Statistical graph models of temporal brain networks - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Statistical graph models of temporal brain networks

Modélisation statistique de graphe pour l’étude de réseaux dynamiques du cerveau

Résumé

The emerging area of complex networks has led to a paradigm shift in neuroscience. Connectomes estimated from neuroimaging techniques such as electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) results in an abstract representation of the brain as a graph, which has allowed a major breakthrough in the understanding of topological and physiological properties of healthy brains in a compact and objective way. However, state of the art approaches often ignore the uncertainty and temporal nature of functional connectivity data. Most of the available methods in the literature have been developed to characterize functional brain networks as static graphs composed of nodes (brain regions) and links (FC intensity) by network metrics. As a consequence, complex networks theory has been mainly applied to cross-sectional studies referring to a single point in time and the resulting characterization ultimately represents an average across spatiotemporal neural phenomena. Here, we implemented statistical methods to model and simulate temporal brain networks. We used graph models that allow to simultaneously study how different network properties influence the emergent topology observed in functional connectivity brain networks. We successfully identified fundamental local connectivity mechanisms that govern properties of brain networks. We proposed a temporal adaptation of such fundamental connectivity mechanisms to model and simulate physiological brain network dynamic changes. Specifically, we exploited the temporal metrics to build informative temporal models of recovery of patients after stroke.
La discipline encore naissante des réseaux complexes est vecteur d’un changement de paradigme dans la neuroscience. Les connectomes estimés à partir de mesures de neuroimagerie comme l’électroencéphalographie, la magnétoencéphalographie ou encore l’imagerie par résonance magnétique fonctionnelle fournissent une représentation abstraite du cerveau sous la forme d’un graphe, ce qui a permis des percées décisives dans la compréhension compacte et objective des propriétés topologiques et physiologiques des cerveaux sains. Cependant, les approches de pointe ignorent souvent l'incertitude et la nature temporelle de données de connectivité fonctionnelles. La plupart des méthodes disponibles dans la littérature ont en effet été développées pour caractériser les réseaux cérébraux fonctionnels comme des graphes statiques composés de nœuds (des régions cérébrales) et des liens (intensité de connectivité fonctionnelle) par métrique de réseau. En conséquence, la théorie des réseaux complexes a été principalement appliquée à des études transversales avec une unique mesure par sujet, produisant au final une caractérisation consistant en une moyenne de phénomènes neuronaux spatiotemporels. Nous avons implémenté des méthodes statistiques pour modéliser et simuler des réseaux cérébraux temporels. Nous avons utilisé des modèles de graphe qui permettent d'étudier simultanément à quel point les différentes propriétés des réseaux influencent la topologie observée dans les réseaux de connectivité cérébrale fonctionnelle. Nous avons identifié avec succès les mécanismes de connectivité locale fondamentaux qui gouvernent les propriétés des réseaux cérébraux. Nous avons proposé l'adaptation temporelle de ces mécanismes fondamentaux pour modéliser et simuler les changements physiologiques dynamiques d'un réseau cérébral. Plus spécifiquement, nous avons exploité des métriques temporelles pour construire des modèles temporels informatifs du rétablissement de patients ayant subit un accident vasculaire cérébral.
Fichier principal
Vignette du fichier
these_obando_forero_catalina_2018.pdf (8.25 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02924850 , version 1 (28-08-2020)

Identifiants

  • HAL Id : tel-02924850 , version 1

Citer

Catalina Obando Forero. Statistical graph models of temporal brain networks. Computer science. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS454⟩. ⟨tel-02924850⟩
141 Consultations
191 Téléchargements

Partager

Gmail Facebook X LinkedIn More