J. Palacino, S. E. Swalley, C. Song, A. K. Cheung, L. Shu et al., Nat. Chem. Biol, vol.11, pp.511-517, 2015.

A. Cheung, D. N. Chin, N. Dales, A. Fazal, T. B. Hurley et al.,

M. Murata, S. Watanabe, and Y. Masuda, J. Org. Chem, vol.62, pp.6458-6459, 1997.

, We considered starting our synthesis with a reagent protected by a benzyl, but the borylation step (similar to 2 ? 3 and 3?) did not afford the expected compound

N. Kudo, M. Perseghini, and G. C. Fu, Angew. Chem., Int. Ed, vol.45, pp.1282-1284, 2006.

A. F. Littke, C. Dai, and G. C. Fu, J. Am. Chem. Soc, vol.122, pp.4020-4028, 2000.

C. Amatore, A. Jutand, G. Le-duc, and . J. Chem.--eur, , vol.18, pp.6616-6625, 2012.

Y. Yang, N. J. Oldenhuis, and S. L. Buchwald, Aryl bromides have been shown to afford a higher yield than the cognate triflates on these types of substrates, vol.52, pp.615-619, 2013.

S. D. Schimler, S. J. Ryan, D. C. Bland, J. E. Anderson, and M. S. Sanford, J. Org. Chem, vol.80, pp.12137-121, 2015.

, The Journal of Organic Chemistry

, J. Org. Chem, vol.83, pp.2954-2958, 2018.

C. Basmadjian, F. Thuaud, N. Ribeiro, and L. Désaubry, Future Med. Chem, vol.5, pp.2185-2197, 2013.

M. L. King, C. C. Chiang, H. C. Ling, E. Fujita, M. Ochiai et al., J. Chem. Soc., Chem. Commun, pp.1150-1151, 1982.

). J. Chambers, L. M. Lindqvist, A. Webb, D. C. Huang, G. P. Savage et al., Org. Lett, vol.15, pp.1406-1409, 2013.

P. Muller, M. Proksch, O. Leippe, L. Janssen, P. H. Désaubry et al., ACS Chem. Biol, vol.19, pp.1519-1527, 2012.

). A. Wolfe, K. Singh, Y. Zhong, P. Drewe, V. K. Rajasekhar et al., J. Med. Chem, vol.513, pp.558-562, 2012.

D. K. Rozelle, C. M. Filone, N. Kedersha, and J. H. Connor, Mol. Cell Biol, vol.34, pp.2003-2016, 2014.

Z. Nasr, L. E. Dow, M. Paquet, J. Chu, K. Ravindar et al., BMC Pharmacol. Toxicol, vol.14, 2013.

F. Thuaud, N. Ribeiro, C. Gaiddon, T. Cresteil, L. Désaubry-;-b)-f.-thuaud et al., Biochem. Pharmacol, vol.54, pp.105-109, 2009.

Y. Bernard, N. Ribeiro, F. Thuaud, G. Turkeri, R. Dirr et al., PLoS One, 2011.

N. Ribeiro, F. Thuaud, Y. Bernard, C. Gaiddon, T. Cresteil et al., J. Med. Chem, vol.55, pp.10064-10073, 2012.

J. Han, Q. Zhao, C. Basmadjian, L. Désaubry, and A. L. Theiss, Inflamm. Bowel. Dis, vol.22, pp.55-67, 2016.

P. Wintachai, F. Thuaud, C. Basmadjian, S. Roytrakul, S. Ubol et al., Microbiol. Immunol, vol.59, pp.129-141, 2015.

, IMD-026259: an innovative drug for disease modifying treatment of Parkinson's diseases www.michaeljfox.org/foundation/grantdetail. php?grant_id = 1020

). S. Ebada, N. Lajkiewicz, J. A. Porco, M. Li-weber, and P. Proksch, Anti-Cancer Agents Med. Chem, vol.94, pp.319-345, 2006.

L. Pan, J. L. Woodard, D. M. Lucas, J. R. Fuchs, A. D. Kinghorn-;-d)-p.-proksch et al., Bioorg. Med. Chem, vol.31, pp.1857-1864, 2001.

P. Proksch, R. Edrada, R. Ebel, F. Bohnenstengel, and B. Nugroho, Curr. Org. Chem, vol.5, pp.923-938, 2001.

B. M. Trost, P. D. Greenspan, B. V. Yang, and M. G. Saulnier, J. Am. Chem. Soc, vol.112, pp.9022-9024, 1990.

). A. Davey, M. J. Schaeffer, and R. J. Taylor, J. Chem. Soc., Chem. Commun, pp.25-27, 1987.

M. R. Dobler, I. Bruce, F. Cederbaum, N. G. Cooke, L. J. Diorazio et al., Eur. J. Org. Chem, vol.42, pp.1753-1758, 2001.

K. Thede, N. Diedrichs, and J. P. Ragot, Org. Lett, vol.6, pp.4595-4597, 2004.

C. Basmadjian, Q. Zhao, and L. Désaubry, Tetrahedron Lett, vol.56, pp.727-730, 2015.

C. Basmadjian, F. Zhang, and L. Désaubry, Beilstein J. Org. Chem, vol.11, pp.1017-1022, 2015.

N. Diedrichs, T. Fahrig, I. Gerlach, J. Ragot, J. Schuhmacher et al., Preparation of cyclopenta[b]benzofuran derivatives as inhibitors of interleukin-8, 2005.

J. P. Diedrichs, K. Ragot, and . Thede, Eur. J. Org. Chem, pp.1731-1735, 2005.

B. Gerard, G. Jones, I. I. , and J. A. Porco, J. Am. Chem. Soc, vol.126, pp.13620-13621, 2004.

S. P. Roche, R. Cencic, J. Pelletier, and J. A. Porco, Angew. Chem. Int. Ed, vol.49, pp.6533-6538, 2010.

. Angew and . Chem, , p.6683, 2010.

B. Gerard, S. Sangji, D. J. O'leary, J. A. Porco, S. D. Stone et al., J. Am. Chem. Soc, vol.128, pp.525-530, 2006.

T. Liu, S. J. Nair, A. Lescarbeau, J. Belani, S. Peluso et al., J. Med. Chem, vol.55, pp.8859-8878, 2012.

). J. Malona, K. Cariou, W. T. Spencer, I. , and A. J. Frontier, J. Am. Chem. Soc, vol.77, pp.7560-7561, 2009.

P. Magnus, M. A. Stent-;-b, ). P. Magnus, W. A. Freund, E. J. Moorhead et al., J. Am. Chem. Soc, vol.7, pp.6140-6142, 2005.

Z. Zhou and M. A. Tius, Angew. Chem. Int. Ed, vol.0000, issue.9, p.6135, 2015.

M. E. Sous, M. L. Khoo, G. Holloway, D. Owen, P. J. Scammells et al., Angew. Chem. Int. Ed, vol.46, pp.7835-7838, 2007.

. Angew, ). B. Chem-;-b, R. Gerard, J. Cencic, J. A. Pelletier et al., Angew. Chem. Int. Ed, vol.119, pp.7831-7834, 2007.

. Angew and . Chem, , p.7977, 2007.

S. Takano, A. Kurotaki, Y. Sekiguchi, S. Satoh, M. Hirama et al., Synthesis, pp.811-817, 1986.

T. E. Adams, M. E. Sous, B. C. Hawkins, S. Hirner, G. Holloway et al., J. Am. Chem. Soc, vol.131, pp.1556-1566, 2009.

M. Dejesus-hernandez, Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis, Neuron, vol.72, pp.245-256, 2011.

A. E. Renton, A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, vol.72, pp.257-268, 2011.

E. Majounie, Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study, Lancet Neurol, vol.11, pp.323-330, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00927546

A. D. Gitler and H. Tsuiji, There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS, Brain Res, vol.1647, pp.9-29, 2016.

C. J. Donnelly, RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention, Neuron, vol.80, pp.415-428, 2013.

D. Sareen, Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion, Sci. Transl. Med, vol.5, pp.208-149, 2013.

C. Lagier-tourenne, Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration, Proc. Natl Acad. Sci. USA, vol.110, pp.4530-4539, 2013.

S. Mizielinska, C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci, Acta Neuropathol, vol.126, pp.845-857, 2013.

K. Mori, hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations, Acta Neuropathol, vol.125, pp.413-423, 2013.

T. Zu, RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia, Proc. Natl Acad. Sci. USA, vol.110, pp.4968-4977, 2013.

T. Zu, Non-ATG-initiated translation directed by microsatellite expansions, Proc. Natl Acad. Sci. USA, vol.108, pp.260-265, 2011.

J. D. Cleary and L. P. Ranum, New developments in RAN translation: insights from multiple diseases, Curr. Opin. Genet. Dev, vol.44, pp.125-134, 2017.

T. Zu, RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2, Neuron, vol.95, p.1295, 2017.

M. Banez-coronel, RAN translation in Huntington disease, Neuron, vol.88, pp.667-677, 2015.

P. K. Todd, CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome, Neuron, vol.78, pp.0-455, 2013.

T. Ishiguro, Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31, Neuron, vol.94, p.107, 2017.

K. Mori, The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS, Science, vol.339, pp.1335-1338, 2013.

K. Mori, Bidirectional transcripts of the expanded C9orf72hexanucleotide repeat are translated into aggregating dipeptide repeat proteins, Acta Neuropathol, vol.126, pp.881-893, 2013.

P. E. Ash, Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS, Neuron, vol.77, pp.639-646, 2013.

T. F. Gendron, Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS, Acta Neuropathol, vol.126, pp.829-844, 2013.

M. G. Kearse and P. K. Todd, Repeat-associated non-AUG translation and its impact in neurodegenerative disease, Neurotherapeutics, vol.11, pp.721-731, 2014.

I. R. Mackenzie, Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations, Acta Neuropathol, vol.126, pp.9-879, 2013.

C. J. Mahoney, Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features, Brain, vol.135, pp.736-750, 2012.

B. D. Freibaum and J. P. Taylor, The role of dipeptide repeats in C9ORF72-related ALS-FTD, Front. Mol. Neurosci, vol.10, p.35, 2017.

A. G. Hinnebusch, I. P. Ivanov, and N. Sonenberg, Translational control by 5?-untranslated regions of eukaryotic mRNAs, Science, vol.352, pp.1413-1416, 2016.

M. E. Filbin and J. S. Kieft, Toward a structural understanding of IRES RNA function, Curr. Opin. Struct. Biol, vol.19, pp.267-276, 2009.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.113-127, 2010.

J. C. Grigg, N. Shumayrikh, and D. Sen, G-quadruplex structures formed by expanded hexanucleotide repeat RNA and DNA from the neurodegenerative disease-linked C9orf72 gene efficiently sequester and activate heme, PLoS One, vol.9, p.106449, 2014.

P. Fratta, C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes, Sci. Rep, vol.2, p.1016, 2012.

K. Reddy, B. Zamiri, S. Y. Stanley, R. B. Macgregor, and C. E. Jr-&-pearson, The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni-and multimolecular RNA G-quadruplex structures, J. Biol. Chem, vol.288, pp.9860-9866, 2013.

A. R. Haeusler, C9orf72 nucleotide repeat structures initiate molecular cascades of disease, Nature, vol.507, pp.195-200, 2014.

E. G. Conlon, The C9ORF72 GGGGCC expansion forms RNA Gquadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains, Elife, vol.5, p.17820, 2016.

M. G. Kearse, CGG repeat-associated non-AUG translation utilizes a capdependent scanning mechanism of initiation to produce toxic proteins, Mol. Cell, vol.62, pp.314-322, 2016.

A. G. Hinnebusch, The scanning mechanism of eukaryotic translation initiation, Annu. Rev. Biochem, vol.83, pp.779-812, 2014.

M. Niblock, Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD, Acta Neuropathol. Commun, vol.4, p.18, 2016.

J. Chew, Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits, Science, vol.348, pp.1151-1154, 2015.

J. Murray, Structural characterization of ribosome recruitment and translocation by type IV IRES, Elife, vol.5, p.13567, 2016.

I. S. Fernandez, X. C. Bai, G. Murshudov, S. H. Scheres, and V. Ramakrishnan, Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome, Cell, vol.157, pp.823-831, 2014.

T. V. Pestova and C. U. Hellen, Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA, Genes Dev, vol.17, pp.181-186, 2003.

I. R. Mackenzie, Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers, Acta Neuropathol, vol.130, pp.845-861, 2015.

L. S. Namer, An ancient pseudoknot in TNF-? Pre-mRNA activates PKR, inducing eIF2? phosphorylation that potently enhances splicing, Cell Rep, vol.20, pp.188-200, 2017.

F. Martin, Cap-assisted internal initiation of translation of histone H4, Mol. Cell, vol.41, pp.197-209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561405

M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell, vol.44, pp.283-292, 1986.

S. H. Choi, A three-dimensional human neural cell culture model of Alzheimer's disease, Nature, vol.515, pp.274-278, 2014.

G. L. Chew, A. Pauli, and A. F. Schier, Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish, Nat. Commun, vol.7, p.11663, 2016.

X. H. Liang, Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames, Nat. Biotechnol, vol.34, pp.875-880, 2016.

C. Barbosa, I. Peixeiro, and L. Romao, Gene expression regulation by upstream open reading frames and human disease, PLoS Genet, vol.9, p.1003529, 2013.

S. E. Calvo, D. J. Pagliarini, and V. K. Mootha, Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans, Proc. Natl Acad. Sci. USA, vol.106, pp.7507-7512, 2009.

L. Boussemart, eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies, Nature, vol.513, pp.105-109, 2014.

F. Robert, Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma, Proc. Natl Acad. Sci. USA, vol.111, pp.13421-13426, 2014.

N. Garreau-de-loubresse, Structural basis for the inhibition of the eukaryotic ribosome, Nature, vol.513, pp.517-522, 2014.

J. Jiang, Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCCcontaining RNAs, Neuron, vol.90, pp.535-550, 2016.

A. Jain and R. D. Vale, RNA phase transitions in repeat expansion disorders, Nature, vol.546, pp.243-247, 2017.

C. Sellier, Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome, Neuron, vol.93, pp.331-347, 2017.

M. Bhat, Targeting the translation machinery in cancer, Nat. Rev. Drug Discov, vol.14, pp.261-278, 2015.

N. T. Ingolia, L. F. Lareau, and J. S. Weissman, Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, vol.147, pp.789-802, 2011.

R. Jackson and N. Standart, The awesome power of ribosome profiling, RNA, vol.21, pp.652-654, 2015.

E. K. Mcrae, Human DDX21 binds and unwinds RNA guanine quadruplexes, Nucleic Acids Res, vol.45, pp.6656-6668, 2017.

T. F. Gendron, Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers, Acta Neuropathol, vol.130, pp.559-573, 2015.

Y. Davidson, Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat proteins, Neuropathol. Appl. Neurobiol, vol.42, pp.242-254, 2016.

C. H. Yu, M. P. Teulade-fichou, and R. C. Olsthoorn, Stimulation of ribosomal frameshifting by RNA G-quadruplex structures, Nucleic Acids Res, vol.42, pp.1887-1892, 2014.

M. Kapur, C. E. Monaghan, and S. L. Ackerman, Regulation of mRNA translation in neurons-a matter of life and death, Neuron, vol.96, pp.616-637, 2017.

S. Millevoi, H. Moine, and S. Vagner, G-quadruplexes in RNA biology, Wiley Interdiscip. Rev. RNA, vol.3, pp.495-507, 2012.

G. V. Di-prisco, Translational control of mGluR-dependent long-term depression and object-place learning by eIF2alpha, Nat. Neurosci, vol.17, pp.1073-1082, 2014.

N. V. Bal, Upstream open reading frames located in the leader of protein kinase Mzeta mRNA regulate its translation, Front. Mol. Neurosci, vol.9, p.103, 2016.

J. Lee, An upstream open reading frame impedes translation of the huntingtin gene, Nucleic Acids Res, vol.30, pp.5110-5119, 2002.

R. Kole, A. R. Krainer, and S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides, Nat. Rev. Drug Discov, vol.11, pp.125-140, 2012.

H. E. Johansson, G. J. Belsham, B. S. Sproat, and M. W. Hentze, Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides, Nucleic Acids Res, vol.22, pp.4591-4598, 1994.

A. Kohler and E. Hurt, Exporting RNA from the nucleus to the cytoplasm, Nat. Rev. Mol. Cell Biol, vol.8, pp.761-773, 2007.

R. Soto-rifo, E. P. Ricci, D. Decimo, O. Moncorge, and T. Ohlmann, Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation, Nucleic Acids Res, vol.35, p.121, 2007.

, 25% (w/v) Bacto-Peptone, 1.7% (w/v) Agar) supplemented with CaCl 2 (1 mM), MgSO 4 (1 mM), KH 2 PO 4 (25 mM), Cholesterol (5 µg/ml) spotted with OP50 Escherichia coli [54]. Strains used: Bristol N2; rsks-1 (ok1255) RB1206 which is a loss-of-function strain, Strains were grown at 20°C on nematode growth media (NGM, 50 mM NaCl, 0, vol.194, p.2

. Briefly, NGM plates were supplemented with Carbenicillin (50 µg/ml), IPTG (1 mM) and Nystatin (50 U/ml)

D. Kultz, Molecular and evolutionary basis of the cellular stress response, Annu Rev Physiol, vol.67, pp.225-57, 2005.

K. A. Spriggs, M. Bushell, and A. E. Willis, Translational regulation of gene expression during conditions of cell stress, Mol Cell, vol.40, pp.228-265, 2010.

J. R. Buchan and R. Parker, Eukaryotic stress granules: the ins and outs of translation, Mol Cell, vol.36, pp.932-973, 2009.

N. Kedersha, P. Ivanov, and P. Anderson, Stress granules and cell signaling: more than just a passing phase, Trends Biochem Sci, vol.38, pp.494-506, 2013.

A. Aulas, M. M. Fay, S. M. Lyons, C. A. Achorn, N. Kedersha et al., Stress-specific differences in assembly and composition of stress granules and related foci, J Cell Sci, vol.130, pp.927-964, 2017.

Y. Dang, N. Kedersha, W. K. Low, D. Romo, M. Gorospe et al., Eukaryotic initiation factor 2?-independent pathway of stress granule induction by the natural product pateamine A, J Biol Chem, vol.281, pp.32870-32878, 2006.

R. Mazroui, R. Sukarieh, M. E. Bordeleau, R. J. Kaufman, P. Northcote et al., Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation, Mol Biol Cell, vol.17, pp.4212-4221, 2006.

D. S. Protter and R. Parker, Principles and properties of stress granules, Trends Cell Biol, vol.26, pp.668-79, 2016.

R. R. Sama, C. L. Ward, L. J. Kaushansky, N. Lemay, S. Ishigaki et al., FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress, J Cell Physiol, vol.228, pp.2222-2253, 2013.

H. Tourriere, K. Chebli, L. Zekri, B. Courselaud, J. M. Blanchard et al., The RasGAP-associated endoribonuclease G3BP assembles stress granules, J Cell Biol, vol.160, pp.823-854, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02199834

N. Gilks, N. Kedersha, M. Ayodele, L. Shen, G. Stoecklin et al., Stress granule assembly is mediated by prion-like aggregation of TIA-1, Mol Biol Cell, vol.15, pp.5383-98, 2004.

S. Guil, J. C. Long, and J. F. Cáceres, hnRNP A1 relocalization to the stress granules reflects a role in the stress response, Mol Cell Biol, vol.26, pp.5744-58, 2006.

C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege et al., Germline P granules are liquid droplets that localize by controlled dissolution/condensation, Science, vol.324, pp.1729-1761, 2009.

A. Molliex, J. Temirov, J. Lee, M. Coughlin, A. P. Kanagaraj et al., Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization, Cell, vol.163, pp.123-156, 2015.

Y. Lin, D. S. Protter, M. K. Rosen, and R. Parker, Formation and maturation of phase-separated liquid droplets by RNA-binding proteins, Mol Cell, vol.60, pp.208-227, 2015.

S. Jain, J. R. Wheeler, R. W. Walters, A. Agrawal, A. Barsic et al., ATPase-modulated stress granules contain a diverse proteome and substructure, Cell, vol.164, pp.487-98, 2016.

A. P. Sfakianos, A. J. Whitmarsh, and M. P. Ashe, Ribonucleoprotein bodies are phased in, Biochem Soc Trans, vol.44, pp.1411-1417, 2016.

J. R. Wheeler, T. Matheny, S. Jain, R. Abrisch, and R. Parker, Distinct stages in stress granule assembly and disassembly, eLife, vol.5, p.18413, 2016.

K. Arimoto, H. Fukuda, S. Imajoh-ohmi, H. Saito, and M. Takekawa, Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways, Nat Cell Biol, vol.10, pp.1324-1356, 2008.

T. Eisinger-mathason, J. Andrade, A. L. Groehler, D. E. Clark, T. L. Muratore-schroeder et al., Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival, Mol Cell, vol.31, pp.722-758, 2008.

T. Takahara and T. Maeda, Transient sequestration of TORC1 into stress granules during heat stress, Mol Cell, vol.47, pp.242-52, 2012.

K. Thedieck, B. Holzwarth, M. T. Prentzell, C. Boehlke, K. Kläsener et al., Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells, Cell, vol.154, pp.859-74, 2013.

F. Wippich, B. Bodenmiller, M. G. Trajkovska, S. Wanka, R. Aebersold et al., Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling, Cell, vol.152, pp.791-805, 2013.

X. M. Ma and J. Blenis, Molecular mechanism of mTOR-mediated translational control, Nat Rev Mol Cell Biol, vol.10, pp.307-325, 2009.

M. J. Fournier, L. Coudert, S. Mellaoui, P. Adjibade, C. Gareau et al., Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation, Mol Cell Biol, vol.33, pp.2285-301, 2013.

H. H. Ryu, M. H. Jun, K. J. Min, D. J. Jang, Y. S. Lee et al., Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons, Neurobiol Aging, vol.35, pp.2822-2853, 2014.

C. Sidrauski, A. M. Mcgeachy, N. T. Ingolia, and P. Walter, The small molecule ISRIB reverses the effects of eIF2? phosphorylation on translation and stress granule assembly, eLife, vol.4, p.5033, 2015.

F. Thuaud, Y. Bernard, G. Tukeri, R. Dirr, A. G. Cresteil et al., Synthetic analogue of rocaglaol displays a potent selective cytotoxicity in cancer cells: involvement of apoptosis inducing factor and caspase-12, J Med Chem, vol.52, pp.5176-87, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02391094

L. Boussemart, H. Malka-mahieu, I. Girault, D. Allard, O. Hemmingsson et al., eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies, Nature, vol.513, pp.105-114, 2014.

M. D. Panas, N. Kedersha, and G. M. Mcinerney, Methods for the characterization of stress granules in virus infected cells, Methods, vol.90, pp.57-64, 2015.

S. Kroschwald, S. Maharana, D. Mateju, L. Malinovska, E. Nuske et al., Promiscuous interactions and protein disaggregates determine the material state of stress-inducible RNP granules, eLife, vol.4, p.6807, 2015.

J. R. Grove, P. Banerjee, A. Balasubramanyam, P. J. Coffer, D. J. Price et al., Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini, Mol Cell Biol, vol.11, pp.5541-50, 1991.

O. E. Pardo and M. J. Seckl, S6K2: the neglected S6 kinase family member, Front Oncol, vol.3, p.191, 2013.

S. Li, M. S. Brown, and J. L. Goldstein, Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis, Proc Natl Acad Sci USA, vol.107, pp.3441-3447, 2010.

M. C. Jud, M. J. Czerwinski, M. P. Wood, R. A. Young, C. M. Gallo et al., Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway, Dev Biol, vol.318, pp.38-51, 2008.

S. L. Noble, B. L. Allen, L. K. Goh, K. Nordick, and T. C. Evans, Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development, J Cell Biol, vol.182, pp.559-72, 2008.

G. Huelgas-morales, C. G. Silva-garcia, L. S. Salinas, D. Greenstein, and R. E. Navarro, The stress granule RNA-binding protein TIAR-1 protects female germ cells from heat shock in Caenorhabditis elegans, G3, vol.6, pp.1031-1078, 2016.

M. C. Lechler, E. D. Crawford, N. Groh, K. Widmaier, R. Jung et al., Reduced insulin/IGF-1 signaling restores the dynamic properties of key stress granule proteins during ageing, Cell Rep, vol.18, pp.454-67, 2017.

K. Z. Pan, J. E. Palter, A. N. Rogers, A. Olsen, D. Chen et al., Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans, Aging Cell, vol.6, pp.111-120, 2007.

D. Chen, P. W. Li, B. A. Goldstein, W. Cai, E. L. Thomas et al., Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans, Cell Rep, vol.5, pp.1600-1610, 2013.

I. C. Pavan, S. Yokoo, D. C. Granato, L. Meneguello, C. M. Carnielli et al., Different interactomes for p70-S6K1 and p54-S6K2 revealed by proteomic analysis, Proteomics, vol.16, pp.2650-66, 2016.

E. Mcewen, N. Kedersha, B. Song, D. Scheuner, N. Gilks et al., Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation and mediates survival upon arsenite exposure, J Biol Chem, vol.280, pp.16925-16958, 2005.

J. H. Connor, D. C. Weiser, S. Li, J. M. Hallenbeck, and S. Shenolikar, Growth arrest and DNA damage inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1, Mol Cell Biol, vol.21, pp.6841-50, 2001.

I. Novoa, H. Zeng, H. P. Harding, and R. D. , Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha, J Cell Biol, vol.153, pp.1011-1033, 2001.

C. Chauvin, V. Koka, A. Nouschi, V. Mieulet, C. Hoareau-aveilla et al.,

, Official journal of the Cell Death Differentiation Association ribosome biogenesis transcriptional program, Oncogene, vol.33, pp.474-83, 2014.

R. Roy, D. Durie, H. Li, B. Q. Liu, J. M. Skehel et al., hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling, Nucleic Acids Res, vol.42, pp.12483-97, 2014.

H. J. Kim, N. C. Kim, Y. D. Wang, E. A. Scarborough, J. Moore et al., Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS, Nature, vol.495, pp.467-73, 2013.

T. Wasserman, K. Katsenelson, S. Daniliuc, T. Haslin, M. Choder et al., A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation, Mol Biol Cell, vol.21, pp.117-147, 2010.

T. Vanderweyde, K. Youmans, L. Liu-yesucevitz, and B. Wolozin, Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review, Gerontology, vol.59, pp.524-557, 2013.

M. Perluigi, D. Domenico, F. Butterfield, and D. A. , mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy, Neurobiol Dis, vol.84, pp.39-49, 2015.

P. Anderson, N. Kedersha, and P. Ivanov, Stress granules, P bodies and cancer, Biochim Biophys Acta, vol.1849, pp.861-70, 2015.

S. Yoshida, K. Matsumoto, T. Arao, H. Taniguchi, I. Goto et al., Gene amplification of ribosomal protein S6 kinase-1 and -2 in gastric cancer, Anticancer Res, vol.33, pp.469-75, 2013.

G. Pérez-tenorio, E. Karlsson, M. A. Waltersson, B. Olsson, B. Holmlund et al., Clinical potential of the mTOR targets S6K1 and S6K2 in breast cancer, Breast Cancer Res Treat, vol.128, pp.713-736, 2011.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

R. S. Kamath, A. G. Fraser, Y. Dong, G. Poulin, R. Durbin et al., Systematic functional anlaysis of the Caenorhabditis elegans genome using RNAi, Nature, vol.421, pp.231-238, 2003.

G. Poulin, Y. Dong, A. G. Fraser, N. A. Hopper, and J. Ahringer, Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans, EMBO J, vol.24, pp.2613-2636, 2005.

, the Chinese Postdoctoral Science Foundation, the Foundation of Shenzhen science and Technology Innovation Committee (JCYJ20160429104111283). A generous financial support for this work was also provided by the 'Association pour la Recherche sur le Cancer' to LD, S6 kinases regulate stress granules Official journal of the Cell Death Differentiation Association 81672530, 81673296), the Natural Science Foundation of Guangdong Province (NO. 2016A030310219, 2015A030313009)

W. Chen, R. Zheng, and P. D. Baade, Cancer statistics in China, CA Cancer J Clin, vol.66, issue.2, pp.115-147, 2015.

C. E. Desantis, Cancer treatment and survivorship statistics, CA Cancer J Clin, vol.64, pp.252-71, 2014.

Y. Mitsui, H. Yasumoto, N. Arichi, S. Honda, H. Shiina et al., Current chemotherapeutic strategies against bladder cancer, Int Urol Nephrol, vol.44, issue.2, pp.431-472, 2012.

S. Mishra, L. C. Murphy, B. L. Nyomba, and L. J. Murphy, Prohibitin: a potential target for new therapeutics, Trends Mol Med, vol.11, pp.192-199, 2005.

J. K. Mcclung, Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver, Biochem Biophys Res Commun, vol.164, pp.1316-1338, 1989.

S. Koushyar, W. G. Jiang, and D. A. Dart, Unveiling the potential of prohibitin in cancer, Cancer Lett, vol.369, pp.316-338, 2015.

Y. T. Peng, P. Chen, R. Y. Ouyang, and L. Song, Multifaceted role of prohibitin in cell survival and apoptosis, Apoptosis, vol.20, pp.1135-1184, 2015.

S. C. Gamble, Androgens target prohibitin to regulate proliferation of prostate cancer cells, Oncogene, vol.23, pp.2996-3004, 2004.

R. A. Canevari, Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma, Tumour Biol, vol.37, pp.13855-70, 2016.

X. Kang, Prohibitin: a potential biomarker for tissue-based detection of gastric cancer, J Gastroenterol, vol.43, pp.618-643, 2008.

L. Jiang, P. Dong, Z. Zhang, C. Li, Y. Li et al., Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells, Cell Death Dis, vol.6, p.1660, 2015.

G. Polier, The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2, Chem Biol, vol.19, pp.1093-104, 2012.

R. Qureshi, O. Yildirim, A. Gasser, C. Basmadjian, Q. Zhao et al., FL3, a synthetic Flavagline and ligand of Prohibitins, protects cardiomyocytes via STAT3 from doxorubicin toxicity, PLoS One, vol.10, issue.11, p.141826, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02391039

C. Basmadjian, F. Thuaud, N. Ribeiro, and L. Désaubry, Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A, Future Med Chem, vol.5, issue.18, pp.2185-97, 2013.

S. Kim, A. A. Salim, S. M. Swanson, and A. D. Kinghorn, Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy, Anti Cancer Agents Med Chem, vol.6, pp.319-364, 2006.

F. Thuaud, Y. Bernard, G. Türkeri, R. Dirr, A. G. Cresteil et al., Synthetic analogue of rocaglaol displays a potent and selective cytotoxicity in cancer cells: involvement of apoptosis inducing factor and caspase-12, J Med Chem, vol.52, issue.16, pp.5176-87, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02391094

J. K. Mcclung, E. R. Jupe, X. T. Liu, and R. T. Dell'orco, Prohibitin: potential role in senescence, development, and tumor suppression, Exp Gerontol, vol.30, pp.99-124, 1995.

F. Thuaud, N. Ribeiro, C. G. Nebigil, and L. Désaubry, Prohibitin ligands in cell death and survival: mode of action and therapeutic potential, Chem Biol, vol.20, pp.316-347, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02391060

T. B. Zhou and Y. H. Qin, Signaling pathways of prohibitin and its role in diseases, J Recept Signal Transduct Res, vol.33, pp.28-36, 2013.

S. R. Ande and S. Mishra, Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling, Biochem Biophys Res Commun, vol.390, pp.1023-1031, 2009.

M. Malumbres and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm, Nat Rev Cancer, vol.9, pp.153-66, 2009.

R. Y. Chen, Y. M. Fan, Q. Zhang, S. Liu, Q. Li et al., Estradiol inhibits Th17 cell differentiation through inhibition of ROR?T transcription by recruiting the ER?/REA complex to estrogen response elements of the ROR?T promoter, J Immunol, vol.194, issue.8, pp.4019-4047, 2015.

L. Dai, Y. Liu, J. Liu, X. Wen, Z. Xu et al., A novel cyclinE/cyclinA-CDK inhibitor targets p27(Kip1) degradation, cell cycle progression and cell survival: implications in cancer therapy, Cancer Lett, vol.333, issue.1, pp.103-115, 2013.

H. Y. Park, G. Y. Kim, S. K. Moon, W. J. Kim, Y. H. Yoo et al., Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis, Molecules, vol.19, issue.5, pp.5981-98, 2014.

, Cell Cycle of PCR Arrays in QIAGEN Website. SABiosciences Corporation, 2017.

X. W. Wang, GADD45 induction of a G2/M cell cycle checkpoint, Proc Natl Acad Sci U S A, vol.96, pp.3706-3717, 1999.

S. R. Ande, K. H. Nguyen, B. L. Nyomba, and S. Mishra, Prohibitin in adipose and immune functions, Trends Endocrinol Metab, vol.27, pp.531-572, 2016.

I. Chowdhury, K. Thomas, and W. E. Thompson, Prohibitin( PHB) roles in granulosa cell physiology, Cell Tissue Res, vol.363, pp.19-29, 2016.

L. Li, J. D. Guo, H. D. Wang, Y. M. Shi, Y. L. Yuan et al., Prohibitin 1 gene delivery promotes functional recovery in rats with spinal cord injury, Neuroscience, vol.286, pp.27-36, 2015.

I. Chowdhury, W. E. Thompson, and K. Thomas, Prohibitins role in cellular survival through Ras-Raf-MEK-ERK pathway, J Cell Physiol, vol.229, pp.998-1004, 2014.

Z. Luan, Y. He, M. Alattar, Z. Chen, and F. He, Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma, Mol Cancer, vol.13, p.38, 2014.

H. Yurugi, F. Marini, C. Weber, K. David, Q. Zhao et al., Targeting prohibitins with chemical ligands inhibits KRASmediated lung tumours, Oncogene, 2017.

N. Ribeiro, Flavaglines as potent anticancer and cytoprotective agents, J Med Chem, vol.55, pp.10064-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00765387

K. P. Callahan, Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity, Leukemia, vol.28, pp.1960-1968, 2014.

A. Bahrami, The potential value of the PI3K/Akt/mTOR signaling pathway for assessing prognosis in cervical cancer and as a target for therapy, J Cell Biochem, 2017.

Y. Nan, Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway, J Cancer Res Clin Oncol, 2017.

E. C. Lien, C. C. Dibble, and A. Toker, PI3K signaling in cancer: beyond AKT, Curr Opin Cell Biol, vol.45, pp.62-71, 2017.

I. A. Mayer and C. L. Arteaga, The PI3K/AKT pathway as a target for cancer treatment, Annu Rev Med, vol.67, pp.11-28, 2016.

E. K. Han, T. Mcgonigal, C. Butler, V. L. Giranda, and Y. Luo, Characterization of Akt overexpression in MiaPaCa-2 cells: prohibitin is an Akt substrate both in vitro and in cells, Anticancer Res, vol.28, pp.957-63, 2008.

K. H. Berger and M. P. Yaffe, Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces Cerevisiae, Mol Cell Biol, vol.18, pp.4043-52, 1998.

D. F. Bogenhagen, Y. Wang, E. L. Shen, and R. Kobayashi, Protein components of mitochondrial DNA nucleoids in higher eukaryotes, Mol Cell Proteomics, vol.2, pp.1205-1221, 2003.

Q. Zhan, Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein Gadd45, Oncogene, vol.18, pp.2892-900, 1999.

M. Malumbres and M. Barbacid, Mammalian cyclin-dependent kinases, Trends Biochem Sci, vol.30, pp.630-671, 2005.

J. M. Salvador, J. D. Brown-clay, and A. J. Fornace, Gadd45 in stress signaling, cell cycle control, and apoptosis, Adv Exp Med Biol, vol.793, pp.1-19, 2013.

, Résumé Les cancers représentent un problème majeur de santé public d'où la nécessité de rechercher de nouvelles classes de médicaments. Parmi les pistes pour développer de nouveaux traitements, deux ont retenu notre attention et celle de nos collaborateurs : la modulation de l'épissage par des composés comme le NVS-SM2

C. Dans-ce, nous avons développé la première synthèse robuste du NVS-SM2, qui peut satisfaire la demande globale de cet agent pour examiner en détail son potentiel thérapeutique dans différents types d'affection. En outre, la stratégie de synthèse rapportée ici pourrait être étendue à de nouveaux analogues de ce composé

D. , nous avons synthétisé de nouvelles flavaglines qui sont en cours d'étude pour leurs effets sur l'inhibition de KRAS. Au cours de cette étude, nous avons découvert de nouvelles réactions