R. Peuhkuri, C. Rode, and K. K. Hansen, Non-isothermal moisture transport through insulation materials, Build. Environ, vol.43, pp.811-822, 2008.

,

R. Poupart, B. Le-droumaguet, M. Guerrouache, D. Grande, and B. Carbonnier, Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis, Polymer, vol.126, pp.455-462, 2017.

M. Prat, On the influence of pore shape, contact angle and film flows on drying of capillary porous media, Int. J. Heat Mass Transf, vol.50, pp.1455-1468, 2007.

L. Quaranta, Dictionnaire de physique expérimentale, Éditions Pierron, 2002.

D. Quéré, Inertial capillarity, Europhys. Lett. EPL, vol.39, pp.533-538, 1997.

S. Rashidi, J. A. Esfahani, and N. Karimi, Porous materials in building energy technologies-A review of the applications, modelling and experiments, Renew. Sustain. Energy Rev, vol.91, pp.229-247, 2018.

S. Ravi, D. Horner, and S. Moghaddam, A novel method for characterization of liquid transport through micro-wicking arrays, Microfluid. Nanofluidics, vol.17, pp.349-357, 2014.

L. Rojo, B. Vazquez, J. Parra, A. López-bravo, S. Deb et al., From Natural Products to Polymeric Derivatives of "Eugenol": A New Approach for Preparation of Dental Composites and Orthopedic Bone Cements, Biomacromolecules, vol.7, pp.2751-2761, 2006.

N. Rott, Note on the History of the Reynolds Number, Annu. Rev. Fluid Mech, vol.22, pp.1-12, 1990.

F. Ruggiero, P. A. Netti, and E. Torino, Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field, Langmuir, vol.31, pp.13003-13010, 2015.

J. A. Ruiz, M. Pedros, J. Tallon, and M. Dumon, Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers -One step foaming process, J. Supercrit. Fluids, vol.58, pp.168-176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00956649

Z. Sadjadi, M. Jung, R. Seemann, and H. Rieger, Meniscus Arrest during Capillary Rise in Asymmetric Microfluidic Pore Junctions 9, 2015.

C. Saiwan, P. Muchan, D. Demontigny, and P. Tontiwachwutikul, New Poly(Vinylbenzylchloride/Divinylbenzene) Adsorbent for Carbon Dioxide Adsorption. I. Synthesis and Parametric Study, Energy Procedia, vol.63, pp.2312-2316, 2014.

A. Salerno and C. Domingo, Pore structure properties of scaffolds constituted by aggregated microparticles of PCL and PCL-HA processed by phase separation, J. Porous Mater, vol.22, pp.425-435, 2015.

J. P. Santerre, K. Woodhouse, G. Laroche, and R. S. Labow, Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials, Biomaterials, vol.26, pp.7457-7470, 2005.

,

A. J. Bohris, U. Goerke, P. J. Mcdonald, M. Mulheron, B. Newling et al., A broad line NMR and MRI study of water and water transport in portland cement pastes, Magn. Reson. Imaging, vol.16, pp.72-73, 1998.

M. Bonnet, D. Courtier-murias, P. Faure, S. Rodts, and S. Care, NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment, Holzforschung, vol.71, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01711369

K. R. Brownstein, C. E. Tarr, P. F. ;--x-faure, and S. Rodts, Proton NMR relaxation as a probe for setting cement pastes, Magn. Reson. Imaging, vol.26, issue.77, pp.1183-1196, 1969.

W. P. Halperin, J. Jehng, and Y. Song, Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste, Magn. Reson. Imaging, vol.12, pp.91509-91510, 1994.

N. Labbé, B. De-jéso, J. Lartigue, G. Daudé, M. Pétraud et al., Time-domain 1H NMR characterization of the liquid phase in greenwood, Holzforschung, vol.60, 2006.

J. Li, Y. Zou, and L. Cheng, Experimental study on capillary pumping performance of porous wicks for loop heat pipe, Exp. Therm. Fluid Sci, vol.34, pp.1403-1408, 2010.

P. J. Mcdonald, J. Mitchell, M. Mulheron, L. Monteilhet, and J. Korb, Two-dimensional correlation relaxation studies of cement pastes, Magn. Reson. Imaging, vol.25, pp.470-473, 2007.

J. Nael-redolfi, Absorption d'eau des granulats poreux : mesure et conséquences sur la formulation des mortiers et des bétons 138, 2016.

T. Preston, Radiation phenomena in a strong magnetic field, Sci. Trans. R. Dublin Soc. 2nd Ser, vol.6, pp.285-342, 1898.

S. Ravi, D. Horner, and S. Moghaddam, A novel method for characterization of liquid transport through micro-wicking arrays, Microfluid. Nanofluidics, vol.17, pp.349-357, 2014.

L. J. Schreiner, J. C. Mactavish, L. Miljkovic, M. M. Pintar, R. Blinc et al., NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration, J. Am. Ceram. Soc, vol.68, pp.10-16, 1985.

K. L. Scrivener, Practical guide to microstructural analysis of cementitious materials, 2017.

M. D. Seck, Compréhension des mécanismes de séchage dans les matériaux de construction: cas du plâtre, 2015.

C. Thiery, Tomographie à rayons X 35, 2013.

A. Valori, P. J. Mcdonald, and K. L. Scrivener, The morphology of C-S-H: Lessons from 1H nuclear magnetic resonance relaxometry, Cem. Concr. Res, vol.49, pp.65-81, 2013.

M. Van-landeghem, J. De-lacaillerie, B. Blümich, J. Korb, and B. Bresson, The roles of hydration and evaporation during the drying of a cement paste, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537697

V. Bernabé-zafon, A. Canto-mirapeix, E. F. Simo-alfonso, G. Rami-ramos, and J. M. Herrero-martinez, Comparison of thermal-and photo-polymerization of lauryl methacrylate monolithic columns for CEC, ELECTROPHORESIS, vol.30, pp.1929-1936, 2009.

A. B. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc, vol.40, 1944.

L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand. Sect. Phys. Chem, vol.81, p.89, 1977.

L. Droumaguet, B. Lacombe, R. Ly, H. Guerrouache, M. Carbonnier et al., Engineering functional doubly porous PHEMA-based materials, Polymer, vol.55, pp.373-379, 2014.

H. B. Ly, Matériaux polymères fonctionnalisés à double porosité : conception et modélisation, 2015.

O. Okay, Macroporous copolymer networks, Prog. Polym. Sci, vol.25, pp.711-779, 2000.

E. C. Peters, F. Svec, J. M. Fréchet, C. Viklund, and K. Irgum, Control of Porous Properties and Surface Chemistry in "Molded" Porous Polymer Monoliths Prepared by Polymerization in the Presence of TEMPO, Macromolecules, vol.32, pp.6377-6379, 1999.

D. Quéré, Inertial capillarity, Europhys. Lett. EPL, vol.39, pp.533-538, 1997.

. Student, Student's" Collected Papers, Biometrika, vol.6, pp.1-25, 1908.

C. Yu, M. Xu, F. Svec, and J. M. Fréchet, Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization: Monolithic Polymers, J. Polym. Sci. Part Polym. Chem, vol.40, pp.755-769, 2002.

M. Zhou, S. Caré, D. Courtier-murias, P. Faure, S. Rodts et al., Magnetic resonance imaging evidences of the impact of water sorption on hardwood capillary imbibition dynamics, Wood Sci. Technol, vol.52, pp.929-955, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01803000

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr et al., Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores, Proc. Natl. Acad. Sci, vol.109, pp.10245-10250, 2012.

L. Droumaguet, B. Lacombe, R. Ly, H. Guerrouache, M. Carbonnier et al., Engineering functional doubly porous PHEMA-based materials, Polymer, vol.55, pp.373-379, 2014.

H. B. Ly, B. Le-droumaguet, V. Monchiet, and D. Grande, Facile fabrication of doubly porous polymeric materials with controlled nano-and macro-porosity, Polymer, vol.78, pp.13-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01665966

S. Zid, M. Zinet, and E. Espuche, Numerical analysis of 3D mass diffusion in random (nano) composite systems: Effects of polydispersity and intercalation on barrier properties, J. Membr. Sci, vol.590, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02432887

M. Badetti, A. Fall, F. Chevoir, and J. Roux, Shear strength of wet granular materials: Macroscopic cohesion and effective stress: Discrete numerical simulations, confronted to experimental measurements, Eur. Phys. J. E, vol.41, p.68, 2018.

A. B. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc, vol.40, 1944.

J. Deng, B. Yang, C. Chen, and J. Liang, Renewable Eugenol-Based Polymeric Oil-Absorbent Microspheres: Preparation and Oil Absorption Ability, ACS Sustain. Chem. Eng, vol.3, pp.599-605, 2015.

J. Despois and A. Mortensen, Permeability of open-pore microcellular materials, Acta Mater, vol.53, pp.1381-1388, 2005.

J. L. Finney, Random Packings and the Structure of Simple Liquids. I. The Geometry of Random Close Packing, Proc. R. Soc. Math. Phys. Eng. Sci, vol.319, pp.479-493, 1970.

S. Gravelle, L. Joly, F. Detcheverry, C. Ybert, C. Cottin-bizonne et al., Optimizing water permeability through the hourglass shape of aquaporins, Proc. Natl. Acad. Sci, vol.110, pp.16367-16372, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873654

S. Herminghaus, M. Brinkmann, and R. Seemann, Wetting and Dewetting of Complex Surface Geometries, Annu. Rev. Mater. Res, vol.38, pp.101-121, 2008.

,

V. Langlois, V. H. Trinh, C. Lusso, C. Perrot, X. Chateau et al., Permeability of solid foam: Effect of pore connections, Phys. Rev. E, vol.97, p.53111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01818152

H. Ly, B. Le-droumaguet, V. Monchiet, and D. Grande, Designing and modeling doubly porous polymeric materials, Eur. Phys. J.-Spec. Top, vol.224, pp.1689-1706, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01665965

H. Mehrabian, P. Gao, and J. J. Feng, Wicking flow through microchannels, Phys Fluids, vol.14, 2011.

G. Ovarlez, Statique et rhéologie d'un milieu granulaire confiné, 2002.

L. Rojo, B. Vazquez, J. Parra, A. López-bravo, S. Deb et al., From Natural Products to Polymeric Derivatives of "Eugenol": A New Approach for Preparation of Dental Composites and Orthopedic Bone Cements, Biomacromolecules, vol.7, pp.2751-2761, 2006.

Z. Sadjadi, M. Jung, R. Seemann, and H. Rieger, Meniscus Arrest during Capillary Rise in Asymmetric Microfluidic Pore Junctions 9, 2015.

R. A. Sampson, On Stokes's Current Function, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.182, pp.449-518, 1891.

J. L. Sommer and A. Mortensen, Forced unidirectional infiltration of deformable porous media, J. Fluid Mech, vol.311, 0193.

H. S. Wiklund and T. Uesaka, Microfluidics of imbibition in random porous media, Phys. Rev. E, vol.87, p.23006, 2013.

, Chapitre 6

, Séchage des matériaux poreux Sommaire 6 -SECHAGE

-. .. Gravimetrie,

-. .. Sechage, 3.2 -Matériaux biporeux à larges pores dispersés

. .. , 3.2.3 -Séchage de matériaux présentant différents taux de pores larges sphériques, Séchage de matériaux présentant différents taux de pores larges cubiques

, 3.2 -Séchage du matériau biporeux à larges pores connectés

. Enfin, dont l'impact était faible durant l'imbibition de matériaux pré-gonflés, a été observée ici

P. F. Faure and S. Rodts, Proton NMR relaxation as a probe for setting cement pastes, Magn. Reson. Imaging, vol.26, pp.1183-1196, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00528660

S. W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun, vol.27, pp.213-227, 1982.

K. P. Whittall and A. L. Mackay, Quantitative interpretation of NMR relaxation data, J. Magn. Reson, vol.84, pp.134-152, 1969.

, Analyse des spectres RMN 13 C, 1 H et ATR-IRFT du méthacrylate d'eugényle synthétisé L'analyse des spectres RMN et ATR-IRFT du méthacrylate d'eugényle synthétisé au laboratoire nous a apporté les informations suivantes RMN 1 H (CDCl3, 400 MHz): ? (ppm) 6,97 (1H, d, J = 7,9 Hz, Har), vol.2, p.35

, RMN 13 C (CDCl3) : ? (ppm) 165,69 (C=O), vol.151, pp.3-5

. Atr-ftir, 1726 ( = ), 1638 ( = ), pp.856-806