, 177 5.1 Étude numérique des mécanismes physiques du tonnerre, p.178

, 179 5.1.3 Réponse en fréquence moyenne des éclairs tortueux, p.181

. .. , 182 5.1.5 Influence de la signature temporelle à la source

.. .. Conclusion,

. .. Étude-statistique, 193 5.2.1 Énergie acoustique par unité de longueur

.. .. Conclusion,

, énergie acoustique par longueur de l'éclair E l (à noter que dans le cas de la simulation

, ne seront calculées que sur la bande de fréquence [0 ? 180] Hz afin de reproduire les conditions des statistiques réalisées sur les signaux de la base de données THOR, Ces deux dernières grandeurs, bien que la fréquence d'échantillonnage soit de 6000 Hz

B. Abed-meraïm, Hz ?1 , il s'agit donc d'un accord qualitativement bon entre la mesure et la simulation. La courbe en pointillé montre un excellent ajustement par une loi affine reliant la pente moyenne du spectre avec la distance r EUC . Cette pente moyenne décroît avec la distance, sauf pour les trois premiers capteurs, 2011.

[. Alcoverro, L. Pichon-;-alcoverro, B. Le-pichon, and A. , Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance, The Journal of the Acoustical Society of America, vol.117, issue.4, pp.63-71, 2005.

. Arechiga, Location and analysis of acoustic infrasound pulses in lightning, Geophysical Research Letters, vol.41, issue.13, pp.4735-4744, 2014.

. Arechiga, Acoustic localization of triggered lightning, Journal of Geophysical Research, p.116, 2011.

. Assink, Characterization of infrasound from lightning, L15802. (Cité pages, vol.34, pp.98-109, 2008.

N. K. Balachandran, Infrasonic signals from thunder, Journal of Geophysical Research : Oceans, vol.84, issue.C4, pp.1735-1745, 1979.

P. Barthe, C. Barthe, and J. Pinty, Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme, Journal of Geophysical Research : Atmospheres, issue.D6, p.112, 2007.

H. E. Bass, The propagation of thunder through the atmosphere, The Journal of the Acoustical Society of America, vol.67, issue.6, pp.6-138, 1980.

[. Baudoin, Sound, infrasound, and sonic boom absorption by atmospheric clouds, The Journal of the Acoustical Society of America, issue.3, p.130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00783413

. Behnke, S. A. Mcnutt-;-behnke, and S. R. Mcnutt, Using lightning observations as a volcanic eruption monitoring tool, Bulletin of Volcanology, vol.76, issue.8, pp.847-883, 2014.

[. Betz, Lightning : Principles, Instruments and Applications, vol.54, p.12, 2009.

E. Bibliographie-[blanc-;-blanc, Observations in the upper atmosphere of infrasonic waves from natural or artificial sources : A summary, Annales Geophysicae, vol.3, pp.673-687, 1985.

. Blanc-benon, Long range sound propagation in a turbulent atmosphere within the parabolic approximation, Acta Acustica united with Acustica, vol.87, issue.6, pp.659-669, 2001.

[. Bodhika, Reconstruction of lightning channel geometry by localizing thunder sources, Journal of Atmospheric and Solar-Terrestrial Physics, vol.102, pp.28-98, 2013.

[. Bonelli, P. Marcacci-;-bonelli, and P. Marcacci, Thunderstorm nowcasting by means of lightning and radar data : algorithms and applications in northern italy, Natural Hazards and Earth System Sciences, vol.8, issue.5, pp.1187-1198, 2008.

J. E. Borovsky, Lightning energetics : Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes, Journal of Geophysical Research : Atmospheres, vol.103, issue.D10, pp.166-199, 1998.

[. Brachet, Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network, pp.77-118, 2009.

H. L. Brode, Numerical solutions of spherical blast waves, Journal of Applied Physics, vol.26, issue.6, pp.97-137, 1955.

H. L. Brode, The blast wave in air resulting from a high temperature, high pressure sphere of air, p.41, 1956.

[. Brown, The fall of the St-Robert meteorite, Meteoritics & Planetary Science, vol.31, issue.4, pp.502-517, 1996.

[. Byrne, In situ measurements and radar observations of a severe storm : Electricity, kinematics, and precipitation, Journal of Geophysical Research, vol.92, issue.D1, pp.1017-1062, 1987.

P. Campus and D. R. Christie, Worldwide Observations of Infrasonic Waves, Infrasound Monitoring for Atmospheric Studies, pp.185-234, 2009.

Y. Cansi, An automatic seismic event processing for detection and location : The P.M.C.C. method, Geophysical Research Letters, vol.22, issue.9, p.28, 1995.

[. Cansi, L. Pichon-;-cansi, Y. Le-pichon, and A. , Infrasound Event Detection Using the Progressive Multi-Channel Correlation Algorithm, pp.1425-1435, 2008.

[. Cecil, Gridded lightning climatology from TRMM-LIS and OTD : Dataset description. Atmospheric Research, p.207, 2014.

J. Chatillon, Limites d'exposition aux infrasons et aux ultrasons. Hygiène et sécurité du travail -INRS ND 2250, 2006.

T. G. Chronis and E. N. Anagnostou, Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe, Journal of Geophysical Research : Atmospheres, vol.108, issue.D24, 2003.

[. Chum, Infrasound pulses from lightning and electrostatic field changes : Observation and discussion, Journal of Geophysical Research : Atmospheres, vol.118, issue.19, pp.45-98, 2013.

V. Cooray, The Lightning Flash. (Cité pages, pp.166-199, 2003.

R. Cooray, V. Cooray, and V. Rakov, On the upper and lower limits of peak current of first return strokes in negative lightning flashes, Atmospheric Research, vol.117, pp.17-22, 2012.

[. Cooray, The lightning striking distance -Revisited, Journal of Electrostatics, vol.65, issue.5-6, p.22, 2007.

[. Coquillat, Microdischarges between ice particles, Journal of Geophysical Research, vol.100, issue.D7, pp.14327-14341, 1995.

[. Cummer, Three years of lightning impulse charge moment change measurements in the United States, Journal of Geophysical Research : Atmospheres, issue.11, pp.61-126, 2013.

M. ;. Cummins, K. L. Cummins, and M. J. Murphy, An Overview of Lightning Locating Systems : History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN, IEEE Transactions on Electromagnetic Compatibility, vol.51, issue.3, pp.499-518, 2009.

[. Dawson, Acoustic output of a long spark, Journal of Geophysical Research, vol.73, issue.2, p.97, 1968.

[. Dayeh, First images of thunder : Acoustic imaging of triggered lightning, Geophysical Research Letters, vol.42, pp.120-189, 2015.

. [de-larquier, . Pasko, S. Larquier, and V. P. Pasko, Mechanism of inverted-chirp infrasonic radiation from sprites, Geophysical Research Letters, vol.37, issue.24, 2010.

[. Defer, An overview of the lightning and atmospheric electricity observations collected in Southern France during the HYdrological cycle in Mediterranean EXperiment (Hy-MeX), Special Observation Period 1, Atmospheric Measurement Techniques, vol.8, pp.51-99, 2015.

P. Bibliographie-[depasse-;-depasse, Lightning acoustic signature, Journal of Geophysical Research : Atmospheres, vol.99, issue.D12, pp.42-97, 1994.

A. J. Dessler, Infrasonic thunder, Journal of Geophysical Research, vol.78, issue.12, p.44, 1973.

[. Dietrich, Lightning-based propagation of convective rain fields, Natural Hazards and Earth System Sciences, vol.11, issue.5, pp.10-11, 2011.

[. Drobinski, HyMeX : A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle, vol.95, pp.1063-1082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01336370

[. Drobinski, , pp.23-36, 2013.

[. Ducrocq, HyMeX, les campagnes de mesures : focus sur les événements extrêmes en Méditerranée. La Météorologie, pp.37-47, 2013.

[. Ducrocq, Hymex-sop1 : The field campaign dedicated to heavy precipitation and flash flooding in the northwestern mediterranean, Bulletin of the American Meteorological Society, vol.95, issue.7, pp.1083-1100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00907518

U. Dwyer, J. Dwyer, and A. M. Uman, The physics of lightning, Physics Reports, vol.534, issue.4, p.209, 2014.

H. Evers, L. G. Evers, and H. W. Haak, The characteristics of infrasound, its propagation and some early history, pp.3-27, 2009.

T. Farges, Infrasound from Lightning and Sprites, pp.417-432, 2009.

T. Farges and E. Blanc, Characteristics of infrasound from lightning and sprites near thunderstorm areas, (A6). A00E31. (Cité pages, vol.34, pp.126-221, 2010.

. Farges, Identification of infrasound produced by sprites during the sprite2003 campaign, Geophysical Research Letters, issue.1, p.32, 2005.

[. Fee, Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea. Geophysical Research Letters, vol.40, issue.16, pp.4199-4203, 2013.

A. A. Few, Power spectrum of thunder, Journal of Geophysical Research, vol.98, issue.130, p.25, 1968.

A. A. Few, D. J. Dessler, M. Latham, and . Brook, A dominant 200-Hertz peak in the acoustic spectrum of thunder, Journal of Geophysical Research, vol.74, issue.23, p.133, 1969.

A. A. Few, Lightning channel reconstruction from thunder measurements, Journal of Geophysical Research, vol.75, issue.36, pp.25-98, 1970.

A. A. Few, The production of lightning-associated infrasonic acoustic sources in thunderclouds, Journal of Geophysical Research : Atmospheres, vol.90, issue.D4, p.36, 1985.

A. A. Few, Acoustic radiation from lightning, vol.36, p.31, 1995.

[. Few, A dominant 200-Hertz peak in the acoustic spectrum of thunder, Journal of Geophysical Research, vol.72, issue.24, pp.136-137, 1967.

A. A. Few and T. L. Teer, The accuracy of acoustic reconstructions of lightning channels, Journal of Geophysical Research, vol.79, issue.33, p.25, 1974.

F. G. Friedlander, The diffraction of sound pulses. i. diffraction by a semi-infinite plane, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.186, pp.163-164, 1006.

[. Gainville, Infrasound monitoring for atmospheric studies, chapter Misty Picture : a unique experiment for the interpretation of the infrasound propagation from large explosive sources, Cité pages 3 et 5) [Gallin, pp.575-598, 2009.

. Gallin, Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array, Journal of Geophysical Research, vol.137, issue.8, pp.3929-3953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01316706

[. Gallin, One-way approximation for the simulation of weak shock wave propagation in atmospheric flows, The Journal of the Acoustical Society of America, vol.135, issue.5, pp.137-163, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460164

[. Garcés, Infrasonic Observations of Open Ocean Swells in the Pacific : Deciphering the Song of the Sea, Infrasound Monitoring for Atmospheric Studies, pp.235-248, 2009.

A. Glassner, The digital ceraunoscope : synthetic thunder and lightning. i, IEEE Computer Graphics and Applications, vol.20, issue.2, p.145, 2000.

[. Haney, Volcanic thunder from explosive eruptions at Bogoslof volcano, Alaska. Geophysical Research Letters, pp.35-98, 2018.

. Hedlin, Evaluation of rosette infrasonic noise-reducing spatial filters, The Journal of the Acoustical Society of America, vol.112, issue.5, pp.2379-2379, 2002.

M. Henneton and R. Hill, Apport de la simulation numérique à l'évaluation du bang sonique issu des météorites, Tortuosity of lightning. Atmospheric Research, vol.38, issue.162, pp.217-233, 1988.

R. D. Hill, Analysis of irregular paths of lightning channels, Journal of Geophysical Research, 1968.

R. D. Hill, Channel heating in return-stroke lightning, Journal of Geophysical Research, vol.76, issue.3, pp.38-97, 1971.

[. Holmes, On the power spectrum and mechanism of thunder, Journal of Geophysical Research, vol.76, issue.9, pp.2106-2115, 1971.

[. Johnson, Imaging thunder, Geophysical Research Letters, pp.28-98, 2011.

[. Jones, Shock wave from a lightning discharge, Journal of Geophysical Research, vol.73, issue.10, pp.3121-3127, 1968.

[. Karzova, Characterization of spark-generated n-waves in air using an optical schlieren method, The Journal of the Acoustical Society of America, vol.137, issue.6, pp.3244-3252, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01296926

L. Kim, T. Kim, and M. C. Lin, Physically based animation and rendering of lightning, 12th Pacific Conference on Computer Graphics and Applications, pp.267-275, 2004.

L. Kim, T. Kim, and M. C. Lin, Fast animation of lightning using an adaptive mesh, IEEE Transactions on Visualization and Computer Graphics, vol.13, issue.2, pp.390-402, 2007.

[. Kinney, Explosive shocks in air, 2nd ed. by gilbert f. kinney and kenneth j. graham, The Journal of the Acoustical Society of America, vol.80, issue.2, pp.708-708, 1986.

[. Koshak, North Alabama Lightning Mapping Array (LMA) : VHF Source Retrieval Algorithm and Error Analyses, Journal of Atmospheric and Oceanic Technology, vol.21, issue.4, pp.57-58, 2004.

[. Krehbiel, GPS-based mapping system reveals lightning inside storms, Eos, Transactions American Geophysical Union, vol.81, issue.3, pp.21-56, 2000.

[. Krider, Peak power and energy dissipation in a single-stroke lightning flash, Journal of Geophysical Research, vol.73, issue.10, pp.42-97, 1968.

G. Krider, E. P. Krider, and C. Guo, The peak electromagnetic power radiated by lightning return strokes, Journal of Geophysical Research : Oceans, vol.88, issue.C13, pp.42-97, 1983.

A. Lacroix, D. Cea, and D. , Rapport sur la calibrage des microphones encapsulés de la campagne SOP1, pp.68-78, 2016.

[. Lacroix, Acoustical measurement of natural lightning flashes : reconstructions and statistical analysis of energy spectra, Journal of Geophysical Research -Atmosphere, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02303576

. Lagouvardos, Numerical study of a heavy precipitation event over southern France, in the frame of HY-MEX project : Observational analysis and model results using assimilation of lightning, 2013.

. [le-pichon, Probing high-altitude winds using infrasound, Journal of Geophysical Research, issue.D20, p.110, 2005.

. [le-pichon, Infrasound Monitoring for Atmospheric Studies, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00451756

. [le-pichon, Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde, The Journal of the Acoustical Society of America, vol.111, issue.1, pp.629-641, 2002.

G. Levine, D. M. Levine, and B. Gilson, Tortuosity of lightning return stroke channels, Goddard Space Flight Center, Nationale Aeronautics and Space Administration (NASA), 1984.

S. C. Lin, Cylindrical shock waves produced by an instantaneous energy release, Journal of Applied Physics, vol.25, issue.1, pp.97-137, 1954.

H. Liszka, L. Liszka, and Y. Hobara, Sprite-attributed infrasonic chirps-their detection, occurrence and properties between, Journal of Atmospheric and Solar-Terrestrial Physics, vol.68, issue.11, pp.1179-1188, 1994.

D. Luquet, 3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom, Sorbonne Université. (Cité pages, pp.5-204, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01360574

[. Macgorman, Layered lightning activity, Journal of Geophysical Research : Oceans, vol.86, issue.C10, pp.27-98, 1981.

[. Maglieri, Sonic Boom : Six Decades of Research, 2014.

[. Matsuyama, Real-time animation of spark discharge, The Visual Computer, vol.22, issue.9, p.142, 2006.

[. Mazur, Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems, Journal of Geophysical Research : Atmospheres, vol.102, issue.D10, p.57, 1997.

W. ;. Mcnutt, S. R. Mcnutt, and E. R. Williams, Volcanic lightning : global observations and constraints on source mechanisms, Bulletin of Volcanology, vol.72, issue.10, p.36, 2010.

[. Meyer, Automated thunderstorm tracking : utilization of three-dimensional lightning and radar data, vol.13, pp.5137-5150, 2013.

[. Mlynarczyk, An unusual sequence of sprites followed by a secondary TLE : An analysis of ELF radio measurements and optical observations, Journal of Geophysical Research : Space Physics, vol.120, issue.3, pp.61-126, 2015.

A. Nag, V. A. Rakov, A. Nag, V. A. Rakov, A. Nag et al., Compact intracloud lightning discharges : 1. Mechanism of electromagnetic radiation and modeling, Journal of Geophysical Research, issue.D20, p.115, 2010.

[. Nash, The new Met Office ATDNET lightning detection system, WMO Technical Conférence on Instruments and Observing Methods, vol.94, 2006.

. Norris, Numerical Methods to Model Infrasonic Propagation Through Realistic Specifications of the Atmosphere, pp.541-573, 2009.

T. Ogawa and R. E. Orville, A High-Speed Time-Resolved Spectroscopic Study of the Lightning Return Stroke : Part I. A Qualitative Analysis, Journal of the Atmospheric Sciences, vol.25, issue.5, pp.37-97, 1968.

R. E. Orville, A High-Speed Time-Resolved Spectroscopic Study of the Lightning Return Stroke : Part II. A Quantitative Analysis, Journal of the Atmospheric Sciences, vol.25, issue.5, p.37, 1968.

R. E. Orville, A high-speed time-resolved spectroscopic study of the lightning return stroke. part iii. a time-dependent model, Journal of the Atmospheric Sciences, vol.25, issue.5, pp.852-856, 1968.

[. Ouden, Well-founded parameters for CLEAN and MUSIC beamforming, Geophysical Research Abstracts, vol.20, 2018.

V. P. Pasko, Electrostatic mechanism of lightning associated infrasonic pulses from thunderclouds, 9th International conference on theoretical and computational acoustics, p.45, 2009.

V. P. Pasko, Mechanism of lightning-associated infrasonic pulses from thunderclouds, Atmospheres, 114(D8). D08205. (Cité pages, pp.45-98, 2009.

[. Pasko, Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, Journal of Geophysical Research : Space Physics, issue.A3, pp.61-126, 1997.

[. Paxton, Lightning return stroke. A numerical calculation of the optical radiation, The Physics of Fluids, vol.29, issue.8, pp.2736-2741, 1986.

[. Pineda, Lightning and precipitation relationship in summer thunderstorms : Case studies in the North Western Mediterranean region, Atmospheric Research, vol.85, issue.2, pp.159-170, 2007.

[. Pinty, Explicit simulation of electrified clouds : From idealized to real case studies. Atmospheric Research, 6th European Conference on Severe Storms, vol.123, pp.82-92, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00961371

M. N. Plooster, Shock waves from line sources. Numerical solutions and experimental measurements. The physics of fluids, pp.97-137, 1970.

M. N. Plooster, Numerical model of the return stroke of the lightning discharge, Physics of Fluids, vol.14, issue.10, p.41, 1971.

M. N. Plooster, Numerical simulation of spark discharges in air, The Physics of Fluids, vol.14, issue.10, p.41, 1971.

[. Poelman, , 2016.

, The European lightning location system EUCLID. Part 2 : Observations. Natural Hazards and Earth System Sciences, vol.16, p.99

C. Price and B. Federmesser, Lightning-rainfall relationships in mediterranean winter thunderstorms, Geophysical Research Letters, issue.7, p.33, 2006.

A. Qamar, Space Shuttle and Meteroid-Tracking Supersonic Objects in the Atmosphere with Seismographs, Seismological Research Letters, vol.66, issue.5, pp.6-12, 1995.

[. Qiu, Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays, Journal of Geophysical Research : Atmospheres, pp.28-98, 2012.

V. Rakov, The physics of lightning, vol.34, p.12, 2013.

V. A. Rakov and M. A. Uman, Lightning -Physics and Effects, 2003.

R. ;. Ribner, H. S. Ribner, and D. Roy, Acoustics of thunder : A quasilinear model for tortuous lightning, The Journal of the Acoustical Society of America, vol.72, issue.6, pp.1911-1925, 1982.

R. D. Richtmyer and K. Morton, Difference Methods For Initial-Value Problems, Physics today, pp.12-166, 1994.

[. Riousset, Three-dimensional fractal modeling of intracloud lightning discharge in a new mexico thunderstorm and comparison with lightning mapping observations, Journal of Geophysical Research : Atmospheres, vol.112, issue.D15, 2007.

[. Ripepe, Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat. Geophysical Research Letters, issue.19, p.37, 2010.

[. Ripepe, Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile. Geophysical Research Letters, issue.15, p.37, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530875

[. Ripoll, On the dynamics of hot air plasmas related to lightning discharges : 2. Electrodynamics, Journal of Geophysical Research : Atmospheres, vol.119, issue.15, pp.126-165, 2014.

[. Ripoll, On the dynamics of hot air plasmas related to lightning discharges : 1. Gas dynamics, Journal of Geophysical Research : Atmospheres, vol.119, issue.15, pp.166-203, 2014.

. [rison, , 1999.

, A GPS-based three-dimensional lightning mapping system : Initial observations in central New Mexico, Geophysical Research Letters, vol.26, issue.23, p.56

J. S. Rood, Numerical Simulation of the Acoustical Propagation of Thunder, p.145, 2012.

D. Roy, A Monte Carlo model of tortuous lightning and the generation of thunder, vol.148, pp.154-156, 1981.

C. Saunders, Charge Separation Mechanisms in Clouds, Space Science Reviews, vol.137, issue.1-4, p.13, 2008.

S. Van and H. , Most frequent particle paths in a plane, Transactions American Geophysical Union, vol.32, issue.2, p.145, 1958.

[. Schulz, The European lightning location system EUCLID. Part 1 : Performance analysis and validation, Natural Hazards and Earth System Sciences, vol.16, issue.2, pp.99-113, 2016.

[. Schulz, Validation of the euclid lls during hymex sop1, paper presented at 23rd international lightning detection conference and 5th international lightning meteorology conference, Natural Hazards and Earth System Sciences Discussions, pp.55-56, 2014.

[. Schulz, Performance validation of the european lightning location system euclid, paper presented at international colloquium on lightning and power systems, Natural Hazards and Earth System Sciences Discussions, vol.3, 2014.

S. Simpson, G. Simpson, and F. J. Scrase, The Distribution of Electricity in Thunderclouds, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.161, issue.906, pp.309-352, 1937.

C. Soula, S. Soula, and S. Chauzy, Some aspects of the correlation between lightning and rain activities in thunderstorms, Conference on European Tornadoes and Severe Storms, vol.56, pp.355-373, 2001.

[. Soula, Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign, Journal of Geophysical Research : Atmospheres, vol.120, issue.22, pp.123-126, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01717432

. Bibliographie-[soula, Cloud-toground lightning activity in hail-bearing storms, Journal of Geophysical Research, vol.109, 2004.

[. Stock, Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm, Journal of Geophysical Research : Atmospheres, vol.119, issue.6, pp.3134-3165, 2014.

M. ;. Stolzenburg, M. Stolzenburg, and T. C. Marshall, Charged precipitation and electric field in two thunderstorms, Journal of Geophysical Research : Atmospheres, vol.103, issue.D16, pp.19777-19790, 1998.

M. ;. Stolzenburg, M. Stolzenburg, and T. C. Marshall, Charge Structure and Dynamics in Thunderstorms, Space Sciences Series of ISSI, pp.17-18, 2008.

M. ;. Stolzenburg, M. Stolzenburg, and T. C. Marshall, Electric Field and Charge Structure in Lightning-Producing Clouds, Lightning : Principles, Instruments and Applications, pp.57-82, 2009.

L. C. Sutherland and H. E. Bass, Atmospheric absorption in the atmosphere up to 160 km, The Journal of the Acoustical Society of America, vol.115, issue.3, pp.1012-1032, 2004.

S. Tanzarella, Perception et communication chez les animaux, 2005.

G. Taylor, The formation of a blast wave by a very intense explosion I. Theoretical discussion, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.201, pp.38-97, 1065.

. Thomas, Observations of VHF source powers radiated by lightning, Geophysical Research Letters, vol.28, issue.1, pp.98-99, 2001.

. Thomas, Accuracy of the Lightning Mapping Array, Journal of Geophysical Research : Atmospheres, 2004.

Y. Tian, Modeling of wind turbine noise sources and propagation in the atmosphere, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01335869

M. A. Uman and . Uman, Shock wave from a four meter spark, Journal of Applied Physics, vol.41, issue.7, pp.41-97, 1969.

. Van-der-velde, Bidirectional leader development in sprite-producing positive Cloudto-Ground flashes : Origins and characteristics of positive and negative leaders, Journal of Geophysical Research : Atmospheres, vol.119, issue.22, pp.755-767, 1995.

K. T. Walker and M. A. Hedlin, A Review of Wind-Noise Reduction Methodologies, pp.141-182, 2009.

G. B. Whitham, Linear and Nonlinear Waves, 1999.

C. T. Wilson, Investigations on lightning discharges and on the electric field of thunderstorms, Philosophical Transactions of the Royal Society of London Series A, vol.221, pp.97-201, 1921.

, World distribution of thunderstorm days. Publ. 21, TP 6 and Suppl, Secretariat of the World Meteorological Organization, p.31, 1956.

J. Zinn, A finite difference scheme for time-dependent spherical radiation hydrodynamics problems, Journal of Computational Physics, vol.13, issue.4, p.166, 1973.

. Figure-b, 1 -Reconstruction acoustique de par bandes de fréquence de l'évènement 1 à partir des

A. B. Comparaison, . Reconstructions, . Entre, . Mp, and . Mb,

. Figure-b, 2 -Reconstruction acoustique de par bandes de fréquence de l'évènement 1 à partir des signaux du réseau de microbaromètres sans traitement

. Figure-b, 3 -Reconstruction acoustique de par bandes de fréquence de l'évènement 1 à partir des signaux du réseau de microbaromètres après sur-échantillonnage à f e = 500 Hz, Annexe C Reconstructions des flashes sélectionnés

. Dans, Toutes les figures se lisent de la même façon : l'étoile est la position du microphone central, les triangles correspondent aux détections EUCLID, les carrés gris aux détections HyLMA, et les points de couleur aux détections acoustiques (chaque couleur correspondant à une partie isolée de la décharge). Les sous-figures A, C et D représentent les reconstruction respectivement dans les plans, nous présentons l'ensemble des reconstructions réalisées sur les flashes de la base de données THOR

. Nord--sud, Les sous-figures B représentent l'évolution de l'altitude des sources acoustiques en fonction du temps. Enfin, les sous-figures E et F, représentent respectivement les signatures temporelles acoustiques et leurs spectre associés pour chacune des composantes de la décharges, vue du dessus) et (Altitude ; Nord -Sud)