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Abstract

Looking at the speed by which embedded systems technologies are advancing, there is no surprise
the attacks’ number is rising. Many applications are written quickly in a low-level language to keep
up with industry pace, and they contain a variety of bugs. Bugs can be used to break into a device
and to run malicious code. Reviewing code becomes more and more complex and costly due to its
size. Another factor complicating code review is the use of on-the-shelf libraries. Even a detailed
code review does not guarantee a bug-free application.

This thesis presents an architecture to run securely untrusted applications on the same plat-
form. We assume that the applications contain exploitable bugs, even the operating system can
be exploited. We also assume that attackers can take control of In/Out hardware components
(e.g., Direct Memory Access (DMA)). The device is trusted when the architecture guarantees that
attackers cannot compromise the whole device and access sensitive code and data. Even when an
application is compromised, our architecture guarantees a strong separation of multiple compo-
nents: hardware and software. It ensures the authenticity and integrity of embedded applications
and can verify their state before any sensitive operation. The architecture guarantees, for local and
remote parties, that the device is running properly, and protect against software attacks.

First, we study multiple attack vector and isolation and attestation architectures. We present
multiple software attack vectors, and we define the security features and properties that these
architectures need to ensure. We provide a detailed description of fifteen existing architectures in
both academia and industry, and we compare their features. Then, we provide an in-depth study of
five lightweight architectures where we give a comparison of performance, size, and how they behave
against software-based attacks. From these studies, we draw our security objectives for lightweight
devices: multi-layer isolation, attestation, upgradability, confidentiality, small size with a negligible
run-time overhead and ease-of-use.

Then, we design hybrid isolation and attestation architecture for lightweight devices. The so-
called Toubkal offers multi-layered isolation; the system is composed of three layers of isolation. The
first one is at the hardware level to separate In/Out components from each other. The second one is
at the security monitor level; our study shows that there is a strong need to create a real separation
between the security monitor and all the rest. Finally, the third layer is at the application level.

However, isolation itself is not sufficient. Devices still need to ensure that the running application
behaves as it was intended. For this reason, Toubkal provides attestation to be able to check the state
of a device at any-time. It guarantees that a software component or data were not compromised.
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Finally, we prove the correctness of the security properties that Toubkal provides. We modeled
Toubkal as a finite state machine and used computer-aided formal verification to prove the security
properties. Then, we evaluated Toubkal’s overhead. The results show that Toubkal overhead is
small and fit for lightweight devices.

Thesis Supervisor: Oum-El-Kheir Aktouf
Title: Associate Professor

Thesis Supervisor: David Hely
Title: Associate Professor
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Résumé en Français

En considérant la vitesse avec laquelle la technologie des systèmes embarqués progresse, il n’est

pas étonnant que le nombre des attaques des systèmes soit en nette augmentation. De nombreuses

applications sont développées rapidement et sont écrites avec un langage bas niveau pour suivre

le rythme avec lequel progresse l’industrie des systèmes embarqués. Souvent, ces applications

contiennent beaucoup de bugs. Certains bugs peuvent être exploités pour pénétrer un système et

exécuter un code malveillant. Aujourd’hui, la revue de code peut s’avérer très coûteuse vu la taille

des codes développés. En outre, une revue détaillée de code ne garantit pas un système infaillible.

Cette thèse présente une architecture permettant l’exécution de plusieurs applications sécurisées

et non sécurisées sur une même plate-forme « légère ». Notre architecture doit garantir que même

s’il y a une application compromise, les attaquants ne peuvent pas compromettre la totalité du

système et/ou récupérer les données des autres applications. Elle doit garantir une forte séparation

entre tous les périphériques et les applications présents sur la plate-forme. Finalement, elle doit

aussi être capable de vérifier l’état de n’importe quel bout de code. Pour pouvoir garantir ces

points, nous utiliserons des techniques d’isolation et d’attestation.

Dans un premier temps, nous avons étudié plusieurs architectures d’isolation et d’attestation

décrites dans la littérature et utilisés par l’industrie. L’étude a montré qu’il existe une grande variété

d’architectures intéressantes offrant différents niveaux de protection et visant différents systèmes.

Les systèmes avec une grande capacité de calcul proposent un bon niveau de protection. Par contre,

les systèmes « légers », qui ont des ressources très limitées et doivent répondre aux contraintes

temporelles, échouent dans au moins un des critères suivants : l’isolation, les performances, le coût,

ou bien la flexibilité.

À l’issue de cette étude, nous avons conçu Toubkal. Une solution hybride (Co-design logiciel

et matériel) pour offrir une architecture d’isolation et d’attestation modulaire qui permet d’établir

une isolation sur plusieurs niveaux, de détecter la présence d’un logiciel malveillant ou une donnée

malveillante avec des performances acceptables et un coût réduit.

Toubkal est principalement composé de trois modules ; deux matériels et un logiciel. Le premier

module, appelé Master Memory Protection, permet de créer un premier niveau d’isolation pour

contrôler les accès mémoire des périphériques. Le deuxième module, appelé Execution Aware Pro-

tection, permet de renforcer la protection d’un logiciel critique, y compris le système d’exploitation.
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Ces deux niveaux d’isolation permettent de réduire la surface d’attaque.

L’isolation toute seule ne suffit pas pour garantir que les applications fonctionnent comme il le

faut. En fait, l’attaquant peut toujours modifier le comportement d’une application faillible. Pour

cela, Toubkal propose un root immuable qui permet d’attester l’intégrité des autres applications.

Pour valider le design de Toubkal, nous avons défini des propriétés de sécurité que nous avons

prouvé avec la vérification formelle. Nous avons aussi évalué la taille de Toubkal. Les résultats

montrent que le coût de Toubkal est acceptable pour un système dit « léger ».

Finalement, nous avons conclu cette thèse avec une discussion des limitations de Toubkal et les

perspectives pour améliorer le design et offrir plus de protection, comme par exemple le chiffrement

du code à coût caché.
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Chapter 1

Introduction

In 2018, ReSwitched, a team of security researchers, published a report on a vulnerability allowing

malicious software to execute in privileged mode. The report shows that malicious code can have

access to the whole memory and can compromise the whole root-of-trust for each processor. An

attacker could take advantage of a software vulnerability to copy the contents of their controlled

buffer overflow in the execution stack and run their contents in high privileges. This is one example

of many of how systems that we use every day can be compromised.

There is a lot of effort and research to analyse software components and detect vulnerabilities.

However, it is challenging to guarantee large software that they are bug-free. Hence, all software

components must be treated as equally untrusted pieces of software and must be protected from

security threats. Even software that is running in privileged mode has to be considered untrusted

and in a compromised state.

Nowadays, the use of lightweight devices is increasing in the Internet of Things, health care, and

automotive. Most of used devices contain sensitive information like cryptographic keys, intellectual

property, and private data. To build a resilient device, we need enough layers of protection: layers

to protect the hardware, the software, and the internal and external communications between

peripherals and devices.

In this regard, isolation and attestation can play a vital role. On the one hand, isolation is

a technique that aims at dividing the software into multiple separated environments. Here, each

environment is considered as memory resources, and each one cannot access other resources. The
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primary purpose of isolation is to limit the consequences in case an exploited bug exists in a specific

software component. For example, attackers can leak or overwrite sensitive data, or they can inject

malicious code to take control over the whole device. On the other hand, attestation is a technique

that aims at verifying the state of the device itself and other devices. The main goal of attestation

is to detect malicious software components and data and prevent them from breaking the device

security.

1.1 Memory Isolation

Today’s devices rely on many solutions to protect memory regions. Early research relied on hardware

components such as the Memory Protection Unit (MPU) to create separate contexts and isolate

different applications. These components run the application in non-privileged mode and limit the

application memory access to some regions. There are different schools of MPU usage, some are

manual [9, 18,32,48,102], others are more automatic [22,23,47], although the aim is the same.

However, these architectures have safety and security limitations. First, the privileged modes

have access to the whole memory mapping, which can be critical to the system security and de-

pendability. Many researchers [2, 9, 99] have shown flaws in Operating Systems (OS) and how an

attacker can escalate the privileges, and so, they can access all secrets stored in memories, change

the MPU configuration... Second, they only offer controlled memory accesses to the Control Pro-

cessing Unit (CPU). Unfortunately, the CPU is not the only hardware component connected to

memories. Therefore, an additional layer of isolation is needed.

Interesting solutions [10,33–35,64,65] have been proposed by some academic papers and patents

to add a particular Memory Management Unit (MMU) for peripherals such as the Direct Memory

Access (DMA) peripheral. The so-called In Out MMUs (IOMMU) or System MMU (SMMU) offer

solutions similar to the traditional MMU. They add address translation and permissions for IO

components.

However, these solutions are subject to a significant limitation in this thesis context. They are

destined for high-performance computing systems and require lots of cells’ area and memories as

they use page tables and caches. Moreover, the IOMMUs and SMMUs are interfaced with one IO

component (such as DMA). Therefore, if there are two IO components of which accesses must be

controlled, the device will need two IOMMUs or SMMUs.
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Another limitation they suffer from in this context is the latency introduced into the devices.

According to [16], they impose an extra performance penalty. This penalty is caused by the various

mapping and un-mapping calls to create translation entries in the IO component address space.

Contrary to high-performance systems, micro-controllers have a strong power consumption and

size constraints, and most of their applications are time-critical. Using any above cited solution

will add high overheads, power consumption, hardware area, and run-time.

Others [26,27,35,53] offer a DMA transfer filter where they define a safe region in the memory

controller for the DMA. The DMA can only access the defined region. However, this solution does

not offer a real and complete separation. It limits the DMA access to a contiguous memory space.

While many of the lightweight solutions cited above need a software to manage them, a few

[18,48] have investigated this piece of software attestation for its integrity and authenticity.

1.2 Software Attestation

Verifying the state of software and data is an essential task in many fields. For example, medical

devices are being increasingly used to improve monitoring and range aid. An attacker can cause

considerable damage to patients by changing the software running on the device with a malicious

one.

One technique to detect and disable a malicious code is attestation. Today’s attestation tech-

niques can fall into 3 categories; hardware only [24,39,67,74], software only [82,83], or hardware/-

software [18, 30, 68, 97] based techniques. The first ones rely on dedicated hardware to perform

attestation during boot time (static attestation) or during run-time (dynamic attestation). [24,39]

offer good static solutions, but they are more suited for high-performance devices and can be very

expensive for micro-controllers.

The software-based attestation techniques are mostly time-based. They rely on assumptions

like the exact time of specific operations and silent adversary (it means, during an attestation, only

the prover is communicating with the verifier) which are difficult to achieve in practice and may be

unrealistic for many applications.

The hardware/software-based methods combine software and a hardware block to offer attesta-

tion. This category is more suitable for micro-controllers as the other categories introduce either

high cost or high-performance overheads or both.
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Another criteria to consider is if these techniques provide a static attestation or a dynamic

one. Static attestation is limited to boot-time comparing to dynamic attestation, so there are no

guarantees about the state of the software at a given time. In contrast, dynamic attestation can

verify and detect attacks in the software, like Return Oriented Programming (ROP) based attacks.

Attackers use ROP to execute arbitrary code by, for example, changing the return address on the

stack. While memory isolation can reduce ROP attacks [22], dynamic attestation can verify the

state of the stack to make sure the return address was not overwritten. Dynamic attestation can

also be beneficial to verify code loaded dynamically.

Concerning hybrid dynamic RoT, the cited techniques have their limitations. For example,

SMART [30] is a lightweight solution that offers Dynamic Root of Trust (DRoT) for low-end devices.

It uses custom hardware design to control access to a Read-Only Memory (ROM) where the attesting

software and the key used for attestation are stored. An issue is that they assume that some IO

peripherals can be disabled during SMART execution. But what about the rest of the time? They

can read the ROM and read the key. Another issue is that we cannot change the key as it is burned

during fabrication.

Other techniques, such as [18], offer DRoT based on the Executive-Aware MPU (EA-MPU). The

issue here is that the trusted software responsible for DRoT lives in the Flash and is not attested

nor protected from overwriting during boot time.

1.3 Thesis Contributions

One challenge of this thesis is learning from experience to implement an isolation and attestation

architecture ready for sophisticated lightweight devices with as few as possible resources. This

thesis contributions can be divided into two primary parts. In the first part of this work, we

studied lightweight devices threats and isolation and attestation architectures in details. At first,

we studied both lightweight devices and high-computing devices. Then, we focused on lightweight

devices to draw the needs for a secure architecture. In the second part, we designed a new security

architecture for lightweight devices. This architecture is called Toubkal* and its main goal is to

offer a multi-layer isolation and protection.

* Toubkal is the name of a mountain in Morocco. The reason behind choosing a mountain name is because there
are similitude between isolation and attestation architectures and mountains. Depending on the characteristics and
climbers tools, they can more or less reach the peak. Same here, depending on the architecture features and attackers
abilities, they can more or less break the device security
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In detail, we can summarize the first part of our contributions into:

∙ We studied different security threats of lightweight devices to understand the risks they may

encounter and draw protection goals.

∙ We performed a detailed study of fifteen architectures, and a discussion of their main contri-

butions and limitations

∙ We conducted an in-depth study of five lightweight architectures. The goal, here, is to see

how each architecture impacts on performances and resources use, and how they protect from

the security threats presented before.

Based on this detailed study, we design Toubkal, an isolation and attestation architecture.

Toubkal consists of designing a hardware software architecture targeting RISC-V Instruction Set

Architecture (ISA)x that is composed of two hardware components that are responsible for con-

trolling memory accesses of the core and any other peripheral connected the memory (e.g. DMA);

the Master Memory Protection and the Execution Aware Protection, and a software component

called the security monitor which is responsible for configuring these hardware components and

establishing trust within the device. Therefore, Our contributions in the second part of our work

can fall into designing and developing three components:

∙ We designed the hardware module called Master Memory Protection (MMP), which controls

memory accesses of different peripherals connected to memories.

∙ We designed the hardware module called Execution Aware Protection (EAP), which its pri-

mary goal is to offer a strong and flexible isolation and protection of the security monitor. It

controls all the jumps into the security monitor and ensures it was called from the defined

entry point. it also protects its sensitive information.

∙ We designed and developed an immutable software, part of the security monitor, which is

the only fully trusted software. This component is responsible of configuring the hardware

modules and establishing trust in the rest of the software, even parts of the security monitor

itself.
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1.4 Publications

This thesis is based on works and results from existing publications presented at conferences, work-

shops, and journals:

Journals

[77] Abderrahmane Sensaoui, Oum-El-Kheir Aktouf, David Hely, and Stephane Di Vito. An in-

depth study of mpu-based isolation techniques. Journal of Hardware and Systems Security,

Nov 2019.

Conferences

[81] Abderrahmane Sensaoui, David Hely, and Oum-El-Kheir Aktouf. Toubkal: A Flexible and

Efficient Hardware Isolation Module for Secure Lightweight Devices. In 2019 15th European

Dependable Computing Conference (EDCC), Naples, Italy, September 2019.

Workshops

[78] Abderrahmane Sensaoui, David Hely, and Oum-El-Kheir Aktouf. Hardware-based Isolation

and Attestation Architecture for a RISC-V Core. In SiFive’s Technical Symposium, Grenoble,

France, May 2019.

[76] Abderrahmane Sensaoui, Oum-El-Kheir Aktouf, and David Hely. Shcot: Secure (and verified)

Hybrid Chain of Trust to protect from malicious software in lightweight devices. In The

1st Annual International Workshop on Software Hardware Interaction Faults, co-located with

ISSRE 2019, Berlin, Germany, October 2019.

Posters

[79] Abderrahmane Sensaoui, David Hely, and Oum-El-Kheir Aktouf. Poster: Hardware-based

Isolation and Attestation Architecture for a RISC-V Core. In 2019 CySep and EuroS&P,

Stockholm, Sweden, June 2019.

[80] Abderrahmane Sensaoui, David Hely, and Oum-El-Kheir Aktouf. Poster: Hardware-based

Isolation and Attestation Architecture for a RISC-V Core. In 2019 15th European Dependable
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Computing Conference (EDCC), Naples, Italy, September 2019.

1.5 Outline of this Thesis

This thesis is structured as follows. Chapter 2 defines the context, presents the security threat

and the objectives of this work. Then, Chapter 3 presents a detailed description of fifteen isolation

and attestation architectures and discusses their contributions and limitations. Chapter 4 studies

in-depth five of the fifteen architectures, which target lightweight devices. The study includes the

analysis and comparison of the security features they offer, performances, and resource consumption.

Chapter 5 presents an overview of the design of our isolation and attestation architecture called

Toubkal. The architecture is composed of three components; the first component is responsible for

creating the first layer of isolation targeting IO peripherals. The second component is responsible

for protecting critical software. And, the third component is the immutable software responsible

for checking the integrity and authenticity of the software. Then, chapter 6 analyses and evaluates

the proposed architecture. Chapter 7 discusses our architecture and compares it to the existing

ones. Then, it discusses the perspective of future works. Finally, chapter 8 concludes this thesis.
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Chapter 2

Lightweight Devices Security

Challenges

The main objective of this chapter is to define clearly the context of this work. The type of

systems we target, the issues they encounter and those we want to tackle, and the boundaries of

this context. Hence, this chapter starts with an overview of the studied devices. Then, it presents

different widespread security and safety weaknesses. Finally, we present our goals to secure these

lightweight devices. The main idea behind this work is, instead of thinking about each specific

vulnerability and how to secure it, to think systematically on their impacts, and the architectural

changes we need to improve the whole device security and limit the consequences of attacks.

2.1 Lightweight Devices

This section presents the type of targeted devices. The so-called lightweight devices are known

for having a flat memory model. The flat memory model is a memory model where the address

space is a single and continuous page. These devices do not have any Memory Management Unit

(MMU) as the memory managing is not sophisticated, and the devices are resource-constrained

(cells area, computational capabilities, memories, energy) and time-critical. Therefore, the whole

memory space is accessible for In/Out hardware units such as the Central Processing Unit (CPU),

the Direct Memory Access (DMA) and the likes.
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These devices have always been prone to multiple attacks. Because of their resource limitation,

security is, most of the time, neglected, and they cannot benefit from existing solutions within

high-end and sophisticated devices. Some solutions, such as Control-Flow Integrity and Data-Flow

Integrity [29], have been proven effective, but they are not deployable by industry because they

require CPU changes [4,28,73,98]. However, changing the hardware may require licenses which can

be very costly.

Challenges in lightweight devices

Lightweight devices’ security is hard to establish. There are multiple factors and challenges that

designers and developers face while designing and developing their products. Among such chal-

lenges, we have: the cost of the device, securing sensitive data, making sure that the code runs the

way it is intended, and how to establish trust of the device itself and while communicating with

other devices.

Cost : Industrials produce lightweight devices on a large scale. Therefore, they try to reduce

the cost as much as possible, and sometimes at the expense of security. The cost of the device is

correlated to its resources; memory and silicium resources. An increase of one resource might result

in a huge final cost at a large scale.

No Separation : Lightweight devices have a flat memory model. In this memory model, with

a compiler and a linker, a lot of code blocks and applications are combined into one memory image.

This way is convenient to attackers, as they can access to any memory address they want, and

then leak secrets. Because there is no separation, a single flaw in one application or library can

propagate quickly to the whole device.

Hard Verification : The attack surface is big enough to make verification very hard and costly.

The lack of separation and secure interfaces between the different components and applications

require an exhaustive verification that, in most cases, is impossible to carry out.

Trust : Today, devices are increasingly connected and communicate with external components.

This adds other entry points for attackers. For example, a malicious component can send over a

communication protocol a malicious data to a device and change its normal behaviour, or break it.

How can we establish trust between devices and components to make sure they are not compro-

mised?
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2.2 Security Threats

This section presents in detail the different security threats we took into account in this thesis. We

can divide the studied threats into two main categories, Software-based threats and IO Peripherals

based threats. Then, we define this work threat model.

2.2.1 Software based attacks

We studied several vulnerabilities and exploits from different papers [52, 70, 91, 99], and from the

National Vulnerability Database (NVD) [69]. The NVD groups vulnerabilities from the Common

Weakness Enumeration (CWE) specifications. It is a list of common security weaknesses that serve

as a reference point for vulnerabilities identification, mitigation, and prevention effort. We also

analysed open issues and bugs in some architectures’ GitHub repositories [9, 102] to identify other

weaknesses.

For risk evaluation, vulnerabilities must be identified, and for better identification, one can

classify vulnerabilities. Our study of vulnerabilities and exploits shows that attackers can target

different areas to compromise a system, we call these areas security hotspots. A security hotspot

describes the sensitive areas where security is more critical than in other areas. This helps us to

define what part of a device is targeted by a certain attack. It clarifies and helps to identify the

best opportunities to compromise a device. Main security hotspots are Authentication, Memory,

Cryptography, Logic Errors, Synchronization and Timing, and Validation. We chose to focus on

the Memory hotspot because it is the most exploitable hotspot and has an important impact on

lightweight devices security. We present some issues and vulnerabilities in this hotspot. These can

be divided into two main categories: Temporal and Spacial errors.

Temporal errors

This category concerns attacks that take advantage of allocating, freeing and deleting memory

chunks. For example, in this category, there are use-after-free and double free vulnerabilities. If

exploited, they can lead to information leakage or to control flow hijacking or even to crash the

program.

Use-after-free: A use-after-free vulnerability is when a program keeps using a pointer to a

memory chunk that is not allocated anymore, and possibly re-allocated by another part of the
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program. The exploitation of this vulnerability can go from no effect to the execution of an arbitrary

code.

Double free: A double free leads to an undefined behaviour. This vulnerability happens when

the same memory block is freed twice. Double frees can occur in different cases. For example,

when two or more pointers point to the same memory block, and begin cleaning using free().

The developer, if not careful, might free the same pointer many times. This might cause for other

existing memory spaces to get corrupted or to fail future allocations.

Spacial errors

This category focuses on spatial errors. Attackers can exploit spatial errors to execute code, to

read/write the stack, or to halt the system. This can lead to unwanted behaviour, and could

extract sensitive data or change the defined program flow. In this category, vulnerabilities like

buffer overflows, stack overflows, heap overflows, format string, truncation, and signed convention

can be found.

Buffer overflow: A buffer is a memory area fixed to contain data. A buffer overflow occurs

when the data written into a buffer overruns the buffer boundaries. And because of the contiguous

memory space in lightweight devices, if the boundaries are not checked properly before writing or

reading a buffer, it overwrites neighbouring memory locations.

Most software developers have no security background; they can create unsafe code that leads

to a buffer overflow. For example, the following code shows an example of an unsafe buffer copy

that causes a buffer overflow:

char buffer [3] = "AAA";

char x = ’a’;

strcpy(buffer , (char *)"TRUSTED");

Figure 2-1 illustrates a bit of the memory after we finish copying data into the buffer. The value

of the variable x is overwritten. The results of exploiting a buffer overflow vary depending on the

location of the overflowed buffer within the memory.

Stack-based buffer overflow: Stack-based buffer overflow is a buffer overflow where the program

allocates the overflowed buffer on the stack. Attackers can exploit stack-based buffer overflows

to manipulate the control flow of a program. When the system calls a function, a stack frame
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Figure 2-1: Simple buffer overflow example

saves information related to this function. Then the stack frame contains information like the

function parameters, local variables, and the return address. When a buffer stored in the stack

is overwritten, the attacker can change data within the stack frame, especially the address stored

within the return address. This allows the attacker to gain control over the execution path of

the program. The following function shows an example of how an attacker can change the return

address:

void function(void)

{

char buffer1 [8];

char buffer2 [16] = {0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 , 0x00 , 0x00 , 0x10 , 0x00 , 0x14 , 0xab};

strcpy(buffer1 , buffer2);

}

// some routine executed

function ();

// rest of the routine

Before explaining what occurs when the function is executed, we explain the stack manipulation

in general, when a function is called, the following occurs (Figure 2-2 illustrates a stack frame):

∙ Push function arguments if there are any.

∙ Push the return address after the execution of function is finished.

∙ Allocate space for local variables.
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Figure 2-2: Call stack operation

The stack grows from higher memory to lower memory (Figure 2-2), and the strcpy() starts

copying data from a base address towards higher addresses. So, as Figure 2-3 shows, when buffer2,

which has enough memory space for 16 bytes, is copied into buffer1 which has a memory area for

only 8 bytes, the overflowed 8 bytes will overwrite data on the stack, and the attacker can change

the value of the return address, and hijack the execution path.

With a stack buffer overflow, attackers can inject code into the stack and redirect the path into

this code. But some OSes provide defenses against code execution on writeable sections. However,

many techniques have been developed to overcome these defenses. Return Oriented Programming

(ROP) is one of them; the attacker tries to reuse functions and gadgets. It is difficult to stop these

attacks because the attacker executes valid existing codes or sequences.

Lower boundary check: Usually, one side of the boundaries is checked, and it’s the upper one.

What about the other one? The following piece of code presents an example of how not checking

both boundaries can lead to exploitation:
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Figure 2-3: Stack-based buffer overflow: On the left, a snippet of the stack before executing the strcpy(). And on the right,
a snippet of the stack after executing the strcpy(). The buffer overflow leads to a change of the return address. Therefore,
the path has been hijacked and when the subroutine finishes its execution, instead of returning to the calling routine, it will
jump to the address 0x100014ab.

char read_char(char * buff , int buff_length , int index)

{

if(index < buff_length)

return buff[index];

return -1;

}

If the attacker somehow controls the value of the parameter index, they could load index with

a negative value and read 8 bits from the memory. The function read_char only checks that the

given entry index is smaller than the given buffer length and does not check the sign of index or

its lower limit.

Format String: The format string vulnerability occurs when there is a mismatch between the

format string parameters (like %s %x) and the arguments of the format string function (like, for

instance, print()). Exploitation of this weakness could lead, for example, to executing a code

or reading the stack. The format string function does not have a limitation of entries. For each

format string parameters, the format function will need an argument, if there are more format

string parameters than arguments, the function will keep fetching data that does not exist in this

function call stack. The following example shows how this vulnerability may crash a program:

printf("%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s");
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The printf() will fetch for each %s a data from an address within the memory until a string termi-

nation character 0x00 is found. There is the possibility that the address from which the printf()

will try to read is an illegal address. It results in crashing the system.

An attacker can also read the stack, for example, in the following code, the printf() function

will retrieve five parameters from the stack and print them on the screen:

printf("%x %x %x %x %x");

Truncation: Truncation happens during conversion from a larger type to a smaller one. Data

is usually lost, and sometimes it can lead to manipulate a branch condition just like the following

example shows:

void my_function(void)

{

unsigned short size_temp;

unsigned char * temp;

unsigned char buff [512];

temp = get_username ();

size_temp = strlen(temp);

if( size_temp > sizeof(buff)) {

error (0);

}

strcpy(buff , temp);

}

The variable size_temp is an unsigned short, it is included in the range [0, 65535].

If get_username() returns a buffer with 65900 characters, size_temp will have the value of 364,

which is smaller than sizeof(buff). This results in a buffer overflow.

Signed Convention: Many Spacial weaknesses are consequences of conversions between signed

and unsigned versions of the same type. When for example, a signed integer is converted to an

unsigned integer or vice versa, the value can change. The signed integers go from -2 147 483 648 to

2 147 483 647, while the unsigned integers go from 0 to 4 294 967 295. When a conversion occurs,

the code checks the most significant bit to decide whether the value will be positive or negative.

Consider the following code:
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void read_data(unsigned int cursor , unsigned char * buffer , unsigned int length);

void my_function(int cursor , int length)

{

unsigned char buffer [1024];

// some routine

if(length > 1024) {

error (0);

}

read_data(cursor , buffer , length);

// some routine

}

In this example, read_data() takes length as an unsigned integer, my_function() takes length

as a signed integer. If an attacker feeds my_function() with a negative value of length, the length

check can be bypassed. But when read_data() is called, a conversion from signed to unsigned

occurs, and the value will turn into a large unsigned value.

2.2.2 In/Out Peripherals based attacks

In this category, we focus on attacks mounted using an In/Out (IO) peripheral. The attacker can

bypass existing memory protection units to access sensitive memory regions. IO peripherals are all

connected to memories with an interconnect bus. Such IO peripherals are the CPU and the Direct

Memory Access (DMA) or any other component with direct access to memories.

Currently, most IO attacks abuse the DMA ability to access all memory space directly. In this

part, we will focus mostly on DMA attacks with an overview of other IO attacks.

Direct Memory Access

DMA is used in lightweight devices to relieve the CPU from being involved in all memory accesses.

The DMA allows multiple peripherals and applications to have access to the whole physical memory

space while bypassing the CPU and, therefore, its memory protection mechanisms. For this reason,

attackers increased their interest in abusing it to break into a device.

There are multiple ways to mount a DMA attack [58,75,95]. For example:
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Software vulnerabilities: An attacker can take advantage of a software vulnerability, like buffer

overflows, to read from memory a large buffer using a DMA controller. Therefore, they bypass the

CPU and its memory protection mechanisms. Attackers can use the DMA to overwrite the security

monitor or the OS, then, take full control of the device. In case they cannot control directly the

DMA, there is also the possibility to inject a malicious code that will be executed by the CPU,

set up the DMA controller, and read/write from memory. Over the years, we have seen multiple

concrete examples [3, 45].

Abusing the IO controller: An attacker can carry out non-authorized memory access by abusing

the DMA engine interface of an IO controller. The DMA engine is attached to multiple peripherals.

Abusing the peripheral controller can lead into using the DMA to access the memory directly.

Malicious IO Peripheral

In this part, we can divide the attacks into two categories:

Malicious external IO Peripheral: Here, the attacks is carried out using an external IO Periph-

eral. The external Peripheral is interfaced with the memory using a specific DMA controller. By

connecting a malicious peripheral, one can read/write directly the physical memory. Therefore,

they can leak sensitive data, or rewrite part of the code.

Malicious internal IO Peripheral: This case is frequent in heterogeneous systems. However,

it can also happen in lightweight devices. For economic reasons, some hardware manufactures

outsource integrated circuit (IC) fabrication or buy ready block designs to integrate. Attackers

may exploit these choices to introduce malicious blocks. In this case, the malicious IO peripheral

can read/write memory and inject malicious code. A lightweight device produced at a large scale

with a malicious IO peripheral will present drastic losses for industrials.

2.2.3 Threat Model

Here, we define our adversarial capabilities. We present what we consider attackers are able to

perform to try to break our devices. We assume:

∙ that an attacker can compromise the OS and gain privileges. OSes are considered untrusted

and may have lots of software vulnerabilities.
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∙ that external malicious peripherals can connect to the device physically or remotely and can

compromise the device.

∙ that an attacker can take control of any existing peripheral that can read/write the system

memory, directly or indirectly, using an interconnect bus like TileLink [87, 89]. The attacker

can have access to debug ports, and they can mount passive attacks like DMA probing. We

also assume that the attacker does not perform hardware attacks or software attacks that

exploit hardware bugs like fault-injection attacks.

∙ that all communications are untrustworthy and that attackers can eavesdrop traffic and inject

malicious code or data. Therefore, all incoming data is considered untrusted.

2.3 Goals to secure a lightweight device

The main aim of this work is to develop a new co-design to provide an ideal isolation and attestation

architecture for lightweight devices. In this respect, our work belongs to the same family as Intel

SGX [26], TrustZone [100], TrustLite [48] and the likes [18,27,30,32,36,53,57,59,60]. These solutions

differ by:

Architecture type: in literature, there are three types of architectures, hardware-only archi-

tectures, software-only architectures, and hardware/software architectures that are called hybrid.

Components number and size: each architecture can be composed of one or multiple com-

ponents, the number and the size of components matter because they impact the attack surface,

the cost, and the performance.

Separation technique: separation techniques have an impact on the protection level, the cost

and performance. Each architecture offers a separation model depending on their objectives and

uses.

Attestation process: not only there are multiple techniques to achieve attestation, but also

different objectives. Some architectures target static attestation, where applications are attested

at system start. Others target dynamic attestation to be able to verify data and code integrity at

runtime and detect injected malwares.
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2.3.1 Properties for an effective isolation and attestation architecture

To develop an effective isolation and attestation architecture for lightweight devices, we focused

the first part of this work in exploring architectures in literature and studying their strengths and

weaknesses to define objectives required to provide a highly secure architecture that can be adapted

to different targets while guaranteeing good performance and small cost. Our objectives can fall

into seven points:

∙ Multi-layer Isolation: As the old saying goes, divide to conquer, separation has to be on

multiple levels. After analysing security weaknesses, three layers of separation were identified.

The first layer is the Masters’ separation. Figure 2-4 illustrates a visual of memory protection.

Each column represents a protection domain. Here the protection domain is a given Master.

Each Master can be prohibited or not from accessing memory regions. In this thesis, we

call Master a peripheral with direct access to memory, i.e. an IO Peripheral. There can

be different policies to manage protection domains. The second layer is the strong isolation

of the security monitor from the rest. The security monitor is the software responsible for

configuring the protection hardware components, and thus, is critical for the system security.

Therefore, we need to make sure it is well protected from the rest of the software. Finally, the

third layer of separation is the application separation. At this layer, we isolate applications

and libraries so flaws cannot propagate easily from one application or library to another.

∙ Local and Remote Attestation: Isolation alone is not sufficient. Our architecture needs

to be able tu run authentic software and process trusted data. Attestation offers a way to

guarantee the integrity and authenticity of code and data. The security monitor can be used

to attest a code or some data but also, before communicating with other devices, they can

prove their integrity and verify their software states.

∙ Security Monitor Protection and Upgradability: The security monitor has access to

all memories and configures protection domains. Breaking into the security monitor is fatal

to the micro-controller security. We must guarantee good protection for the security monitor.

The other important point is the ability to upgrade the monitor securely to renew its security.

∙ Confidentiality: The architecture has to ensure the confidentiality of some sensitive code

and data.
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Figure 2-4: A visual of how a single contiguous memory space is segmented between different Masters.

∙ Cost and Performances: The footprint of the added hardware and software, and the run-

time overhead have to be small and negligible while guaranteeing a good level of protection.

∙ Flexibility: The architecture has to be flexible. Flexibility in this thesis means that the

architecture has to be fully configurable and modular. So it can be tailored to the device

needs.

∙ Ease-of-use: Last but not least, the architecture integration and usage have to be easy for

both hardware designers and software developers.

2.3.2 Use Cases

This part presents some use cases and techniques that can be achieved using Toubkal.

Hardware and Software Isolation: This is the main objective of Toubkal. Toubkal aims to create

a real separation between different components: hardware and software.

Local and Remote Attestation: With the security monitor services, applications (and devices

for remote) can verify the authenticity of other applications before starting exchanging information.

Measurements Attestation: Other than code attestation, some applications need to verify the

authenticity of the data read from external peripherals. For example, imagine an insulin device that
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returns compromised data to a doctor about a patient. This might result in the wrong prescription

and can lead to catastrophic issues. The security monitor can be used to attest data before the

doctor reads it.

Algorithm Protection: Industrials have sometimes algorithms they want to keep secret from the

client. A cheap way to prevent other parties from analysing the secret algorithms is to use Toubkal

and prevent all non-allowed accesses. The algorithm will be only executable, and the debugger

is deactivated during its execution. Nevertheless, some side-channel attacks, which are out-of-the

scope of this thesis, can extract code.

Secure Firmware: The ROM is cheaper than the FLASH. However, the ROM has a dis-

advantage of being unable to change the code once burned. The ROM code can be large, and

testing does not guarantee a code that is free from bugs and security holes, sometimes even ne-

glected. So, most issues are discovered after fabrication which is too late to fix for running devices.

Loading the Firmware into a Flash-like memory is not secure. To keep things secure, we rely on the

hardware and the ROM to store a simple and small code to verify the authenticity of the Firmware,

which can be stored in any other memory, at boot time or every time it is called. We call it the

root, and it is the immutable part of the security monitor.

Efficient Core-Crypto Engine data communication: Consider a device with three Masters:

a CPU, a DMA, and a Cryptography Engine (CE). The CE can access the SRAM to read/write

values for intermediate cryptographic operations. While usually the Keys are protected, an attacker

can take advantage of a vulnerability like a buffer overflow or uses the DMA [75, 95] to access the

intermediate cryptographic results. This way, the attacker can find the values of the keys from

intermediate operations. Toubkal prevents the CPU and the DMA from reading the concerned

memory region while the CE is processing its cryptographic operations. Finally, the same memory

can be used by the concerned application to retrieve the result, which can be the encrypted text or

the plain one.

2.4 Summary

In this chapter, we defined the targeted devices and the challenges they face. The so-called

lightweight devices are systems with simple memory management. Therefore, they do not need

an MMU. Lightweight devices face multiple challenges to offer an acceptable level of security:
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challenges like the cost of protection mechanisms, the lack of separation, hard verification, and es-

tablishing trust between applications and devices. Then, we studied software and IO-based attacks

to understand the threat we need to tackle.

Then, we presented goals and properties we aim to incorporate in our architecture. The major

goals of the architecture are :multi-layer isolation, remote and local attestation, upgradability, con-

fidentiality, small size with a negligible run-time overhead and ease-of-use. Then, we defined the

boundaries of this context, for example, hardware-based attacks like side-channel and Fault attacks

that are out of the scope of this thesis.

In the next chapter, we present multiple isolation and attestation architectures. Then, we discuss

their security features and show the variety of techniques that were used in the literature.
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Chapter 3

Isolation and Attestation

Architectures

The main goal of this part is to study the existing solutions in both academia and industry and

to discuss their security features. Thus, we present a detailed description of fifteen isolation and

attestation architectures, and we compare the different services they provide to enforce protection

and establish trust in devices. These architectures target multiple types of devices: lightweight and

high-computing devices.

3.1 Background

Isolation: By isolation, we mean mechanisms that provide compartmentalization of software com-

ponents. Compartments are separated and protected by a hardware component to prevent the

propagation of flaws from one compartment to the others. In our case, isolation is achieved with

the MPU. This includes another layer of memory security by limiting compartments from accessing

any memory address.

Trusted Computing Base (TCB): The TCB consists of a set of software and hardware

components that are critical for device security, like for example, MMUs, MPUs, and hypervisors.

The TCB design must be thought carefully to guarantee a good security level. The TCB should be

kept as small as possible to reduce the surface that is exposed to attacks and to minimize bugs and
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weaknesses that could be used to break the system security. Architectures can offer hardware-only

TCB, software-only TCB, and hybrid TCB. Each type has its benefits and drawbacks, like for

example, protection level, hardware footprint, and performance.

Root-of-Trust (RoT): The RoT is a set of gadgets that are always trusted by the running

software. They are, most of the time, used to establish trust in other software components. A

Dynamic RoT (DRoT) is responsible for attesting and verifying the state at runtime of any software

component before the latter is executed. Admittedly DRoT offers flexibility and can be used to

detect malware at runtime, but it requires more protection to avoid attacks like Time-of-Check-

Time-of-Use (TOCTOU).

Figure 3-1: MPU configuration: The MPU in the ARMv7-M architectures requires that the memory region size must be
aligned to a start address. This address is a multiple of the region size, and the region size must be a power of two. In
Example 2, we can see the hole between the second and the third region.

Memory Protection Modules: Currently, most devices have a memory protection module.

It is a hardware bloc interfaced with the CPU and responsible for controlling the CPU memory

accesses. It allows only software components with high privileges, like a kernel, to define memory

regions and attribute memory access permissions to each region. The memory protection module

is used to restrict some memory regions to the software running under user mode. In industry

and literature, there are different versions. For example, we have ARMv7 Memory Protection Unit

(MPU) [12], ARMv8 MPU [101], the RISC-V Physical Memory Protection (PMP) [88], the Intel

Execution Aware-MPU (EA-MPU) [71], the Mondriaan Memory Protection (MoMP) [103] and

the tailored-MPU [94]. However, depending on the MPU version, there are some limitations. For
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example, for an ARMv7-MPU, which is present on some ARM Cortex-M devices, as shown in figure

3-1, the base address of a region must be aligned to its size, and the size must be a power of two.

These limitations were overcome in the ARMv8 MPU, thus, offering developers a finer granularity

which makes defining memory regions easier.

The RISCV PMP [88] is very similar to the ARMv8 MPU. There are few differences, such as

the lock bit. The lock bit is used when we want to lock the configuration of the memory region and

also to apply that restriction for the privileged mode and not only the user mode. Once a memory

region is locked, it cannot be changed until the system reset.

The Intel EA-MPU [71] is very different from the previous modules. It is a Program Counter

(PC) based memory protection. Developers have to define for each instruction range the memory

regions they have access to.

Figure 3-2: MoMP architecture: It is mainly composed of a Translation Look-aside Buffer (TLB), sidecar registers, and a
reserved memory area, called Permission Table, to store all memory regions configuration. When the processor tries to access
a memory region, it checks within the sidecar register if there is a match or not. If there is no match or the permissions
are not valid, MoMP tries to reload the sidecar from the TLB. If the TLB does not have the permissions configuration, the
MoMP tries to look them up from the reserved memory area storing all configurations.

The Mondriaan Memory Protection (MoMP) [103] (see Figure 3-2) looks more like a simpli-

fied Memory Management Unit (MMU). It incorporates a Translation Look-aside Buffer (TLB)

like mechanism. MoMP is a very fine-grained protection module, and contrary to the previous

modules, it offers multi-protection domains with shared memory. MoMP can define for each word

access permissions, and to reduce memory and run-time overhead, MoMP proposes a Run-Length
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Encoding (RLE) algorithm to compress permissions for a group of words. MoMP also offers virtual

addressing if needed. To check memory accesses permissions, the MoMP uses sidecar register first

for a fast access. If the permissions are not found or not valid, the MoMP attempts to reload

the sidecar registers from the TLB. If, again, the permissions are not found/valid within the TLB,

the MoMP tries to reload the TLB from the permission table stored the memory. Finally, if the

permissions are not found/valid, then it is an unauthorized access.

The tailored-MPU [94] for low-power micro-controllers is very similar to the MoMP. However,

tailored-MPU is more straightforward and offers fewer features. Because of the minimal cells of low-

power micro-controllers, tailored-MPU has to reduce its footprint and implement simple mechanisms

which, unfortunately, add some run-time overhead.

There is a limitation that all the previous memory protection modules suffer from. They only

monitor memory accesses between the core and peripherals. IO peripherals (e.g., DMA) are out of

reach to the MPU. Therefore, a compartment having access to the DMA can potentially read/write

anywhere in memory.

3.2 Security Properties

The studied architectures propose different security features. To build a comparison between these

architectures, we will preview all the mechanisms found in at least one architecture. These mecha-

nisms are supposed to guarantee strong software isolation.

Inter-Process Communication (IPC): IPC refers to mechanisms provided by an OS to

processes so they can communicate with each other and share data. In Trusted Computing, IPC

mechanisms must make communication between two processes secure and non-transparent.

Attestation: In order to guarantee strong security, the device should support attestation to

verify the authenticity and integrity of code or data state. Trusted computing architectures may

offer attestation to establish trust in a specific code or data. There are two types of attestation; local

and remote attestation. Local attestation is when a piece of code attests another one embedded on

the same device. Remote attestation is when a piece of code attests another one embedded on a

different device.

Roots of Trust (RoT): RoTs are a set of hardware and software components that are inher-

ently trusted. They perform critical operations like measuring and verifying the software, protecting
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cryptographic keys, and performing device authentication.

Dynamic application loading: Dynamic application loading is the ability to load, update,

and delete applications at runtime.

Application reboot: Application reboot mechanism allows the device to reboot a specific

application after being compromised, for example, without requiring rebooting the whole system.

Exception handling: Exception handling mechanism makes sure that when an exception rises,

it does not lead to any leakage of information.

Code confidentiality: Code confidentiality is a technique used to ensure sensitive static data

or software Intellectual Property (IP) cannot be leaked with untrusted parties. Encryption is usually

used to hide sensitive information and protect it from attacks such as Side Channel attacks.

3.3 Architectures

During this thesis, we studied multiple isolation and attestation architectures. Architectures that

helped us draw weaknesses and strengths to tackle and to improve. Even if this thesis targets

lightweight architectures, we also studied non-lightweight ones because they may offer interesting

isolation and attestation techniques that can be adapted for lightweight devices with a small cost and

good performance. This section presents the most popular ones. We present detailed descriptions

of fifteen architectures. We varied the selection of architectures, and we did not limit our study to

academic architectures only, we looked into industrial solutions too. The architectures were ordered

chronologically by date.

3.3.1 Mondrix

Mondrix [104] is an extension of Linux OS using the MoMP memory protection module 3-2 pre-

viously presented. The main goal of Mondrix is to enforce the isolation between software activi-

ties. Mondrix provides cross-domain calling guaranteeing that a thread (caller) can access another

thread (callee) domain only from pre-defined entry points the callee has white-listed the caller.

Cross-domain calling also guarantees that a caller returning from a cross-domain calling returns

only to the instruction just after the cross-domain call.

Mondrix provides a memory supervisor to facilitate integration. It can be added easily under an

existing kernel. The memory supervisor is composed of two layers, a top layer and a bottom one.
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The bottom layer is responsible for writing permissions tables in the memory. While the top layer

is responsible for providing specific APIs for the kernel to allocate memory, it is responsible for

revoking permissions when, for example, a memory region is freed. It also keeps track of domains’

permissions to access memory.

3.3.2 SMART

SMART [30], see Figure 3-3, is a lightweight solution offering dynamic RoT for low-end devices.

SMART is a hybrid approach based on minor hardware changes and a small immutable software

to implement a minimalist way to remote attestation [37]. SMART prototypes were developed for

the ATmega103 and the openMSP430.

Figure 3-3: SMART architecture: SMART is composed of the memory backbone, and the ROM to store immutable code
and a cryptographic key. The memory back bone controls all memory accesses, its primary goal is to block any attempt to
retrieve the cryptographic key or run the ROM code in an unexpected way.

SMART requires some features to work correctly. First, we need a ROM, secure storage for the

cryptographic key, a control of micro-controller accesses to the ROM and the secure storage, and

the ability to reset the device and erase memory. Some assumptions, such as the adversary cannot

tamper with the ROM. All other IO peripherals are disabled while SMART is processing. They

have neither access to the ROM.

SMART provides remote attestation of a defined memory region by the verifier. SMART is

executed by the prover and attests the memory region then jumps to it. SMART sends a proof of

execution to the verifier. To attest a memory region, SMART computes the corresponding HMAC
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and sends the result to the verifier. The verifier calculates the HMAC for the same region then

compares both HMACs.

The cryptographic key is stored within the ROM. The only code, having access to the key, is

SMART code stored within the same memory. Key protection is PC-based. To avoid ROP attacks,

SMART enforces ROM code protection with a single point entry and a single last point. This

ensures that the ROM code will be called from one entry, and run until the end of the code. The

key is used to calculate the HMAC of a given memory region. SMART disables interrupts during

HMAC calculation.

The ROM code is tiny and was safely written. When SMART finishes its operations, it cleans

all sensitive related data. If SMART got interrupted somehow, the clean-up might be skipped.

Therefore, the hardware, after reset, erases the whole memory to ensure there is nothing sensitive

left.

3.3.3 Sancus

Sancus [67] main goal is to design a hardware-only low-cost security architecture. Sancus features

three main points: isolation of software components, secure communication and attestation, and a

zero software TCB.

Sancus targets lightweight devices in a large network. Theses devices are called nodes. The

main challenge of Sancus is to be able to run a secure multi-application node without trusting a

single piece of code. A group of nodes is managed by an infrastructure provider (IP), and they

share the same symmetric Key KN. This key is hard-coded so it cannot be leaked easily from the

software.

To load an application within a node, Sancus uses software providers (SP). Each SP has a unique

ID. To load securely an application, SP uses a derived key KN,SP from KN and SP. The same key

can be generated in the node as it knows the ID of the SP and the KN.

Sancus can have unprotected applications, and protected applications called software modules

(SM). As figure 3-4 shows, each SM has an entry point, a text section, and a protected data section.

An SM can also use an unprotected area to minimize the size of protected memory areas. Each

SM derives a unique key KN, SP, SM from KN and the SM ID. The number and the size of SMs are

static and can be chosen during Sancus synthesis.

Sancus opts for a program counter (PC) based protection. The design was mainly based on
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Figure 3-4: Sancus model: The infrastructure provider (IP) provides multiple nodes (in grey). Each node can contain
multiple protected software modules (SM). Sancus uses software providers (SP) to load SMs within the nodes. Each SP and
node can derive a cryptographic key to load protected SMs. An SM is mainly composed of an entry point and code and
data memory regions. The SMs have to be called from their entry point.

the work in [97] because it was proven as adequate protection against kernel-level or process-level

malware [96]. Furthermore, this mechanism is also used to enforce attestation process protection. To

compute a Message Authetication Code (MAC), Sancus offers an instruction. When the instruction

is called from within the SM, Sancus automatically uses the right key based on the address of the

PC.

Sancus introduced five new instructions. The MAC_seal and MAC_verify are used respectively

to calculate a MAC with the key KN, SP, SM over a given memory range, and to calculate the MAC

of a specified module with the current module’s key, then it verifies if it matches with the pre-

calculated MAC stored in memory. The get_id is used for secure linking. To avoid the overhead

of MAC processing, each module is assigned a unique key during load time. The instruction can

be used then to retrieve the module key and will be used for later loading.

The other two instructions are protect and unprotect. They can only be called from within
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SMs, and are used to enable or disable all the protection mechanisms respectively.

3.3.4 Software Guard eXtention

The Intel Software Guard eXtention (SGX) [5,42,61] offers Trusted Computing to a high comput-

ing device. SGX implements protection for both applications’ code and data. SGX offers dynamic

RoT and can guarantee authenticity and integrity of memory chunks, remotely and locally.

SGX offers secure containers which contain protected application. These containers are called

enclaves. SGX trusts only a microcode and a privileged enclave. All the rest of the software

is untrusted (e.g., OS, hypervisor, firmware). Whether it is an enclave or a normal process, they

share the same address translation rules. It means that nor the TLBs nor caches were extended, and

secure enclaves can be managed by the OS and the hypervisor. This makes SGX compatible with

existing systems with an MMU. Nonetheless, SGX always ensures that every core’s TLB contains

data of the running container. SGX ensures that the core TLB is flushed for every switch context

between enclaves and normal processes.

SGX microcode is the one responsible for ensuring the authenticity and confidentiality of con-

tainers pages. SGX uses an extended version of Merkel tree [15,63] where the OS can dynamically

shape the tree.

Enclaves are created and initialized by untrusted software. During initialization, all the enclave

code and static data are attested, and they cannot be changed. SGX software’s attestation uses

the Intel’s Enhanced Privacy ID (EPID) groups signature [19]. To avoid colossal cell area overhead,

SGX uses private enclaves with direct access to SGX keys. These private enclaves are signed with

an Intel private key whose public key is hard-coded within SGX and accessible by the microcode.

This approach is not very convenient for many vendors. Intel and only Intel can sign the private

enclave. Intel also decides which enclaves can run.

According to [26], Intel presumes that SGX guarantees DRAM authenticity and confidentiality

using the Memory Encryption Engine (MEE) [90].

3.3.5 TyTAN

TyTAN [18] is a security architecture for small devices. It is based on an Intel’s Siskiyou Peak

architecture, and a modified FreeRTOS. It provides dynamic loading and configuration of secure

tasks, secure IPC, with real-time guarantees.

Figure 3-5 presents the architecture of TyTAN and its different components. There are two
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Figure 3-5: TyTAN architecture

different types of tasks: Secure tasks and Normal tasks. Normal tasks are isolated from secure

tasks. Secure tasks are isolated from each other and from other software components. Their

memory regions are protected using the Execution-Aware MPU (EA-MPU). Tasks can be loaded

dynamically using an ELF loader.

The TCB is composed of many parts, such as a secure boot, a Root of Trust Measurement

(RTM) task, an EA-MPU driver... The secure boot is responsible for loading all other parts of

the TCB to ensure their integrity. The RTM task is used for the tasks’ integrity: it computes a

cryptographic hash of the binary task code that represents the identity of the task. This calculus is

the basis for local and remote attestation. For local attestation, task identity can be used to attest

the task. For remote attestation, the Remote Attest task uses a MAC with an attestation key to

prove the authenticity of a task identity to a remote verifier.

The EA-MPU driver is responsible for configuring the EA-MPU dynamically at each load or

unload of application. The isolation is based on the Program Counter (PC). The EA-MPU driver

configures the eighteen slots with the memory regions and their access control rules.

Tasks communicate with each other using an IPC proxy task. This one allows transmitting a

message m from a sender task S to a receiver task R. For small messages, S copies m and idR

(identity of task R) into the CPU registers and calls the IPC task via a software interrupt (SWI).

The IPC task using idR determines R memory region and writes m and idS. For large messages

the IPC task creates a shared memory region between the involved parts.

TyTAN offers secure storage where tasks can store their sensitive data. It is based on data

encryption. For each task, a key is derived from its identity. The key is used to encrypt data before

storing it into the secure memory. The uniqueness of the task identity guarantees the uniqueness

of the encryption/decryption key.

TyTAN also offers an interrupt multiplexer task used to save task context securely, and clear
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Central Processing Unit (CPU) registers before the interrupt handler takes control. There is an

interrupt descriptor table (IDT) protected by the EA-MPU where handlers for interrupts are de-

termined.

The main objective of TyTAN is to ensure the integrity of critical tasks while maintaining the

real-time criteria in low-power micro-controllers. This is done through the secure boot and the

EA-MPU.

3.3.6 TrustLite

Just like TyTAN [48], TrustLite is based on Intel’s Siskiyou Peak architecture and uses a very

modified EA-MPU. Unlike TyTAN, it is a generic Protected Module Architecture (PMA), OS-

independent. TrustLite provides compartmentalization and guarantees code and data integrity and

confidentiality of the compartments.

Figure 3-6: TrustLite architecture

TrustLite compartments are called trustlets (See figure 3-6). A trustlet can contain many

software components. It is defined by its code, data, and other memory regions and an entry

vector. This entry vector contains one or more entry points that allow other tasks and trustlets to

execute authorized functions of the corresponding trustlet.

The EA-MPU has 32 protection regions and for each trustlet, we declare multiple different

regions. These memory regions are only accessible by the corresponding trustlet. The EA-MPU

gives a trustlet access or not to a memory region depending on the PC, just like TyTAN. If the

PC is inside the trustlet code, it has access to the authorized memory regions; if not, an access

violation exception is raised.

TrustLite also handles interrupts. Its interrupt manager is called the Exception engine. To
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ensure that no information is leaked while interrupting a trustlet at any time, the Exception engine

stores the CPU state to the current trustlet stack, it stores the stack pointer in the trustlet table,

and it clears all general-purpose registers. After executing the interrupt handler, the interrupted

trustlet resumes running by jumping to its entry point and restoring its stack as quickly as possible.

TrustLite provides a protected IPC and an unprotected IPC. In TrustLite, signaling and short

messages are done in the form of an RPC. Concerning large buffers, trustlets use a shared memory

defined in advance in an EA-MPU region. The size of the page and the participants are defined.

Protected IPC uses a simple handshake protocol to attest the identity of the receiver and sender,

and to create a cryptographic session key used to authenticate messages in both directions.

3.3.7 uVisor

uVisor [9] is an architecture for lightweight devices, an open-source software hypervisor which

creates secure, separate domains called boxes, on Arm Cortex-M3/M4/M23/M33 micro-controllers,

compatible only with Arm MbedTM OS. The main objective of uVisor is to provide strong isolation

between boxes and protect sensitive data from being leaked. Its TCB is composed of both software

and hardware components.

uVisor is based on an Arm MPU, a trusted hardware component in the TCB. It provides

compartmentalization by protecting each box memory area and restricting access to peripherals.

The MPU guarantees that only authorized boxes can access a specific memory region. In the case

of non-authorized access, a memory fault is generated.

A box represents a process, and for each one, uVisor allocates a Heap and a Stack and a static

Stack (See figure 3-7). It stores within the static Stack the box context (sensitive global data only

accessible from within the box). For each box, there is a constant Access Control List (ACL) where

authorized hardware peripherals and memories are defined for the box.

The TCB is composed of several secure software components. The virtual MPU (vMPU) config-

ures the MPU upon the box switch. An Arm MPU has only eight configurable regions. Therefore,

thanks to the vMPU, we can declare more than eight regions for each box. When the OS switches

to a box, uVisor reconfigures the MPU with the first eight regions from the ACL. Then, whenever

there is an attempt to access a region that was not configured, the MPU will generate an error.

The vMPU will retrieve the fault address and check within the box ACL if there is any region that

contains that address. If it is the case, uVisor reconfigures the MPU with the right region and
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Figure 3-7: uVisor architecture

recovers from the fault. If it is not, it is, clearly, non-authorized access.

uVisor provides a debug component to help users to identify problems and failures encountered

during application execution. The user can create a debug box and customize system reaction to

faults.

The Remote Procedure Call (RPC) component allows a box to call functions that need to be

executed in the context of another box. By default, boxes are unauthorized to call other boxes’

functions that compute sensitive data. However, uVisor can declare RPC gateways to permit

some functions to be called by other boxes. There are two types of gateways: synchronous and

asynchronous.

The Page Allocator distributes pages and protects access to them. During uVisor initialization,

it allocates heap memory into memory pages with the same size. A box can request pages from the

Page Allocator, and if they are available, the Page Allocator secures the access for the box. Then

the box can securely allocate memory inside the pages.
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The Unvic component manages interrupts. Interrupts registration is exclusive to only one box.

Registration is based on a first-come, first-served basis. Other boxes can use an interrupt when it is

freed by its owner. When interrupts occur, uVisor protects from data leakage between two domains

by saving and clearing all critical registers. Then it forwards them to their unprivileged handlers.

These handlers are executed in the context of the owner box.

The context component is responsible for the context switch. This component is called by the

OS, or by the Unvic component, or by the RPC one. This module calls the vMPU to reconfigure

the MPU with the right configuration. In case it is called by the Unvic or RPC components, it also

stores the stack state of the source box and sets the state of the destination box.

3.3.8 TockOS

TockOS [53] in an open-source OS dedicated to Arm Cortex-M3/M4 micro-controllers. It

achieves isolation and memory protection and is compatible with different languages. Tock is

written in Rust [54], a programming language like C++ that provides better memory safety (no

buffer overflow, no double frees). Its memory efficiency and performance are close to those of C++.

Tock is also based on the Arm MPU to provide compartmentalization and memory protection.

TockOS’s kernel (Figure 3-8, bottom side) is isolated from applications. The kernel is composed

of two parts: a trusted one called the core that is responsible for critical tasks of the OS like schedul-

ing, and a non-trusted one called capsules, that contains peripheral drivers and non-system-critical

tasks. Although capsules are non-trusted, they run in the privileged mode and can communicate

with the core and with each other to achieve their task. Rust’s type system guarantees isolation

between capsules.

Applications are processes (Figure 3-8, upper side), they are untrusted, and they run unpriv-

ileged. They are isolated from each other, and each one has its memory region protected by the

MPU from non-authorized accesses like, for example, from other processes. If a process crashes, it

does not make the system crash; it can restart without interfering with the kernel. It is also possible

to load processes at runtime without restarting the kernel. Processes can communicate with each

other via Inter-Process Communication (IPC), and with the kernel through system calls.

Although processes can be written in any programming language that supports Position Inde-

pendent Code (PIC) and the Cortex-M architecture, C and C++ are the only languages that are

widespread in writing such applications.
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Figure 3-8: TockOS architecture

System Calls allow unprivileged applications to communicate with the kernel. Tock provides 5

system calls: command, allow, subscribe, memop, and yield.

The command system call tells capsules to execute a specific action synchronously. It takes four

word-sized entries. The first entry tells the kernel which capsule should run the task. The second

one specifies the requested command. The third one provides more fine-grained actions, and the

last one contains the caller identifier. Command should not be long to execute; however, commands

can start an asynchronous task via a subscribe system call.

The allow system call is like the command system call, but, it is used when there is a large

buffer to transfer. It defines a memory region as shared between a capsule and an application. It

takes four arguments: The first one specifies which capsule will be granted access. The second one

determines the purpose of the call. The third and the fourth ones take a pointer to the start address

and its size, respectively.

The subscribe system call sets up callback functions for capsules to be run in response to an

event. It takes as arguments the capsule number and a callback function pointer. Once the event
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is triggered, the callback is fired.

The memop system call invokes the core to expand the memory available to the process.

The yield system call pauses process execution until the callback completes.

TockOS also provides a kernel abstraction called grants. They allow capsules to have access

to an allocated memory region within each process. This memory region is not accessible when a

process dies. Capsules will need to allocate memory to execute processes demands, as such demands

that cannot be anticipated in advance. So, rather than allocating resources statically and wasting

lots of memory, grants solve the problem as capsules can dynamically allocate memory from the

grant area within each process, and the grant area cohabits with the process heap area.

3.3.9 Sanctum

Sanctum [27] is a RISC-V processor prototype that combines minimal hardware modification

with a secure software component to provide Isolation. It is inspired by Intel SGX (Software

Guard Execution). Unlike SGX, Sanctum protects against some side-channel attacks, like page

fault address and cache timing.

Sanctum offers software isolation at an enclave granularity level. Each enclave controls and

manages its page table and page faults and have a separate DRAM region corresponding to distinct

sets in the shared Last-Level Cache (LLC). This ensures the protection against Software side-channel

attacks and cache timing attacks.

Sanctum uses a security monitor(SM) to manage enclaves (creation, destruction, and access)

and interruptions. It is a part of the TCB. The security monitor integrity is checked during the

system’s boot; the ROM code is executed and calculates the hash of the security monitor. This

hash is used to attest SM’s identity. Then the security monitor takes control, and provides an API

to create and destroy enclaves, and manage switches between enclaves.

When Sanctum’s security monitor catches an interrupt, it saves core registers of the running

enclave, then cleans them before exiting the enclave. The interrupt handler is then invoked and

executed. After handling the interrupt, the enclave resumes execution and the security monitor

restores the enclave’s state.

Sanctum uses a slightly modified MMU; the modification consists of adding another page table

base register so that we can have one for untrusted code and the other one is for the running enclave,
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and only the SM has access to those registers.

3.3.10 TrustZone-M

TrustZone [100] is a hardware-only security architecture proposed to Systems-on-Chips to en-

force device security. It was first designed for the Cortex-A processors, especially for mobile phones.

They wanted to secure phones to the carriers so we could not purchase a phone from a carrier and

take it across another one. TrustZone provides a two worlds security model, dividing the system

into two separate environments, a secure one and a non-secure one. TrustZone was extended, a

few years ago, to the Cortex-M processors family [72, 101]. Both TrustZone versions, for Cortex-A

and Cortex-M, share the same global objective. However, they differ in some important technical

details. This is because the Cortex-M family targets real-time devices with minimal resources, and

they have to be deterministic. Therefore, Arm engineers made some changes to make the Trust-

Zone technology in line with lightweight device constraints. We call the TrustZone for the Cortex-M

family TrustZone-M. Here, we focus more on the TrustZone-M.

Figure 3-9: TrustZone-M architecture

TrustZone-M (see Figure 3-9) was designed for devices with low-power consumption, limited

resources, and real-time processing with deterministic behaviour. Therefore, TrustZone-M limited

the interaction with the software. In other words, most of its mechanisms are done at the hardware

level instead, unlike TrustZone-A, where many mechanisms were hybrid.
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First of all, the separation between the secure world and the non-secure world is memory-

mapped. An application running from the secure memory region means the processor is in the secure

state, and vice-versa. In TrustZone-M, there are multiple entry points, comparing to TrustZone-A

where there is only one entry point, and it is the secure monitor handler.

TrustZone-M introduces three new instructions to support multiple entry points. The secure

gateway SG instruction is used to switch from Non-secure to secure world. SG must be called at the

first instruction of the secure entry point. This way, it prevents non-secure code from calling invalid

secure entry points. The branch with exchange to non-secure state BXNS branches or returns to the

non-secure world. The branch with link and exchange to non-secure world BLXNS is used from the

secure world to call a function from the non-secure world.

Transitions from a world to the other one can also happen with exceptions and interrupts. A

secure or non-secure state can own each interrupt. Interrupts, whether secure or non-secure, can

raise without any restriction. TrustZone-M has two stacks, a secure and non-secure one. Each stack

has its physical stack pointers, main stack and process stack, to separate between both states.

Memory addresses are tagged with a bit. This bit determines if the address space is within

the secure world or the non-secure world. This bit, Non-secure callable (NSC), propagates from

the processor through the interconnection bus to all other components. When the processor is in

the secure state, all components are in the secure state too, and then the whole memory is visible.

However, when the processor is in the non-secure state, so the other components, and then, the

only visible memory is the one tagged with the non-secure bit.

TrustZone-M can come with Trusted Firmware-M (TF-M) [11]. TF-M is a software component

offering multiple services and protection mechanisms to enforce Trusted Computing. Such mech-

anisms are: Isolation, IPC, trusted boot, attestation, secure storage, and a cryptographic library.

TF-M lives in the secure world and is responsible for device security.

3.3.11 Sopris

Sopris [43] is a new micro-controller designed with security constraints. Researchers at Microsoft

designed this new micro-controller based on seven properties that they defined required for a highly

secure device. The seven properties are:

Hardware-based Root of Trust: Hardware provides effective security comparing to Software,

and with Physical countermeasures, the device can resist side-channel attacks to protect keys from
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being leaked.

Small Trusted Computing Base (TCB): The TCB should be kept small to reduce the attack

surface of this critical module. The smaller is, the harder it will be for an attacker to break into

the TCB.

Defense-in-Depth: This technique has been used as a military strategy that aims to apply

multiple layers of protection to delay an attack and to make it expensive for an attacker. Also, it

is a way to buy time and act before an attacker succeeds in compromising the system.

Compartmentalization: Or isolation of components prevents vulnerabilities in a component to

propagate to other components and retrieve their secrets.

Certificate based authentication: Local or remote authentication based on certification rather

than passwords to prove identities when communicating with other components/devices/servers,

because they cannot be stolen or forged and prevent against man-in-the-middle attacks.

Renewable Security: No system could be qualified as invulnerable. Attacks evolve with time,

and attackers find new attacks vectors, they will always find a way to break a system. A device

with renewable security can be able to update and protect itself from newly discovered attacks

automatically.

Failure reporting: A device should be able to report failures that occur. Reporting failures helps

in improving both protecting assets and user experience.

Within Sopris, we find a whole hardware subsystem dedicated to security, and it is called

Pluton. It contains a Security Processor CPU, cryptographic engines, RNG, a key store and a

complex operation engine. The cryptographic engines include cryptographic algorithms like AES,

SHA, RSA, and ECC. The hardware RNG is used to counter timing attacks, and it is also used for

key generation and other cryptographic operations. The complex operation engine is used when we

need to execute an operation that needs more than one cryptographic engine.

To create Sopris, they modified the MT7687, and they made three changes to the micro-

controller; they added the Pluton subsystem module, they added an MMU to the CPU, and they

increased the SRAM. An MMU instead of the MPU in a micro-controller was justified by the fact

that it supports multiple levels of isolation and multiple address spaces from which an OS can create
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process-isolation compartments.

3.3.12 EPOXY

Recently, research has been proposing a different kind of compartmentalization solutions. Such

solutions [22, 23, 47] are LLVM-based embedded compilers and offer an automated way to create

two or more isolated execution environments.

[23] proposes a solution to create two separated domains for tiny embedded devices such as

Amazon Dash and SD card controllers. This solution is called EPOXY and is an LLVM-based

compiler that creates two separated domains based on the two privileged execution modes, user

and privileged modes, and the MPU. EPOXY offers an approach to automatically identify all

sensitive instructions and run them in the privileged mode. The rest of the code, non-sensitive

one, is run in user mode. To limit access to non-sensitive code and separate between the two

domains, EPOXY uses the MPU. Sensitive instructions are defined as instructions calling sensitive

peripherals. For example, a UART, or a DMA.

EPOXY targets bare-metal applications running on an Armv7-M architecture. EPOXY’s design

contains four components to achieve protection: access controls, privilege overlay, SafeStack, and

diversification.

Acess controls allow to define read, write, and execute permissions for each memory region

executed or accessed from instruction run in the user mode. For this matter, EPOXY configures

the MPU to limit access to all non-sensitive instructions. The developer provides EPOXY with

information about the sensitive peripherals (address spaces, sizes..). Then, EPOXY uses this infor-

mation alongside automatically retrieved information during the linking stage to generate the write

configuration of the MPU. Finally, the compiler adds to the startup, a code to initialize the MPU.

Privilege overlay is a technique used to identify all sensitive instructions and wrap them with a

mechanism that elevates the privilege, so they are run in a privileged mode. Then, the MPU is used

to limit access to the user mode to create a clear separation between the two modes. To identify

sensitive instructions, EPOXY uses static analysis and also source code analysis. Static analysis

is used to identify restricted instructions and restricted memory accesses. Code source analysis is

based on identifying annotations by the developer to find sensitive operations.

SafeStack [50] is used by EPOXY to defend against control-flow attacks. SafeStack is a pro-

tection mechanism that moves unsafe variables to a separate unsafe stack. Unsafe variables are
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global ones and the ones susceptible to memory out-of-bound. The researchers modified SafeStack

to support bare-metal application and guarantee a low run-time overhead.

Diversification [52] is used by EPOXY for functions, data, and registers to mitigate code reuse

attacks and data corruption attacks. Diversification is based on the amount of non-used memory.

EPOXY uses the unused memory to spread functions and data all over the memory. Then, with

SafeStack, we have multiple groups of functions or data separated with guard bands.

3.3.13 ACES

While EPOXY [23] offers a two compartments solution based on privileges, ACES (Automated

Compartments for Embedded Systems) [22] offers the opportunity to have multiple compartments

in bare metal applications. We start by presenting here ACES.

Figure 3-10: Aces architecture

ACES is an LLVM-based compiler that creates automatically isolated environments in bare

metal applications. ACES fulfils its objective by performing four steps (see figure 3-10): Program

Analysis, Compartment Generation, Program Instrumentation, and Run-time Enforcement. The

program analysis(step 1) creates the PDG (Program Dependence Graph); it captures all control-

flow, variables, and peripherals dependencies. This is used to generate the region graph. The region

graph is then used to generate compartments (step 2).

The user provides a compartmentalization policy. There are 3 policies: Naïve Filename, Op-

timized Filename and Peripheral. The Naïve Filename consists in considering each file name a

compartment. Then, The Optimized Filename consists of merging files with the same regions’
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access into the same compartment. Finally, the Peripheral policy consists of grouping code that

accesses a single peripheral into the same compartment. Then ACES applies the chosen policy.

To meet the eight regions’ MPU constraint, ACES merges some regions with each other. The

program instrumentation (step3) creates a compartmentalized binary. It instruments the program

and identifies all compartment transitions. All cross-calls are identified, and it creates metadata.

This metadata is used to validate a transition.

After instrumenting the binary, ACES lays out the program in memory to meet the MPU

constraints which are the region’s size are powers of two and the region’s start address is aligned

to its size. This routine is done in two steps: In the first round, ACES uses a linker script that

ignores these constraints, the resulting binary is used to extract regions sizes. Then, in the second

round, ACES uses another linker script to expand memory regions into the powers of two and lays

out regions from the highest to smallest to minimize holes between regions. The resulting binary

is ready for execution.

3.3.14 HEX FIVE MultiZone

MultiZone [14] is a security architecture for RISC-V based cores providing isolation for both

lightweight and multi-core devices. MultiZone is composed of a software component using Rocket

Chip security hardware modules to enforce device security. MultiZone does not require any change

to the existing source code to adapt it to its architecture. Hence, it does not offer thread-level

isolation, but, software component level. Here, a component can be an OS, a cryptographic library,

or a network stack.

MultiZone uses the Physical Memory Protection (PMP) hardware module found in the Rocket

Chip to create separation between these components. MultiZone software consists of the following

components:

Secure Boot: A two-stage secure boot, it verifies the authenticity and integrity of the firmware

image.

nanoKernel: A small software component responsible for managing separation, in other words,

switching from a context to another and guaranteeing that each zone is running under the right

configuration. The nanoKernel is formally verified.

Configurator: The configurator combines the linked zones and the provided memory regions

access permission to generate the right PMP configurations for the nanoKernel.
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Messenger: An IPC provided to exchange messages securely from a zone to another one.

HEX FIVE offers the possibility to add IO peripherals separation by adding a hardware module

called IOPMP (IO for In/Out). The idea behind IOPMP is to plug it in front of each Master to

control its memory accesses. The IOPMP can also be interfaced with a Slave to control memory

accesses.

3.3.15 VRASED

VRASED [68] is very similar to SMART. VRASED is an extension of SMART. The main

additions of VRASED, comparing to SMART, are the hybrid formal verification and controlling

DMA memory access from accessing the secure storage.

VRASED claims that it is the first formally verified hardware/software solution for remote

attestation. The researchers formalized remote attestation properties to define invariants that

must hold during system execution. Each VRASED sub-module was verified, and if verification

fails, the sub-module was redesigned. Then, once all sub-modules were verified, they verified the

whole module.

VRASED also adds in consideration DMA access, where SMART fails. The limitation in

SMART is that the DMA can access secret storage. VRASED takes into account this limitation

and forbids DMA from accessing secret storage and the ROM code.

3.4 Comparison

This section gives a detailed comparison of the architectures presented above. Table 3.1 summarizes

the features and properties of all the architectures. The comparison includes security properties,

protection mechanisms, and architecture’s features. We also looked for each architecture, whether

it is deployed or not, open-source or not, and academic or industrial.

All the studied architectures offer memory isolation except for SMART and VRASED. The

main objective of SMART and VRASED is to provide dynamic RoT, and they have established

isolation of the root from the rest of the software. They are not considered isolation architecture

because they do not provide applications’ separation. There are two schools to provide isolation.

Some use a separation based on the program counter while others use a memory protection module

(MPD), such as MPU, MMU, and a privileged software to switch context from one to another. The

privileged software configures MPD’s registers to give access to the running application. Isolation
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granularity changes also. Some offer a coarse granularity, at a memory page or cache line, while

others offer a fine granularity, at a thread level. However, the title for the finest granularity goes

to Mondrix, where we can attribute permission at a word level. According to [85] granularity of

isolation has an impact on performance; the finer the granularity, the more the run-time overhead

grows. The next chapter studies in depth performances and deepens this aspect.

Concerning attestation, each architecture has its implementation. We can group them into

two categories, hardware-only attestation and hybrid one. Hardware-only attestation, such as

Sancus, uses a dedicated hardware module to perform attestation, during boot time or application

loading. Hybrid attestation, such as SMART or SGX, uses a software component to perform

attestation. They rely on a hardware module, like a memory protection module, to protect the

software from being played with, and protect keys and intermediate data from being leaked. On the

one hand, there are architectures offering simple symmetric protocols because they are cheaper than

asymmetric protocols. For example, SMART uses a simple HMAC algorithm where it computes

a hash over a chunk of data with a symmetric key. On the other hand, architectures for high

computing devices offer more sophisticated protocols, like asymmetric ones with certification (e.g.,

SGX and Sanctum).

The TCB size also matters in this comparison. Especially their software components because

they add an attack surface to the TCB. The smaller the area, the smaller the attack surface is. In this

thesis, we have seen hardware-only solutions and hybrid ones. The hardware-only architectures,

like Sancus, provides much stronger guarantees than hybrid ones. They are not vulnerable to

software attacks. The issue with hardware-only architecture is that they require a lot of cell area.

According to [68], the hybrid architecture VRASED has only 4.16% of Sancus registers and only

6.25% of Sancus Look-Up Tables (LUTs). The other downside of hardware-only TCB is that it

is not upgradable. While hybrid TCBs can offer this feature. In the fifteen architectures, only

three architectures have an upgradable TCB. The software component of the TCB in SMART and

VRASED is immutable in the ROM, even if they are hybrid. Others, such as uVisor, TyTan, and

TockOS can have their secure software tampered with. TrustZone-M TCB surface can snowball.

This is because of its isolation mechanism based on two domains, and the secure world contains

many pieces of code.

Only a few architectures offer code confidentiality. Such architectures are SGX and the upgraded

version of Sancus called Soteria [38]. Code confidentiality ensures that sensitive code and data
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cannot be obtained by untrusted parties. SMART and VRASED root codes are also protected

from being leaked from the outside of the root. Except for SGX, all these architectures offer partial

code confidentiality in this thesis attacker model. The first thing, they do not use encryption, for

example, to fully protect the code, and the second thing is that they assume that untrusted parties

are only software components, although, we can have IO peripherals with full access to the memory

actually.

Only EPOXY, ACES, and MultiZone do not need a software adaptation. EPOXY and ACES

are automatic solutions to create isolation in bare-metal applications. They are more of compilers

than architectures. They compile the code and instrument it according to a defined policy, and

generate a secure application binary. MultiZone, is not a compiler like the two other ones. However,

it has a tool to link the different applications and generate the right configuration of the memory

protection module. The rest of the architectures requires a software adaptation. The issue with the

software adaptation is that developers need to rewrite their code. So again, if they go fast to be in

line with the industry pace and have no security background, they can add back-doors.

Isolation requires a separation between multiple applications embedded on the device. Nev-

ertheless, applications may need to communicate with each other, even untrusted ones with the

TCB. Architectures implement different types of IPCs. For small messages, they use the processor

register for faster exchange. Other architectures implement shared memory regions where two or

more applications create a page to share data.

Only a few tackles the IO peripheral issue. TrustZone provides only a binary separation for

IO peripherals. When the CPU is in the secure state, IO peripherals are too in the secure state,

which means they can access to everything, and when the CPU is in the non-secure state, the IO

Peripheral cannot access the secure memory. HEX FIVE offers the IOPMP, which is interfaced with

each Master or Slave, the issue here is in the case we have multiple Masters and we need to control

their memory accesses. We will have multiple IOPMP, therefore more silicium size, more software

complexity to manage all the IOPMPs. Other architectures, such as SGX, Sanctum, VRASED,

and TockOS, cover the DMA issue partially. On the one hand, SGX, Sanctum, and VRASED limit

DMA memory access with a memory controller to a single continuous space. On the other hand,

TockOS relies on the memory safety of Rust to forbid buffer overflows and try to read other memory

addresses with the DMA.
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Table 3.1: Summary of the studied isolation and attestation architectures.
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Mondrix [104] x x o o x o o o o o Mondrian o x o x o Multiple
SMART [30] o o x o o o x o o x - o x o x o AVR/MSP430
Sancus [67] x x x x o ? x o o x - x x x x o MSP430
SGX [61] x x x x x x x x xo o MMU o x o o x x86_64
TyTan [18] x x x x x o x o o x EA-MPU o x o x o Siskiyou Peak

TrustLite [48] x x o o x o x o o x EA-MPU o x o x o Siskiyou Peak
uVisor [9] x x o o x o o o o x MPU o x x o x Arm
TockOS [53] x o o x x xo o o xo x MPU o x x x x Arm
Sanctum [27] x x x x x x x o xo o MMU o x x x o RISC-V

TrustZone-M [101] x o x x o o x o x x - o x xo o x Arm
Sopris [43] x o x o o ? x o o x MMU o x o o o Arm
EPOXY [23] x o o o o o o o o x MPU o o x x o Arm
ACES [22] x o o o o o o o o x MPU o o x x o Arm

MultiZone [14] x x x o ? x xo o x x PMP o o o o x RISC-V
VRASED [68] o o x o o o x o xo x - o x o x o AVR/MSP430

x: Yes, o: No, xo: Partial, ?: NA, -: Non-relevant
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3.5 Summary

The primary goal of Trusted Computing is to re-establish trust in embedded systems that users start

loosing after all the attacks which hit them. Recently, Trusted Computing gained more and more

interest from both academics and industrials. This resulted in an increase in new architectures.

In this chapter, we presented a detailed description of multiple architectures and gave a compar-

ison of their features and security properties. The result of our comparison shows that we have in

the literature a variety of mechanisms and options to establish Trusted Computing. All the studied

architectures offer a good level of protection. However, they do not support all Trusted Computing

features and properties.

They mainly differ in the general approach and the objective of their architecture. Each ar-

chitecture is adequate for a type of device and a particular field. For example, if we are looking

for determinism and real-time, we would avoid architectures using MMUs. If we are looking for

high-performance computing and sophisticated applications, we would avoid EPOXY or ACES.

Some architectures are compatible with multiple kinds of devices like TrustZone and MultiZone.

We can see that there have been lots of work in this area, but also that there is still room to

improve the proposed mechanisms for Trusted Computing. In the next chapter, we will present an

in-depth study of other aspects, weaknesses and strengths towards software attacks, performances,

and TCB sizes, of five lightweight architectures from this list.
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Chapter 4

In-depth MPU-based Architectures

Comparison

In this chapter, we focus on five lightweight MPU-based architectures studied in the last chapter.

We chose to study their security protection, their sizes, and their performances. The goal is to

compare these architectures and identify the strengths and weaknesses of each one. The selected

architectures are uVisor [9], TockOS [53], TyTAN [18], TrustLite [48] and ACES [22]. All these

solutions are based on an MPU to protect memory and provide compartmentalization, and they

have enough data or could be ported (open-source) to existing boards to evaluate their performance

and security protection. They also provide different isolation and protection techniques. Other

architectures were not chosen because they were similar to these ones, or they did not have enough

data to run the study.

4.1 Comparison Criteria

In this section, we define the comparison criteria used in this study. The goal of the study is to

evaluate the five MPU-based architectures on three levels. The first level is the security protec-

tion. Isolation and attestation architectures are not aimed at protecting against a specific attack.

Instead, they limit the consequences of attacks. At this level, the objective is to study and compare

the way these architectures prevent a flaw in one application to propagate to others.
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The second level is the size of the software TCB. Here, we compare the size of the software

TCB of the architectures in the number of line of codes (LOC). All the studied architectures have

a TCB composed of a hardware component and a software component. We compare the size of the

software part of the TCB because it is linked to the attack surface of the latter.

Finally, the third level is Performance and Memory Footprint Evaluation. Performance

evaluation can be tricky and not very representative if we evaluate an application running on

different architectures. The reason we think so is that for each architecture, developers have to

think and code differently. Therefore, to be fair enough, we need to code the application differently

for each architecture. So, instead of evaluating runtime of a whole application, we chose to evaluate

critical part in the architectures independently from the running applications. The critical part we

chose to evaluate are:

∙ Process creation: Each architecture uses different process creation schemes. This task is

essential because it defines the resources of the process and the memory boundaries. It has

an impact on boot time and also every time the program creates a new process.

∙ MPU configuration: MPU configuration can be dynamic (the possibility to add/modify con-

figurations during runtime) or static (one configuration at boot time that it is not supposed

to change until system reset). In the case of dynamic configuration, the architecture needs to

re-configure every time the context is switched.

∙ Context-Switch: Here, we compare the full context switch. A context switch is usually done

in two steps. In the first step, the scheduler saves the running context and load the next

context, then, in the second step the MPU configuration of the next context is applied. This

is an essential task that can have a massive impact on performance, and especially on the

deterministic side because it is done every system tick.

∙ Interrupts: Interrupts handling is very critical. Each architecture manages interrupts differ-

ently. Here, we will compare the impact of each technique on the performance.

∙ Writing in a peripheral register: Embedded systems interact a lot with peripherals, and it is

scarce to find an application that does not make use of the system peripherals. Because of

the minimal access of applications in TockOS, we thought it would be interesting to compare

between uVisor, ACES, and TockOS accessing a peripheral register.
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∙ MPU recovery mechanism: This feature is only proposed by uVisor, which makes this archi-

tecture flexible comparing to the others. MPUs are hardware components, and each MPU

has a limited number of slots(memory regions to configure). The number of slots is fixed in

the hardware. However, uVisor offers the possibility to configure more than that number by

offering a virtual MPU. We evaluate the performance of this mechanism to see the impact of

exceeding the hardware number of slots.

4.2 Security Protection

The first difference to observe in the five architectures is that except for TockOS, all the others are

written in C, which is an unsafe language. TockOS is written in Rust, a memory-safe language. Rust

is supposed to deal with out-of-bounds pointers and with dangling pointers that are the sources

of most memory attacks. So how Rust achieves memory safety? Rust relies on three features:

ownership, borrowing and bounds-checking. For ownership, the compiler tracks the ownerships of

each value. A value can only be used once and then, the compiler refuses to use it again. This way,

Rust prevents double-free errors regularly found in C/C++ language. Concerning borrowing, since

Rust has rules about having one mutable pointer to a variable at a time, it employs borrowing to

offer developers the possibility to pass references. References are immutable by default. However,

we can have mutable references. Mutable references are possible only if we have one mutable

reference to one variable in a particular scope. This way, Rust can prevent data races at compile

time. Finally, Rust offers bounds-checking, but it comes at a cost. Except for C, other languages

have support of it.

However, when developers use the unsafe keyword, they write their code in other languages like

C, for example, and those parts are prone to memory attacks. A developer can reproduce every

security vulnerability found in C. And if an attacker succeeds in hijacking the unsafe code, the safe

one can be hijacked as Song shows in his paper [91]. To date, the TockOS kernel contains unsafe

code. Also Rust language libraries and mechanisms are not totally written in Rust. The interface

is safe, but the underlying implementation is written in an unsafe code. It is also important to note

that to date, it is impossible to write applications in Rust [56]. This means applications in TockOS

are written in C/C++.

We classified vulnerabilities in section 2.2.1 into two categories: temporal, and spatial vulner-
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abilities. An attacker can modify code, data variable, or code pointer. This can lead to a code

corruption attack, a control-flow hijack, or a data value attack [99]. For code corruption attacks,

the attacker tries to modify the code into their own. But the five architectures define text sections

with the ReadOnly attribute, so they prevent attackers from overwriting the code.

In the following, let’s assume a system with two different compartments, A and B. The code

of A is unsafe and contains many weaknesses, while B is safely written because it processes some

sensitive data.

For data value attacks, the attacker tries to modify data values to change the execution path.

If the attacker can exploit a buffer overflow from within compartment A and tries to reach a data

value within the compartment B memory region, the MPU will raise an exception. The attacker can

only read/write memory regions with the MPU R/W attributes; they can manipulate authorized

memory regions. And while the MPU guarantees protection of compartments’ memory regions,

attackers cannot access, from a compartment, other compartments’ resources.

For control-flow hijack, an attacker will try to redirect a code pointer to the address of their

injected code, or to an already existing function or gadget. This is usually done by manipulating the

return address after exploiting, for example, a stack-buffer overflow or by using indirect jumps or

call instructions. None of the architectures mark their stack and heap segments as non-executable,

by default, to prevent executing injected code. So, if an attacker succeeds in exploiting a buffer

overflow or a dangling pointer, they can inject their code and redirect the path to their own code.

Except for ACES, developers have to change stacks and heaps attributes into non-executable

in the other four architectures’ code to prevent executing injected code. But even if they do so,

attackers still can reuse existing functions and gadgets. The code can be divided into two categories:

shared libraries’ code and compartments’ code. For the shared libraries’ code, like libc, for example,

the code is publicly accessible. Reusing their functions won’t be prevented, but if an attacker tries

to process data from a protected compartment, the MPU will raise an exception. The functions

will be executed, but only in the context of the running compartment.

TockOS, ACES and TyTAN protect a compartment code from being executed in the context of

other compartments [18, 22, 53]. In the case of TrustLite, the developers must choose if they want

to authorize a compartment to execute another compartment code or not. uVisor does not provide

such a protection. An attacker can call any function, but, just like shared libraries, these functions

will be executed in the running context, which means that if the function processes some resources
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that are not authorized for the running compartment, the MPU will raise an exception.

Figure 4-1: uVisor and RTOS have same privileges: RTOS is non secure, and contains many buffers, but, it has the same
privileges as uVisor, which can be critical to the system protection.

Except for ACES, within all the other architectures, the OSes have the same privileges as the

TCB. TockOS uses a new OS written in a safe language, while the others use traditional OSes

that were developed a long time ago, did not take security measures, and use lots of buffers. This

increases the chances of buffer overflows within a privileged component, and it could be critical for

system security, as we will demonstrate for uVisor (see Figure 4-1).

First, note that in mbed RTOS, the svc 0 is reserved for RTOS SVC Handler and it is used

by the OS to switch from user mode to a privileged one. If we have a look at the SVC Handler

function, we will find that the RTOS trusts the register R12, and it contains the address of the

function to execute in privileged mode.

The SVC Handler can be called from any compartment by simply executing svc 0. Now, we

take the example of the other part of the system with two compartments, A and B. In uVisor, if we

have a look at how the memory is configured in the MPU, there is no protection against execution

of injected code. So, from a vulnerability within A, we can inject the following simplified code:

LDR R12 ,= exploit

SVC 0

exploit:

...

This will load R12 with the exploit address and then call the SVC Handler, the handler will

branch to the exploit in privileged mode, and the game is over. We succeed in disabling the MPU
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Table 4.1: Summary of Security protection studied in this chapter:
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uVisor o o o x o o
TockOS xo xo xo x x o
TyTAN o o o x x o
TrustLite o o o x x o
ACES o o o x x x

x: Yes, o: No, xo: Partial

for example and running the system without protection.

Table 4.1 summarizes security protections studied in this paper. Except for TockOS, which

is partially written in a memory-safe language and protects partially from memory corruption

attacks, the others are not protection solutions. But, all five architectures limit the consequences

of such attacks by preventing memory regions from being publicly accessible. Moreover, running a

privileged OS can be fatal. uVisor does not trust mbed OS, but they are still running with the same

privileges. As shown above, an attacker can take advantage of the OS and escalate their privileges.

4.3 Trusted Computing Base

This section compares the TCB size of the studied architectures. It is more appropriate to compare

only uVisor and TockOS and ACES because TyTAN and TrustLite are not open source and there

is not enough available information about the size of their software components.

uVisor, TockOS and ACES use practically the same MPU (Armv7-MPU). On one hand, uVisor

has only 7kLOC (Line of Code), meanwhile TockOS has 11kLOC. However, while uVisor is just a

hypervisor and needs an OS to work, uVisor is only compatible with mbed RTOS. mbed RTOS is

not trusted, but is executed in privileged mode. uVisor still provides more flexibility than TockOS

and is also compatible with three different MPUs (ARMv7m, ARMv8m, and Kinetis). On the other

hand, ACES has only 1.3kLOC. This is since ACES is destined to bare metal applications, there is

no OS. So, there is no security features like the other architectures. ACES software TCB manages
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only the MPU reconfigurations and system calls.

4.4 Performance and Memory Consumption

In this section, the performance and memory consumption of uVisor and TockOS are compared, and

when possible, ACES and TyTAN too. TyTAN’s and TrustLite’s codes are not open to the public,

so we could not perform our own evaluation tests. For comparison purposes, we used literature

data when available. ACES is destined to bare metal applications; therefore, we cannot compare

all performance sides, such as process creation. Tests were carried out on an Arm Cortex-M4 board

with 2MB of FLASH and 192KB of RAM. uVisor and ACES were already ported to this board,

but not TockOS, so the minimum required in order to evaluate and compare the architectures was

ported by our own work.

4.4.1 Performances

The evaluation focused especially on some components in the kernel and hypervisor (for uVisor)

side. We evaluate mechanisms like task creation, MPU configuration, the context switch, interrupts,

and the cost of an MPU fault recovery for uVisor to add an authorized region that was not pre-

configured.

Process creation: The process creation scheme differs from one architecture to another. For

uVisor with mbed OS, it is done in two steps. In the first step, uVisor loads all boxes’ static

configuration from the FLASH and allocates memory for every box. The second step occurs during

the OS start and consists in creating the corresponding processes. TockOS and TyTAN both

support dynamic application loading. Process creation consists of relocating the process, loading the

corresponding MPU configuration, and finally, only for TyTAN, the authentication of the process.

Table 4.2 presents the performance of creating a process in every architecture. TyTAN has the

biggest runtime overhead and this is because TyTAN authenticates every process before loading it,

and it takes around 433,400 clock cycles [18] to measure a process. uVisor does not authenticate

processes, but it automatically allocates memory for processes. And because of the MPU (Armv7)

limitations seen in section 3.1, more processing time is needed to load configuration processes: to

round up memory sizes into power of twos, to shift the memory start address to be aligned with

its size, and to load the process’s access control list. TockOS has the best performance of the
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Table 4.2: Performance of creating a process (in clock cycles).

Routine uVisor TockOS TyTAN
Process Creation 5,500 2,900 642,300

Table 4.3: Performance of configuring the MPU (in clock cycles).

Routine uVisor TockOS
MPU configuration 390 - 4,450 560

three architectures because it does not authenticate applications. And applications have very small

configurations—practically all configurations are static and the same.

MPU configuration: In TockOS and uVisor, the MPU configuration is dynamic; therefore,

when a thread-switch or an interrupt occurs, the MPU needs to be configured with the right rules.

Table 4.3 shows the cost in clock cycles for such a routine. On one hand, TockOS has only two

regions to configure for each application: its text section and its data section, and the configuration

is done in 560 cycles. On the other hand, uVisor has two or three static regions, depending on

the board, which are the public regions in the SRAM and the FLASH for all applications. The

other six regions are filled from the application ACL (Access Control List) with the right rules.

Depending on the ACL, the routine can take from 390 to 4,450 cycles. The MPU configuration in

TockOS takes less time than in uVisor and this is because uVisor offers more flexibility in defining

memory access rules. But, as we will see next, the non-flexibility of TockOS can be very costly

when an application needs to access different peripheral registers or other memory regions like the

non-volatile SRAM, for example.

Writing in a peripheral register: Table 4.4 presents the results of this test. An application

in uVisor and ACES needs less time than in TockOS to write into a register because it was already

authorized (in the ACL) to access that memory region. In TockOS, an application can access only

its data and text sections, so to write in a peripheral register, the developer needs to define a capsule

for the corresponding peripheral. Capsules are part of the kernel and are executed in privileged

mode. Calling a capsule from an application requires a Supervisor Call (SVC), then the kernel

redirects to the right capsule which writes into the register, and finally, execution mode is changed

to user mode and the system returns to the application. It costs around 340 cycles for a simple

memory access.

Interrupts: For interrupts handling, the test consists in evaluating the switch in the interrupt
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Table 4.4: Performance of peripheral registers writing (in clock cycles).

Routine uVisor TockOS ACES
register writing 6 340 6

Table 4.5: Performance of Interrupts switch in and switch out (in clock cycles).

Routine uVisor TockOS
Interrupt 290 - 4,740 3,160

handler and the switch out to resume the execution flow. Table 4.5 shows the results for uVisor and

TockOS. For uVisor, it varies from 290 to 4,740 cycles because of the MPU configuration. There is

a use case where switching in and out needs only 290 cycles. It is the case when the interrupt occurs

during the process owning the interruption handler (See section 3.3). Here uVisor performs ways

better than TockOS. In TockOS, it takes 3,160 cycles, because of the MPU configuration. There is

also a high latency because the interrupt handler cannot be invoked directly, the kernel has to find

the right handler to call.

Context switch: For the context switch, Table 4.6 shows that in ACES it takes 675 cycles to

switch from a context to another. TockOS takes 810 cycles, while uVisor takes from 2,040 to 6,100

cycles. This huge difference is, again, due to the MPU configuration. There are up to six more

regions that can be configured during this step, and during a process switch, the RPC mechanism

needs to drain outgoing RPC queues.

uVisor MPU recovery mechanism: This mechanism shows how a process can configure

up to 16 memory regions while the MPU has only eight memory regions. In uVisor two slots

are reserved for the public RAM and FLASH, and another slot is reserved for the process heap

and stack. So, developers have only five slots to configure. To overcome this limitation, an MPU

recovery mechanism allows developers to set rules for more than five memory regions. Then during

the MPU configuration, the first five memory regions in the ACL are configured in the MPU. If the

application tries to access an authorized address that is not configured in the MPU, the MPU will

raise an exception. uVisor retrieves the fault address and checks if it is within an authorized region.

Here, uVisor overwrites a memory region with less or the same priority in the MPU and recovers

Table 4.6: Performance of context switching (in clock cycles).

Routine uVisor TockOS ACES
Context switch 2,040 - 6,100 810 675
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Table 4.7: Performance of uVisor MPU recovery mechanism (in clock cycles).

Routine uVisor
MPU recovery 560

Table 4.8: FLASH memory consumption (in kB).

uVisor TockOS TyTAN
68.27 72.58 244.08

from the fault. As shown in Table 4.7, this step costs 560 cycles, but it allows an application to

have access to more than eight memory regions.

4.4.2 Memory consumption

The memory consumption is divided into two parts. The first part is the memory used when no

task is loaded. Table 4.8 shows that uVisor consumes less FLASH than TockOS and TyTAN.

The second part is the memory consumption within the RAM and how uVisor and TockOS

manage RAM memory. Table 4.9 presents the initial RAM memory consumption. uVisor alone

needs only 2kB, but with mbed OS, 8.60kB are needed. TockOS needs 7kB. The results are very

close. The difference between both architectures remains in managing memory for processes. uVisor

and TockOS have two different policies. uVisor has a dynamic policy where developers define the

amount of memory for a process, then during uVisor boot, it is rounded to match MPU limitations

(See section 3.1). In TockOS the amount of memory needed for all processes is the same, and it is

fixed within the kernel by the developer. Both policies have their advantages and disadvantages.

In uVisor, developers decide if they need a big chunk of memory or just a small one, depending on

the application needs. In contrast, in TockOS if there are applications with variable memory block

needs, they will have the same amount. This can lead to lots of memory waste, especially when

one particular application needs lots of memory space, while others do not need too much. But, in

uVisor the fact that memory regions are not fixed can lead to another problem. The ARMv7 MPU

limitation can lead to some waste in memory. To limit the waste, uVisor has a routine to order

memory regions of applications. These limitations were fixed for the ARMv8 MPU.

82



Table 4.9: Initial RAM memory consumption (in kB).

uVisor TockOS
8.57 7

4.5 Discussion

Table 4.10 summarizes some important results of the evaluated MPU-based isolation architectures.

All the five architectures have their advantages and disadvantages. Except for uVisor, each archi-

tecture is suited to a specific type of applications. uVisor flexibility and small memory consumption

make it suited to a large panel of applications. However, the results from Table 4.10 show that the

deterministic level can be lost if applications get too complicated. Much effort has been directed

towards these architectures, but there is still room for enhancement. For example, in uVisor, root of

trust and dynamic loading can be good assets. TockOS is minimalist, and it is designed for tiny and

simple embedded systems, such as those with a very limited number of processes and, especially,

for applications that spend most of their time in sleep mode. But it does not mean TockOS has

less power consumption than other architectures. It has been shown in [66] that TockOS consumes

more power than mbed OS, especially when an application requires a lot of computational work,

as cryptographic operations do.

For both uVisor and TockOS, runtime performances can be improved. For TockOS, we noted

that the MPU was configured at every system tick, even if the OS does not really switch to another

thread. Also, during interrupts, sometimes reconfiguring the MPU is unnecessary and there is much

time wasted in the kernel finding the right handler. For uVisor, providing developers with up to

16 regions to configure for each process is a good advantage compared to all other architectures.

But it has its cost on performance as shown in Section 4.4.1. Maybe the solution for uVisor will be

to use a different MPU—one that will allow it to configure all memory regions at boot time. This

would suppress the cost of the MPU configuration for every thread-switch and interrupt. But as

seen in TrustLite, this might also have a prohibitive cost and might offer fewer memory regions to

configure for developers.

TockOS uses Rust in its kernel, which is a memory-safe language. But for low-level operations,

TockOS uses an unsafe language. An attacker can control the execution flow from an unsafe code.

Applications in TockOS cannot be written in Rust and, to date, they are all written in C/C++.

But they are very limited and have access to only two regions. It would be better if they could
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be written in Rust, too, to lower the attack surface. The three other architectures are written in

C and assembly. Unfortunately, only uVisor of the three is open source, so we couldn’t review

TyTAN and TrustLite code. uVisor is a small hypervisor and its TCB size is around 7kLOC, but

it needs mbed OS to work. In Section 4.2, we showed that there is a non-negligible part that runs

in the privileged mode. We demonstrated how, from the user mode, we can call the OS and from

then execute an arbitrary code in privileged mode. To overcome this, uVisor has to configure the

RAM memory as non-executable. Then, to reduce the attack surface, it may need to run the OS

with less privilege than uVisor. To do so, we can opt for para-virtualization. The timer (Systick)

used by the RTOS could be handled by a para-virtualized one in non-privileged mode. Using para-

virtualized hardware will for sure have an impact on performance, especially on interrupt latency.

But determinism can be assured if the para-virtualization is done correctly. We could also reduce

the time hogged by the MPU configuration at every thread-switch and every interrupt.

ACES is an automated solution but for bare metal applications only. ACES saves developers

from the engineering needed in the other architectures to create isolated execution, allocate the right

heaps and stacks, and defining MPU memory regions. However, ACES does not deal with interrupts

handlers. These are handled in privileged mode and attackers can take profit of a malicious handler

to break system security. Furthermore, ACES can include on average 5% run time overhead [22]

comparing to uVisor. This because ACES offer a finer compartmentalization granularity and its

switch context is quite costly. Although, this fine granularity reduces ROP attacks on average by

94.3% [22].

Another issue in all these solutions is IO peripherals protection. MPUs in the five architectures

are interfaced with the CPU, which means only software memory accesses are controlled. Because

IO peripherals are outside the CPU, they can access all memory regions bypassing all architectures’

security measures. Overcoming IO peripherals attacks is very challenging, especially from a soft-

ware standpoint. TockOS kernel has a software abstraction layer that partially limits the MPU

circumvent. Rust memory safety ensures the kernel exposes memory-mapped registers safely, so

applications cannot write arbitrary values beyond the boundaries [54]. A complete software solu-

tion may be difficult and costly in terms of performance. A software/hardware or just a hardware

solution may be better.

84



Table 4.10: Summary of the evaluated MPU-based isolation architectures.
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4.6 Summary

In this chapter, we presented our study of most known MPU-based isolation architectures. The

study covered a comparison of isolation robustness, and security features, and performances and

memory consumption of some architectures, because unfortunately not all architectures are open.

This study shows that all architectures provide strong isolation, and they limit the consequences

of software attacks, and make it harder for an attacker to reach their goal. We evaluated the

performance costs of MPU-based isolations, the results of costs were consistent with the policies

chosen in each architecture. Nevertheless, the study presented some weaknesses and limitations in

every architecture and demonstrated how reusing a gadget from the OS can be fatal.

Finally, we presented some ideas of possible works for a better isolation and to reduce the

runtime overhead. In the next chapter, we present our architecture, Toubkal, that was designed

based on the outcome of the preceding two chapters.
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Chapter 5

Toubkal: Hardware-based Isolation

and Attestation Architecture

This chapter presents the design of Toubkal architecture. We detail how we achieve the targeted

levels of protection in the context of our threat model (section 2.2.3). In chapters 4, we studied

in detail five lightweight architectures. We reviewed and compared different aspects to understand

what is missing to offer a highly secure architecture. The outcome of this study (section 4.5) leads us

to design a hybrid architecture to enforce lightweight devices security. In this chapter, we present

Toubkal design to provide isolation and attestation for lightweight devices. Figure 5-1 gives an

overview of the architecture.

Toubkal is composed of two hardware modules to control memory accesses on different levels.

The first hardware module consists of controlling memory accesses of the various peripherals with

memory access. It catches all the signals going to the memories and checks the permission accesses

configuration to allow or not the memory access.

The second hardware component consists of controlling the memory access to the most critical

software, which is the security monitor. The main goal is to create a separation between the latter

and the rest of the software. It protects its (security monitor) data and controls all the calls to its

code.

Toubkal is also composed of the security monitor, the software component. This component is

composed of two parts: the root, which is non-changeable, and the monitor. This component is
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Figure 5-1: Effective isolation and attestation architecture overview

responsible for configuring the two hardware components to make the architecture more flexible

and is also responsible for establishing trust in any data or code. It offers an attestation service to

verify their authenticity and integrity.

All these components form the Trusted Computing Base (TCB) of our architecture. They

are modular and can work independently. However, excluding a component results in reducing

the protection desired in this thesis. First, we will start by presenting an overview of Toubkal

architecture. Then, we will present, in-depth, each component we designed and developed.

5.1 Toubkal Overview

This section presents an overview of Toubkal design. The primary contribution of this chapter is a

hardware/software co-design that addresses the limitations cited previously. Toubkal combines two

hardware modules and a software component.
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5.1.1 Toubkal Architecture

Toubkal is mainly composed of three components; two hardware components and a software com-

ponent (see Figure 5-2): the master memory protection (MMP), the execution aware protection

(EAP), and the security monitor (SM).

Figure 5-2: Major Components of Toubkal: It is a hardware/software co-design composed of three main components; the
MMP which is the hardware module control memory access of the different peripherals, like CPUs, DMA, etc. The EAP
which is the hardware module to protect and create a strong separation of the security monitor from all the rest. Finally,
the security monitor which is the only software responsible of enforcing system security. The PMP is optional and can be
used to create multiple zones for the user mode.

The master memory protection (MMP) is responsible for controlling IO peripherals’ memory

accesses. The MMP contains configurations of memory regions and their access permission and it

checks memory accesses to authorize or not a peripheral from accessing a specific memory address.

The MMP has a master look-aside buffer (MLB), where it stores memory regions configurations.

It is integrated within the interconnect bus to control memory accesses from all the peripherals to

memories. The MMP supports multiple policies and options to help designers generate the right

hardware module.

The execution aware protection (EAP) is responsible for creating isolation around the security

monitor. As there are only two execution modes (the user mode and the privileged one), the security

monitor and privileged code (such as the OS) can share the same privilege. This results in a big

attack surface. Therefore, the EAP main goal is to separate the security monitor with the rest, and

to control every access of the security monitor’s code and data. The same way and for the same
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reasons, we can have another separated zone (zone 3 in figure 5-3), called D-zones (D for Detached).

The security monitor (SM) is a software component composed of two parts: a tiny and immutable

root and a changeable monitor. The root is the only trusted software because it is immutable. It is

responsible for configuring the MMP and the EAP, and for verifying the monitor authenticity and

integrity with a hardcoded key. The security monitor is kept relatively small to make verification

easy.

Figure 5-3: Toubkal’s architecture

Figure 5-3 presents an overview of Toubkal’s architecture. An important goal of Toubkal is

to offer isolation on multiple levels. In most lightweight devices, there are only two modes; user

mode and machine mode, which the most privileged mode in RISC-V architecture (similar to the

supervisor mode in the Arm cortex-M architecture). On the user mode level, we can load multiple

applications into separated zones. All zones are equally untrusted. Yet we can differentiate between

two types of zones. we have normal zones that can be processes and managed by an OS, and D-

zones that are completely separated from the user and the privileged code. Normal zones can be

created using the Physical Memory Protection (PMP). Inside D-zones, we can also have multiple

separated zones using the same PMP.

D-zones are useful to embed sensitive libraries or applications that do not need an OS. As

we showed before, OSes are not trusted, therefore, D-zones are useful to embed applications and

libraries we want to protect from OSes’ weaknesses. The EAP module helps to protect them from
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unauthorized accesses.

On the machine mode, we want a clear separation between the security monitor and the other

privileged code to reduce the attack surface of the security monitor and avoid security issues like

the one showed in mbedOS+uVisor in 4.2. The EAP needs to control every access to the security

monitor and ensure that there is no leak of the latter’s secrets.

Both D-Zones and the security monitor have entry points. Any jump inside these zones without

passing by the entry points needs to be stopped. Calling these protected zones has to follow a

defined set of steps. The EAP needs to control the transitions from a step to another and stop any

non-authorized transition.

Toubkal hardware modules are in Chisel3 [13] and the security monitor is in C language. It is

compatible with the existing RISC-V based Instruction Set Architecture (ISA). The MMP is also

compatible with Arm based platform as it does not require any change to the main core.

5.1.2 Modularity

A major point and challenge of Toubkal was to keep it modular. This means that each component

can work independently from the others. Consequently, Toubkal can work with the MMP only,

with the EAP only, or with both. In sections 5.2.1 and 5.2.2 we present the MMP and the EAP as

they are working outside Toubkal ecosystem.

Although modularity may seem interesting, it impacts the level of security. For example, if a

platform integrates the MMP alone, it will have some drawback in security. The primary goal of

the MMP is to protect from IO peripherals non-authorized accesses to memory. The MMP needs to

be configured from a software component. This software is vulnerable to privilege escalate attacks.

If an attacker succeeds in escalating the privilege, they can change some configurations. The EAP

adds another layer of isolation to isolate the security monitor, the only software able to change the

MMP configurations.

Same for the EAP, if a platform integrates it alone, the system will be vulnerable to IO periph-

erals attacks and an attacker can access sensitive data processed by the security monitor.

Putting the MMP and the EAP all together with the security monitor makes the platform more

secure with multiple layers of protection.
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5.2 Toubkal Design in Detail

In this section, we provide a detailed description of the different hardware and software components

we designed.

5.2.1 The Master Memory Protection

This section presents the design description and evaluation of the Master Memory Protection

(MMP). It is a modular system that offers strong separation of different hardware modules within

a system. The MMP has been designed in such a way that it can easily be adapted to the system

needs in terms of security, safety and performances. It does not require any change in the existing

hardware modules. Below, we present a detailed description of this block.

The major challenge of the MMP was to develop a flexible design and to keep it small with a

negligible run-time overhead. This section starts with describing our initial analysis of the design,

then presents our proof-of-concept implementation.

MMP Major Components

The MMP is composed mainly of the Master Look-aside Buffer (MLB) the uCode block, in addition

to some logic for the look-up and match, security checks and MMP configuration (see figure 5-4). In

this work, the MMP is interfaced with the AHB but it can be positioned in any other position that

catches communication between Masters and memories. The abstraction layer aims to facilitate

the integration of the MMP in different systems and positions.

The MMP uCode is responsible of memory mapping all MMP registers and configuring the

MMP. uCode can be configured from the security monitor. The MLB is a set of registers to store

regions configurations or look-up&match some addresses. This section presents and discusses two

different implementations of the MLB, the Unique MLB and the shared MLB. uCode is connected

to MLB registers to store regions configurations. And then, there is the abstraction layer. This

layer is customizable and aims to facilitate the integration of MMP in different systems and spots.

Master Look-aside Buffer

The MLB is designed to store memory regions configurations, it looks-up&matches addresses. To

store configurations, the MMP uses registers, which are costly, but guarantee rapid access. The

92



Figure 5-4: Major components of hardware block of the MMP: The uCode module contains information to recognize the
security monitor which is responsible of configuring the MMP. This module is linked to the MLB. The MLB is a set of
registers to store regions configurations. The abstraction layer is customizable and aims to facilitate the integration of the
MMP in different systems and at different spots.

MMP proposes different ways to store configurations. As shown in figure 5-5, designers can choose

the number of memory region slots, the granularity, the address width, the number of concerned

Masters and the method to attribute slots to Masters.

Figure 5-5: MLB slots: The figure presents the different ways to store configurations in the MLB for a 32 bit address space.
N represents the number of masters. The first method, called UMLB (U for Unique) stores one configuration per Master
per slot, while the second method, called SMLB (S for Shared), stores one configuration per slot but for multiple masters.
In the SMLB, there is no need for a valid bit as each Master has a corresponding bit in the first column from the left. The
value 0 means the configuration is not valid for that master and vice versa. The third column from the left refers to size in
case of coarse-grained granularity, and to end address in case of fine-grained one.

The first important decision to make in the MMP is to choose between configuring memory

regions white-list or memory regions black-list. This choice is strategic and depends on which

case would lead to fewer slots to configure. We added this option as we believe for isolation at
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this level, contrary to MPUs and MMUs, it is more interesting to create a black-list rather than a

white-list. It is more likely to prohibit a memory region rather than allowing it. Indeed, the way of

thinking at this level is different compared to the application level. Thus, in the rest of the chapter

we will be more talking about prohibiting memory regions to Masters rather than allowing them.

The MMP offers two ways to organize slots (see figure 5-5). The first method is called Unique

MLB (UMLB) because each slot is unique to a Master, and the second method is called Shared MLB

(SMLB) because a slot can be shared between multiple Masters. The UMLB consists in storing in

each slot a memory region configuration for a specific Master. While the SMLB consists in storing

in each slot a memory region configuration for multiple Masters. Each way has its advantages and

its drawbacks, and each is more suitable to specific use cases. While the UMLB requires less logic to

match or insert the Master Id, the SMLB can require fewer slots (therefore fewer cells area) in case

some Masters share some common permissions. In the SMLB, there is a bit for each Master. When

the bit is up, it means that the configuration is valid for the corresponding Master and vice-versa.

Concerning the number of slots, the MMP accepts up to 16 slots. Because of the high cost of

registers, we limited the number of slots to 16 slots. Designers can choose between 4, 8, 12 or 16

slots. The size of the MMP grows proportionally to this number. Section 6.2.1 shows how the area

is impacted by the number of slots.

The other parameter is the granularity of the MMP. This work proposes two granularities. For

fine-grained granularity, the MMP proposes regions multiple to 32 bytes and the region address

start is aligned to 32 bytes. And for coarse-grained granularity, the MMP proposes regions power

of two and the region address start is aligned to its size. The second granularity is more constraining

in comparison to the first one. However, as figure 5-6 shows, the coarse-grained one requires less

logic than the fine-grained one to match addresses.

To configure memory regions in the MMP, MLB registers can be hard-coded for more resiliency

and less flexibility, or memory mapped and then the uCode is responsible for configuring them

during software execution for more flexibility and dynamism. Making the MMP accessible from the

running software adds its attack surface. We discuss this point in the next section.

The MMP Policies

We put in place different policies to generate different designs of the MMP. These choices impact

the hardware area cost. Section 6.2.1 compares all the options. We implement three policies, static,
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Figure 5-6: A fine grained match is more complex than a coarse grained match. The second one compares the address with
the base address and the limit address, while the first one compares the logical combination of the address and the mask
corresponding to the size of the region with the base address.

semi-static and dynamic.

The static policy is a security policy that focuses on resiliency rather than flexibility. In this

policy, memory regions configurations are hard-coded, or loaded using the Read Only Memory

(ROM) or a One Time Programmable (OTP).

The semi-static policy is a little more flexible than the first one. Like the static policy, some

configurations can be fixed from the beginning, but it offers the possibility to add other configu-

rations during execution. To do so, we add a uCode that has to be run in privileged mode and

we memory map some registers. These registers are only accessible from privileged mode. The

uCode must be a predefined memory region, which means that outside this region MMP will not

configure itself. Once a configuration is added, it cannot be modified or removed, although, this

policy works only with the SMLB configuration, therefore, it is possible to validate or invalidate

the configuration for each Master by flipping the corresponding bit. This can be useful in the use

case presented in section 2.3.2. It is also possible to lock a configuration so no one can change it

until system reset.

The dynamic policy is the most flexible but the less secure of the three policies. From the

uCode, it is possible to add, remove or change all configurations. The uCode runs under the same

condition as in the semi-static policy. There is also a lock bit to lock a configuration so it cannot

be modified until system reset.

In the next chapter, we evaluate The MMP, compare and discuss the differences between each

policy in terms of performances, cells area and security.

5.2.2 The Execution Aware Protection

This section presents the EAP module, which is mainly used, but not limited, to create a strong

separation of the security monitor from other software components. The EAP was designed to
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answer some security issues (e.g. running an untrusted OS and a security monitor with the same

privilege) we found in lightweight isolation and attestation architectures like [9, 18,22,48,53].

Figure 5-7: Registers to configure the protected text sections: Regions cannot overlap. Entry points to the protected region
must be inside the start address and End_Entry. Entry points must be as few as possible to reduce attack surface.

The Execution Aware Protection (EAP) primary objective is to guarantee a strong separation

of the security monitor from all the rest of the system. It can also be combined with the physical

memory protection (PMP) to create the D-zones (D for detached zones), which are zones running

in user mode and are protected from the privileged mode. EAP offers hybrid isolation, in other

words, isolation is implemented by checking the instruction address, the context configuration, and

the execution mode, to allow or not a data memory access. Figure 5-7 shows registers to configure

code sections and entries sections for both the security monitor and D-Zones. In this work, Entries

section and code section have to be a continuous space.

The EAP checks all instructions to control the access to the security monitor and D-zones. It

controls three text memory regions; the root, the monitor, and the D-zones. The EAP requires

entry points for each one. The primary goal of entry points is to force the program to call these

regions from the defined entries. This way, the EAP prevents attackers from randomly calling

sensitive functions to extract sensitive data from the protected regions.

Memory distribution and access control

The EAP divides the memory into four main groups. Each group has a sensitivity priority. At level

zero, which is the most sensitive, there is the memory belonging to the security monitor. At level

one, there is the memory belonging to D-zones. At level two, there is memory belonging to the

privileged world. And finally, at level three, which is the least sensitive, there is memory belonging

to the user world.

Levels zero and two are running in privileged mode, and levels one and three are running in

user mode. For convenience and performance matters, code within level zero has access to all

other levels. And code within level two has access to level three. Concerning level zero, the reason
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Table 5.1: Notations used in designing and verifying the state machine of EAP

Notation Description
PC Program Counter
RC Root Code
REC Root Entry Code
MC Monitor Code
MEC Monitor Entry Code
DZC D-zones Code
DZE D-zones Entry Code
SMM Security Monitor Data Memory
DZM D-zones Data Memory
KM Memory area for key storage
sRomEnt State when PC is in the Root code entry

point
sRomIn State when PC is legitimately inside the

root
sMonitorEnt State when PC is in the monitor entry

points
sMonitorIn State when PC is legitimately inside the

monitor
sDzoneEnt State when PC is in the D-zones entry

points
sDzoneIn State when PC is legitimately inside the

D-zones
sNone State when PC is in the rest of code
sKill State when there is a non-authorized

access
oldState The state just before we check the new

PC
newState The state after checking the transition

and memory access
Daddr Data address for memory access

Table 5.2: Memory access control for all rings

From/To level 0 level 1 level 2 level 3

level 0

level 1

level 2

level 3

rwx

-

-

-

rw

rwx

-

-

rw

-

rwx

-

rw

-

rw

rwx
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behind this choice is obvious; it is part of the TCB and is the software part enforcing the device

security. Concerning level two, the reason behind it is justified by the fact that level two is running

in privileged mode and might embed an OS. An OS that is managing processes running at level

three. Table 5.2 summarizes the access control list between levels.

Level zero and one are protected from other levels using a program counter based isolation.

Level zero is protected from level one using a program counter based isolation, and level two is

protected from level three using execution mode and the PMP based isolation. And finally, the

EAP can use the PMP to create multiple separated zones inside levels one and three.

Concerning level zero and level one, which use a program counter based isolation, we define

entry points for each level. The entry points are used to force the outside world (level two and

level three) to call available services/functions from the defined entry points. Therefore, the entry

points are the only gates to level zero and level one. Doing so prevents ROP attacks by reusing and

combining gadgets from level zero and level one to leak secrets and change the system’s behaviour.

However, it does not prevent an attacker from diverting the system behaviour if an attacker exploits

a bug inside the code level. Entry points prevent only ROP attacks being mounted from outside

the level.

EAP design allows level zero and level one to have multiple entry points. While this point can

be convenient and offer flexibility, it is recommended to have as few as possible. Entry points can

be considered attack’s entries. Therefore, to reduce the attack surface, we need to have few entry

points. Entry points are the only codes that can be executed from outside.

Each level has text and data sections. Currently, the EAP only supports continuous text and

data sections for the security monitor and D-zones (levels zero and one). The rest of the code can

be loaded anywhere else in the available memory. Furthermore, level zero and level one cannot

overlap with each other or with the rest. While levels two and three can overlap with each other

(the case of an OS and its threads).

The EAP also provides the possibility to divide levels one and three into multiple separated

zones. This time, the EAP uses the PMP to create such separation. This is the third layer of

isolation. Each zone has its text and data section. We do not go in detail at this level of isolation.

However, MultiZone [14] can work perfectly in our architecture to provide this layer of isolation.

98



The EAP Execution Flow

Here, we will explain how it works inside the EAP module. The EAP uses the program counter based

isolation to check access rights for every instruction. For this reason, our protection mechanism must

be instant, which is the case. The EAP uses registers that are access-fast to store each security

monitor and D-zones configurations. Moreover, the circuit is only combinatorial. Therefore, no

extra cycle is needed to check for access rights.

There are three essential points in the EAP that we will tackle in this part: First, the EAP has

to ensure that the system starts from the root so it (root) can establish trust in the whole running

software. Second, as it has been said, the EAP creates four levels of protection. The program flows

from one level to another. Therefore the EAP has to ensure that transitions are secure and safe.

Third and finally, the EAP is responsible for checking memory accesses of the running program.

Figure 5-8: The EAP is mainly composed of two components. The state transitions component is responsible of checking
if the transition from oldState to newState is authorized. Then, the second component, memory control, is responsible of
checking the memory access data if it is authorized from that state.

In the EAP, there are nine different states: sInit, sRomEnt, sRomIn, sMonitorEnt, sMonitorIn,

sDzoneEnt, sDzoneIn, sNone, and sKill. The states of level zero are sRomIn and sMonitorIn.

sDzoneIn is the state corresponding to level one. sNone is the state corresponding to levels two and

three. At system start/reset, the EAP is in the state sInit. Then, there are sRomEnt, sMonitorEnt,

and sDzoneEnt, states of the different bridges between the other states. Finally, sKill is the state
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reached when there is a non-authorized action. Figure 5-8 presents the two main components of the

EAP. The state transitions one, and the memory control one. The state transitions module is the

one responsible for controlling the validity of each transition from a state to another. This module

requires the EAP configuration, the EAP current state, and the PC address. This component

computes the attempted future state, and then check if the transition is authorized or not. In case

the transition is allowed, the memory control takes the hand. This component requires mainly the

data address, the EAP configuration, and the read/write register value. It checks if the current

state can access the data address. In the case of the security monitor, the EAP sends a signal to the

PMP to bypass the latter memory access control as the security monitor has access to all memories.

1) System Initialization: At system start/reset, the EAP is in the state sInit. Normally,

the root should be the first program to execute, and it has to start from its entry point. The EAP

ensures that, at system initialization, the first code called is the root code entry point, and then

comes the root. The root entry point can be called only after the state sInit. The root services are

not callable from the outside. Only the monitor is able to jump into the root code.

2) States Transitions: Transitions from one state to another must follow the defined policy.

This means that we define authorized and non-authorized transitions to enforce the isolation. The

EAP always checks if transitions respect the rules, which are illustrated in Figure 5-9. The black

arrows are the allowed transitions. If a program tries to follow another path, it transits to sKill

state and resets the system.

3) Memory Access Control: After the EAP checks the correctness of the transition, it checks

the data read/write memory access. Each level is attributed a data memory area. The EAP checks

if the current state has access to the requested data. Table 5.2 presents the access control list.

Except for level zero, which has full access, the other levels can just read/write their data or code.
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sNone

sDzoneEnt sDzoneIn

sMonitorEnt sMonitorIn

sRomIn

sRomEnt

sInit

System start

sKillreset

Figure 5-9: States Transitions: Black arrows represent authorized transitions. Any other attempt will lead to a transition
to sKill state as illustrated in red arrows. When the EAP reaches the state sKill, it resets the system.

5.2.3 The Immutable root

The security monitor is the software component of the TCB. It runs at the highest privilege and has

access to all memories. The security is isolated from all other components, software and hardware,

by the EAP and MMP. It is composed of two parts; root and monitor. This section presents the

immutable root and how it achieves the attestation of the integrity and authenticity of the untrusted

software.

The root is immutable because it is stored in the ROM. At boot time, it is the only trusted
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Figure 5-10: This figure presents the keys used to compute the hash to verify the integrity of each application.

software in the architecture. Its main function is to verify the integrity and authenticity of the

monitor. The root provides the HMAC algorithm to compute a cryptographic hash of the monitor

using a hard-coded Key KSM. Using the hash, KSM and a key derivation function genKey(), the

security monitor generates a cryptographic key KDZ that will be used to verify D-zones code. The

same process is repeated to generate a third key KRC to verify all other applications. Figure 5-10

presents an illustration of the different updatable applications embedded within the system and the

respective keys used to verify the authenticity and integrity of their code.

Software attestation

Figure 5-11: Software Attestation consists of retrieving memory region information from the header, computing memory
region hash, and comparing the computed hash with the provided one.

The root offers the possibility to attest any piece of code or data. The root, as shown in

Figure 5-11, retrieves from the header the start address, the size of the code, the key, and the

pre-computed HMAC. The root, with the right key, computes the HMAC and then compares it

to the given HMAC. Concerning the HMAC calculation, the root uses HACL* library [105]. The
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HACL* library offers an HMAC-SHA256 implementation that is verified. HACL* was implemented

and verified using F*. Then, The C version of the library can be generated.

The MMP and EAP protect the root and its data from being misused or leaked. The EAP checks

if transitions were respected, and protects its data from being accessed from malicious software,

while the MMP protects it from being leaked using an IO Peripheral.

The first step in the root is gathering information about the monitor. Information like the

monitor’s location in memory, its size, and the location of the pre-computed HMAC. Before using

this information to attest the monitor, the root attests the integrity of this data using the same

HMAC algorithm with the key KSM.

Once the root checks the monitor integrity and authenticity, it generates the two symmetric

keys KDZ and KRC. First, the derivation function genKey() generates KDZ from the monitor hash

and KSM. Then, it generates KRC using the same hash and KDZ.

To avoid generating the keys every system start/reset, the computed monitor hash is stocked

alongside the KDZ and KRC. Once the monitor hash is computed and verified, the root checks if

the monitor hash has been changed. If not, the generation key step is skipped.

The idea of generating other keys for attestation and encryption is to reduce and limit the use

of KSM. KSM is hard-coded. Therefore it cannot be changed in case it is leaked. By limiting the

use of this key to the root only, we reduce the chances of being leaked. KSM is stored inside the

EAP, and the root uses specific memory-mapped registers to retrieve it, use it, then clean it from

memory.

In this work, interrupts are disabled during security monitor run-time. The EAP does not

support secure interrupts management. However, it can be supported using a software component

that switches-in and switches-out in a secure way. Although this method, if well implemented,

offers a good security level, it can introduce a lot of run-time overhead. In this work, if an attacker,

for example, tries to run Time-of-check-to-time-of-use (TOCTTOU) attacks, where they program

a timer to occur every t time to retrieve data while the security monitor is computing the hash, the

EAP will block the access as the transition to the interrupt handler would not be respected.
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5.3 Summary

In this chapter, we presented the design overview of Toubkal. It provides multi-layer isolation to

create equally untrusted zones and enforce lightweight devices protection. The first layer of isolation

is assured using the Master Memory Protection (MMP). The MMP controls IO peripherals’ memory

accesses. It reduces the memory range for each IO peripheral. This way, attackers cannot use these

peripherals to access sensitive data or inject malicious code.

The second layer of isolation is provided by the Execution Aware Protection (EAP). The primary

goal of this module is to provide strong isolation of the security monitor from all the rest; other

applications and IO peripherals. The EAP divides the memory into four separated levels. It mixes

multiple methods to establish a fast and flexible separation with a good level of security. Entry

points can be defined to ensure critical applications are called from the defined entries. The EAP

ensures that all non-authorized jumps are blocked.

Finally, we presented the immutable part of the security monitor called root. This software

component is stored in the ROM, and it is the only software that is indeed trusted. The EAP

ensures that the root is the first software called. The root’s primary goal is to establish trust in the

monitor by verifying its integrity and authenticity.

In the next chapter, we analyse the security of Toubkal and evaluate its silicium area and

performance.
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Chapter 6

Toubkal Security Analysis and

Evaluation

This chapter presents a detailed security analysis of Toubkal. The security analysis consists in

defining security properties that we prove using formal verification to validate the correctness of

the design protection. Then, we present the evaluation results of the hardware area and performance

of attestation and key generation.

6.1 Toubkal Security Analysis and Validation

This section consists of defining the security properties required for strong isolation and attestation.

Then, we verify these properties with the computer-aided formal verification.

The computer-aided formal verification consists basically of using mathematical reasoning to

prove that the design meets all the specifications [46]. It is composed of three steps. The first

one consists in modeling the system in a formal model. The second step consists of specifying the

properties that the design must verify. Finally, the third step consists of checking the formal model

against the desired properties.

Here, the computer-aided formal verification focuses on the Execution Aware Protection (EAP)

module as it contains multiple states and controls the whole software. The Memory Master Protec-

tion’s (MMP) design is very simplistic and has only two states, normal state, and micro-code state.
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However, we will use the protection layer provided by MMP to prove some security properties.

We model* the EAP as a Finite State Machine (FSM). We provide verification and proof of the

isolation security provided by the EAP by proving the security properties defined below. There are

nine states in the EAP: sInit, sRomEnt, sRomIn, sMonitorEnt, sMonitorIn, sDzoneEnt, sDzoneIn,

sNone, sKill. Table 5.1 presents the different notations used here. We are using NuSMV [21] to

draw our formal model and the Linear Temporal Logic (LTL) specifications to define our isolation

and security properties.

The NuSMV is an extension of the symbolic model checker [62]. It has been designed as a

structured and open architecture and is widely used by industrials because it is close to their

standards. NuSMV is used to model both hardware and software components. First, we model the

components as FSMs. Then, we express formally the properties the model has to satisfy. Finally,

we check that the properties are really respected and there is no counter example.

LTL specification is evaluated over infinite sequences of states. Other than the propositional

calculus, such as conjunction "&" that we use to prove our model, the LTL specification provides

temporal connectives, such as:

∙ Future "F": F p is true if p is true at a future state.

∙ Global "G": G p is true if p is always true.

∙ neXt "X": X p is true if p is true at the next state.

∙ Until "U": p U q is true if q is true and p was true at all the states before.

The propositional calculus with the temporal connectives allow to create sufficient rules to prove

the model security soundness. All the security properties defined in 6.1.1 are specified in LTL format

and verified using NuSMV. The latter checks all reachable states and verify if the properties are

respected. Below, we discuss how these properties prove the security and safety of our architecture.

6.1.1 Security Properties

We define the security properties required to guarantee a good level of protection. The security

properties concern both isolation and attestation. Then we verify our design and prove that it

* The model can be found in https://bitbucket.org/halazouna/model-checker-eap

106



satisfies these properties. We can divide them into two categories, execution isolation, and

assets protection and confidentiality.

Execution Isolation:

∙ SP1 States sequence correctness The design must respect states order to be sure it is run

safely and securely.

∙ SP2 Immutability: root code has to be immutable, otherwise, an attacker can change it

to a malicious code and break the system security. The monitor and D-zones codes have to

be semi-immutable. This means the code cannot be changed and run directly. If we want to

update those codes, we have to call the root to check their integrity before calling them.

∙ SP3 Controlled Call: Security Monitor and D-zones must be called from the defined entries.

∙ SP4 Interrupt Handling: Interrupts can present a high risk to mitigate EAP security. We

need to make sure that all interrupts are handled safely.

∙ SP5 Configuration: EAP configuration must be possible only from the root, and it is done

once and cannot be changed until system reset.

Assets Protection and Confidentiality:

∙ SP6 Code confidentiality Security monitor and D-zones codes are kept confidential from

reads attempt from the outside.

∙ SP7 Key confidentiality The hard-coded Key can only be accessed from the root. This

limits the access scope. The other keys are accessible from the whole security monitor.

∙ SP8 Secrets confidentiality For each, security monitor and D-zones, there are stacks and

heaps that are reserved respectively. Accesses to these regions are only possible from inside

each region respectively.

6.1.2 Execution Isolation Computer-Aided Verification

For each property, we provide the formalized version in LTL specification and use NuSMV to

check the soundness of the property. Some security properties are translated into multiple LTL
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specifications.

State Sequence Correctness

There is a sequence of states to be respected; any tentative to skip a state must lead to an error. The

challenging point here is to find a balance between the ease-of-use for developers, the low run-time

overhead while guaranteeing a good level of security. In this part, we will study and verify all the

possible, authorized and non-authorized, transitions from the following states: sRomIn, sMonitorIn,

sDzoneIn, and sNone. Then, we will prove that the EAP guarantees safe transitions only using LTL

specifications. We present the cases of the sRomIn (see Figure 6-1) and sMonitorIn (see Figure 6-2)

states. As for the states sDzonesIn and sNone, we proceed the same way.

sInit

sRomEnt

sRomIn

sMonitorIn

sKill

PC ∈ REC

PC /∈ REC

PC ∈ RC

PC /∈ RC

Otherwise

PC ∈ MC

PC /∈ (RC ∪ MC)

PC ∈ RC

Figure 6-1: State sequence correctness around the state sRomIn

Root execution verification: The root is part of the security monitor, and it is the first

software to be called. Figure 6-1 shows the different state that are directly connected to sRomIn,

the state where the system is running the root code. When the device starts, the EAP state is in

sInit. The device has to boot from the root entry point (sRomEnt). The root has only one entry

point from outside the security monitor and can be called only during boot time. When the root

finishes its workload at boot time, it gives the hand to the monitor. In this case, there is no need

to call the monitor entry points to call it. The same happens in the other way, the monitor is the
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only one able to call root services at runtime.

The next three LTL specifications prove the correctness of state sequences around the state

sRomIn. During the transition, oldState refers to the EAP state just before the transition attempt,

and newState refers to the EAP future state.

LTLSPEC G(oldState=sInit)&(PC/∈REC) -> X(newState=sKill) (a)

LTLSPEC G(oldState=sRomEnt)&(PC/∈RC) -> X(newState=sKill) (b)

LTLSPEC G(oldState=sRomIn)&(PC/∈(RC∪MC)) -> X(newState=sKill) (c)

The LTL specification (a) checks that when the system starts/resets, it has to jump to state

sRomEnt. Then, (b) checks that after the state sRomEnt, the new state is always sRomIn. Finally,

(c) checks that if the current state is sRomIn and the executing PC is not within the security

monitor code regions, it kills the system.

Monitor execution verification: The monitor, the other part of the security monitor, can

communicate with the outside world using the defined entry points. The monitor and the root can

communicate with each other freely. Otherwise, The monitor starts and finishes execution from

an entry point (sMonitorEnt). As shown in figure 6-2, the state sMonitorIn is only reachable from

itself (sMonitorIn), from sRomIn, and from sMonitorEnt.

sMonitorEnt

sMonitorIn

sRomIn

sKill

PC ∈ MC

Otherwise

PC ∈ MEC

PC ∈ RC

PC /∈ (RC ∪ MC)

PC ∈ MC

Figure 6-2: State sequence correctness starting from the state sMonitorIn

LTLSPEC G(oldState=sMonitorIn)&(PC/∈(RC∪MC)) -> X(newState=sKill) (d)

LTLSPEC G(oldState=sMonitorIn)&(PC/∈MEC) -> X(newState=sKill) (e)

The LTL specifications (d) and (e) check for non-authorized jumps in/from the monitor. The

program should pass by the sMonitorEnt state, i.e., it should use the defined entry points.
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Controlled Calls

The security monitor and the D-zones have defined entry points. If a code tries to bypass these

entries and jumps to any other address inside, the EAP must raise an error. The transition step

checks if the entry points were called before. This security property is proven with the previous

one.

Atomicity

In this work, once the security monitor or D-zones are called, the interruptions are disabled. Attack-

ers can use interrupts to run Time-of-check-to-time-of-use (TOCTTOU) attacks. They can program

a timer to occur every t units of time, and from the interrupt handler, they could write/read mem-

ory. Handling secure interrupts is out of the scope of this thesis and will be addressed in future

work.

6.1.3 Asset Protection and Confidentiality Computer-Aided Verification

When the transition from a state to another is allowed, the EAP module checks if the data memory

access is authorized. Here we verify this step formally.

sMonitorIn

sNone sKill

sDzoneIn

Daddr ∈ KM

(Daddr ∈ KM) | Daddr ∈ (RC ∪ MC ∪ DZC)

(Daddr ∈ KM) | (Daddr ∈ (RC ∪ MC))

Figure 6-3: Code and keys confidentiality

Key Confidentiality

If an attacker can read the keys, they can update the security monitor, for example, with a malicious

one. The keys must be accessible only from the root. The EAP must raise an access error whenever
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a code from outside the root tries to access any key. Figure 6-3 shows that whether the system is

running monitor code, D-zones code, or any other non protected code (sNone), they cannot access

the cryptographic key. This results in resetting the device.

LTLSPEC G ((newState!=sRomIn)&(Daddr∈MK) -> X reset=true) (f)

The LTL specification (f) guarantees that whenever a program running from outside the root and

tries to access the cryptographic keys, it implies a system reset. Although, an attacker can use an IO

peripheral to read the corresponding memory and retrieve keys. In this case, the MMP guarantees

that no IO peripheral can access the keys. Only the CPU running the root(while executing it) can

access root sensitive data.

Code Confidentiality

The code is protected from unauthorized read/write. It means, as shown in Figure 6-3, critical code

is kept confidential. Moreover, the MMP can guarantee that even IO peripherals can access these

code regions. The LTL specifications (g1), (g2), and (g3) check for leakage attempts.

LTLSPEC G((newState!=sRomIn)&(Daddr∈RC) -> X reset=true)(g1)

LTLSPEC G((newState!=sRomIn & newState!=sMonitorIn)&(Daddr∈MC)-> X reset=true)(g2)

LTLSPEC G ((newState=sNone)&(Daddr∈DZC)) -> X reset=true) (g3)

Stack and Heap Confidentiality

The security monitor and the D-zones have each their own stack and heap. The EAP controls the

PC before granting access to these memory regions. LTL specifications (h1) and (h2) checks if there

is a reachable state where it is possible to leak from security monitor and D-zones memory regions.

LTLSPEC G ((newState=sNone)&(Daddr∈(SMM∪DZM)) -> X reset=true) (h1)

LTLSPEC G ((newState=sDzone)&(Daddr/∈DZM) -> X reset=true) (h2)

Root Isolation and Immutability

root code has to be immutable. Otherwise, an attacker can change it to a malicious code and break

the system security. This achievable by putting the root code within the ROM. Then the EAP

ensures that the transitions to this component are respected the it was defined in Figure 6-1.
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6.1.4 Software Attestation Verification

Our software attestation is built using the HACL* HMAC implementation [105]. HACL* code has

been verified and proved correct, memory safe, and secret independent. On top of this, it is a part of

the security monitor which is protected by the MMP and the EAP from ROP and IO based attacks.

This guarantees multiple points; controlled calls of the HMAC function, code confidentiality, keys

confidentiality and hash calculation intermediate values secrecy. Therefore, SP3, SP6, SP7 and

SP8 are respected. Besides, the HMAC is precisely part of the root. It means that it is immutable,

therefore it guarantees SP2.

Finally, concerning state sequence correctness, SP1, implies that the HMAC implementation

conforms the defined standard specification on all possible inputs, and that it runs in a finite time.

These aspects are guaranteed by HACL* implementation [105].

6.2 Toubkal Evaluation

In this section, we evaluate the silicium area (given in NAND gate equivalent) of Toubkal targeting

a 90nm Low Power technology for a clock frequency of 100MHz and compare between the different

options and policies. In this experiment, tests are limited to a 32 bit address space. Toubkal surface

is stated in Gates Equivalents (GE). kGE refers to thousands of GE. A GE is retrieved from the

surface of a NAND2 gate. We evaluate the size of each module; the MMP and the EAP, separately

as Toubkal is modular and its modules can work independently.

Then, we evaluate the run-time of the root attestation and keys generation. Finally, we give the

memory consumption of its code in the ROM.

6.2.1 The Master Memory Protection Footprint

Figure 6-4 gives an overview of the logical structure of MMP. The grey color represents memories,

which are registers. And the white forms represent combinational bricks.

Comparison between configuration methods

Section 5.2.1 presents two different configuration methods to store Masters Id, UMLB where the slot

is valid for one Master and the SMLB where the slot is valid for multiple Masters. Table 6.1 shows
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Figure 6-4: System Architecture Overview.

the impact of each method on MMP area. In the UMLB, for n Masters, MMP needs log2Ceil(n)

bits to store all possible values of Masters Ids. While in the SMLB, MMP needs n bits because it

flips the p bit to activate a region for Master number p (see section 5.2.1). However, n is greater

than or equal to log2Ceil(n) for n strictly positive, therefore MMP needs more registers for SMLB

comparing to UMLB. Here, the test was done for 2 Masters, and log2Ceil(2) equals 1.

Registers are not the only thing impacted. The combinational logic is impacted too. In the

SMLB, MMP needs more logic than in the UMLB. To flip the p bit is more complex than just

writing the value p in a register. The same is correct for the look-up&match. MMP has to look if

the bit number p is up or not.

The choice between the two possibilities is strategic. In case there are more common regions

between different Masters, it is more interesting to use the SMLB rather than the UMLB. This

can save many slots. The use case presented in section 2.3.2 would work perfectly with the SMLB.

Three Masters CPU, DMA and CE share the same region. Here the SMLB saves two slots. But in
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Table 6.1: MMP area for a dynamic policy (in kGE)

4 slots 8 slots 12 slots 16 slots

UMLB

SMLB

3,36

3,35

6,21

6,31

9,10

9,19

12,04

12,11

Table 6.2: MMP area for a dynamic policy (in kGE)

4 slots 8 slots 12 slots 16 slots

Coarse granularity

Fine granularity

3,36

4,84

6,21

8,90

9,10

13,49

12,04

17,76

case Masters do not share regions, the UMLB is more suitable.

Comparison between coarse grained and fine grained granularities

Table 6.2 shows results of different syntheses for coarse and fine granularities. The fine grained

option requires more area than the coarse grained one. The gap between the two is proportional

to the number of available slots. This is due to two factors that were discussed in section 5.2.1.

The first factor is the growing size of the MLB registers. For the coarse granularity, the size of

a region is a power of two and is on 5 bits. While for the fine grained granularity, instead of the

size of a region we have the limit of the region which is on 27 bits for a 32 bit address space and

an alignment to 32 bytes. Therefore for each slot, there are 22 additional bits in the fine grained

granularity. Added to this the logic behind the look-up&match. The implementation of the parallel

look-up in this case is more complex and requires more logical elements to correctly answer to the

timing constraints.

Nevertheless, the coarse grained option is constrained. The user needs to configure regions with

a size power of two, and the base address is aligned with the size, while the fine grained requires

only that the size is multiple of 32 bytes and the base address is aligned to 32 bytes.

At this level of isolation, we believe that the coarse grained option would not be very constraining

for developers. Depending on the device resources, some designers would opt for the coarse grained

option to save some hardware area, other would opt for the fine grained one for more user-friendliness

and less engineering. However, such advantage comes with a surface cost.
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Table 6.3: MMP area for different policies (in kGE)

4 slots 8 slots 12 slots 16 slots

Static

Semi-Static

Dynamic

0,15

3,45

3,35

0,16

6,45

6,31

0,18

9,49

9,19

0,21

12,31

12,11

Table 6.4: MMP area for semi-static policy (in kGE)

Hard-coded slots 4 slots 8 slots

0 slots

1 slots

2 slots

3,45

2,74

2,01

6,45

5,85

5,16

Comparison between policies

Here, we compare between the three policies, static, semi-static and dynamic. We fix granularity

into the coarse one, configuration method into the second method, then for each policy we vary the

number of slots.

Table 6.3 shows the results of our syntheses. Static policy results catch our eyes immediately

because of the huge gap between this policy and the others. In fact, static policy results are normal.

As seen in section 5.2.1, the MLB configuration is hard-coded. Therefore, when Chisel3 generates

the optimized and synthesizable Verilog code, it transforms all registers into simple wires and assigns

values. And there is less and less combinational logic in MMP. Chisel3 compiler also removes all

redundant values. For example if some regions have the same size value, it will just assign the value

once, and use it for all the concerned regions while looking-up&matching.

Meanwhile, the gap is smaller between the semi-static and dynamic policies. The semi-static

policy cells area is a little bigger than the dynamic one because MMP needs more combinational

logic. In semi-static policy, slots cannot be fully modified. Developers can only modify the Masters

Ids registers, and activate or deactivate the configuration for a specific Master.

For the semi-static policy, some slots can be hard-coded. For each hard-coded slot, the reduction

of MMP cells area is not negligible at all. Table 6.4 shows some results. The size of MMP is reduced

proportionally to the number of hard-coded slots. This reminds us of the static policy. The hard-

coded slots are not stored in registers anymore. Hence, the surface area is reduced.
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6.2.2 The Execution Aware Protection Footprint

The EAP does not have multiple options like the MMP. The EAP is mainly composed of high speed

registers and combinational logic so it can check every instruction within the cycle. The hardware

footprint of the EAP is 2,34 kGE.

The EAP size is justified by the use of high speed registers to store levels configurations. The

size can be drastically reduced in case these levels configuration are hard-coded as we use less

storage. However, hard-coding configurations makes the EAP less flexible.

6.2.3 The root Footprint and performance

Attestation performance: According to RISCV-VP (Virtual Prototype) simulator [41], system

boot process simulation takes around 24ms to attest 8kB of data, and around 2.5ms to generate

two cryptographic keys. The cryptographic keys are generated only once then stored in non-volatile

memory accessible only by the root. As for the hash calculation, it is also stored with the keys.

However, it is computed every system reset. The stored hash is used to check if the monitor has

been updated to generate or not new cryptographic keys.

root Footprint: Toubkal requires around 4KB in the ROM. Most of the code is for storing

Hacl* library. We tried to keep the ROM as small as possible to avoid software bugs. The root is

stored in the ROM, so, it is immutable. Therefore, if there is any bug in the software, it cannot

be patched (example of the Nintendo Switch Firmware [3, 45]). For this reason, in Toubkal, we

split the monitor into two parts, the first one which is trusted and immutable is kept small, and its

primary function is to check the integrity of the monitor.

6.3 Summary

In this chapter, we analysed the security provided by Toubkal and evaluated its cost. The security

analysis consisted of defining security properties that Toubkal has to respect to offer the desired

protection level. We represented only the EAP into an FSM; the MMP was not verified because it

is a simple design and consists only of checking access right of a signal, contrary to the EAP which

has a more sophisticated design with multiple states and transitions. However, the MMP was used

in the security analysis to prove some security properties. Then, we used NuSMV, the symbolic
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model checker, to prove the correctness of these security properties.

We concluded this chapter with an evaluation of the footprint of Toubkal. We evaluated each

block aside as Toubkal is modular, and each block can work independently from the others. However,

as it has been said before, reducing a block reduces architecture security and can make it vulnerable

to a specific type of attack. The results of the evaluation show that for a standard configuration,

Toubkal requires around 5,62 kGE.

The attestation software requires around 4KB of ROM, and the attestation run-time is accept-

able for lightweight devices.
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Chapter 7

Toubkal design discussion and

perspectives for future works

This chapter discusses Toubkal results and compares the architecture to the studied ones in chapters

3 and 4. Then, it presents future work to improve Toubkal from both performance and protection

perspectives.

7.1 Discussion

In the last two chapters, 5 and 6, we presented Toubkal design, the security analysis, and the

evaluation of both area and performance. In this section, we are going to discuss the obtained

results.

Toubkal’s goals were to achieve flexible isolation and attestation for lightweight devices by

offering multi-layer isolation, a high protection level for the security monitor while preserving

confidentiality secrets, and critical applications. All these features with a low area and run-time

overhead.

Concerning the first point, which is multi-layers isolation, Toubkal introduces the MMP and the

EAP to create layers of isolation and protection. The MMP can be seen as the first layer of isolation,

targeting the IO peripherals. Then, the EAP can be seen as the second layer of isolation, dividing

the software into four separated levels, and controls accesses and transitions. The third layer of
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isolation was highlighted but omitted in this work. This layer concerns the separation of the multiple

applications and libraries running on the same device. The idea highlighted is to use the PMP to

establish this layer. However, our study in chapter 4 shows that the PMP can introduce a colossal

run-time overhead for context-switches which can be unacceptable for deterministic applications,

especially for interrupt handling.

Speaking of interrupts, Toubkal does not handle interrupts in level zero and level one. This is

a limitation for this work and in the next section, we will show how to address this issue securely

while offering good performances comparing to the results in chapter 4.

Concerning the security monitor, it is composed of two components: an immutable root and

a monitor. This work only addressed the immutable root, which is responsible for ensuring the

integrity and authenticity of the rest of the software. The root offers attestation of pieces of codes

and keys management. The root can attest any piece of code using a symmetric key and the HMAC

from Hacl* library. The root supports three keys; KSM, KDZ, and KRC. The first one is hard-coded,

while the others are generated from the computed hash of the monitor and KSM. Each key is used

for encryptions and attestations in its respective level. For example, KSM is only used to attest the

monitor. The root uses automatically KDZ to attest a piece of code in D-Zones.

The monitor component was not developed in this work and can be addressed for future work,

or we can also use existing work such as MultiZone [14].

Concerning code confidentiality, as side-channel techniques are out of the scope of this work,

Toubkal guarantees code confidentiality using software or IO peripherals with both the MMP and

the EAP. However, this is not sufficient. Encryption of critical code would offer full confidentiality.

We will discuss in the next section how to offer code encryption with hidden run-time overhead.

Then, Toubkal was validated using aided-computer formal verification. In chapter 6, we offered

a detailed security analysis and validated the design. We defined security properties that Toubkal

has to respect and proved them using NuSMV [21]. This helps to guarantee the correctness of the

implementation of Toubkal protection features.

Finally, the evaluation shows that the hardware footprint is acceptable for lightweight devices.

As for the root, most of the code footprint corresponds to the cryptographic library Hacl*, which

is a verified implementation. The simulation shows an acceptable result of the attestation run-time

and key generation. What would have been interesting to evaluate is the impact of context-switches

and interrupts handling. However, this part was omitted from this work, as we did not implement
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the third layer of isolation.

7.1.1 Comparison to Existing Architectures

Here, we present a brief comparison to existing architectures. The comparison uses the same criteria

defined in chapter 3. Table 7.1 summarizes the comparison.

Toubkal offers isolation too as the other studied architecture (except for VRASED and SMART).

However, Toubkal offers isolation and the ability to create multiple zones even for IO peripherals,

while all the others offer, at the top, limited control of IO peripherals. For example, TrustZone-M

offers only a binary separation, and Sanctum offers only the possibility to configure a continuous

memory area for the DMA.

Concerning attestation, Toubkal, like many, offers the possibility to attest a memory region [a,

b]. The main difference is the use of a verified cryptographic library which gives more guarantees on

the correctness of the security properties a system must achieve during cryptographic operations.

Toubkal offers a hybrid TCB like all the other architectures, except for Sancus. Toubkal’s

software TCB is composed of two components, unlike uVisor, SMART, and the likes. A first part

that is immutable and responsible only for attestation, the other is partially trusted and can be

updated. The second part is attested at system start and before critical operations to make sure

an attacker did not tamper with.

SGX is the only architecture offering full code confidentiality. However, Toubkal, with its

enforced protection of the security monitor and D-Zones, offers better partial code confidentiality

as even IO peripherals’ memory accesses are controlled and can be prevented from reading secret

code.

Finally, for communication, this work did not offer a full IPC solution. However, the root can be

called to attest that the message is coming from a trusted source. Here we have a small limitation

in Toubkal, only devices with the same version of the monitor can communicate with each other

because of the function generating symmetric keys. The function uses the hash of the monitor.
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Table 7.1: Summary of Toubkal’s comparison to the studied isolation and attestation architectures.
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Mondrix [104] x x o o x o o o o o Mondrian o x o x o Multiple
SMART [30] o o x o o o x o o x - o x o x o AVR/MSP430
Sancus [67] x x x x o ? x o o x - x x x x o MSP430
SGX [61] x x x x x x x x xo o MMU o x o o x x86_64
TyTan [18] x x x x x o x o o x EA-MPU o x o x o Siskiyou Peak

TrustLite [48] x x o o x o x o o x EA-MPU o x o x o Siskiyou Peak
uVisor [9] x x o o x o o o o x MPU o x x o x Arm
TockOS [53] x o o x x xo o o xo x MPU o x x x x Arm
Sanctum [27] x x x x x x x o xo o MMU o x x x o RISC-V

TrustZone-M [101] x o x x o o x o x x - o x xo o x Arm
Sopris [43] x o x o o ? x o o x MMU o x o o o Arm
EPOXY [23] x o o o o o o o o x MPU o o x x o Arm
ACES [22] x o o o o o o o o x MPU o o x x o Arm

MultiZone [14] x x x o ? x xo o xo x PMP o o o o x RISC-V
VRASED [68] o o x o o o x o xo x - o x o x o AVR/MSP430

Toubkal x xo x o o o x xo x x MMP&EAP o x xo xo o RISC-V
x: Yes, o: No, xo: Partial, ?: NA, -: Non-relevant
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7.2 Future Work

This section will investigate design perspectives to improve protection and performance. We present

approaches that were studied but not implemented in this work or alternatives that can be used in

Toubkal to accomplish certain protection guarantees.

Mainly, we will discuss how upgrading the EAP and merging it with the PMP will offer more

advanced access control with better performance. How we can establish remote attestation to attest

devices and make sure they are not compromised before exchanging data. And how to provide full

confidentiality for critical applications with a hidden run-time cost.

7.2.1 Enforced Access Control

To enforce access control of the running application and improve performance comparing to results

in chapter 4, we propose to work around the context-switch mechanism. The current PMPs or

MPUs require a software context switch. However, depending on the complexity of applications

and contexts configurations, this step can take much time to finish. Therefore, it can impact on

the deterministic characteristic of lightweight devices.

Before beginning the discussion on improving the design of the PMP and the EAP in order to

improve context-switches and interrupts handling, we explain how it works in most cases. context-

switches happen when the system changes the execution zone, and this can either happen with a

simple call to the gateway or with an interrupt rise. Figure 7-1 illustrates the steps to switch the

context.

The context-switch happens in four steps. The first step is the gateway in. The second step is

the execution of the called function in the new context. The third step is the gateway out. Finally,

the fourth step is the return to the caller function.

The gateway in main function is to save the running context; stack pointer and PMP configu-

ration, load the new context; stack pointer and reconfigure the PMP, and clean if there is anything

sensitive. The operation starts from a non-privileged code, escalates the privilege with a software

interrupt, then de-privileges to start the second step.

The gateway out consists of restoring the context of the caller; stack pointer and reconfiguring

the PMP, then de-privileging the execution to return back to the caller execution.

So, the operations overwhelming the context-switche are the gateway in and the gateway out.
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Figure 7-1: context-switche main steps: 1) The _Caller calls the gateway of the _Callee. The gateway in escalates the
privilege, saves the _Caller context and loads the _Callee context. 2) The gateway de-privileges the execution and jumps
to the _Callee entry. The _Callee does its job. Then, it calls the gateway out. 3) The gateway out escalates the privilege
again, loads the stored context of _Callee. 4) The gateway out de-privileges the execution and jumps to the return address
in the _Caller.

The system has to reconfigure all the PMP slots among other configurations and safety checks. Our

idea is to make the context-switche smoother than this way by making the PMP and EAP more

context-aware, and move a part of the context-switche into the hardware.

We propose to introduce for each context a hardware unique identifier HID. This HID is used

to know which PMP configuration to apply. So instead of a software configuring the PMP each

context-switche, we can have a small Content-Addressable Memory-like (CAM) within the PMP

and look for the PMP configuration of the running HID. First, by doing so, we do not need anymore

to reconfigure the PMP each context-switche. Second, if the configuration is not found within the

PMP, the PMP will use the CAM-like to see if there is any. The software will only be responsible for

changing the HID instead of updating all the PMP slots. This way is faster than the software-only

alternative.

Another possibility is to create entry points linked to each HID. However, this may increase the

hardware drastically, but may improve drastically context-switches performance and protection.

The HID can also be useful to create more access control. The EAP can use it to create a
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white-list of contexts that are authorized to call the security monitor or D-zones services. This way,

the EAP controls better the transitions to critical applications.

7.2.2 Enforced Attestation

Lightweight devices are highly connected. They exchange data with multiple devices. To ensure

trust between devices before starting communicating, we use remote attestation. Here, we describe

how two devices attest, mutually, that they are not fully compromised.

Suppose we have a device A and a device B. A wants to send data to B. A and B care only about

the integrity of the data and not the confidentiality. Therefore, only attacks to change the data

shared in order to change the behaviour of device B or inject malicious software are considered.

Here, ASendB(D) means device A sends data to device B. Hmac(X,Y) means we compute an hmac

of X with the key Y. Therefore, Y has to be 256 bit, and the computation result is 256 bit length.

Figure 7-2: Remote attestation scheme.

Figure 7-2 shows the different steps to establish mutual trust between devices A and B. First,

A initiates the communication by sending a nonce NA to B. Then, both A and B compute

HAA = Hmac(Hmac(KSM,NA), MCA) and HAB = Hmac(Hmac(KSM,NA), MCB) respectively, where MC is

each one’s monitor code. Normally, it is the same, except if it was compromised. At this stage, we

do not know.

Then, device B sends HAB to A. A compares it to HAA. If the check passes, A can trust B. However,

B cannot trust A yet. Then again, both devices A and B compute HBA = Hmac(HAA, MCA) and

HBB = Hmac(HAB, MCB) respectively. Device A sends the result HBA to B, and B compares it to HBB.

If they match, then B can trust A.

According to the results in chapter 6, this operation is still acceptable in most cases. However,
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it really depends on the size of the monitor. Here again, devices need to embed the same version

of the monitor.

7.2.3 Code Confidentiality

Here, we explain how we can support full code confidentiality in Toubkal. We propose loading into

the Flash encrypted critical codes and hide the cost of decryption during run-time by extending

the MMP. The MMP catches signals from all IO peripherals, and this includes the CPU itself.

We need to add some storage to the MMP module and some logic. We also need a symmet-

ric cryptographic hardware module. Finally, we need to allocate a secure memory region in the

RAM. This memory region can be statistically or dynamically allocated. However, if it is allocated

dynamically, the developer has to make sure that no sensitive data may be leaked.

We need another bit in the MLB, so when we configure a memory region in the MMP, we chose if

the region is encrypted or not. We also need storage for the encryption key. There is the possibility

of supporting multiple keys. Then, we can add in the MLB a few bits to choose the key ID that

will be used to decrypt the code.

When the CPU is executing an instruction for the first time, the instruction signal needs to

go by the MMP. Therefore, we also need to connect the instruction bus to the MMP. The MMP

will catch the signal. Then, the MMP will check for access right, and also it will check if the

memory region is encrypted or not. In the case it is encrypted, the MMP will send a signal to the

cryptographic block which is connected with the Flash. This module will retrieve encrypted data,

depends if it is 128 bit or more, decrypts it, then stores the result in the allocated memory in the

RAM. This way, Toubkal will hide the decryption cost for future instruction. The cryptographic

module will keep decrypting until the end of the critical code, or when the allocated memory is full.

Once we finish the execution of the critical code, we clean the allocated memory region for future

use. The cryptographic module is the only one that can write in that memory region, and the CPU

will be able to fetch data from it when it is trying to execute the critical code.

7.3 Summary

In this chapter, we discussed the design of Toubkal, compared it to the studied architectures, and

presented some future work to improve protection features.
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The discussion shows that Toubkal, comparing to the other architectures, offers in-depth iso-

lation that was neglected, especially in lightweight devices. However, there are other aspects of

Trusted Computing that were not addressed in this work, such as interrupts handling and full code

confidentiality.

The perspectives present three improvements for Toubkal that we think are important. These

improvements concern context-switches and interrupt handling, remote attestation, and full code

confidentiality. We presented designs that are not implemented yet and can extend the design of

Toubkal. We also gave an estimation of the area or the run-time overhead of each feature.
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Chapter 8

Conclusion

The increased use of highly connected lightweight devices leads to a significant scale of attacks.

These devices are part of our daily life. Recent attacks prove the need to create secure devices

out of fear that they leak our private information or having physical damage to their surroundings.

This thesis proposed an in-depth study of isolation and attestation architectures, then, proposed a

security architecture to help to reduce the risk of attacks.

First, we studied existing isolation and attestation architectures to understand what works and

what does not. Why some are deployed, but the majority are not. The study showed a variety

of interesting architectures offering different security features targeting a variety of applications.

Concerning high-computing architectures, there are some architectures with a good protection level,

and they are already deployed. However, the case of lightweight devices is different. Lightweight

devices are constrained devices and time-critical. Therefore, it is more challenging to establish an

excellent protection level under these circumstances. Architectures targeting lightweight devices

failed at least in one of the following criteria: performance, security protection, cost, and flexibility.

Toubkal’s primary goal is to provide a low-cost modular and highly secure architecture with good

performance. To improve the security protection of existing architecture, Toubkal provides multi-

layer isolation with attestation. In this work, we presented two of the three layers needed to establish

in-depth isolation. The first layer is the isolation of IO peripherals. The second one concerns the

creation of the separated level to enforce separation even in the privileged mode. Finally, the third

level, that was not handled here, is the one established in all existing architectures.
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To establish the first layer of isolation, Toubkal offers the MMP, which is responsible for control-

ling signals passing through the interconnection bus. The need for this layer of isolation is justified

by the recent attacks targeting these peripherals to access memory regions that are not, at first

glance, accessible in the running state of the device. Existing isolation architectures target only

memory protection at the CPU level, and IO peripherals bypass CPU protection.

To establish the second layer of isolation, Toubkal provides the EAP, which is a hardware module

connected to the core. The EAP divides the software into four main levels and controls memory

regions for each level and transitions from one level to another. The primary goal of this module

is to create a real separation of the security monitor from all the rest. The need for this layer of

isolation is justified by the fact that OSes run in high privileged mode, same as the security monitor,

and they add a large attack surface. This makes the system very vulnerable to privilege escalation

attacks.

However, isolation alone is not sufficient for a security architecture in a highly connected device.

If an attacker succeeds in breaking inside an isolated level or application, they still can control

that level or application. Therefore, Toubkal offers the possibility to check the state of each level

or application to make sure it was not compromised. Toubkal provides an immutable root using

an HMAC algorithm to attest every piece of code or data. This way, the system can verify the

integrity and authenticity of each level and application.

Besides the security features, Toubkal was validated with aided-computer formal verification

methods. We defined security properties concerning the isolation execution and protection and

confidentiality of assets. Then, we proved these properties using formal verification methods. We

also evaluated the overhead introduced by Toubkal. The evaluation showed that the overhead is

acceptable for lightweight devices.

Finally, we concluded with an analysis of where Toubkal stands, of what is missing in this work

and how we can improve it. We have shown that there has been much interesting work and that

there is still much room for improvement.
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