. .. , , p.106

. .. Cavity-mode-temperature,

, 113 6.6.1 Superconducting resonator response under IR illumination, p.114

.. .. Cooling,

.. .. Conclusion,

. .. Double-resonance-spectroscopy, 1.2 Double resonance at 2.3 mT and 62.5 mT

. .. , 124 7.2.3 Comparison with the estimated flip-flop rate, p.124

. .. Conclusion, 126 linearity originated by the current dependence of the NbTiN kinetic inductance would then make possible to implement the parametric processes described above

I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, A New Method of Measuring Nuclear Magnetic Moment, Physical Review, vol.53, pp.318-318, 1938.

F. Bloch, Nuclear Induction, Physical Review, vol.70, pp.460-474, 1946.

E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid, Physical Review, vol.69, pp.37-38, 1946.

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, Nuclear-spin noise, Physical Review Letters, vol.55, pp.1742-1745, 1985.

A. Bienfait, J. Pla, Y. Kubo, X. Zhou, M. Stern et al., Controlling Spin Relaxation with a Cavity, Nature, vol.531, pp.74-77, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01483751

A. Bienfait, J. J. Pla, Y. Kubo, M. Stern, X. Zhou et al., Reaching the quantum limit of sensitivity in electron spin resonance, Nature Nanotechnology, vol.11, pp.253-257, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01366689

B. Albanese, S. Probst, V. Ranjan, C. W. Zollitsch, M. Pechal et al., Radiative cooling of a spin ensemble, Nature Physics, pp.1-5, 2020.
URL : https://hal.archives-ouvertes.fr/tel-02924983

E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev, vol.69, p.681, 1946.

D. M. Pozar, Microwave Engineering, 2011.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Reviews of Modern Physics, vol.82, pp.1155-1208, 2010.

H. A. Haus and J. A. Mullen, Quantum Noise in Linear Amplifiers, Physical Review, vol.128, pp.2407-2413, 1962.

C. M. Caves, Quantum limits on noise in linear amplifiers, Phys. Rev. D, vol.26, pp.1817-1839, 1982.

C. Macklin, K. O'brien, D. Hover, M. E. Schwartz, V. Bolkhovsky et al., A near-quantum-limited Josephson traveling-wave parametric amplifier, Science, vol.350, pp.307-310, 2015.

B. Yurke, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith et al., Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Physical Review A, vol.39, pp.2519-2533, 1989.

M. Pechal, J. Besse, M. Mondal, M. Oppliger, S. Gasparinetti et al., Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields, Physical Review Applied, vol.6, p.24009, 2016.

D. F. Walls and G. J. Milburn, Quantum Optics, 2008.

S. Haroche and J. Raimond, Exploring the quantum, 2006.

M. C. Butler and D. P. Weitekamp, Polarization of nuclear spins by a cold nanoscale resonator, Physical Review A, vol.84, p.63407, 2011.

B. Julsgaard and K. Mølmer, Measurement-induced two-qubit entanglement in a bad cavity: Fundamental and practical considerations, Physical Review A, vol.85, p.32327, 2012.

J. Wang, H. M. Wiseman, and G. J. Milburn, Dynamical creation of entanglement by homodyne-mediated feedback, Physical Review A, vol.71, p.42309, 2005.

V. Ranjan, S. Probst, B. Albanese, A. Doll, O. Jacquot et al., Pulsed electron spin resonance spectroscopy in the Purcell regime, Journal of Magnetic Resonance, vol.310, p.106662, 2020.

E. L. Hahn, Spin Echoes, Physical Review, vol.80, pp.580-594, 1950.

A. Honig, Polarization of Arsenic Nuclei in a Silicon Semiconductor, Physical Review, vol.96, pp.234-235, 1954.

G. Feher, R. C. Fletcher, and E. A. Gere, Exchange Effects in Spin Resonance of Impurity Atoms in Silicon, Physical Review, vol.100, pp.1784-1786, 1955.

B. E. Kane, A silicon-based nuclear spin quantum computer, Nature, vol.393, pp.133-137, 1998.

G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov et al., Atomic clock transitions in silicon-based spin qubits, Nat Nano, vol.8, pp.881-881, 2013.

E. B. Hale and R. L. Mieher, Shallow Donor Electrons in Silicon. I. Hyperfine Interactions from ENDOR Measurements, Physical Review, vol.184, pp.739-750, 1969.

R. K. Zhukavin, K. A. Kovalevsky, V. V. Tsyplenkov, V. N. Shastin, S. G. Pavlov et al., Spin-orbit coupling effect on bismuth donor lasing in stressed silicon, Applied Physics Letters, vol.99, p.171108, 2011.

A. K. Ramdas and S. Rodriguez, Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors, Reports on Progress in Physics, vol.44, pp.1297-1387, 1981.

G. Feher and E. A. Gere, Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects, Physical Review, vol.114, pp.1245-1256, 1959.

R. Sousa, J. D. Delgado, and S. Sarma, Silicon quantum computation based on magnetic dipolar coupling, Physical Review A, vol.70, p.52304, 2004.

J. M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Physical Review, vol.97, pp.869-883, 1955.

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 2010.

D. K. Wilson and G. Feher, Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation of Excited States by the Application of Uniaxial Stress and Their Importance in Relaxation Processes, Physical Review, vol.124, pp.1068-1083, 1961.

M. J. Calderón, B. Koiller, and S. Sarma, External field control of donor electron exchange at the Si/SiO 2 interface, Physical Review B, vol.75, p.125311, 2007.

C. C. Lo, S. Simmons, R. Lo-nardo, C. D. Weis, A. M. Tyryshkin et al., Stark shift and field ionization of arsenic donors in 28Si-silicon-on-insulator structures, Applied Physics Letters, vol.104, p.193502, 2014.

A. Bienfait, Magnetic resonance with quantum microwaves, thesis, 2016.

R. E. George, W. Witzel, H. Riemann, N. V. Abrosimov, N. Nötzel et al., Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si, Physical Review Letters, vol.105, p.67601, 2010.

M. H. Mohammady, G. W. Morley, and T. S. Monteiro, Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances, Physical Review Letters, vol.105, p.67602, 2010.

S. J. Balian, Quantum-Bath Decoherence of Hybrid Electron-Nuclear Spin Qubits, 2015.

G. W. Morley, P. Lueders, M. Mohammady, S. J. Balian, G. Aeppli et al., Quantum control of hybrid nuclear-electronic qubits, Nature Materials, vol.12, pp.103-107, 2013.

M. H. Mohammady, G. W. Morley, A. Nazir, and T. S. Monteiro, Analysis of quantum coherence in bismuth-doped silicon: A system of strongly coupled spin qubits, Physical Review B, vol.85, p.94404, 2012.

A. Schweiger and G. Jeschke, Principles of pulse electron paramagnetic resonance, 2001.

E. Abe, A. M. Tyryshkin, S. Tojo, J. J. Morton, W. M. Witzel et al., Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei, Physical Review B, vol.82, p.121201, 2010.

G. W. Morley, M. Warner, A. M. Stoneham, P. T. Greenland, J. V. Tol et al., The initialization and manipulation of quantum information stored in silicon by bismuth dopants, Nature Materials, vol.9, pp.725-729, 2010.

M. Belli, M. Fanciulli, and N. V. Abrosimov, Pulse electron spin resonance investigation of bismuth-doped silicon: Relaxation and electron spin echo envelope modulation, Physical Review B, vol.83, p.235204, 2011.

Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys, Physical Review B, vol.79, p.245201, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00992736

R. D. Sousa and S. D. Sarma, Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots, Physical Review B, vol.68, 2003.

S. Probst, G. L. Zhang, M. Rancic, V. Ranjan, M. L. Dantec et al., Hyperfine spectroscopy in a quantum-limited spectrometer, 2020.

W. M. Witzel, X. Hu, and S. Sarma, Decoherence induced by anisotropic hyperfine interaction in Si spin qubits, Physical Review B, vol.76, p.35212, 2007.

A. Honig and E. Stupp, Electron Spin-Lattice Relaxation in Phosphorus-Doped Silicon, Physical Review, vol.117, pp.69-83, 1960.

L. M. Roth, g Factor and Donor Spin-Lattice Relaxation for Electrons in Germanium and Silicon, Physical Review, vol.118, pp.1534-1540, 1960.

H. Hasegawa, Spin-Lattice Relaxation of Shallow Donor States in Ge and Si through a Direct Phonon Process, Physical Review, vol.118, pp.1523-1534, 1960.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan et al., Single-shot readout of an electron spin in silicon, Nature, vol.467, pp.687-691, 2010.

A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, 2012.

T. G. Castner, Orbach Spin-Lattice Relaxation of Shallow Donors in Silicon, Physical Review, vol.155, pp.816-825, 1967.

T. G. Castner, Raman Spin-Lattice Relaxation of Shallow Donors in Silicon, Physical Review, vol.130, pp.58-75, 1963.

G. Wolfowicz, S. Simmons, A. M. Tyryshkin, R. E. George, H. Riemann et al., Decoherence mechanisms of 209 Bi donor electron spins in isotopically pure 28 Si, Physical Review B, vol.86, p.245301, 2012.

E. B. Hale and T. G. Castner, Ground-State Wave Function of Shallow Donors in Uniaxially Stressed Silicon: Piezohyperfine Constants Determined by Electron-Nuclear Double Resonance, Physical Review B, vol.1, pp.4763-4783, 1970.

B. Koiller, X. Hu, and S. Sarma, Strain effects on silicon donor exchange: Quantum computer architecture considerations, Physical Review B, vol.66, p.115201, 2002.

H. Huebl, A. R. Stegner, M. Stutzmann, M. S. Brandt, G. Vogg et al., Phosphorus Donors in Highly Strained Silicon, Physical Review Letters, vol.97, p.166402, 2006.

M. Usman, C. D. Hill, R. Rahman, G. Klimeck, M. Y. Simmons et al., Strain and electric field control of hyperfine interactions for donor spin qubits in silicon, Physical Review B, vol.91, p.245209, 2015.

L. Dreher, T. A. Hilker, A. Brandlmaier, S. T. Goennenwein, H. Huebl et al., Electroelastic Hyperfine Tuning of Phosphorus Donors in Silicon, Physical Review Letters, vol.106, p.37601, 2011.

J. Mansir, P. Conti, Z. Zeng, J. Pla, P. Bertet et al., Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain, Physical Review Letters, vol.120, p.167701, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871394

J. Pla, A. Bienfait, G. Pica, J. Mansir, F. Mohiyaddin et al., Strain-Induced Spin-Resonance Shifts in Silicon Devices, Physical Review Applied, vol.9, p.44014, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01824000

D. D. Thornton and A. Honig, Shallow-Donor Negative Ions and Spin-Polarized Electron Transport in Silicon, Physical Review Letters, vol.30, pp.909-912, 1973.

G. W. Morley, D. R. Mccamey, H. A. Seipel, L. Brunel, J. Van-tol et al., Long-Lived Spin Coherence in Silicon with an Electrical Spin Trap Readout, Physical Review Letters, vol.101, p.207602, 2008.

T. Sekiguchi, M. Steger, K. Saeedi, M. L. Thewalt, H. Riemann et al., Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si, Physical Review Letters, vol.104, p.137402, 2010.

D. R. Mccamey, J. Van-tol, G. W. Morley, and C. Boehme, Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon, Physical Review Letters, vol.102, p.27601, 2009.

A. Yang, M. Steger, D. Karaiskaj, M. L. Thewalt, M. Cardona et al., Optical Detection and Ionization of Donors in Specific Electronic and Nuclear Spin States, Physical Review Letters, vol.97, p.227401, 2006.

A. Yang, M. Steger, T. Sekiguchi, M. L. Thewalt, T. D. Ladd et al., Simultaneous Subsecond Hyperpolarization of the Nuclear and Electron Spins of Phosphorus in Silicon by Optical Pumping of Exciton Transitions, Physical Review Letters, vol.102, p.257401, 2009.

M. Steger, K. Saeedi, M. L. Thewalt, J. J. Morton, H. Riemann et al., Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum, Science, vol.336, pp.1280-1283, 2012.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann et al., Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28, Science, vol.342, pp.830-833, 2013.

P. Studer, S. R. Schofield, C. F. Hirjibehedin, and N. J. Curson, Studying atomic scale structural and electronic properties of ion implanted silicon samples using cross-sectional scanning tunneling microscopy, Applied Physics Letters, vol.102, p.12107, 2013.

C. D. Weis, C. C. Lo, V. Lang, A. M. Tyryshkin, R. E. George et al., Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28, Applied Physics Letters, vol.100, p.172104, 2012.

Y. Manassen, R. J. Hamers, J. E. Demuth, and A. J. Castellano, Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces, Physical Review Letters, vol.62, p.2531, 1989.

D. Rugar, C. Yannoni, and J. Sidles, Mechanical detection of magnetic resonance, Nature, vol.360, pp.563-566, 1992.

D. Rugar, R. Budakian, H. Mamin, and B. Chui, Single spin detection by magnetic resonance force microscopy, Nature, vol.430, pp.329-332, 2004.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker et al., High-sensitivity diamond magnetometer with nanoscale resolution, Nat Phys, vol.4, pp.810-816, 2008.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup et al., Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers, Science, vol.276, pp.2012-2014, 1997.

C. Durkan and M. E. Welland, Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance, Applied Physics Letters, vol.80, pp.458-460, 2002.

H. Malissa, D. I. Schuster, A. M. Tyryshkin, A. A. Houck, and S. A. Lyon, Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy, Review of Scientific Instruments, vol.84, p.25116, 2013.

A. J. Sigillito, H. Malissa, A. M. Tyryshkin, H. Riemann, N. V. Abrosimov et al., Fast, low-power manipulation of spin ensembles in superconducting microresonators, Applied Physics Letters, vol.104, 2014.

Y. Artzi, Y. Twig, and A. Blank, Induction-detection electron spin resonance with spin sensitivity of a few tens of spins, Applied Physics Letters, vol.106, p.84104, 2015.

N. Dayan, Y. Ishay, Y. Artzi, D. Cristea, E. Reijerse et al., Advanced surface resonators for electron spin resonance of single microcrystals, Review of Scientific Instruments, vol.89, p.124707, 2018.

O. W. Benningshof, H. R. Mohebbi, I. A. Taminiau, G. X. Miao, and D. G. Cory, Superconducting microstrip resonator for pulsed ESR of thin films, Journal of Magnetic Resonance, vol.230, pp.84-87, 2013.

A. J. Sigillito, A. M. Tyryshkin, T. Schenkel, A. A. Houck, and S. A. Lyon, Allelectric control of donor nuclear spin qubits in silicon, Nature Nanotechnology, vol.12, pp.958-962, 2017.

C. Eichler, A. Sigillito, S. Lyon, and J. Petta, Electron Spin Resonance at the Level of 10 4 Spins Using Low Impedance Superconducting Resonators, Physical Review Letters, vol.118, p.37701, 2017.

V. Ranjan, S. Probst, B. Albanese, T. Schenkel, D. Vion et al., Electron Spin Resonance spectroscopy with femtoliter detection volume, 2020.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen et al., Planar superconducting resonators with internal quality factors above one million, Applied Physics Letters, vol.100, p.113510, 2012.

C. Song, M. P. Defeo, K. Yu, and B. L. Plourde, Reducing microwave loss in superconducting resonators due to trapped vortices, Applied Physics Letters, vol.95, p.232501, 2009.

R. Barends, J. Wenner, M. Lenander, Y. Chen, R. C. Bialczak et al., Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits, Applied Physics Letters, vol.99, p.113507, 2011.

A. D. O'connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz et al., Microwave dielectric loss at single photon energies and millikelvin temperatures, Applied Physics Letters, vol.92, p.112903, 2008.

D. S. Wisbey, J. Gao, M. R. Vissers, F. C. Silva, J. S. Kline et al., Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides, Journal of Applied Physics, vol.108, p.93918, 2010.

A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch et al., Controlling the Spontaneous Emission of a Superconducting Transmon Qubit, Physical Review Letters, vol.101, p.80502, 2008.

H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani et al., Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture, Physical Review Letters, vol.107, p.240501, 2011.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline et al., Reaching 10 ms single photon lifetimes for superconducting aluminum cavities, Applied Physics Letters, vol.102, p.192604, 2013.

A. Bruno, G. De-lange, S. Asaad, K. L. Van-der-enden, N. K. Langford et al., Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates, Applied Physics Letters, vol.106, p.182601, 2015.

D. R. Heslinga and T. M. Klapwijk, Schottky barrier and contact resistance at a niobium/silicon interface, Applied Physics Letters, vol.54, pp.1048-1050, 1989.

T. V. Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, 1999.

A. I. Gubin, K. S. Il'in, S. A. Vitusevich, M. Siegel, and N. Klein, Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films, Physical Review B, vol.72, p.64503, 2005.

R. H. Dicke, Coherence in Spontaneous Radiation Processes, Physical Review, vol.93, pp.99-110, 1954.

C. J. Wood and D. G. Cory, Cavity cooling to the ground state of an ensemble quantum system, Physical Review A, vol.93, p.23414, 2016.

V. V. Temnov and U. Woggon, Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity, Physical Review Letters, vol.95, p.243602, 2005.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet et al., Strongly coupling a cavity to inhomogeneous ensembles of emitters : potential for long lived solid-state quantum memories, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00710231

M. Xu, X. Han, C. Zou, W. Fu, Y. Xu et al., Radiative cooling of a superconducting resonator, 2019.

Z. Wang, M. Xu, X. Han, W. Fu, S. Puri et al., Quantum Microwave Radiometry with a Superconducting Qubit, 2019.

P. K. Day, H. G. Leduc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays, Nature, vol.425, pp.817-821, 2003.

H. Engstrom, Infrared reflectivity and transmissivity of boron-implanted, laserannealed silicon, Journal of Applied Physics, vol.51, pp.5245-5249, 1980.

L. A. Williamson, Y. Chen, and J. J. Longdell, Magneto-Optic Modulator with Unit Quantum Efficiency, Physical Review Letters, vol.113, p.203601, 2014.

S. K. Wong, D. A. Hutchinson, and J. K. Wan, Chemically induced dynamic electron polarization. II. A general theory for radicals produced by photochemical reactions of excited triplet carbonyl compounds, The Journal of Chemical Physics, vol.58, pp.985-989, 1973.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup et al., The nitrogen-vacancy colour centre in diamond, Physics Reports The nitrogen-vacancy colour centre in diamond, vol.528, pp.1-45, 2013.

J. G. Castle and D. W. Feldman, Resonance Modes at Defects in Crystalline Quartz, Physical Review, vol.137, pp.671-673, 1965.

J. Gayda, P. Bertrand, A. Deville, C. More, G. Roger et al., Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-sulfur protein, Biochimica et Biophysica Acta (BBA) -Protein Structure, vol.581, pp.15-26, 1979.

Y. Zhou, B. E. Bowler, G. R. Eaton, and S. S. Eaton, Electron Spin Lattice Relaxation Rates for S = 12 Molecular Species in Glassy Matrices or Magnetically Dilute Solids at Temperatures between 10 and 300 K, Journal of Magnetic Resonance, vol.139, pp.165-174, 1999.

J. Kroll, F. Borsoi, K. Van-der-enden, W. Uilhoorn, D. Jong et al., Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments, Physical Review Applied, vol.11, p.64053, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02332254

A. Ghirri, C. Bonizzoni, D. Gerace, S. Sanna, A. Cassinese et al., YBa 2 Cu 3 O 7 microwave resonators for strong collective coupling with spin ensembles, Applied Physics Letters, vol.106, p.184101, 2015.

C. Bonizzoni, A. Ghirri, and M. Affronte, Coherent coupling of molecular spins with microwave photons in planar superconducting resonators, Advances in Physics: X, vol.3, p.1435305, 2018.

A. Abragam and M. Goldman, Principles of dynamic nuclear polarisation, Reports on Progress in Physics, vol.41, pp.395-467, 1978.

J. H. Ardenkjaer-larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson et al., Increase in signal-to-noise ratio of 10,000 times in liquid-state NMR, Proceedings of the National Academy of Sciences, vol.100, pp.10158-10163, 2003.

M. F. Gely, M. Kounalakis, C. Dickel, J. Dalle, R. Vatré et al., Observation and stabilization of photonic Fock states in a hot radio-frequency resonator, Science, vol.363, pp.1072-1075, 2019.