algo-
rithm (Algorithms 13).

Output: The solution D and A
function INCOHERENT DICTIONARY LEARNING

Initialisation of dictionary D0 and sparse representation A = 0,
for i = 1 to N do

1. Sparse coding with AcMIQP algorithm.
2. Dictionary updating by ADMM with EPALM (Algorithms 12-13).

end for
end function

In the following, the dictionary learning algorithm is evaluated on the segment

of image Barbara presented in Figure 4.1. The overlapping patches of size 8 × 8

(namely a signal is a vector of size 64) form the set of signals X. With the signals, a

dictionary D is learned by using the proposed method (the hybrid algorithm of the

ADMM and EPALM for dictionary updating, and either the proximal method or the

AcMIQP for sparse coding) and compared to the other two comparative incoherent

dictionary learning algorithms, INK-SVD and IPR. When both D and X are known,

the sparse code A can be easily obtained using a sparse coding method, namely

proximal method and AcMIQP for our algorithm, OMP algorithm for the other two

methods. Then, the reconstructed image is obtained by doing the matrix multiplica-

tion X̃ = DA. Consequently, we compare their performance by computing the peak

signal-to-noise ratio (PSNR). The MIQP problem is solved by the software Gurobi

Optimizer 8.1.0. The parameter settings of Gurobi are fixed as the default values ex-

cept that the time limit is set to 0.5 seconds and the maximal iteration number to

1000. The initialization of MIQP is given by running the proximal method by setting

the maximal iteration number to 200. When only the proximal method is used to

sparse code, the iteration number is 1000. The number of atoms is set to p = 256

and the sparsity level k = 20 (the active atoms is less than 8%). The iteration num-

ber for learning a dictionary is set to 30, which is sufficient for the algorithms to

converge, as shown in Figure 5.2. For the other two comparative methods, the pa-

rameter values are chosen as in the original papers [MBP12, DM13].

Figure 5.1 presents the convergence property of the algorithms with the coher-

ent parameter set to µc = 0.6, which corresponds to having angles between any two

atoms greater than 53◦. It is observable that the dictionary algorithm with MIQP for
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Figure 5.1 – The convergence of the exact `0 based incoherent dictionary learning algorithm
(AcMIQP+EPALM) and its comparison to the prox+EPALM, the INK-SVD and IPR algorithms

sparse coding and EPALM for dictionary updating has the fastest convergence and

the value of limit is the smallest. It is worth pointing out that 30 iterations is suf-

ficient for the algorithms to converge, even though the IPR algorithm shows some

convergence unstability.

Figure 5.2 shows the distribution of the absolute inner product between each

two atoms in the learned dictionary. Combined with the statistics given in Table 5.2,

we notice that independently of the used sparse coding algorithm, the proposed

method can achieve a dictionary with almost the target coherence parameter value,

which is not the case of IPR. The proximal method combined with EPALM provides

the smallest absolute average, which is an important property related to the so-

called Babel function whose theory is well established [Hon15b, Hon15a, Tro04].

However, this algorithm cannot beat the one with MIQP for sparse coding in terms

of variance. The INK-SVD algorithm outputs as well a dictionary with almost the

target coherence value, but with a higher variance. Nevertheless, INK-SVD updates

the dictionary without considering the reconstruction error (see next paragraph).

For the IPR algorithm, the target coherence parameter value cannot be obtained

even though it shows the least variance. Considering the distribution of absolute

inner products between each two atoms in the learned dictionary, as illustrated in

Figure 5.2, it is hard to tell which of the proximal method or the MIQP is better in

combination with the proposed algorithm.

To analyze the reconstruction errors, we study seven coherence values µc =
{0.996,0.966,0.866,0.707,0.500,0.259,0.122}, i.e., the angle between any two atoms
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Figure 5.2 – The distribution of the coherence between each two atoms of the proposed
algorithms and its comparison to the INK-SVD and IPR algorithms

Table 5.2 – Statistics on the resulting dictionary

µ Average of Variance of

{|dT
i d j | | i 6= j } {|dT

i d j | | i 6= j }

INK-SVD 0.601 0.368 0.0177

IPR 0.711 0.557 0.0073

Prox+EPALM 0.608 0.352 0.0176

AcMIQP+EPALM 0.609 0.382 0.0146

is bigger than θc = {5◦,15◦,30◦,45◦,60◦,75◦,83◦}. Table 5.3 and Figure 5.3 present the

reconstruction errors for each of these target values. For the incoherent dictionary

learning with the proposed method of ADMM and EPALM, the reconstruction per-

formance improves with the coherence of dictionary decreasing, with the best re-

sults when µc = cos(45◦) with proximal method for sparse coding and µc = cos(30◦)

with AcMIQP; afterwards, the reconstruction performance begins to decrease. This

is different from the results of INK-SVD and IPR algorithms whose performances

monotonically decrease with the coherence (i.e., the incoherence of the dictionary

is increasing). Hence, our algorithm increases the dictionary incoherence without

the risk of loss in reconstruction accuracy. Furthermore, our method proves that an

appropriate incoherent dictionary helps to improve the performance. However, one

point should be noticed, incoherent dictionary learning algorithm with AcMIQP for

sparse coding has the highest computing complexity comparing to the other meth-
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Table 5.3 – The reconstruction errors in PSNR (in dB) by using the dictionary with different
coherence parameter values µc = cos(θc )

Largest angle θc between two atoms

5◦ 15◦ 30◦ 45◦ 60◦ 75◦ 83◦

INK-SVD 36.46 36.56 36.26 34,83 34.04 30.15 -

IPR 36.82 36.57 35.72 31.51 30.60 27.84 -

Prox+EPALM 27.40 27.42 28.06 29.80 29.31 29.75 22.97

AcMIQP+EPALM 37.60 37.26 38.89 38.55 36.52 35.31 33.97

ods. It is remarked that there is no result of INK-SVD or IPR when θc = 83◦. That is

caused by the non-convergence of the two algorithms when dealing with some high

coherence values. By contrast, the hybrid algorithm of ADMM and EPALM presents

good performance in stability.

Figure 5.4 presents the best results of image reconstruction obtained respec-

tively by algorithms of INK-SVD, IPR, prox+EPALM and AcMIQP+EPALM by setting

the coherence parameter respectively to µc = 0.996,0.996,0.707,0.866. Patches are

recovered by X̃ = DA and then by averaging pixel value, the final reconstructed im-

age is obtained. It is observable that the combination of AcMIQP for sparse coding

and the proposed algorithm for dictionary update outperforms the other methods

by maintaining most of the details in the image.

5.3.5 Convergence analysis

In this part, we give the proof of convergence of the proposed algorithm for incoher-

ent dictionary learning. As aforementioned, the proposed algorithm aims at tack-

ling the constrained optimization problem by transforming the problem into an un-

constrained optimization problem via the augmented Lagrangian method. In each

iteration of the augmented Lagrangian method, the minimization problem with re-

spect to the primal variables is solved by the EPALM algorithm. Thus, for proving the

convergence of the algorithm, we need to prove the convergence of the augmented

Lagrangian method and that of the EPALM.
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Figure 5.3 – The reconstruction errors in PSNR for each method at each target coherence
value

Convergence of the augmented Lagrangian method

Before proceeding and for completeness, we give here the convergence of the aug-

mented Lagrangian method [Ber99]. Consider the general expression of an equality

constrained problem:

min q(x)

subject to p(x) = 0, ∀x ∈X,
(5.29)

where X is a closed set, and q and p are continuous functions in X.

Proposition 3 (Proposition 4.2.1 in [Ber99]). Assume q and p are continuous func-

tions, X is a closed set, and the constraint set {x ∈ X | p(x) = 0} is nonempty. For

k = 0,1, · · · , let xk be a global minimum of the optimization problem

min
x∈X

Lck (x,λk ), (5.30)

where λk is bounded, 0 < ck < ck+1 for all k, and ck →∞. Then every limit point of

the sequence {xk } is a global minimum of the original problem (5.29).

Furthermore, according to the Proposition 4.2.2 in [Ber99], the limit of the se-

quence {λk } can be reached by iteratively updating λk through λ̃k = λk + ck p(xk ),

109



CHAPTER 5. INCOHERENT DICTIONARY LEARNING

(a) Proximal+EPA (b) Proximal+EPA

(c) Proximal+EPA (d) Proximal+EPA

Figure 5.4 – Reconstructed images produced respectively by algorithms (a) INK-SVD, (b)
IPR, (c) Prox+EPALM and (d) AcMIQP+EPALM

and limk→∞λk + ck p(xk ) = λ∗, where λ∗ is the optimal value of the dual variable.

Then, x∗ is the solution of the problem (5.30) when λk here is λ∗. Setting the first

order derivative ∂(q +λ∗p)(x) to zero, the solution x∗ can be reached.

Convergence of the EPALM algorithm

The analysis of the convergence of the EPALM algorithm is based on the Kurdyka-

Łojasiewicz (KL) equality. We begin by introducing its definition [ABS13]:

Definition 2. (Kurdyka-Łojasiewicz function)

(a) The function f : Rn →R∪ {+∞} is said to have the Kurdyka-Łojasiewicz prop-

erty at x∗ ∈ dom ∂ f if there exist η ∈ (0,+∞], a neighborhood U of x∗ and a

continuous concave function φ : [0,η) →R+ such that:

(i) φ(0) = 0;

(ii) φ is C1 on (0,η);
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(iii) for all s ∈ (0,η), φ
′
(s) > 0;

(iv) for all x ∈ U∩ [ f (x∗) < f < f (x∗)+η], the Kurdyka-Łojasiewicz inequality

holds:

φ
′
( f (x)− f (x∗))di st (0,∂ f (x)) ≥ 1. (5.31)

(b) The proper lower semicontinuous functions that satisfy the Kurdyka-

Łojasiewicz inequality at each point of dom ∂ f are called KL functions.

We now study the convergence property of the algorithm, that is, the conver-

gence of the sequence generated by the proposed algorithm in this chapter. We will

prove that, with a and b two fixed positive value, the proposed algorithm generates

a sequence
{

xk
}

k∈N that satisfies the following conditions:

H1. (Sufficient decrease condition). For each k ∈N,

f (xk+1)+a‖xk+1 −xk‖2 ≤ f (xk );

H2. (Relative error condition). For each k ∈N, there exists w k+1 ∈ ∂ f (xk+1) such

that

‖w k+1‖ ≤ b‖xk+1 −xk‖;

H3. (Continuity condition). There exist a subsequence
{

xk j
}

j∈N and x̃ such that

xk j → x̃ and f (xk j ) → f (x̃), when j →∞. (5.32)

Then the following theorem (Theorem 2.9 in [ABS13]) will be used to prove the con-

vergence of the proposed algorithm.

Theorem 5.3.1. (Convergence to a critical point)

Let f : Rn → R∪ {+∞} be a proper lower semicontinuous function. Consider a se-

quence
{

xk
}

k∈N that satisfies the conditions H1, H2, H3.

If f has the Kurdyka-Łojasiewicz property at the cluster point x̃ specified in H3,

then the sequence
{

xk
}

k∈N converges to x̄, and x̄ → x̃ as k goes to infinity, and x̄ is a

critical point of f .

Moreover the sequence
{

xk
}

k∈N has a finite length, i.e.,

+∞∑
k=0

‖xk+1 −xk‖ <+∞.
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In the following, we begin with the proof of satisfaction of assumption on func-

tions.

Proposition 4. The objective function L(c i
1,c i

2)(D,G,λλλi ,Hi ) is a KL function.

Proof. The objective function L(c i
1,c i

2)(D,G,λλλi ,Hi ) can be written in form of (5.18),

namely f (D)+h(D,G)+ g (G). According to [ABRS10] and therein, it is easy to prove

that f and h are KL functions. Moreover, g is also a KL function because it is the

indicator function of a semi-algebraic set. Hence, the sum of the KL functions, i.e.,

L(c i
1,c i

2)(D,G,λλλi ,Hi ), is a KL function.

Proposition 5. In problem (5.29), if q(x) is a proper semicontinuous function in a

closed setX and p(x) is a proper lower continuous function inX, then the augmented

Lagrangian function Lck (x,λk ) is a proper lower semicontinuous function.

Proof. Firstly, if p(x) is a continuous function in X, then {x | p(x) <∞} = X. More-

over, q(x) is a proper function in X. Lck (x,λk ) = q(x)+λk p(x)+ ck

2 p2(x) is conse-

quently a proper function in X.

Secondly, it is evident that if p(x) is a continuous function inX, then λk p(x) and
ck

2 p2(x) are continuous functions inX. The sum of a semicontinuous function inX,

the function q(x) and a continuous function λk p(x)+ ck

2 p2(x), is still a semicontin-

uous function, i.e., Lck (x,λk ) is a semicontinuous function.

Finally, p and q are both lower-bounded functions in X, that is, ∀x ∈ X, p(x) >
−∞ and q(x) > −∞. λk p(x)+ ck

2 p2(x) is a convex function because ck > 0, then,

λk p(x)+ ck

2 p2(x) >−∞, ∀x ∈X. Hence, Lck (x,λk ) is the sum of two lower-bounded

functions in X.

Therefore, Lck (x,λk ) is a proper lower semicontinuous function.

In our optimization problem, q(x) is a proper lower semicontinuous function

dedicating here to an indicator term, and p(x) represents all the constraints that

can be linear functions and quadratic functions, and which are all proper lower

continuous functions. By applying the above Proposition 5, we can deduce that the

augmented Lagrangian function in our problem is a proper lower semicontinuous

function.

Now, to prove the convergence of the algorithm, we still need to prove that the

generated sequence (Di , j ,Gi , j ) satisfies the conditions H1, H2 and H3. The se-
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quence is generated from the process{
Di , j+1 = argminD∈Rn×m P1(D)

Gi , j+1 = argminG∈Rm×m P2(G),
(5.33)

where the functions P1 and P2 are defined as:
P1(D)= f (Di , j )+h(Di , j ,Gi , j )+ tr

(
(D−Di , j )T∇D( f (Di , j )+h(Di , j ,Gi , j ))

)+ t1

2
‖D−Di , j‖2

F

P2(G)=g (G)+h(Di , j+1,Gi , j )+ tr
(
(G−Gi , j )T∇Gh(Di , j ,Gi , j )

)+ t2

2
‖G−Gi , j‖2

F.

(5.34)

Proposition 6. The process P1 produces a sequence {Di , j } that respects the conditions

H1, H2 and H3.

Proof. The three functions ∇ f : Rn×m → Rn×m , ∇Dh : Rn×m → Rn×m and ∇Gh :

Rm×m → Rm×m are all Lipchitz continuous functions on their own domain. Then,

there exists a Lipchitz constant L1 = L+LD, where L is the Lipchitz constant for the

function ∇ f and LD defined in (5.19), that is

f (Di , j+1)+h(Di , j+1,Gi , j ) ≤ f (Di , j )+h(Di , j ,Gi , j )+ L1

2
‖Di , j+1 −Di , j‖2

F

+tr
(
(Di , j+1 −D(i , j ))T∇D( f (Di , j )+h(Di , j ,Gi , j )

)
.

(5.35)

The minimization of the optimization problems (5.33) requires that

tr
(
(D−Di , j )T∇D( f (Di , j )+h(Di , j ,Gi , j )

)+ t1
2 ‖D−Di , j‖2

F ≤ 0, (5.36)

which assures descent in the objective function. By combining inequality (5.36) and

the inequality (5.35), we obtain the following result:

f (Di , j+1)+h(Di , j+1,Gi , j )+ t1−L1
2 ‖Di , j+1 −Di , j‖2

F ≤ f (Di , j )+h(Di , j ,Gi , j ). (5.37)

The satisfaction of condition H1 can be easily proven by choosing a t1 greater than

the Lipchitz constant L1.

We now begin to prove the condition H2. A large-enough b can be found such

that,

‖∇D( f (Di , j )+h(Di , j ,Gi , j )‖ ≤ b ‖Dk+1 −Dk+1‖. (5.38)

By considering the Lipchitz continuity of the function D → ∇( f (D)+h(D,G)) and
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applying the triangle inequality, the following is deduced:

‖∇D f (Di , j+1)+∇Dh(Di , j+1,Gi , j )‖ ≤‖∇D
(

f (Di , j )−h(Di , j ,Gi , j )
)‖

+‖∇D
(

f (Di , j+1)+h(Di , j+1,Gi , j )
)

−∇D
(

f (Di , j )−h(Di , j ,Gi , j )
)‖

≤(b +L1)‖Di , j+1 −Di , j‖, (5.39)

which is the relative error condition H2.

The continuity condition H3 is satisfied because of the continuity of the func-

tions f and h with respect to D.

Proposition 7. The process P2 produces a sequence {Gi , j } having the properties intro-

duced in conditions H1, H2 and H3.

Proof. The minimization of the second subproblem in (5.33) assures that,

g (Gi , j+1)+ tr
(
(Gi , j+1 −Gi , j )T∇Gh(Di , j ,Gi , j )

)+ t2

2
‖Gi , j+1 −Gi , j‖2

F ≤ g (Gi , j ). (5.40)

The function G → h(D,G) is a LD-Lipchitz continuous function. Here, for simplifi-

cation, let L2 = LG. Thus, the inequality (5.40) becomes

g (Gi , j+1)+ −L2 + t2

2
‖Gi , j+1 −Gi , j‖2

F ≤ g (Gi , j ). (5.41)

When t2 > L2, the condition H1 is satisfied.

We prove the satisfaction of condition H2 by using its first order necessary con-

dition:

∂g (Gi , j+1)+ t2(Gi , j+1 −Gi , j + 1
t2
∇Gh(Di , j+1,Gi , j )) = 0. (5.42)

Equivalently:

∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j ) =−t2(Gi , j+1 −Gi , j ). (5.43)

Taking the norm on both sides, the following equality holds:

‖∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j )‖ = t2‖Gi , j+1 −Gi , j‖. (5.44)
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Then by applying the triangle inequality, the condition H2 can be proven:

‖∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j+1)‖ ≤‖∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j )‖
+‖∇Gh(Di , j+1,Gi , j+1)−∇Gh(Di , j+1,Gi , j )‖

≤(t2 +L2)‖Gi , j+1 −Gi , j‖. (5.45)

H3 is satisfied for the continuous function h and the semicontinuous function

g in SG.

Proposition 8. The iterative process P1 and P2 produces a sequence {(Di , j ,Gi , j )} that

satisfies the conditions H1, H2 and H3.

Proof. The Lipchitz continuity of the gradient of G → h(D,G) and the inequal-

ity (5.45) infer that there exists an L′ < 0 that verifies

h(Di , j+1,Gi , j+1)−h(Di , j+1,Gi , j ) ≤ L′‖Gi , j+1 −Gi , j‖2
F. (5.46)

By summing the inequalities (5.37) and (5.41), we get:

f (Di , j+1)+h(Di , j+1,Gi , j )+ g (Gi , j+1)+ t1−L1
2 ‖Di , j+1 −Di , j‖2

F + t2−L2
2 ‖Gi , j+1 −Gi , j‖2

F

≤ f (Di , j )+h(Di , j ,Gi , j )+ g (Gi , j ). (5.47)

Using the result of (5.46), the inequality becomes:

Lc i
1,c i

2
(Di , j+1,Gi , j+1,λλλi ,Hi )+ t1−L1

2 ‖Di , j+1 −Di , j‖2
F + t2−L2−2L′

2 ‖Gi , j+1 −Gi , j‖2
F

≤ Lc i
1,c i

2
(Di , j ,Gi , j ,λλλi ,Hi ). (5.48)

Setting a = min
( t1−L1

2 , t2−L2−2L′
2

)
, we obtain

Lc i
1,c i

2
(Di , j+1,Gi , j+1,λλλi ,Hi )+a‖(Di , j+1,Gi , j+1)− (Di , j ,Gi , j )‖2

F ≤ Lc i
1,c i

2
(Di , j ,Gi , j ,λλλi ,Hi ).

(5.49)

Thus, the sequence
{
(Di , j ,Gi , j ) j∈N

}
satisfies the condition H1.

To prove the condition H2, it is necessary to compute the subdifferential of the

function (5.18) with respect to the pair of matrix variables (Di , j+1,Gi , j+1), which

is denoted by ∂L(c i
1,c i

2)(Di , j+1,Gi , j+1,λλλi ,Hi ). With the results obtained in (5.39) and
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(5.45), we use again the triangle inequality, then

‖∂L(c i
1,c i

2)(Di , j+1,Gi , j+1,λλλi ,Hi )‖ = ‖∇ f (Di , j+1)+∇h(Di , j+1,Gi , j+1)+∂g (Gi , j+1)‖
≤ ‖∇D f (Di , j+1)+∇Dh(Di , j+1,Gi , j+1)‖
+‖∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j+1)‖

≤ ‖∇D f (Di , j+1)+∇Dh(Di , j+1,Gi , j )‖
+‖∂g (Gi , j+1)+∇Gh(Di , j+1,Gi , j+1)‖
+‖∇Dh(Di , j+1,Gi , j+1)−∇Dh(Di , j+1,Gi , j )‖.

Using the expressions of the partial derivatives in (5.24), then the following inequal-

ity holds

‖∇Dh(Di , j+1,Gi , j+1)−∇Dh(Di , j+1,Gi , j )‖ ≤ ‖∇h(Di , j+1,Gi , j+1)−∇h(Di , j+1,Gi , j )‖
≤ L‖(Di , j+1,Gi , j+1)− (Di , j ,Gi , j )‖,

where L is the Lipchitz constant of the function h. Combining the inequalities (5.39)

and (5.44), the condition H2 of the global sequence (Di , j ,Gi , j ) j∈N is obtained

‖∂L(c i
1,c i

2)(Di , j+1,Gi , j+1,λλλi ,Hi )‖ ≤(L1 +b)‖Di , j+1 −Di , j‖+ (t2 +L2)‖Gi , j+1 −Gi , j‖
+L‖(Di , j+1,Gi , j+1)− (Di , j ,Gi , j )‖.

Let t = max(L1 +b +L,L2 + t2 +L), then

‖∂L(c i
1,c i

2)(Di , j+1,Gi , j+1,λλλi ,Hi )‖ ≤ t‖(Di , j+1,Gi , j+1)− (Di , j ,Gi , j )‖.

The condition H3 is straightforward by considering the continuity of the function.

5.4 Conclusion

This section investigated the exact incoherent dictionary learning problem, where

the constraint of coherence is explicitly added to formulate the `0-norm based con-

strained optimisation problem. To solve this constrained optimization problem, we

introduced the new dictionary update algorithm EPALM that combines the proxi-

mal alternating minimization method and augmented Lagrangian method are in-
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troduced. This algorithm was used for dictionary learning together with a sparse

coding algorithm, such as the proximal method and AcMIQP. We showed firstly the

feasibility of the algorithm on synthetic data, examining the performance of the dic-

tionary learning independently of the sparse coding algorithm. And then, the inco-

herent dictionary algorithm was used for real image reconstruction. We studied the

statistics of the resulting dictionary, and the reconstruction performance for a large

set of target coherence parameters. It was proven that the combination of EPALM

for dictionary updating and MIQP for sparse coding always outperformed the other

methods in terms of the reconstruction results. The relevance of having an incoher-

ent dictionary was also demonstrated.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This monograph focused on the optimization problem of sparse representation.

The problem was formulated as the minimization of the mean square error with

a constraint on the sparsity of the decomposition coefficients. Generally, the spar-

sity of the decomposition coefficients can be promoted by the `p -norm function for

0 ≤ p ≤ 1, specially, p = 0 or 1. The `0-norm can explicitly count the number of

non-zero coefficients, nevertheless with the characteristics of non-smoothness and

non-convexity, which make the problem NP-hard. The nearest convex norm func-

tion to `0-norm is `1-norm, but is not differentiable at 0. Additionally, it can achieve

the optimal solution under some conditions, such as the signal is sufficiently sparse

[Tro04]. However, the resolution of the `1-norm based optimization problem risks

in missing the optimal sparse solution [BNCM15]. Hence, the resolution of `0-norm

based sparse representation problems is of great interest, which was the main topic

in this monograph.

The generic problem of sparse representation aims at estimating the decompo-

sition coefficients with the predefined dictionary. This is the so-called sparse coding

problem. Moreover, since the quality of the dictionary greatly affects the perfor-

mance of the sparse representation, researchers have been increasingly interested

in data-driven dictionary learning, instead of a predefined dictionary. Thus the dic-

tionary learning problem emerged and began to play a significant role in sparse

representation. The dictionary learning estimates jointly the sparse code and the

dictionary. This problem is still NP-hard and much more difficult than the single

problem of sparse coding. Nevertheless, this optimization problem can be solved
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by the strategy of iteratively alternating two steps: sparse coding and dictionary up-

dating. In this monograph, we studied the problem of sparse coding and dictionary

learning optimization problems based on the exact `0-norm.

Chapter 3 presented the state-of-the-art methods for sparse coding and dictio-

nary learning. For tackling the problem of sparse coding, three major classes of

methods were proposed. The greedy methods, such as (Orthogonal) Matching Pur-

suit and its variants, solve the problem by iteratively finding the local optimal solu-

tion of the `0-norm optimization problem. Another class is relaxation methods that

replace the `0-norm by the `1-norm to make the problem convex and tractable, such

as Basis Pursuit and LASSO. The last class brings together gradient descent methods

and iterative thresholding methods, such as Iterative Soft Thresholding and Iterative

Hard Thresholding (IHT). However, these algorithms risk in missing the global op-

timal solution.

In Chapter 4, we reformulated the sparse coding problem by introducing an aux-

iliary variable to indicate if the corresponding coefficient is zero or not. Then, the

subproblem of sparse coding was transformed to a mixed integer quadratic pro-

gramming (MIQP). This method can exactly solve the problem by exploiting opti-

mization strategies such as the branch-and-cut. The optimizer solver Gurobi was

used for the implementation. Moreover, it is worthy noting that this algorithm had

no assumption on the dictionary, which is unlike the IHT or greedy algorithms that

need to satisfy conditions such as the RIC. Furthermore, two optimization tech-

niques were proposed to accelerate the MIQP for sparse coding. The first one of-

fered an appropriate initialization. The method of proximal method was used here

for producing the initial estimation, since it is considered to be a good approxima-

tion of the optimal solution, and thus the searching time was greatly reduced. The

second technique was the method of relaxation with additive constraints that con-

sider the convex envelop of the continuous variables. With these two acceleration

techniques, the proposed Accelerated MIQP (AcMIQP) was investigated for sparse

coding and further for handling the dictionary learning problem. AcMIQP allowed

to break the limitation of previous work where the MIQP was only applied on small-

scale synthetic data. The proposed algorithm can be used to deal with classical

well-known data in signal and image processing. In our experiments, AcMIQP was

used in image reconstruction and denoising. More precisely, when dealing with dif-

ferent formulations of the sparse representation problem, experiments on AcMIQP

showed that the sparsity constrained based model reached the best results compar-
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ing to the error constrained one. Besides, by combining AcMIQP for sparse coding

with the coordinate descent algorithm based on SVD for dictionary updating, the

resulting dictionary learning method proved its advantage in image recovery with

high-level noise, compared to state-of-the-art methods K-SVD, proximal method,

and SOUPDIL.

In Chapter 5, we studied the problem of incoherent dictionary learning, since

incoherent dictionaries bring in great improvement in sparse representation. In

general, this optimization problem can be tackled with two strategies. The first

introduces an additive decorrelation step following the step of dictionary updat-

ing at each iteration, such as the algorithm INK-SVD. The other reformulates the

classical dictionary learning problem by introducing a term of regularization that

measures the dictionary coherence, such as the incoherent dictionary learning by

proximal method. However, the additive decorrelation method did not show the

improved performance with more incoherent dictionary, and the regularized for-

mulation cannot explicitly measure the relationship of performance with the co-

herence of dictionary varying. In this monograph, we proposed a third strategy,

formulating the dictionary learning problem with explicit constraints on the coher-

ence. We proposed a novel method to solve the resulting optimization problem, us-

ing the strategy of iteratively alternating sparse coding and dictionary updating. The

sparse coding was solved by applying the AcMIQP method. For dictionary updating,

we faced an optimization problem with quadratic inequality constraints. For deal-

ing with this problem, we firstly took advantage of Alternating Direction Method of

Multipliers (ADMM). Then, with the method of augmented Lagrangian method, the

optimization problem was transformed into a unconstrained optimization prob-

lem. However, it is a non-convex problem. To overcome this difficulty, the prox-

imal alternating linearized minimization was exploited. This algorithm was used

in the application of image reconstruction. It proved for the first time, to our best

knowledge, the accuracy improvement of image recovery by appropriate reduction

of coherence of the dictionary.

6.2 Future Work

The study of the exact `0-norm optimization is a promising research topic in sparse

representation. In its genesis with the work of Jokar and Pfetsch in [JP08], the exact

solution of the sparse coding problem was used to verify some propositions and to
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provide a criterion to evaluate the relevance of existing greedy and relaxation algo-

rithms. More recently, the resolution of the exact `0-norm sparse coding problem

was studied by Bourguignon et al. in [BNCM15], demonstrating that it can tackle

a small-scaled problem with synthetic data. In this monograph, we proposed the

algorithm AcMIQP which makes it possible to achieve the exact optimal solution

and to be applied to real well-known signal and image processing. Besides sparse

coding, dictionary learning was proposed with AcMIQP. Therefore, in the future, the

exact `0-norm could be used to deal with more complex problems. With the ex-

act sparse results, the performance of the other algorithms could be evaluated from

one more dimension. Hence, the theoretical conclusion could be verified more rig-

orously.

Moreover, we proposed a flexible model that is easy to extend. In this mono-

graph, we extended the classical dictionary learning problem to the incoherent dic-

tionary learning problem by adding the constraint of the dictionary. Similarly, for

the task of classification, the constraint on the classifier may be added. For solving

this problem, one needs just to add one more step to update the classifier follow-

ing dictionary updating. Besides, if there is more demands on the decomposition

coefficients or on the dictionary (e.g. the positivity or low-rank of the dictionary),

the formulation of the problem is simple, namely, adding the corresponding con-

straints. Even for solving these novel problems, the strategy is to iteratively alter-

nating the steps of finding the solution of one variable with fixing all the others.

For each subproblem, it may be a classical optimization problem or much more

complex, which needs many steps to be transformed into a classical optimization

problem. Then, the optimizer solver Cplex or Gurobi could be used to solve the

problem, or one could exploit some methods that are less generic and more specific

to the sparse representation task at hand.

As already pointed, the shortcoming of the exact `0-norm method is its high

computational complexity. Fortunately, we can benefit from the fact that the opti-

mization theory is well developing and the computational capability of the machine

is highly improving. Of particular interest, one may take advantage of the GPU and

operate parallel computing. It can thus be predicted that the research on the accel-

eration of the exact `0-norm can be an important tendency.
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[ŞE13] Mehmet Umut Şen and Hakan Erdogan. Linear classifier combination

and selection using group sparse regularization and hinge loss. Pat-

tern Recognition Letters, 34(3):265–274, 2013.

[SIBD11] Charles Soussen, Jérôme Idier, David Brie, and Junbo Duan. From

Bernoulli–Gaussian deconvolution to sparse signal restoration. IEEE

Transactions on Signal Processing, 59(10):4572–4584, 2011.

[SIDB15] Charles Soussen, Jérome Idier, Junbo Duan, and David Brie. Homo-

topy based algorithms for L0-regularized least-squares. IEEE Transac-

tions on Signal Processing, 63(13):3301–3316, 2015.

[SMF15] Jean-Luc Starck, Fionn Murtagh, and Jalal Fadili. Sparse image and

signal processing: Wavelets and related geometric multiscale analysis.

Cambridge university press, 2015.

[Sol07] Daniel Solow. Linear and nonlinear programming. Wiley Encyclopedia

of Computer Science and Engineering, 2007.

XVII



BIBLIOGRAPHY

[SPZ08] Philip Schniter, Lee C Potter, and Justin Ziniel. Fast Bayesian matching

pursuit. In 2008 Information Theory and Applications Workshop, pages

326–333. IEEE, 2008.

[SS06] Suvrajeet Sen and Hanif D Sherali. Decomposition with branch-and-

cut approaches for two-stage stochastic mixed-integer programming.

Mathematical Programming, 106(2):203–223, 2006.

[SWDS15] Rim Slama, Hazem Wannous, Mohamed Daoudi, and Anuj Srivas-

tava. Accurate 3D action recognition using learning on the Grassmann

manifold. Pattern Recognition, 48(2):556–567, 2015.

[SYGL14] Xiaoshuang Shi, Yujiu Yang, Zhenhua Guo, and Zhihui Lai. Face recog-

nition by sparse discriminant analysis via joint l2, 1-norm minimiza-

tion. Pattern Recognition, 47(7):2447–2453, 2014.

[TG07] Joel A Tropp and Anna C Gilbert. Signal recovery from random mea-

surements via orthogonal matching pursuit. IEEE Transactions on in-

formation theory, 53(12):4655–4666, 2007.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological),

58(1):267–288, 1996.

[TLZ+19] Hongzhong Tang, Xiao Li, Xiaogang Zhang, Dongbo Zhang, Lizhen

Mao, and Ting Liu. Coherence-regularized discriminative dictionary

learning for histopathological image classification. Signal, Image and

Video Processing, 13(5):923–931, 2019.

[Tro04] Joel A Tropp. Greed is good: Algorithmic results for sparse approxi-

mation. IEEE Transactions on Information theory, 50(10):2231–2242,

2004.

[TS04] Mohit Tawarmalani and Nikolaos V Sahinidis. Global optimization of

mixed-integer nonlinear programs: A theoretical and computational

study. Mathematical programming, 99(3):563–591, 2004.

[Uns95] Michael Unser. Texture classification and segmentation using wavelet

frames. IEEE Transactions on image processing, 4(11):1549–1560, 1995.

XVIII



BIBLIOGRAPHY

[UWY+15] Michael Ulbrich, Zaiwen Wen, Chao Yang, Dennis Klockner, and

Zhaosong Lu. A proximal gradient method for ensemble density func-

tional theory. SIAM Journal on Scientific Computing, 37(4):A1975–

A2002, 2015.

[VAN08] Juan Pablo Vielma, Shabbir Ahmed, and George L Nemhauser. A

lifted linear programming branch-and-bound algorithm for mixed-

integer conic quadratic programs. INFORMS Journal on Computing,

20(3):438–450, 2008.

[VNPNC12] Hien Van Nguyen, Vishal M Patel, Nasser M Nasrabadi, and Rama

Chellappa. Kernel dictionary learning. In 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2021–2024. IEEE, 2012.

[vSG00] Oskar von Stryk and Markus Glocker. Decomposition of mixed-integer

optimal control problems using branch and bound and sparse direct

collocation. The 4th International Conference on Automation of Mixed

Processes: Hybrid Dynamic Systems, Dortmund, September 18-19:99–

104, 2000.

[WGL17] Qiong Wang, Junbin Gao, and Hong Li. Grassmannian manifold opti-

mization assisted sparse spectral clustering. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 5258–

5266, 2017.

[WGY10] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternating direc-

tion augmented Lagrangian methods for semidefinite programming.

Mathematical Programming Computation, 2(3-4):203–230, 2010.

[WJY+16] Fei Wu, Xiao-Yuan Jing, Xinge You, Dong Yue, Ruimin Hu, and Jing-Yu

Yang. Multi-view low-rank dictionary learning for image classification.

Pattern Recognition, 50:143–154, 2016.

[WKS12] Jian Wang, Seokbeop Kwon, and Byonghyo Shim. Generalized or-

thogonal matching pursuit. IEEE Transactions on signal processing,

60(12):6202–6216, 2012.

XIX



BIBLIOGRAPHY

[WL08] Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for

lasso penalized regression. The Annals of Applied Statistics, 2(1):224–

244, 2008.

[WNF09] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse

reconstruction by separable approximation. IEEE Transactions on Sig-

nal Processing, 57(7):2479–2493, 2009.

[WYG+08] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma.

Robust face recognition via sparse representation. IEEE transactions

on pattern analysis and machine intelligence, 31(2):210–227, 2008.

[WYWW11] Min Wang, Shuyuan Yang, Yanyan Wan, and Jing Wang. High

resolution radar imaging based on compressed sensing and fast

Bayesian matching pursuit. In 2011 International Workshop on Multi-

Platform/Multi-Sensor Remote Sensing and Mapping, pages 1–5. IEEE,

2011.

[XZJ13] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse representa-

tion for natural image deblurring. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1107–1114, 2013.

[YLY12] XiaoTong Yuan, Xiaobai Liu, and Shuicheng Yan. Visual classification

with multitask joint sparse representation. IEEE Transactions on Image

Processing, 21(10):4349–4360, 2012.

[YLZ14] Xiaotong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding

pursuit for sparsity-constrained optimization. In International Con-

ference on Machine Learning, pages 127–135, 2014.

[YLZ18] Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding

pursuit. Journal of Machine Learning Research, 18:1–43, 2018.

[YPXD09] JingYu Yang, YiGang Peng, WenLi Xu, and QiongHai Dai. Ways to

sparse representation: An overview. Science in China series F: infor-

mation sciences, 52(4):695–703, 2009.

[YY13] Junfeng Yang and Xiaoming Yuan. Linearized augmented Lagrangian

and alternating direction methods for nuclear norm minimization.

Mathematics of computation, 82(281):301–329, 2013.

XX



BIBLIOGRAPHY

[ZHY+17] Yun Zhou, Jianghong Han, Xiaohui Yuan, Zhenchun Wei, and Richang

Hong. Inverse sparse group lasso model for robust object tracking.

IEEE Transactions on Multimedia, 19(8):1798–1810, 2017.

[ZJD13] Yangmuzi Zhang, Zhuolin Jiang, and Larry S Davis. Learning struc-

tured low-rank representations for image classification. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pages 676–683, 2013.

[ZL10] Qiang Zhang and Baoxin Li. Discriminative K-SVD for dictionary

learning in face recognition. In 2010 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pages 2691–2698.

IEEE, 2010.

[ZMZ+13] Wangmeng Zuo, Deyu Meng, Lei Zhang, Xiangchu Feng, and David

Zhang. A generalized iterated shrinkage algorithm for non-convex

sparse coding. In Proceedings of the IEEE international conference on

computer vision, pages 217–224, 2013.

[Zou06] Hui Zou. The adaptive lasso and its oracle properties. Journal of the

American statistical association, 101(476):1418–1429, 2006.

[ZSJ+16] Guoqing Zhang, Huaijiang Sun, Zexuan Ji, Guiyu Xia, Lei Feng, and

Quansen Sun. Kernel dictionary learning based discriminant analysis.

Journal of Visual Communication and Image Representation, 40:470–

484, 2016.

[ZXY+15] Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and David Zhang. A

survey of sparse representation: Algorithms and applications. IEEE

access, 3:490–530, 2015.

[ZY06] Peng Zhao and Bin Yu. On model selection consistency of lasso. Jour-

nal of Machine learning research, 7(Nov):2541–2563, 2006.

[ZZC+17] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang.

Beyond a Gaussian denoiser: Residual learning of deep CNN for image

denoising. IEEE Transactions on Image Processing, 26(7):3142–3155,

2017.

XXI



BIBLIOGRAPHY

[ZZCL17] Hong Zhu, Xiaowei Zhang, Delin Chu, and Li-Zhi Liao. Nonconvex and

nonsmooth optimization with generalized orthogonality constraints:

An approximate augmented Lagrangian method. Journal of Scientific

Computing, 72(1):331–372, 2017.

XXII



Résumé

Cette monographie traite du problème d’apprentissage de dictionnaire parcimonieux

associé à la pseudo-norme `0. Ce problème est classiquement traité par une procédure de

relaxation alternée itérative en deux phases : un codage parcimonieux (sparse coding) et une

réactualisation du dictionnaire. Cependant, le problème d’optimisation associé à ce codage

parcimonieux s’avère être non convexe et NP-difficile, ce qui a justifié la recherche de relax-

ations et d’algorithmes gloutons pour obtenir une bonne approximation de la solution glob-

ale du problème. A l’inverse, nous reformulons le problème comme un programme quadra-

tique mixte en nombres entiers (MIQP) permettant d’obtenir l’optimum global du prob-

lème. La principale difficulté de cette approche étant le temps de calcul, nous proposons

deux méthodes (la relaxation par l’ajout de contraintes complémentaires et l’initialisation

par la méthode du gradient proximal) permettant de le réduire. Cet algorithme est baptisé

MIQP accéléré (AcMIQP). L’application de AcMIQP à un problème de débruitage d’images

démontre sa faisabilité et ses bonnes performances. Nous proposons ensuite d’améliorer

cet algorithme en y intégrant des contraintes visant à promouvoir l’indépendance des

atomes du dictionnaire sélectionné. Pour traiter ce problème à l’aide de AcMIQP, la phase

de réactualisation du dictionnaire sous contraintes est adaptée en combinant la méthode

du lagrangien augmenté (ADMM) et la méthode Extended Proximal Alternating Linearized

Minimization (EPALM). L’efficacité de cette approche AcMIQP+EPALM est démontrée sur

un problème de reconstruction d’image.

Abstract

In this monograph, we study the exact `0 based sparse representation problem. For

the classical dictionary learning problem, the solution is obtained by iteratively process-

ing two steps: sparse coding and dictionary updating. However, even the problem asso-

ciated with sparse coding is non-convex and NP-hard. The method for solving this is to

reformulate the problem as mixed integer quadratic programming (MIQP). Then by in-

troducing two optimization techniques, initialization by proximal method and relaxation

with augmented contraints, the algorithm is greatly speed up (which is thus called AcMIQP)

and applied in image denoising, which shows the good performance. Moreover, the classi-

cal problem is extended to learn an incoherent dictionary. For dealing with this problem,

AcMIQP or proximal method is used for sparse coding. As for dictionary updating, aug-

mented Lagrangian method (ADMM) and extended proximal alternating linearized mini-

mizing method are combined. This exact `0 based incoherent dictionary learning is applied

in image recovery, which illustrates the improved performance with a lower coherence.
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