C. A. Horowitz, Paris Agreement, Int Leg Mater, vol.55, issue.4, pp.740-755, 2016.

K. Eberl, O. G. Schmidt, R. Duschl, O. Kienzle, E. Ernst et al., Self-assembling SiGe and SiGeC nanostructures for light emitters and tunneling diodes, Thin Solid Films, vol.369, issue.1-2, pp.33-38, 2000.

D. P. Yu, Amorphous silica nanowires: Intensive blue light emitters, Appl. Phys. Lett, vol.73, issue.21, pp.3076-3078, 1998.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, Quantum confined luminescence in Si/SiO 2 superlattices, Phys. Rev. Lett, vol.76, issue.3, p.539, 1996.

U. Fischer, T. Zinke, J. Kropp, F. Arndt, and K. Petermann, 0.1 dB/cm waveguide losses in single-mode SOI rib waveguides, IEEE Photonics Technol. Lett, vol.8, issue.5, pp.647-648, 1996.
URL : https://hal.archives-ouvertes.fr/in2p3-00011484

G. Li, Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects, Opt. Express, vol.20, issue.11, pp.12035-12039, 2012.

X. Wang, W. Shi, H. Yun, S. Grist, N. A. Jaeger et al., Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process, Opt. Express, vol.20, issue.14, pp.15547-15558, 2012.

C. E. Png, S. P. Chan, S. T. Lim, and G. T. Reed, Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI), J. Light. Technol, vol.22, issue.6, p.1573, 2004.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling et al., Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform, Opt. Express, vol.15, issue.2, pp.623-628, 2007.

T. Liow, Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization, IEEE J. Sel. Top. Quantum Electron, vol.16, issue.1, pp.307-315, 2009.

H. Yamamoto, K. Taniguchi, and C. Hamaguchi, High-sensitivity SOI MOS photodetector with self-amplification, Jpn. J. Appl. Phys, vol.35, issue.2S, p.1382, 1996.

G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang et al., Highspeed germanium-on-SOI lateral PIN photodiodes, IEEE Photonics Technol. Lett, vol.16, issue.11, pp.2547-2549, 2004.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, High-responsivity graphene/siliconheterostructure waveguide photodetectors, Nat. Photonics, vol.7, issue.11, p.888, 2013.

S. Ali, Photovoltaic Solar Energy, 1 vols, Comprehensive Renewable Energy, 2012.

V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett, vol.58, issue.8, pp.856-858, 1991.

V. S. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, A porous silicon-based optical interferometric biosensor, Science, vol.278, issue.5339, pp.840-843, 1997.

G. Korotcenkov, Porous Silicon Characterization and Application: General View, Porous Silicon: From Formation to Application: Formation and Properties, vol.One, pp.20-43, 2016.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl et al., 1.54-?m electroluminescence of erbium-doped silicon grown by molecular beam epitaxy, Appl. Phys. Lett, vol.46, issue.4, pp.381-383, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01100733

J. Palm, F. Gan, B. Zheng, J. Michel, and L. C. Kimerling, Electroluminescence of erbium-doped silicon, Phys. Rev. B, vol.54, issue.24, p.17603, 1996.

G. Mula, Doping porous silicon with erbium: pores filling as a method to limit the Er-clustering effects and increasing its light emission, Sci. Rep, vol.7, issue.1, p.5957, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691821

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron et al., Enhanced nonlinear optical response from individual silicon nanowires, Phys. Rev. B, vol.91, issue.12, p.121416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01763391

M. Keplinger, Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays, Nanotechnology, vol.27, issue.5, p.55705, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572929

M. Dasog, J. Kehrle, B. Rieger, and J. G. Veinot, Silicon nanocrystals and siliconpolymer hybrids: synthesis, surface engineering, and applications, Angew. Chem. Int. Ed, vol.55, issue.7, pp.2322-2339, 2016.

N. J. Kramer, K. S. Schramke, and U. R. Kortshagen, Plasmonic properties of silicon nanocrystals doped with boron and phosphorus, Nano Lett, vol.15, issue.8, pp.5597-5603, 2015.

S. Liebich, Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate, Appl Phys Lett, vol.99, issue.7, p.71109, 2011.

K. Yamane, Growth of a lattice-matched GaAsPN p-i-n junction on a Si substrate for monolithic III-V/Si tandem solar cells, Appl Phys Express, vol.10, issue.7, p.75504, 2017.

A. Y. Liu, Electrically pumped continuous-wave 13 ?m quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si, Opt Lett, vol.42, issue.2, p.338, 2017.

P. Guillemé, Second harmonic generation in gallium phosphide microdisks on silicon: from strict to random quasi-phase matching, Semicond Sci Tech, vol.32, issue.6, p.65004, 2017.

M. , MOVPE Grown Gallium Phosphide-Silicon Heterojunction Solar Cells, Ieee J Photovolt, vol.7, issue.2, pp.502-507, 2017.

C. Cornet, M. Silva, C. Levallois, and O. Durand, GaP/Si-Based Photovoltaic Devices Grown by Molecular Beam Epitaxy, pp.637-648, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01859116

R. Varache, M. Darnon, M. Descazeaux, M. Martin, T. Baron et al., Evolution of Bulk c-Si Properties during the Processing of GaP/c-Si Heterojunction Cell, Enrgy Proced, vol.77, pp.493-499, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02339979

O. Supplie, M. M. May, H. Stange, C. Höhn, H. Lewerenz et al., Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100), J Appl Phys, vol.115, issue.11, p.113509, 2014.

J. L. Young, M. A. Steiner, H. Döscher, R. M. France, J. A. Turner et al., Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures, Nat Energy, vol.2, issue.4, p.17028, 2017.

I. Lucci, A Stress-Free and Textured GaP Template on Silicon for Solar Water Splitting, Adv Funct Mater, vol.28, issue.30, p.1801585, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01803990

J. H. Lau, Flip chip technologies, vol.1, 1996.

M. D. Rostoker, Multi-chip semiconductor arrangements using flip chip dies, 1995.

G. Roelkens, III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser Photonics Rev, vol.4, issue.6, pp.751-779, 2010.

K. Tanabe, K. Watanabe, and Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Sci. Rep, vol.2, p.349, 2012.

D. Pasquariello and K. Hjort, Plasma-assisted InP-to-Si low temperature wafer bonding, IEEE J. Sel. Top. Quantum Electron, vol.8, issue.1, pp.118-131, 2002.

F. J. Blanco, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding, J. Micromechanics Microengineering, vol.14, issue.7, p.1047, 2004.

Y. Sun, D. Khang, F. Hua, K. Hurley, R. G. Nuzzo et al., Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors, Adv. Funct. Mater, vol.15, issue.1, pp.30-40, 2005.

S. Keyvaninia, M. Muneeb, S. Stankovi?, P. J. Van-veldhoven, D. Van-thourhout et al., Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate, Opt. Mater. Express, vol.3, issue.1, pp.35-46, 2013.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens et al., Hybrid III-V/Si distributed-feedback laser based on adhesive bonding, IEEE Photonics Technol. Lett, vol.24, issue.23, pp.2155-2158, 2012.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, issue.24, pp.5434-5437, 2013.

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, Initial stages of epitaxial growth of GaAs on (100) silicon, J. Appl. Phys, vol.61, issue.5, pp.1856-1859, 1987.

L. Wang, Toward All MOCVD Grown InAs/GaAs Quantum Dot Laser on CMOScompatible (001) Silicon, CLEO: Science and Innovations, p.82, 2019.

J. Wang, 1.3 ?m InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers, Photonics Res, vol.6, issue.4, pp.321-325, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00341610

S. Chowdhury, A. Das, and P. Banerji, Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique, AIP Conference Proceedings, vol.1953, p.30233, 2018.

W. K. Loke, K. H. Lee, Y. Wang, C. S. Tan, E. A. Fitzgerald et al., MOCVD growth of InGaP/GaAs heterojunction bipolar transistors on 200 mm Si wafers for heterogeneous integration with Si CMOS, Semicond. Sci. Technol, vol.33, issue.11, p.115011, 2018.

S. Lourdudoss, Heteroepitaxy of InP on Si for photonic and photovoltaic applications, 2016 Compound Semiconductor Week (CSW)[Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors, pp.1-1, 2016.

C. Zhang, Y. Kim, N. N. Faleev, and C. B. Honsberg, Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy, J. Cryst. Growth, vol.475, pp.83-87, 2017.

E. L. Warren, A. E. Kibbler, R. M. France, A. G. Norman, J. M. Olson et al., Investigation of GaP/Si heteroepitaxy on MOCVD prepared Si (100) surfaces, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-4, 2015.

B. Lai, Heteroepitaxy and characterization of GaSb and InAs narrow bandgap semiconductors on Si, Master, 2018.

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si, Adv. Mater, vol.29, issue.38, p.1702557, 2017.

A. Bansal, N. C. Martin, K. Wang, and J. M. Redwing, Si/Si 1? x Ge x, GaN Heteroepitaxy on Strain-Engineered, vol.48, issue.111, pp.3355-3362, 2019.

R. People and J. C. Bean, Calculation of critical layer thickness versus lattice mismatch for Ge x Si1? x/Si strained-layer heterostructures, Appl. Phys. Lett, vol.47, issue.3, pp.322-324, 1985.

G. B. Stringfellow, The importance of lattice mismatch in the growth of Ga x In1? x P epitaxial crystals, J. Appl. Phys, vol.43, issue.8, pp.3455-3460, 1972.

C. L. Andre, Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates, Appl. Phys. Lett, vol.84, issue.18, pp.3447-3449, 2004.

D. Jung, Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si, Appl. Phys. Lett, vol.112, issue.15, p.153507, 2018.

C. Heidelberger and E. A. Fitzgerald, GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain, J. Appl. Phys, vol.123, issue.16, p.161532, 2018.

H. B. Pogge, B. M. Kemlage, and R. W. Broadie, The heteroepitaxial growth of GaP films on Si substrates, J. Cryst. Growth, vol.37, issue.1, pp.13-22, 1977.

T. Katoda and M. Kishi, Heteroepitaxial growth of gallium phosphide on silicon, J. Electron. Mater, vol.9, issue.4, pp.783-796, 1980.

T. J. Grassman, Control and elimination of nucleation-related defects in GaP/Si (001) heteroepitaxy, Appl. Phys. Lett, vol.94, issue.23, p.232106, 2009.

T. J. Grassman, Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition, Appl. Phys. Lett, vol.102, issue.14, p.142102, 2013.

I. Németh, B. Kunert, W. Stolz, and K. Volz, Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions, J. Cryst

, Growth, vol.310, issue.7-9, pp.1595-1601, 2008.

A. Beyer, GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure, J Appl Phys, vol.111, issue.8, p.83534, 2012.

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates, J Cryst Growth, vol.187, issue.1, pp.42-50, 1998.

J. A. Piedra-lorenzana, Estimation of Ga adatom diffusion length for GaP growth by molecular beam epitaxy, J. Cryst. Growth, vol.512, pp.37-40, 2019.

M. S. Sobolev, Heteroepitaxy of GaP Nucleation Layers on Si by Molecular Beam Epitaxy, Semiconductors, vol.52, issue.16, pp.2128-2131, 2018.

A. A. Lazarenko, M. S. Sobolev, E. V. Pirogov, and E. V. Nikitina, Doping of GaP layers grown by molecular-beam epitaxy on silicon substrates, Journal of Physics: Conference Series, vol.1124, p.22022, 2018.

R. Saive, H. Emmer, C. T. Chen, C. Zhang, C. Honsberg et al., Study of the Interface in a GaP/Si Heterojunction Solar Cell, IEEE J. Photovolt, vol.8, issue.6, pp.1568-1576, 2018.

C. Zhang, E. Vadiee, R. R. King, and C. B. Honsberg, Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy, J. Mater. Res, vol.33, issue.4, pp.414-423, 2018.

M. Vaisman, 15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates, ACS Energy Lett, vol.2, issue.8, pp.1911-1918, 2017.

J. Gauthier, Electrical injection in GaP-based laser waveguides and active areas, 26th International Conference on Indium Phosphide and Related Materials (IPRM), pp.1-2, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114889

C. Robert, Electronic, optical, and structural properties of (In, Ga) As/GaP quantum dots, Phys. Rev. B, vol.86, issue.20, p.205316, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726726

M. Silva, GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell, Physics, vol.9358, p.93580, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166431

T. Quinci, Defects limitation in epitaxial GaP on bistepped Si surface using UHVCVD-MBE growth cluster, J Cryst Growth, vol.380, pp.157-162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00918659

P. Y. Wang, Abrupt GaP/Si hetero-interface using bistepped Si buffer, Appl Phys Lett, vol.107, issue.19, p.191603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228809

P. Y. Wang, Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III-V photonics platform on silicon using a laboratory X-ray diffraction setup, J. Appl. Crystallogr, vol.48, issue.3, pp.702-710, 2015.

H. Li, Engineering CIGS grains qualities to achieve high efficiency in ultrathin Cu(In Ga1?)Se2 solar cells with a single-gradient band gap profile, Results Phys, vol.12, pp.704-711, 2019.

Y. Takagi, Y. Furukawa, A. Wakahara, and H. Kan, Lattice relaxation process and crystallographic tilt in GaP layers grown on misoriented Si(001) substrates by metalorganic vapor phase epitaxy, J. Appl. Phys, vol.107, issue.6, p.63506, 2010.

S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, vol.28, 2009.

F. C. Frank and J. H. Van-der-merwe, One-dimensional dislocations. I. Static theory, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.198, issue.1053, pp.205-216, 1949.

J. H. Van-der-merwe, Crystal interfaces. Part I. Semi-infinite crystals, J. Appl. Phys, vol.34, issue.1, pp.117-122, 1963.

J. H. Van-der-merwe, Equilibrium structure of a thin epitaxial film, J. Appl. Phys, vol.41, issue.11, pp.4725-4731, 1970.

K. Yamane, T. Kawai, Y. Furukawa, H. Okada, and A. Wakahara, Growth of low defect density GaP layers on Si substrates within the critical thickness by optimized shutter sequence and post-growth annealing, vol.312, pp.2179-2184, 2010.

O. Skibitzki, GaP collector development for SiGe heterojunction bipolar transistor performance increase: A heterostructure growth study, J Appl Phys, vol.111, issue.7, p.73515, 2012.

T. Soga, T. Jimbo, and M. Umeno, Dislocation generation mechanisms for GaP on Si grown by metalorganic chemical vapor deposition, Appl. Phys. Lett, vol.63, issue.18, pp.2543-2545, 1993.

A. Konkar, Origin of the 60 degree and 90 degree dislocations and their role in strain relief in lattice-mismatched heteroepitaxy of fcc materials, ArXivcond-Mat0606744, 2006.

G. I. Taylor, The mechanism of plastic deformation of crystals. Part I.-Theoretical, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol.145, issue.855, pp.362-387, 1934.

H. Dislocations--basics, Defects in Crystals, Essentials to Chapter, vol.1

R. M. France, W. E. Mcmahon, A. G. Norman, J. F. Geisz, and M. J. Romero, Control of misfit dislocation glide plane distribution during strain relaxation of CuPt-ordered GaInAs and GaInP, J. Appl. Phys, vol.112, issue.2, p.23520, 2012.

H. Döscher, T. Hannappel, B. Kunert, A. Beyer, K. Volz et al., In situ verification of single-domain III-V on Si(100) growth via metal-organic vapor phase epitaxy, Appl Phys Lett, vol.93, issue.17, p.172110, 2008.

H. Döscher and T. Hannappel, In situ reflection anisotropy spectroscopy analysis of heteroepitaxial GaP films grown on Si (100), J. Appl. Phys, vol.107, issue.12, p.123523, 2010.

A. Beyer, Atomic structure of (110) anti-phase boundaries in GaP on Si(001)

, Appl Phys Lett, vol.103, issue.3, p.32107, 2013.

P. Farin, Three-dimensional structure of antiphase domains in GaP on Si(0 0 1), J Phys Condens Matter, vol.31, issue.14, p.144001, 2019.

A. Létoublon, X-ray study of antiphase domains and their stability in MBE grown GaP on Si, J. Cryst. Growth, vol.323, issue.1, pp.409-412, 2011.

O. Durand, Monolithic integration of diluted-nitride III-VN compounds on silicon substrates: toward the III-V/Si concentrated photovoltaics, Energy Harvest. Syst, vol.1, issue.3-4, pp.147-156, 2014.

T. J. Grassman, Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAs y P 1-y buffers, 34th IEEE Photovoltaic Specialists Conference, pp.2016-002021, 2009.

E. Tea, Theoretical study of optical properties of anti-phase domains in GaP, J. Appl. Phys, vol.115, issue.6, p.63502, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00979596

I. Lucci, Universal description of III-V/Si epitaxial growth processes, vol.2, p.60401, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833206

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu et al., Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage, J. Cryst. Growth, vol.311, issue.3, pp.794-797, 2009.

K. Yamane, T. Kawai, Y. Furukawa, H. Okada, and A. Wakahara, Growth of low defect density GaP layers on Si substrates within the critical thickness by optimized shutter sequence and post-growth annealing, J. Cryst. Growth, vol.312, issue.15, pp.2179-2184, 2010.

K. Yamane, Growth of a lattice-matched GaAsPN p-i-n junction on a Si substrate for monolithic III-V/Si tandem solar cells, Appl. Phys. Express, vol.10, issue.7, p.75504, 2017.

X. Yu, P. S. Kuo, K. Ma, O. Levi, M. M. Fejer et al., Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy, J. Vac. Sci. Technol, vol.22, issue.3, p.1450, 2004.

A. C. Lin, M. M. Fejer, and J. S. Harris, Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy, J. Cryst. Growth, vol.363, pp.258-263, 2013.

A. C. Lin, Epitaxial growth of GaP/AlGaP mirrors on Si for low thermal noise optical coatings, Opt. Mater. Express, vol.5, issue.8, p.1890, 2015.

I. Németh, B. Kunert, W. Stolz, and K. Volz, Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions, J. Cryst. Growth, vol.310, issue.7-9, pp.1595-1601, 2008.

H. Kroemer, Polar-on-nonpolar epitaxy, J. Cryst. Growth, vol.81, issue.1-4, pp.193-204, 1987.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate, Thin Solid Films, vol.517, issue.1, pp.140-143, 2008.

I. Németh, B. Kunert, W. Stolz, and K. Volz, Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions, J. Cryst. Growth, vol.310, issue.7-9, pp.1595-1601, 2008.

I. Lucci, Universal description of III-V/Si epitaxial growth processes, Phys. Rev. B, vol.2, issue.6, p.60401, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833206

Y. Wang, Structural analyses by advanced X-ray scattering on GaP layers epitaxially grown on silicon for integrated photonic applications, Ph.D., INSA Rennes, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01450671

B. Heying, Role of threading dislocation structure on the x ray diffraction peak widths in epitaxial GaN films, Appl. Phys. Lett, vol.68, issue.5, pp.643-645, 1996.

X. H. Zheng, Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction, J. Cryst. Growth, vol.255, issue.1-2, pp.63-67, 2003.

A. Segmüller, J. Angilelo, and S. J. La-placa, Automatic X-ray diffraction measurement of the lattice curvature of substrate wafers for the determination of linear strain patterns, J. Appl. Phys, vol.51, issue.12, pp.6224-6230, 1980.

H. Mughrabi and B. Obst, Misorientations and geometrically necessary dislocations in deformed copper crystals: a microstructural analysis of X-ray rocking curves, Zeitschrift für Metallkunde, vol.96, issue.7, pp.688-697, 2005.

S. Weissmann, Method for the study of lattice inhomogeneities combining X ray microscopy and diffraction analysis, J. Appl. Phys, vol.27, issue.4, pp.389-395, 1956.

M. Fatemi and R. E. Stahlbush, X ray rocking curve measurement of composition and strain in Si Ge buffer layers grown on Si substrates, Appl. Phys. Lett, vol.58, issue.8, pp.825-827, 1991.

M. Tilli and A. Haapalinna, Properties of Silicon, Handbook of Silicon Based MEMS Materials and Technologies, pp.3-17, 2015.

P. Y. Wang, Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III-V photonics platform on silicon using a laboratory X-ray diffraction setup, J. Appl. Crystallogr, vol.48, issue.3, pp.702-710, 2015.

P. Y. Wang, Abrupt GaP/Si hetero-interface using bistepped Si buffer, Appl. Phys. Lett, vol.107, issue.19, p.191603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228809

E. Weckert, The potential of future light sources to explore the structure and function of matter, IUCrJ, vol.2, issue.2, pp.230-245, 2015.

, Synchrotron sources accelerate, Nature Photonics, vol.9, p.281, 2015.

A. A. Sokolov and I. M. Ternov, Moscow: Akademia Nauk SSSR, Moskovskoie Obshchestvo Ispytatelei prirody, Synchrotron radiation, 1966.

H. Winick and S. Doniach, An Overview of Synchrotron Radiation Research, pp.1-10, 1980.

K. Codling, Atomic and Molecular Physics Using Synchrotron Radiation -the Early Years, J. Synchrotron. Rad, vol.4, issue.6, pp.316-333, 1997.

H. Winick and S. Doniach, Synchrotron Radiation Research, 2012.

P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications, 2019.

T. U. Sch?lli and S. J. Leake, X-ray nanobeam diffraction imaging of materials, Curr. Opin. Solid State Mater. Sci, pp.188-201, 2017.

A. V. Baez, A Study in Diffraction Microscopy with Special Reference to X-Rays, J. Opt. Soc. Am, vol.42, issue.10, p.756, 1952.

E. Spiller, Low Loss Reflection Coatings Using Absorbing Materials, Appl. Phys. Lett, vol.20, issue.9, pp.365-367, 1972.

P. Kirkpatrick and A. V. Baez, Formation of Optical Images by X-Rays, J. Opt. Soc. Am, vol.38, issue.9, p.766, 1948.

M. Montel, Réflexion et focalisation des rayons X par les miroirs, Ann. Phys, vol.13, issue.3, pp.859-914, 1958.

P. Kirkpatrick, X-Ray Images by Refractive Focusing, J. Opt. Soc. Am, vol.39, issue.9, p.796, 1949.

S. Suehiro, H. Miyaji, and H. Hayashi, Refractive lens for X-ray focus, Nature, vol.352, issue.6334, pp.385-386, 1991.

B. X. Yang, Fresnel and refractive lenses for X-rays, Nucl. Instrum. Methods Phys. Res, vol.328, issue.3, pp.578-587, 1993.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, A compound refractive lens for focusing high-energy X-rays, Nature, vol.384, issue.6604, pp.49-51, 1996.

V. V. Aristov, X-ray focusing by planar parabolic refractive lenses made of silicon, Opt. Commun, vol.177, issue.1-6, pp.33-38, 2000.

A. A. Snigirev, Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer, Optical Science and Technology, SPIE's 48th Annual Meeting, p.21, 2003.

A. V. Baez, Fresnel Zone Plate for Optical Image Formation Using Extreme Ultraviolet and Soft X Radiation, J. Opt. Soc. Am, vol.51, issue.4, p.405, 1961.

K. Saitoh, K. Inagawa, K. Kohra, C. Hayashi, A. Iida et al., Fabrication and Characterization of Multilayer Zone Plate for Hard X-Rays, Jpn. J. Appl. Phys, vol.27, issue.11A, p.2131, 1988.

W. Liu, Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing, J. Synchrotron Rad, vol.18, issue.4, pp.575-579, 2011.

R. P. Winarski, A hard X-ray nanoprobe beamline for nanoscale microscopy, J. Synchrotron Rad, vol.19, issue.6, pp.1056-1060, 2012.

C. Riekel, M. Burghammer, and R. Davies, Progress in micro-and nano-diffraction at the ESRF ID13 beamline, IOP Conf. Ser.: Mater. Sci. Eng, vol.14, p.12013, 2010.

M. Suzuki, A hard X-ray nanospectroscopy station at SPring-8 BL39XU, J. Phys.: Conf. Ser, vol.430, p.12017, 2013.

U. Johansson, U. Vogt, and A. Mikkelsen, NanoMAX: a hard x-ray nanoprobe beamline at MAX IV, X-Ray Nanoimaging: Instruments and Methods, vol.8851, p.88510, 2013.

E. Nazaretski, Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II, J. Synchrotron Rad, vol.24, issue.6, pp.1113-1119, 2017.

G. A. Chahine, Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping, J. Appl. Crystallogr, vol.47, issue.2, pp.762-769, 2014.

C. Liewald, Microdiffraction imaging-a suitable tool to characterize organic electronic devices, AIMS Materials Science, vol.2, issue.4, pp.369-378, 2015.

V. Holý, Observation of individual stacking faults in GaN microcrystals by x-ray nanodiffraction, Appl. Phys. Lett, vol.110, issue.12, p.121905, 2017.

J. Wallentin, D. Jacobsson, M. Osterhoff, M. T. Borgström, and T. Salditt, Bending and Twisting Lattice Tilt in Strained Core-Shell Nanowires Revealed by Nanofocused X-ray Diffraction, Nano Lett, vol.17, issue.7, p.2017

M. Medu?a, Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals, J. Appl. Crystallogr, vol.51, issue.2, pp.368-385, 2018.

S. J. Leake, The Nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure, J. Synchrotron Rad, vol.26, issue.2, pp.571-584, 2019.

A. Zhou, A study of the strain distribution by scanning X-ray diffraction on GaP/Si for III-V monolithic integration on silicon, J. Appl. Crystallogr, vol.52, issue.4, pp.809-815, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02289442

T. T. Nguyen, Sillicon photonics based on monolithic integration of III-V nanostructures on silicon, Ph.D, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01065999

Y. Wang, Structural analyses by advanced X-ray scattering on GaP layers epitaxially grown on silicon for integrated photonic applications, Ph.D., INSA Rennes, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01450671

B. E. Warren and X. Diffraction, Unabridged and Corrected republication of the work originally published in 1969 by, 1990.

T. Thanh, Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon, J. Appl. Phys, vol.112, issue.5, p.53521, 2012.

T. Thanh, Synchrotron X-ray diffraction analysis for quantitative defect evaluation in GaP/Si nanolayers, Thin Solid Films, vol.541, pp.36-40, 2013.

P. Y. Wang, Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III-V photonics platform on silicon using a laboratory X-ray diffraction setup, J. Appl. Crystallogr, vol.48, issue.3, pp.702-710, 2015.

P. Y. Wang, Abrupt GaP/Si hetero-interface using bistepped Si buffer, Appl. Phys. Lett, vol.107, issue.19, p.191603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228809

O. Durand, A. Letoublon, D. J. Rogers, and F. Teherani, Interpretation of the twocomponents observed in high resolution X-ray diffraction ? scan peaks for mosaic ZnO thin films grown on c-sapphire substrates using pulsed laser deposition, Thin Solid Films, vol.519, issue.19, pp.6369-6373, 2011.

O. Durand, A. Létoublon, D. J. Rogers, F. H. Teherani, C. Cornet et al., Studies of PLD-grown ZnO and MBE-grown GaP mosaic thin films by x-ray scattering methods: beyond the restrictive Omega rocking curve linewidth as a figure-of-merit, Oxide-based Materials and Devices II, vol.7940, p.79400, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654279

P. Guillemé, Antiphase domain tailoring for combination of modal and 4¯ -quasiphase matching in gallium phosphide microdisks, Opt. Express, vol.24, issue.13, pp.14608-14625, 2016.

P. M. Mooney, J. L. Jordan-sweet, I. C. Noyan, and S. K. Kaldor, Observation of local tilted regions in strain-relaxed SiGe/Si buffer layers using x-ray microdiffraction, Appl. Phys. Lett, vol.74, issue.5, pp.726-728, 1999.

J. Matsui, Microscopic strain analysis of semiconductor crystals using a synchrotron X-ray microbeam, J. Cryst. Growth, vol.237, pp.317-323, 2002.

V. Mondiali, Dislocation engineering in SiGe on periodic and aperiodic Si(001) templates studied by fast scanning X-ray nanodiffraction, Appl. Phys. Lett, vol.104, issue.2, p.21918, 2014.

M. H. Zoellner, Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X-ray Diffraction Microscopy, ACS Appl. Mater. Interfaces, vol.7, issue.17, pp.9031-9037, 2015.

B. Vianne, S. Escoubas, M. Richard, S. Labat, G. Chahine et al., Microelectron Eng, vol.137, pp.117-123, 2015.

T. U. Sch?lli and S. J. Leake, X-ray nanobeam diffraction imaging of materials, Curr. Opin. Solid State Mater. Sci, pp.188-201, 2017.

S. J. Leake, The Nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure, J. Synchrotron Rad, vol.26, issue.2, pp.571-584, 2019.

G. A. Chahine, Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping, J. Appl. Crystallogr, vol.47, issue.2, pp.762-769, 2014.

M. Keplinger, Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays, Nanotechnology, vol.27, issue.5, p.55705, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572929

D. Kriegner, Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction, J. Appl. Crystallogr, vol.50, issue.2, pp.369-377, 2017.

M. Hadjimichael, E. Zatterin, S. Fernandez-peña, S. J. Leake, and P. Zubko, Domain Wall Orientations in Ferroelectric Superlattices Probed with Synchrotron X-Ray Diffraction, Phys. Rev. Lett, vol.120, issue.3, p.37602, 2018.

Y. Takagi, Y. Furukawa, A. Wakahara, and H. Kan, Lattice relaxation process and crystallographic tilt in GaP layers grown on misoriented Si(001) substrates by metalorganic vapor phase epitaxy, J. Appl. Phys, vol.107, issue.6, p.63506, 2010.

Y. K. Yo?urtçu, A. J. Miller, and G. A. Saunders, Pressure dependence of elastic behaviour and force constants of GaP, J. Phys. Chem. Solids, vol.42, issue.1, pp.49-56, 1981.

G. Giesecke and H. Pfister, Präzisionsbestimmung der Gitterkonstanten von AIIIBv Verbindungen, Acta. Crystallogr, vol.11, issue.5, pp.369-371, 1958.

S. D. Carnevale, Applications of Electron Channeling Contrast Imaging for the Rapid Characterization of Extended Defects in III-V/Si Heterostructures, IEEE J. Photovolt, vol.5, issue.2, pp.676-682, 2014.

S. Kishinû, M. Ogirima, and K. Kurata, A Cross-Hatch Pattern in GaAs1?xPx Epitaxially Grown on GaAs Substrate, J. Electrochem. Soc, vol.119, issue.5, pp.617-622, 1972.

E. A. Fitzgerald, Relaxed Ge x Si1-x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si, J. Vac. Sci. Technol, vol.10, issue.4, pp.1807-1819, 1992.

M. Albrecht, Surface ripples, crosshatch pattern, and dislocation formation: Cooperating mechanisms in lattice mismatch relaxation, Appl. Phys. Lett, vol.67, p.1232, 1995.

T. Ojala, M. Pietikainen, and D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, Proceedings of 12th International Conference on Pattern Recognition, vol.1, pp.582-585, 1994.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognit, vol.29, issue.1, pp.51-59, 1996.

P. Kightley, P. J. Goodhew, R. R. Bradley, and P. D. Augustus, A mechanism of misfit dislocation reaction for GaInAs strained layers grown onto off-axis GaAs substrates, J. Cryst. Growth, vol.112, issue.2-3, pp.359-367, 1991.

Y. Z. Dai and F. P. Chiang, Strain path and surface roughness, Mech. Mater, vol.13, issue.1, pp.55-57, 1992.

A. Andrews, J. Speck, A. Romanov, M. Bobeth, and W. Pompe, Modeling cross-hatch surface morphology in growing mismatched layers, J. Appl. Phys, vol.91, issue.4, pp.1933-1943, 2002.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate, Thin Solid Films, vol.517, issue.1, pp.140-143, 2008.

F. Rovaris, Misfit-Dislocation Distributions in Heteroepitaxy: From Mesoscale Measurements to Individual Defects and Back, Phys. Rev. Appl, vol.10, issue.5, p.54067, 2018.

, Figure 4-13 Cross-sectional (220) Bright-Field (BF) TEM image of a CIGS sample grown on GaP/Si substrate

, The observation of the CIGS (1 1 10) Bragg diffraction (fully relaxed) in the RSM containing both the Si (115) and GaP (115), shows that the CIGS is (008) oriented along the growth direction. If assuming the CIGS is (400) oriented along the growth direction, then the diffraction, RSM is performed around GaP/Si (115) diffraction on 1744/S554, which is shown in Figure 4-14

J. F. Geisz and D. J. Friedman, III N V semiconductors for solar photovoltaic applications, Semicond. Sci. Technol, vol.17, issue.8, pp.769-777, 2002.

S. Chichibu, Y. Harada, M. Sugiyama, and H. Nakanishi, Metalorganic vapor phase epitaxy of Cu(AlxGa1?x)(SySe1?y)2 chalcopyrite semiconductors and their band offsets, J. Phys. Chem. Solids, vol.64, issue.9, pp.1481-1489, 2003.

S. Wei and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys, J. Appl. Phys, vol.78, issue.6, pp.3846-3856, 1995.

R. Hunger, C. Pettenkofer, and R. Scheer, Surface properties of (111), (001), and (110)-oriented epitaxial CuInS2/Si films, Surf. Sci, vol.477, issue.1, pp.76-93, 2001.

M. Turcu, I. M. Kötschau, and U. Rau, Composition dependence of defect energies and band alignments in the Cu(In1?xGax)(Se1?ySy)2 alloy system, J. Appl. Phys, vol.91, issue.3, pp.1391-1399, 2002.

M. Turcu and U. Rau, Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu, Thin Solid Films, pp.158-162, 2003.

, Wide-gap chalcopyrites, 2006.

, Ioffe Physico Chemical Institute, Semiconductors on NSM

D. Lincot, Exploring New Convergences between PV Technologies for High Efficiency Tandem Solar Cells: Wide Band Gap Epitaxial CIGS Top Cells on Silicon Bottom Cells with III-V Intermediate Layers, European Photovoltaic Solar Energy Conference and Exhibition, pp.23-28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02289657

H. Hiroi, Y. Iwata, H. Sugimoto, and A. Yamada, Progress Toward 1000-mV Open-Circuit Voltage on Chalcopyrite Solar Cells, IEEE J. Photovolt, vol.6, issue.6, pp.1630-1634, 2016.

F. Larsson, Record 1.0 V open-circuit voltage in wide band gap chalcopyrite solar cells, Prog. Photovolt. Res. Appl, vol.25, issue.9, pp.755-763, 2017.

K. Hara, T. Kojima, and H. Kukimoto, Epitaxial Growth of CuGaS2 by Metalorganic Chemical Vapor Deposition, Jpn. J. Appl. Phys, vol.26, issue.7, pp.1107-1109, 1987.

K. Hara, T. Shinozawa, J. Yoshino, and H. Kukimoto, MOVPE growth and characterization of I-III-VI2 Chalcopyrite compounds, J. Cryst. Growth, vol.93, issue.1-4, pp.771-775, 1988.

K. Oishi, H. Katagiri, S. Kobayashi, and N. Tsuboi, Growth of Cu(In,Ga)S2 on Si(100) substrates by multisource evaporation, J. Phys. Chem. Solids, vol.64, issue.9, pp.1835-1838, 2003.

J. Cieslak, Epitaxial CuIn1?xGaxS2on Si(111) ( 0 ô x ô 1 ) : Lattice match and metastability, Phys. Rev. B, vol.75, issue.24, 2007.

C. Rincón and F. Ramírez, Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry, J Appl Phys, vol.72, issue.9, pp.4321-4324, 1992.

M. L. Fearheiley, K. J. Bachmann, Y. Shing, S. A. Vasquez, and C. R. Herrington, The lattice constants of CuInSe2, J. Electron. Mater, vol.14, issue.6, pp.677-683, 1985.

T. Tinoco, C. Rincón, M. Quintero, and G. S. Pérez, Phase Diagram and Optical Energy Gaps for CuInyGa1?ySe2 Alloys, Phys. Status Solidi A, vol.124, issue.2, pp.427-434, 1991.

G. Weiming, Heterogeous MBE growth of GaP on silicon substrate and nanostructure for photonics application Epitaxie, Ph.D, 2010.

T. Soga, T. Jimbo, and M. Umeno, Dislocation generation mechanisms for GaP on Si grown by metalorganic chemical vapor deposition, Appl. Phys. Lett, vol.63, issue.18, pp.2543-2545, 1993.

P. Y. Wang, Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III-V photonics platform on silicon using a laboratory X-ray diffraction setup, J. Appl. Crystallogr, vol.48, issue.3, pp.702-710, 2015.

P. Y. Wang, Abrupt GaP/Si hetero-interface using bistepped Si buffer, Appl. Phys. Lett, vol.107, issue.19, p.191603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228809

P. Reinhard, Features of KF and NaF Postdeposition Treatments of Cu, p.2

, Absorbers for High Efficiency Thin Film Solar Cells, Chem. Mater, vol.27, issue.16, pp.5755-5764, 2015.

F. Pianezzi, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys, vol.16, issue.19, pp.8843-8851, 2014.

B. Bissig, Effects of NaF evaporation during low temperature Cu (In, Ga) Se2 growth, Thin Solid Films, vol.582, p.56, 2015.

E. Handick, NaF/KF post-deposition treatments and their influence on the structure of Cu (In, Ga) Se 2 absorber surfaces," presented at the Proc. of IEE 44th

, Photovoltaic Specialist Conference, pp.17-0021, 2016.

M. G. Panthani, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS)

. Nanocrystal, Inks' for Printable Photovoltaics, J. Am. Chem. Soc, vol.130, issue.49, pp.16770-16777, 2008.

D. Fraga, E. Barrachina, I. Calvet, T. Stoyanova, and J. B. Carda, Developing CIGS solar cells on glass-ceramic substrates, Mater. Lett, vol.221, pp.104-106, 2018.

D. K. Suri, K. C. Nagpal, and G. K. Chadha, X-ray study of CuGaxIn1?xSe2 solid solutions, J. Appl. Crystallogr, vol.22, issue.6, pp.578-583, 1989.

B. E. Warren and X. Diffraction, Unabridged and Corrected republication of the work originally published in 1969 by, 1990.

C. J. Gibbings, D. L. Murrell, D. M. Cooper, and P. C. Spurdens, Impact of GaInP growth by MOVPE on laser performance, IEEE Colloquium on III-V Compound Semiconductor Materials Growth, 1992.

T. Nakada, K. Furumi, and A. Kunioka, High-efficiency cadmium-free Cu(In,Ga)Se/sub 2/ thin-film solar cells with chemically deposited ZnS buffer layers, IEEE Trans. Electron Devices, vol.46, issue.10, pp.2093-2097, 1999.

C. L. Andre, Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates, Appl. Phys. Lett, vol.84, issue.18, pp.3447-3449, 2004.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz et al., Influence of crystal polarity on crystal defects in GaP grown on exact Si (001), J. Appl. Phys, vol.109, issue.8, p.83529, 2011.

C. Heidelberger and E. A. Fitzgerald, GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain, J. Appl. Phys, vol.123, issue.16, p.161532, 2018.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man Cybern, vol.9, issue.1, pp.62-66, 1979.

T. Thanh, Synchrotron X-ray diffraction analysis for quantitative defect evaluation in GaP/Si nanolayers, Thin Solid Films, vol.541, pp.36-40, 2013.

T. Grassman, Control and elimination of nucleation-related defects in GaP/Si(001) heteroepitaxy, Appl. Phys. Lett, vol.94, issue.23, p.232106, 2009.

X. H. Zheng, Comprehensive analysis of microtwins in the 3C-SiC films on Si(001) substrates, J. Cryst. Growth, vol.233, issue.1, pp.40-44, 2001.

K. Arimoto, Crystalline morphologies of step-graded SiGe layers grown on exact and vicinal (110) Si substrates, J. Cryst. Growth, vol.311, issue.3, pp.809-813, 2009.

B. Qu, X. H. Zheng, Y. T. Wang, S. M. Lin, H. Yang et al., Polarity dependence of hexagonal inclusions and cubic twins in GaN/GaAs(001) epilayers measured by conventional X-ray pole figure and grazing incident diffraction pole figure, J. Cryst. Growth, vol.226, issue.1, pp.57-61, 2001.

G. Devenyi, The role of vicinal silicon surfaces in the formation of epitaxial twins during the growth of III-V thin films, J. Appl. Phys, vol.110, issue.12, p.124316, 2011.

S. J. Leake, The Nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure, J. Synchrotron Rad, vol.26, issue.2, pp.571-584, 2019.

, Les matériaux semi-conducteurs sont des briques de base à la fois pour la conversion de l'énergie solaire et les technologies de l'information (micro et optoélectronique). Le silicium, en tant que matériau semi-conducteur le plus mature, est largement utilisé dans les industries de la microélectronique et du photovoltaïque, en raison de son abondance naturelle

L. Néanmoins, Si empêche à la fois une émission de lumière efficace et une absorption efficace, ce qui limite ses applications. De l'autre côté on trouve un grand nombre de semi-conducteur direct parmi les composés III-V qui sont donc particulièrement appréciés pour les applications en photonique, malgré des coûts de fabrication élevés. Ainsi, l'intégration des semi-conducteurs III-V sur silicium est considérée comme la pierre angulaire de l'intégration cohérente de la photonique dans la technologie du silicium mature et des cellules solaires à haut rendement et à faible coût

. Le-phosphure-de-gallium, GaP), qui présente un désaccord de maille 0,37% à température ambiante

L. Défauts-de-l'hétéroépitaxie-de-gap and S. De, tels que les dislocations, les micro-macles (MT) et les parois de domaines d'antiphase, peuvent limiter les propriétés électro-optiques des dispositifs finaux (rendement, durabilité?). L'objectif de la thèse est donc de caractériser les défauts structuraux et de développer des méthodes de caractérisation à l'échelle submicrométrique en d'améliorer les propriétés de la plateforme GaP / Si et de mieux les comprendre

, Le chapitre 1 décrit l'objectif du travail de thèse et introduit les défauts cristallins dans la plate-forme GaP / Si. Le chapitre 2 présente les techniques de croissance et de caractérisation

, GaP/Si partiellement relaxée plastiquement, à l'échelle globale (par diffraction des rayons X en laboratoire) et l'échelle sub-micrométrique en utilisant une technique à l'état de l'art, de diffractométrie de rayons X à balayage avec une résolution sub-micrométrique

, présente une analyse de plusieurs couches CIGS élaborée par CVD sur pseudo-substrats GaP/Si. Ceci met en évidence une croissance de type épitaxial CIGS (001) sur GaP/Si (001), Le dernier chapitre fait la synthèse des résultats et permet d'ouvrir des perspectives

. Dans, tous les pseudo-substrats GaP / Si sont basés sur des plaquettes de Si (001) de

, pouces avec un miscut de 4 ° ou 6 ° dans la direction, vol.110

. Avant-l'épitaxie-de-gap, Après la préparation, la plaquette de Si est immédiatement transférée dans la chambre MBE et chauffée à 800 ° C pour la déshydrogénation. Ensuite, la plaquette est ramenée à plus basse température pour l'épitaxie de GaP. Les méthodes de caractérisation incluent la diffraction des rayons X (DRX), microscope à force atomique (AFM), microscopie électronique en transmission

, Au chapitre 3, nous présentons l'analyse d'une couche de 200nm

, Les propriétés cristallines sont tout d'abord étudiées en DRX en laboratoire et révèlent une très faible densité de micro-macles, grâce à l'optimisation du procédé de préparation chimique, Une relaxation plastique de l'ordre de 50%

, Une technique à l'état de l'art, développée sur la ligne synchrotron ID01 (ESRF) a été employée pour étudier cet échantillon. Cette technique consiste à balayer, la surface de l'échantillon avec un faisceau sub-micrométrique, au voisinage des conditions de Bragg. Ceci permet d'extraire des informations de complexes de type déformation, tilt et longueur de corrélation locale. Ceci a permis de mettre en évidence une distribution de dislocations dans le pseudo-substrat GaP / Si. L'ensemble de données est analysé à l'aide d

, La résolution de l'inclinaison locale et de la déformation dans le plan est égale à 0,0036 ° et 0,01%, respectivement. Figure 2 a) Image de la cartographie en espace réciproque de la diffraction (004). b) Image de le microscope à force atomique (AFM) 5?m × 5?m en mode tapotement. c) Image de la microscopie électronique en transmission (TEM) en coupe transversale (220) de champ sombre (DF), L'inclinaison locale B et la déformation locale dans le plan 2 + sont mesurées

, )) est filtrée à l'aide d'une fonction de motifs binaires locaux (LBP) La fréquence spatiale des lignes à forte déformation le long de [-1-10] est mesurée à 1,91 µm -1 . Considérant que la densité des dislocations le long de [-1-10] mesurée par TEM est de 10 ?m -1 , on peut en conclure que la distribution des dislocations n'est pas homogène et que les dislocations à 60 ° sont susceptibles de former des paquets

, AFM (représentée sur la figure 2 b)) mesurée sur le même échantillon est également traitée par transformée de Fourier bidimensionnelle. La fréquence spatiale de

, Figure 5 ? / 2? balayages avec 2? compris entre 20 ° et 80 ° pour les échantillons 1743/S554, 1743/S597

, La RSM est réalisée autour de la diffraction GaP / Si (115) sur l'un des échantillons de CIGS élaboré sur GaP / Si

, 1 10) dans le RSM contenant à la fois le Si (115) et le GaP (115), montre que le CIGS est orienté (008) dans le sens de la croissance

L. Gap, Dans la figure de pôles, une diffraction claire en CIGS (112) est montrée, ainsi que les MT formés dans la couche CIGS. Un balayage longitudinal autour de la position du CIGS (112) a confirmé qu'il ne s'agissait pas d'une contribution d'artefact de GaP & Si (111), Si est également illustrée par des images de structure locale par HRTEM et par des figures de pôles, illustrées à la figure 7

U. Enfin and . Premier-essai-de-cellule-solaire-cigs-sur-un-pseudo-substrat-gap, Si non optimisé a été réalisé. L'efficacité quantique externe (EQE) a été mesuré pour la cellule solaire CIGS / GaP / Si, puis comparé à une cellule photovoltaïque de CIGS développée sur des substrats de verre dans les mêmes conditions, comme illustré à la figure 8

L. Gap and /. , Si présente un EQE similaire à celui du verre

, Cela ouvre des perspectives prometteuses pour la future couche développée sur des pseudosubstrats GaP / Si optimisés. Figure 6 Image de RSM de la diffraction CIGS (1 1 10) et GaP / Si

. De-tem-de-cigs-/-gap, Si b) la figure de pôle de CIGS / GaP / Si, qui montrent une diffraction nette de CIGS (112), ainsi que les formes de formation de MT dans la couche Les travaux sur la DRX avec une résolution sub-micrométrique pour la caractérisation de la structure locale sont publiés dans un article intitulé « A study of the strain distribution by scanning X-ray diffraction on GaP/Si for III-V monolithic integration on silicon, J. Appl. Crystallogr, vol.52

, Une autre partie du travail a été présentée lors de conférences scientifiques

A. Zhou, Y. Wang, A. Létoublon, I. Lucci, C. Cornet et al.,

Y. Eymery, M. Léger, L. Bahri, G. Largeau, L. Patriarche et al., Nano Beam X-ray Scattering on GaP/Si for III-V Monolithic Integration on Silicon, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352639

-. O. Durand, A. Létoublon, C. Cornet, A. Zhou, N. Barreau et al., « CIGSe growth on a GaP/Si(001) platform : towards CIGS/Si tandem solar cells, Journées Nationales, pp.4-7, 2018.

O. Durand, A. Létoublon, C. Cornet, A. Zhou, N. Barreau et al.,

. Lincot, CIGS growth on a GaP/Si(001) platform : towards CIGS/Si tandem solar cells
URL : https://hal.archives-ouvertes.fr/hal-02879656

, Spring Meeting, 2019.

O. Durand, A. Létoublon, C. Cornet, A. Zhou, N. Barreau et al.,

S. Bidaud, M. Collin, F. Feifel, S. Dimroth, M. Bechu et al., « Studies on Si/CIGS Epitaxial Tandem Solar Cells

, Spring Meeting, 2019.

O. Durand, A. Létoublon, C. Cornet, A. Zhou, N. Barreau et al.,

T. Slimane, S. Bidaud, M. Collin, F. Feifel, S. Dimroth et al.,

A. Pinault-thaury, F. Jomard, D. Coutancier, D. Lincot, and «. Cigs, (001) platform : towards CIGS/Si tandem solar cells », proc. Of the EU PVSEC, vol.2019, pp.9-13, 2019.