. Iv1b and .. .. Modèles,

. Iv1c and . .. Objectifs,

. Iv2a and . Choix,

. Iv2c, Analyse

. Iv2d, Conclusion sur l'identification et l'analyse des modèles identifiés

. Iv3b and .. .. Découplage,

. Iv3d, Mise en place d'une action par anticipation

. Iv3e,

. Iv3f, Structure

. Iv3g, Résultats de simulation avec le modèle non linéaire

. Iv4 and .. .. Étude,

. Iv4a, Incertitudes et formes LFT du modèle de turbopropulseur

. Iv4b and . Robustesse,

. Iv5 and F. .. Intégration-dans-le,

. Iv5a,

. Iv5b and . .. Résultats,

. Iv6 and .. .. Conclusions,

. Ainsi, les travaux concernés par les trois premiers chapitres de ce mémoire ont porté sur les axes principaux de la commande décentralisée avec découplage. D'un point de vue pratique, les méthodes utilisées ont été illustrées et comparées au moyen d'un modèle multi-cuves

, En particulier dans le cas d'une commande décentralisée, les interactions entre les différentes boucles dépendent de la façon dont sont reliées les commandes et les sorties. Ainsi, la détermination du niveau d'interaction dans un système se révèle importante, tant pour l'analyse du procédé que pour la synthèse des lois de commande. La quantification du niveau d'interaction peut être réalisée à l'aide de différentes méthodes et indicateurs qui s'appuient sur les réponses fréquentielles ou indicielles du système, ou encore sur les grammiens de commandabilité et d'observabilité. Devant le nombre important d'indicateurs d'interaction, il n'est cependant pas toujours aisé de déterminer les plus adaptés à un modèle ou à un contexte précis. Une procédure systématique d'analyse des interactions, composée d'indicateurs complémentaires, a été proposée. Cette procédure a pour but principal de déterminer la stratégie de commande la plus adaptée, en fonction des interactions et des performances désirées, Le Chapitre I a tout d'abord permis d'introduire les notions d'interactions. Ces dernières peuvent être vues comme l'influence d'une référence/commande sur plusieurs sorties, ou bien l'influence de plusieurs références/commandes sur une même sortie

I. I. Dans-le-chapitre and . Dans-le-cadre-d'une-stratégie-décentralisée, En présence d'interactions importantes, il a été montré que ces méthodes sont déconseillées, car elles ne permettent pas de garantir les performances, voire la stabilité du système multivariable bouclé. Les méthodes multiboucles permettent uns des autres, tout en garantissant la stabilité et les marges de stabilité du système multivariable, à l'aide des bandes de Gershgorin et d'Ostrowski. Les méthodes multiboucles sont d'une complexité méthodologique plus importante que les méthodes monoboucles, mais il a été démontré qu'elles permettent d'obtenir de bien meilleures performances en présence d'interactions importantes. A la suite de l'analyse de ces méthodes, l'accent a été mis sur les méthodes de synthèse monoboucle et multiboucle de correcteurs monovariables

D. L'approche-de-synthèse, Lorsque le niveau d'interaction est trop important, il est possible d'associer des compensateurs à la régulation décentralisée, ce qui fait l'objet du Chapitre III. Les compensateurs ont pour but de découpler les commandes vis-à-vis des sorties du procédé, ce qui revient à diagonaliser sa matrice de transfert

J. Anthonis and H. Ramon, Linear Mechnical systems and dyadic transfer function matrices, vol.39, pp.1353-1363, 2001.

A. Arej-saade, Élaboration d'une méthode systématique de synthèse de loi de commande pour un turboréacteur, 2004.

R. Argelaguet, A new tuning of PID controllers based on LQR optirnisation, Preprints of the IFAC Workshop on Digital Control. Past, Present and Future of PID Control, pp.303-308, 1996.

Y. Arkun, Dynamic block relative gain and its connection with the performance and stability of decentralized control structures, International Journal of Control, vol.46, issue.4, 1987.

M. C. Arranz, Practical tools for the configuration of control structures, 2012.

K. Aström, T. Hägglund, and . Pid-controllers, Theory, Design, and Tuning, 1995.

K. J. Aström and T. Hägglund, Automatic tuning of simple regulators with specification on phase and amplitude margins, Automatica, vol.20, issue.5, pp.645-651, 1984.

K. J. Aström, K. H. Johansson, and Q. Wang, Design of Decoupled PI Controllers for Two-by-Two Systems, IEE Proceedings on Control Theory and Applications, vol.149, issue.1, pp.74-81, 2002.

K. J. Aström and L. Rundqwist, Integrator windup and how to avoid it, Proceedings of the American Control Conference, pp.1693-1698, 1989.

O. Bachelier, Cours d'Automatique -Représentations d'état linéaires des systèmes monovariables, Cours -ESIP, 2012.

B. Beauvois, Etude des systèmes multivariables par approche fréquentielle, Cours -Supélec, 1996.

B. W. Bequette, Process Control -Modeling, Design, and Simulation, 2002.

M. Bhalodia and T. W. Weber, Feedback control of a two-input, two-output interacting process, Ind. Eng. Chem. Process Des. Dev, vol.18, issue.4, pp.559-607, 1979.

W. Birk and A. Medvedev, A note on gramian-based interaction measures, Proceedings of European Control Conference, 2003.

M. Boerlage, M. Steinbuch, and G. Angelis, Frequency response based multivariable control design for motion systems, Proc. of the IEEE Conference on Control Applications, 2005.

I. Branica, I. Petrovic, and N. Peric, Toolkit for PID Dominant pole design, Proceedings of 9th IEEE International Conference on Electronics, Circuits and Systems, pp.1247-1250, 2002.

E. Bristol, On a new measure of interactions for multivariable process, IEEE Transactions on, vol.1, issue.11, pp.133-134, 1966.

S. Cha, D. Chun, and J. Lee, Two-step IMC-PID method for multiloop control system design, Ind. Eng Chem Res, vol.41, issue.12, pp.3037-3041, 2002.

J. Chang and C. Yu, Relative disturbance gain array, AIChEJ, vol.38, issue.4, pp.521-534, 1992.

Y. Changlai and T. J. Ward, Decoupling Control of a Distillation Column, AIChE, vol.18, issue.1, pp.225-227, 1972.

D. Chen and D. E. Seborg, Multiloop PI/PID controller design based on Gershgorin bands, Control Theory and Applications, vol.149, issue.1, pp.68-73, 2002.

Q. Chen, X. Luan, and F. Liu, Analytical Design of Centralized PI Controller for High Dimensional Multivariable Systems, IFAC, 2013.

I. L. Chien, H. P. Huang, and J. C. Yang, A simple multiloop tuning method for PID controllers with no proportional kick, Ind Eng Chem Res, vol.38, issue.4, pp.1456-1468, 1999.

I. L. Chien, IMC-PID Controller design -an extension, IFAC Synposium, Adaptative Control of Chemical Processes, vol.6, pp.147-152, 1988.

M. S. Chiu and Y. Arkun, A methodology for sequential design of robust decentralized control systems, Automatica, vol.28, issue.5, pp.997-1001, 1992.

G. H. Cohen and G. A. Coon, Theoretical considerations of retarded control, Transactions of the ASME, vol.65, pp.827-834, 1953.

E. B. Dahlin, Designing and Tuning digital controllers, 1968.

G. Duc, Commande robuste multivariable, Cours -Supélec, 2003.

E. Dupuy, Application et Développement de Techniques de Commandes Avancées au contrôle de turbopropulseurs, 2005.

C. G. Economou and M. Morari, Internal Model control 6. Multiloop Design, Industrial & Engineering Chemistry Process Design and Development, vol.25, issue.2, pp.411-419, 1986.

C. G. Economou, M. Morari, and B. O. Palsson, Internal model control -Extension to non linear systems, Ind. Eng. Chem. Proc. Des. and Dev, vol.25, issue.2, pp.403-411, 1986.

P. L. Falb and W. A. Wolovich, Decoupling in the design and synthesis of multivariable control systems, IEEE Trans. Aut. Cont, vol.12, issue.6, pp.651-659, 1967.

A. Fatehi and A. Shariati, Automatic Pairing of MIMO Plants Using Normalized RGA, Mediterranean Conference on Control & Automation, 2007.

M. Ford and K. Daly, Dominance improvement by pseudodecoupling, Proceedings of the Institution of Electrical Engineers, vol.126, issue.12, pp.1316-1320, 1979.

E. Gagnon, A. Pomerleau, and A. Desbiens, Simplified, ideal and inverted decoupling?, ISA Transactions, vol.37, issue.4, pp.265-276, 1998.

C. E. Garcia and M. Morari, Internal model control. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev, vol.21, issue.2, pp.308-323, 1982.

D. Garcia, A. Karimi, and R. Longchamp, PID Controller Design for Multivariable Systems using Gershgorin Bands, IFAC, 2005.

J. Garrido, F. Morilla, and F. Vázquez, Centralized PID Control by Decoupling of a Boiler-Turbine Unit, Proceedings of the European Control Conference, 2009.

J. Garrido, F. Vázquez, and F. Morilla, Centralized multivariable control by simplified decoupling, Journal of Process Control, vol.22, issue.6, pp.1044-1062, 2012.

J. Garrido, F. Vázquez, and F. Morilla, Generalized Inverted Decoupling for TITO processes, IFAC, vol.18, issue.1, pp.7535-7540, 2011.

J. Garrido, F. Vazquez, and F. Morilla, Multivariable PID control by inverted decoupling: Application to the Benchmark PID 2012, IFAC, 2012.

J. Garrido, F. Vázquez, F. Morilla, and T. Hägglund, Practical advantages of inverted decoupling, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011.

E. G. Gilbert, The decoupling of multivariable systems by state feedack, SIAM. J. Control, vol.7, issue.1, pp.50-63, 1969.

E. Godoy, Régulation Industrielle. Dunod, 2007.

P. Grosdidier and M. Morari, Interaction measure for systems under decentralized control, Automatica, vol.22, issue.3, pp.309-319, 1986.

P. Grosdidier, M. Morari, and B. R. Holt, Closed-loop properties from steady-state gain information

. Eng, Chem. Fundam, vol.24, issue.2, pp.221-235, 1985.

K. E. Häggblom, Limitations and use of the RGA as a controllability measure, Proceeding of the Automations, pp.178-183, 1995.

K. E. Häggblom, Partial Relative Gain -A New Tool fot Control Structure Selection, AIChE Annual Meeting, 1997.

Y. Halevi, Z. J. Palmor, and T. Efrati, Automatic tuning of decentralized PID controllers for MIMO processes, Journal of Process Control, vol.7, issue.2, pp.119-128, 1997.

B. Halvarsson, Interaction Analysis in Multivariable Control Systems, 2010.

C. C. Hang, K. J. Aström, and W. K. Ho, Refinement of the Ziegler-Nichols Tuning Formula, IEEE Proceedings -D, vol.138, issue.2, pp.111-118, 1991.

R. Hanus, M. Kinnaert, and J. L. Henrotte, Conditioning technique, a general antiwindup and bumpless transfer method, Automatica, vol.23, issue.6, pp.729-739, 1987.

D. Hawkings, Pseudodiagonalisation and the inverse nyquist array method, Proceedings of the Institution of Electrical Engineers, vol.119, issue.3, pp.337-342, 1972.

M. J. He, W. J. Cai, and S. Y. Li, New Criterion for Control-Loop Configuration of Multivariable Processes, Control, Automation, Robotics and Vision Conference, vol.2, pp.913-918, 2004.

H. Helgesen, A robust Multi-Loop tuning Procedure based at Succsessive Semidefinite Programming, that achieves optimal Performance and Failure Tolerance, 2008.

G. T. High, L. C. Prevallet, and W. Joseph, Apparatus for decoupling a torque loop from a speed loop in a power management system for turboprop engines, 1991.

P. Hippe, Windup in Control -Its Effects and Their Prevention, 2006.

D. Horla, On Directional Change And Anti-Windup Compensation In Multivariable Control Systems, Int. J. Appl. Math. Comput. Sci, vol.19, issue.2, pp.281-289, 2009.

M. Hovd and S. Skogestad, Improved independent design of robust decentralized controllers, Journal of Process Control, vol.3, issue.1, pp.43-51, 1993.

M. Hovd and S. Skogestad, Sequential design of decentralized controllers, Automatica, vol.30, issue.10, pp.1601-1607, 1994.

M. Hovd and S. Skogestad, Simple frequency-dependent tools for control system analysis, structure selection and design, Automatica, vol.28, issue.5, pp.989-996, 1992.

H. Huang, J. Jeng, C. Chiang, and W. Pan, A direct method for multi-loop PI/PID controller design, Journal of Process Control, vol.13, issue.8, pp.769-786, 2003.

Y. Hung and A. Macfarlane, Multivariable feedback: A quasi-classical approach, 1982.

A. Ingimundarson, Criteria for design of PID controllers, Proceedings of the 2nd IFAC conference Control System Design, 2003.

A. Jain and B. V. Babu, A New Measure of Process Interaction in Time Domain, Proceedings of the annual Meeting of AIChE, 2013.

J. Jung, J. Y. Choi, and J. Lee, One-parameter method for a multiloop control system design, Ind. Eng Chem Res, vol.38, issue.4, pp.1580-1588, 1999.

R. E. Kalman, Contributions to the theory of optimal control, pp.102-119, 1960.

R. J. Kavanagh, Noninteracting controls in linear multivariable systems, AIEE Trans. Applications and Industry, vol.76, issue.5, pp.95-100, 1957.

A. Khelassi, Analysis and assessment of interaction in process control systems, 1991.

L. Brun, C. Godoy, E. Beauvois, D. Doncque, N. Noguera et al., Multi-loop Control using Gershgorin and Ostrowski bands, Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, pp.635-642, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084427

L. Brun, C. Godoy, E. Beauvois, D. Liacu, B. Noguera et al., Control Laws Design of a Turboprop Engine, Applied Mechanics and Materials, vol.704, pp.362-367, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084414

L. Brun, C. Godoy, E. Beauvois, D. Liacu, B. Noguera et al., Coupling analysis and Control of a Turboprop Engine, Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02307332

J. Lee and T. F. Edgar, Continuation method for the modified Ziegler -Nichols tuning of multi-loop control systems, Ind. Eng. Chem.Res, vol.44, issue.19, pp.7428-7434, 2005.

M. Lee, L. Lee, C. Kim, and J. Lee, Analytical Design of Multiloop PID Controllers for Desired Closed-Loop Responses, AIChE Journal, vol.50, issue.7, pp.1631-1635, 2004.

Y. Lee, S. Park, M. Lee, and C. Brosilow, PID controller tuning for desired closed-loop responses for SI/SO systems, AIchE Journal, vol.44, issue.1, pp.106-115, 1998.

K. Lietzau, Multivalue control system and method for controlling a multivalue controlled system, Patent US 2006/0004470 A1. Brevet, 2006.

T. Liu, W. Zhang, and D. Y. Gu, Analytical multiloop PI/PID controller design for two-by-two processes with time delays, Ind Eng Chem Res, vol.44, issue.6, pp.1832-1841, 2005.

T. Liu and F. Gao, Industrial Process Identification and Control Design, 2012.

L. Ljung, System Identification: Theory for the User, 1999.

A. P. Loh, C. C. Hang, C. K. Quek, and V. U. Vasnani, Autotuning of multi-loop proportional -integral controllers using relay feedback, Eng. Chem. Res, vol.32, issue.6, pp.1102-1107, 1993.

A. M. Lopez, P. W. Murill, and C. L. Smith, Tuning PI and PID digital controllers, Instruments and Control Systems, vol.42, pp.89-95, 1969.

W. L. Luyben and C. D. Vinante, Experimental Studies of Distillation Decoupling, Kem. Teollisuus, vol.29, pp.499-511, 1972.

W. L. Luyben, Distillation Decoupling, AIChE Journal, vol.16, issue.2, pp.198-203, 1970.

W. L. Luyben, Simple Method for Tuning SISO Controllers in Multivariable Systems, Ind. Eng. Chem. Process Des. Dev, vol.25, issue.3, pp.654-660, 1986.

A. G. Macfarlane and B. Kouvaritakis, A design technique for linear multivariable feedback systems, International Journal of Control, vol.25, issue.6, pp.837-874, 1977.

A. G. Macfarlane and I. Postlethwaite, The Generalized Nyquist Stability Criterion and Multivariable Root Loci, International Journal of Control, vol.5, issue.1, pp.81-127, 1977.

J. M. Maciejowski, Multivariable Feedback Design, 1989.

G. K. Mann, Time domain based design and analysis of new PID tuning rules, IEE proceedings Control Theory and Applications, vol.148, pp.251-261, 2001.

V. Manousiouthakis, Synthesis of decentralized process control structures using the concept of block relative gain, American Institute of Chemical Engineers Journal, vol.32, issue.6, pp.991-1003, 1986.

D. Q. Mayne, The design of linear multivariable systems, Automatica, vol.9, issue.2, pp.201-207, 1973.

T. J. Mcavoy, Interaction analysis: principles and applications. Instrument Society of America, 1983.

G. K. Mcmillan, Tuning and Control Loop Performance -A Practitioner's Guide, Instrument Society of America, 1994.

B. Moaveni and A. Khaki-sedigh, A New Approach to Compute the Cross-Gramian Matrix and its Application in Input-Output Pairing of Linear Multivariable Plants, Journal of Applied Sciences, vol.8, issue.4, pp.608-614, 2008.

T. J. Monica, C. C. Yu, and W. L. Luyben, Improved multiloop singleinput/single-output (SISO) controllers for multivariable processes, Ind. Eng. Chem. Res, vol.27, issue.6, pp.969-973, 1988.

B. S. Morgan, The synthesis of linear multivariable systems by state variable feedback, IEEE Trans. Automatic Control, vol.9, issue.4, pp.404-411, 1964.

A. S. Morse and W. M. Wonham, Status of Non Interacting Control, IEEE Trans. on Automatic Control, vol.16, issue.6, pp.568-581, 1971.

T. Munoz and J. A. , Contribution à l'étude du découplage des systèmes linéaires multivariables, 1990.

A. Niederlinski, A heuristic approach to the design of linear multivariable interacting control systems, Automatica, vol.7, issue.6, pp.691-701, 1971.

G. Obinata and B. D. Anderson, Model Reduction for Control System Design, 2001.

A. O'dwyer, Handbook of PI and PID Controller Tuning Rules, 2009.

J. Öhr, Anti-windup and control of systems with multiple input saturations, 2003.

E. Ostertag, Commande et estimation multivariables. Ellipses, 2006.

D. H. Owens, Feedback and multivariable systems, 1978.

Z. J. Palmor, Y. Halevi, and N. Krasney, Automatic Tuning of Decentralized PID Controllers for TITO Processes, vol.31, pp.1001-1010, 1995.

L. Reberga, Commande Robuste Multivariable des Turboréacteurs, PhD -INSA, 2005.

D. E. Reeves, A comprehensive approach to control configuration design for complex systems, Georgia Institute of Technology, 1991.

H. Richter, Advanced Control of Turbofan Engines, 2012.

H. H. Rosenbrock, Design of multivariable control systems using the inverse Nyquist array, Proceedings IEEE, vol.116, issue.11, pp.1929-1936, 1969.

A. A. Rovira, P. W. Murill, and C. L. Smith, Tuning controllers for setpoint changes, Instruments and Control Systems, vol.42, pp.67-69, 1969.

M. E. Salgado and A. Conley, MIMO interaction measure and controller structure selection, Int. J. Control, vol.77, issue.4, pp.367-383, 2004.

W. H. Schielders, H. A. Van-der-vorst, and J. Rommes, Model Order Reduction, 2008.

J. Schmidt, Selecting control configurations for performance with independent design, Computers & Chemical Engineering, vol.27, issue.1, pp.101-109, 2003.

D. E. Seborg, T. F. Edgar, and D. A. Mellichamp, Process dynamics and control, 2004.

H. R. Shaker and M. Tahavory, Frequency-interval control configuration selection for multivariable bilinear systems, Journal of Process Control, vol.23, issue.6, pp.894-904, 2013.

S. H. Shen and C. C. Yu, Use of relay-feedback test for automatic tuning of multivariable systems, AIChE Journal, vol.40, issue.4, pp.627-646, 1994.

F. G. Shinskey, Process control systems: Application, design and adjustment, 1996.

L. M. Silverman and H. J. Payne, Input-output structure of linear systems withe application to the decoupling problem, SIAM J. Control, vol.9, issue.2, pp.199-233, 1971.

N. Sivakumaran, J. S. Chanda, R. Viknesh, and T. K. Radhakrishnan, A Critical Study of Decentralized Controllers for a Multivariable System, Chemical Engineering & Technology, vol.27, issue.8, pp.880-889, 2004.

S. Skogestad, Multivariable Feedback Control -Analysis and Design, 2005.

S. Skogestad and M. Morari, Robust performance of decentralized control systems by independent designs, Automatica, vol.25, issue.1, pp.119-125, 1989.

S. Skogestad, Probably the best simple PID tuning rules in the world, Journal of Process Control, vol.13, pp.291-309, 2001.

. Snecma, Training Manual Turboprop -General Familiarization, 2012.

G. Stanley, M. Marino-galarraga, and T. J. Mcavoy, Short cut operability analysis: The relative disturbance gain, Ind. Eng. Chem. Process Des. Dev, vol.24, issue.4, pp.1181-1188, 1985.

M. Stemmann and A. Rantzer, Temperature control of two interacting rooms with decoupled PI Control, IFAC, 2014.

V. Strejc, The general theory of autonomity and invariance of linear, Acta Technica, vol.5, 1960.

K. K. Tan, Q. Wang, C. C. Hang, and T. J. Hagglund, Advances in PID Control, 1999.

W. Tan, PID tuning based on loop-shaping Hinfinity control, IEE Proc. Control theory Appl, vol.145, issue.6, pp.485-490, 1998.

J. G. Truxal, Automatic feedback control system synthesis, 1955.

. Turbomeca, Gas Turbine Engines -Ref X DSO TD 960 2, Rapport -Turbomeca, 2004.

D. Vaes, W. Souverijns, J. De-cuyper, J. Swevers, and P. Sas, Optimal decoupling for improved multivariable controller design, applied on an automotive vibration test rig, Proceedings of the American Control, 2003.

D. Vaes, Optimal static decoupling for multivariable control design, 2005.

F. Vázquez, F. Morilla, and S. Dormido, An iterative method for tuning decentralized PID controllers, IFAC, 1999.

I. N. Voznesenskii, On controlling machines with a large number of controlled parameters, Avtomatika i Telemekhanica, pp.65-78, 1938.

T. N. Vu and M. Lee, Multi-loop PI/PID Controller Design Based on Direct Synthesis for Multivariable Systems, Proceedings of the World Congress on Engineering and Computer Science, 2008.

K. Waller and K. Fagervik, A Digital Simulation Study of Two-Point Feedback Control in Distillation Collumns, Kem. Teollisuus, vol.29, pp.5-12, 1972.

K. Waller, Decoupling in distillation, AIChE Journal, vol.20, issue.3, pp.592-594, 1974.

Q. Wang, C. Lin, Z. Ye, G. Wen, Y. He et al., A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers, Journal of Proc. Control, vol.17, pp.59-72, 2007.

Q. Wang, B. Zou, and T. H. Lee, Auto-tuning of multivariable PID controllers from decentralized relay feedback, Automatica, vol.33, issue.3, pp.319-330, 1997.

Q. Wang, Z. Ye, W. Cai, and C. C. Hang, PID Control for Multivariable Processes, 2008.

S. Wang, J. H. Chow, R. Rajamani, and K. D. Minto, Fixed-order controller design for aircraft engine control applications, Proceeding of the IEEE CDC, pp.1709-1714, 1999.

Q. Wang and D. Control, , 2003.

M. F. Witcher and T. J. Mcavoy, Interacting control system: steady state and dynamic measurement of interaction, ISA Trans, vol.16, issue.3, pp.35-41, 1977.

B. Wittenmark and M. E. Salgado, Hankel-norm based interaction measure for input-output pairing, IFAC, 2002.

B. Wittenmark, A Sample-induced Delays in Synchronous Multirate Systems, pp.3276-3281, 2001.

Q. Xiong, W. Cai, and M. He, A practical loop pairing criterion for multivariable processes, Journal of Process Control, vol.15, issue.7, pp.741-747, 2005.

C. Yau and O. D. Nwokah, Almost decoupling of uncertain multivariable systems, International Journal of Control, vol.58, issue.6, pp.1385-1408, 1993.

Y. , Autotuning of PID Controllers -A relay feedback approach, 2006.

C. S. Zalkind, Practical Approach to Non-Interacting Control, Instruments Control Systems, 1967.

Y. Zhang, Q. Wang, and K. J. Aström, Dominant pole placement for multi-loop control systems, Automatica, vol.38, issue.7, pp.1213-1220, 2002.

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, 1996.

J. G. Ziegler and N. B. Nichols, Optimum settings for Automatic Controllers, Trans. ASME, vol.64, pp.759-768, 1942.

Z. Zhu, Variable Pairing Selection Based on Individual and Overall Interaction Measures, Industrial & Engineering Chemistry Research, vol.35, issue.11, pp.4091-4099, 1996.

, Décomposition dyadique La décomposition dyadique est une méthode de découplage faisant intervenir un pré-compensateur Dp et un post-compensateur Rp. Ces derniers sont calculés ci-après