A. Augello and C. Bari, The regulation of differentiation in mesenchymal stem cells, Gene Ther, vol.21, issue.10, pp.1226-1238, 2010.

A. M. Dimarino, A. I. Caplan, and T. L. Bonfield, Mesenchymal Stem Cells in Tissue Repair, Front Immunol, vol.4, 2013.

D. Kyurkchiev, Secretion of immunoregulatory cytokines by mesenchymal stem cells, World J Stem Cells, vol.6, issue.5, pp.552-570, 2014.

V. M. Tatard, Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons, vol.40, pp.360-373, 2007.

G. J. -r.-delcroix, K. M. Curtis, P. C. Schiller, and C. N. Montero-menei, EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, Differentiation, vol.80, issue.4, pp.213-227, 2010.

G. J. -r and . Delcroix, The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, issue.6, pp.1560-1573, 2011.

S. Roche, Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo, Int J Pharm, vol.440, issue.1, pp.72-82, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00802595

R. S. Bhati, D. P. Mukherjee, K. J. Mccarthy, S. H. Rogers, D. F. Smith et al.,

. Shalaby, The growth of chondrocytes into a fibronectin-coated biodegradable scaffold, Journal of Biomedical Materials Research, vol.56, issue.1, pp.74-82, 2001.

V. M. Tatard, Pharmacologically active microcarriers: a tool for cell therapy, Biomaterials, vol.26, issue.17, pp.3727-3737, 2005.

N. Daviaud, E. Garbayo, L. Sindji, A. Martínez-serrano, P. C. Schiller et al., Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease, Stem Cells Transl Med, vol.4, issue.6, pp.670-684, 2015.

M. Morille, New PLGA-P188-PLGA matrix enhances TGF-?3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells, Journal of Controlled Release, vol.170, issue.1, pp.99-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881128

M. Savi, Enhanced engraftment and repairing ability of human adiposederived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats, J Biomed Mater Res A, vol.103, issue.9, pp.3012-3025, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392450

B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response, Biomaterials, vol.17, issue.2, pp.137-146, 1996.

H. Chang and Y. Wang, Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, 2011.

A. Fried, A. Shamay, S. Wientroub, and D. Benayahu, Phenotypic expression of marrow cells when grown on various substrata, Journal of Cellular Biochemistry, vol.61, issue.2, pp.246-254, 1996.

J. A. Burdick and G. Vunjak-novakovic, Engineered microenvironments for controlled stem cell differentiation, Tissue Eng Part A, vol.15, issue.2, pp.205-219, 2009.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.

H. Kawahara, Y. Soeda, K. Niwa, M. Takahashi, D. Kawahara et al., In vitro study on bone formation and surface topography from the standpoint of biomechanics

, Mater Sci Mater Med, vol.15, issue.12, pp.1297-1307, 2004.

Z. Li, Influence of surface roughness on neural differentiation of human induced pluripotent stem cells, Clinical Hemorheology and Microcirculation, vol.64, issue.3, pp.355-366, 2016.

A. Phadke, C. Chang, and S. Varghese, Functional Biomaterials for Controlling Stem Cell Differentiation, Biomaterials as Stem Cell Niche, pp.19-44, 2010.

F. M. Fowkes, ATTRACTIVE FORCES AT INTERFACES, Ind. Eng. Chem, vol.56, issue.12, pp.40-52, 1964.

C. D. Volpe and S. Siboni, Some Reflections on Acid-Base Solid Surface Free Energy Theories, Journal of Colloid and Interface Science, vol.195, issue.1, pp.121-136, 1997.

J. Karam, Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering, Journal of Controlled Release, vol.192, pp.82-94, 2014.

E. M. André, Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy', Int J Pharm, vol.497, issue.1-2, pp.255-267, 2016.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, vol.25, pp.402-408, 2001.

S. Kandalam, Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement, Acta Biomater, vol.49, pp.167-180, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01845036

E. Garbayo, G. J. .-r.-delcroix, P. C. Schiller, and C. N. Montero-menei, Advances in the Combined Use of Adult Cell Therapy and Scaffolds for Brain Tissue Engineering, 2011.

K. S. Straley, C. W. Foo, and S. C. Heilshorn, Biomaterial design strategies for the treatment of spinal cord injuries, J. Neurotrauma, vol.27, issue.1, pp.1-19, 2010.

K. Cai, J. Bossert, and K. D. Jandt, Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloids and Surfaces B: Biointerfaces, vol.49, issue.2, pp.136-144, 2006.

M. Han, A. Sethuraman, R. S. Kane, and G. Belfort, Nanometer-Scale Roughness Having Little Effect on the Amount or Structure of Adsorbed Protein, Langmuir, vol.19, issue.23, pp.9868-9872, 2003.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, Enhancement of Protein Adsorption Induced by Surface Roughness, Langmuir, vol.22, issue.26, pp.10885-10888, 2006.

P. E. Scopelliti, The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption, PLoS One, vol.5, issue.7, 2010.

C. H. Chen, D. O. Clegg, and H. G. Hansma, Structures and dynamic motion of laminin-1 as observed by atomic force microscopy, Biochemistry, vol.37, issue.22, pp.8262-8267, 1998.

S. N. Alhosseini, Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering, Int J Nanomedicine, vol.7, pp.25-34, 2012.

B. E. Rabinow, Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties, J Biomater Sci Polym Ed, vol.6, issue.1, pp.91-109, 1994.

S. H. Hyon, W. I. Cha, Y. Ikada, M. Kita, Y. Ogura et al., Poly(vinyl alcohol) hydrogels as soft contact lens material, J Biomater Sci Polym Ed, vol.5, issue.5, pp.397-406, 1994.

Y. S. Lin, V. Hlady, and C. Gölander, The surface density gradient of grafted poly (ethylene glycol): preparation, characterization and protein adsorption, Colloids Surf B Biointerfaces, vol.3, issue.1-2, pp.49-62, 1994.

K. Bergström, Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection, J Biomater Sci Polym Ed, vol.6, issue.2, pp.123-132, 1994.

L. Xu and C. A. Siedlecki, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces, Biomaterials, vol.28, issue.22, pp.3273-3283, 2007.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, A Survey of Structure?Property Relationships of Surfaces that Resist the Adsorption of Protein, Langmuir, vol.17, issue.18, pp.5605-5620, 2001.

S. Mruthyunjaya, R. Manchanda, R. Godbole, R. Pujari, A. Shiras et al., Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways, Biochem. Biophys. Res. Commun, vol.391, issue.1, pp.43-48, 2010.

Z. Li, H. Lee, and C. Zhu, Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion, Experimental Cell Research, vol.349, issue.1, pp.85-94, 2016.

C. M. Niessen, The ?6?4 Integrin Is a Receptor for both Laminin and Kalinin, Experimental Cell Research, vol.211, issue.2, pp.360-367, 1994.

M. A. Schwartz, Integrins and Extracellular Matrix in Mechanotransduction, Cold Spring Harb Perspect Biol, vol.2, issue.12, 2010.

S. I. Fraley, A distinctive role for focal adhesion proteins in three-dimensional cell motility, Nat. Cell Biol, vol.12, issue.6, pp.598-604, 2010.

S. Giljean, M. Bigerelle, and K. Anselme, Roughness statistical influence on cell adhesion using profilometry and multiscale analysis, Scanning, vol.36, issue.1, pp.2-10, 2014.

J. K. Tam, K. Uto, M. Ebara, S. Pagliari, G. Forte et al., Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness, Sci. Technol. Adv. Mater, vol.13, issue.6, p.64205, 2012.

J. M. Schakenraad and H. J. Busscher, Cell-polymer interactions: The influence of protein adsorption, Colloids and Surfaces, vol.42, issue.3, pp.331-343, 1989.

G. J. Her, H. Wu, M. Chen, M. Chen, S. Chang et al., Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages, Acta Biomaterialia, vol.9, issue.2, pp.5170-5180, 2013.

E. Garbayo, Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers, Journal of Neurochemistry, vol.119, issue.5, pp.972-988, 2011.

, Chiffres-clés

, Le vieillissement de la population mondiale et le cas de la France

S. M. Papa, T. M. Engber, A. M. Kask, and T. N. Chase, Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration, Brain Res, vol.662, issue.1-2, pp.69-74, 1994.

S. Fahn, Is levodopa toxic?, Neurology, vol.47, issue.6, pp.184-195, 1996.

A. Björklund and O. Lindvall, Cell replacement therapies for central nervous system disorders, Nat. Neurosci, vol.3, issue.6, pp.537-544, 2000.

O. , Parkinson disease. Stem cell transplantation, Lancet, vol.358, p.48, 2001.

S. Roche, Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo, Int J Pharm, vol.440, issue.1, pp.72-82, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00802595

R. A. Boomsma and D. L. Geenen, Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis, PLoS ONE, vol.7, issue.4, p.35685, 2012.

E. Garbayo, Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers, Journal of Neurochemistry, vol.119, issue.5, pp.972-988, 2011.

G. J. -r.-delcroix, K. M. Curtis, P. C. Schiller, and C. N. Montero-menei, EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, Differentiation, vol.80, issue.4, pp.213-227, 2010.

P. Brundin, Survival of intracerebrally grafted rat dopamine neurons previously cultured in vitro, Neurosci. Lett, vol.61, issue.1-2, pp.79-84, 1985.

O. Isacson, L. M. Bjorklund, and J. M. Schumacher, Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells, Ann. Neurol, vol.53, pp.135-146, 2003.

S. M. Frisch and E. Ruoslahti, Integrins and anoikis, Curr. Opin. Cell Biol, vol.9, issue.5, pp.701-706, 1997.

S. Mruthyunjaya, R. Manchanda, R. Godbole, R. Pujari, A. Shiras et al., Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways, Biochem. Biophys. Res. Commun, vol.391, issue.1, pp.43-48, 2010.

, Swisstransplant: Bilan annuel alarmant -moins de 100 donneurs d'organes en, 2012.

R. Langer and J. P. Vacanti, Tissue engineering', Science, vol.260, issue.5110, pp.920-926, 1993.

R. M. Nerem and A. Sambanis, Tissue Engineering: From Biology to Biological Substitutes, Tissue Engineering, vol.1, issue.1, pp.3-13, 1995.

J. X. Law, L. L. Liau, A. Saim, Y. Yang, and R. Idrus, Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering, Tissue Eng Regen Med, vol.14, issue.6, pp.699-718, 2017.

P. Hagell and P. Brundin, Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease, J. Neuropathol. Exp. Neurol, vol.60, issue.8, pp.741-752, 2001.

F. J. O'brien, Biomaterials & scaffolds for tissue engineering, Materials Today, vol.14, issue.3, pp.88-95, 2011.

J. Pariente, L. Bordenave, P. Conort, and . Biomatériaux, Biomatériels et Biocompatibilité, p.4

M. M. Stevens, Biomaterials for bone tissue engineering, Materials Today, vol.11, issue.5, pp.18-25, 2008.

Y. Chen, Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering, J Mech Behav Biomed Mater, vol.75, pp.169-174, 2017.

F. T. Moutos and F. Guilak, Composite scaffolds for cartilage tissue engineering, Biorheology, vol.45, issue.3-4, pp.501-512, 2008.

H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Composites Part B: Engineering, vol.40, issue.7, pp.655-663, 2009.

F. Chen and X. Liu, Advancing biomaterials of human origin for tissue engineering, Progress in Polymer Science, vol.53, pp.86-168, 2016.

M. Rodríguez-vázquez, B. Vega-ruiz, R. Ramos-zúñiga, D. A. Saldaña-koppel, and L. F. Quiñones-olvera, Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine, 2015.

C. Bouissou, J. J. Rouse, R. Price, and C. F. Van-der-walle, The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release, Pharm. Res, vol.23, issue.6, pp.1295-1305, 2006.

P. Q. Ruhe, E. L. Hedberg, N. T. Padron, P. H. Spauwen, J. A. Jansen et al., rhBMP-2 release from injectable poly(DL-lactic-co-glycolic acid)/calciumphosphate cement composites, J Bone Joint Surg Am, vol.85, pp.75-81, 2003.

R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, vol.21, issue.23, pp.2475-2490, 2000.

S. Huang, I. Li, P. Hong, and M. Yeh, Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus, Int J Nanomedicine, vol.8, pp.3161-3169, 2013.

J. Présumey, PLGA microspheres encapsulating siRNA anti-TNFalpha: Efficient RNAi-mediated treatment of arthritic joints, European Journal of Pharmaceutics and Biopharmaceutics, vol.82, issue.3, pp.457-464, 2012.

D. J. Burgess, D. J. Crommelin, A. S. Hussain, M. Chen, and E. , Assuring quality and performance of sustained and controlled release parenterals: EUFEPS workshop report, AAPS PharmSci, vol.6, issue.1, p.11, 2004.

C. D. Erbetta, R. J. Alves, J. M. Resende, R. F. , S. Freitas et al., Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer', Journal of Biomaterials and Nanobiotechnology, vol.03, p.208, 2012.

H. K. Makadia and S. J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers, vol.3, issue.3, pp.1377-1397, 2011.

N. Narayanan, P. K. Roychoudhury, and A. Srivastava, L (+) lactic acid fermentation and its product polymerization, Electronic Journal of Biotechnology, vol.7, issue.2, 2004.

M. L. Houchin and E. M. Topp, Physical properties of PLGA films during polymer degradation, Journal of Applied Polymer Science, vol.114, issue.5, pp.2848-2854, 2009.

P. I. Park and S. Jonnalagadda, Predictors of glass transition in the biodegradable poly-lactide and poly-lactide-co-glycolide polymers, Journal of Applied Polymer Science, vol.100, issue.3, pp.1983-1987, 2006.

J. P. Kitchell and D. L. Wise, Poly(lactic/glycolic acid) biodegradable drugpolymer matrix systems, Methods in Enzymology, vol.32, pp.436-448, 1985.

C. Engineer, J. Parikh, and A. , Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System, p.7

X. S. Wu and N. Wang, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation', Journal of Biomaterials Science, vol.12, issue.1, pp.21-34, 2001.

L. Lu, In vitro degradation of porous poly(l-lactic acid) foams, Biomaterials, vol.21, issue.15, pp.1595-1605, 2000.

J. M. Anderson, Chapter 4 Mechanisms of inflammation and infection with implanted devices, Cardiovascular Pathology, vol.2, issue.3, pp.33-41, 1993.

M. Stefani, J. Coudane, and M. Vert, In vitro ageing and degradation of PEG-PLA diblock copolymer-based nanoparticles, Polymer Degradation and Stability, vol.91, issue.11, pp.2554-2559, 2006.

F. Fuertges and A. Abuchowski, The clinical efficacy of poly(ethylene glycol)-modified proteins, Journal of Controlled Release, vol.11, issue.1, pp.139-148, 1990.

M. P. Lutolf, Repair of bone defects using synthetic mimetics of collagenous extracellular matrices, Nat. Biotechnol, vol.21, issue.5, pp.513-518, 2003.

M. P. Lutolf and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol, vol.23, issue.1, pp.47-55, 2005.

M. K. Nguyen, O. Jeon, M. D. Krebs, D. Schapira, and E. Alsberg, Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation, Biomaterials, vol.35, issue.24, pp.6278-6286, 2014.

B. K. Kwon, A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury, J. Neurotrauma, vol.28, issue.8, pp.1545-1588, 2011.

J. Luo and R. Shi, Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol, Neuroscience Letters, vol.359, issue.3, pp.167-170, 2004.

J. Luo and R. Shi, Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury, Brain Research, vol.1155, pp.10-16, 2007.

J. Luo, R. Borgens, and R. Shi, Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury, Journal of Neurochemistry, vol.83, issue.2, pp.471-480, 2002.

J. Cheng, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery, Biomaterials, vol.28, issue.5, pp.869-876, 2007.

Y. Li, PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats, J Control Release, vol.71, issue.2, pp.203-211, 2001.

A. A. Ghahremankhani, F. Dorkoosh, and R. Dinarvand, PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release, Pharm Dev Technol, vol.13, issue.1, pp.49-55, 2008.

B. Jeong, Y. H. Bae, and S. W. Kim, In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof, J. Biomed. Mater. Res, vol.50, issue.2, pp.171-177, 2000.

M. Tobío, R. Gref, A. Sánchez, R. Langer, and M. J. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration, Pharm. Res, vol.15, issue.2, pp.270-275, 1998.

S. Duvvuri, K. G. Janoria, and A. K. Mitra, Development of a novel formulation containing poly(d,l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir, J Control Release, vol.108, issue.2-3, pp.282-293, 2005.

M. Garinot, PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination, J Control Release, vol.120, issue.3, pp.195-204, 2007.

, Poloxamer Thermogel Systems as Medium for Crystallization | SpringerLink

Y. Liu, Y. Zhu, G. Wei, and W. Lu, Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties', Eur J Pharm Sci, vol.37, issue.3-4, pp.306-312, 2009.

L. Mayol, F. Quaglia, A. Borzacchiello, L. Ambrosio, and M. I. Rotonda, A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties, European Journal of Pharmaceutics and Biopharmaceutics, vol.70, issue.1, pp.199-206, 2008.

S. M. Moghimi and A. C. Hunter, Poloxamers and poloxamines in nanoparticle engineering and experimental medicine, Trends in Biotechnology, vol.18, issue.10, pp.412-420, 2000.

Y. Yuan, Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide', Int J Pharm, vol.430, issue.1-2, pp.114-119, 2012.

H. Almeida, M. H. Amaral, P. Lobão, and J. M. Lobo, In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations, Drug Discovery Today, vol.19, issue.4, pp.400-412, 2014.

R. Asasutjarit, S. Thanasanchokpibull, A. Fuongfuchat, and S. Veeranondha, Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels, International Journal of Pharmaceutics, vol.411, issue.1, pp.128-135, 2011.

A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov, Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery, Journal of Controlled Release, vol.82, issue.2, pp.189-212, 2002.

M. L. Veyries, Controlled release of vancomycin from Poloxamer 407 gels, International Journal of Pharmaceutics, vol.192, issue.2, pp.183-193, 1999.

A. Giteau, Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres', Eur J Pharm Biopharm, vol.70, issue.1, pp.127-136, 2008.

A. Paillard-giteau, Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique, European Journal of Pharmaceutics and Biopharmaceutics, vol.75, issue.2, pp.128-136, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00626154

D. Blanco and M. J. Alonso, Protein encapsulation and release from poly(lactide-coglycolide) microspheres: effect of the protein and polymer properties and of the coencapsulation of surfactants, European Journal of Pharmaceutics and Biopharmaceutics, vol.45, issue.3, pp.285-294, 1998.

S. A. Rundell, D. C. Baars, D. M. Phillips, and R. C. Haut, The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral joint, Journal of Orthopaedic Research, vol.23, issue.6, pp.1363-1369, 2005.

D. M. Phillips and R. C. Haut, The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants, Journal of Orthopaedic Research, vol.22, issue.5, pp.1135-1142, 2004.

M. Morille, New PLGA-P188-PLGA matrix enhances TGF-?3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells, Journal of Controlled Release, vol.170, issue.1, pp.99-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881128

J. Pan, N. Liu, H. Sun, and F. Xu, Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering, PLOS ONE, vol.9, issue.11, p.112885, 2014.

M. L. Bruschi, F. B. Borghi-pangoni, M. V. Junqueira, S. B. De-souza, and . Ferreira, Chapter 12 -Nanostructured therapeutic systems with bioadhesive and thermoresponsive properties, pp.313-342, 2017.

I. D. Rosca, F. Watari, and M. Uo, Microparticle formation and its mechanism in single and double emulsion solvent evaporation, J Control Release, vol.99, issue.2, pp.271-280, 2004.

T. W. King and C. W. Patrick, Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique, J. Biomed. Mater. Res, vol.51, issue.3, pp.383-390, 2000.

H. Sah, Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres, Journal of Controlled Release, vol.47, issue.3, pp.233-245, 1997.

Y. Fu, In vitro sustained release of recombinant human bone morphogenetic protein-2 microspheres embedded in thermosensitive hydrogels, Pharmazie, vol.67, issue.4, pp.299-303, 2012.

J. Rui, Controlled release of vascular endothelial growth factor using polylactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits, Acta Biomater, vol.8, issue.2, pp.511-518, 2012.

S. Ravi, K. K. Peh, Y. Darwis, B. K. Murthy, T. R. Singh et al., Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system', Indian J Pharm Sci, vol.70, issue.3, pp.303-309, 2008.

T. K. Giri, C. Choudhary, A. Null-ajazuddin, H. Alexander, D. K. Badwaik et al., Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery, Saudi Pharm J, vol.21, issue.2, pp.125-141, 2013.

F. Ito, H. Fujimori, and K. Makino, Factors affecting the loading efficiency of watersoluble drugs in PLGA microspheres, Colloids Surf B Biointerfaces, vol.61, issue.1, pp.25-29, 2008.

G. Ruan, S. Feng, and Q. Li, Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process, Journal of Controlled Release, vol.84, issue.3, pp.151-160, 2002.

H. Tamber, P. Johansen, H. P. Merkle, and B. Gander, Formulation aspects of biodegradable polymeric microspheres for antigen delivery, Adv. Drug Deliv. Rev, vol.57, issue.3, pp.357-376, 2005.

C. Dai, B. Wang, and H. Zhao, Microencapsulation peptide and protein drugs delivery system, Colloids Surf B Biointerfaces, vol.41, issue.2-3, pp.117-120, 2005.

P. Legrand, J. Benoit, S. Briançon, E. Fattal, H. Fessi et al., Sphéroïides et formes vectorisées', in Pharmacie Galénique: Formulation et Technologie pharmaceutique, Maloine, pp.221-250, 2007.

K. Sollohub and K. , Spray Drying Technique: II. Current Applications in Pharmaceutical Technology, Journal of Pharmaceutical Sciences, vol.99, issue.2, pp.587-597, 2010.

I. Vesely, Heart Valve Tissue Engineering, Circulation Research, 2005.

D. W. Hutmacher, J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J Tissue Eng Regen Med, vol.1, issue.4, pp.245-260, 2007.

L. Coulombel, Reprogrammation nucléaire d'une cellule différenciée -On efface tout et on recommence, Med Sci, vol.23, issue.6-7, pp.667-670, 2007.

L. A. Boyer, Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, vol.441, issue.7091, pp.349-353, 2006.

N. S. Hwang, M. S. Kim, S. Sampattavanich, J. H. Baek, Z. Zhang et al., Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells, vol.24, issue.2, pp.284-291, 2006.

K. Takahashi, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, issue.5, pp.861-872, 2007.

J. Yu, Induced pluripotent stem cell lines derived from human somatic cells, Science, vol.318, issue.5858, 1917.

S. C. Presnell, B. Petersen, and M. Heidaran, Stem cells in adult tissues, Semin. Cell Dev. Biol, vol.13, issue.5, pp.369-376, 2002.

A. I. Caplan, Adult mesenchymal stem cells for tissue engineering versus regenerative medicine, J. Cell. Physiol, vol.213, issue.2, pp.341-347, 2007.

B. A. Reynolds and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science, vol.255, issue.5052, pp.1707-1710, 1992.

A. I. Caplan, Mesenchymal stem cells, J. Orthop. Res, vol.9, issue.5, pp.641-650, 1991.

A. J. Friedenstein, J. F. Gorskaja, and N. N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp. Hematol, vol.4, issue.5, pp.267-274, 1976.

D. Ding, W. Shyu, and S. Lin, Mesenchymal Stem Cells, Cell Transplantation, vol.20, issue.1, pp.5-14, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00443310

I. Ullah, R. B. Subbarao, and G. J. Rho, Human mesenchymal stem cells -current trends and future prospective, Biosci Rep, vol.35, issue.2, 2015.

&. Cells, IMPLICATIONS IN TUMORIGENESIS AND METASTASIS

M. Dominici, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-317, 2006.

F. Bifari, L. Pacelli, and M. Krampera, Immunological properties of embryonic and adult stem cells, World J Stem Cells, vol.2, issue.3, pp.50-60, 2010.

A. L. Ponte, The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities, Stem Cells, vol.25, issue.7, pp.1737-1745, 2007.

Y. Shi, J. Su, A. I. Roberts, P. Shou, A. B. Rabson et al., How mesenchymal stem cells interact with tissue immune responses, Trends Immunol, vol.33, issue.3, pp.136-143, 2012.

G. Ren, Species variation in the mechanisms of mesenchymal stem cellmediated immunosuppression, Stem Cells, vol.27, issue.8, pp.1954-1962, 2009.

M. Krampera, Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells, Stem Cells, vol.24, issue.2, pp.386-398, 2006.

B. M. Abdallah and M. Kassem, Human mesenchymal stem cells: from basic biology to clinical applications, Gene Ther, vol.15, issue.2, pp.109-116, 2008.

, Bone Marrow Biopsy -Western New York Urology Associates

S. Stemberger, A. Jamnig, N. Stefanova, G. Lepperdinger, M. Reindl et al., Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection, PLoS ONE, vol.6, issue.5, p.19808, 2011.

S. Mora-lee, Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice, PLoS ONE, vol.7, issue.8, p.43683, 2012.

G. C. Kopen, D. J. Prockop, and D. G. Phinney, Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains, Proc Natl Acad Sci U S A, vol.96, issue.19, pp.10711-10716, 1999.

J. M. Canals, Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease, J. Neurosci, vol.24, issue.35, pp.7727-7739, 2004.

I. Rosová, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells, vol.26, issue.8, pp.2173-2182, 2008.

N. B. Isele, Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons, Neurochem. Int, vol.50, issue.1, pp.243-250, 2007.

D. Giunti, Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1, Stem Cells, vol.30, issue.9, pp.2044-2053, 2012.

G. Ippolito, S. Diabira, G. A. Howard, P. Menei, B. A. Roos et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential, Journal of Cell Science, vol.117, issue.14, pp.2971-2981, 2004.

V. M. Tatard, Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons, vol.40, pp.360-373, 2007.

V. M. Tatard, M. C. Venier-julienne, J. P. Benoit, P. Menei, and C. N. Montero-menei, In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells, Cell Transplant, vol.13, issue.5, pp.573-583, 2004.

A. Rafati, Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications, Journal of Controlled Release, vol.162, issue.2, pp.321-329, 2012.

E. Storkebaum, Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS, Nat. Neurosci, vol.8, issue.1, pp.85-92, 2005.

H. Hibi, Y. Yamada, M. Ueda, and Y. Endo, Alveolar cleft osteoplasty using tissueengineered osteogenic material, International Journal of Oral and Maxillofacial Surgery, vol.35, issue.6, pp.551-555, 2006.

R. S. Bhati, D. P. Mukherjee, K. J. Mccarthy, S. H. Rogers, D. F. Smith et al., The growth of chondrocytes into a fibronectin-coated biodegradable scaffold, Journal of Biomedical Materials Research, vol.56, issue.1, pp.74-82, 2001.

P. J. Wrighton, J. R. Klim, B. A. Hernandez, C. H. Koonce, T. J. Kamp et al., Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins, Proc. Natl. Acad. Sci. U.S.A, vol.111, issue.51, pp.18126-18131, 2014.

P. Paoli, E. Giannoni, and P. Chiarugi, Anoikis molecular pathways and its role in cancer progression, Biochim. Biophys. Acta, vol.1833, issue.12, pp.3481-3498, 2013.

V. M. Tatard, Pharmacologically active microcarriers: a tool for cell therapy, Biomaterials, vol.26, issue.17, pp.3727-3737, 2005.

C. Penna, Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival, Journal of Cellular and Molecular Medicine, vol.17, issue.1, pp.192-204, 2013.

C. Musilli, Pharmacologically active microcarriers for endothelial progenitor cell support and survival', Eur J Pharm Biopharm, vol.81, issue.3, pp.609-616, 2012.

G. J. -r and . Delcroix, The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, issue.6, pp.1560-1573, 2011.

N. Daviaud, E. Garbayo, L. Sindji, A. Martínez-serrano, P. C. Schiller et al., Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease, Stem Cells Transl Med, vol.4, issue.6, pp.670-684, 2015.

C. Bouffi, The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells, Biomaterials, vol.31, issue.25, pp.6485-6493, 2010.

M. Savi, Enhanced engraftment and repairing ability of human adiposederived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats, J Biomed Mater Res A, vol.103, issue.9, pp.3012-3025, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392450

R. Madonna, Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation, 2015.

C. M. Agrawal and R. B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research, vol.55, issue.2, pp.141-150, 2001.

F. J. O'brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, vol.26, issue.4, pp.433-441, 2005.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.

S. R. Peyton and A. J. Putnam, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion, J. Cell. Physiol, vol.204, issue.1, pp.198-209, 2005.

M. J. Lydon, T. W. Minett, and B. J. Tighe, Cellular interactions with synthetic polymer surfaces in culture, Biomaterials, vol.6, issue.6, pp.396-402, 1985.

B. D. Ratner, New ideas in biomaterials science--a path to engineered biomaterials, J. Biomed. Mater. Res, vol.27, issue.7, pp.837-850, 1993.

M. W. Hayman, K. H. Smith, N. R. Cameron, and S. A. Przyborski, Growth of human stem cell-derived neurons on solid three-dimensional polymers, J. Biochem

, Biophys. Methods, vol.62, issue.3, pp.231-240, 2005.

K. Anselme, Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses, Journal of Biomedical Materials Research, vol.49, issue.2, pp.155-166, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02614488

D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials, vol.22, issue.1, pp.87-96, 2000.

M. G. Donoso, A. Méndez-vilas, J. M. Bruque, and M. L. González-martin, On the relationship between common amplitude surface roughness parameters and surface area: Implications for the study of cell-material interactions, International Biodeterioration & Biodegradation, vol.59, issue.3, pp.245-251, 2007.

H. Kawahara, Y. Soeda, K. Niwa, M. Takahashi, D. Kawahara et al., In vitro study on bone formation and surface topography from the standpoint of biomechanics, J Mater Sci Mater Med, vol.15, issue.12, pp.1297-1307, 2004.

Z. Li, Influence of surface roughness on neural differentiation of human induced pluripotent stem cells, Clinical Hemorheology and Microcirculation, vol.64, issue.3, pp.355-366, 2016.

S. W. Moore, P. Roca-cusachs, and M. P. Sheetz, Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing, Dev. Cell, vol.19, issue.2, pp.194-206, 2010.

D. T. Butcher, T. Alliston, and V. M. Weaver, A tense situation: forcing tumour progression, Nat Rev Cancer, vol.9, issue.2, pp.108-122, 2009.

R. J. Pelham and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility, vol.94, pp.13661-13665, 1997.

C. F. Deroanne, C. M. Lapiere, and B. V. Nusgens, In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton, Cardiovasc Res, vol.49, issue.3, pp.647-658, 2001.

T. Yeung, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motility, vol.60, issue.1, pp.24-34, 2005.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin et al., Substrate Compliance versus Ligand Density in Cell on Gel Responses, Biophysical Journal, vol.86, issue.1, pp.617-628, 2004.

G. J. Her, H. Wu, M. Chen, M. Chen, S. Chang et al., Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages, Acta Biomaterialia, vol.9, issue.2, pp.5170-5180, 2013.

K. Saha, Substrate modulus directs neural stem cell behavior, Biophys. J, vol.95, issue.9, pp.4426-4438, 2008.

S. Even-ram, V. Artym, and K. M. Yamada, Matrix control of stem cell fate, Cell, vol.126, issue.4, pp.645-647, 2006.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, Mediation of biomaterialcell interactions by adsorbed proteins: a review, Tissue Eng, vol.11, issue.1-2, pp.1-18, 2005.

J. Lin, T. Ko, and S. L. Cooper, Polyethylene Surface Sulfonation: Surface Characterization and Platelet Adhesion Studies, Journal of Colloid and Interface Science, vol.164, issue.1, pp.99-106, 1994.

A. W. Neumann and R. J. Good, Techniques of Measuring Contact Angles, Surface and Colloid Science, vol.11, pp.31-91, 1979.

M. S. Kim, Adhesion behavior of human bone marrow stromal cells on differentially wettable polymer surfaces, Tissue Eng, vol.13, issue.8, pp.2095-2103, 2007.

P. B. Van-wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers et al., Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities, Biomaterials, vol.6, issue.6, pp.403-408, 1985.

N. B. Mateo and B. D. Ratner, Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage, Invest. Ophthalmol. Vis. Sci, vol.30, issue.5, pp.853-860, 1989.

R. Hajj,

R. J. Good, Contact angle, wetting, and adhesion: a critical review, Journal of Adhesion Science and Technology, vol.6, issue.12, pp.1269-1302, 1992.

C. M. Cunanan, N. M. Tarbaux, and P. M. Knight, Surface properties of intraocular lens materials and their influence on in vitro cell adhesion, Journal of Cataract & Refractive Surgery, vol.17, issue.6, pp.767-773, 1991.

N. J. Hallab, K. J. Bundy, K. O'connor, R. L. Moses, and J. J. Jacobs, Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion, Tissue Engineering, vol.7, issue.1, pp.55-71, 2001.

K. Smetana, J. Vacik, D. Sou?ková, and ?. Pitrova, The influence of chemical functional groups on implant biocompatibility, Clinical Materials, vol.13, issue.1, pp.47-49, 1993.

K. Smetana and J. Vacík, Anionic polymers for implantation, Ann. N. Y. Acad. Sci, vol.831, pp.95-100, 1997.

S. Hattori, J. D. Andrade, J. B. Hibbs, D. E. Gregonis, and R. N. King, Fibroblast cell proliferation on charged hydroxyethyl methacrylate copolymers, Journal of Colloid and Interface Science, vol.104, issue.1, pp.72-78, 1985.

P. B. Van-wachem, Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge, Biomaterials, vol.8, issue.5, pp.323-328, 1987.

A. Kikuchi, H. Taira, T. Tsuruta, M. Hayashi, and K. Kataoka, Adsorbed serum protein mediated adhesion and growth behavior of bovine aortic endothelial cells on polyamine graft copolymer surfaces, J Biomater Sci Polym Ed, vol.8, issue.2, pp.77-90, 1996.

B. Thomes, R. Timmons, and R. Eberhart, Surface Roughness and Surface Chemistry Effects on Protein Adsorption, Proceedings of the 17th Southern Biomedical Engineering Conference, pp.47-47, 1998.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, Enhancement of Protein Adsorption Induced by Surface Roughness, Langmuir, vol.22, issue.26, pp.10885-10888, 2006.

M. Szycher and C. P. Sharma, Blood Compatible Materials and Devices: Perspectives Towards the 21st Century, 1990.

A. S. Hoffman, A general classification scheme for "hydrophilic" and "hydrophobic" biomaterial surfaces, J. Biomed. Mater. Res, vol.20, issue.9, pp.ix-xi, 1986.

D. J. Iuliano, S. S. Saavedra, and G. A. Truskey, Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion, Journal of Biomedical Materials Research, vol.27, issue.8, pp.1103-1113, 1993.

F. Grinnell and M. K. Feld, Adsorption characteristics of plasma fibronectin in relationship to biological activity, Journal of Biomedical Materials Research, vol.15, issue.3, pp.363-381, 1981.

, Biologie moléculaire de la cellule

J. M. Schakenraad and H. J. Busscher, Cell-polymer interactions: The influence of protein adsorption, Colloids and Surfaces, vol.42, issue.3, pp.331-343, 1989.

P. Thevenot, W. Hu, and L. Tang, Surface chemistry influences implant biocompatibility, Curr Top Med Chem, vol.8, issue.4, pp.270-280, 2008.

G. J. -r.-delcroix, P. C. Schiller, J. Benoit, and C. N. Montero-menei, Adult cell therapy for brain neuronal damages and the role of tissue engineering, Biomaterials, vol.31, issue.8, pp.2105-2120, 2010.

S. Kandalam, Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement, Acta Biomater, vol.49, pp.167-180, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01845036

J. Karam, Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering, Journal of Controlled Release, vol.192, pp.82-94, 2014.

T. Kemala, E. Budianto, and B. Soegiyono, Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(?-caprolactone) with poly(vinyl alcohol) as emulsifier, Arabian Journal of Chemistry, vol.5, issue.1, pp.103-108, 2012.

D. E. Bornside, C. W. Macosko, and L. E. Scriven, Spin coating: One-dimensional model, Journal of Applied Physics, vol.66, issue.11, pp.5185-5193, 1989.

D. B. Hall, P. Underhill, and J. M. Torkelson, Spin coating of thin and ultrathin polymer films, Polymer Engineering & Science, vol.38, issue.12, pp.2039-2045, 1998.

S. N. Magonov and D. H. Reneker, Characterization of Polymer Surfaces with Atomic Force Microscopy, Annual Review of Materials Science, vol.27, issue.1, pp.175-222, 1997.

C. Roduit, Membrane elastic heterogeneity studied at nanometrical scale on living cells, p.238

F. M. Fowkes, ATTRACTIVE FORCES AT INTERFACES, Ind. Eng. Chem, vol.56, issue.12, pp.40-52, 1964.

C. D. Volpe and S. Siboni, Some Reflections on Acid-Base Solid Surface Free Energy Theories, Journal of Colloid and Interface Science, vol.195, issue.1, pp.121-136, 1997.

H. Chang and Y. Wang, Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, 2011.

B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response, Biomaterials, vol.17, issue.2, pp.137-146, 1996.

D. I. Hitchcock, PROTEIN FILMS ON COLLODION MEMBRANES, J Gen Physiol, vol.8, issue.2, pp.61-74, 1925.

C. C. Shepard and A. Tiselius, The chromatography of proteins. The effect of salt concentration and pH on the adsorption of proteins to silica gel, Discuss. Faraday Soc, vol.7, issue.0, pp.275-285, 1949.

W. Norde and J. Lyklema, The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces: I. Adsorption isotherms. Effects of charge, ionic strength, and temperature, Journal of Colloid and Interface Science, vol.66, issue.2, pp.257-265, 1978.

W. Norde, My voyage of discovery to proteins in flatland, Colloids Surf B Biointerfaces, vol.61, issue.1, pp.1-9, 2008.

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv, vol.29, issue.6, pp.739-767, 2011.

P. E. Scopelliti, The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption, PLoS One, vol.5, issue.7, 2010.

H. Rohde, G. Wick, and R. Timpl, Immunochemical characterization of the basement membrane glycoprotein laminin, Eur. J. Biochem, vol.102, issue.1, pp.195-201, 1979.

J. Engel, Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix, Journal of Molecular Biology, vol.150, issue.1, pp.97-120, 1981.

Y. L. Jeyachandran, E. Mielczarski, B. Rai, and J. A. Mielczarski, Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces, Langmuir, vol.25, issue.19, pp.11614-11620, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414377

G. Anand, S. Sharma, A. K. Dutta, S. K. Kumar, and G. Belfort, Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity', Langmuir, vol.26, pp.10803-10811, 2010.

S. Giljean, M. Bigerelle, and K. Anselme, Roughness statistical influence on cell adhesion using profilometry and multiscale analysis, Scanning, vol.36, issue.1, pp.2-10, 2014.

D. Mazia, G. Schatten, and W. Sale, Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy, J. Cell Biol, vol.66, issue.1, pp.198-200, 1975.

P. Lesný, M. P?ádný, P. Jendelová, J. Michálek, J. Vacík et al., Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: Growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes, J Mater Sci: Mater Med, vol.17, issue.9, pp.829-833, 2006.

M. Hjortso, Cell Adhesion in Bioprocessing and Biotechnology, 1994.

C. Zamarron, M. H. Ginsberg, and E. F. Plow, A receptor-induced binding site in fibrinogen elicited by its interaction with platelet membrane glycoprotein IIb-IIIa, J. Biol. Chem, vol.266, issue.24, pp.16193-16199, 1991.

A. Elosegui-artola, Rigidity sensing and adaptation through regulation of integrin types, Nature Materials, vol.13, issue.6, pp.631-637, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02406591

R. Zaidel-bar, S. Itzkovitz, A. Ma'ayan, R. Iyengar, and B. Geiger, Functional atlas of the integrin adhesome, Nat. Cell Biol, vol.9, issue.8, pp.858-867, 2007.

M. Ochsner, M. Textor, V. Vogel, and M. L. Smith, Dimensionality Controls Cytoskeleton Assembly and Metabolism of Fibroblast Cells in Response to Rigidity and Shape, PLOS ONE, vol.5, issue.3, p.9445, 2010.

I. Ginzburg, A. Teichman, H. J. Dodemont, L. Behar, and U. Z. Littauer, Regulation of three beta-tubulin mRNAs during rat brain development, EMBO J, vol.4, issue.13B, pp.3667-3673, 1985.

J. S. Park, S. Suryaprakash, Y. Lao, and K. W. Leong, Engineering mesenchymal stem cells for regenerative medicine and drug delivery, vol.84, pp.3-16, 2015.

P. R. Amable, M. V. Teixeira, R. B. Carias, J. M. Granjeiro, and R. Borojevic, Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly, Stem Cell Research & Therapy, vol.5, issue.2, p.53, 2014.

M. Overstreet, A. Sohrabi, A. Polotsky, D. S. Hungerford, and C. G. Frondoza, Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins, In Vitro Cell. Dev. Biol. Anim, vol.39, issue.5-6, pp.228-234, 2003.

J. H. Fishman, A. González, and M. P. Osborne, Breast Cancer Cells Cultured in a System of New Design Presecrete an Extracellular Matrix and Proliferate within It without Cell-Cell Adhesion, Biochemical and Biophysical Research Communications, vol.220, issue.2, pp.467-471, 1996.