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Resume

L’intérêt porté à la détection de contours pour la compréhension de texte dans

une scène visuelle a été croissant au cours des dernières années comme en témoignent

un grand nombre d’applications telles que les systèmes de reconnaissance de plaque

d’immatriculation de voiture, les systèmes de navigation, les voitures autonomes ba-

sées sur la reconnaissance des panneaux de signalisation, etc. Dans cette recherche,

nous abordons les défis de la conception de systèmes de lecture de texte de scène

automatique robustes et fiables. Deux étapes majeures du système, à savoir, la loca-

lisation de texte dans une scène et sa reconnaissance, ont été étudiées et de nouveaux

algorithmes ont été développés pour y remédier.

Nos travaux sont basés sur l’observation qu’indiquer des régions de texte de scène

primaire qui ont forte probabilité d’être des textes est un aspect important dans la

localisation et la reconnaissance de cette information. Ce facteur peut influencer

à la fois la précision et l’efficacité des systèmes de détection et de reconnaissance.

Inspirées par les succès des recherche de proposition d’objets dans la détection et la

reconnaissance objet général, deux techniques de proposition de texte de scène ont

été proposées, à savoir l’approche Text-Edge-Box (TEB) et l’approche Max-Pooling

Text Proposal (MPT). Dans le TEB, les fonctionnalités bottom-up proposées, qui

sont extraites des cartes binaires de contours de Canny, sont utilisées pour regrouper

les contours connectés et leur attribuer un score distinct. Dans la technique MPT,

une nouvelle solution de groupement est proposée, qui est inspiré de l’approche Max-

Pooling. À la différence des techniques de regroupement existantes, cette solution ne

repose sur aucune règle heuristique spécifique liée au texte ni sur aucun seuil pour

fournir des décisions de regroupement. Basé sur ces résultats, nous avons conçu un

système pour comprendre le texte dans une scène visuelle en intégrant des modèles
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a l’état de l’art en reconnaissance de texte, où une suppression des faux positifs et

une reconnaissance de mot peut être traitée simultanément. De plus, nous avons

développé un système assisté de recherche de texte dans une scène en construisant

une interface web en complément du système de compréhension de texte. Le système

peut être consulté via le lien : dinh.ubismart.org:27790.

Des expériences sur diverses bases de données publiques montrent que les tech-

niques proposées surpassent les méthodes les plus modernes de reconnaissance de

textes sous différents cadres d’évaluation. Le système complet propose surpasse éga-

lement d’autres systèmes complets de reconnaissance de texte et a été soumis à une

compétition de lecture automatique dans laquelle il a montré sa performance et a at-

teint la cinquième position dans le classement (Dec-2017) : http ://rrc.cvc.uab.es/ ?ch

=2&com=evaluation&task=4.



Abstract

Scene texts have been attracting increasing interest in recent years as witnessed

by a large number of applications such as car licence plate recognition systems,

navigation systems, self-driving cars based on traffic sign, and so on. In this research,

we tackle challenges of designing robust and reliable automatic scene text reading

systems. Two major steps of the system as a scene text localization and a scene text

recognition have been studied and novel algorithms have been developed to address

them.

Our works are based on the observation that providing primary scene text re-

gions which have high probability of being texts is very important for localizing and

recognizing texts in scenes. This factor can influence both accuracy and efficiency

of detection and recognition systems. Inspired by successes of object proposal re-

searches in general object detection and recognition, two state-of-the-art scene text

proposal techniques have been proposed, namely Text-Edge-Box (TEB) and Max-

Pooling Text Proposal (MPT). In the TEB, proposed bottom-up features, which

are extracted from binary Canny edge maps, are used to group edge connected com-

ponents into proposals and score them. In the MPT technique, a novel grouping

solution is proposed as inspired by the max-pooling idea. Different from existing

grouping techniques, it does not rely on any text specific heuristic rules and thre-

sholds for providing grouping decisions. Based on our proposed scene text proposal

techniques, we designed an end-to-end scene text reading system by integrating

proposals with state-of-the-art scene text recognition models, where a false posi-

tive proposals suppression and a word recognition can be processed concurrently.

Furthermore, we developed an assisted scene text searching system by building a

web-page user interface on top of the proposed end-to-end system. The system can

ix
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be accessed by any smart device at the link : dinh.ubismart.org:27790.

Experiments on various public scene text datasets show that the proposed scene

text proposal techniques outperform other state-of-the-art scene text proposals un-

der different evaluation frameworks. The designed end-to-end systems also outper-

forms other scene-text-proposal based end-to-end systems and are competitive to

other systems as presented in the robust reading competition community. It achieves

the fifth position in the champion list (Dec-2017). http ://rrc.cvc.uab.es/ ?ch=2&com

=evaluation&task=4.

Keywords : Scene text proposal, scene text detection, end-to-end scene text

reading, word spotting system, scene text searching application, max pooling scene

text proposal, text edge boxes, YoLo based scene text proposal
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1.1 Scene texts and applications

Text is an effective tool in transferring information among people and between

human and machines. Nowadays, it is worldly used for marking and describing many

aspects in environments such as objects, events, shop panels, traffic signs, house

plate numbers and so on, which are shown in Figure 1.1. Text information can

be used for capturing rich semantic contexts for situational awareness applications

such as a scene understanding, an action recognition, a navigation, and further
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  (a) Semantic information (b) Branch name (c) Shop panel (d) Traffic sign

Figure 1.1 – Some examples of texts in scenes. They can contain (a) semantic

information, (b) branch names, (c) shop names, (d) traffic information.

for analysis purposes. Reading scene texts therefore becomes an increasing interest

research topic. A lot of datasets and competitions in the scene text reading research

have been announced [1, 2, 3, 4]. Many productive applications have adopted scene

text reading systems in practice. Google Translation [5] and Microsoft Translator

[6] are two very popular applications which translate detected scene texts from one

language to another language. Orcam [7] is a recent application which is developed

to assist visual impairment people in reading magazines, mails, and different texts in

environment, such as texts in notification boards, street names. This product is still

in a development phase and a lot of other visual based functions are targeted to be

integrated, for example a general object recognition, a face identification. Scene text

reading is also considered to adopt for a navigation application [8], a street house

number reader [9], a traffic sign recognition [10], and a license plate recognition [11].

The Figure 1.2 shows some commercialized products which have been developed

base on scene text reading systems.

Even though there are many scene text reading based applications released, these

applications are only reliable in fine arrangement of camera holders and standard

text fonts. For example, the licence plate reader based car tracking system performs

well only with standard fonts assigned to licence plate numbers. The OrCam is de-

veloped to mainly support visual impairment patients in reading printed texts such

2
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(a) Google Trans (b) Microsoft Translator (c) Licence Plate Reader

(d) Visual Aid Camera 

Figure 1.2 – Examples of applications have been developed base on scene text

reading systems including scene text translators (a,b), a licence plate reader based

car tracking system (c), a visual aid camera (d). The applications a and b execute

on smart devices as smart phones and tablets, while the applications c and d require

specific hardware platforms.

as texts in magazines, menus. The Google Translate and the Microsoft Transla-

tor applications fail to read unpopular text fonts and oriented texts, as evaluated

in Chapter 5.2. Reading scene texts therefore is still a high challenging topic and

attracts a lot of researchers to participate in developing more reliable and precise

systems.

1.2 Challenges

Different from scanned document texts which are in fine alignment, texts in

scenes are more diverse in appearance due to variants of fonts, sizes, perspectives,

colours, orientations and so on. In addition, their appearance is also distorted under

various environmental impacts, such as light, haze, motion, illumination.

There is no standard text appearance in scene images. It could be printed texts

as texts in panels, information boards, posters (Figure 1.3(a, b, c)) which could be

detected by traditional OCR techniques [12]. On the other hand, text forms could be

modified due to decoration purposes, for example texts in restaurant and shop panels

3
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Figure 1.3 – Detecting and recognizing scene texts challenges including intra-class

variation due to text fonts, text size, illumination, color, occlusion, and so on (the

first five rows) and extra-class variance due to a lot of like-text objects in scenes

(the last row)
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(Figure 1.3(d, e, f)). Text appearance is also degraded because of material surfaces

and written methods, as shown in Figure 1.3(g, h, i) where texts were sculptured and

carved on rocks and stones. It can also be in different sizes (Figure 1.3 k), different

perspectives (Figure 1.3 l) and colors (Figure 1.3 j). Even though texts have been

printed in standard fonts, styles, colours, their appearance could be diverse under

environment effects or uneven capturing image conditions. For examples, it could

be occluded by other objects (Figure 1.3 m), blurred by underexposed condition

(Figure 1.3 o) and illuminated by bright light (Figure 1.3 n).

Not only intra-class variants, reading scene text systems also have to deal with

extra-class variants where scene images contain a lot of like-text objects. Systems

have to clarify them to avoid false positive detections. For example, vehicle wheels,

balloons, rings could be misclassified as character ’O’ or number zero (Figure 1.3 p).

Poles are similar to character ’l’, character ’i’ or character ’t’ (Figure 1.3 q-r).

In normal usages, standard fonts printed in posters, dashboards, menus, panels

are mostly considered. Recent developed applications such as Google translator, Mi-

crosoft translator and so on can solve this challenge properly even though texts are in

difference perspective. In fact, reading texts algorithms which developed for scanned

documents [12] also can handle. However, it requires users’ experiences in handling

their cameras for capturing quantitative pictures. In order to be independent from

this requirement, researchers in robust reading community are moving forward to

improve their systems so that they can perform properly on more challenging cases.

1.3 Scene text processing systems

In past two decades, many scene text reading/spotting systems have been pro-

posed, observed by a major number of review reports [13, 14, 15, 16]. Traditionally,

the system consists of two main tasks including a scene text detection and a scene

text recognition. The scene text detection task aims to localize texts in scene images.

The scene text recognition task targets to recognize actual texts in located regions.

Detected regions were usually seen as parts of texts, characters, words, and text

lines. In recent years, detected regions are more considered as word regions for boos-

5
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ting up scene text reading/spotting systems’ performance because the word-level

region is a standard input of recent developed recognition models. Each task has

to tackle different difficulties and raises independent competitions as observed from

recent competitions [17, 18]. Scene text proposal, which is inspired by success of ob-

ject proposal in detecting non-labelled objects, has been proposed to substitute for

scene text detection. In fact, it provides a larger chance of localizing different texts

variants in scene images. A new scheme of scene text reading/spotting systems the-

refore is proposed including a scene text proposal and a scene text recognition, and

it has been adopted in recent state-of-the-art scene text reading/spotting systems

[19, 20, 21, 22].

In this section, we are going to overview a major number of recent techniques

and systems, which have been developed to address different reading-scene-text chal-

lenges, including scene text proposal techniques, scene text detection techniques,

scene text recognition techniques and automatic scene text reading/spotting sys-

tems.

Scene text proposal techniques

The scene text proposal aims to generate region proposals with high recall. Des-

pite the cost of a large number of false positive detections, it has a contribution

toward reducing dramatically search spaces compared to sliding window. It’s often

evaluated according to the recall rate as well as the number of needed proposals -

typically the smaller the better at a similar recall level [23]. False positive scene text

proposals are eliminated by either a text/nontext classifier [24, 21] or a scene text

recognition model [19, 25] in end-to-end scene text reading systems.

Different scene text proposal approaches have been explored. One widely adop-

ted approach combines generic object proposal techniques with text-specific features

for a scene text proposal generation. For example, EdgeBoxes [26] is combined with

Aggregate Channel Features (ACF) and an AdaBoost classifier to search for text

regions in [20]. In [19], Selective Search [27] framework is adapted for scene text

proposal, where Maximal Stable External Regions (MSER) [28] is used for gene-

rating atomic regions which are later grouped together to form dendrogram based
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on a vast number of region features : a mean gray value of a region, a mean gray

value of intermediate outer boundary, a region major axis, a mean stroke width, a

mean of gradient magnitude at region borders and their coordinators. A text-specific

symmetry feature is explored by using symmetry filters in [24] to search for text line

proposals directly, where false positive text lines are removed by training a CNN

classifier. Deep features have also been used for scene text proposal due to its su-

perior performance and efficiency on general object detection and object proposal

in recent years. For example, inception layers are built on top of the last convolu-

tion layer of the VGG16 for generating text proposal candidates in [21]. The Region

Proposal Network (RPN) in Faster R-CNN [29] structure is adopted for scene text

proposal generation in [22, 30]. In [31], a class activation map (CAM-conv) has been

proposed and built on top of the convolutional state-5 of the VGG16 network, which

is generated by using global average pooling and spatial pyramid pooling.

Scene text detection techniques

A large number of scene text detection techniques have been reported in the

literature. Sliding window has been widely adopted [32, 33, 34, 35] in which scene

texts are simply localized by scanning over image space by searching windows with

different aspect ratios and sizes. These windows are classified into text or non-text

by classifiers such as a real AdaBoost, fast cascade booting algorithms, the K-mean

cluttering. In these approaches, selected regions are usually considered as characters

which are later grouped together into words and text lines. However, sliding window

is a low efficient technique because it uses a huge amount of windows in different

sizes and aspect ratios to address large varieties of text appearances in scene images.

Region based techniques have been proposed to overcome an inefficiency constraint

of the sliding window approach. The Maximal Stable External Regions (MSER) has

been widely used for scene text detection due to its sensitivity to homogeneous co-

lor/gray regions which are usually considered as scene text foregrounds. Segmented

regions are grouped together into word candidates, and false positive ones are eli-

minated by text/non-text classifiers [36, 37]. On the other hand, segmented regions

can be classified into text or nontext class before being grouped into words and text

7
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lines [38, 39]. In some researches, MSER is substituted by the External Regions (ER)

that is more robust to blur, illumination [40, 41]. Various hand-craft text-specific

features have also been extensively investigated. Stroke Width Transform (SWT)

[42] is proposed based on the hypothesis that characters in the same word have the

same stroke width. The SWT output is a stroke image having the same size with

an input image and contains stroke width associated with pixels. Pixels having the

same stroke are grouped into characters and then text lines. Text specific heuristic

rules are employed for filtering out false positive candidates. Stroke Feature Trans-

form (SFT) [43] is a variant of the SWT. It integrates SWT with two additional

cues as a color uniformity and a local relationship of edge pixels during a stroke

width search process. In [44], three edge based text specific features are designed

to score edge connected components. Non-text connected components are coarsely

eliminated by a threshold of 0.5 and remaining connected components are grouped

into word candidates. False positive words are filtered out by a trained support vec-

tor regression. Stroke End Keypoints (SEK) and Stroke Bend Keypoints (SBK) are

proposed in [45]. They are designed to search for terminals or corners of objects

which are high-frequency features of text. Gray values of pixels at these key points

are used to calculate local MSER thresholds which are used to segment images into

MSER regions. Convolution Neural Networks (CNNs) are also trained for atomic

regions initialization. In [46], a CNN network is deployed to generate three different

maps including a text region map, a character map and a linking orientation map,

on which scene text bounding boxes are produced. On the other hand, a pre-trained

network is only used to provide scene text region maps on which atomic text re-

gions are extracted. MSER and heuristic rules are adopted for grouping and splitting

atomic regions into words [47, 48].

Different from CNN models trained for atomic regions generation, several other

CNN models have been developed for detecting text bounding boxes directly, inclu-

ding horizontal and quadrilateral shapes. For example, the DeepText [21] adopts the

VGG16 convolutional layers [49] for deep features extraction and inception layers for

horizontal bounding boxes predictions including boxes’ top-left corners coordinates

(x,y) and their heights (h) and widths (w). Predicted boxes are then fed into last

8
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convolution layers of the network for eliminating false position ones. The TextBox

[50] adapts the Single Shot Multiboxes Detector (SSD) [51] architecture. Text boun-

ding boxes are predicted from outputs of different intermediate convolution layers

to address the multi-scale texts problem. In TextBox, they modified anchor boxes

aspect ratios for predicting better bounding boxes which overlap ground truth boxes

with higher IoU due to original anchor initialization only for general objects. Quadri-

lateral anchor boxes have also been proposed for detecting tighter scene text boxes

[52]. In addition, a direct regression solution has also been proposed [53] to remove

the hand-crafted anchor boxes, which are usually initialized with certain number of

boxes and aspect ratios in traditional CNN based regression models [21, 50, 52]. In

the proposed idea, bounding box coordinates are regressed from a single point such

as a center of a studying region. Different other CNN based detection approaches

have also been explored. For example, some works adopt a bottom-up approach

that first detect characters and then group them to words or text lines [54, 22, 55].

Some systems instead define a text boundary class for pixel-level scene text detec-

tion [56, 57]. In addition, weakly supervised and semi-supervised learning approach

[58] have also been studied to address the image annotation constraint [59].

Scene text recognition techniques

Scene text recognition assumes that text regions have been detected correctly,

and it aims to read actual words in located regions. Traditional recognition models

usually localize and recognize individual characters consequentially, and then sort

them in proper orders to provide final recognition results. In recent approaches,

convolution neural network (CNN) are employed. Almost CNN models consider

word images as characters sequences [60, 61, 62, 63, 64, 65]. On the other hand,

Jaderberg’s model [66] converts a recognition task into a classification task and

considers each word as a class.

In [67], strokelets feature for character identification is proposed and a combina-

tion between Random Forest model and feature vectors based on Bag of Strokelets

as well as Bag of HoG is implemented for character recognition. Recognized charac-

ters are later linked together from left to right into words. This traditional method

9
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is improved by integrating with top-down and button-up cues and the Conditional

Random Field model [61, 68]. The button-up cues are texture features and the top-

down cues are usually initialized lexicons. In [61], potential character regions are

pointed by image binarization and false positive regions are removed by heuristic

rules. In the [68], a combination of sliding windows and HoG feature vectors is im-

plemented for a potential character regions generation and Support Vector Machine

(SVM) model is employed for a recognition. In [69], Conditional Random Forest

model is used as a language model for eliminating strange detected characters by

minimizing its cost function, where potential characters are detected base on their

proposed part-based tree-structure.

In [60, 61, 62, 63, 64, 65], convolution neural networks are trained to treat words

like characters sequences. They convert input images into sequences of feature vec-

tors which are then decoded to transcripts. In [60], they implemented sliding win-

dow integrating with the HoG features for generating features sequences and Long

Short-Term Memory (LSTM) model for transforming features sequences into labels

sequences which are later converted to transcripts. In order to remove hand-craft

features as the HoG which fails to deal with extremely blur or fragmented texts,

deep feature extraction models have been implemented. Feature maps are produced

by applying deep features extraction models either on sliding windows shifting along

image width [70] or on whole image space [61]. In [62], an end-to-end trainable net-

work has also been proposed by linking a convolution neural network, a LSTM, and

a transcription layer into one network. Therefore, its feature map generation and

transcript decoder can be trained concurrently. Weird text forms are considered in

the [63, 64]. In [63], a Spatial Transformer Network (STN) is employed to convert

non-horizontal texts into horizontal ones before feeding them into a Sequence Re-

cognition Network (SRN), which consists of two combinations : one is a combination

between the CNN with the LSTM for sequence encoder and one is a combination

between the GRU and the attention structure for a sequence recognition. In contrast,

a model in [64] does not employ STN. Instead, a recurrent network is applied from

left to right on sequences of attended regions generated by CNN networks for a word

recognition. In [65], CNN network has been suggested to use for a sequence decoder

10
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instead of RNN. The target is to perform parallel operations and to be easier in

training.

Automatic scene text reading/spotting systems

Automated scene text reading system aims to detect and recognize texts in scene

images. Traditional framework consists of a scene text detection and a scene text

recognition [71, 72, 73, 74, 75]. In recent year, scene text proposal is proposed to

substitute a scene text detection step, largely due to the fact that it is able to

locate more text regions as compared with the text detection [19, 20]. Convolution

neural network based techniques are also proposed to replace each single steps in

the tradition framework by CNN models [34, 76, 66, 50] or develop single models

handling both scene text detection and scene text recognition [77].

A popular system is a Google-Translation [71] which performs end-to-end scene

text reading by fusing a large number of techniques including three scene text de-

tection methods, three scene text segmentation and grouping methods, deep neural

network on Histogram of Oriented Gradient (HOG) features for character classifica-

tion, and language models for post-processing. In [72], sliding window is combined

with HOG feature extraction and Random Ferns Classifier to compute text saliency

maps where words are extracted using External Regions (ER) and further re-scored

using Support Vector Machine (SVM). In [73], Adaboost classifier and SVM are

applied on text regions that are extracted using ER to localize scene texts which

are further recognized under an Optical Character Recognition (OCR) framework.

Similar approach was also adopted in [74], where Maximal Stable External Regions

(MSER) instead of ER was implemented for scene text region localization. In [75],

Stroke Width Transform [42] is adopted for scene text region detection and Ran-

dom Forest is used for character recognition and words are further recognized by a

component linking, a word partition and a dictionary based correction. In [19, 20],

potential text regions are first localized using EdgeBox (EB) [26] or adapted simple

selective search for scene text [19] and scene texts are further recognized using Ja-

derberg’s scene text recognition model [78].

Quite a number of CNN based end-to-end scene text reading systems have been
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reported in recent years. In [34, 76], a CNN based character recognition model was

developed where word information is extracted from text saliency map using sliding

windows. The same framework has been implemented in [66], where a more robust

end-to-end scene text reading system is developed by training a model handling three

functions including a text and non-text classification, a case-insensitive characters

recognition and a case-sensitive characters recognition. In [50], an advanced end-

to-end scene text reading system is designed where the Single Shot Multi-boxes

Detector (SSD) was employed for scene text detection and a scene text recognition

model proposed in [62] was adopted for recognition. End-to-end trainable scene text

reading system has also been proposed where it can provide texts location and text

transcription concurrently by a single model [77].

1.4 Objectives

This thesis aims to develop state-of-the-art automatic scene text reading systems

which can be integrated into relevant applications supporting visual impairment

people, especially elderly in their outdoor activities in the future phase of our project.

For developing, we mainly focus on challenges of scene text localizations when there

is not any prior knowledge about texts known in advance, for example text font,

text size, text color. The first goal is to provide high-quality proposal regions. The

better performance of this step can support the entire system in providing more

precise text localization and recognition. Based on developed scene text proposal

techniques, our second goal is to develop a state-of-the art automatic scene text

reading system and deploy a relevant application.

In scene text proposal techniques, the number of proposals is an essential pa-

rameter that can affect automatic reading systems’ efficiency. A huge number of

regions will burden further system steps because they have to iterate a lot of times

along proposals. In our approach, we are intent on limiting the number of propo-

sals provided by our proposed techniques while still gaining state-of-the-art recall

rate by ranking our proposals and collecting top n proposals in the ranked list. In

the first approach, we focussed on heuristic rules which gain enormous attention of
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researchers in developing scene text detection techniques. We did study on these

rules and proposed two effective heuristic features for evaluating edge pixels, grou-

ping edge connected components into proposals and scoring them. In the second

approach, we are intent on being independent from text specific heuristic rules by

proposing a max-pooling based grouping strategy. The proposed technique groups

edge connected components into proposals naturally based on their internal dis-

tances. Effectiveness of the proposed features are indicated in comparisons with

other state-of-the-art techniques.

In order to develop automatic scene text reading systems from scene text propo-

sal, scene text classification and scene text recognition models are usually adopted

to remove false positive proposals and recognize their actual texts. There is an obser-

vation that we can lean on recognition models for handling a classification task. For

example we can use a threshold of recognition scores for eliminating false positive

proposals. This idea is also implicitly embedded in deep-learning based object detec-

tion systems [79, 80], where proposals generated by a region proposal network (RPN)

are scored by recognition layers and low recognition confident score ones are elimi-

nated. In this thesis, we did evaluations on state-of-the-art scene text recognition

model developed by Jardeberg [78] and integrated it on top of our proposed scene

text proposals as a classification and recognition model for designing our automated

reading system.

In scanned document analysis, there are numerous applications developed to sup-

port people in reading such as : a searching-word, a translating-word, an automatic

pronouncing-word. Developing an automatic scene text reading system will bring

those effective tools into our daily life. Orcam [7] is an application that supports vi-

sual impairment patients in reading articles by interacting with users fingers. Google

translation [5] is proposed to detect words in scene images and translate them into

expected languages. Inspired from the searching-word tool, we prefer to build the

first application supporting people in searching their keywords in scene images. It

could help people by saving their time in searching specific items in menus, aware

environment around them based on expected words and so on.

13
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1.5 Contributions

In this thesis, three major contributions are produced : scene text proposal tech-

niques, an automatic scene text reading system and a scene text searching applica-

tion.

Scene text proposal techniques

We have proposed two state-of-the-art scene text proposal techniques that pro-

vide high-quality text proposals. They are developed from binary edge maps, gra-

dient maps and oriented gradient maps generated by the Canny edge detector. In the

scene text proposal generation step, two edge based features are determined to cla-

rify text edges from other edges in binary edge maps. Two grouping algorithms are

proposed to merge effectively connected components into proposals. The first algo-

rithm is developed from text specific heuristic relationship rules between connected

components. The second algorithm provides a natural dendrogram grouping based

on internal distances between connected components, which is inspired by a process

of a max-pooling layer. The proposal scoring/ranking problem is also addressed.

Two proposed scoring functions are developed from edge based features. It supports

the proposed techniques in providing state-of-the-art performances while a number

of proposals is limited.

An automatic scene text reading system

Our automatic scene text reading system has been developed by combining our

scene text proposal techniques and existing scene text recognition models. False

positive proposals are eliminated based on a threshold of recognition confidence

score, non maximal suppression and provided lexicon lists. Evaluated by the evalua-

tion framework published in the ICDAR competition, the proposed system out-

performs other scene text proposal based systems and be competitive to other

state-of-the-art scene text reading systems, including systems are developed based

on deep learning frameworks, observed by its performances in the ICDAR compe-

tition website (http://rrc.cvc.uab.es/ ?ch=2&com=evaluation&task=4) under the
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name MPT_sys.

A scene text searching application

In order to evaluate reliability of the proposed automated reading system, we

developed a demo of a scene text searching application and it is applied on real

images captured by users’ cameras. The demo has been developed based on web

platform, and it can be accessed by several devices such as smart phones, tablets,

laptops. Users can provide searching keywords by using microphones or keyboards.

The goal of this demo is to provide a reliable and accurate scene text searching

system. It has been compared with the Google Trans in term of finding keywords

in scene based on our evaluation scheme. In further phase of this project, we expect

to integrate this system into more relevant applications interacting with various

services such as navigation, circumstance alert, and so on.

1.6 Evaluation criteria

In this research, we developed two scene text proposal techniques and an auto-

matic scene text reading system. Two evaluation frameworks therefore have been

adopted in order to evaluate these techniques and system. For evaluating scene text

proposal techniques, we utilize a framework which is widely used in an object pro-

posal evaluation [26, 19, 23]. For evaluating an automatic scene text reading system,

we follow a framework provided by the robust reading competition community [17].

1.6.1 Datasets

The ICDAR dataset and the Street View Text dataset : These two

datasets are widely used in a community working on developing scene text analysis

systems and they are utilized in this research evaluation. The ICDAR is the dataset

provided by the International Conference on Document Analysis and Recognition

(ICDAR) when they launch their robust reading competitions. This dataset was first

announced in 2003 and rearranged in 2011, 2013, and 2015 [81, 2]. Another dataset

is the Street View Text dataset (SVT) [3] which contains images from the google
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Figure 1.4 – Example images in the ICDAR2013 dataset (the first row) and the

Street View Text dataset (the second row)

street view database. Images in both datasets are labelled by users with bounding

boxes covering text areas and words within these areas. They have been designed

for four different challenging competitions : a scene text localization, a scene text

recognition, a scene text segmentation and an automated scene text reading system.

Images are already separated into a training set and a testing set. The ICDAR2013

dataset contains 229 training images and 233 testing images, and the SVT dataset

contains 101 training images and 249 testing images. Images are collected under

multi-challenges conditions such as images influenced by blur, uneven light, different

perspective or images with multi-variance in color, size, font, and so on, as illustrated

in Figure 1.4.

In recent years, there are many other scene text datasets proposed and interested

by research community. Each of them has been targeted for different purposes.

COCO Text :[18] The dataset is produced based on the MS COCO dataset,

which contains images of complex everyday scenes. The images were not collected

with text in mind and thus contain a broad variety of text instances including ma-

chine printed texts, hand written texts and others. English is the most common

language in this dataset, it also covers Western script such as German, Spanish,

French, an so on. Illegible terms of texts are also annotated for advance evaluations.

The dataset contains 63686 images and is split into a training set including 43686
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images and a validation set including 20000 images. It is designed for developing a

scene text location, a scene text recognition and an automatic scene text reading sys-

tem. Due to huge amount of training images, it is qualified for training convolutional

neural network based systems.

ICDAR2015 Incidental Scene Text : This is one of datasets published in the

ICDAR2015 competition [1, 17]. Its images were taken in a few months period in

Singapore without user’s careful prior actions for focussing texts, improving quality

of frame. It contains 1670 images and 17548 annotation regions. Images are split into

three sets : 1000 images in a training set, 500 images in a testing set and 170 images

in an unpublished set. Non-Latin script, illegible words, less-than-three-character

words are annotated as do not care and will be ignored during evaluation. This

dataset is proposed for evaluating a scene text detection, a scene text recognition

and an automatic scene text reading system. It provides three contextualizations

including strong, weak, generic terms which are depend on length of lexicon as 100

words, all words in the testing set (1071), and 90k words respectively.

Synth Text[82] This dataset is generated by overlaying texts in different scene

images (8000 scene images were extracted from Google Image Search and guaran-

teed that they do not contain texts in their contents). This dataset contains 800000

synthetic scene text images and each image has about ten word instances annota-

ted with word bounding boxes and character bounding boxes. The dataset aims to

support training convolutional neural network based systems.

MSRA_TD500 :[83] This dataset is taken from indoor (office and mall) and

outdoor (street) scenes using a pocket camera. In door images are mainly signs,

doorplates and caution plates while outdoor images are mostly guide boards and

billboards in complex background. Images are in high resolution that varies from

1296-by-864 to 1920-to-1280. Not only challenges of text variants in fonts, sizes,

colours, orientations and so on but also a multi-languages problem are included. 500

scene text images have been split into a training set containing 300 images and a

testing set containing the rest images.
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1.6.2 Evaluation of scene text proposal techniques

There are three parameters needed to be measured when evaluating scene text

proposal techniques : a recall rate, a number of proposals and processing time. The

recall rate presents a technique ability to localize correctly texts in scene images. The

better scene text proposal technique is one that can provide the higher recall rate

using the smaller number of proposals and the faster process. In order to evaluate

our technique as well as other state-of-the-art techniques, we adopted a general eva-

luation framework which is utilized widely to evaluated object proposal techniques,

as are described in [23].

In order to decide whether text objects have been localized successfully, the

intersection over union (IoU) has been applied. It measures a fraction between an

overlapped area of two boxes and an entire area covered by them, as illustrated in

the first row in Figure 1.5. The higher IoU value presents the better overlapping

between two boxes, meaning that a proposal box is the more similar to a ground

truth box. Note that the IoU in this evaluation considers only a case of one-to-one

overlapping instead of cases of one-to-many or many-to-one overlapping, which are

mentioned in the evaluation framework for scene text detection techniques [84] (the

second row in Figure 1.5). It is because state-of-the-art scene text recognition models

mostly focus on a word recognition. Good scene text proposals on many-to-one is

useless for scene text recognition models and good scene text proposal techniques

on one-to-many need post-processes in order to split text lines into words before

feeding into recognition models. IoU of 0.5 is usually considered as threshold of an

overlapping condition to decide whether objects are detected in the object detection

system. On the other hand, higher IoU is expected for evaluating scene text objects,

due to the fact that proposal boxes achieving IoU of 0.5 sometime are not good

enough for scene text recognitions, for example, proposal boxes are shown in the

third row in Figure 1.5. The first case is a good IoU-of-0.5 proposal and the rest

cases in the right are poor IoU-of-0.5 proposals. Therefore, the higher IoU threshold

will be utilized to evaluate and compare scene text proposal techniques in this thesis.

Performances of scene text proposal techniques are presented by recall rates

under various situations generated by different combinations between a number of
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proposals and an IoU threshold. When a number of proposal is fixed, the IoU thre-

shold is varied and vice versa. The better technique will provide the higher recall

rate at every evaluation scenario, especially when the number of proposal is small

and the IoU threshold is high. In addition, this evaluation framework considers an

average number of proposals each technique needs to perform their performances.

The better technique is one that requests the smaller number. There is a difference

between our evaluation and the tradition object proposal evaluation framework that

we limit the number of proposals at 2000 instead of 10k proposals as usual, which is

mentioned in [79] due to trade off between system efficiency and system accuracy.

  

IoU=

b.1. One – to – One Overlap b.2. One – to – Many Overlap b.3. Many – to – One Overlap

A good proposal box
with IoU of 0.5

A bad proposal box
with IoU of 0.5

A bad proposal box
with IoU of 0.5

Shared
 area

Covered area

a. Intersection over Union Calculation

b. Three terms of IoU evaluation

c. Proposal boxes (green) with IoU of 0.5 overlaping with groundtruth box (red)

Figure 1.5 – Some features of the adopted scene text proposal evaluation framework

including : (a) how Intersection over Union (IoU) is calculated, (b) the difference

of one-to-one overlap to other types of overlaps and (c) examples of good and poor

proposals with IoU of 0.5.
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1.6.3 Evaluation of automatic scene text reading systems

The evaluation framework for an automated scene text reading system is adop-

ted from the evaluation framework of the scene text reading competition community

[17], which is embodied in [84]. There are three contextualizations (strong, weak and

generic evaluation) and two kinds of systems (an end-to-end scene text reading and

a scene text spotting) involved. In this evaluation, only words which are alpha-

numerical words and containing at least three characters are considers, others are

ignored. Generally, a word is decided to be detected if there is at least one propo-

sal box overlapping with its’ ground truth box over IoU of 0.5 and it is recognized

successfully.

Three contextualizations of an automatic scene text reading system are illustra-

ted as a strong contextualization, a weak contextualization and a generic contex-

tualization. They are clarified based on accompanied lexicon lists as a per-image

vocabularies of 100 words, whole vocabularies in the testing set and a generic voca-

bularies of about 90k words, respectively. These lexicons are used to guide proposed

automatic scene text reading system to filter out false positive proposals. In each

contextualization, the F-measure value is calculated to evaluate system performance.

The better system is one that achieves the higher F-measure value. This value is

calculated based on the system recall and the system precision following the below

equation :

F_measure = 2 Precision ·Recall
Precision+Recall

(1.1)

The end-to-end scene text reading system is more general than the scene text

spotting system, where it considers alphanumerical words that consist of characters

and numbers instead of only-character words on which the scene text spotting system

focusses.

1.7 Thesis outline

This thesis goes through our contributions in developing scene text processing

systems including scene text proposal techniques, an automatic scene text reading

system and a scene text searching application. Chapter 3 focuses on two propo-
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sed text specific edge features which are used for clarifying text edge pixels from

non-text edge pixels and scoring scene text proposals. These two features are major

contributions of the proposed technique named as Text-Edge-Box (TEB). Chapter

4 concentrates on grouping-edges solutions which are used to merge single edges into

proposals. The unique of this proposed grouping solution is that it does not rely on

any text heuristic rules which are widely utilized by traditional scene text detection

techniques. The grouping solution is inspired by a max-pooling process in the deep

learning framework, and the technique proposed based on this grouping solution

is named as max-pooling based scene text proposal (MPT). An automatic scene

text reading system described in Chapter 5 is constructed by applying scene text

recognition models on top of the proposed scene text proposal techniques for both

a false positive proposals elimination and a scene text recognition. The proposed

system provides state-of-the-art performances on the robust reading competition.

Based on success of this system, a scene text searching application has been imple-

mented and its performance is competitive to the commercialized product known

as Google Translator in term of searching for specific words in scene images. In this

thesis, we also go through state-of-the-art research works in developing scene text

proposal techniques and automatic scene text reading systems. They are described

and discussed in Chapter 2. Future works are discussed in Chapter 6. It includes an

idea to employ the YoLo network for scene text proposal generation and an idea to

generate quadrilateral bounding boxes for detected text regions which is a require-

ment for system outputs in the recent scene text datasets as the CoCo text dataset

and the incidental scene text dataset. A relevant application aiming to support vi-

sual impairment patients and elderly in their outdoor activities is also described in

this Chapter.
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Chapter 2

State-of-the-art scene text

proposal techniques and scene text

reading systems
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In this chapter, we are going to present in detail recent state-of-the-art research

works in proposing scene text proposal techniques and automatic scene text rea-

ding systems which are also targeted goals of this thesis. Four scene text proposal
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techniques including the adaptive selective search for scene text proposal [19], the

symmetry text line based technique [24], the deep texts [21] and the weakly su-

pervised text attention network [31] as well as three automatic scene text reading

systems including the TextBoxes [50], the DeepTextSpotter [77] and the Edgeboxes

based scene text reading system [20] are described. Comparisons of our proposed

techniques and systems to these research works are discussed in Chapters 3, 4, and

5.1.

2.1 Scene text proposal techniques

The general framework of scene text proposal techniques is inherited from ob-

ject proposal techniques. It includes two main steps : a proposals generation and

a proposals scoring/ranking. In this review section, we will project each state-of-

the-art technique into this framework and clarify algorithms which they have used.

Note that these scene text proposal techniques are designed to provide word level

proposals, which is the standard input of recent scene text recognition models.

2.1.1 Adaptive selective search for scene text proposals

a. Proposal generation

This technique starts with the maximal stable external regions (MSER) algo-

rithm for generating atomic regions and the single linkage clustering (SLC) algo-

rithm for grouping generated atomic regions into clusters, which are later referred

to proposals. At the first iteration of their grouping strategy, atomic regions are al-

ready considered as clusters. These clusters are then grouped together base on their

similarity iteratively. Pairs of the most similar clusters are grouped first and pair

of the least similar clusters are grouped at the end. In order to measure similarity

among clusters, they defines a distance metric d(ra, rb) which is calculated from se-

ven similarity cues extracted from local pixels belonging to clusters and coordinates

of cluster centres. A similarity feature d(i)(ra, rb) of a pair of two clusters a and b
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base on a single similarity cue ith is calculated using Equation 2.1 :

d(i)(ra, rb) = (f i(ra)− f i(rb))2 + λ(xa − xb)2 + (ya − yb)2 (2.1)

The f i(ra) refers to a similarity cue ith of a cluster a. [xa, ya] and [xb, yb] are centre

coordinates of cluster ra and cluster rb respectively. The λ is a horizontal priority

parameter that controls a priority of horizontal grouping, and it is in a range of (0,

1).

For minimizing processing time, seven chosen similarity cues are all simple and

low computational cost features, including two cues in the Lab colour space (a mean

colour of pixels in the region (Flab), and a mean colour of pixels in the immediate

outer boundary of the region (Blab)), a mean intensity value (F ), a mean intensity

value in the immediate outer boundary of the region (B), a mean value of the dis-

tance transformed connected component mask generated by stroke width transform

(S), a mean of gradient magnitude on the bounder of the region (G), a major axis

of their fitting ellipse (D).

In order to find proper proposals for localizing words, several variants of the

proposed technique have been evaluated, using different complementary similarity

cues, different colour channels and different spatial pyramid levels. In total, there are

84 technique variants. The optimal one has been found at a combination of DFBGS

with two different image scales (1 and 0.5) in three colour channels as RGB.

b. Proposal scoring/ranking

The Real Adaboost classifier has been used to score generated proposals due to

low computational cost. Feature vectors of proposals are extracted based on both

individual similarity cues f i(ra) and proposals’ bounding boxes properties .

At each type of similarity cue, a feature is calculated using Equation 2.2.

F i(G) = σi

µi
(2.2)

where σi and µi are respectively the mean and standard deviation of the ith similarity

cue in a particular group G, {f i(r) : r ∈ G}. For example, the optimal variant of
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this technique includes 30 (=5*2*3) similarity cues, so its proposal’s feature vector

contains 30 dimensions.

Proposal bounding boxes based feature dimensions are extracted base on rela-

tionship between the bounding box of the group constituent regions and the boun-

ding box enclose only the regions’ centres. A set of five simple features are originated

from calculating : (1) the ratio between the areas of both bounding boxes, (2) the

ratio between their widths, (3) the ratio between their heights, (4) the ratio between

the difference of their left-most x coordinates and the difference of their right-most

x coordinates, (5) the ratio between the difference of their top y coordinates and the

difference of their bottom y coordinates.

The Real Adaboost classifier has been trained on training images in the IC-

DAR2013 dataset. In testing phase, the Logistic Correlation is applied on the raw

classifier’s outputs to obtain a probability value for each proposal. The output of this

scoring algorithm is normalized in the range [0 ;1]. Proposals with their confident

scores are sorted in the descending order, where the front-most proposals of the list

have the highest probability of being texts.

2.1.2 Symmetry text line

This technique is developed base on a hypothesis as text regions usually exhibit

high self-similarity to itself and strong contrast to its local background. Symmetry

axes are first extracted via the proposed symmetry detector. In order to deal with

text size variants, multi-scale input images are implemented. Base on detected text

line axes, bounding boxes of text line level proposals are estimated and later split

into word level proposals using an internal distance threshold. In this technique, a

proposal scoring/ranking step is not implemented. All generated proposals are fed

into a word classifier to finalize their scene text detection system.

The proposed symmetry detector consists of a features extraction and a random

forest based symmetry axis classifier. In the features extraction, a symmetry tem-

plate is proposed. It consists of four rectangles with equal size of s× 4s, denoted by

RT(a top rectangle), RB(a bottom rectangle), RMT(a top middle rectangle), and

RMB(a bottom middle rectangle) as shown in Figure 2.1 The height of rectangle "s"
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Figure 2.1 – The proposed symmetry template consists of four rectangles with equal

size of s×4s, denoted by RT(a top rectangle), RB(a bottom rectangle), RMT(a top

middle rectangle) and RMB(a bottom middle rectangle)

is defined as a template scale. Two types of features are employed as a symmetry

feature and an appearance feature.

- Symmetry features consist of two groups of features as a self-similarity fea-

ture and a contrast feature. The self-similarity is developed based on a hypothesis

as adjacent characters bear similar color and structure while the contract feature is

inspired by a high dissimilarity of text foreground to background. The self-similarity

type feature is calculated based on pixels in the two middle rectangles (RMT and

RMB). The contrast feature type includes two features as a top-contrast feature cal-

culated from a RT and RMT, and a bottom-contrast feature calculated from a RB

and a RMB. Following three equations : 2.3 for the self-similarity feature and two

equations 2.4 and 2.5 for two types of contrast features from symmetry templates,

respectively.

Scx,y = X2(hcx,y(RMT ), hcx,y(RMB)) (2.3)

Ctcx,y = X2(hcx,y(RT ), hcx,y(RMT )) (2.4)

Cbcx,y = X2(hcx,y(RB), hcx,y(RMB)) (2.5)
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where, X2 is a distance function, hcx,y(RP ) with P ∈ (T,B,MT,MB) denotes the

histogram of a low feature cue c in the corresponding regions. There are four kinds

of low cues adopted as brightness, color, texture, and gradient. The brightness and

two color cues are extracted from Lab color space. The texture cue is extracted

using implemented textons and the gradient cue is computed from pixels’ gradient

magnitudes. In total, there are (3*5=) 15 symmetry features extracted from one

scale symmetry template at the location (x, y).

- Appearance feature is extracted by applying the Local Binary Pattern (LBP)

feature [85] on the middle rectangles (RMT+RMB). It provides 59 features

All features are concatenated into a 74-dimension feature vector (=15+59) repre-

senting the pixel at location (x, y) in where the corresponding template is centred.

Pixels are then classified into two classes as a symmetry axis pixel and a non symme-

try axis pixel by using the Random Forest classifier. It forms a symmetry probability

map. Due to implementing multi-scale input images, multiple symmetry probability

maps are provided.

From a symmetry probability map, symmetry pixels are grouped together to

produce symmetry axis fragments if distances between them are less than three

pixels. Symmetry axis fragments are then merged together into text line proposals

if they are satisfied following two geometric constraints :

- Angular different constraint : Two fragments are able to grouped together if

their angular difference is less than π
16 , and their angular difference is calculated by

Equation 2.6, where, A,B are two fragment, φ(A), φ(B) are their direction.

Φ(A,B) = |φ(A)− φ(B)|, (φ(A), φ(B) ∈ (−π2 ,
π

2 ) (2.6)

- Distance constraint : Two fragments are able to grouped together if the minimal

distance between them is less than maximal height of the two fragment heights where

fragment height is the scale of the corresponding template. The minimal distance

between two fragments is computed by Equation 2.7, where p, q are two given points

in the two fragments A,B respectively, and an operation ||.|| is a distance calculation
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between two points.

D(A,B) = min(||p− q||), p ∈ A, q ∈ B (2.7)

A bounding box of a text line proposal is estimated as follow : The width is deter-

mined by the horizontal axis coordinates of the axis pixels belong to the text line

proposal and the height is the scale of the corresponding template.

2.1.3 DeepTexts : Region proposal network based scene text

proposal

This is a deep learning based scene text detection network resembling to the Fast

R-CNN network [80]. A scene text proposal generation and a scene text proposal

scoring/ranking are process concurrently. Scene text proposals are first generated by

their developed region proposal network named as Inception-RPN. 300-top proposals

are then passed to a text detection network for clarifying text proposals from non-

text ones. In this review, the Inception-RPN network is concentrated due to relating

to a scene text proposal generation task what we are focussing on. The structure of

their scene text proposal generation is depicted in Figure 2.2.

The Inception RPN is applied on the top of the convolution feature map (Conv5_3)

in the VGG16 model [49]. It is inspired by the Inception block in the GoogleLeNet

[86], and it consists of a 3×3 convolution layer, a 5×5 convolution layer and a 3×3

max pooling layer. A 1×1 convolution layer is deployed on top of the 3×3 max poo-

ling layer for dimension reduction. The output of these layers are concatenated into

640-dimension feature vectors which are then fed into two sibling fully connected

layers to predict text confidence scores (a classification layer) and proposal regions

(a regression layer). Note that there are 24 anchor boxes designed with four scales

(32, 48, 64, and 80) and six aspect ratios (as 0.2, 0.5, 0.8, 1, 1.2, and 1.5) at each

point in the final feature map. The regression layer is trained to regress these an-

chor boxes to find the best proposal bounding boxes. Proposal boxes are then pass

through non maximal suppression (NMS) to provide a final set of proposals. In scene

text proposal evaluation, only 500 proposals are kept from the provided list.
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Figure 2.2 – Structure of a scene text proposal generation network (Inception-RPN)

in the DeepText network which is developed to detect texts in scene images

The same as existing RPN models, the Inception-RPN model is trained using a

multi-tasks loss function which is presented in Equation 2.8.

L(p, p∗, t, t∗) = Lcls(p, p∗) + λLreg(t, t∗) (2.8)

where classification loss Lcls is a soft-max loss and p and p∗ are given as the predicted

and true labels, respectively. Regression loss Lreg applies the smooth-L1 loss. The

t = {tx, ty, tw, th} and t∗ = {t∗x, t∗y, t∗w, t∗h} stand for predicted and ground-truth

bounding-box regression, respectively. The t∗ is encoded as below :

t∗x = (Gx − Px)
Pw

, t∗y = (Gy − Py)
Ph

, t∗w = log(Gw

Pw
), t∗h = log(Gh

Ph
) (2.9)

The P = (Px, Py, Pw, Ph) and G = (Gx, Gy, Gw, Gh) are centre coordinates (x, y),

width (w) and height (h) of an anchor P and a ground truth G, respectively. The λ

is a loss balance parameter and it is set to 3 in the training process of the Inception-

RPN.
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2.1.4 Weakly supervised text attention network

This technique adopts the deep learning based framework to produce text confi-

dence score maps in which text pixels obtains higher scores than background pixels.

Text confidence score maps are then binarized by using a score threshold. Text re-

gions which have superior confidence scores are segmented coarsely. On each segmen-

ted region, the scene text proposal generation framework of the adaptive selective

search for scene text proposal technique (TP) [19] is employed to refine segmented

regions into scene text proposals. The maximal stable external regions (MSER) is

applied to generate MSER regions which are grouped together into scene text pro-

posals by applying the single linkage criterion (SLC) and different complementary

distance metrics. Scene text proposals are then scored and ranked by a trained Real

Adaboost classifier. In fact, this technique can be considered as an upgraded version

of the TP technique since the TP framework is applied on segmented text regions

instead of whole image space as the original set-up.

The major contribution of this technique is the text attention network which

provides text confidence score maps. It is similar to the discriminate localization

network [87] with some of modifications : (1) the global average pooling layer is

substituted by the spatial pyramid pooling layer (SPP), (2) a new convolution layer

is added on top of the Conv5-3 layer of the VGG16 network and named as class

activation map convolution (CAM-conv), (3) outputs of the Conv5-3 layer and the

CAM-conv layer are concatenated and passed to the SPP layer for predicting proba-

bility of binary classification. Structure of the proposed network is shown in Figure

2.3.

2.1.5 Discussion

Most existing scene text proposal techniques have various limitations. For example,

the symmetry text line and the adaptive selective search for scene text proposal are

efficient but often generate a large number of false positive proposals. The deep lear-

ning based techniques [21, 31] produces a small number of proposals but the recall

rate becomes unstable when the Intersection over Union (IoU) threshold increases.

In addition, deep learning based scene text proposals require a huge amount of trai-
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Figure 2.3 – Structure of a text attention network which is developed to provide a

text confidence score map from an input color image.

ning data to optimize parameters of network architecture. In contrast, the proposed

proposal techniques only need training data from ICDAR and SVT dataset, inclu-

ding 330 images. They are able to obtain a high recall rate with a small number

of false positive proposals and stable with an IoU threshold increment, as shown in

evaluation sections in chapters 3 and 4.

2.2 Automatic scene text reading systems

In this review, structures of state-of-the-art scene text reading systems are pro-

jected into a standard scene text reading framework including two major tasks as

a scene text detection and a scene text recognition, excluding the DeepTextSpotter

system which successfully combines these two tasks into a model. Relevant algo-

rithms employed in each task are then described.

2.2.1 Edgeboxes based scene text reading system

This technique is developed following the standard framework of a scene text

reading system, however two tasks are not wholly distinct. Scene text detection

performance is still improved base on information gained from a word recognition

model, leading to a stronger holistic text spotting system. Entire system is depicted

in Figure 2.4
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Figure 2.4 – A framework of an automatic scene text reading system developed

based on scene text proposals generated by EdgeBox [26] and Aggregate Channel

Feature Detector (ACF), and a deep learning based scene text recognition network.

a. Scene text detection

The scene text detection model consists of three steps : a proposal generation, a

proposal filter and a proposal bounding boxes regression.

In the proposal generation step, two object proposal techniques are implemented :

the EdgeBox technique [26] and the proposed Aggregate Channel Feature Detector

(ACF). The ACF is a conventional sliding window detector in which proposals are

localized by sliding windows and scored by passing its ACF features to an Ada-

Boost classifier. ACF features are channel similarity features including a normalized

gradient magnitude, a histogram of oriented gradient (in 6 channels) and a raw

grayscale input. These features in different input images scales are also taken in an

account for scoring proposals. The different scale features approximation solution

[88] is adopted to speed up this extraction process. Thresholding on scored ACF ba-

sed proposals gives a set of word proposal bounding boxes of this detector. Finally,

the generated scene text proposals are formed by combining proposals from the EB

and the ACF detector.

In the proposal filter step, they are rescored by a random forest classifier ap-

plied on their Histogram of oriented gradient features. Proposals having scores

falling below a certain threshold are rejected. Bounding boxes of remaining pro-
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posals are then refined to overlap better with ground truth boxes in the proposal

bounding boxes regression step. A deep learning based regression network is de-

veloped consisting of four convolution layers ({filter_size, number_of_filter} :

{5, 64}, {5, 128}, {3, 256}, {3, 512}) with a stride of 1 and two fully connected layers

(4k units and 4 units). An original bounding box is parametrised by its top-left and

bottom-right corners coordinates, such as (x1, y1, x2, y2). The regression model is

trained to predict more precise coordinates ((x′1, y′1, x′2, y′2)) which are tighter to the

true text objects and overlap with ground truth boxes in higher IoU values.

The detection set still contains a huge number of false positive proposals and

they will be eliminated later based on performance of the scene text recognition

model.

b. Scene text recognition

The recognition model is designed base on the hypothesis that a word recognition

problem can be solved similarly a multi-class classification problem. Each word in

the pre-defined dictionary therefore is considered as a class. The model consists of

five convolutional layers : [5, 64], [5, 128], [3, 256], [3, 512], [3, 512] representing as

[filter-size, the number of filters] and followed by three fully connected layers : 4000,

4000, 90000 for the number of units. The 90000 units in the last fully connected layer

correspond to 90000 pre-defined words in dictionary. Each hidden layers are followed

by a rectified linear non-linearity activation (ReLU) and a 2× 2 max pooling. Due

to integrating with fully connected layers, input image size has to be fixed and it is

set at 32× 100. The model structure is illustrated in Figure 2.5 It has been trained

using Stochastic Gradient Descent (SGD) with Dropout regulation on Synthetic text

training data [78].

The final step as a false positive detection elimination is applied using recogni-

tion confidence scores (sb) and predicted words (wb) of proposal boxes. Non maxi-

mum suppression (NMS) is first applied on the same word label proposals to obtain

the best proposals at each location. Subsequently, NMS performs to suppress non-

maximal detections of different word label proposals with some overlap. Finally,

multiple rounds of bounding box regression using the regression model mentioned
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Figure 2.5 – A schematic of Jaderberg’s recognition model which handles a scene

text recognition task as a multi-class classification

in Section 2.2.1 and NMS performs on remaining proposals to improve overlap of

detection results.

2.2.2 TextBox

a. Scene text detection

Figure 2.6 – Structure of the TextBox network, which inherits the first part of the

popular VGG16 network and associates with the proposed Text-Box layer inspired

by the Single Shot multibox Detector network (SSD)

The text detection network is depicted in Figure 2.6. It inherits the popular

VGG-16 architecture [49], keeping layers from conv1.1 through conv4.3. The last

two fully connected layers are converted into convolutional layers and followed by

a few extra convolutional and pooling layers, namely conv6 to conv11. The text-
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box layer is integrated at the end of the network to regress text bounding boxes

from network’s default boxes and predict bounding box confidence scores. This last

layer is inspired by the single shot multibox detector (SSD) [51] which is able to

detect multi-scales objects with a single scale input image. Different from general

objects, words have large aspect ratios. Therefore, large aspect ratio default boxes

are included, containing 6 aspect ratios 1, 2, 3, 5, 7, and 10. Moreover, irregular

1× 5 convolutional filters instead of the standard 3× 3 ones are adopted, which fit

better with larger aspect ratio words.

The text-box layer stacks up the last feature maps generated by the conv11

layer with some other intermediate feature maps of the network to deal with the

multi-scales problem. At each location in a feature map, it predicts bounding boxes

confidence scores and regression values which is used to adjust associated default

boxes to proper object bounding boxes. For example, at a location (i, j) in a feature

map which associates with a default box (x0, y0, w0, h0), the output of the Text-box

layer is a set of values as (δx, δy, δw, δh, c), indicating that a box (x, y, w, h) is detected

with a confident score c :

x = x0 + δx

y = y0 + δy

w = w0exp(δw)

h = h0exp(δh)

The predicted bounding boxes at all collected feature maps are aggregated and

undergo a non maximal suppression process to eliminate false positive proposals.

The TextBox network is first trained on the SynthText dataset [82] for 50k

iterations then fine-tuned on the ICDAR2013 training set [2] for 2k iterations. The

multi-tasks loss function is implemented as below :

L(x, c, l, g) = 1
N

(Lconf (x, c) + Lloc(x, l, g)) (2.10)

where N is the number of default boxes that match ground-truth boxes, x is the

match indication matrix, c is the confidence, l is the predicted location, g is the
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Figure 2.7 – A framework of the CRNN scene text recognition model. It consists

of three major segments including a feature extraction based on convolution layers,

a character distribution generation based on a recurrent neural network and a word

generation based on a connectionist temporal classification.

ground-truth location, Lloc is a location loss function and Lconf is a detection loss

function.

b. Scene text recognition

Figure 2.7 illustrates the structure of the scene text recognition model which

consists of three segments, including a convolutional neural network (CNN) for se-
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quential feature vectors extraction, a recurrent neural network (RNN) for predicting

characters distribution of each feature vector in sequences and a transcription net-

work for converting sequential characters distributions into readable words. The

CNN based segment consists of convolution layers, max-pooling layers and element

wise activation layers. A fixed size input image is converted into a feature map in

which each column refers to a rectangle region in the input image. The column order

in a feature map reflects the rectangle regions order in an input image. The RNN

segment is built using bidirectional Long-Short Term Memory (LSTM). It takes

sequences of columns as inputs and predicts labels distribution for each column.

Labels are all Latin characters (36 characters) as well as a "blank" label denoted by

"-". Label probability map therefore has size of 37-by-[the number of feature vectors

in sequence]. Connectionist Temporal Classification (CTC) is adopted for mapping

labels distribution map into predicted words including two steps. The first step is

to map a labels distribution map (y) into a labels sequence (l), where each column

is presented by a label which has the highest probability in the column. The se-

cond step is to map generated labels sequence l into a predicted word (w) where

repeated labels and "blank" labels are removed. For example, the second step will

map a label sequence of "–hh-ee-l–lll-ooo—" into a word "hello". The conditional

probability of predicted word w is defined as the sum of probabilities of characters

in the corresponding labels sequence l.

p(w|y) =
∑
i

p(li|y) (2.11)

where, p(li|y) is defined as following equation :

p(li|y) =
T∏
t=0

lti (2.12)

with lti is a probability of having label li at time stamp t.
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Figure 2.8 – Structure of a Deep Text Spotter network which successfully combines

two single tasks of an automatic scene text reading system as a scene text detection

and a scene text recognition into one trainable network

2.2.3 DeepTextSpotter

The novel idea in this state-of-the-art scene text reading system is an end-to-end

trainable network for both a scene text detection task and a scene text recognition

task. The proposed network is depicted in Figure 2.8.

In the scene text detection task, they adapted the YOLOv2 architecture [89]

for developing a region proposal network. The first 18 convolutional layers and five

maxpooling layers are inherited with proposed modifications : doubling the number

of channels after every pooling steps, adding 1 × 1 filters to compress the repre-

sentations between 3 × 3 filters, adding a bounding box rotation parameter into

predicted proposals. At each point in an output feature map plane, proposal boxes

are regressed from 14 different anchor boxes estimated from aggregated training

images in the SynthText dataset [82]. Regression function is the logistic activation

function presented in Equation 2.13, where, (x, y, w, h, θ) and (rx, ry, rw, rh, rθ) are

an actual bounding box position and a predicted bounding box position, respecti-

vely. The cx, cy are offset of the cell in the last convolution layer, and aw, ah are

predefined height and width of the anchor box a. The rotation θ ∈ (−π
2 ,

π
2 ) of a

bounding box is predicted by rθ. Text proposals which have confidence scores less

than threshold pmin = 0.1 are eliminated. Remaining text proposals are then passed
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to the recognition network.

x = σ(rx) + cx

y = σ(ry) + cy

w = awexp(rw)

h = ahexp(rh)

θ = rθ

(2.13)

The scene text recognition network exploits a fully-convolutional network for

predicting distribution of characters in time sequence. The network consists of four

types of layers as a convolution layer, a max-pooling layer, a batch normalization

layer and a recurrent convolution layer. Network input images have a size of (H×W̄ ),

where the height H is fixed at 32 and the width W̄ is flexible depending on image

length. Network output shape is designed as 1× W̄
4 × |Â| which is compressed into

a 2D matrix with a shape of W̄
4 × |Â|. The |Â| is length of character set Â including

all English characters, ten numbers, and a symbol ” − ” representing a non-text

class. At the end, the connectionist temporal classification (CTC) network is applied

to transform network outputs into conditional probability distribution over label

sequences which is later used to compute probability of a predicted word, please

look at section 2.2.2 for a detail of how the CTC network is applied. The recognition

network has been trained on the synthetic word dataset [78].

In order to join two above networks into a network, the bilinear sampling process

is applied. For each region of interest (ROI) with a shape of w×h×C, it is mapped

into a fixed-height tensor with a shape of wH′

h
×H ′×C (H ′ = 32) following Equation

2.14. The κ is a bilinear sampling kernel κ(v) = max(0, 1−|v|) and T is a point-wise

coordinate transformation, which projects coordinates x′ and y′ of the fixed-sized

tensor V to the coordinates x and y in the detected region features tensor U .

V c
x′,y′ =

w∑
x=1

h∑
y=1

U c
x,yκ(x− Tx(x′))κ(y − Ty(y′)) (2.14)

In a training process, two networks are first trained separately to achieve their own

task and a joined network is then trained on training images of the SynthText
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dataset, the Synthetic Word dataset, and the ICDAR datasets [1, 2, 81].

2.2.4 Discussion

Recent state-of-the-art scene text reading systems are developed using deep lear-

ning architecture. The TextBox system [50] consists of two deep learning models for

two different task as scene text detection and scene text recognition. The Deep-

TextSpotter [77] provides an advantage design that combines two independent tasks

of scene text reading system into an end-to-end trainable deep learning model. In

order to provide state-of-the-art performances, these techniques need to be trained

on huge amount of data such as ICDAR, SVT, COCO Text, SynthText and so on.

Our developed automatic scene text reading system adopts a framework presented

in the EdgeBoxes based scene text reading system that exploits a scene text pro-

posal technique for localizing texts in scene images and a scene text recognition

model for both recognizing actual words in proposal regions and improving scene

text detection performance. An advantage feature of our developed system is that

we only used a top of 2000 proposals to pass to a recognition model instead of 10k

proposals as mentioned in recent scene text proposals based systems [19, 20].

2.3 Conclusion

In this chapter, we reviewed state-of-the-art works relating to this thesis scope,

including scene text proposal generation and automatic scene text reading systems

in both hand-craft features based works and deep learning based works. Their per-

formances are observed by their positions in the ranked list of algorithms in the

robust reading competition website and scientific publications, which can be consi-

dered as proper benchmarks for validating our proposed techniques and systems. In

the ensuing chapters, our proposed techniques and systems will be described and

compared with these state-of-the-art works.
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Object proposal techniques well perform in localizing non-class objects. Howe-

ver, they fail to deal with scene texts. It is because scene texts have more diverse

appearance than general objects due to not only texts’ intra-class variations but

also texts’ distortions under environment impacts as discussed in section 1.2. There

is only the EdgeBox [26] technique (EB) applicable for a scene text localization as

described in the automatic scene text reading framework [20]. However, the EB has

to integrate with another scene text proposal technique consisting of a Aggregate

Channel Features (ACF) and an AdaBoost classifier to provide a proper set of pro-
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posals, which achieves a recall rate at 96% with 10000 proposals in the ICDAR2003

dataset [81]. In this technique, a large number of proposals is required to avoid

loosing a certain number of challenging texts. However, it will influence efficiency

of entire scene text detection/recognition systems when classification/recognition

models have to repeat its processes on every proposals. Reducing a number of pro-

posals while maintaining system performance therefore is an essential contribution.

We suggest to integrate object proposal techniques with text specific features to

filter out coarsely false positive proposals, as represented in recent developed scene

text proposals [19, 21, 31].

A lot of text specific heuristic rules have been proposed to group atomic regions,

such as edge pixels and MSER regions, into scene text proposals [44, 42, 31, 19, 32,

68]. For example, the stroke width transform (SWT) [42] proposes stroke width fea-

tures measuring distances between opposite orientation edge pixels in edges connec-

ted components based on an assumption that text edge connected components have

constant stroke width. In [68], a bunch of geographical text specific features are uti-

lized for analysing MSER regions and eliminating false positive ones before moving

on a grouping step.

Inspired by heuristic rules of text edges, we proposed two edge based text spe-

cific features for estimating text probability of edge connected components. These

probabilities are also used to score our scene text proposals. True text proposals are

supposed to achieve high scores and vice versa. This technique is developed based on

the EdgeBox framework with our adapted grouping solution and scoring function,

specifying for scene text objects.

3.1 Methodology

The proposed Text Edge Box (TEB) technique is designed to produce word-

level text proposals in scenes. The framework is shown in Figure 3.1 including two

main steps as a text edge map generation and a grouping-scoring-ranking proposal.

Firstly, we exploit the Canny edge detector [90] to generate a binary edge map. A

gradient map, an orientation map are also collected from the Canny’s immediate
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Figure 3.1 – A framework of the proposed Text-Edge-Box technique, including two

main task as a text edge map generation and a grouping-scoring-ranking proposals.

In the output image, only good proposals are presented for an illustration purpose

steps. Pixels in the orientation map are then normalized into the range of [0,π].

Connected components (CCs) are labelled within the binary map, which are fur-

ther scored by a combination of two proposed low-cue text features including an

edge pair feature (EP) and an edge variance feature (EV). They are estimated from

the orientation and the gradient at the corresponding CC pixels, respectively. Text

edge map is an image that has the same size with an original image and its pixels

are assigned connected component scores. Secondly, the CCs are then merged toge-

ther to produce word-level proposals. A proposal scoring function is designed, which

computes probability of being a word of each word-level proposal by combining the

scores of CCs belonging to the proposal and scores of their relationships (correlation

in component scores, component sizes and links between pair of components). Fi-

nally, word-level proposals are sorted in the descending order, and those with high

scores are superiorly identified as words.
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Figure 3.2 – The path a and b are respectively an example image and its own

binary edge map. The path c shows examples of connected components including

one for text connected component (connected component A) and one for non-text

connected component (connected component B). The red arrows are orientations

of the considered pixels in the connected components. The dash lines are searching

lines corresponding to the orientations of pixels. The pixels in the couple pixels

shown in the connected component A are defined as edge pair pixels. Obviously, a

text connected component includes much more number of edge pair pixels than a

non-text connected component.

3.1.1 Specific text edge features

In this research, we define two specific text edge features as an Edge Pair Feature

(EP) and an Edge Variance Feature (EV). They are our key contributions which

are proposed to clarify text edges from non-text edges and evaluate how possible

connected components (CCs) are text CCs. The evaluated probabilities are also

CCs’ scores and they are stored in a Text Edge Map (TEM).

The edge pair feature

The first feature is an edge pair (EP) which is inspired by the Stroke Width

Transform method [42]. It is developed based on a hypothesis that CCs of text

objects are likely to contain the high portion of couples pixels that have opposite

orientations, like the connected component A illustrated at the path c in Figure 3.2.

From now, we name these pixels as edge pair pixels. In order to detect them, we

start at each given pixel in a CC and its orientation is used to decide a searching

46



CHAPTER 3. HEURISTIC SCENE TEXT PROPOSAL 3.1. METHODOLOGY

line (dash lines in Figure 3.2.c). If an opposite orientation pixel in the same CC has

been found in the searching line, the considered pixel and the searched one with an

opposite orientation are defined as edge pair pixels. The EP feature of a given CC

is defined as a fraction of edge pair pixels in the CC as follows :

EP (CC) = Npp(CC)
Np(CC) (3.1)

Where Npp(CC) and Np(CC) denote the number of edge pair pixels and the number

of edge pixels belonging to a CC under study, respectively. The value of this feature

is in the range of [0, 1]. The CC having higher EP value is more likely to be a text

CC.

The edge variance feature

The second feature is an edge variance (EV) that measures the variance of gra-

dient magnitudes of pixels in a CC. This parameter is useful because the gradients

of pixels in the boundary of an individual character (or boundaries of characters

in a same word) are often monotonous. Therefore, their variances are expected to

be small. We utilize an exponential function of the gradient variance in order to

normalize these values into the range of [0, 1] and produce high values for text CCs

as below :

EV (CC) = e−var(CC) (3.2)

Where the var(CC) denotes the variance of the gradient of pixels in a CC.

The text edge map

The text edge map is a score map that shows the being-text probability of each

CC. Pixels in a CC contain the value of the CC score, and other pixels have values

of zero. The score of each CC is estimated by a weighted summation of its two text

probability features as follows :

CCscore = αEP + (1− α)EV (3.3)
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Figure 3.3 – Effectiveness of the two proposed heuristic text specific features on

clarifying text edges from others by scoring them high score values. By applying

threshold on a text edge map, we can perceive that most non-text edges are elimi-

nated.

where α is in the range of [0, 1]. Its’ value is determined through a tuning process

which is described in Section 3.2.1. Since both features have their values in the range

[0, 1], all pixels in the TEM are in the range of [0,1]. An example of the text edge

map is shown in Figure 3.3. By applying threshold on the text edge map, we can

perceive that most of non-text edges have been removed, meaning that text edges

pixels have been scored higher values than others.

3.1.2 Scene text proposal generation

Generated CCs are then merged into text lines which are later split into small

subgroups referring to word-level proposals. The proposed grouping strategy is illus-

trated in Figure 3.4.

As Figure 3.4 shows, starting with a given CC (called candidate A - a dark blue

box), three properties of its bounding box (bbA) are exploited including box height

(hA), box width (wA) and box size (sA). A corresponding search area is designed

by expanding the bbA, where the search area width (wsearch) is equal to the image

width, and the search area height (hsearch) is γ times bigger than the hA determined

by expanding the hA equally in both sides in the vertical direction (a red box). CC

candidate B (a green box and its properties are bbB, wB, hB, and sB) is merged with

the CC candidate A to form a group if the bbB satisfies : (1) The ratio of intersection

between the bbB and the A’s search space to the sB is higher than τs, (2) the ratio
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Figure 3.4 – Illustration of the proposed connected components grouping strategy.

A searching space is estimated from a bounding box of a starting connected com-

ponent (CC). A given CC in the searching space will be grouped with the starting

CC if it satisfies certain grouping rules.

between min(wA, wB) and max(wA, wB) is higher than τw, (3) the ratio between

min(hA, hB) and max(hA, hB) is higher than τh. The parameters that are γ and

τs are sensitive to horizontal texts. The τw and τh are sensitive to size relationship

between characters in a word. How to set values for these parameters is discussed

in Section 3.2.1.

In order to divide text line proposals into small subgroups which refer to word-

level proposals, an average of distances between adjacent CCs’ boxes in the horizon-

tal direction is estimated. Dividing positions are decided at the location where the

distance is larger than the average value.

3.1.3 Scene text proposal ranking

This section elaborates a strategy to provide a ranked list of proposals in the

decreasing priority order. Four measures are defined as Sa, Sc, Sh and So, which are

all normalized in the range of [0,1]. The Sa is an averaging scores of CCs within a

word-level proposal region, where the score of each included CC is defined in Equa-

tion 3.3. The Sc, Sh and So indicate affinity among grouped CCs. These measures

are designed so that a proposal covering a word will have a high value. In particu-

lar, they are calculated from the variance of scores of grouped CCs, the variance

of bounding box’s height of CCs in a proposal region and the variance of angles

between lines linking centroids of two neighbourhood CCs and the horizontal axis,
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respectively. These angles are adjusted in the range of [0,π].

Generally, a proposal has a high likelihood of being word if it satisfies (1) its CCs

should have similar scores, (2) the heights of CCs should be approximately stable and

(3) the connection lines between the CCs should be appropriate in same direction,

referring to text lines. Therefore, the variances of these measures are expected to

be small for a word region proposal. In order to derive a high Sc, Sh, So value for a

group of CCs which is likely to be a word, and also normalize these measures in the

range of [0, 1], the arctan functions is implemented for each measure as follows :

Sx = 2 · arctan(kx/varx)
π

(3.4)

where the symbol "x" represents for the c, h, and o, and the varx refers to the

variances of CC’s score, height, and angle respectively. The parameter kx is set

at the middle of each measure range, i.e. 0.5, a half of bounding box height and

π/2, respectively for Sc, Sh, and So. The score function of a proposal region Sp is

computed as :

Sp = Sa · arctan(k1
∏
Sx) (3.5)

where, the function arctan(k1
∏
Sx) is used to control the relationship between the

Sp and the Sa. If the Sx makes the arctan(k1
∏
Sx) value higher than 1, we say that

the Sx has a supporting effect (Sp > Sa). If the Sx makes the function value smaller

than 1, it has a penalizing effect (Sp < Sa). It means that : although a proposal

has a high value of the Sa, it is unlikely to be a word proposal if its CCs provide

low Sx values (referring to the penalizing effect, see the low score candidate at the

grouping-scoring-ranking step in Figure 3.1). The parameter k1 adjusts the role of

the Sx measures. In particular, if the k1 increases, the role of the Sx measures is

reduced. In this research, we expect that if the ∏
Sx is higher than the middle value

of its’ range as 0.5, the function arctan(k1
∏
Sx) has the supporting effect and vice

versa. So, the parameter k1 is set at 3 as the arctan(3·0.5) ' 1. Note that, the Sx are

considered only when the number of CCs in a proposal is larger than 3. Otherwise,

the Sp is calculated based on the Sa only.
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3.1.4 TextEdgeBox implementation

The Text Edge Boxes (TEB) technique is implemented by two programming

languages as Matlab and C++. Matlab programming language is used to read and

pre-process images, generate a Canny binary edge map, a magnitude gradient map

as well as an oriented gradient map, evaluate technique performance and save evalua-

ted results. C++ programming language is used to implement major contributions

of the TEB. The TEB class has been shown in Appendix. In the below TEB pseudo

code, Matlab functions are highlighted in white backgrounds and C++ functions

are highlighted in gray backgrounds.

——————————————–
Algorithm : Text Edge Box (TEB)
——————————————–
//Import image

Img = imread(’Image address’) ;

//Create a binary edge map (E), a gradient map (G), and an oriented gradient map

(O)

[E,G,O] = CannyEdgeDetector(Img) ;

//Generate scene text proposals

ppb = TEB(E, G, O) ;

//Sort proposal boxes in descending order

ppb = boxsort(ppb) ;

//Evaluate scene text proposal performance. The gtb is ground truth of a correspon-

ding image.

Recall = PPBEval(ppb,gtb) ;

//Save evaluated performance

save(’Recall.mat’,’Recall’) ;

A TEB technique is inspired by the EdgeBox technique [26] and two EdgeBox

components have been adapted for scene text objects, including ClusteringEdges

and BoxesGenerator. They have been rewritten by our implemented functions

such as two edge based text specific feature generation (EPCC and EVCC func-
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tions), a connected component grouping (the Group function), a text line splitting

(the BoxesBreakDown function), a bounding boxes generation (the boxlist2Box

function). Before applying these two components, 8-connected components are sear-

ched on a Canny binary edge map.

The ClusteringEdges component focuses on scoring connected components

using two proposed text specific features, and generating text edge map. In the ge-

nerated text edge map, edge pixels of a connected component are assigned the same

value which is a connected component score.

——————————————–
Function : ClusteringEdges
——————————————–
//Inputs of the ClusteringEdge function are a magnitude of gradient map (G), an

oriented gradient map (O), and a list of 8-connected components (CCs).

//Score connected component. The EPmap and EVmap contain connected com-

ponent scores calculated by using EP and EV features, respectively

EPmap = EPCC(CCs,O) ;

EVmap = EVCC(CCs,G) ;

//Generate text edge map (TEM)

TEM = alpha × EPmap + (1-alpha) × EVmap ;

return(TEM) ;

The BoxesGenerator component is divided into three tasks : a connected com-

ponents grouping, a group splitting, and a bounding box generation. The proposed

grouping solution is implemented in the connected component grouping task (the

Group function). Its outputs are hypothesized to be text lines and they are then

divided into sub-groups targeted to be words (the BoxesBreakDown function).

The bounding boxes generation task is applied to provide corresponding bounding

boxes for text lines, words and single connected components. Concurrently proposal

scores are also calculated using the proposal scoring function which is implemented

inside the boxlist2Box function.

——————————————–
Function : BoxesGenerator
——————————————–
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//Input of the BoxesGenerator function is a list of 8-connected component (CCs)

//Task 1 : Connected component grouping

TLGroupedCCsList = [ ] ;

for CC in CCs :

SearchSpace = SearchSpaceInit(CC) ;

LocalGroupedCCs = Group(SearchSpace,CCs) ;

TLGroupedCCsList.push_back(LocalGroupedCCs) ;

//Task 2 : Split text lines into words

WGroupedCCsList = BoxBreakDown(TLGroupedCCsList) ;

//Task 3 : Bounding box generation. The boxlist2Box contains our proposal sco-

ring function

ppb = [ ]

for CC in CCs :

pp = boxlist2Box(CC) ;

ppb.push_back(pp) ;

for GroupedCCs in TLGroupedCCsList :

pp = boxlist2Box(GroupedCCs) ;

ppb.push_back(pp) ;

for GroupedCCs in WGroupedCCsList :

pp = boxlist2Box(GroupedCCs) ;

ppb.push_back(pp) ;

return(ppb) ;

——————————————–
Function : boxlist2Box
——————————————–
//An input of the boxList2Box function is a list of 8-connected components (CCs)

if CCs.size() < 4 :

s = GetScoreMean(CCs) ;

else :

sa = GetScoreMean(CCs) ;

sc = GetSpaceVariance(CCs) ;

sh = GetHeightVariance(CCs) ;
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so = GetOrientedLinkVariance(CCs) ;

s = Score(sa, sc, sh, so) ;

[x, y, w, h] = GetBoundingBox(CCs) ;

return([x,y,w,h,s]) ;

3.2 Evaluation

In this section, we describe how we optimize the proposed technique and com-

pare its performances to other state-of-the-arts. In order to improve the robustness

of the proposed system under a wide diversity of text appearance, these five para-

meters (γ, τs, τw, τh and α) are determined based on the joined training sets of the

ICDAR2013 dataset (for high contrast texts) [2] and the Street View Text (SVT)

(for blur texts) [3]. An optimal combination of those parameters will be used to

set-up the proposed system. The proposed technique has been compared to other

state-of-the-art techniques including the simple text specific selective search (TP)

[19], the Symmetry-Text Line (STL) [24], the DeepText (DT) [21], the EdgeBox

(EB) [26], the Geodesic (GOP) [91], the RandomizedPrim (RP) [92] and the Multis-

cale Combination Grouping (MCG) [93] on the two scene text datasets by following

scene text proposal evaluation framework as presented in Section 1.6.2.

3.2.1 Parameters tuning

We first focus on generating high quality set of proposals, which maximizes

overlap with the ground truth, by varying the four parameters γ, τs, τw, τh. The

ranking step is ignored and all number of generated proposals used for evaluation.

After obtaining good proposals, we then concentrate on scoring proposals to be able

to shift likely-to-be-text proposals to the top of the list by arranging the found

group in the descending order, so the proposed technique can perform well under a

limitation of number of proposals.

In the first optimization step, the parameter γ is tuned in the range of [1, 2] with

an internal step of 0.5 and other three parameters (τs, τw, τh) are tuned in the range

of [0.5, 1], [0.1, 1], [0.5, 1] with an internal step of 0.1 respectively. All generated
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proposals were collected for evaluating detection rate. The best set of these values

are found as γ = 1.5, τs = 0.7, τw = 0.3, τh = 0.7.

In the second optimization step, the parameter α has been estimated to find

the best sorting solution to be able to shift good proposals boxes to the front of the

list. This parameter controls the contribution of two proposed features (EP and EV)

which are reflected into values of Sa, Sc and Sp in the scoring function (Equation 3.4,

3.5). The number of proposals is set to maximum as 2000, the α value varies from 0

and 1 with an internal step of 0.1. The optimal performance on the joined training

set under many thresholds of IoU is found at the α = 0.7. When the α is 0 or 1, it

means that connected components are scored based on only the EV feature or the

EP feature, respectively. As the results presented in Table 3.1, when we remove the

EP feature, performance of the TEB technique drops dramatically. In contrast, its’

performance is just slightly lower than optimal performance when the EV feature

is removed. Therefore, the EP feature seems more reliable than the EV features. In

comparison with other state-of-the-art techniques, the α is set at 0.7.

Table 3.1 – The detection rate (in%) of the proposed technique with the variation

of the α value from 0 to 1 with an inner step of 0.1, and the difference of the IoU

threshold on the joined training sets of the two scene text datasets : ICDAR2013

and SVT. The maximum number of proposal regions is 2000.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
IoU = 0.5 70.43 87.34 90.51 93.13 93.94 94.21 94.39 94.76 94.67 94.58 94.14
IoU = 0.7 55.61 72.69 75.95 81.74 82.73 83 82.91 83.09 82.82 82.64 82.82
IoU = 0.8 47.03 63.56 66.27 72.6 73.87 73.96 73.87 73.96 73.87 73.69 73.6

Finally, in evaluation and comparison to other state-of-the-art techniques, the

five heuristic parameters of the proposed technique is set as :γ = 1.5, τs = 0.7, τw =

0.3, τh = 0.7 and alpha = 0.7.

3.2.2 Experimental results

Figure 3.5 illustrates the performance of the proposed technique as well as the

comparison with state-of-the-art techniques. In the left column, the detection rate
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Figure 3.5 – The detection rate evaluation vs the number of proposals (left column)

and the IoU threshold (right column) of the Text Edge Box (TEB) and other state-

of-the-art algorithms, including the simple text specific selective search (TP) [19],

the Symmetry-Text Line (STL) [24], the DeepText (DT) [21], the EdgeBox (EB)

[26], the Geodesic (GOP) [91], the RandomizedPrim (RP) [92] and the Multiscale

Combination Grouping (MCG) [93] on the ICDAR 2013 dataset

vs the number of proposals on the ICDAR 2013 dataset has been calculated under

the three different IoU thresholds, i.e 0.5, 0.7 and 0.8. The TEB algorithm obviously

outperforms other methods at the different IoU values when the number of propo-
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Table 3.2 – Recall (%) and processing time (in second) of the proposed TEB and

other state-of-the-art techniques under different IoU thresholds on the ICDAR2013

dataset. The Nppb denotes an average number of proposals that the techniques need

to achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
TEB [25] 94.25 87.95 81.55 1777 5.4
TP [19] 84.47 71.32 65.11 1907 5.17
STL [24] 79.78 62.04 49.91 1034 361.3
DT [21] 88.5 67 4 500 −
EB [26] 76.93 48.81 27.67 1968 1.02
GOP [91] 45.68 19.39 11.76 1040 4.3
RP [92] 66.91 36.95 19.3 1917 10.07

MCG [93] 56.16 36.21 27.02 550 28.92

sals is larger than 1000. The DT leverages on the deep learning model for scoring

proposal regions. Its’ performance is therefore very competitive at the small number

of proposals, especially with the IoU = 0.5. This is due to the deep learning model

that has advantage in recognizing false positive regions and eliminating them from

the generated proposal list. However, our proposed system localizes scene texts more

successfully when the IoU threshold increases to 0.7 and 0.8, which is targeted for

scene text objects as discussed at Section 1.6.2. The TP is the most competitive

technique when a huge number of proposals are accepted. The EB shows better re-

sult than the TP when the number of proposals is smaller than 1000. On the other

hand, its performance deteriorates when the number of proposals increases. The

right column shows the second experiment that estimates the detection rate vs the

IoU threshold for the different set of proposals : 100, 500 and 1000. The TEB out-

performs other methods (excluding the DT) significantly under the different bunch

of proposals. When the number of proposals increases and the IoU requirement is

more constrained, the proposed TEB performs better than the DT. Note that the

DT only provides maximally 500 proposals on an image.

In addition, we also track the average number of proposals that each method

provides to achieve their best performance. Hosang [23] shows that this criterion
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Table 3.3 – Recall (%) and processing time (in second) of the proposed TEB and

other state-of-the-art techniques under different IoU thresholds on the SVT dataset.

The Nppb denotes an average number of proposals that the techniques need to

achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
TEB [25] 87.64 47.91 20.09 1890 2.2
TP [19] 74.65 42.5 21.33 1972 5.94
STL [24] 77.13 31.07 10.36 1358 433.82
EB [26] 76.35 47.45 23.96 2000 1.28
GOP [91] 52.09 18.24 6.8 1117 3.78
RP [92] 62.6 27.05 12.21 2000 8.02

MCG [93] 54.71 24.27 8.66 557 14.97

correlates well with the detection performance and it has been used to evaluate

quality of the proposals in the TP [19]. Table 3.2 and 3.3 show the experimental

results on the two datasets. On the ICDAR2013 dataset, the TEB algorithm provides

less number of proposals than competitive techniques as TP and EB. On the SVT

dataset, the TEB performs slightly lower in comparison with the EB algorithm,

but better than other state-of-the-art algorithms. On the other hand, the average

number of proposal regions required are clearly more than those for the ICDAR2013

dataset. Besides the poorer image quality in the SVT dataset, one important reason

of the lower performance is due to the ground truth of the SVT dataset where the

manually labelled bounding boxes are often much larger than the actual boxes. This

is illustrated in Figure 3.6 where the ground truth boxes in the red color are clearly

much larger than the boxes produced by the proposed TEB in the green color.

The efficiency of the proposed technique is also evaluated based on the processing

time. All above techniques are evaluated on the same computer and executed in one

thread as the Xeon CPU E5-1650 v2 @ 3.5GHz. As presented in Table 3.2 and 3.3,

the proposed TEB is comparable to the most efficient methods except the original

EB method. However, the original EB method does not perform well in term of the

number of proposals and the maximum recall obtained. For the DeepText method

[21], the authors have not released their program yet, and we do not have a processing
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time report in our device. According to their report, their algorithm takes average

1.7 second for processing an image in the ICDAR2013 dataset in their device using

the single GPU K40 which is much more powerful than what we used.

  

Figure 3.6 – There are some examples of the SVT ground truth boxes which our

proposals cannot localize with the IoU threshold of 0.7. The red boxes are the ground

truths and the green boxes are our proposals. The proposal boxes are much more

smaller and closer to the scene text objects than the ground truth boxes.

Furthermore, the IoU based evaluation often has certain constraints where the

proposals have small overlap with the ground truth boxes but cover entire objects as

illustrated in Figure 3.6. We also adopted another evaluation that uses word recog-

nition models to estimate the quality of proposals. The well-known word recognition

model provided by Jaderberg [78] is implemented to perform this additional evalua-

tion. A proposal is a correct localization if it overlaps with one of the ground truth

boxes and provides enough information to help the recognition model to recognize

correctly. The better proposal technique will achieve the higher F-score at the out-

put of the recognition model. The quality of the recognition model is first estimated

on the ground trust boxes of the testing sets in the two datasets. The F-scores of

the model on the ICDAR2013 and the SVT dataset are 72.27 and 83.91 respectively.

They are presented in Figure 3.7 as the RegModel’s performances. This is the maxi-

mum performance that each proposal technique might obtain if they can provide

good proposals that match perfectly to the ground truth boxes. As shown in Figure

3.7, the TEB method produces the largest number of good proposals which help the

recognition model read contained words correctly. In addition, the performance of
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Figure 3.7 – The performance of the end-to-end word spotting systems which are

constructed by the comparison techniques and the word recognition model [78]. The

performance of RegModel here is the result of the word recognition model [78] tested

on the ground truth of the testing sets of two scene text datasets as the ICDAR2013

and the SVT

the proposed TEB algorithm just changes slightly when we increase the number of

proposals from 1000 to 5000 in both datasets. It proves that the proposed technique

ranks proposals better than other techniques. Therefore, most good proposals have

been ranked correctly at the top of the list.

Figure 3.8 illustrates several typical scenarios where our algorithm often fails

to provide good proposals including ultra-low contrast (a.1), complex background

(a.2), very small text size (a.3) and uneven illumination (a.2, a.4). In particular,

the edges of texts in a complex background are often connected with edges of other

objects where the edge pair feature may not be extracted reliably. Similarly, when

the text objects are covered by shadow or uneven illumination, the forms of texts
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(a) Original images

(b) Cropped regions in the dash rectangles

a.1 a.2 a.3 a.4

Figure 3.8 – Examples from the ICDAR2013 dataset that our algorithm failed

to localize. The red boxes are ground truths and the green boxes are our proposal

regions.

boundaries have been destroyed, where the text edge features may not be extracted

properly either. In term of low contrast, the text edges could be missed by the Canny

edge detector due to the ultra-low gradient magnitude.

One distinctive feature of the proposed TEB is that it does not rely on any

classifier for eliminating false positive proposals (as implementation in the TP, DT).

It simply uses the two proposed features and the geometric relationships among

CCs to rank proposals. Nevertheless, very good performances were obtained on the

two public scene text datasets, which demonstrate the effectiveness of the proposed

text-specific proposal technique.

Besides, while testing on the SVT dataset that includes a certain amount of

non-horizontal text lines, the TEB is still competitive as compared with the TP,

which is designed without horizontal restriction. It is observed that the proposed

algorithm can handle multi-orientation text lines. As discussion in Section 3.1.3, the

horizontal text line assumption can be relaxed by increasing the parameter γ for a

larger searching space and reducing the parameter τs for retaining more CCs. Then,

the scoring function should be upgraded to handle a huge number of CCs in the

merged groups.
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3.3 Conclusion

In this chapter, we proposed a text-specific proposal algorithm to search text

regions in scenes. Two text-specific features, namely, an edge pair and an edge va-

riance, were designed to search for more likely text components. In order to measure

the text likelihood of the proposal boxes, we designed a scoring function that com-

putes word probability based on correlations of connected components in their score,

height, and orientation of connections. The effectiveness of the proposed technique

has been demonstrated by its superior performance as compared with other state-

of-the-art algorithms.
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The Text-Edge-Box (TEB) technique and other existing scene text proposal

techniques usually creates proposals by merging atomic elements of images (edge

connected components, MSER regions) based on a bunch of heuristic rules with a

lot of parameters [32, 44, 19, 42, 58]. Optimizing those parameters could cost huge

amount of time. For example, the TEB technique has to optimize a combination of

five parameters, including four parameters in a grouping step and one parameter in a

scoring step. The TextFlow (TF) [32] has three parameters as a horizontal distance,

a vertical distance and a size similarity which are needed extensive tests to search
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for optimal values. Generally, those parameters evaluated on geographical relation

among atomic elements, and optimal values are thresholds applied on those para-

meters for providing grouping decisions. In this chapter, we are intent on providing

a proper grouping solution that are independent of text heuristic parameters.

Studying on scene text geographic appearance, we observe that texts usually ap-

pear in words and text lines, and internal distances between characters are usually

extracted as a feature and used for grouping atomic regions into text lines and

splitting text lines into words [32, 25, 44]. Particular, internal distances between

characters in a word are smaller than gaps between words and external distances

from outer characters to non-text objects. Mean, variance and standard variance of

the distances are usually estimated based on large cases of texts in scenes and used

as thresholds for grouping and splitting. There is an idea that proposals can be gene-

rated from a dendrogram built based on distances, where the closest atomic regions

are grouped first and followed by farther ones. In [19], this idea has been adopted,

and the internal distances has been combined with other geographic features.

In this chapter, we propose a solution that can provide a dendrogram based on

internal distances between atomic regions without calculating their distances. The

idea is inspired by the process of a max-pooling layer in the deep learning network

architecture. Two components have been adopted as a pooling window and strides.

The stride what helps to shrink size of feature maps is adopted to shift atomic

regions closer to each others. The pooling window is applied to select features for

a new feature map and make grouping decisions concurrently. Atomic regions are

grouped together if their pixels exist under a given pooling window. An iteration

process is also employed to build a dendrogram grouping solution based on which

scene text proposals have been generated.

4.1 Methodology

The proposed scene text proposal technique is developed following the general

object proposal framework including two main steps as a proposal generation and a

proposal scoring/ranking. In the proposal generation, texts are first localized base
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Figure 4.1 – The framework of the proposed scene text proposal technique, inclu-

ding a max-pooling based grouping strategy for scene text proposal generation and

a low-level feature based proposal ranking (CCL : Connected Component Labelling,

MPG : Max-Pooling based Grouping, FG : Feature Generation, PSR : Proposal

Scoring Ranking)

on their edges. We adopted the Canny edge detection method [90] for generating a

binary edge map. These edges could be a path of character, a character, a group

of characters, a word, or text lines. Edges are then grouped together into proposals

by an iterating max pooling process. Bounding box of each group is estimated by

covering entire edges in a group. The proposal scoring/ranking strategy is proposed

by using histogram of oriented gradients on edge pixels extracted from oriented

gradient map as proposals’ feature vectors and adopting Euclidean distance function

for scoring. Scored proposals are then sorted in the descending order in which the

high probability of text proposals are usually in the top of the list. Figure 4.1 depicts

the proposed framework on an example image.

4.1.1 Max-pooling based scene text proposal generation

A max-pooling based grouping strategy is our novel contribution in this proposed

scene text proposal technique. It is inspired by a pooling layer in a convolution neural

network, which is used to eliminating insignificant features in a feature map while

shrinking feature map size. In our framework, it is exploited on labelled edge maps

which is generated from Canny binary edge maps by labelling connected components

(CCs). Each CC is labelled by a number indicating when it has been found during
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Figure 4.2 – Illustration of the proposed max-pooling based scene text proposal

generation with max-pooling window size of 1-by-3 and a stride of 1 in vertical

direction and a stride of 2 in horizontal direction on the synthetic labelled map,

detail in the second row. Zeros-padding was performed when the number of column

is even. Duplicate proposals removed after the pooling process and six proposals

have been generated, including three connected components itself and three found

groups.

a CC searching process. For example, the first found CC is labelled by a number

of 1. The number increases after finding a new CC, and the last found CC will be

labelled by the highest number. In a labelled feature map, edge pixels in the same

CC are assigned the same number as the label of that CC, and non-edge pixels are

zeros. Under a given pooling window, only the highest labelled pixel is remained

for generating a next labelled edge map, other lower labelled pixels are discarded,

including zero-label pixels. Consequently, CCs are gradually shifted to each others.

A pooling processes is exploited in multi-iteration. CCs that are neighbours to each
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Figure 4.3 – A synthetic example explains how horizontal pooling window and

horizontal stride can group non-horizontal texts. The red two-direction arrows are

links found in a max-pooling process to group connected components into proposals.

This strategy is only false when connected components are not overlapping a part

in vertical direction as shown in the right labelled map.

other are grouped first and further CCs are merged into groups at later pooling

iterations. The iteration process terminates when there is no zero pixel existing in

the labelled map, meaning that there is no more gap between CCs.

Figure 4.2 is a visualization of the max pooling process on a synthetic labelled

edge map containing 3 CCs which are labelled by 1, 2, and 3. The zero-label pixels

are non edge pixels and they are eliminated gradually after iterations. The closest

CCs are grouped first and followed by the further CCs. For example, we have a

group of CC1-CC2 at the second iteration and then a group of CC2-CC3 at the

third iteration when we launch the pooling process on the second row of the labelled

edge map. In order to make the max-pooling process work properly, we provide a

zero-padding at the right most position when the number of columns is even. Since

the max-pooling process finished, found groups are collected and duplicate ones

are removed. Based on grouped CCs, bounding boxes are generated, which are the

smallest rectangle boxes that cover whole edge pixels in corresponding groups.

Even-though a pooling and stride are in horizontal direction as 1-by-3 and [1,2]
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(row x column) respectively, the proposed max-pooling based grouping is able to

capture non-horizontal texts that include CCs overlapping a path in the vertical

direction. As the synthetic example is shown in Figure 4.3, a curve text (1-2-3-4-5-

6) can be localized easily due to their vertical overlapping. CCs which do not contain

vertical overlap also can be grouped by overlapping with other CCs proposal regions.

For example, the CC1 and CC4 are grouped together because both CCs are grouped

with the CC2. This strategy is only false when texts are totally vertical which is

shown in the right synthetic labelled map.

4.1.2 Proposal ranking

Histogram of oriented gradient is a proper feature vector for object detection

and classification [35, 68]. In the proposed ranking strategy, this concept has been

adopted with a variance that an orientation histogram is estimated only on edge

pixels, instead of whole pixels in the analysing areas. To clarify, we named it as

Histogram of Oriented Gradient on edges (HoGe). Proposal scores are estimated

based on correlation between their HoGe feature vector and text/nontext HoGe

template feature vectors extracted from training sets, referring to Section 4.2 for a

detail discussion how the templates were generated. The score function is shown in

Equation 4.1.

s =
∑ Ci_id · kCi_idx−1

D(Ci, F ) (4.1)

D(Ci, F ) is a Euclidean distance between two vectors Ci and F , where Ci and

F are a HoGe template vector i and a HoGe feature vector of a given proposal,

respectively. The Ci_id is a class identification number of the template i. It is 1

for a text template and 0 for a non-text template. The Ci_idx is an index of the

template i in the sorted templates list according to its Euclidean distance to the

proposal feature vector F . The index are from N to 1 for templates that are from

the farthest to the shortest distance to F , where N is the number of template vectors

in both classes. The parameter k is a real number. It should be higher than 1 to

ensure positive correlation between indexes and score. It has been set at 1.01 in

the proposed technique. According to Equation 4.1, if the vector F is closer to text

template vectors, the numerator will be larger and the denominator will be smaller.
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Figure 4.4 – Illustration of the designed scoring function. A proposal is ranked

based on the distance between its feature vector and a set of pre-constructed text

and non-text feature templates labelled by 1 (a text class) and 0 (a non-text class).

These distances di are sorted in an increasing order (c) based on which the pre-

constructed templates are then sorted (d)

It leads to a higher score to the evaluating proposal. A visualization of the proposed

scoring function is shown in Figure 4.4 simplifying with 4 template vectors in each

class.

4.1.3 Maxpooling based scene text proposal implementa-

tion

The MPT technique is implemented using Matlab for reading images, generating

binary Canny edge maps, evaluating technique performances, and saving evaluated

results, and using C++ for generating and scoring scene text proposals. Its main

functions include the connected component grouping and the proposal boxes genera-

tor. The detail of the MPT class is depicted in Appendix. In the below MPT pseudo
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codes, Matlab based functions are highlighted in white backgrounds and C++ based

functions are highlighted in gray backgrounds.

————————————————————————————–
Algorithm : Max-pooling based scene text proposal (MPT)
————————————————————————————–
//Import an image and text/non-text centroids

Img = imread(’image address’) ;

Centroids = load(’centroids address’) ;

//Create a binary edge map (E), an oriented gradient map (O)

[E,O,–] = CannyEdgeDetector(Img) ;

//Generate scene text proposals

ppb = MPT(E,O,Centroids) ;

//Sort proposal boxes in the descending order

ppb = boxsort(ppb) ;

//Evaluate scene text proposal performance. The gtb is the ground truth of a cor-

responding image

Recall = PPBeval(ppb,gtb) ;

//Save evaluated performance

save(’Recall.mat’,’Recall’) ;

————————————————————–
Function : Max-pooling based grouping
————————————————————–
//An input of the max-pooling grouping method is a labelled map (LabelledM) in

which pixel is labelled as an ID of a connected component to which it belongs.

Maxdis = 1 ;

//Generate a list of pooling window

PWList = PoolingWindowGens(window_size, stride) ;

GroupedCCs = [ ] ;

While Maxdis > 0 :

Maxdis = 0 ;

//Generate TemM having a size calculated from a size of LabelledM and stride

va -lues (Hstride, Vstride)
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TemM = MatrixInit(LabeledM.c/Hstride, LabeledM.h/Vstride) ;

LocalGroupedCCs = [ ] ;

for w in PWList :

CropedM = Crop(LabeledM, w) ;

[GCCs, localmaxdis, newpixels] = MaxPooling(CropedM) ;

TemM[r, c] = newpixels ;

LocalGroupedCCs.push_back(GCCs) ;

Maxdis = max(Maxdis, localmaxdis) ;

// Update LabelledM after max pooling process

LabeledM = TemM ;

//Eliminate duplicate groups of connected components

ShortedList = Clean(LocalGroupedCCs) ;

//Link connected components sharing the same connection

LinkedList = Link(ShortedList) ;

GroupedCCs.push_back(LinkedList) ;

return(GroupedCCs) ;

————————————————
Function : Proposal boxes generator
————————————————
//Inputs of the proposal boxes generator function are a grouped connected component

(GroupCCs) generated by the proposed grouping function, a labelled map (Label-

ledM), an oriented gradient map (O), and text/non-textt centroid (Centroids).

ppb = [ ] ;

for Group in GroupedCCs :

HoGFV = HoGFeatureVectorExtract(Group, LabelledM, O) ;

s = BoxScore(HoGFV, Centroids) ;

[x, y, w, h] = BoxGens(Group) ;

ppb.push_back([x, y, w, h, s]) ;

return(ppb) ;
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4.2 Parameters optimization

There are four variable parameters in the proposed scene text proposal tech-

nique : size of pooling window, and stride values for the proposal generation, as well

as a dimension of HoGe feature vectors and a number of templates in each class

for the proposal ranking. They are essential parameters and impact significantly

on performance of the proposed technique. The optimization process for these four

parameters is simplified into two steps. The first is to optimize sizes of a pooling win-

dow and stride values to achieve the best recall rate without considering a number of

proposals. The second is to optimize a number of dimensions of feature vectors and

a number of templates to sort the best proposals to the top of a proposal list. Hence,

the proposed technique can achieve the best performance under a limited number of

proposals. It means that the first step focuses on providing as much as possible good

proposals and the second step focusses on sorting proposals. Both steps are deployed

on training images of the ICDAR2013 dataset [2] and the ICDAR2003 dataset [81].

The Street View Text (SVT) dataset [3] is not used because its ground truth boxes

are not close enough to true text objects for the IoU based recall evaluation, as

example images are shown in Figure 3.6. The following subsections discuss these

two optimization processes in detail.

Proposal generation optimization

In this optimization process, a limitation on a number of proposals is relaxed.

Whole generated proposals are collected for evaluation. The goal is to find the best

combination between size of pooling window and strides that can provide the maxi-

mal number of good proposals. Since this process does not need a training phase, all

training images in the two ICDAR datasets are utilized as a validation set, contai-

ning 479 images. The sizes of a pooling window and strides are varied from 1 to

5 in a row and a column. The pooling window size of 1 × 1 does not provide any

grouping, hence this case is ignored. Therefore, there are (24x25=) 600 combinations

evaluated. Figure 4.5 presents performance of the proposed proposal techniques in

a heat-map, where columns present pooling window sizes, and rows present strides.

Pixel values are average system’s recall in three different IoU thresholds : 0.5, 0.7,
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Figure 4.5 – The heat-map presents performances of the proposed proposal tech-

nique on the validation set constructed from training images of the two datasets :

ICDAR2003 and ICDAR2013, at different combinations between sizes of pooling

window and strides. The limitation on a number of proposals is relaxed in this eva-

luation. The heat-map shows that the optimal combination is a horizontal pooling

window of 1× 3 and a horizontal stride of [1,2].

and 0.8. As the illustration in Figure 4.5, peak values are always at the crossing po-

sitions of horizontal strides and horizontal pooling windows. We picked these pixels

and filled in the top-right table. The best recall of 90.59% is found at the combi-

nation between the horizontal pooling window of 1 × 3, the horizontal stride of 2

and the vertical stride of 1. This is the optimal combination and is implemented

in the proposed proposal technique. The recalls of the proposed technique at three

different IoU thresholds on joined training images are presented in the bottom-right

table in Figure 4.5.

Discussion : There are three essential factors in this technique affecting quality

of generated proposals. The first is a pooling window size. It can refer to the smallest

distance between connected components in a labelled map, which can be captured

by the proposed technique. For example, a large pooling window such as 5×5 cannot
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find differences between distances of two, three, four pixels, while a small pooling

window such as 2× 2 can provide different groups for connected components having

distances of one pixel first and later for connected components having distances of

two pixels, three pixels and so on. The second is shape of pooling window and strides.

The horizontal direction of both components is more productive than the vertical

direction. It could be because most texts are in horizontal direction in causal scenes.

As shown in the performance heat-map, the recalls of the proposed technique are

extremely low at the vertical pooling window (the pooling windows have a width of

one pixel). At fixed pooling windows width, the proposed technique’s performance

is usually decreasing following the increase of pooling window heights. These pheno-

mena are similar to stride values. A recall rate is decreasing when a vertical stride

turns larger than a horizontal stride and pooling windows are fixed. Furthermore,

among horizontal pooling windows, larger-than-one-height windows can increase an

ability to handle vertical texts which is a weakness of the proposed technique as

mentioned in Section 4.1.1. However, it contemporarily merges text connected com-

ponents with other non-text connected components in its vertical direction. It is

conceivable to note that this capacity will pull recall rates down when there are

a lot of non-text connected components around text connected components. It is

the reason why one-height pooling windows usually provide the best recall rate at

different window width. The third is the overlap between pooling windows in an

iteration. The overlap is happen when stride values are smaller than pooling win-

dows at corresponding directions. Usually, at a pooling widow size, the smaller stride

provide the better recall rate, meaning that larger overlap between pooling windows

provide the higher number of good proposals. In a case of non overlap, recall rates

are extremely low in comparison with the best performance.

Proposal ranking optimization

This optimization step assumes that we already have the best proposal list and it

tunes a number of dimensions of the HoGe feature vector and a number of templates

in each class to search for optimal values that provide the best sorting solution giving

the best recall rate under limited number of proposals. The training images are then
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Figure 4.6 – The heat-map presents performances of the proposed technique on the

evaluation set achieved from the ICDAR2013 and ICDAR2003 dataset on different

combinations of a number of templates and a number of HoGe bins. Its contrast

has been enhanced by subtracting pixel values by 0.9 and normalizing into a range

of [0,1]. The best performance has been found when a number of templates and a

number of HoGe bins are (600, 30), (650, 30), and (550, 40). Their recall rates at

different IoU thresholds are presented in detail in the selected area.

divided into two sets. One is a training set which contains 80% number of training

images. Remained training images are in a validation set. True text regions are

located by ground truth boxes and good proposal boxes, which are generated by

the proposed scene text proposal technique and have more than 50% overlapping

with ground truth boxes. Non-text regions are proposal boxes that do not overlap

with any ground truth box. From the training set, we create a training regions set.

K-mean algorithm is applied on HoGe feature vectors of the training regions set

to generate K centroids referring to feature vector templates. At a given validating

image, proposal boxes are generated. Their HoGe feature vectors are extracted and

distances to generated templates are measured to calculate their text confidence

scores. Only 2000 proposal boxes in a sorted list are utilized to evaluate performance.
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A number of bins in a histogram refers to a number of dimensions of the HoGe

feature vector, and it is varied from 10 to 180 with an internal step of 10. A number

of templates in each class is varied from 50 to 1000 with an internal step of 50. At

each combination of two parameters, templates of each class are generated based on

the training regions set and then performance of the proposed technique is validated

in the validation set using recall rates at different IoU thresholds as 0.5, 0.7 and 0.8.

Figure 4.6 shows a heat-map which is generated by system performances at these

different combinations. Note that the heat-map has been enhanced contrast for

better visualization by subtracting pixel values by 0.9 and normalizing into a range

of [0,1]. Each pixel is an average performance of the proposed technique at three

difference IoU thresholds. The whiter pixels present the better performances, and

they are found at three combinations (600, 30), (650, 30), and (550, 40). The first

number is a number of templates and the second number is a dimension of feature

vectors. The combination of (600, 30) is selected to implement in the proposed

technique due to the smallest number of computations.

4.3 Experiments and results

4.3.1 Evaluation set-up

The proposed max-pooling based scene text proposal technique is evaluated and

compared to state-of-the-art techniques on the two public scene text datasets inclu-

ding the robust reading competition 2013 (ICDAR2013) [2] and the street view text

(SVT) [3] which are described in Section 1.6.1. During our evaluation, there is only

2000 proposals selected due to a trade-off between system efficiency and accuracy

mentioned in [79]. According to optimization in Section 4.2, a pooling window size

of 1×3 and a stride of 1 and 2 in horizontal-vertical directions are set-up to generate

proposals, and a feature dimension of 30 and a number of template of 600 are set-up

to score proposals, in the proposed technique.
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4.3.2 Comparing with state-of-the-art object proposal me-

thods

Performance of the proposed technique is compared to state-of-the-art scene text

proposal techniques, including Text Edge Box (TEB), Simple Selective Search for

Text Proposal (TP) [19], Symmetry Text Line (STL) [24], DeepText (DT) [21], and

Weakly Supervised Text Attention Network (WeakCNN) [31]. In addition, we also

compare to state-of-the-art generic object proposal methods that are EdgeBox (EB)

[26], Geodesic (GOP) [91], Randomized Prime (RP) [92], and Multiscale Combina-

tion Grouping (MCG) [93]. Parameters of those comparison techniques are adopted

from their published codes and papers. Most of compared techniques is programmed

in Matlab, excluding TP and STL which are implemented in C++. All techniques

are executed in a HP workstation computer with Intel Xeon 3.5GHzx12 CPU, and

32 GB Ram.

Figure 4.7 shows comparisons in the variations of the number of proposals at

different IoU threshold at 0.5, 0.7 and 0.8 (the left-column graphs) and the variations

of an IoU threshold at a limitation on a number of proposals at 100, 500, and 1000

(the right-column graphs) on the ICDAR2013 dataset. In the left-column graphs,

the proposed technique outperforms other techniques, excluding DT at IoU of 0.5,

which was built on a deep learning frame work. In the right-column graphs, the

DT technique is a competitive technique when the IoU threshold is in a range of

(0.5, 0.6). However, its performance drops dramatically following an increasing IoU

threshold. The TP, STL, and WeakCNN are more stable than the DT because of

their included hand-craft text specific features. Nevertheless, their performances are

lower than the proposed technique until the IoU threshold of 0.9, which is unusually

used in real applications. The MPT also outperforms our previous technique as the

TEB in different cases of number of proposals and IoU thresholds. Note that the DT

technique only provides maximally 500 proposals per image. In those graphs, there is

no generic object proposal technique exceeding performances of the proposed MPT

technique.

We also evaluate and compare scene text proposal techniques based on an average

number of proposals and processing time on the two testing datasets. Those results
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Figure 4.7 – Comparison of the proposed Max-pooling based scene text proposal

technique (MPT) to other state-of-the-art techniques on the ICDAR2013 dataset

[2], in difference of a number of proposals and IoU thresholds. Comparable tech-

niques include both scene tex proposal techniques : Text Edge Boxes (TEB), Simple

Selective Search for Scene Text Proposal (TP) [19], Symmetry Text Line (STL) [24],

Deep Text (DT) [21], and Weakly Supervised Text Attention Network (WeakCNN)

[31] ; and generic object proposal techniques : EdgeBoxes (EB) [26], Geodesic (GOP)

[91], Randomized Prime (RP) [92], and Multiscale Combination Grouping (MCG)

[93]
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Table 4.1 – Recall (%) and processing time (in second) of the proposed MPT and

other state-of-the-art techniques under different IoU thresholds on the ICDAR2013

dataset. The Nppb denotes an average number of proposals that the techniques need

to achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
MPT 96.16 88.77 82.1 1450 4.49

TEB [25] 94.25 87.95 81.55 1777 5.4
TP [19] 84.47 71.32 65.11 1907 5.17
STL [24] 79.78 62.04 49.91 1034 361.3
DT [21] 88.5 67 4 500 −

WeakCNN [31] 90 86.5 77 1000 −
EB [26] 76.93 48.81 27.67 1968 1.02
GOP [91] 45.68 19.39 11.76 1040 4.3
RP [92] 66.91 36.95 19.3 1917 10.07

MCG [93] 56.16 36.21 27.02 550 28.92

are shown in Tables 4.1 and 4.2. The proposed MPT technique always achieves

the best recall rate in most cases of IoU threshold on the two datasets. The TP is

very competitive technique ; however, it requests a larger number of proposals to be

comparable and processes slower than the proposed technique. The EB is the most

efficient technique that need around a second to process an image. The DT and

MCG provide the smallest number of proposals as around 500. Nevertheless, their

performances are much lower than the MPT’s performance.

Performances of the proposed technique and two other state-of-the-art scene

text proposals on some example images from the SVT and ICDAR2013 datasets

have been illustrated in Figure 4.8. In various challenges of text distortions such

as text size variation (the first column), certain image blurs (the third column -

the fourth column), uneven illumination (the second column), and non-horizontal

orientation (the fifth column), the proposed technique always handles better than

other competitive techniques. It may fails when text objects are ultra-low contrast,

strong blur as showed in the right most image. These texts could be lost due to a edge

detector capacities. Indexes of good proposals, which overlap with corresponding

ground truth boxes over 80%, in the sorted proposal list are tracked and presented
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Table 4.2 – Recall (%) and processing time (in second) of the proposed MPT and

other state-of-the-art techniques under different IoU thresholds on the SVT dataset.

The Nppb denotes an average number of proposals that the techniques need to

achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
MPT 88.41 46.99 21.48 1769 3.59

TEB [25] 87.64 47.91 20.09 1890 2.2
TP [19] 74.65 42.5 21.33 1972 5.94
STL [24] 77.13 31.07 10.36 1358 433.82
EB [26] 76.35 47.45 23.96 2000 1.28
GOP [91] 52.09 18.24 6.8 1117 3.78
RP [92] 62.6 27.05 12.21 2000 8.02

MCG [93] 54.71 24.27 8.66 557 14.97

under each image. Note that there are many good proposals for a given ground truth

box, and only the smallest index proposals are presented. In comparison with other

techniques, the proposed technique usually sorts good proposals at the smallest

order.

The most attribution of this impressive achieved performance is a grouping stra-

tegy that focuses on popular text appearance in scenes : characters usually stay in

a group to form words or sentences, and internal distances between characters are

usually smaller than distances between outer characters to other objects round texts.

The proposed grouping strategy also supports linking broken connected components

of the same text object. In comparison to another edge based proposal technique as

EB [26], the two techniques have two similar processes that connected components

are searched on an edge map, and bounding boxes are generated based on outer edge

pixels of each group. The difference is only a grouping strategy and this difference

provides a huge gap performance between two techniques. Due to a simple imple-

mentation that does not contain either distance calculation or threshold comparison,

the proposal generation executes efficiently. The HoGe based proposal ranking par-

ticipates to shift good proposals to the top of a sorted list. It is also a significant

attribution for the state-of-the-art performance of the proposed technique when a
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Figure 4.8 – Performance of the proposed technique MPT and two competitive

techniques STL and TP on some images in the two generic scene text datasets.

The numbers under each image are the smallest orders where good proposals are

found in the list respecting to each ground truth. The good proposals are proposals

that overlap with ground truth boxes over 80%. Noted that there are many good

proposals respecting to a ground truth in the proposal list. However, only the top

proposal respecting to each ground truth box in each image is shown because of

illustration purpose.

number of proposals is limited.

4.4 Conclusion

This chapter presents a max-pooling based scene text proposal technique. The

proposed technique is inspired by the CNN max-pooling layer, which is capable of

grouping image edges into words and text lines accurately and efficiently. A novel

score function is also designed, which is capable of ranking proposals according to

their probabilities of being text and accordingly helps to reduce the number of false

positive proposals greatly. Further, the proposed proposal technique does not rely on

those heuristic thresholds/parameters such as text sizes, inter-character distances,

and so on, which are widely used in many existing techniques. Extensive experiments

81



4.4. CONCLUSION CHAPTER 4. MAX-POOLING SCENE TEXT PROPOSAL

show that the max-pooling based proposal technique achieves superior performance

as compared with state-of-the-arts, including techniques developed based on the

deep learning framework.
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In the two preceding chapters, we proposed two state-of-the-art scene text pro-

posal techniques including the Text Edge Box (TEB) and the Max Pooling Text

(MPT), which are able to localize texts appearing in different fonts, sizes, colors

and under different distortions due to environment conditions such as uneven light,

occlusion, perspective, and so on. In this chapter, we are going to develop end-to-end

scene text reading systems based on those proposed scene text proposal techniques.

Further, we design an online scene text spotting system aiming to assist people in

searching their keywords in given images which are captured or uploaded by their
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own devices.

A traditional framework of a scene text reading system consists of two main tasks

as a scene text detection and a scene text recognition as described in Section 1.3. At

least, two machine learning models are needed to handle these two tasks sequentially.

It will consumes a huge processing time and computing resources. In recent years, a

hybrid framework is a raising interest, and it is proposed to overcome this weakness

[20, 19, 24], in which texts have been detected and recognized concurrently. Inspired

by this advantage, the hybrid framework has been adopted to develop our scene

text reading systems. State-of-the-art scene text recognition models are employed

and built on top of scene text proposal techniques to clarify true text proposals from

the rests and recognize actual words in proposals.

Designing an automatic scene text reading system is not only to evaluate in-

fluence of scene text proposal performances on performances of end-to-end scene

text reading systems but also targeted to archive state-of-the-art scene text reading

performance in competition with other existing systems. In fact, the proposed sys-

tem outperforms other recent systems including hands-craft features based [20] and

deep learning based [50, 76, 77] on public scene text datasets.

The online scene text searching application utilizes the proposed automatic scene

text reading system as a back-end program. The interface between users and the

back-end program has been designed using web design language. The application

allows users to capture images using integrated cameras on their smart devices as

input images and to provide keywords which they want to search on the captured

images. In contextualization of searching targeted keywords, the proposed online

scene text searching application is compared with the google translate application

[5]. As comparison results, the proposed application outperforms the google appli-

cation ; however, its processing time is less efficient than the application of google.
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Figure 5.1 – A framework of the proposed automatic scene text reading system

consists of proposed scene text proposal techniques for searching text locations in

scene images and the scene text detection/recognition for eliminating false positive

proposals and reading actual words in proposals.

5.1 Automatic scene text reading system

5.1.1 System framework

In this section, we present our two proposed automatic scene text reading systems

which are developed base on two proposed scene text proposal techniques. The state-

of-the-art scene text recognition model provided by Jaderberg [78] is adopted to deal

with both a text/non-text classification and a scene text recognition. The proposed

framework has been shown in Figure 5.1. An input image is first fed into the proposed

scene text proposals for searching potential text regions that have high probabilities

of being text. Top n proposals in a sorted proposal list are collected and the rests
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are discarded. Collected proposals are then passed to the scene text recognition

model for achieving recognized words and recognition scores. The proposal filter

process includes three phases. In the first phase, non-text proposals are filtered out

by using recognition score thresholds and lexicon lists, which are accompanied with

images. Particularly, proposals are discarded if their recognition scores are lower

than a threshold or their recognized words are not in the corresponding lexicon

lists. In term of unavailable lexicon list, proposals are discarded using a recognition

threshold only. In the second phase, the non-maximum suppression algorithm (NMS)

is adopted to remove low recognition score proposals when they overlap with the

higher recognition score ones larger than the Intersection over Union threshold (IoU).

The smaller IoU threshold will let the proposed system remove the larger number

of proposals. However, too small IoU threshold can degrade system performance

because some true text proposals also can be eliminated when they overlap with

other higher score true text proposals. In the proposed system, the IoU threshold is

implemented at 0.1 for removing a vast number of non-text proposals while being

able to maintain true text proposals. We also proposed a word-based NMS algorithm

as the third phase of the proposal filter process. It considers proposals that overlap

each others and contain the same recognized words, and a proposal that has the

highest recognized score is maintained.

Table 5.1 – Recognition performance comparison between the Jaderderg’s model

and other deep learning based models [62, 64, 65] on three scene text datasets :

SVT, IC03, and IC13 in different modes including a lexicon mode and a non-lexicon

mode (xx-None). This comparison shows that the Jaderberg’s model outperforms

other models in the non-lexicon mode where recognized words are not corrected by

lexicons.

Model SVT-50 SVT-None IC03-50 IC03-50k IC03-None IC13-None
Jar’s model [66] 95.4 80.7 98.7 93.3 93.1 90.8
CRNN model [62] 96.4 80.7 98.7 95.5 89.4 86.7
TextAttCNN[65] 97.4 82.7 98.7 96.7 89.2 88
IrrTReader[64] 95.2 - 97.7 - - -
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In designing this framework, we also consider to adopt other state-of-the-art

scene text recognition models including the CRNN model [62], the IrregularTex-

tReader [64], the CNN Text Attention model [65]. These models are developed base

on the deep learning framework consisting of several convolution layers for conver-

ting input images into feature sequences, and bilateral Recurrent Neural Network

(RNN) [64] or Long Short Term Memories (LSTM) [62] or another CNN model [65]

for predicting a label distribution of each feature vector. Building on top of these

models’ architecture is a transcription layer which adopts the Connectionist Tem-

poral Classification (CTC) network to convert sequences of label distributions into

predicted words. In comparison with the Jaderber’s recognition model, these models

have an advantage that they can predict strange words which do not exist in the

90k-word dictionary on which they are trained because they treat an input image

as a sequence of characters. However, this ability leads these models to be false in

recognizing word due to wrong recognition, miss or false recognition of one or some

characters in a word. It could be a reason why they achieve inferior performance to

the Jardeberg’s model in none-lexicon mode while provides superior performance in

lexicon mode, as shown in Table 5.1. Therefore, the Jaderberg’s model has been se-

lected as a recognition model of the proposed end-to-end scene text reading system.

5.1.2 Scene text reading system implementation

The automatic scene text reading systems consists of a proposed scene text

proposal technique (TEB or MPT) and the state-of-the-art scene text recognition

models proposed by Jaderberg [66]. The system is almost implemented in Matlab,

excluding the scene text proposal technique which was already developed in C++.

The pseudo code of the proposed automatic scene text reading system is exposed

below. Lexicon is a list of suggested words which are provided along with each

image and used to guide the scene text recognition model to predict words.

——————————————————————
System : An automatic scene text reading system
——————————————————————
//Inputs of the automatic scene text reading system are an image (Img) and a

lexicon list (Lexicon) when it is available.
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Scale = [1, 0.5, 0.25, 0.125] ;

RecognizedThreshold = 0.7 ;

Net = GetRecognitionModel(’Net address’) ;

Centroids = Load(’Centroid address’) ;

ppb = [ ] ;

for sc in Scale :

S_Img = imresize(Img,sc) ;

for k from 1 to 4 :

if k < 4 :

I = S_Img( :, :,k) ;

else :

I = rgb2gray(S_Img) ;

[E,G,O] = CannyEdgeDetector(I) ;

//Proposal generation

if TEB :

boxes = TEB(E, G, O) ;

if MPT :

boxes = MPT(E,O,Centroids) ;

ppb = [ppb ;boxes] ;

ppb = boxsort(ppb) ;

//Get top 2000 proposal boxes

ppb = ppb(min(2000,size(ppb,1)), :) ;

//Proposal recognition

PredictedWords = {} ;

Recognizedppb = [ ] ;

for box in ppb :

CropedImg = ImageCrop(Img,box) ;

[s, predictedword] = Net(CropedImg) ;

Recognizedppb = [Recognizedppb ;[box[1 :4] s]] ;

PredictedWords{end+1} = predictedwords ;

//Eliminate non-text proposals
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Keptppb = [ ] ;

KeptWords = { } ;

for id from 1 to length(PredictedWords) :

word = PredictedWords{id} ;

box = Recognizedppb[id, :] ;

if Lexicon is not None :

if word is in Lexicon and box[5]>RecognizedThreshold :

KeptWords{end+1} = word ;

Keptppb = [Keeppb ;box] ;

else :

if box[5]>RecognizedThreshold :

KeptWords{end+1} = word ;

Keptppb = [Keeppb ;box] ;

//Non maximal suppression (NMS)

[Keptppb,KeptWords] = NMS(Keptppb,KeptWords) ;

[Keptppb,KeptWords] = WordBasedNMS(Keptppb,KeptWords) ;

return(Keptppb,KeptWords) ;

5.1.3 Evaluation

Variants of the proposed systems

The recognition score threshold is an essential parameter of the proposed auto-

matic scene text reading system. The higher threshold is better to filter out false

positive proposals, however, it will degrade system performance in localizing chal-

lenging texts in scenes. We take this parameter in our consideration and evaluate

its contribution to performance of our two proposed scene text reading systems,

including a TEB based and a MPT based.

We vary the threshold of recognition score in a range of (0.1, 0.9) with an inter-

nal step of 0.1. Performances of two scene text proposal based scene text reading

systems are evaluated on the ICDAR2013 dataset and presented in Figure 5.2. The

F-measurement is calculated base on system precision and system recall as shown
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Figure 5.2 – Variants of the proposed scene text reading system under different

thresholds of recognition score and scene text proposal techniques. System perfor-

mances are evaluated on the ICDAR2013 dataset. The best variant is the system

developed based on max-pooling scene text proposal (MPT-based) at the threshold

of 0.7.

in equation 1.1. The best performance is found around the threshold of 0.7. The

increment of system performance in the range of (0.1,0.7) is because that system

precision improvement is much faster than system recall degradation. On the other

hand, system performance decreases in the range of (0.7, 0.9) due to effect of recall

degradation. In the full range of the recognition score threshold, the MPT based

scene text reading system always outperforms the TEB based system. Therefore, in

comparisons with recent state-of-the-art systems, the MPT based system with the

threshold of recognition score of 0.7 is utilized.

Comparison with state-of-the-art systems

In order to analyse the influence of scene text proposal performance on the end-

to-end scene text reading performance, we provided a series of scene text proposals

based systems which are constructed by applying our proposed automatic scene text

reading framework on the state-of-the-art scene text proposal techniques including
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MPT, TEB, TP, STL, EB. Their performances are evaluated by using the ICDAR

competition contextualizations including a word spotting evaluation and an end-

to-end evaluation as discuss in Section 1.6.3. These performances are presented in

Tables 5.2 and 5.3 for a word spotting systems and an end-to-end systems respecti-

vely. In this comparison, scene text proposal based systems are named following the

template [Scene Text Proposal method]_Sys.

Table 5.2 – Word spotting performance of the proposed automatic scene text rea-

ding system MPT-based and other scene text proposals based systems on Robust

Reading Competition 2013 Dataset (ICDAR2013) in the two contextualizations.

Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

EB_sys 55.26 66.81 60.49 54.79 57.48 56.10
STL_sys 61.8 85.32 71.68 61.45 81.30 69.99
TP_sys 66.47 89.47 79.27 65.07 82.40 72.72
TEB_sys 84.46 96.4 90.03 82.94 91.96 87.22
MPT_sys 88.20 97.42 92.58 87.85 95.31 91.43

Table 5.3 – End-to-End performance of the proposed automatic scene text rea-

ding system MPT_based and other scene text proposals based systems on Robust

Reading Competition 2013 Dataset (ICDAR2013) in the two contextualizations.

Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

EB_sys 52.67 65.80 58.51 52.24 56.69 54.37
STL_sys 59.65 85.70 70.13 59.43 81.10 68.60
TP_sys 63.90 88.12 74.08 62.70 81.21 70.77
TEB_sys 80.80 94.51 87.12 79.50 90 84.42
MPT_sys 84.08 96.13 89.70 83.86 93.89 88.59

According performances shown in the two tables, the two systems developed ba-

sed on the two proposed scene text proposal techniques (MPT and TEB) outperform

other scene text proposal based systems. Recalling scene text proposal performances

in Section 4.3.2, there is a correlation between scene text proposal performances

91



5.1. TEXT READING SYSTEM CHAPTER 5. AUTOMATIC SCENE TEXT READING SYSTEMS

Table 5.4 – Word spotting performance of the proposed automatic scene text rea-

ding system (MPT_based) and other state-of-the-art systems on the two scene text

datasets including the Street View Text with 50-word lexicon per an image (SVT-50)

and Robust Reading Competition 2013 Dataset (ICDAR2013) in the two contex-

tualizations.

SVT-50 Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

JarE2E [20] 68 86.68 94.64 90.49 - - -
ConvLSTM [76] - 84.93 98.91 91.39 84 97.29 90.16
DTSpotter [77] - - - 92.89 - - 89
TextBoxes [50] 84 90.77 97.25 93.90 87.38 97.02 91.95

MPT_sys 84.63 88.20 97.42 92.58 87.85 95.31 91.43

and scene text reading performances where the better scene text proposal technique

usually provides the better automated scene text reading system.

The best proposed automatic scene text reading system as the MPT based sys-

tem is then compared with state-of-the-art systems including the convLSTM [76],

the DeepTextSpotter [77], the TextBoxes [50] and the Jar_E2E [20]. The TextBoxes

system is the most state-of-the-art system in the scene text reading competition 2017

(http://rrc.cvc.uab.es/ ?ch=2&com=evaluation&task=4). It is a cascade of two deep

learning models : one is a scene text localization model inspired by the SSD network

[51] and one is a scene text recognition model developed by combining a convolu-

tion neural network, a long-short term memory model and a connectionist temporal

classification network. The convLSTM system applies a CNN based character re-

cognition model on multi-scale input images to generate character saliency maps

based on which licence plates are detected and its’ bounding boxes are refined based

on edge information. Characters in detected plates are finally recognized by a CNN

model consists of CNN layers for feature extraction and LSTM layers for sequence

recognition. The DeepTextSpotter is a trainable scene text reading system which

combines a scene text detection and a scene text recognition into a single CNN

network. The Jar_E2E system has been developed following the traditional scheme

that includes a scene text detection task and a scene text recognition task. The scene
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Table 5.5 – End-to-end performance of the proposed automatic scene text reading

system (MPT_based) and other state-of-the-art systems on the Robust Reading

Competition 2013 Dataset (ICDAR2013) in the two contextualizations.

Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

JarE2E [20] 82.12 91.05 86.35 - - -
ConvLSTM [76] 79.39 96.68 87.19 79.28 94.91 86.69
DTSpotter[77] - - 89 - - 86
TextBoxes [50] 87.68 95.83 91.57 84.51 95.44 89.65

MPT_sys 84.08 96.13 89.70 83.86 93.89 88.59

text detection is developed by combining two scene text proposal techniques inclu-

ding EdgeBoxes [26] and a Aggregate Channel Features based scene text proposal

for providing potential text regions. Histogram of gradient features are extracted at

each region and the random forest classifier is adopted for the text/non-text classi-

fication. Two deep learning based scene text recognition models are finally applied,

one for regressing bounding boxes and one for recognizing words in detected areas.

Please refer to section 2.2 for more details about these state-of-the-art systems.

As shown performance in two Tables 5.4 and 5.5, the proposed scene text reading

system provides competitive performances to state-of-the-art systems, even provides

superior performance to CNN based systems as DeepTextSpotter and convLSTM

in F-score measurement in two datasets. The TextBoxes is the most competitive

system where it provides better performance in almost measurements. However, it

provides less recall rate than the proposed system in the weak contextualization

scenario of the word spotting evaluation. Note that CNN based systems are trained

on a large number of images including 800.000 images in SynthText [82], 90k word

images in the Synthetic text dataset [78], and training images in the ICDAR2011, the

ICDAR2013, and the Street View Text, while the proposed system is only optimized

using 479 images in the ICDAR2003 and ICDAR2013 datasets.

Figure 5.3 shows a number of sample images that illustrate the performance

of our developed end-to-end scene text reading system. As Figure 5.3 shows, the

proposed technique is capable of detecting and recognizing challenging texts with
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Figure 5.3 – Several scene text detection and recognition examples where the pro-

posed scene text reading system succeeds (the first three rows) and fails (the last

row) : The red boxes are ground truth and the green boxes are detection boxes

provided by our proposed technique. The boxes with green-color background give

the recognition results (words containing less than three characters are ignored)
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Searching for “Chicken” in menu

(a)

Searching relevant words for detecting dangerous zones

(b)

Searching targeted word 
for navigation

(c)

There is a pharmacy 
in the left

Figure 5.4 – Several meaningful applications for a scene text searching application

including a searching keywords in menus (a), a danger alarm (b), and a navigation

(c).

small text size (the first image in the first row), poor illumination and motion blur

(the second images in the first and second rows), perspective distortion (the second

image in the third row and the third image in second row). The superior scene text

reading performance is largely due to the robustness of the proposed scene text

proposal technique and the integrated scene text recognition model. Note that the

proposed technique may fail when scene texts have ultra-low contrast or are printed

in certain odd styles as illustrated in the sample images in the last row.

5.2 Online scene text searching application

Scene texts based applications have been taken in consideration for aiming hu-

man life activities as discussions in Section 1.1 due to containing rich semantic

context information. The Orcam product is developed to support visual impairment

patients in reading books, magazines, menus, and so on. Google and Microsoft trans-

lators are very useful for tourists in understanding local or unlearned languages.

Inspired by the usefulness of texts searching tools in localizing keywords in do-

cuments, which supports users in finding quickly relevant paragraphs in documents,

we are intent on developing a similar text searching tool but it is applied for scene

texts instead. It could be useful for quickly pointing out relevant regions in images,
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from which related information can be extracted and applied for semantic analysis

systems such as scene understanding, navigation, and so on. For example, when

customers are reading a restaurant menu and looking for specific foods such as chi-

ckens, the developed system will capture an image of the menu, search for the word

"chicken", then localize where word "chicken" exist. Users then can find other re-

levant information such as dish names, food recipe as well as its price (Figure 5.4

(a)). For another example, we need a system that can detect dangerous zones and

notify users in advance. "Dangerous", "Caution", "Stop", and so on will be relevant

keywords which a danger detection system has to search in captured images. This

system will be useful for people who need special cares such as dementia patients

or elderly (Figure 5.4(b)). The scene text searching system is also useful for naviga-

tion which can be used to estimate direction based on detected texts and GPS data

(Figure 5.4(c))

In this Section, we will describe our proposed scene text searching system deve-

loped base on our proposed automated scene text reading system, which is used as a

back-end program. It is evaluated based on images captured by users and compared

with the Google translator application in contextualization of spotting keywords

in captured scenes. The application can be accessed by a web browser application

in any smart devices such as smart phones, tablets, and computers at the link :

dinh.ubismart.org:27790. The developed application can be further integrated in

another meaningful application, for example one has been described in Section 6.2.3

(Future Work).

5.2.1 System framework

Nowadays, smart devices such as mobile phones, tablets which have built-in

cameras become more and more popular and people is easy to capture their own

photos. In addition, internet network is more and more easy to access. Based on

this infrastructure, we adopt the server/client framework to deploy our proposed

scene text searching application. It is because the back-end program requires a high

computing system which mobile device hardware is not satisfied. The framework

of our proposed application is shown in Figure 5.5. Scene images are captured by
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Scene Text Proposal
Technique

Scene Text Recognition
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Taking a photo and filling keywords

Back-end program

Client Server

Internet
Connection

Figure 5.5 – A framework of the proposed scene text searching application based

on a client/server architecture. Clients can use a web browser application installed

in their smart devices to access our server for sending images and keywords and

receiving results. The proposed automatic scene text reading system is implemented

on a server as a back-end program to process clients’ requests.

using built-in cameras in client devices and keywords are provided by filling in text-

boxes or speaking to micro-phones. Captured images and keywords are then sent to

our server where the back-end program is executed. Detected texts are drawn on

captured images and returned to customers. The proposed application is developed

base on the web design platform and can be accessed by using web browsers. There is

advantages that it becomes independent of operation systems installed on customers’

devices such as window, ubuntu, android, iOS, and so on, and customers do not need

to install additional packages on their devices.

Web interface

The interface pages of the proposed application is presented in Figure 5.6 inclu-

ding four pages : an introduction page which explains how the proposed application

work, a data acquisition page where users process to take a photo and provide

keywords, a result page that shows system outputs, and an error page that gives

suggestions of errors. In order to provide keywords using speech, web-browsers in

customers’ devices have to support the google speech recognition system. In fact,

they have to use the chrome web-browser with a version over 25 or the safari web-

browser (for devices running iOS). Customers can activate this function by pressing
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1.a

(a)
Introduction page

(b)
Data acquisition page

(c)
Result page

(d)
Error page

Figure 5.6 – Web interface of the proposed application including four pages : an

introduction page, a data collection page, a result page and an error page. Button

1.a is to activate the speech recognition function. Text box 1 is to fill keywords or to

correct recognized keywords from the speech recognition function. Button 2 and 3

are to take a photo and send request to server. The error page is used to notify users

that they forgot to select a photo before sending and the button "TRY AGAIN"

helps them to navigate back to the data collection page.

on the micro-phone button (Figure 5.6b(1.a)) in the data collection page. Recogni-

zed keywords from speeches are automatically filled in the keywords text-box. Users

also can modify those recognized words by touching on the keywords text-box for

activating a keyboard which is used to rewrite/provide keywords (Figure 5.6b(1)).

For capturing an image, users can process through the "TAKE YOUR PHOTO"

button which support accessing cameras functions in their devices (Figure 5.6b(2)).

For their convenience, image orientation has also been recorded for refining image

later. Users do not need to have too much experience in capturing fine images. When

they touch on the "SEND" button (Figure 5.6b(3)), all required data including an

image, keywords, and an image orientation are packed into a form and sent to server.

Concurrently, web browser switches to the result page and waits for the returned

image (Figure 5.6c). If users forget to take a photo, the error page will be shown

up to remind them that they need to provide an input image (Figure 5.6d). The
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"TRY AGAIN" button is provided to help them go back to the data collection page.

If users forget to provide keywords, the proposed application still works properly ;

however, it will shown up all detected words in upload images.

Back-end program

The back-end system of the proposed scene text searching application is the

proposed automatic scene text reading system which has been built by integrating

our proposed scene text proposal technique with an existing scene text recognition

system. The RCNN scene text recognition model [62] which is presented in Section

2.2.2 is adopted for this back-end system instead of the Jaderberg’s model [78]. Des-

pite this change can degrade system performance of finding common words (which

are in 90k-word dictionary used to train scene text recognition models), it widens a

chance of finding untrained words, especially non English words in Latin-character

based languages such as French, German, and so on because it treats word images as

character sequences. The conditional probability of a predicted word is considered

as a recognition score, and the rest steps of the proposed scene text reading system

including a recognition score based proposal filter, a non maximum suppression, and

a word based non maximum suppression are maintained as described in Chapter 5

5.2.2 Scene text searching application implementation

The online scene text searching application is implemented in Python and C++

programming languages. It consists of two main parts : a web browser interface and

a back-end scene text spotting system. The web browser interface provides users

a convenient method to access our application. The flask python package which

can interact with html, css and Java-script languages is adopted to design our web

pages including a welcome page, a data collection page, a result page, and a fault

alert page. This package also handles a submitting action in which users can send

to our server their keywords and captured images. The pseudo codes of the web

browser interface are presented below. The back-end scene text spotting system is

implemented similarly to the proposed automatic scene text reading system, but in

Python programming language instead of Matlab language.
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————————————————————————————–
System : Web interface of the online scene text searching application
————————————————————————————–
//Call a welcome page. It is executed when users access the application link

def welcome() :

return render_template(’Welcome.html’)

//Call a data collected page. It is executed when users press a button in the welcome

// page

def Demo() :

return render_template(’Demo.html’)

//Call a data collected page. It is executed when users press a button in the fault

//alert page

def Comeback() :

return render_template(’Demo.html’)

//Call a uploading task. It is executed when users press the button "SEND" in the

// data collection page

def upload() :

try :

//’ImageOrientation’ is a parameter generated by the data collection page

ImageOrientation = request.form(’ImageOrientation’)

//Write the image orientation to a txt file which later is accessed by the

// back-end program

txtWrite(ImageOrientation,’Orientation.txt’)

//’Keywords’ is a parameter generated by the data collection page contai

// -ning keywords provided by users

keywords = request.form(’Keywords’)

//Write the keywords to a txt file which later is accessed by the back-end

// program

txtWrite(Keywords,’Keywords.txt’)

//Get an uploaded image

Images = request.files.getlist(’file’) :
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for I in Images :

//Save images to files. They are later accessed by the back-end pro

//gram

I.save(’File name’)

//Call a result page in which the back-end program outputs will be shown

return render_template(’Result.html’)

except :

//Call a fault alert page giving a suggestion that users forgot to provide

//an image

return render_template(’Error.html’)

5.2.3 Evaluation

In this evaluation, the proposed application has been evaluated on a set of images

collected from the incidental scene text dataset [1], which are captured by using a

google glass without focussing on scene text objects. In evaluation, we simulate hu-

man behaviour when they are going to search for specific words in natural scenes.

Each image is considered as a captured image taken by users and corresponding

keywords are provided. A fraction of keywords which are found successfully is used

to evaluate application performance. Following this evaluation scenario, the propo-

sed application is compared with the GoogleTrans application [5] which has been

developed to read texts in scene images and released onto the Google Play store and

the Apple store.

From the incidental scene text dataset [1] which contains 1500 images including

training images and testing images, 142 images are selected to build a dataset for this

evaluation. Selected images contain texts suffering a lot of degradation types such

as motion blur, non-horizontal orientation, decoration, perspective, illumination and

so on. Contained texts are mostly shops and restaurants name, traffic panels as well

as words referring dangerous and cautious situations which are useful for navigation

or danger detection applications. 217 keywords have been assigned for this dataset

provided by volunteers who look at images and give keywords they are interested
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1

2

Figure 5.7 – GoogleTrans interface and a solution to evaluate GoogleTrans perfor-

mance on our dataset. Step-by-step from 1 to 2 is a path to upload collected images

to the google search engine.

in.

In evaluation, images and keywords are provided to our proposed application

by using our data collection page. To evaluate the google translation application,

images are uploaded to the google scene text reading engine using the image upload

option as shown in Figure 5.7 following step 1 and 2 sequentially. For each image,

corresponding keywords are decided as successful search if and only if the keywords

are exist in detected words provided by this app.

Table 5.6 – Scene text searching performance and processing time of the proposed

application and the GoogleTrans app.

Proposed app GoogleTrans
Performance 48.7% 39.48%

Time processing(second) 17.98 2.34

Table 5.6 presents performances of these two applications. As the results shown

in Table, the proposed scene text searching application performs better than Goo-

gleTrans application with 8.22% improvement. However, it is less efficient than the

GoogleTrans application. The main reason is because our proposed application ana-
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lyses scene text proposals sequentially. In addition, computing system is also a reason

where the google scene text reading engine executes on a high computing system

while the proposed application launches on a personal desktop computer.

Three figures as Figure 5.8, Figure 5.9 and Figure 5.10 present performance of

two scene text searching applications on several example images in the evaluation

dataset. Figure 5.8 shows images where the proposed application outperforms the

GoogleTrans. In contrast, Figure 5.9 shows images where the GoogleTrans performs

better than our proposed application. Figure 5.10 illustrates images where both ap-

plications fail to detect and recognize keywords. In these figures, words presented

under images are keywords corresponding to images. As performance shown in Fi-

gure 5.8, the proposed application performs better than the GoogleTrans on texts

degraded by illumination (image (a) and (e)), non-horizontal texts (image (b)), blur

and decorated texts (image (c) and (d)). In contrast, the GoogleTrans is more re-

liable than the proposed application when scene texts are printed in standard fonts

as images in Figure 5.9, even ultra-low contrast texts as texts in Figure 5.9(f). Note

that two scene text searching applications are totally false when texts are printed

using art fonts (Figure 5.10(c,e)), under affected by both illumination and pers-

pective (Figure 5.10(b,d,f)). These weaknesses are still open challenges for future

developments.

5.3 Conclusion

In this chapter, an automatic scene text reading system has been proposed. It

has been developed based on our proposed scene text proposal techniques and the

Jaderberg’s scene text recognition model. Due to robustness of the two models, the

developed scene text reading system can detect and recognize texts under different

degradations. In comparison to state-of-the-art systems evaluated on two public

scene text datasets, it provides competitive performances in both an end-to-end and

a word-spotting contextualization evaluation.

A scene text searching application is also developed by using the proposed au-

tomatic scene text reading system as a back-end program. The web based interface
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has been designed aiming for help users interact conveniently with the back-end

program. Due to using web based scheme, our application can be easily accessed

by different devices such as smart phones, tablets, computers, in different operation

systems (Window, Linux, Android, and iOS). It also integrates with a speech re-

cognition engine developed by Google to provide a convenient data entry solution.

In comparison with a released application as GoogleTrans, the proposed application

provides better performances in term of searching for targeted keywords.
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Figure 5.8 – Several image examples on which the proposed scene text searching

application outperforms the GoogleTrans app. Detected boxes are drawn on images,

the green recognized words are from our proposed app and the yellow recognized

words are from the GoogleTrans app. The white boxes describe from where images

are cropped.
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Figure 5.9 – Example images on which the GoogleTrans app provides better per-

formance than the proposed app. The green recognized words are generated by the

proposed app and the yellow recognized words are generated by the GoogleTrans.

The white boxes describe from where images are cropped.
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(d) dueen (e) fusionopolis (f) Henderson waves

Figure 5.10 – Example images on which both proposed scene text searching app

and GoogleTrans app fail to detect and recognize words. Those words are degraded

uneven illumination, decoration purpose, and perspective. The white boxes describe

from where images are cropped.
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Chapter 6

Conclusion and future works
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6.1 Conclusion

In this thesis, we have contributed several techniques and systems on the scene

text detection and the scene text reading. Extensive evaluations on several scene text

datasets show that the proposed works outperform recent state-of-the-art works.

In Chapter 3, the proposed scene text proposal technique has been described,

which is adapted from the EdgeBox object proposal framework for scene text ob-

jects. Three major contributions are applied, including text specific edge-based low-

cue features for discriminating text edges from non-text edges, a text geographical

relationship based edge grouping solution for generating text proposals, and a text

geographical relationship based scoring function for ranking proposals. The propo-

sed scoring function is more simple than a Adaboost classifier and a deep learning

classifier which are used in the simple selective search for scene text proposal and

the DeepText technique, respectively. However, it performs better and sorts almost

109



6.1. CONCLUSION CHAPTER 6. CONCLUSION AND FUTURE WORKS

true text proposals in the top of the ranked list. This advantage is witnessed by

superior recall rates of the proposed technique under a limited number of proposals

at 2000.

In Chapter 4, the max-pooling based scene text proposal (MPT) has been propo-

sed. A novel edge grouping solution and a proposal scoring function are developed.

The proposed grouping solution is inspired by a max-pooling process in the deep

learning framework, and it merges connected components searched on binary Canny

edge maps into scene text proposals. Influences of pooling window size and stride

values are studied. An unique feature of the max-pooling grouping is that it does not

rely on any text specific heuristic rules for merging. A novel proposal scoring func-

tion is built up based on the Histogram of Oriented Gradient on edge pixels and the

K-mean cluster algorithm. The MPT technique outperforms state-of-the-art scene

text proposal techniques, including our developed technique as the Text-Edge-Box

in both recall rates and efficiency.

In Chapter 5, we designed an automatic scene text reading system, which is intent

on localizing and recognizing texts in scene images, and a scene text searching appli-

cation. A state-of-the-art scene text recognition model is adopted for both scene text

classification and scene text recognition, and it is built on top of our proposed scene

text proposal techniques which are the TEB and the MPT. False positive proposals

are eliminated based on a recognition confidence score threshold, lexicons, and non-

maximum suppression. In the scene text reading competition, the proposed system

provides state-of-the-art performance in two different evaluation contextualizations

including an end-to-end scene text reading and a scene text spotting. Utilizing the

developed automatic scene text reading system as a back-end program and adop-

ting a server-client communication framework, the scene text searching application

is developed. Users can access the application by using web browsers on their smart

devices. Input images are captured by client cameras and the proposed application

returns locations of provided keywords in output images if keywords are exist in

images. The proposed application is compared with the Google Translation applica-

tion in a contextualization of scene text searching and it provides better searching

performance while its efficiency needs to be improved.
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In the ensuing section, we will present future works which can be developed

based on proposed techniques and systems. A YoLo based scene text proposal tech-

nique is proposed, which adopts the YoLo network to provide scene text proposals.

Suggestions for improving performance of proposed techniques and systems are also

presented, including a new system design and a quadrilateral bounding boxes gene-

ration. In addition, we proposed a relevant scene text searching based application

for aiming elderly in their outdoor activities, including a navigation assistance, a

danger alert, a scene text searching and a direction estimation.

6.2 Future works

6.2.1 Deep learning based scene text proposal

Deep learning framework (DL) has been applied on several computer vision ap-

plications such as object detection, object recognition, scene text detection, scene

text recognition, and so on. These systems provided attractive performance in com-

parison with traditional frameworks developed base on hand-craft features. In recent

years, this framework is also adopted for scene text proposals [21, 22, 30, 31]. They

usually adapt the R-CNN framework for proposal generation by modifying the net-

work to provide much more number of detection boxes at each cell in a square grid

over image space. Proposal scores predicted by DL networks are seen as boxes confi-

dence scores. An advantage of this solution is that it processes more efficient than

traditional solutions. In this section, we propose a DL based scene text proposal tech-

nique which is constructed base on the YoLo9000 network architecture [89]. Note

that the developed network in this section is just a baseline version and it needs

further improvement as discussed in Section 6.2.1 to reach as well as outperform

recent state-of-the-art scene text proposal techniques.

YoLo network

Yolo is you-only-look-one. As its name, the model is developed to localize and

recognize objects with only one time scanning input images. An unique character

of YoLo network among most recent deep learning frameworks such as R-CNN [79],
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Figure 6.1 – YoLo framework consists of 19 convolution layers. Image space is

divided into 49 cells by a square grid of 7×7. At each cell, three bounding boxes are

predicted. Each box contains its coordinates (four parameters), its confidence score

(one parameter), and probability distribution of 9418 objects (9418 parameters). It

forms 28269 parameters as the third dimension of the output layer.

Fast and Faster R-CNN [80, 29] is that it performs coincidently both object lo-

calization and object recognition in the final prediction layers. Other frameworks

mostly separate these two tasks into two different layers including proposal genera-

tion layers (forms a region proposal network (RPN)) and object recognition layers.

This unique architecture brings YoLo several benefits including an extremely fast

process, a global reasoning over image space for generating and scoring bounding

boxes. Its architecture is shown in Figure 6.1

This architecture is inspired by the GoogleLeNet model [86] with a difference that

inception modules are replaced by proposed blocks in which a 1× 1 reduction layer

is followed by a 3×3 convolution layer. The output layer has a size of 7×7×28269,

where the 7×7 space presents a square grid covering over image space. At each grid

cell, the network predicts three bounding boxes. Each box contains five parameters

as x,y,w,h,s, where [x,y,w,h] is box coordinates and s is a box confident score, and

9418-class probability distribution. They form the third dimension of the output

layer as (3x(5+9418)=)28269 parameters.
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The YoLo model has been trained on the join dataset including the COCO

dataset [94] and the ImageNet dataset [95] to classify among 9000 classes. Multi-

scale training is also implemented for improving the network robustness to object

size variant. This flexibility is gained by converting last two fully connected layers

in the older YoLo version [96] into two convolution layers. Due to combining the

object localization task and the object detection task, a multi-part loss function is

applied for training and it is shown in Equation 6.1.

L = λcoord
S2∑
i=0

B∑
j=0
¶objij (xi − x̂i)2 + (yi − ŷi)2

+ λcoord
S2∑
i=0

B∑
j=0
¶objij (√wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2

+ λcoord
S2∑
i=0

B∑
j=0
¶objij (Ci − Ĉi)2

+ λnoobj
S2∑
i=0

B∑
j=0
¶noobjij (Ci − Ĉi)2

+
S2∑
i=0
¶obji

∑
c∈Classes

(pi(c)− p̂i(c))2 (6.1)

Where ¶obji denotes if object appears in cell i and ¶objij denotes that the jth bounding

box predictor in the cell i is "responsible" for that prediction.

There are two weaknesses of the YoLo model which can be considered for future

developments. Firstly, the YoLo model struggles in detecting small objects that stay

nearby each other and inside a grid cell, such as folks of birds. It is because there

is only one object detected in one grid cell. Secondly, a weakness comes from the

training process where it treats equally errors in small bounding boxes and in large

bounding boxes. In fact, small errors in large bounding boxes are generally benign

while small errors in small bounding boxes are great effect on the Intersection over

Union (IoU) loss.

YoLo based scene text proposal

In this proposed idea, the YoLo architecture is adopted to generate scene text

proposals. Three issues are addressed including a training process, model modifi-
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cation, and multi-scale prediction. Training process is to adjust pre-trained YoLo

weights from general objects sensitivity to scene text objects sensitivity. Model mo-

dification focuses on changing the output layer for providing a larger number of

proposal boxes and being suitable for two classes classification as text/non-text

instead of 9418 classes. Multi-scale prediction is implemented to support a mo-

del in handling text size variants. Network training process is implemented using

the Darknet library developed by authors of YoLo network, published at the link :

https://pjreddie.com/darknet/

Due to the output layer of YoLo network is designed to predict three bounding

boxes at each cell, the original YoLo network provides maximally 147(=7x7x3) boun-

ding boxes because some of generated boxes are eliminated by a confidence score

threshold as 0.5 and a non maximal suppression with IoU of 0.4. In order to adapt

this layer to generate scene text proposals, two modifications have been addressed.

First, we change the number of classes from 9418 to 2 referring two classes as text

and non-text. Second, a number of predicted boxes at each grid cell is increased

from 3 to n and it is set at 10 in the baseline model implementation. Therefore, the

third dimension of the output layer is ((5+2)*10 = )70 parameters. A confidence

score threshold and a non maximum suppression IoU threshold are also changed,

which are decreased from 0.5 to 0.1, and increased from 0.4 to 0.95 respectively.

In the training process, the developed model is first trained on a join dataset

consisting of training images in the ICDAR2013 dataset [2] and training images in

the Synthetic data [82]. Then, it is fine tuned again on the ICDAR2013 training

images. In order to enrich training datasets, which is very useful for training a

deep learning network, training images are also modified by adding noise, random

cropping, flipping, and rotating before forwarding to the network. Resolution of input

images is also varied to improve model’s robustness to different text sizes. However,

the input image size has to be a multiple of 32. Training hyper-parameters are

adopted from the YoLo training configuration, including batch size of 1, momentum

of 0.9, weight decay of 0.0005, initial learning rate of 0.01, learning rate decay of 0.1

after constant epochs, maximum number of epochs of 108.

In evaluation, we also apply a multi-scale input image solution to get a larger
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Figure 6.2 – Two example images with different scales and according grid sizes.

With a size of 96 × 96, two images in the left will be downscaled into a grid size

of 3 × 3 after going through the YoLo network. Similarly, two images in the right

are downscaled to a grid size of 5 × 5. Square grids are presented with red lines.

For a grid size of 3× 3, objects in two images are located inside a grid and can not

be detected separately. In contrast, a grid size of 5 × 5 can split them into single

detection.

chance of locating texts in scene images even though the YoLo model is already

designed to handle multi-scale object detection in single scale input images with

state-of-the-art performances. By changing input image resolutions, we implicitly

control a grid size. In fact, an image is downscaled 32 times when it goes through

the network. A grid size therefore is a result of image resolution divided by 32. For

example, if an input image has a resolution of 32× 32 or 64× 64, a grid size will be

1× 1 or 2× 2, respectively. In consequence, this solution addresses the weakness of

the original YoLo model in detecting small objects when they are nearby and inside

a grid cell. Figure 6.2 shows an example where a multi-scale input image can address

a YoLo’s problem. The first row presents a problem in general object detection and
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the second row presents a problem in scene text object detection. As images shown

in Figure 6.2, small objects like birds (in the first row image) or small texts (in the

second row image) can be false to detect with small grid size (left images in the

two rows) due to the YoLo weakness. By increasing input image resolution, cell grid

becomes more dense and it can separate small objects into single cells (right images

in the two rows).

Evaluation

The baseline of YoLo based scene text proposal is evaluated on two public scene

text datasets as the ICDAR2013 dataset [2] and Street View Text (SVT) dataset

[3]. Baseline system performances are compared with state-of-the-art scene text

proposal techniques in both the scene text proposal evaluation and the scene text

reading evaluation. In these evaluations, two versions of the baseline system are

introduced including one is the original YoLo set-up, which provides three predicted

bounding boxes at each grid cell and sets parameters of detection threshold and nms

threshold at 0.5 and 0.4 respectively, and one is the modified YoLo set-up for scene

text proposal. In ensuing paragraphs, the original YoLo set-up version is named as

O_YoloModel, and the modified YoLo set-up version is named as M_YoloModel.

Figure 6.3 presents performances of two versions of Yolo based scene text pro-

posals and three state-of-the-art techniques including the Text-Edge-Box (TEB),

the Maxpooling base Text Proposal (MPT) and the DeepText (DT) [21], using the

scene text proposal evaluation framework which considers a system recall rate un-

der different number of proposals and different IoU thresholds. As results shown

in Figure 6.3, these YoLo based techniques outperform state-of-the-art techniques

when a number of proposals and an IoU threshold are small. In the left column,

performances of YoLo based techniques improve dramatically when the number of

proposals increases within a range of (0,300) at IoU of 0.5 and 0.7. When IoU is

0.8, state-of-the-art techniques, which are TEB and MPT, provide superior perfor-

mances in a full range of a number of proposals. In the right column, recall rates are

evaluated under difference of IoU at three numbers of proposals as 100, 500, 1000.

YoLo based techniques usually provide the best performance when IoU thresholds
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Figure 6.3 – Comparison of the baseline of YoLo based scene text proposal tech-

niques (M_YoLoModel, and O_YoLoModel) to other state-of-the-art techniques on

the ICDAR2013 dataset [2], in difference number of proposals and IoU thresholds.

Comparable techniques include the Maxpooling based scene text proposal (MPT),

the Text-Edge-Box (TEB), and the DeepText (DT) [21]

are small, less than 0.75, 0.65, and 0.55 for 100, 500, 1000 proposals, respectively. It

also performs better than DeepText, which is developed based on the R-CNN neuron

network. When the IoU threshold increases higher than 0.75, performance of deep
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Table 6.1 – Recall (%) and processing time (in second) of two versions of YoLo

based technique and other state-of-the-art techniques under different IoU thresholds

on the ICDAR2013 dataset. The Nppb denotes an average number of proposals that

the techniques need to achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
M_YoloModel 95.62 80.18 53.06 1171 1.49
O_YoloModel 81.83 63.11 37.72 16 0.34

MPT 96.16 88.77 82.1 1450 4.49
TEB [25] 94.25 87.95 81.55 1777 5.4
DT [21] 88.5 67 4 500 −

learning based techniques including YoLo based systems and DT are degrade dra-

matically. Between two YoLo based techniques, the modified one (M_YoloModel)

usually provides approximately 10% better than the original one (O_YoloModel) in

different combinations of a number of proposals and an IoU threshold. This impro-

vement is because the modified model provides a larger number of proposals which

widen a change of localizing text regions in images.

The second evaluation, two YoLo based baseline techniques are compared with

state-of-the-art techniques in term of processing time and an average number of

proposals each technique needs to provide competitive performances. This evaluation

is shown in two Tables 6.1 and 6.2. As the shown results, YoLo based techniques

provide competitive performance on the ICDAR2013 dataset and outperform other

state-of-the-art techniques on the SVT dataset. Even though the O_YoloModel

needs much less number of proposals than DT (16 comparing to 500), it performs

much better than DT under IoU of 0.8 (37.72% comparing to 4%). Both YoLo based

techniques are the best efficient techniques when they need less than two seconds

in average to process an image, especially around 0.3 seconds by the O_YoloModel.

Due to resizing images into constraint sizes, average processing time of both YoLo

based techniques are similar on both datasets.

On the SVT dataset, YoLo based scene text proposal techniques provide attrac-

tive results in a full range of IoU from 0.5 to 0.8. Note that we do not evaluate
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Table 6.2 – Recall (%) and processing time (in second) of two versions of YoLo

based technique and other state-of-the-art techniques under different IoU thresholds

on the SVT dataset. The Nppb denotes an average number of proposals that the

techniques need to achieve its presented recalls.

IoU 0.5 0.7 0.8 Nppb times (s)
M_YoloModel 97.37 82.53 53.01 1369 1.58
O_YoloModel 78.67 56.11 32.46 18 0.34

MPT 88.41 46.99 21.48 1769 3.59
TEB [25] 87.64 47.91 20.09 1890 2.2

techniques performance at the higher IoU threshold due to uncommonly used in

real applications. The main reason is because proposal bounding boxes of YoLo ba-

sed techniques are not close to text edges which are usually considered by human

during labelling ground truth boxes. Yolo proposal boxes are therefore fine match

with ground truth boxes in the SVT dataset where human labels are not strongly

following text edges, and it fails to outperform state-of-the-art techniques in the

ICDAR2013 dataset where human labels are required to be as close as possible to

text edge pixels. YoLo proposal boxes are also more precise than DeepText proposal

boxes because YoLo proposal boxes are estimated based on entire image contents

which combines both content features inside a studied cell and content features in

other neighbour cells. In contrast, DeepText boxes are predicted base on content

features inside a studied cell only.

The effects of YoLo based scene text proposals to scene text reading system

performance are also evaluated by embedding them into our propose scene text

reading framework. Proposal boxes are then forwarded to the scene text recogni-

tion model for recognition and classification. False positive proposals are eliminated

by a recognition score threshold, lexicons, and non maximum suppression. These

systems performances are then compared with other developed systems, including

TEB_based system and MPT_based system which achieve state-of-the-art perfor-

mances in the robust reading competition in 2017. These results are shown in two

Tables 6.3 and 6.4. Even though YoLo based scene text proposal techniques process
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Table 6.3 – Word spotting performance of the YoLo based scene text reading

systems (M_YoloModel_sys and O_YoloModel_sys) and other proposed systems

(MPT_sys and TEB_sys) on the Robust Reading Competition 2013 Dataset (IC-

DAR2013) in the two contextualizations.

Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

M_YoloModel_sys 80.84 84.18 82.47 82.12 88.76 85.31
O_YoloModel_sys 79.79 97 87.34 79.43 97 87.34

TEB_sys 84.46 96.4 90.03 82.94 91.96 87.22
MPT_sys 88.20 97.42 92.58 87.85 95.31 91.43

Table 6.4 – End-to-end performance of the YoLo based scene text reading sys-

tems (M_YoloModel_sys and O_YoloModel_sys) and other proposed systems

(MPT_sys and TEB_sys) on the Robust Reading Competition 2013 Dataset (IC-

DAR2013) in the two contextualizations.

Strong contextualization Weak contextualization
Recall Precision F-score Recall Precision F-score

M_YoloModel_sys 78.95 87.65 83.07 77.86 83.02 80.36
O_YoloModel_sys 76.33 97.35 85.57 76.11 96.11 84.91

TEB_sys 80.8 94.51 87.12 79.49 90 84.42
MPT_sys 84.08 96.13 89.70 83.86 93.89 88.59

faster and provide smaller number of proposals, automatic scene text reading sys-

tems built on them still perform competitive results. Besides missing in detecting

scene text objects, non-close-to-text-edge bounding boxes is also a reason that makes

YoLo based scene text reading system miss detected texts due to false recognitions.

Figure 6.4 presents examples of images in which detected texts have been removed

by the text recognition model.
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Output of scene text reading system Output of YoLo based scene text proposal

Figure 6.4 – Example images where texts are detected by YoLo_sys techniques

and eliminated by the recognition model.

Suggestions for improving scene text proposal’s performance

According to performances shown in the left column of Figure 6.3 and two Tables

6.1 and 6.2, deep learning based scene text proposal techniques can provide the best

recall rate when a small number of proposals is required and they are the most

efficient techniques. However, there is a disadvantage that their performances drop

dramatically when Intersection over Union (IoU) threshold increases higher than 0.7

observed by the results shown in the right column of Figure 6.3. Therefore, in future

works of improving performances of YoLo based scene text proposal techniques while

system’s efficiency is still inherited, we are going to integrate it with our proposed

state-of-the-art technique as the Max-pooling based scene text proposal (MPT).

The first suggestion is to use a YoLo network to boost up performance of MPT

technique in term of a small number of proposals such as 100, 200 by adapting the

YoLo net for scoring proposal boxes. A solution is to use a YoLo network to generate

a text heat-map where text pixels are assigned higher values than other non-text

pixels. Generated MPT proposals are then scored based on the heat-map using

simple equations such as mean of pixel values inside proposal boxes or a fraction of
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Figure 6.5 – The proposed framework for future development of maxpooling ba-

sed scene text proposal by adopting a YoLo model for scoring proposals. CCL is

connected component labelling and MPG is maxpooling based grouping.

text pixels in area covered by scene text proposal boxes, and so on. The framework

of this suggestion is shown in Figure 6.5. By applying this solution, we expect to

improve the proposed MPT technique in two aspects including processing time and

technique performance under a limited number of proposals. For the processing time,

replacing the current scoring function by a YoLo model, we can reduce a processing

time of scoring-ranking proposals. In fact, the developed scoring function in the MPT

technique consists a lot of exponential and square root operations which are parts of

the Euclidean distance calculation utilized in Equation 4.1. These calculations also

have to be repeated along with a number of proposals, and it could consume a lot

processing time. When we apply the MPT technique on an 2592x3880 image, it needs

15.537 seconds for generating proposals and 49.78 seconds for scoring and ranking

proposals. For processing the same size image, YoLo network, instead, needs only

0.943 seconds when it processes on a GPU 1080Ti. For technique performance under

a limited number of proposals, replacing the current developed scoring function by

a YoLo based text heat-map, we expect to have a more precise scoring solution,

proposals are therefore ranked better and more text boxes are shifted to the front

of ranked list, while a slope of MPT performance under different IoU thresholds is

still maintained.

The second suggestion is to improve YoLo based proposal technique performance

by utilizing the MPT scene text proposals as anchor boxes. This idea is inspired by

the weakness of the recent anchor box initialization which contains hand-craft fea-

tures and causes of missing objects in object detection systems. Particularly, recent
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Figure 6.6 – The proposed framework for future development of YoLo based net-

work by adopting the MPT scene text proposal technique as an anchor box ge-

neration. CCL is connected component labelling and MPG is maxpooling based

grouping.

R-CNN neural networks developed for general-object/scene-text-object detection

[80, 29, 96, 51, 21, 22, 30, 50] divide an image into grid cells and assume that there

is only one object in a cell if it exists. At each grid cell, anchor boxes are initialized

with different sizes and aspect ratios. R-CNN neural networks are trained to score

those boxes and regress their ratio and size to cover objects better. In this frame-

work, initial anchor boxes need to have a large range of sizes and aspect ratios to be

robust to objects’ shapes variants. Otherwise, they will be false. For example, the

SSD network [51], which is one of state-of-the-art models in detecting general ob-

jects, is false when its original design is applied for detecting scene text objects. The

reason is because scene text objects including words, text lines have straight aspect

ratios which are not initialized in SSD’s anchor boxes. By redesigning anchor boxes

with more suitable aspect ratios, the SSD network performs better and achieves

state-of-the-art performances in scene text detection [50]. By applying MPT as an

anchor box initialization, anchor box size and aspect ratio are flexible and they

can be self-adaptive to different image contents. Figure 6.6 illustrates this proposed

framework, which uses the MPT technique as an anchor box initialization and the

YoLo network as a regression and detection engine for refining and evaluating those

initialized boxes.
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Figure 6.7 – Some examples of non-horizontal texts which have been detected suc-

cessfully by the MPT scene text proposal technique while decided as miss detection

in the IoU based evaluation. They are cropped out from images in the incidental

scene text dataset. The red boxes are boxes generated by the MPT technique and

the dash yellow boxes are ground truth bounding boxes.

6.2.2 Quadrilateral bounding boxes generation for orienta-

ted scene text detection

Even though the proposed scene text proposal techniques can detect non-horizontal

texts or even curved text as discussion in Section 4.1.1, its detections are conside-

red as false detections with non-horizontal texts due to a low IoU measurement

with provided ground truth boxes, as some example images shown in Figure 6.7.

A solution for addressing this problem is to provide quadrilateral bounding boxes

for groups of connected components generated by our proposed scene text propo-

sal techniques. There are many quadrilateral bounding boxes generation methods

proposed, including hand-craft solutions : a multi-orientation projection [47, 39], a

smallest rectangle estimation [40], a Hough transform based [97], an internal pair

group orientations based [36, 45] as well as a deep learning based [46, 98, 99, 54, 52].

These methods are illustrated in Figure 6.8.

Three solutions including a multi-orientation projection, a Hough transform ba-

sed and an internal pair group orientations based, quadrilateral bounding boxes

are generated based on text line orientation. The multi-orientation projection solu-

tion searches for text line orientations by projecting a group of points into different

orientations from -90 to 85 degree with an interval of 5 degree. Text lines should be

elongated and its projection profile should have the highest variance. In the Hough

transform based solution, orientated text lines are estimated by the Hough trans-
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Figure 6.8 – Several methods have been studied and applied to generate quadrila-

teral bounding boxes for better enclosing to oriented scene texts

form applied on centroid points of characters inside a studying group. In the internal

pair group orientation based estimation, text line orientation is estimated from the

most orientations of internal links of pairs of characters inside a group. On the other

hand, the polygon method [100] is applied to find the smallest rectangle bounding

box of a group of points [40]. In the MPT technique, proposal boxes contain connec-

ted components which have not been defined as text/non-text yet. Solutions which

consider characters as key points for estimating text line orientation therefore could

not be suitable to apply. Instead, if we consider connected components as groups of

pixel points, proposal boxes therefore are considered as groups of points. Methods

such as the multi-orientation projection and the smallest rectangle estimation are

suitable options to upgrade the MPT technique.

Adapting deep learning networks for predicting quadrilateral bounding boxes

is proposed in recent years with a lot of solutions. Note that deep learning based

region proposal methods usually divide image space into a grid. In [98], deep learning

model is designed and trained to predict both four 2D coordinators of quadrilateral
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boxes (8 parameters) and geometry values of rotated horizontal bounding boxes

(top-left coordinators [x, y], height, height, and angle) for each cell of an image. In

[46, 54], text regions and orientated links between text region bounding boxes are

predicted based on which words and text lines are formed by merging text regions

together. Quadrilateral bounding boxes are then estimated on groups of text region

bounding boxes as the system post-processes. In [99], two deep learning networks

are deployed following a cause-to-fine strategy where a cause network provides a

text attention map and a fine network processes on cropped text regions to generate

a text line heat-map and a text line area heat-map. Two maps are then binarized by

threshold of 0.5 and quadrilateral bounding boxes are estimated base on detected

regions using the minimum area rectangle estimation method [100]. In the other

hand, quadrilateral text regions are searched by using quadrilateral anchor boxes

and a regression deep learning network [52]. Those strategies can be applied on the

developed YoLo based scene text proposal system which is discussed in Section 6.2.1.

The proposed solution consists of a MPT technique based anchor initialization and a

modification of the YoLo output layer for estimating quadrilateral coordinators. The

model can be trained for regressing MPT proposal boxes into quadrilateral boxes.

6.2.3 A navigation application for aiming elderly in their

outdoor activities

The world population is ageing due to life quality improvement with a lot of

caring services in healthy and safety. In 2017, there is an estimation of 962 million

people aged 60 or above in the world, comprising 13 percent of the global population,

and that age population is growing at a rate of about 3 percent per year. By 2050

all regions of the world except Africa are predicted to have nearly a quarter or more

of their populations at ages 60 and above. According to age-in-place project [101],

nearly 90% of people over age 65 want to stay at their home as long as possible. They

also prefer to show up that they have abilities to stay safe and independent. However,

staying alone for elderly, especially people with ageing diseases such as parkinson and

dementia is unsafe due to a lot of risks, such as fail in walking, eating, using kitchen

tools, and so on. Allowing their family members and caregivers to keep taking care
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of their activities while giving them a feel of independence will be a hard deal but

it is an interesting and high demand mission. In fact, many proposed systems have

been investigated, and most of applications are developed for assisting elderly in

indoor activities which are known as nursing house projects including fall detection

systems [102], tasks reminder applications, and so on[103].

In our observation, outdoor activities are also very helpful for the elderly as

they aim to reduce elderly cognitive weakness by increasing interactions with social

activities and communities. However in an outdoor environment, elderly have to

deal with much more dangerous problems such as getting loss, falling in the street,

being subject to crimes, being hit by vehicles, and so on. To avoid these incidents,

the market demand is high. However, the number of recent applications supporting

elderly in their outdoor safety is small. There is only the Global Position System

(GPS) based elderly tracker which is deployed to support caregivers and family

members in localizing elderly position and tracking their activities base on their

movements in maps [104]. In this section, we are going to propose an application

scenario based on our developed scene text searching system and the GPS system

to assist elderly in their daily outdoor activities.

Proposed application framework

The GPS based navigation system is currently adopted for many tracking systems

and the most favourite application is the google map which helps people to track

their location and search directions. The elderly tracker system is also developed

base on this google map API and supports in tracking elderly locations, arranging

safety zone, elderly moving speed. On the other hand, this system does not provide

extensive information regarding environment around elderly, which could be very

useful for recognizing their situations and providing supporting suggestions. In this

future work proposal, we are intent on integrating the GPS tracking module with our

developed scene text searching system to enrich capability of our system. Besides

an elderly tracking function, the system can support the elderly in finding their

direction, navigating their way to their target destinations, searching for specific

words, alerting dangerous conditions, and so on. Figure 6.9 depicts an infrastructure
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of the proposal system, including client wearable devices, which consists of a camera,

microphone and a GPS module, and a server in which our back-end program and a

database of local areas where elderly is living are executed and stored, respectively.

  

Elderly with wearable device: 
GPS, camera, microphone, speaker

Cloud network

Send data to cloud:

Server computer

Back-end program:
(1) Loading related local map      
        Navigation (if required)
(2) Loading texts around this position 
(3) Executing scene text reading system
         Orientation calibration 
         Danger detection
         Destination recognition (If require)
(4) Checking setup

Provide advice to elderly

Example of loaded texts:
- hospital
- inn
- hotel
- ice cream
- police station
- cafe
- tech zone
- boutique
- school

Nurses
 Or

 Caregivers

Relative 
Family

Members 

Report, alert

Setup

Figure 6.9 – A proposed application framework aiming to help elderly in their

outdoor activities, including a direction estimation, a specific address searching, a

danger detection, a navigation, and so on. The system also connects to related people

of elderly such as their nurses, caregivers, family members

In order to provide a navigation function, the system needs to know a current

location and a target location. The current location can be estimated from the

GPS device, and the target location is provided by users using their microphone

or keyboard. After receiving required information, additional information related to

two locations is queried from the system database such as a local map, local scene

texts around two locations. The shortest route is defined in the local map and local

scene texts are used for correcting users’ direction. Note that directions estimated

from the GPS device are also collected. For example, in Figure 6.10 when users’

locations are figured out, their local texts are loaded and used as keywords. When

one of texts in the keyword list appears in images captured by wearable cameras,

user’s direction is calibrated so that the system can provide more precise advices.

In a case that target destination contains texts, these texts are also used to guide

elderly reach their destinations.
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Local scene texts:
- hospital
- inn
- hotel
- ice cream
- police station
- cafe
- techno zone
- boutique
- school

Estimated 
location 

from 
GPS device

0

boutique

school

Techno zone

cafe

Police station

1

234

5

6 7

No text exists

For example, 
he is at location 0

His direction: 1 His direction: 2 His direction: 3

His direction: 4 His direction: 5

His direction: In a range between 6-7

Direction estimation

Figure 6.10 – An example solution for observing users direction using scene text

objects which can appear in captured images taken by users wearable cameras.

The proposed system also employs a danger alert function. Specific keywords

which are usually used to present dangerous situations in modern cities such as

"construction in process", "electric shock", "dangerous", "caution", "work ahead", and

so on are added to the system keyword list. When those words appear in captured

images, a danger alert function is activated and it could notice to users as well

as according people to let them take a look on users. Depending on where those

words are in images, and word sizes, different levels of alert could be generated. For

example, if those words have a large size and at the centre of images, users might

stay very close to dangerous areas. A high lever alert should be activated.
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Appendix

In this appendix, we are intent on showing up our implemented scene text pro-

posal generator classes for the TextEdgeBoxes technique and the Maxpooling based

Text Proposal Technique and related codes to utilize this class.

TextEdgeBoxes class :

The parameter _alpha is a parameter of the Text Edge Map generation function,

which is used to control participation of the two edge based text specific features

(EP and EV) in scoring connected components.

The parameter _arexp is used in a searching space generation. The 2×_arexp is a

ratio of a searching space height to a bounding box height of the study connected

component.

The parameters _wthr, _oathr, _hthr are parameters of the proposed grouping

solution of the Text Edge Box technique.

C++ codes

class TextEdgeBoxGenerator{

public :

//method parameters (can be manually set)

float _alpha, _wthr, _arexp, _oathr, _hthr ;

//A main function of the TEB class. It takes a binary edge map (BW), a gra

//-dient map (E), and an oriented gradient map (O) as inputs and provides a list

//of proposal bounding boxes (boxes)

void generate( Boxes &boxes, arrayf &E, arrayf &O, arrayi &BW ) ;

private :

//Edge segment information (utilized in clusterEdges)

int h, w ;//Input image dimensions
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int _segCnt ;//A number of connected components

arrayi _segIds ;//Segmented edge pixels ids (-1/0 means no segment)

arrayf _EPsegIds ;//A EdgePair score map

arrayf _EVsegIds ;//A EdgeVariance score map

arrayf _TEMsegIds ;//A TextEdgeMap

vector<vectori> _csIds, _rsIds ;//x,y coordinates of edge pixels

//internal functions (our contributions) :

//Searching for 8-neighbourhood connected components

void CCfound(vectori &cs, vectori &rs, vectori ids) ;

//Clustering edge pixels based on their score visualized by a TextEdgeMap

void clusterEdges(arrayf &E, arrayf &O, arrayi &BW ) ;

//Generating proposals, estimating proposal bounding boxes and scoring proposals

//it including many sub-functions

void BoxesGenerator(Boxes &boxes) ;

//Splitting proposals into word-level proposals

void BoxesBreakDown(Boxes &boxesout,Boxes &boxesin) ;

//Estimating boxes covering whole small boxes

void boxlist2box(Box &b, Boxes &boxes) ;

//Scoring proposal boxes in which our proposed scoring function is implemented

void scoreBox( Box &box, arrayf &V ) ;

//Two edge based text specific features estimation functions

void EPCC(float &ep,vectori &cs,vectori &rs,arrayf &O) ;

void EVCC(float &ev,vectori &cs,vectori &rs) ;

} ;

Utilizing the TEB class :

C++ codes

//Initializing a TEB class

TextEdgeBoxGenerator TEBGen ;

//Initializing vector to store generated proposal boxes. Each element as a vectori is

// a box

vector<vectori> boxes ;
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//Manually set class parameters

TEBGen._alpha = par0 ;

TEBGen._wthr = par1 ;

TEBGen._arexp = par2 ;

TEBGen._oathr = par3 ;

TEBGen._hthr = par4 ;

TEBGen._sc = par5 ;

//Text proposals generation. E, O, BW are a gradient map, an orientation map and

// a binary edge map respectively

TEBGen.generate(boxes,E,O,BW) ;

MaxPoolingProposalText class :

C++ codes

class MPTGenerator{

public :

//"O" and "BW" are an oriented gradient map and a binary edge map

//"sc" and "psinfo" are a scale of input image size to original size and a group of

//pooling window size and stride values

//"boxes" is the class output which are generated text proposal boxes

void ProposalBoxes(Boxes &boxes, arrayf &O, arrayb &BW, arrayf &sc, arrayf

&psinfo) ;

private :

// Class parameters which are set in the public ProposalBoxes function

int h, w ;

int _segCnt ;// Total segment count

float _scale ;

arrayi _segIds ;// Segmented edge pixels map (-1/0 means no segment)

arrayf _psinfo ;//Pooling window size and stride values

vector<vectori> _csIds, _rsIds ;//x,y coordinates of edge pixels

vector<vectorf> _hogIds ;//Histograms of gradient of connected components

arrayf _cens ;//Pre-trained text/non-text centroids
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vector<vectori> _GList ;//A list of groups of connected components

//Internal functions which are our contributions

void clusterEdges(arrayf &O, arrayb &BW, float thrs ) ;

void BoxesGenerator(Boxes &boxes, arrayf &sc) ;

//Searching for 8-neighbourhood connected components

void CCfound(vectori &cs, vectori &rs, vectori ids) ;

void Grouping() ;//The proposed max-pooling based grouping solution is imple

//mented

void BoxesScore(float &s, vectori &idlist) ;//The proposed scoring function is

//implemented

//Proposal boxes generation functions

void BoxesFromList(Boxes &boxes, vector<vectori> selectedList) ;

void CleanList(vector<vectori> &cleanedList, vector<vectori> selectedList) ;

void LinkList(vector<vectori> &linkedList, vector<vectori> selectedList) ;

void List2Boxes(Boxes &boxes, vector<vectori> selectedList) ;

} ;

Utilizing a MPT class

//Loading text/non-text centroids

arrayf cens = <load _cens> ;

//Set pooling window size (w_pw and h_pw) and stride values (w_str and h_str)

vectorf psinfo ;

psinfo.push_back{w_pw} ;

psinfo.push_back{h_pw} ;

psinfo.push_back{w_str} ;

psinfo.push_back{h_str} ;

Boxes boxes ;

MPTGenerator MPTGen ;

MPTGen.ProposalBoxes(boxes, O, BW, cens, psinfo) ;
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