, Statistics | World -Total Primary Energy Supply (TPES) by source

S. Arrhenius, On the reaction velocity of the inversion of cane sugar by acids -An extract, Zeitschrift für Physikalische Chemie, vol.4, pp.31-35, 1889.

P. F. Lindemann, Discussion on the radiation theory of chemical action, Transactions of the Faraday Society, vol.17, pp.598-606, 1922.

R. G. Gilbert, K. Luther, and J. Troe, Theory of Thermal Unimolecular Reactions in the Fall-off Range. II. Weak Collision Rate Constants, Berichte der Bunsengesellschaft für physikalische Chemie, vol.87, issue.2, pp.169-177, 1983.

M. J. Pilling and P. W. Seakins, Reaction Kinetics, vol.74, p.625, 1997.

H. Carstensen and A. M. Dean, Chapter 4 The Kinetics of Pressure-Dependent Reactions, Comprehensive Chemical Kinetics, vol.42, pp.101-184, 2007.

F. A. Williams, Combustion Theory, 1965.
URL : https://hal.archives-ouvertes.fr/hal-00014918

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

C. Law, A. Makino, and T. Lu, On the off-stoichiometric peaking of adiabatic flame temperature, Combustion and Flame, vol.145, issue.4, pp.808-819, 2006.

P. A. Glaude, V. Warth, R. Fournet, F. Battin-leclerc, G. Scacchi et al., Modeling of the oxidation of n-octane and n-decane using an automatic generation of mechanisms, International Journal of Chemical Kinetics, vol.30, issue.12, pp.949-959, 1998.

C. W. Gao, J. W. Allen, W. H. Green, and R. H. West, Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms -ScienceDirect, Computer Physics Communications, vol.203, pp.212-225, 2016.

. Bibliographie,

E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro, Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures, Combustion and Flame, vol.102, issue.1, pp.179-192, 1995.

A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and Reduction of Detailed Kinetic Schemes: an Effective Coupling, Industrial & Engineering Chemistry Research, vol.53, issue.22, pp.9004-9016, 2014.

D. Edelson and D. L. Allara, A computational analysis of the alkane pyrolysis mechanism: Sensitivity analysis of individual reaction steps, International Journal of Chemical Kinetics, vol.12, issue.9, pp.605-621, 1980.

M. K. Frenklach, Systematic development of reduced reaction mechanisms for dynamic modeling, 1986.

H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combustion and Flame, vol.87, issue.3, pp.365-370, 1991.

T. Turanyi, Reduction of large reaction mechanisms, New Journal of Chemistry, vol.14, issue.11, pp.795-803, 1990.

J. Revel, J. Boettner, M. Cathonnet, and J. Bachman, Derivation of a global chemical kinetic mechanism for methane ignition and combustion, Journal de Chimie Physique, vol.91, pp.365-382, 1994.

C. Frouzakis and K. Boulouchos, Analysis and Reduction of the CH4-Air Mechanism at Lean Conditions, Combustion Science and Technology, vol.159, issue.1, pp.281-303, 2000.

J. Luche, M. Reuillon, J. C. Boettner, and M. Cathonnet, Reduction of large detailed kinetic mechanisms : Application to kerosene/air combustion, Combustion Science and Technology, vol.176, issue.11, pp.1935-1963, 2004.

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, vol.30, pp.1333-1341, 2005.

T. Lu and C. K. Law, On the applicability of directed relation graphs to the reduction of reaction mechanisms, Combustion and Flame, vol.146, issue.3, pp.472-483, 2006.

P. Pepiot-desjardins and H. Pitsch, Systematic Reduction of Large Chemical Mechanisms, 4th Joint Meeting of the U.S. Sections of the Combustion Institute, p.6, 2005.

X. L. Zheng, T. F. Lu, and C. K. Law, Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene, Proceedings of the Combustion Institute, vol.31, issue.1, pp.367-375, 2007.

T. Lu, M. Plomer, Z. Luo, S. M. Sarathy, and W. J. Pitz, Directed Relation Graph with Expert Knowledge for Skeletal Mechanism Reduction, Reaction Kinetics, pp.12-97, 2011.

H. Rabitz, M. Kramer, and .. D. Dacol, Sensitivity Analysis in Chemical Kinetics, Annual Review of Physical Chemistry, vol.34, issue.1, pp.419-461, 1983.

D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models, Environmental Monitoring and Assessment, vol.32, issue.2, pp.135-154, 1994.

T. Turányi, Applications of sensitivity analysis to combustion chemistry, Reliability Engineering & System Safety, vol.57, issue.1, pp.41-48, 1997.

T. Turanyi and A. S. Tomlin, Analysis of Kinetic Reaction Mechanisms, 2014.

J. O. Olsson and L. L. Andersson, Sensitivity analysis based on an efficient brute-force method, applied to an experimental CH4o2 premixed laminar flame, Combustion and Flame, vol.67, issue.2, pp.99-109, 1987.

C. K. Westbrook, F. L. Dryer, and K. P. Schug, A comprehensive mechanism for the pyrolysis and oxidation of ethylene, Symposium (International) on Combustion, vol.19, issue.1, pp.153-166, 1982.

A. M. Dunker, Efficient calculation of sensitivy coefficients for complex atmospheric models, Atmospheric Environment, vol.15, issue.7, pp.1155-1161, 1981.

S. Vajda, P. Valko, and T. Turányi, Principal component analysis of kinetic models, International Journal of Chemical Kinetics, vol.17, issue.1, pp.55-81, 1985.

T. Turanyi, L. Gyorgyi, and R. J. Field, Analysis and simplification of the GTF model of the Belousov-Zhabotinskii reaction, The Journal of Physical Chemistry, vol.97, issue.9, pp.1931-1941, 1993.

A. Tomlin, M. J. Pilling, and J. Merkin, Mechanism Reduction for the Oscillatory Oxidation of Hydrogen : Sensitivityand Quasi-Steady-State Analyses, Combustion and Flame, vol.91, pp.107-130, 1992.

T. Løvås, P. Amnéus, F. Mauss, and E. Mastorakos, Comparison of automatic reduction procedures for ignition chemistry, Proceedings of the Combustion Institute, vol.29, issue.1, pp.1387-1393, 2002.

T. Løvås, Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis, Combustion and Flame, vol.156, issue.7, pp.1348-1358, 2009.

C. F. Curtiss and J. O. Hirschfelder, Integration of Stiff Equations, Proceedings of the National Academy of Sciences, vol.38, issue.3, pp.235-243, 1952.

E. Hairer and G. Wanner, of Springer Series in Computational Mathematics, vol.14, 1991.

. Bibliographie,

M. Bodenstein, Eine Theorie der photochemischen Reaktionsgeschwindigkeiten, Zeitschrift für, Physikalische Chemie, vol.85, pp.329-397, 1913.

C. K. Lu and . Law, Systematic Approach To Obtain Analytic Solutions of Quasi Steady State Species in Reduced Mechanisms, The Journal of Physical Chemistry A, vol.110, issue.49, pp.13202-13208, 2006.

J. Ströhle and T. Myhrvold, Reduction of a detailed reaction mechanism for hydrogen combustion under gas turbine conditions, Combustion and Flame, vol.144, issue.3, pp.545-557, 2006.

D. A. Goussis, Quasi steady state and partial equilibrium approximations: their relation and their validity, Combustion Theory and Modelling, vol.16, issue.5, pp.869-926, 2012.

T. Lu and C. K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combustion and Flame, vol.154, issue.4, pp.761-774, 2008.

T. Løvås, D. Nilsson, and F. Mauss, Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames, Proceedings of the Combustion Institute, vol.28, issue.2, pp.1809-1815, 2000.

S. W. Benson, The Induction Period in Chain Reactions, The Journal of Chemical Physics, vol.20, issue.10, pp.1605-1612, 1952.

J. C. Keck and D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combustion and Flame, vol.17, issue.2, pp.237-241, 1971.

J. R. Bowen, A. Acrivos, and A. K. Oppenheim, Singular perturbation refinement to quasi-steady state approximation in chemical kinetics, Chemical Engineering Science, vol.18, issue.3, pp.177-188, 1963.

F. Heineken, H. Tsuchiya, and R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Mathematical Biosciences, vol.1, issue.1, pp.95-113, 1967.

S. H. Lam and D. A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, Symposium (International) on Combustion, vol.22, issue.1, pp.931-941, 1989.

D. A. Goussis and S. H. Lam, A study of homogeneous methanol oxidation kinetics using CSP, Twenty-fourth symposium (International) on Combustion, pp.113-120, 1992.

T. Lu and C. K. Law, Strategies for mechanism reduction for large hydrocarbons: nheptane, Combustion and Flame, vol.154, issue.1, pp.153-163, 2008.

W. P. Jones and S. Rigopoulos, Rate-controlled constrained equilibrium: Formulation and application to nonpremixed laminar flames, Combustion and Flame, vol.142, issue.3, pp.223-234, 2005.

S. Rigopoulos and T. Løvås, A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames, Proceedings of the Combustion Institute, vol.32, issue.1, pp.569-576, 2009.

P. Pepiot-desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combustion and Flame, vol.154, issue.1-2, pp.67-81, 2008.

H. Huang, M. Fairweather, J. F. Griffiths, A. S. Tomlin, and R. B. Brad, A systematic lumping approach for the reduction of comprehensive kinetic models, Proceedings of the Combustion Institute, vol.30, issue.1, pp.1309-1316, 2005.

L. E. Whitehouse, A. S. Tomlin, and M. J. Pilling, Systematic reduction of complex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach, Atmospheric Chemistry and Physics, vol.4, issue.7, pp.2057-2081, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00295540

B. Sportisse and R. Djouad, Reduction of Chemical Kinetics in Air Pollution Modeling, Journal of Computational Physics, vol.164, issue.2, pp.354-376, 2000.

R. Djouad and B. Sportisse, Partitioning techniques and lumping computation for reducing chemical kinetics, Applied Numerical Mathematics, vol.43, issue.4, pp.383-398, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00532765

J. Wei and J. C. Kuo, Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System, Industrial & Engineering Chemistry Fundamentals, vol.8, issue.1, p.10, 1969.

G. Li, H. Rabitz, and J. Tóth, A general analysis of exact nonlinear lumping in chemical kinetics, Chemical Engineering Science, vol.49, issue.3, pp.343-361, 1994.

L. Petzold and W. Zhu, Model reduction for chemical kinetics: An optimization approach, AIChE Journal, vol.45, issue.4, pp.869-886, 1999.

B. Bhattacharjee, D. A. Schwer, P. I. Barton, and W. H. Green, Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms, Combustion and Flame, vol.135, issue.3, pp.191-208, 2003.

A. Mitsos, G. Oxberry, P. Barton, and W. Green, Optimal automatic reaction and species elimination in kinetic mechanisms, Combustion and Flame, vol.155, issue.1-2, pp.118-132, 2008.

K. Edwards, T. F. Edgar, and V. I. Manousiouthakis, Reaction mechanism simplification using mixed-integer nonlinear programming, Computers & Chemical Engineering, vol.24, issue.1, pp.67-79, 2000.

K. Edwards, T. F. Edgar, and V. I. Manousiouthakis, Kinetic model reduction using genetic algorithms, Computers & Chemical Engineering, vol.22, issue.1, pp.239-246, 1998.

. Bibliographie,

C. J. Montgomery, C. Yang, A. R. Parkinson, and J. Chen, Selecting the optimum quasi-steady-state species for reduced chemical kinetic mechanisms using a genetic algorithm, Combustion and Flame, vol.144, issue.1-2, pp.37-52, 2006.

L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian et al., Wilson, Genetic algorithms for optimisation of chemical kinetics reaction mechanisms, Progress in Energy and Combustion Science, vol.30, issue.3, pp.297-328, 2004.

L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian et al., Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms, Computers & Chemical Engineering, vol.30, issue.5, pp.889-900, 2006.

N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem, Combustion and Flame, vol.175, pp.60-79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611160

T. P. Coffee, A. J. Kotlar, and M. S. Miller, The overall reaction concept in premixed, laminar, steady-state flames. I. Stoichiometries, Combustion and Flame, vol.54, issue.1, pp.155-169, 1983.

P. Gokulakrishnan, R. Joklik, D. Viehe, A. Trettel, E. Gonzalez-juez et al., Optimization of Reduced Kinetic Models for Reactive Flow Simulations, vol.1, 2013.

M. Apri, M. De-gee, and J. Molenaar, Complexity reduction preserving dynamical behavior of biochemical networks, Journal of Theoretical Biology, vol.304, pp.16-26, 2012.

M. Apri, M. De-gee, S. Van-mourik, and J. Molenaar, Identifying Optimal Models to Represent Biochemical Systems, PLoS ONE, vol.9, issue.1, p.83664, 2014.

A. Lifshitz and M. Frenklach, Mechanism of the high temperature decomposition of propane, The Journal of Physical Chemistry, vol.79, issue.7, pp.686-692, 1975.

A. S. Tomlin, T. Turányi, and M. J. Pilling, Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Comprehensive Chemical Kinetics, vol.35, pp.293-437, 1997.

H. Selim, S. Y. Mohamed, A. E. Dawood, and S. M. Sarathy, Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest, Proceedings of the Combustion Institute, vol.36, issue.1, pp.1203-1211, 2017.

J. H. Holland, Outline for a Logical Theory of Adaptive Systems, Journal of the ACM, vol.9, issue.3, pp.297-314, 1962.

J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.

J. H. Holland, Genetic Algorithms, vol.8, 1992.

J. J. Hernández, R. Ballesteros, and J. , Sanz-Argent, Reduction of kinetic mechanisms for fuel oxidation through genetic algorithms, Mathematical and Computer Modelling, vol.52, issue.7, pp.1185-1193, 2010.

S. D. Harris, L. Elliott, D. B. Ingham, M. Pourkashanian, and C. W. Wilson, The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.8, pp.1065-1090, 2000.

N. Jaouen, An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01522644

D. G. Goodwind, H. K. Moffat, and R. L. Speth, Cantera : An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, 2017.

J. Gong, S. Zhang, and Y. Cheng, A comparative study of n-propanol, propanal, acetone, and propane combustion in laminar flames | Request PDF, Proceedings of the Combustion Institute, vol.35, issue.1, pp.795-801, 2015.

W. K. Metcalfe, S. M. Burke, S. S. Ahmed, and H. J. Curran, A Hierarchical and Comparative Kinetic Modeling Study of C1 -C2 Hydrocarbon and Oxygenated Fuels, International Journal of Chemical Kinetics, vol.45, issue.10, pp.638-675, 2013.

M. Mehl, W. J. Pitz, C. K. Westbrook, and H. J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proceedings of the Combustion Institute, vol.33, issue.1, pp.193-200, 2011.

, Kintech Laboratory -R\&D Service and Software for Predicitve Physical Chemical Modeling

F. N. Egolfopoulos, D. X. Du, and C. K. Law, A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes, vol.24, pp.833-841, 1992.

K. J. Bosschaart and L. P. De-goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combustion and Flame, vol.136, issue.3, pp.261-269, 2004.

A. A. Konnov, I. V. Dyakov, and J. De-ruyck, Measurement of adiabatic burning velocity in ethane-oxygen-nitrogen and in ethane-oxygen-argon mixtures, Experimental Thermal and Fluid Science, vol.27, issue.4, pp.379-384, 2003.

G. Jomaas, X. L. Zheng, D. L. Zhu, and C. K. Law, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures, Proceedings of the Combustion Institute, vol.30, issue.1, pp.193-200, 2005.

. Bibliographie,

A. A. Konnov and I. V. Dyakov, Experimental study of adiabatic cellular premixed flames of methane (ethane+propane) + oxygen+ carbon dioxyde mixtures, Combustion Science and Technology, vol.179, issue.4, pp.747-765, 2007.

C. M. Vagelopoulos and F. N. Egolfopoulos, Direct experimental determination of laminar flame speeds, Symposium (International) on Combustion, vol.27, issue.1, pp.513-519, 1998.

C. V. Naik and A. M. Dean, Detailed kinetic modeling of ethane oxidation, Combustion and Flame, vol.145, issue.1, pp.16-37, 2006.

P. Dagaut, M. Cathonnet, and J. Boettner, Kinetics of ethane oxidation, International Journal of Chemical Kinetics, vol.23, issue.5, pp.437-455, 1991.

J. Zhang, E. Hu, L. Pan, Z. Zhang, and Z. Huang, Shock-Tube Measurements of Ignition Delay Times for the Ethane/Dimethyl Ether Blends, Energy & Fuels, vol.27, issue.10, pp.6247-6254, 2013.

N. Lamoureux, P. Desgroux, A. E. Bakali, and J. F. Pauwels, Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4o2n2 and C2h2o2n2 flames, Combustion and Flame, vol.157, issue.10
URL : https://hal.archives-ouvertes.fr/hal-02507342

D. Aubagnac-karkar, A. E. Bakali, and P. Desgroux, Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method, Combustion and Flame, vol.189, pp.190-206, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02335046

, Cibles : CO/CH, vol.4

, Cibles : CO/CO 2 (f) Cibles : CO/CO 2

B. Figure, 1 -Taille des mécanisme réduits en fonction de la tolérance sur les espèces cibles selon l'opérateur de réduction utilisé, Cas des opérateurs orientés réactions

, CH 3 CHO et C 2 H 2 pour le mécanisme de référence (654 espèces, 5228 réactions), le mécanisme réduit (76 espèces, 908 réactions) et le mécanisme optimisé. Configuration : flamme de pré-mélange n-heptane, Figure C.8 -Profils de température et de fractions molaires des espèces cibles n-C 7 H 16, vol.2

A. Complémentaires,

, CH 3 CHO et C 2 H 2 pour le mécanisme de référence (654 espèces, 5228 réactions), le mécanisme réduit (76 espèces, 908 réactions) et le mécanisme optimisé. Configuration : flamme de pré-mélange n-heptane, Figure C.9 -Profils de température et de fractions molaires des espèces ciblesn-C 7 H 16, vol.2